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Abstract Mastering navigation in environments with limited visibility is crucial for survival. While the hippocampus13

has been associated with goal-oriented navigation, its specific role in real-world behaviour, particularly in scenarios14

with partial observability, remains elusive. To investigate this, we combined deep reinforcement learning (RL) mod-15

elling with behavioural and neural data analysis. First, we trained RL agents to perform reward-based navigational16

tasks in partially observable environments. We show that agents equipped with recurrent hippocampal circuitry, as17

opposed to a purely feedforward network, successfully learned the tasks, resembling animal behaviour. By employing18

neural dimensionality reduction, ourmodels predicted reward, strategy and temporal representations, which we vali-19

dated using large-scale hippocampal neuronal recordings. Moreover, hippocampal RL agents predicted state-specific20

trajectories and action certainty, which mirror empirical findings. In contrast, agents trained in fully observable en-21

vironments failed to capture experimental data, suggesting that partial observability is implicit in goal-driven tasks.22

Finally, we show that hippocampal-like RL agents demonstrated improved generalisation across novel task condi-23

tions. In summary, our findings suggest a key role of hippocampal networks in facilitating learning in naturalistic24

environments.25

26

Introduction27

As we navigate new environments, wemust learn to integrate incomplete sensory information towards desired goals.28

How biological neural networks perform this feat is not fully understood.29

The hippocampus is classically associated with building a cognitive map of the environment and the storage of30

episodic memories [1–3]. However, growing evidence suggests that the hippocampus also supports goal-driven be-31

haviour [4–8]. For example, Wikenheiser and Redish [4] showed that the hippocampus is indeed involved in planning32

routes towards desired goals. Moreover, their work suggests that hippocampal sequence events, known as "replay",33

serve as a mechanism for goal-directed navigation, facilitating memory-based trajectory planning and guiding subse-34

quent navigational behaviour. Other studies have shown that the hippocampus, and the hippocampal CA3 region in35

particular, is involved in maintaining information in working memory that is needed during navigational tasks when36

sensory cues are no longer present [9–11]. Given that in most naturalistic conditions animals do not have contin-37
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uous access to the full environment, we postulate that the hippocampus may have evolved to support goal-driven38

navigation in environments in which sensory information is not always present.39

The hippocampus has been traditionally conceptualised using Hopfield neural networks, known for their capacity40

for autoassociative memory storage [12, 13]. More recent studies have demonstrated that recurrent neural network41

models of the hippocampus, trained for navigation tasks, exhibit specific cell types tuned to spatial information [14–42

17], including the commonly observed place cells and grid cells [18, 19]. Furthermore, some of thesemodels have also43

considered the role of hippocampal networks in reward-based navigation tasks [6, 7, 20]. However, how hippocampal44

networks contribute to navigating goal-oriented environments under realistic conditions andwhat are its implications45

for our understanding of animal behaviour and the underlying neural substrates has remained unclear.46

Here, we show that the hippocampal circuitry is well placed to deal with environments with realistic conditions,47

such as limited visibility and cue uncertainty. To that end, we combine behavioural and neural data analysis together48

with deep reinforcement learning (RL) modelling on similar task setups. Both animals and agents were trained to per-49

form ego-allocentric strategies on a T-maze. Ourmodels consist of a neural network with three-layered hippocampal-50

like structure trained in a reinforcement learning setting. By contrasting experimental observations with the model51

we show that hippocampal networks trained in partial, but not fully observable environments, provide a good match52

of neuronal and behavioural observations. Using task-relevant dimensionality reduction we show that hippocam-53

pal neurons encode decision, strategy and temporal population activity that can only be explained by a model with54

CA3-like recurrence. Moreover, our modelling shows that CA3 recurrence also captures key behavioural features55

commonly observed in animals and humans, and that it generalises to different task conditions. This is in contrast56

with non-recurrent models, which failed to capture experimental observations. In addition, our work shows that57

agents trained in fully observable environments also do not capture experimental observations, thus suggesting the58

need to reevaluate previous experimental findings that may have implicitly assumed full observability.59

Our work suggests that recurrent hippocampal networks underlie the ability of animals to learn to navigate envi-60

ronments with real-world conditions.61

Results62

We were inspired by a behavioural setup in which animals were trained on a Plus-maze (Fig. 1A) to perform a goal-63

driven navigational task while following two strategies, egocentric and allocentric [5]. In the egocentric (self-centred)64

rule, the reward was always positioned in the same location with respect to the animal, i.e. regardless of the north or65

south starting location. For the allocentric (world-centred) rule, the reward is at the same location irrespective of the66

animal’s starting position, and the animal needs to turn left or right depending on whether they start from a north or67

south position. Training was conducted in a block-wise fashion with interleaved blocks of allocentric and egocentric68

tasks, each one with sub-blocks corresponding to different starting locations (i.e., north versus south). Despite the69

relatively complex nature of these tasks with multiple rules, rats achieve a good performance (Fig. 1B).70

Next, we aimed to study the underlying architectural principles that enable such goal-driven navigation. To this71

end, we contrast animal behaviour and (hippocampal) neural data with artificial reinforcement learning (RL) agents72

with a hippocampal-like architecture. To mimic the experimental setup described above, we simulated a 2D minigrid73

environment [21], which consists of a starting state and two terminal states: rewarded and non-rewarded (Fig. 1C).74

To capture both north and south starting states, we use different sensory cues (Fig. 1D). Together, this task setup75

results in four sub-tasks (or rules): allocentric north and south, and egocentric north and south (illustrated in Fig. 1E).76

Agents with CA3-like recurrence learn ego-allocentric goal-driven tasks77

Ourhippocampal RLmodels are basedon standarddeep reinforcement learningmodels, specifically, DeepQ-networks78

(DQN) [22] as outlined in the Methods section. These models feature a three-layer hippocampal-like structure: the in-79

put layer emulates entorhinal input to the Dentate Gyrus (DG), the first layer represents CA3, the second CA1, and the80

output layer encodes action-state values, denoted as Q(a, s) (Fig. 2A,B). The entorhinal cortex (EC) is known to supply81

the hippocampus with a spatial map of the environment [19], which we approximate using the 2D top-down spatial82

map from the minigrid environment within our model (Fig. 1C). Additionally, the output layer captures state-action Q83

values, serving as an abstraction of hippocampal-to-striatum functional connectivity [23].84

Motivated by the existence of recurrent connectivity in CA3 [24] and in line with previous work in which brain85

areas are modelled as gated recurrent neural networks [25, 26] we model CA3 using a Gated Recurrent Unit (GRU)86
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Figure 1. Ego-allocentric task setup in animals and reinforcement learning agents. (A) Top, experimental setup in which

rats were placed in a plus-shaped maze [5]. The task consists of reaching the reward at the end of one of two arms following

either egocentric (pink) or allocentric (purple) rules. Bottom: both animal and artificial agents were trained by interleaving blocks

of allocentric and egocentric (see main text). (B) Animal performance on allocentric and egocentric tasks following the setup shown

in (A) across 5 animals. (C) The experimental setup in (A) was simulated using a grid world environment. This setup was then used

to train reinforcement learning agents in ego- and allocentric tasks. Environment observability was modelled by defining a visible

range around the animal (light gray box; see main text for details), which is limited to the current cell alone when the agent enters

the terminal arms. A total of four cues (cf. (D)) are placed in the environment, two for north starting state and two for the south

starting state. Trophy and red cross represent rewarding and non-rewarding terminal states, respectively (not made visible to the

agent). (D,E) Schematic showing the cues used (D) and the four possible allocentric and egocentric rules (E). Dotted line represents

the ideal path towards the reward starting north/south. Cues are presented near the starting positions where key/box refer to the

north starting point and lava/ball to the south one. In the allocentric task, the reward is always on the same side regardless of the

starting position. In egocentric task, the reward is always on the right side of the starting position.

network [27], which we denote as hippocampal deep recurrent Q-Network (hcDRQN). In addition, we contrast this87

network with three other networks: a purely feedforward hippocampal Deep Q-Network (hcDQN) and two hcDQNs88

augmented with artificial continual learning algorithms. We considered two continual learning models to contrast89

our results with modern deep learning solutions to similar multi-task learning problems. In particular, we included90

two of the most popular methods: Elastic Weight Consolidation (ML-EWC; [28]) and Synaptic Intelligence (ML-SI; [29]).91

Motivated by the lack of evidence suggesting that replay of previousmemories from the hippocampus to itself, we did92

not use the experience replay buffer in our model. One output Q-value head is not sufficient to solve all the tasks we93

consider (see Fig. S1A), even in the presence of a replay buffer. Therefore, to ensure that the network could solve the94

two tasks (ego and allocentric) we use task-specific heads at the output (see Methods), which in biological networks95

could be implemented through task-switching contextual signals [30].96

First, we compare the hippocampal deep reinforcement learning models (Fig. 2B) with animals by contrasting97

their task performance (Fig. 1B). We trained the models using the grid environment described above and following a98

similar training procedure (trial-by-trial) used to train animals with blocks of allocentric trials alternated with blocks of99

egocentric trials (Fig. 1A, bottom). Within each block we alternate the two starting (north/south) positions. Our results100

show that the hippocampal-like network, hcDRQN, can successfully learn multiple tasks (Fig. 2D). The hcDRQNmodel101

not only yields the best performance on both tasks but is also the only model that can learn allocentric tasks while102

other models perform around chance level. This is because models that fail to truly learn the tasks will default to103

memorising to always turn right at the decision point as this behaviour will work 3 of the 4 sub-tasks (allo-south,104

ego-north and ego-south; see more details in Fig. 4). This is in line with the performance of the animals, showing105

that animals can learn both strategies (Fig. 1B). In addition, our results show that a non-plastic recurrent CA3 is not106

sufficient to learn all tasks (fixed hcDRQN model). Studying how the performance evolves over trials within each107

allocentric and egocentric block, shows that allocentric performance drops for hcDQN after each switch between108
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Figure 2. Reinforcement learning agents with CA3 recurrence jointly learn ego and allocentric tasks. (A) Classical hippocam-

pal trisynaptic circuitry: entorhinal cortex (EC), dentate gyrus (DG), and hippocampus CA3 and CA1 layers. (B) Schematics of re-

inforcement learning (RL) agents with hippocampal-like architecture modelled as deep-Q-networks (DQN) used to learn the goal-

driven tasks described in Fig. 1. In our models the DG receives a simplified (partially observable) map of the environment which is

processed by the CA3-CA1 pathway and then CA1 projects to the reward system to compute the Q-value of state-action pairs, Q(s,a).

We consider two main models: (i) with CA3 recurrence (hcDRQN, top) or (ii) with CA3 as a feedforward network (hcDQN, bottom).

Both models consist of two hidden layers (CA3 and CA1). (C) Minigrid environment showing 3x3 and full view size (orange outline).

(D) Performance of all models for allocentric (left), egocentric (middle) or both (right) tasks. For comparison with modern machine

learning solutions to multi-task learning we also consider two popular algorithms: elastic weight consolidation (ML-EWC) and synap-

tic intelligence (ML-SI). (E) Learning curves for both hcDQN and hcDRQN, showing that the former fails to learn allocentric tasks.

Arrows represent switching points. (F) Task performance of RL agents as environment observability is progressively incremented.

Both models achieve the same performance under full observability whereas only the hcDRQN agent can learn tasks under non-full

observability. Error bars represent standard error of the mean over 5 different initial conditions.

north vs. south scenarios (Fig. 2E). Although we report only hcDQN compared to hcDRQN, the other two models109

(ML-SI and ML-EWC) present the same behaviours as hcDQN and cannot solve allocentric tasks (see Fig. S1B).110

CA3 recurrence is needed in partially observable environments111

Next, we aimed to show that CA3 recurrence is indeed required for partial, but not full environmental observability.112

To demonstrate this, we tested hcDRQN and hcDQN in environments with different degrees of visibility (3x3, 5x5,113

7x7, and full view; Fig. 2C). We expected a model without CA3 recurrence (i.e. DQN) to be able to solve all tasks114

in environments with full observability (i.e. all information continuously available). Our results show that the non-115

recurrent model, hcDQN, only succeeds to learn both allo and egocentric tasks when the full view is provided (Fig. 2F).116

We expected that models learn to solve the task in these conditions by continuously rely on having access to the117
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task-specific cues. To test this continuous reliance on sensory cues we removed the cues after the decision point118

(Fig. S2). Our results show that both models completely fail to complete the tasks.119

Given that in most realistic environments animals are unlikely to have continuous access to the full environment120

our results suggest that CA3 recurrence plays an important role in supporting goal-driven behaviours under natural-121

istic conditions.122

Task-relevant neuronal dynamics in agents and animals123
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Figure 3. Strategy, temporal, and outcome neural dynamics in RL agents and animals. (A) Demixed principal components

corresponding to task strategy (allocentric and egocentric for both north and south start locations), time and decision (correct

and incorrect). hcDRQN components show separate task strategies whereas hcDQN mixes task strategies. (B) Mean squared error

betweennormalisedmodel and animal data demixed components. We also contrast agents trainedwith full and partial observability

(cf. Fig. S3). (C) Percentage of explained variance for Decision, Strategy, Interaction and Time components (cf. full components in

Fig. S4).

To contrast the neural dynamics predictedby the hippocampal RL agentswith experimental observations recorded124

from awake performing animals we performed dimensionality reduction on CA1 recordings. In particular, we used125

demixed PCA (dPCA), which enabled us to extract behaviourally-relevant dimensions.126

We extracted task-specific neural encodings from the agent throughout learning. The neural activity of the mod-127

elled CA1 layer of the agents was stored throughout learning and used to perform dPCA (see Methods for details).128

This analysis revealed three task-encoding components of interest in the hcDRQN agent (Fig. 3A). First, we find a clear129

separation at the population level between allo and egocentric tasks for hcDRQN, but not hcDQN (Fig. 3 left). The130

fact that hcDQN shows a mixed strategy component is consistent with the fact that it cannot learn both allo and ego-131

centric strategies. Next, we find that both hcDRQN and hcDQN exhibit a temporally decaying population dynamics132

(Fig. 3A middle). Finally, we observe decision- or outcome-specific components predicting that CA1 encodes reward133

prediction errors well before reaching the decision point.134

Next, we tested the predictions generated by our RL agents using tetrode recordings obtained from 612 CA1135

neurons. The results of the dPCA show that the data qualitatively validate the results predicted by the hcDRQN136

agent for the strategy-specific components, but not the hcDQN agent (Fig. 3A bottom). We also observe stronger137
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neuronal activations in the allocenctric tasks compared to the egocentric tasks, in line with experimental observations138

(Fig. S5). To better quantify model-data match we used a normalised mean-squared error metric (see Methods).139

This metric shows that, indeed, hcDRQN better captures experimentally observed strategy neural dynamics (Fig. 3B140

left). For the time-specific components we observe a decaying component as predicted by the RL agents. Although141

both the hcDRQN and hcDQN look qualitatively very similar, the error metric shows that hcDRQN provides a better142

match with the data (Fig. 3B middle). Finally, the decision component also reveals a separation between correct and143

incorrect trials as predicted by the models, but in contrast to the models this separation remains after the reward144

point. However, we should point out that reward point in experimental data simply means that a sensor close to the145

reward was triggered, thus there is likely some delay between triggering the sensor and actually perceiving reward.146

As before we used the model-data error metric on the decision components (up to the reward point) and found no147

differences between the hcDQN and hcDRQN (Fig. 3B right).148

Models trained under full observability conditions do not appear to provide a good match with experimental ob-149

servations. To further support this point, we comparedmodel neural dynamics in agents trained with full continuous150

access to the environment (Fig. S3). Our error metric shows that agents trained with full observability provide a poor151

match to neural dynamics when compared to agents trained under partial observability (Fig. 3B). These results pro-152

vide further support for CA3 recurrence as being important to navigate environments under naturalistic conditions.153

Finally, we contrast the degree of explained variance across models and data. hcDRQN captures explained vari-154

ance across behavioural variables in a way thatmore closelymatches awake tetrode recordings (Fig. 3C). Of particular155

interest is the fact that hcDQN relies more on mixed (or interaction) components (37%) compared to hcDQN (13%)156

and animal (9%), which is in line with its inability to fully solve all the tasks.157

In summary, our neural dynamics analysis suggests that the hippocampus is indeed involved in task strategy,158

temporal integration and reward-based decision, in line with the predictions made by hcDRQN RL agents.159

Hippocampal RL agents with recurrence capture animal behaviour160

In order to contrast the behaviour of RL agents with that of animals we studied the trajectories taken during the tasks161

after learning. We studied the trajectoriesmade by both RL agents and animals (Fig. 4A). To enable a comparison with162

agent trajectories we discretised animal trajectories into a 9x9 grid. The behavioural trajectories show that hcDRQN163

better captures animal behaviour in terms of time spent at the starting point, decision and the terminal state (Fig. 4A).164

On the other hand, the hcDQN agent fails to discriminate between the two allocentric tasks and instead learns only165

one policy (allocentric south). Next, to quantify the time spent on each statewe calculated the ratio between individual166

states and the final state. This state-to-end ratio shows that hcDRQN better approximates animal behaviour also at167

a finer level and for allocentric strategies in particular (Fig. 4B,C). Next, to study whether the better fit of hcDRQN168

to animal behaviour is specific or general we made this analysis across all possible subtasks (Fig. 4D). Our results169

show that hcDRQN clearly outperforms hcDQN, except for a minor effect on the allocentric north when compared170

to allocentric south. When analysing RL agents trained with full observability we observed more mixed outcomes,171

suggesting that also for behavioural data partial observability better aligns with our results above (Fig. S6, S7).172

Overall, hcDRQN provides a better match to animal behaviour, further supporting an important role of CA3 recur-173

rence in the hippocampal circuitry.174

Agent’s behaviour predicts state-dependent action values175

Because the recurrent RL agent is able to solve both ego and allocentric tasks we expected this to result in state-action176

value predictions that are generally more uncertain when compared to the non-recurrent model. To examine this in177

more detail we analysed the action-values for each state. This highlights the sequence of actions that makes hcDQN178

take the wrong arm and the correct policy learnt by hcDRQN for both allocentric tasks. Interestingly, on average,179

hcDRQN has higher Q-values than hcDQN, which reflects the fact that it learns all tasks (Fig. 5B). Next, we studied180

action selection certainty by calculating the Q-value variance across all possible Q-values for a given state (Fig. 5B).181

This analysis shows that hcDRQN starts with lower action certainty but that it gradually increases over states until182

the terminal state. This reflects the effect of appropriate cue integration towards a decision. In contrast, hcDQN183

becomes less certain after the initial state. Interestingly, the difference in terms of certainty between hcDRQN and184

hcDQN becomes even stronger when agents are trained under full observability (Fig. S8). The fact that themodel that185

can solve all tasks (hcDRQN) is initially less certain and becomes more certain about its choices is in line with classical186
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Figure 4. Hippocampal RL agents with recurrence capture animal behaviour. (A) Time spent on each maze state across the

four strategies for: rats, hcDRQN and hcDQN. Animals spend more time at the decision and rewarded terminal points. hcDRQN

better captures animal behaviour and hcDQN fails to solve allocentric north task (cf. Fig. 2). (B) Time spent on each state normalised

to the time spent on the final (terminal) state in models and animal. (C) Error between a given model and animal behavioural data.

(D) Error between a given model and animal behavioural data across all possible task-pairs. hcDRQN shows overall closer match to

animal behaviour when compared to hcDQN. Error bars represent standard error of the mean over 5 different initial conditions.

animal and human behavioural observations [31]. In the decision making literature expert subjects are often less187

certain then naive subjects, which is related to the Dunning–Kruger effect.188

Recurrence enables generalisation to stochastic environments189

Until now we have trained RL agents in environments in which cues are always present. However, recurrent neural190

networks are well placed to deal with stochastic environments by integrating evidence over time [32, 33]. To test the191

effect of stochasticity on the different agents we created environments in which cues randomly appear and disappear192
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Figure 5. Agent’s behaviour predicts state-dependent action values. (A) Schematic illustrating state-action policy for hcDRQN

and hcDQN for allocentric north subtask. It highlights that hcDRQN solves the task and that it is more uncertain about which action

(i.e. different actions have similar values) until the decision point. Each state is represented by 3 coloured arrows corresponding to

the stateQ-valueswhere darker colourmeans higher value. (B) Top: The state-value certainty given by the variance over Q-values for

each state shows that hcDRQN increases its certainty as it gets closer to the decision state and terminal state (see arrows). Bottom:

Average state-values over environmental states. Error bars represent standard error of the mean over 5 different initial conditions.
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Figure 6. Recurrence enables better generalisability to stochastic environments. (A) Change in state-occupancy (with proba-

bilistic cues - without probabilistic cues) for the hcDRQN agent across different degrees of cue removal. (B) hcDRQN outperforms

hcDQN across different degrees of probabilistic cues. (C) Performance of hcDRQN agents trained with probabilistic cues compared

to without. (D) Change in state-occupancy of hcDRQN agents trained with probabilistic cues.

(Fig. 6). We study two scenarios: (i) incremental random cue removal during inference (i.e. after learning) and (ii)193

effect random cue removal on learning. During inference, the performance of hcDRQN gradually decreases as the194

likelihood of cue removal increases. In contrast, for hcDQN, which lacks recurrence, its performance decreases as195

soon as the cues are removed, regardless of the degree of removal. This highlights the lack of evidence integration of196

hcDQN, while hcDRQN can handle a high degree of removal 90% while maintaining performance above 80%. When197

comparing the hcDRQN trajectories to the model without cue removal, the agent switches to the default ’turn left’198

policy when little or no cues are present. In addition, the model spends more time in the start and middle corridors199

because it must observe cues before deciding which arm to turn onto. Next, we tested the idea that if the agent was200

trained in a stochastic environment, this should result in the model being more robust to cue removal. Indeed, when201

trained under these conditions the model performs consistently better than a model trained without random cue202

removal (10% improvement). When analysing trajectory behaviour, our model predicts that agents spend more time203

on the starting location to integrate sensory evidence for longer before committing to a decision.204
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Taken together, these results suggest that CA3 recurrence also plays an important role in learning to navigating205

stochastic environments.206

hcDRQN generalises to different task conditions207

� �

�

T-maze variation

�

�

�

❌

�

� �

longer maze

cue removal

distractor

cue noise

1

2

3

4

✴

Figure 7. hcDRQN shows better generalisation tomaze length, cue removal, distractors and sensory noise. (A) T-maze setup

for increased length of the middle corridor, cue removal and random noise. (B) Performance decrease over gradual increase of the

maze length shows that hcDRQN can handlemiddlemaze length being 32 steps. Black arrows on the X-axis representmaze corridor

length of 4 steps utilised during training. (C,D) Animal andmodel performance when cues are removed from the environment. Both

hcDRQN (light green) and animal (blue) allocentric navigation are highly dependent on cues while egocentric is not affected by cue

removal. On the other hand, hcDQN fails to solve both allocentric tasks. (E) When adding a distractor cue, hcDQN drops to chance

level while hcDRQN can still solve most of the tasks. (F) When adding white Gaussian noise to the cues hcDRQN is more stable and

robust when compared to hcDQN. Error bars represent standard error of the mean over 5 different initial conditions.

Finally, we tested whether the RL agents considered here can generalise to different task conditions not experi-208

enced during training (Fig. 7A). First, we tested different lengths of the initial maze corridor (Fig. 7B). This allowed209

us to test whether the RL agents memorise the tasks or learn to integrate the cue information and maintain it in210

memory to trigger the right action at the decision point. Our results show that hcDRQN performance is very robust211

across a large range of lengths, whereas hcDQN defaults to chance level. This demonstrates that indeed the hcDRQN212

has successfully learned to integrate cue information, which is then maintained in its recurrent memory for action213

selection when required.214

Next, we tested the models on the same environment it was trained on, but removing a set of cues at a time.215

Note that this is complete removal of cues, rather than stochastic cues as in the previous section. When retaining all216

cues the performance obtained by all models is in line with the training performance, with hcDRQN being the best217

model and the only one doing better than chance in the allocentric tasks (Fig. 7D, all cues). This demonstrates that218

the models were able to remember all the tasks on which they were trained. To test for generalisation, we gradually219

reduced the number of cues available in the environment. Our results show that hcDRQN is the only model that can220

handle half of the cues being removed. Interestingly, cue removal is more detrimental to allocentric navigation than221

egocentric navigation. This result is in line with experimental observations, in which allocentric but not egocentric222

task performance is impaired upon cue removal [34](Fig. 7C). In contrast, models trainedwith full observability cannot223

generalise, as they rely on the presence of specific cues (Fig. S9).224

Finally, we repeated the original task on the T-maze adding a distractor cue and adding (Gaussian) white noise225

to the cues. When a distractor cue is introduced, hcDQN’s performance drops to chance level, whereas hcDRQN226
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achieves a success rate of approximately 70% (Fig. 7E). To test the robustness of both models to noise we tested227

a range of noise levels (Fig. 7F). The hcDRQN model can handle a relatively large degree of cue noise without any228

changes in the overall performance, while hcDQN is more unstable and shows a faster decrease in performance as229

the noise is increased.230

Taken together, our generalisation tests demonstrate that hcDRQN generalises better to different and realistic231

task conditions, in line with animal behaviour.232

Discussion233

Naturalistic behaviour almost always relies on navigating environments with limited visibility. Here, we have shown234

that recurrent hippocampal networks play a pivotal role in such environmental setups. Our investigation began by235

training RL agents to perform ego-allocentric tasks within partially observable environments. Remarkably, agents236

equipped with recurrent hippocampal circuitry successfully mastered these tasks, mirroring real-world animal be-237

haviour. Additionally, our models predicted reward, strategy, and temporal neuronal representations, which we238

validated through extensive hippocampal neuronal recordings. Furthermore, hippocampal-like RL agents predicted239

state-specific trajectories and action uncertainty, closely resembling experimental observations. In stark contrast,240

agents trained in fully observable environments failed to replicate the experimental data. Most importantly, these241

hippocampal-like RL agents demonstrated enhanced generalisation capabilities across novel task conditions.242

Motivated by the challenging conditions that animals often face in the wild, we have focused on a task setup with243

partial observability. This is also supported by the lack of visual acuity in rodents [35, 36]. In addition, whenourmodels244

were trainedwith full observability, they could not generalise (Fig. S9), which further suggests that partial observability245

provides a better model of animal behaviour. hcDRQN performs particularly well in partial environments, in line with246

previous research in artificial neural networks [37]. Partially observable environments represent a more real-world247

setup, which suggests that hippocampal CA3 region may have evolved to support the ability to navigate partially248

observable environments.249

Classical hippocampal models suggest that CA3 recurrency enables pattern completion [38, 39], while more re-250

cent computational models propose that the hippocampus creates a predictive map of the environment through251

successor representations (SR) [40]. Our research aligns with the SR view and reveals task-specific reward prediction252

traces (see Fig. 3). Furthermore, our findings underscore the essential role of CA3 in constructing the hippocampal253

predictive map, consistent with the predictive view of hippocampal function [40]. In another set of studies recurrent254

neural networks (RNNs) have been trained to support spatial navigation. They have shown that RNNs develop spatial255

receptive fields similar to experimental findings [14–16]. For instance, Cueva and Wei [15] demonstrated grid-like256

spatial response patterns, border cells, and band-like cells in trained RNNs. Similarly, Banino et al. [14] revealed grid257

cell-like representations when training deep recurrent reinforcement learning networks for 3D navigation. Uria et al.258

[16] trained a similar system, yielding neurons with spatial receptive fields akin to those in Banino et al. [14], Cueva259

andWei [15]. While these studies emphasize the importance of recurrent connectivity in hippocampal networks, they260

do not assess their function in partial observability and its relationship to experimental observations, which is a focus261

of our work.262

Our results show that a model with a recurrent layer (hcDRQN) without experience replay outperforms alterna-263

tive methods that were specifically designed for continual learning (even when a multi-head setting is considered),264

consistent with recent machine learning findings [41]. Given that hcDRQN is a systems-level approximation of the265

hippocampal system, it suggests that the brain relies on a combination of recurrent neural networks to continually266

adapt to new situations, at least in navigational tasks. It remains to be tested how general these principles are across267

other areas of the brain. Our models do not use a memory buffer that retains all previous experiences. However,268

recent work has introduced generative replay models [42, 43] which circumvent the problem of storing all previous269

experiences. In the future, it would be of interest to explore these variants.270

Because our focus is on contrasting models with neuroscientific observations, we have used the same continually271

interleaving ego- and allocentric tasks as employed experimentally. Interestingly, when tested on egocentric tasks272

our models are more robust to the removal of cues when compared to allocentric tasks (Fig. 7C), consistent with273

experimental observations [34]. However, the tasks that we have used here represent only a small subset of all the274

possible challenges that animals are only faced with. This means that our model-animal comparison is relatively275
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unfair as animals have to deal with much more than solving these two tasks. Conversely, it is also true that there276

are many more biological principles that we have not considered in our models. All these elements remain to be277

explored in future work.278

Our model shows that CA3 recurrence is needed to solve all the tasks we tested due to its ability to remember279

the relevant sensory cues. This in line with experimental results showing that the CA3 region is involved in main-280

taining working memory representation for delayed-to-match sample tasks [9–11]. Moreover, our work shows that281

the hippocampus encodes reward prediction error signals. This mirrors the growing evidence suggesting that the282

hippocampus interacts with the reward-system [44, 45].283

Overall, our work suggests that hippocampal networks play a critical role in the ability of animals to continuously284

adapt to the environment under realistic conditions and with good generalisation properties.285
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Methods385

Webegin by outlining the deep reinforcement learning approaches employed in this study, followedby an explanation386

of the methods utilised for the analysis of neural data.387

Reinforcement learning models388

We developed a deep reinforcement learning model consistent with the hippocampal architecture. To train the mod-389

els we designed a custom-built 2D gym-minigrid maze [21], mimicking the T-maze environment (Fig. 1a) in line with390

common experimental setups, which allow us to compare our models with the behavioural and neural data [5]. In391

order to capture cues commonly placed on external walls in experimental setups we placed four cues in the envi-392

ronment in both allocentric and egocentric trials, in line with [5]. At the beginning of any given trial the agent was393

placed at the start of the north or south arms of the maze following the same setup of the animal experiments, and394

we closed access to the opposite arm thus converting the maze into a T-maze. We considered two terminal states:395

one rewarded and one unrewarded. After reaching a terminal state (rewarded/unrewarded) we allowed the agent396

to continue exploring for three extra time steps which allowed us to model the animal behaviour right after reward397

consumption. During model training we extracted neural activities which we used to contrasted model and animal398

neural data. Note that direct sensory information about the terminal states was not given as input to the agent.399

Deep RL agents:400

Reinforcement learning (RL) models an agent that observes the environment and takes an action a. This action tran-401

sitions the agent into a new state s of the environment which might give back a reward r according to the utility402

of the action selected. This can be formally defined by a Markov Decision Process as tuple of ïS,A,P,R, µð where403

S is the set of all the states, A is the action set, P the transition matrix P(s ′|s, a) from current state s to the next404

state s ′ when taking action a. The objective is to maximise the expected total rewards, called return Gt defined as405

Gt =
∑

T

k=t
µk−tRk+1 where t is the current time step, Rt+1 is the reward obtained at time t + 1, µ is a discount factor406

such that 0 f µ < 1 and T is the time at which the episode terminates.407

For the hippocampal RL models we build on the standard deep reinforcement learning models. In particular,408

we use Deep Q-networks (DQN) [22], in which states s are provided as input to an artificial neural network that are409

then mapped onto value-action pairs Q(s, a). The network is trained using state-outcome transition tuples, (s, a, s ′, r),410

where s is the current state, a is the action, r denotes reward outcome and s ′ the next state. The error function used411

to train the hippocampal network follows a Q-update function as Ei at step i :412

Ei (¹i = Es,a,s′,r∼D(r + µmaxa′Q(s ′, a′; ¹−
i
)− Q(s, a; ¹i ))

2 (1)

where ¹ denotes the network weights, µ is the discount factor and D is the dataset of past trajectories. As done by413

standard DQNs we use the concept of target network (¹−) which helps to stabilise learning (see Methods).414

To create a model that more closely captures the hippocampal circuitry, we consider a three-layered structure415

with the input layer modelling entorhinal input to Dentate Gyrus (DG), the first layer represents CA3, a second layer416

represents CA1, and the output encodes the value of a given action-state pair,Q(a, s) (Fig. 2b). The DG input originates417

from the entorhinal cortex (EC) which is believed to provide the hippocampus with a spatial map of the environment418

[19]. In our model, the EC spatial map is approximated by the 2D top-down spatial map provided by the minigrid419

environment (Fig. 1c). The output layer encodes state-action Q values, which abstracts out hippocampal-to-striatum420

functional connectivity [23].421

All our models have a four-layered structure in which the input layer is of shape (RxC) where R is the number422

of rows in the input grid, C the number of columns. The output layer has Nx1 shape (N = 3) denoting the Q-values423

for the 3 actions that the agent can take in the environment (left, right, forward). We use a standard discount factor424

(µ = 0.9), a memory buffer of size 1 and a batch size of 1 during training. Adam is used as the optimiser with a425

learning rate ³ of 0.001. We choose a CA3 layer size of 50 for hcDRQN as well as for all the other models considered.426

The learning rate and epsilon for epsilon greedy have been selected using a grid-search. All the hyper parameters427

are given in Table S1.428
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Name Value

Discount factor, µ 0.9

Adam learning rate, ³ 0.001

Epsilon-greedy, ϵ, max-min 0.3 - 0.05

Epsilon-decay 0.9

Batch size 1

MLP layers 4

Input size 9/81

Hidden size 50

hcDRQN hidden size 50

Output size 3

Memory size 1

Target update counter 25

Supplementary Table S1. Hyperparameters used to run the experiments given in the paper.

Partial observability429

In our grid-based environment, models operate under conditions of limited enviromental observability, mirroring430

the real-world challenges faced by navigating animals. Moreover, in reality, animals rarely possess complete access431

to all pertinent sensory data during navigation. For instance, they may initially focus on cue information but then432

shift their attention to executing motor commands to reach their destination. In experimental neuroscience, while433

cues are typically positioned along the outer walls of a room [5], animals do not continuously fixate on these cues.434

Additionally, maze setups often involve the incorporation of walls of varying heights, further restricting the visual435

input available to the animals.436

To substantiate the importance of CA3 in navigation and its ability to better align with experimental findings in437

partially observable environments, we compare our models against those trained with full visibility. This compari-438

son underscores the significance of CA3 and its capacity to more accurately capture experimental outcomes when439

navigating in environments with limited sensory input.440

Training details441

The training phase consisted of a block of allocentric and egocentric trials. Specifically, each block contains 25 trials,442

and there were a total of 4 blocks (allocentric north/south, egocentric north/south). The agents were first exposed443

to blocks of allocentric trials in the north direction, which were then alternated with blocks of allocentric trials in the444

south direction. This alternating pattern was repeated four times before switching to the egocentric trials. The same445

north/south combination wasmaintained throughout the entire duration of the egocentric trials. In total, the training446

consistented of 10,000 individual trials (200 blocks each with 25 trials for both ego and allocentric tasks).447

A two-head setup is utilised, where the final layer outputs two Q-values: Q-value-allo and Q-value-ego. The state448

input to the models are 2D matrices where cues, walls and no-walls were encoded as scalar values. For the partial449

view the observation size was 9 (3x3) while for the full view was 81 (9x9).450

Generalisation tests451

We performed four types of generalisation tests (Fig. 7):452

1. Longer maze: In this test, the length of the starting corridor was increased while keeping the length of the two453

terminal arms constant.454

2. Cue removal: Different combinations of cue removal were performed, ranging from removing all cues to remov-455

ing none. The cues were removed at the beginning of the trial, meaning that the agent had no access to the cue456

at any point during the task. This is in contrast to the experiments on probabilistic cue removal (Fig. 6), where457

the agent still had access to these cues with a given probability.458

3. Distractor: Another cue (represented by a scalar value) was added just next to (below) the existing cues.459

4. Random noise: We added normally distributed noise, N (µ, Ã2) with µ = 0 and Ã2 in the range of (1,15).460
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Continual learning algorithms461

To compare with modern artificial algorithms capable of multi-task learning we tested Elastic Weight Consolidation462

(EWC) and Synaptic Intelligence (SI). Hyperparameters were selected through a hyperparameter search (the EWC463

weight importance was set to 800 and the SI weight importance to 30).464

Experiments with fully observable environments465

We repeated the main results with a fully observable environment with both hcDRQN and hcDQN models. Although466

bothmodels can learn all tasks in termsof performance, their dPCA analysis does not showa clear separation of all the467

components. In hcDRQN, decision and strategy follow the same trends with activity dropping to zero right after the468

reward point. This is the opposite of the partial view hcDRQNand animal activity where strategy components keep the469

separation even after the reward point. Moreover, hcDRQN fails to capture the time component. The hcDQN model470

completely fails to separate the strategy north compoents. Overall, given that full view model fails to capture dPCA471

components we argue that the fully observable environment does not provide a goodmatch of the hippocampal data.472

We run further tests to analyse the animal trajectories and the generalisation capabilities of these full view RLmodels.473

Although most of the trajectory maps show close match between the animal and hcDRQN, there are situations in474

which the hcDQN seems to be a better match to animal data. The generalisation tests highlight the limits of the475

fully observable models, as cue are gradually removed performance drops drastically, emphasising the dependency476

of these models on the cues. Animal performance and partial view RL models show evidence that egocentric task477

do not rely on cues, however the fully observable models remain highly depended on the cues. Overall our results478

suggest that hcDRQN trained with partial observability provides an overall best match with animal behaviour and479

neuronal encodings.480

Computing details481

All experiments were conducted on the BluePebble super computer at Bristol; mostly on GPUs (GeForce RTX 2080 Ti)482

and some on CPUs (Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz). We did not record the total computing time for the483

experimental results presented in this paper, but this can be estimated as follows. To train eachmodel (one seedwith484

all the task-specific trials) takes approx 1 hour and 30 min. For each of the models we run 5 random seeds, resulting485

in approx 6 hours per model. When recording the activations, the total time is around 8 hours. Testing a single model486

for one seed takes approx 5 min. Overall total time it takes to run our models is 32 hours (8 x 4) for training with 5487

seeds and 2 hours for the testing results with 5 seeds.488

Statistical analysis489

Due to the inherent variability of the starting conditions on the learning path of these models, we trained our models490

across 5 different randomly selected seeds. To assess the significance of all relevant figures, we conducted a two-491

sided paired t-test on the relative alterations across the various seeds. Significance levels are denoted as follows: *492

(p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001).493

Data and code availability494

We used the PyTorch library for all reinforcement learning models. The code and respective simulated data used for495

our experiments is available at https://github.com/neuralml/hcRL.496

Neural and behavioural experimental data497

Neural data analysis using demixed PCA498

We used the neural activities of 612 hippocampal CA1 neurons from five behaving rats were recorded, which were499

obtained in the dorsal and ventral CA1 using multiple tetrodes (Fig. 3a; see full details in Ciocchi et al. [5]). Spike500

sorting was used to assign spikes to different neurons (full details in [5]), which were then converted to firing rates of501

individual neurons using a sliding window. Animals were trained on a T-maze task in which rats had to follow both502

allocentric and egocentric navigational rules to reach reward points (Fig. 3a). We performed demixed Principal Com-503

ponent Analysis (dPCA) [46] on the neuronal firing rates using with 3 behavioural variables – trial decision, strategy504

and time (dPCA ¼ = 2.919e−05 was found using grid-search as done by [46]). We used the dPCA code made available505

by the authors of [46] in https://github.com/machenslab/dPCA.506
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Behavioural data507

The behavioural data (i.e. animal task performance) consists of a total of 47067 trials recorded over multiple days (3508

to 7) from a total of 5 animals [5]. However, as some animals only had a maximum of 800 continuous trials we used509

a maximum of 800 continual trials per animal.510
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Supplementary information511
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Supplementary Figure S1. Model performance with/without multi-head, replay buffer, different numbers of CA3 neurons

and model learning curves. (A) Only hcDRQN model trained with two heads and without experience replay is able to solve all the

tasks while all the variants with one/two head and with/without experience replay reach only 75% performance. (B) Changing the

number of CA3 neurons has no effect on the final performance. (C) Learning curves for hcDQN, hcDRQN, ML-EWC, ML-SI.
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Supplementary Figure S2. CA3 recurrence is needed in partially observable environments. (A) Minigrid environment showing

full view size with cue removal with agent at the decision point. (B) Task performance with cue removal after the agent reaches

the decision point for both hcDQN and hcDRQN trained with full observability. Dotted line represents performance of partial view

models.
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Supplementary Figure S3. Outcome, strategy and temporal neural dynamics in RL agents with full view. (A) Demixed PCA

components corresponding to Decision - Correct vs Incorrect, Strategies - Allocentric and Egocentric. Qualitatively, full view hcDRQN

shows similar trends for decision and strategies, but fails to capture the time component. Full view hcDQN presents mixing activity

for strategy components. (B) Percentage of explained variance for different components.
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Supplementary Figure S4. Full demixed PCA component analysis. (A) Cumulative explained variance of PCA (black) against dPCA

(red). (B) Variances explained by each demixed principal component. In the pie chart, the total data variance is divided per task-

specific variable. (C) Dot products between all pairs of demixed principal components is shown in the upper-right triangle. Stars

denote the pairs that are significantly non-orthogonal. Correlation among all demixed principal component pairs is displayed in the

lower-left triangle. (D) Top row: first three decision components; second row: first three strategy components; third row: first three

time components; last row: first two decision/strategy interaction components. Figure produced using code made available by [46]

(follows a similar structure to the figures available in the original dPCA paper).
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Supplementary Figure S5. Task-speciûc neural activity. Comparing neural activity between allocentric vs egocentric tasks shows

that in both animal andpartial viewmodels, allocentric activity is higher. In the full viewmodels, hcDRQN follows the previous pattern

while hcDQN shows higher activity in egocentric tasks.
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Supplementary Figure S6. Trajectory maps for RL models trained with full observability. (A) We repeat the same analysis as

done in Fig. 4 with full viewmodels. (B) Time spent on each state normalised to the time spent on the final (terminal) state in models

and animal. (C) Error between agents and animals for each strategy shows that hcDRQN better captures animal behaviour. (D) Error

between models and animal across all possible task-pairs shows mixed behaviour in terms of which model provides a closer match

to animal behaviour. (E) Error between all possible task-pairs shows that full view hcDRQN errors are lower for Allo North task ratios

while in full view hcDQN are lower for Allo South task. 20 of 21
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Supplementary Figure S7. Error between animal andmodel trajectory-occupancymaps (cf. Fig. 4). Error between all possible

task-pairs shows that hcDRQN (trained with partial view) more closely matches animal data when compared to hcDQN (trained with

partial view).

Supplementary Figure S8. State-dependent action values for full view model. Top: The state-value certainty given by the

variance over Q-values for each state. Bottom: Average state-values.
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Supplementary Figure S9. Generalisation test with partial and full view. (A,B) Effect of cue removal on models trained with

partial view and a long-maze. (C,D) Effect of cue removal on models trained with full view and short-maze.

21 of 21

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2023. ; https://doi.org/10.1101/2023.11.09.565503doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.09.565503
http://creativecommons.org/licenses/by-nc/4.0/

	ㄱ㈹‰⁯扪਼㰠⽔楴汥⣾Ｑㄳ〠〠潢樊㰼 呩瑬攨﻿ㄱ㌱‰⁯扪਼㰠⽔楴汥⣾Ｑㄳ㈠〠潢樊㰼 呩瑬攨﻿ㄱ㌳‰⁯扪਼㰠⽔楴汥⣾Ｑㄳ㐠〠潢樊㰼 呩瑬攨﻿ㄱ㌵‰⁯扪਼㰠⽔楴汥⣾Ｑㄳ㘠〠潢樊㰼 呩瑬攨﻿ㄱ㌷‰⁯扪਼㰠⽔楴汥⣾Ｑㄳ㠠〠潢樊㰼 呩瑬攨﻿ㄱ㌹‰⁯扪਼㰠⽔楴汥⣾Ｑㄴ〠〠潢樊㰼 呩瑬攨﻿ㄱ㐱‰⁯扪਼㰠⽔楴汥⣾Ｑㄴ㈠〠潢樊㰼 呩瑬攨﻿ㄱ㐳‰⁯扪਼㰠⽔楴汥⣾Ｑㄴ㐠〠潢樊㰼 呩瑬攨﻿ㄱ㐵‰⁯扪਼㰠⽔楴汥⣾Ｑㄴ㘠〠潢樊㰼 呩瑬攨﻿ㄱ㐷‰⁯扪਼㰠⽔楴汥⣾Ｑㄴ㠠〠潢樊㰼 呩瑬攨﻿ㄱ㐹‰⁯扪਼㰠⽔楴汥⣾Ｑㄵ〠〠潢樊㰼 呩瑬攨﻿ㄱ㔱‰⁯扪਼㰠⽔楴汥⣾Ｑㄵ㈠〠潢樊㰼 呩瑬攨﻿ㄱ㔳‰⁯扪਼㰠⽔楴汥⣾Ｑㄵ㐠〠潢樊㰼 呩瑬攨﻿ㄱ㔵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄴ㤮ㄸ㤠㈱㜮㌶ㄠㄵ㘮㌰㠠㈲㔮㠵㍝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㜲㔮㈶㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄵ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㔸⸷㤹′ㄷ⸲㜳‱㘵⸹ㄹ′㈵⸸㔳崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㠷⸸〵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㔷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰ㄮ〳㔠㈰㐮㈷‱〸⸱㔵′ㄲ⸷㘲崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㘹⸰㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㔸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄱ〮㘴㔠㈰㐮ㄸ㈠ㄱ㜮㜶㔠㈱㈮㜶㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㔷㈮㘳㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄵ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠴⸴㌹′〴⸲㜠㈹ㄮ㔵㠠㈱㈮㜶㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㘶㤮〷㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈰⸶㠲‱㌸⸷㈸′㈷⸸〲‱㐷⸳〷崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‵㐳⸱㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳〮㈹㌠ㄳ㠮㠱㘠㈴㈮㔳㤠ㄴ㜮㌰㝝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㐸㐮ㄶ㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㌴⸰㘹‸㐮㘶ㄠ㈱㈮㘶ㄠ㤳⸶〵崊⽁㰼⽓⽕剉ਯ呹灥⽁捴楯渊⽕剉⡲畩⹣潳瑡䁤灡朮潸⹡挮畫⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㘳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄱ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄱ㘳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㘵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱ㄶ㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱ㄶ㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲ㄹ⸳㌸‶㠶⸰㜲′㌱⸵㠴‶㤴⸵㘴崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‴㔴⸶㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㘸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈳㌮㤹㈠㘸㔮㤸㐠㈴㘮㈳㠠㘹㐮㔶㑝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㐲㔮ㄹ㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄶ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㌱⸹㘶‶㜲⸹㠱‵㐴⸲ㄳ‶㠱⸴㜳崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰″㤵⸷〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㘳⸹㐱‶㔹⸸㤠㜶⸱㠷‶㘸⸳㠲崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰″〷⸲㌳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌲㐮㤳ㄠ㘵㤮㠰㈠㌳㜮ㄷ㠠㘶㠮㌸㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㈷㜮㜴㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄷ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌹⸱ㄠ㘵㤮㠰㈠㌵ㄮ㌵㘠㘶㠮㌸㉝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㈴㠮㈵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄷ㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㤳⸹㌳‶㐶⸷ㄱ‴〱⸰㔳‶㔵⸲㤱崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㄰⸰㤷〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐰㌮〴㜠㘴㘮㜹㤠㐱〮ㄶ㜠㘵㔮㈹ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㔹ㄮ㌶㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄷ㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴ㄲ⸱㘱‶㐶⸷ㄱ‴㈴⸴〸‶㔵⸲㤱崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰′ㄸ⸷㘵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐵㐮㌴㜠㌸〮㠵㔠㐶ㄮ㐶㘠㌹ㄮ㜸㕝ਯ䑥獴⁛㈱‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄷ㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〵⸹㤵″㘹⸸㌹‴ㄳ⸱ㄴ″㜸⸴ㄸ崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㌹⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㌮㐲㐠㈸㤮㈱㤠㐸〮㔴㌠㌰〮ㄴ㥝ਯ䑥獴⁛㈱‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄷ㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㈳⸷㠱′㌹⸰ㄸ‱㌶⸰㈸′㐷⸵ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠ㄸ㤮㈷㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄸ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌱⸶㔲′㌶⸸㔵‵㌸⸷㜱′㐷⸷㠵崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐲ㄮ㐰㤠㈲㌮㜶㐠㐲㠮㔲㤠㈳㐮㘹㕝ਯ䑥獴⁛㈱‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄸ㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌲⸳㈱′㄰⸶㜴‵㌹⸴㐱′㈱⸶〴崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㤴⸴㠹‱㘱⸵〶‱〶⸷㌵‱㘹⸹㤸崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‱㔹⸷㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌳㌮㌱㠠ㄳ㌮〸㌠㌴〮㐳㠠ㄴ㐮〹㉝ਯ䑥獴⁛㈠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰㔮ㄳ㌠ㄲ㈮ㄴ㔠㌱㜮㌸‱㌰⸷㈵崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰′㐸⸲㔴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌰㠮㘲ㄠ㄰㘮㤸″ㄵ⸷㐠ㄱ㜮㤱崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐱㠮㈲㌠㤵⸹㘴‴㌰⸴㜠㄰㐮㔴㍝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠ㄳ〮㈹㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄸ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㌶⸴㤶‸㈮㤶ㄠ㌴㠮㜴㌠㤱⸴㔳崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‱〰⸸〸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㠹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌰㈮㤷㘠㘹⸷㠲″ㄵ⸲㈲‷㠮㌶㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㜳㜮㄰〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄹ〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳ㄸ⸱㔸‶㤮㜸㈠㌳〮㐰㐠㜸⸳㘲崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‷〷⸶ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㤱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄱ㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄱ㤱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㤳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱ㄹ㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱ㄹ㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱ㄹ㔠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣礊⽉⁴牵攊⽃匯䑥癩捥䍍奋㸾敮摯扪਱ㄹ㘠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣社㹥湤潢樊ㄱ㤷‰⁯扪਼㰯呹灥⽇牯異ਯ匯呲慮獰慲敮捹ਯ䤠瑲略㸾敮摯扪਱ㄹ㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㈱⸳㈸‴㤵⸲〴′㈷⸸㜸‵〳⸰㔲崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㌹⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄱ㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㐮㐵㔠㌴ㄮ㠱㠠ㄱ㘮㜰㈠㌵〮㌱崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‶㜸⸱㈲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌷㈮㠶㈠㈸㤮㌶㜠㌸㔮㄰㤠㈹㜮㤴㝝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㘴㠮㘳㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈰ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈹⸲㌱′㠹⸳㘷‵㐱⸴㜷′㤷⸹㐷崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‶〸⸳㠳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄳ㜮㔶㔠㈴㠮〱㤠ㄴ㤮㘰㔠㈵㠮㤵崊⽄敳琠嬱㌠〠删⽘奚‶㔮ㄹ㜰‶㠶⸰〹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌳㠮㈲㌠㈲㌮㤱㌠㌵〮㐶㤠㈳㈮㐹㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㔸㤮㘵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈰㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴ㄱ⸴㘱′〸⸷㐷‴ㄸ⸵㠠㈱㤮㘷㝝ਯ䑥獴⁛㈠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄸㄮㄲㄠㄹ㔮㘵㘠ㄸ㠮㈴′〶⸵㠶崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄵ〮㜶㜠ㄶ㤮㐷㐠ㄵ㜮㠸㘠ㄸ〮㐰㕝ਯ䑥獴⁛㈱‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈰㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㐵⸴㔱‱㔶⸳㠳‴㔲⸵㜱‱㘷⸳ㄴ崊⽄敳琠嬲‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㜶⸶㐱‱〴⸰㈠㈸㌮㜶‱ㄴ⸹㕝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ〹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈴㐮㤵㔠㤰⸹㈹′㔲⸰㜴‱〱⸸㔹崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㄰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄲㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄲ㄰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲㄲ‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㈱㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㈱㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈱㐠〠潢樊㰼⽔祰支䝲潵瀊⽓⽔牡湳灡牥湣礊⽋⁴牵放㹥湤潢樊ㄲㄵ‰⁯扪਼㰯卵扴祰支乃桡湮敬ਯ偲潣敳猼㰯䍯汯牓灡捥⽄敶楣敃䵙䬊⽃潭灯湥湴獛⽃祡渊⽍慧敮瑡ਯ奥汬潷ਯ䉬慣歝㸾㸾敮摯扪਱㈱㘠〠潢樊㰼⽆楬瑥爯䙬慴敄散潤攊⽆畮捴楯湔祰攠㐊⽄潭慩湛《ㄊ《ㅝਯ剡湧敛《ㄊ《ㄊ《ㄊ《ㅝ⽌敮杴栠㠰㸾獴牥慭੸鲫㙔ざご⣊쿉Œ饹⦩ᕀ㪹ⱓ↵∹䎡렴ड潀䀞줨㌅嶸₊戳頊匪䱡⩌炩めꤰ욥ˮ躂ﰂギԀ哬䖄੥湤獴牥慭੥湤潢樊ㄲㄷ‰⁯扪਼㰯䙵湣瑩潮呹灥′ਯ䑯浡楮嬰਱崊⽃せ〮㔰㜸ㄲਰ⸹㔷〳ㅝਯ䌱嬰ਰ崊⽎′⸱㄰〱㸾敮摯扪਱㈱㠠〠潢樊㰼⽆畮捴楯湳嬱㈱㜠〠剝ਯ䙵湣瑩潮呹灥″ਯ䑯浡楮嬰਱崊⽂潵湤獛崊⽅湣潤敛ㄊそ㸾敮摯扪਱㈱㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㜳⸶㤳″㈲⸲㤲‱㠰⸲㐳″㌲⸲㈹崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㈰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄹ㘮㜹㈠ㄸ㘮ㄲ㈠㈰㌮㤱ㄠㄹ㜮〵㉝ਯ䑥獴⁛㈠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐹㘮㔸㜠ㄷ㌮〳ㄠ㔰㠮㘲㜠ㄸ㌮㤶ㅝਯ䑥獴⁛ㄳ‰⁒ 塙娠㘵⸱㤷〠㘸㘮〰㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㘲⸵㠹‱〷⸴ㄵ‱㘹⸷〹‱ㄸ⸳㐵崊⽄敳琠嬲‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌲⸶㠱‸ㄮ㈳㌠㔳㤮㠠㤲⸱㘳崊⽄敳琠嬲‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㈲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㈲㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄲ㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄲ㈶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㠳⸱〸‷㄰⸰㤱‹㔮ㄴ㠠㜲ㄮ〲ㅝਯ䑥獴⁛ㄳ‰⁒ 塙娠㘵⸱㤷〠㔳ㄮㄱ㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈲㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬹㌮㈶′㜵⸹〳‱〴⸱㠴′㠵⸸㑝ਯ䑥獴⁛ㄳ‰⁒ 塙娠㘵⸱㤷〠㌶㔮㠴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬷㠮㠸㠠㈶㌮㠳㠠㠹⸸ㄲ′㜴⸸㌵崊⽄敳琠嬲㌰‰⁒ 塙娠㘵⸱㤷〠㜰〮㤱㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㐶⸶㌱‱㜵⸴㜹‴㔳⸷㔠ㄸ㘮㐰㥝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐹㤮㈴㤠ㄶ㈮㌸㠠㔰㘮㌶㤠ㄷ㌮㌱㡝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㠳⸳〷‱㈳⸱ㄵ‹〮㐲㜠ㄳ㐮〴㕝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌸㈮㐳㤠㜰⸷㔲″㠹⸵㔹‸ㄮ㘸㉝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄲ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄲ㌵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㌷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㈳㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㈳㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈳㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬸㐮㈰㐠㜱〮〹ㄠ㤶⸲㐵‷㈱⸰㈱崊⽄敳琠嬲㌰‰⁒ 塙娠㘵⸱㤷〠㈷㌮㌴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈴〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌴⸸㜱‶㤷‵㐱⸹㤠㜰㜮㤳崊⽄敳琠嬳‰⁒ 塙娠㘵⸱㤷〠㘳㜮㤲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㘹⸲㘶‶㔷⸷㈷‱㜶⸳㠵‶㘸⸶㔸崊⽄敳琠嬳‰⁒ 塙娠㘵⸱㤷〠㘳㜮㤲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬲㜵⸵㔶‵㤲⸲㜳′㠲⸶㜵‶〳⸲〳崊⽄敳琠嬳‰⁒ 塙娠㘵⸱㤷〠㘳㜮㤲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈴㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㤵⸲㠱‵㔳⸰〱′〷⸳㈱‵㘳⸹㌱崊⽄敳琠嬱㌠〠删⽘奚‶㔮ㄹ㜰″㘵⸸㐱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐵㌮㈰㌠㔳㤮㤱‴㘰⸳㈳‵㔰⸸㑝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐵‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㘮㈵㐠㔰〮㘳㜠㐸㌮㌷㌠㔱ㄮ㔶㝝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐰㤮㔳㤠㌹㔮㜴㤠㐱㘮㘵㤠㐰㘮㘷㥝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔳ㄮ㘳㔠㌶㤮㔶㜠㔳㠮㜵㐠㌸〮㐹㝝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㐮㜱㈠㌱㜮㈰㐠㌲ㄮ㠳㈠㌲㠮ㄳ㑝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㐹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㠮㘹㐠㌰㐮ㄱ㌠㐸㔮㠱㐠㌱㔮〴㍝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐹〮㤠㈶㐮㠴‵〲⸹㐠㈷㔮㜷崊⽄敳琠嬲㌶‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈵ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵〵⸴㜵′㘴⸸㐠㔱㜮㔱㔠㈷㔮㜷崊⽄敳琠嬲㌷‰⁒ 塙娠㘵⸱㤷〠㜲㌮ㄱ㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㔵⸸㤳‱㐶⸸㘱‴㘳⸰ㄳ‱㔷⸷㤱崊⽄敳琠嬲㌸‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈵㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬵㌱⸴㤹‱㌳⸷㜠㔳㠮㘱㤠ㄴ㐮㝝ਯ䑥獴⁛㈳㠠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐱㌮㜷㜠㠱⸴〷‴㈵⸸ㄷ‹㈮㌳㝝ਯ䑥獴⁛㈳㜠〠删⽘奚‶㔮ㄹ㜰‵㐹⸵〲〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㔵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄲ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄲ㔵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㔷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㈵㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㈵㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈵㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬳㠷⸰㘸′ㄸ⸸〷″㤳⸶ㄸ′㈸⸷㐴崊⽄敳琠嬲‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈶〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㔹⸸㜶‱㐹⸲㘹′㜲⸱㈲‱㔷⸸㐹崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‵㘰⸱㘴〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㘱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㐶㠮㜰㘠㠳⸶㔴‴㠰⸹㔳‹㈮㈳㍝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㔳〮㘷㔰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㠳⸳㜹‸㌮㘵㐠㐹㔮㘲㔠㤲⸲㌳崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‵〱⸱㠵〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㘳‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄲ㘴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄲ㘳‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㘵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㈶㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㈶㔠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈶㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬸㌮㠷㌠㈱㐮㌶㠠㤰⸹㤲′㈵⸲㤸崊⽄敳琠嬲㌸‰⁒ 塙娠㘵⸱㤷〠㔲㌮㜱㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈶㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㈶㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㈶㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈷〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄲ㜱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄲ㜰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄷ㠮㈰㜠㈹㔮〸㠠ㄸ㔮㌲㜠㌰㘮〱㡝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐷㐮㈷㐠㈹㔮〸㠠㐸ㄮ㌹㐠㌰㘮〱㡝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌹ㄮ㠵㠠ㄷ㜮㈷″㤸⸹㜸‱㠸⸲崊⽄敳琠嬶‰⁒ 塙娠㘵⸱㤷〠㘷㜮ㄹ㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㘵⸶㠠ㄱ㌮㠹ㄠ㈷㜮㤲㘠ㄲ㈮㐷崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‴㜱⸶㤶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈹㜮㐴‱ㄱ⸸ㄶ″〴⸵㘠ㄲ㈮㜴㙝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㜷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌱㘮ㄵ㘠㤸⸷㈵″㈸⸱㤷‱〹⸶㔵崊⽄敳琠嬲㌷‰⁒ 塙娠㘵⸱㤷〠㌱㐮㤸〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈷㠠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㈷㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㈷㠠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㈸〠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄲ㠱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄲ㠰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㠲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈸ㄮ㤷ㄠ㜲㌮ㄸ㈠㈸㤮〹ㄠ㜳㐮ㄱ㉝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㠳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄸ㈮㐹㌠㜱〮〹ㄠㄸ㤮㘱㌠㜲ㄮ〲ㅝਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㠴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㐮〱㘠㐸㔮㠶㔠㐰㘮㈶㈠㐹㐮㐴㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㐴㈮㈰㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴〸⸰㔱‴㠵⸸㘵‴㈰⸲㤷‴㤴⸴㐴崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‴ㄲ⸷ㄷ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㠶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌳㌮㌷㜠㐷〮㘹㤠㌴㔮㐱㜠㐸ㄮ㘲㥝ਯ䑥獴⁛㈳㜠〠删⽘奚‶㔮ㄹ㜰″ㄴ⸹㠰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㠷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㈮〸㜠㐴㘮㔹㈠㈷㐮㌳㌠㐵㔮ㄷ㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㌸㌮㈲㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈸㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㔱⸶㤲‴〷⸳㈠㐶㌮㤳㠠㐱㔮㠹㥝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㌶㐮㐹㠰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈸㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㘷⸰ㄹ‴〷⸳㈠㐷㤮㈶㘠㐱㔮㠹㥝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㌳㔮〰㤰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈹〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤶⸹ㄱ″㠱⸱㌸′〹⸱㔷″㠹⸷ㄷ崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰″〵⸵㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛ㄲ㠮㜵㐠㌶㔮㤷㈠ㄳ㔮㠷㌠㌷㘮㤰㉝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌸㐮㌴㠠㌵㐮㤵㘠㌹㘮㔹㐠㌶㌮㔳㙝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㌰㔮㔲〰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈹㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜱⸶㜲″㈸⸸㘲′㠳⸹ㄸ″㌷⸳㔴崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰″㤵⸷〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈸㘮㐰㤠㌲㠮㜷㐠㈹㠮㘵㔠㌳㜮㌵㑝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㌳㘮㜲㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈹㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㌳⸴㐠㌲㠮㜷㐠㐴㔮㘸㜠㌳㜮㌵㑝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㌶㘮㈱㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈹㘠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬴㜵⸷㌱″ㄵ⸷㜱‴㠷⸹㜸″㈴⸲㘳崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰″㤵⸷〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㘷⸱㔱′㠹⸵〲‷㤮㌹㠠㈹㠮〸ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㌳㘮㜲㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㈹㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵〲⸱㠠㈸㤮㔹‵ㄴ⸴㈶′㤸⸰㠱崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰″㤵⸷〱〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄲ㤹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㄰㈮㔱㐠㈷㘮㐱ㄠㄱ㐮㜶ㄠ㈸㐮㤹ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㌶㘮㈱㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌰〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㜵⸲㈹′ㄱ⸰㐴′㠷⸴㜵′ㄹ⸵㌶崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰′㜶⸰㌰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㌮㘷㤠ㄵ㠮㘸ㄠ㌰㔮㤲㘠ㄶ㜮ㄷ㍝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠㈴㘮㔴㄰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌰㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳〸⸶㔷‱㔸⸵㤳″㈰⸹〳‱㘷⸱㜳崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰′㈷⸸ㄱ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐶㌮ㄱ‱〴⸱㔵‴㜰⸲㌠ㄱ㔮〸㕝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄸㄮ㔹㘠㤳⸱㌹‱㤳⸸㐲‱〱⸷ㄸ崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‴㜱⸶㤶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ〶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ〵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ〷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌰㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌰㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌰㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㠴⸹㌷‶㔹⸸〲″㤲⸰㔷‶㘸⸳㠲崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‵㐳⸱㐸〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㄰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㌹㐮㔴㜠㘵㤮㠹‴〶⸷㤴‶㘸⸳㠲崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‴㠴⸱㘹〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳㄱ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈶㘮〸㌠㘳㌮㜰㠠㈷㠮㌲㤠㘴㈮㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠ㄹ㠮㌲㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌱㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲㠰⸸㘴‶㌳⸶㈱′㤳⸱ㄠ㘴㈮㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠ㄶ㠮㠳㈰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌱㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌱㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌱㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌱㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳㄶ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳㄵ‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳㄷ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㐳㘮㘸㔠ㄷ㔮㔲㠠㔴㜮㜹㤠ㄸ㔮㔳㕝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭慸業散戯杹洭浩湩杲楤⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳㄸ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㘴⸲〱‱㜵⸵㈸‶㘮ㄹ㌠ㄷ㤮㔱㉝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭慸業散戯杹洭浩湩杲楤⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳㄹ‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‱崊⽈⽉ਯ剥捴⁛㠳⸱㘹‱㘵⸲ㄱ‱㌱⸹㠸‱㜴⸵㍝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭慸業散戯杹洭浩湩杲楤⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㈰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ㈱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ㈰‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㈲‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌲㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌲㈠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌲㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌲㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌲㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌲㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳ㈷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳ㈶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㈸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㈹㘮㈱㔠㘱㘮㌷㤠㌰㠮㐶㈠㘲㐮㠷崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‱㠹⸲㜶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㈹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐸㐮㘶‶ㄴ⸲ㄶ‴㤱⸷㠠㘲㔮ㄴ㙝ਯ䑥獴⁛㈱‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬵㈳⸴㠳‶〳⸲‵㌰⸶〲‶ㄱ⸷㡝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㘳㤮㔸㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈵⸹㌱‵㜷⸰ㄸ″㌳⸰㔠㔸㔮㔹㡝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㘳㤮㔸㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬲〳⸰㌷″㔶⸷㤹′ㄵ⸲㠳″㘵⸲㤱崊⽄敳琠嬱㐠〠删⽘奚‶㔮ㄹ㜰‱㔹⸷㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㌳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㐳〮㐳㐠㈲〮㠠㐳㜮㔵㌠㈳ㄮ㠰㥝ਯ䑥獴⁛㈠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㌴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㘷⸱㔱‱㤶⸷㜲‷㤮㌹㠠㈰㔮㌵ㅝਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠㈴㠮㈵㐰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㌹⸶㠸‱㠱⸶〶‱㐶⸸〸‱㤲⸵㌶崊⽄敳琠嬲ㄠ〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㌶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ㌮㔹㠠ㄷ〮㔹‱㜵⸸㐵‱㜹⸱㝝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘵⸱㤷〠ㄳ〮㈹㜰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌳㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬱㌹⸹ㄳ‷㘮㠷㤠ㄵㄮ㤵㌠㠷⸸〹崊⽄敳琠嬱〠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㌸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ㌹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ㌸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌴ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌴〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌴㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㈵⸰㤷‴㈴⸹㠴″㌲⸲ㄶ‴㌳⸵㘴崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㌹⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㈸㔮㔱㜠ㄶ㠮㔵㜠㈹㈮㘳㘠ㄷ㤮㐸㝝ਯ䑥獴⁛㘠〠删⽘奚‶㔮ㄹ㜰‶㜷⸱㤳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㔰㜮〹㐠㄰〮ㄱ㌠㔱㐮㈱㌠ㄱㄮ〴㑝ਯ䑥獴⁛㈳㠠〠删⽘奚‶㔮ㄹ㜰‵㈳⸷ㄳ〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐵‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ㐶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ㐵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㐷‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌴㠠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌴㜠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌴㤠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㤴⸴〳′㈰⸴㌶″㌲⸸㈠㈳ㄮ㐴㑝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽮敵牡汭氯档剌⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌵㐮〴㜠ㄵ㌮㘴㌠㌶ㄮㄶ㜠ㄶ㐮㔷㍝ਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔱‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔰㔮ㄳ㠠ㄵ㔮㜱㠠㔱㈮㈵㜠ㄶ㐮㈹㡝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㘳㤮㔸㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌵㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㐹⸷ㄶ‱㐲⸶㈷″㔶⸸㌵‱㔱⸲〷崊⽄敳琠嬱㐠〠删⽘奚‶㤮㜵㐰‶㌹⸵㠶〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㌶㘮㘳㜠ㄱ㐮㌷ㄠ㌷㌮㜵㜠ㄲ㔮㌰ㅝਯ䑥獴⁛㌠〠删⽘奚‶㔮ㄹ㜰‶㌷⸹㈰〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔴‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄶ㘮㔲㈠㄰㌮㌵㐠ㄷ㠮㜶㠠ㄱㄮ㤳㑝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠ㄳ㤮㌴㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌵㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬳㘰⸴㌹‹〮㈶㐠㌷㈮㘸㔠㤸⸸㐳崊⽄敳琠嬲㈠〠删⽘奚‶㔮ㄹ㜰‱㌹⸳㐳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛ㄴㄮㄴ㠠㜷⸱㜳‱㔳⸳㤵‸㔮㜵㉝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠ㄳ㤮㌴㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌵㜠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠㅝਯ䠯䤊⽒散琠嬱㘶⸷㠳‷㔮〲″ㄹ⸵ㄵ‸㘮〲㡝ਯ䄼㰯匯啒䤊⽔祰支䅣瑩潮ਯ啒䤨桴瑰猺⼯杩瑨畢⹣潭⽭慣桥湳污戯摐䍁⤾㸊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㔸‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ㔹‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ㔸‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㘰‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌶ㄠ〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌶〠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌶㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛〠ㄠそਯ䠯䤊⽒散琠嬱㤲⸹㐠㘹㜮㤹㤠㈰〮〵㤠㜰㘮㔷㥝ਯ䑥獴⁛ㄴ‰⁒ 塙娠㘹⸷㔴〠㘳㤮㔸㘰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌶㌠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌶㐠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌶㌠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌶㔠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳ㘶‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳ㘵‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㘷‰⁯扪਼㰯䙵湣瑩潮呹灥′ਯ䑯浡楮嬰਱崊⽃せㄊ〮㔷㘴㜱ਰ⸱ㄷ㘴㝝ਯ䌱嬱਱਱崊⽎′⸱㄰〱㸾敮摯扪਱㌶㠠〠潢樊㰼⽆畮捴楯湳嬱㌶㜠〠剝ਯ䙵湣瑩潮呹灥″ਯ䑯浡楮嬰਱崊⽂潵湤獛崊⽅湣潤敛ㄊそ㸾敮摯扪਱㌶㤠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌷〠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌶㤠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌷ㄠ〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳ㜲‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳ㜱‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㜳‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬰‱‰崊⽈⽉ਯ剥捴⁛㔳㐮〶㤠㌶㤮㔵ㄠ㔴㔮ㄷ㘠㌷㜮㌹㥝ਯ䑥獴⁛㈲‰⁒ 塙娠㘵⸱㤷〠ㄳ㤮㌴㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌷㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌷㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌷㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌷㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳ㜷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳ㜶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㜸‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ䌠嬱‰‰崊⽈⽉ਯ剥捴⁛㄰㜮㤸ㄠ㠵⸰㌲‱ㄴ⸵㌱‹㐮㤶㥝ਯ䑥獴⁛㔠〠删⽘奚‶㔮ㄹ㜰‷㐱⸸㔳〠湵汬崊⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㜹‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴灳㨯⽤潩⹯牧⼱〮ㄱ〱⼲〲㌮ㄱ⸰㤮㔶㔵〳⤾㹥湤潢樊ㄳ㠰‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛ㄲ㔮㜸㐠㜷㠠㈷㠮㔶‷㠸崊⽁†ㄳ㜹‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㠱‰⁯扪਼㰯匯啒䤊⽕剉⡨瑴瀺⼯捲敡瑩癥捯浭潮献潲术汩捥湳敳⽢礭湣⼴⸰⼩㸾敮摯扪਱㌸㈠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬲㘹⸴㐠㜶㈠㌹㜮㈵㘠㜷㉝ਯ䄠‱㌸ㄠ〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌸㌠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽃⁛ㄠ〠そਯ䠯䤊⽒散琠嬴㌸⸲ㄠ㘱〮㈲㌠㐴㐮㜵㈠㘲ㄮ㘷崊⽄敳琠嬵‰⁒ 塙娠㘵⸱㤷〠㜴ㄮ㠵㌰⁮畬汝ਯ卵扴祰支䱩湫㸾敮摯扪਱㌸㐠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰猺⼯摯椮潲术㄰⸱㄰ㄯ㈰㈳⸱ㄮ〹⸵㘵㔰㌩㸾敮摯扪਱㌸㔠〠潢樊㰼⽔祰支䅮湯琊⽂潲摥爠嬰‰‰崊⽒散琠嬱㈵⸷㠴‷㜸′㜸⸵㘠㜸㡝ਯ䄠‱㌸㐠〠删ਯ卵扴祰支䱩湫㸾敮摯扪਱㌸㘠〠潢樊㰼⽓⽕剉ਯ啒䤨桴瑰㨯⽣牥慴楶散潭浯湳⹯牧⽬楣敮獥猯批⵮振㐮〯⤾㹥湤潢樊ㄳ㠷‰⁯扪਼㰯呹灥⽁湮潴ਯ䉯牤敲⁛〠〠そਯ剥捴⁛㈶㤮㐴‷㘲″㤷⸲㔶‷㜲崊⽁†ㄳ㠶‰⁒ ⽓畢瑹灥⽌楮款㹥湤潢樊ㄳ㤱‰⁯扪਼㰯呹灥⽍整慤慴愊⽓畢瑹灥⽘䵌⽌敮杴栠ㄴ㘶㸾獴牥慭਼㽸灡捫整⁢敧楮㴧뼧⁩搽❗㕍き灃敨楈穲敓穎呣穫挹搧㼾਼㽡摯扥⵸慰ⵦ楬瑥牳⁥獣㴢䍒䱆∿㸊㱸㩸浰浥瑡⁸浬湳㩸㴧慤潢攺湳㩭整愯✠砺硭灴欽❘䵐⁴潯汫楴′⸹⸱ⴱ㌬⁦牡浥睯牫‱⸶✾਼牤昺剄䘠硭汮猺牤昽❨瑴瀺⼯睷眮眳⹯牧⼱㤹㤯〲⼲㈭牤昭獹湴慸⵮猣✠硭汮猺楘㴧桴瑰㨯⽮献慤潢攮捯洯楘⼱⸰⼧㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺灤昽❨瑴瀺⼯湳⹡摯扥⹣潭⽰摦⼱⸳⼧㸼灤昺偲潤畣敲㹇偌⁇桯獴獣物灴‱〮〰⸰㰯灤昺偲潤畣敲㸊㱰摦㩋敹睯牤猾㰯灤昺䭥祷潲摳㸊㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸浰㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯✾㱸浰㩍潤楦祄慴放㈰㈳ⴱㄭ㄰吱㤺〵㨵ず㰯硭瀺䵯摩晹䑡瑥㸊㱸浰㩃牥慴敄慴放㈰㈳ⴱㄭ㄰吱㤺〵㨵ず㰯硭瀺䍲敡瑥䑡瑥㸊㱸浰㩃牥慴潲呯潬㹌慔敘⁷楴栠桹灥牲敦㰯硭瀺䍲敡瑯牔潯氾㰯牤昺䑥獣物灴楯渾਼牤昺䑥獣物灴楯渠牤昺慢潵琽∢⁸浬湳㩸慰䵍㴧桴瑰㨯⽮献慤潢攮捯洯硡瀯ㄮ〯浭⼧⁸慰䵍㩄潣畭敮瑉䐽❵畩携戶㕡㤳㑦ⵢ㠱㠭ㄱ昹ⴰ〰〭扡㈵㘹慤㠷慦✯㸊㱲摦㩄敳捲楰瑩潮⁲摦㩡扯畴㴢∠硭汮猺摣㴧桴瑰㨯⽰畲氮潲术摣⽥汥浥湴猯ㄮㄯ✠摣㩦潲浡琽❡灰汩捡瑩潮⽰摦✾㱤挺瑩瑬放㱲摦㩁汴㸼牤昺汩⁸浬㩬慮朽❸ⵤ敦慵汴✾䡩灰潣慭灡氠湥瑷潲歳⁳異灯牴⁲敩湦潲捥浥湴⁬敡牮楮朠楮⁰慲瑩慬汹⁯扳敲癡扬攠敮癩牯湭敮瑳㰯牤昺汩㸼⽲摦㩁汴㸼⽤挺瑩瑬放㱤挺捲敡瑯爾㱲摦㩓敱㸼牤昺汩㸼⽲摦㩬椾㰯牤昺卥焾㰯摣㩣牥慴潲㸼摣㩤敳捲楰瑩潮㸼牤昺䅬琾㱲摦㩬椠硭氺污湧㴧砭摥晡畬琧㸼⽲摦㩬椾㰯牤昺䅬琾㰯摣㩤敳捲楰瑩潮㸼⽲摦㩄敳捲楰瑩潮㸊㰯牤昺剄䘾਼⽸㩸浰浥瑡㸊††††††††††††††††††††††††††††††††††††ਠ††††††††††††††††††††††††††††††††††† 㰿硰慣步琠敮搽❷✿㸊敮摳瑲敡洊敮摯扪੸牥昊〠ㄳ㤲ਰ〰〰〰〰〠㘵㔳㔠映ਰ〰〰㈲㤸㜠〰〰〠渠ਰ〰〱㘷〱㠠〰〰〠渠ਰ〰〳㈷㌲〠〰〰〠渠ਰ〰〴㤷㈹㐠〰〰〠渠ਰ〰〵〳㈵〠〰〰〠渠ਰ〰〹㤷㈴㐠〰〰〠渠ਰ〰ㄱ㘱㤰㔠〰〰〠渠ਰ〰ㄱ㘷㜵ㄠ〰〰〠渠ਰ〰ㄱ㠶㘲㜠〰〰〠渠ਰ〰ㄱ㤷㐶㈠〰〰〠渠ਰ〰ㄲ〲㐲㤠〰〰〠渠ਰ〰ㄲㄱ〶㤠〰〰〠渠ਰ〰ㄲㄲ㈵㔠〰〰〠渠ਰ〰ㄱ㜱〱〠〰〰〠渠ਰ〰〰㈳㌷㔠〰〰〠渠ਰ〰〰㈹〲㔠〰〰〠渠ਰ〰〰㈹〴㘠〰〰〠渠ਰ〰〰㈹㈷㐠〰〰〠渠ਰ〰〰㈹㔱〠〰〰〠渠ਰ〰〰㈹㘷㘠〰〰〠渠ਰ〰〰㌰㠵㔠〰〰〠渠ਰ〰ㄱ㠱㐸㌠〰〰〠渠ਰ〰〰㈹㤱㜠〰〰〠渠ਰ〰〰㌱㈰㤠〰〰〠渠ਰ〰〰㌵㤶㘠〰〰〠渠ਰ〰〰㌵㤸㜠〰〰〠渠ਰ〰ㄹ㠷㌴㤠〰〰〠渠ਰ〰〰㌶〶㘠〰〰〠渠ਰ〰ㄹ㠷㐰㜠〰〰〠渠ਰ〰ㄹ㠷㐴㤠〰〰〠渠ਰ〰ㄹ㠷㔰ㄠ〰〰〠渠ਰ〰〰㌶㌷㔠〰〰〠渠ਰ〰〰㌸㠶㈠〰〰〠渠ਰ〰ㄹ㠹〹㔠〰〰〠渠ਰ〰〰㌹〰㠠〰〰〠渠ਰ〰〰㐱㔹㠠〰〰〠渠ਰ〰〰㐱㜴㔠〰〰〠渠ਰ〰ㄹ㤰㜴㤠〰〰〠渠ਰ〰ㄹ㤰㜹㌠〰〰〠渠ਰ〰〰㐲ㄴ㘠〰〰〠渠ਰ〰〰㐴㤴〠〰〰〠渠ਰ〰ㄹ㤲㤹㌠〰〰〠渠ਰ〰〰㐵〸㜠〰〰〠渠ਰ〰〰㐵㌹㈠〰〰〠渠ਰ〰〰㐸ㄸ㘠〰〰〠渠ਰ〰〰㐸㌳㌠〰〰〠渠ਰ〰〰㔰ㄸㄠ〰〰〠渠ਰ〰〰㔲㤲㔠〰〰〠渠ਰ〰〰㔳〷㈠〰〰〠渠ਰ〰〰㔴㤲㔠〰〰〠渠ਰ〰〰㔶㐳㈠〰〰〠渠ਰ〰〰㘲〳㌠〰〰〠渠ਰ〰〰㘲ㄸ〠〰〰〠渠ਰ〰〰㘲㐸㔠〰〰〠渠ਰ〰〰㘴㤷㈠〰〰〠渠ਰ〰〰㘵ㄱ㤠〰〰〠渠ਰ〰〰㘷㜰㤠〰〰〠渠ਰ〰〰㘷㠵㘠〰〰〠渠ਰ〰〰㜰㘵〠〰〰〠渠ਰ〰〰㜰㜹㜠〰〰〠渠ਰ〰〰㜱〹㜠〰〰〠渠ਰ〰〰㜳㠹ㄠ〰〰〠渠ਰ〰〰㜴〳㠠〰〰〠渠ਰ〰〰㜶㜸㈠〰〰〠渠ਰ〰〰㜶㤲㤠〰〰〠渠ਰ〰〰㠲㔳〠〰〰〠渠ਰ〰〰㠲㘷㜠〰〰〠渠ਰ〰〰㠳〰㠠〰〰〠渠ਰ〰〰㠸㘰㤠〰〰〠渠ਰ〰ㄹ㤳〶㔠〰〰〠渠ਰ〰〰㠸㜵㘠〰〰〠渠ਰ〰〰㠹ㄸㄠ〰〰〠渠ਰ〰〰㠹㔳㘠〰〰〠渠ਰ〰〰㤲〲㌠〰〰〠渠ਰ〰〰㤲ㄷ〠〰〰〠渠ਰ〰〰㤴㜶〠〰〰〠渠ਰ〰〰㤴㤰㜠〰〰〠渠ਰ〰〰㤷㘵ㄠ〰〰〠渠ਰ〰〰㤷㜹㠠〰〰〠渠ਰ〰〱〰㔹㈠〰〰〠渠ਰ〰〱〰㜳㤠〰〰〠渠ਰ〰〱〰㤲㐠〰〰〠渠ਰ〰〱〱ㄹ㤠〰〰〠渠ਰ〰〱〲ㄷ〠〰〰〠渠ਰ〰〱〴㠲㌠〰〰〠渠ਰ〰〱〴㤷〠〰〰〠渠ਰ〰〱〷㘲㌠〰〰〠渠ਰ〰〱〷㜷〠〰〰〠渠ਰ〰〱㄰㐲㌠〰〰〠渠ਰ〰〱㄰㔷〠〰〰〠渠ਰ〰〱ㄳ㈲㌠〰〰〠渠ਰ〰〱ㄳ㌷〠〰〰〠渠ਰ〰〱ㄶ〲㌠〰〰〠渠ਰ〰ㄹ㤳ㄵ㤠〰〰〠渠ਰ〰〱ㄶㄷ〠〰〰〠渠ਰ〰ㄹ㤳㈲㌠〰〰〠渠ਰ〰〱ㄶ㐹㠠〰〰〠渠ਰ〰〱ㄶ㠲㤠〰〰〠渠ਰ〰〱ㄷㄶ㠠〰〰〠渠ਰ〰〱ㄷ㔰㔠〰〰〠渠ਰ〰〱ㄷ㔷㠠〰〰〠渠ਰ〰〱ㄷ㤰㜠〰〰〠渠ਰ〰〱ㄸ㈳㘠〰〰〠渠ਰ〰〱ㄸ㔶㔠〰〰〠渠ਰ〰〱ㄸ㠹㐠〰〰〠渠ਰ〰〱ㄹ㈲㈠〰〰〠渠ਰ〰〱ㄹ㔵ㄠ〰〰〠渠ਰ〰〱ㄹ㠷㤠〰〰〠渠ਰ〰〱㈰㈰㜠〰〰〠渠ਰ〰〱㈰㔳㌠〰〰〠渠ਰ〰〱㈰㠶ㄠ〰〰〠渠ਰ〰〱㈱ㄸ㠠〰〰〠渠ਰ〰〱㈱㔱㜠〰〰〠渠ਰ〰〱㈱㠴㘠〰〰〠渠ਰ〰〱㈲ㄷ㌠〰〰〠渠ਰ〰〱㈲㔰〠〰〰〠渠ਰ〰〱㈲㠲㠠〰〰〠渠ਰ〰〱㈳ㄵ㐠〰〰〠渠ਰ〰〱㈳㐸㌠〰〰〠渠ਰ〰〱㈳㠱㈠〰〰〠渠ਰ〰〱㈴ㄴㄠ〰〰〠渠ਰ〰〱㈴㐷〠〰〰〠渠ਰ〰〱㈴㜹㠠〰〰〠渠ਰ〰〱㈵ㄲ㘠〰〰〠渠ਰ〰〱㈵㐵㘠〰〰〠渠ਰ〰〱㈵㜸㜠〰〰〠渠ਰ〰〱㈸㌷㠠〰〰〠渠ਰ〰〱㈸㔲㜠〰〰〠渠ਰ〰〱㌱㌲㈠〰〰〠渠ਰ〰〱㌱㐷ㄠ〰〰〠渠ਰ〰〱㌳㤵㤠〰〰〠渠ਰ〰ㄹ㤳㈸㔠〰〰〠渠ਰ〰ㄹ㤵㌷㌠〰〰〠渠ਰ〰〱㌴㄰㜠〰〰〠渠ਰ〰〱㌶〷㐠〰〰〠渠ਰ〰〱㌶㈲㌠〰〰〠渠ਰ〰〱㌸ㄹ〠〰〰〠渠ਰ〰〱㌸㌳㤠〰〰〠渠ਰ〰〱㌸㘶㜠〰〰〠渠ਰ〰〱㌸㤹㔠〰〰〠渠ਰ〰〱㌹㌲㈠〰〰〠渠ਰ〰〱㌹㘵〠〰〰〠渠ਰ〰〱㌹㤷㠠〰〰〠渠ਰ〰〱㐰㌰ㄠ〰〰〠渠ਰ〰〱㐰㘲㤠〰〰〠渠ਰ〰〱㐰㤵㐠〰〰〠渠ਰ〰〱㐱㈸㌠〰〰〠渠ਰ〰〱㐱㘱ㄠ〰〰〠渠ਰ〰ㄹ㤶㠳㈠〰〰〠渠ਰ〰〱㘰〵ㄠ〰〰〠渠ਰ〰〱㘰〹㠠〰〰〠渠ਰ〰〱㘰㈴㈠〰〰〠渠ਰ〰〱㘱㈵㐠〰〰〠渠ਰ〰〱㘷㌴㌠〰〰〠渠ਰ〰〱㜰㜱㠠〰〰〠渠ਰ〰〱㜰㜴〠〰〰〠渠ਰ〰〱㜰㤳ㄠ〰〰〠渠ਰ〰〱㜱㈱㘠〰〰〠渠ਰ〰〱㜱㐴〠〰〰〠渠ਰ〰〱㜱㘶㔠〰〰〠渠ਰ〰〱㜲〹㈠〰〰〠渠ਰ〰ㄹ㤶㠷㔠〰〰〠渠ਰ〰〱㜲㐵㔠〰〰〠渠ਰ〰ㄹ㤶㤴㠠〰〰〠渠ਰ〰〱㜴ㄷ㘠〰〰〠渠ਰ〰〱㜵㤲㘠〰〰〠渠ਰ〰〱㜶㈸㤠〰〰〠渠ਰ〰〱㜸〸〠〰〰〠渠ਰ〰〱㜹㠹㤠〰〰〠渠ਰ〰〱㠰㈶㈠〰〰〠渠ਰ〰〱㠲〰㔠〰〰〠渠ਰ〰〱㠳㜷〠〰〰〠渠ਰ〰〱㠴ㄳ㜠〰〰〠渠ਰ〰〱㠵㠵ㄠ〰〰〠渠ਰ〰〱㠷㔸〠〰〰〠渠ਰ〰ㄹ㤷〱㘠〰〰〠渠ਰ〰〱㠷㤴㜠〰〰〠渠ਰ〰〱㠸㌳㘠〰〰〠渠ਰ〰〱㠸㜴㐠〰〰〠渠ਰ〰〱㠹㄰㘠〰〰〠渠ਰ〰〱㤰㠲㤠〰〰〠渠ਰ〰〱㤲㔷㘠〰〰〠渠ਰ〰〱㤲㤳㔠〰〰〠渠ਰ〰〱㤴㜱㜠〰〰〠渠ਰ〰〱㤶㔲㈠〰〰〠渠ਰ〰〱㤶㠸㈠〰〰〠渠ਰ〰ㄹ㤷〸㤠〰〰〠渠ਰ〰ㄹ㤷ㄶ㔠〰〰〠渠ਰ〰〱㤶㤱〠〰〰〠渠ਰ〰〱㤷〰㠠〰〰〠渠ਰ〰〱㤷㌴㌠〰〰〠渠ਰ〰〱㤹㤳㐠〰〰〠渠ਰ〰〲〰〸㌠〰〰〠渠ਰ〰〲〰㌶㜠〰〰〠渠ਰ〰〲〳ㄶ㈠〰〰〠渠ਰ〰〲〳㌱ㄠ〰〰〠渠ਰ〰〲〵㜹㤠〰〰〠渠ਰ〰〲〵㤴㠠〰〰〠渠ਰ〰〲〷㤱㔠〰〰〠渠ਰ〰〲〸〶㐠〰〰〠渠ਰ〰〲〸ㄶ㈠〰〰〠渠ਰ〰〲〸㈶〠〰〰〠渠ਰ〰〲〸㌵㠠〰〰〠渠ਰ〰〲〸㐵㘠〰〰〠渠ਰ〰〲〸㔵㌠〰〰〠渠ਰ〰〲〸㤴㐠〰〰〠渠ਰ〰〲〹㌴㤠〰〰〠渠ਰ〰〲〹㜰㠠〰〰〠渠ਰ〰〲㄰〲㤠〰〰〠渠ਰ〰〲㄰㌴㤠〰〰〠渠ਰ〰〲㄰㘷〠〰〰〠渠ਰ〰〳ㄳ㔰㈠〰〰〠渠ਰ〰〳ㄳ㔶㌠〰〰〠渠ਰ〰〳ㄳ㜰㤠〰〰〠渠ਰ〰〳ㄳ㠰㤠〰〰〠渠ਰ〰〳ㄳ㠴㐠〰〰〠渠ਰ〰〳ㄴ㌴㐠〰〰〠渠ਰ〰〳㈷㘰㤠〰〰〠渠ਰ〰〳㌰㤳ㄠ〰〰〠渠ਰ〰〳㌰㤵㌠〰〰〠渠ਰ〰〳㌱ㄳ㈠〰〰〠渠ਰ〰〳㌱㌹〠〰〰〠渠ਰ〰〳㌱㘵ㄠ〰〰〠渠ਰ〰〳㌱㠷ㄠ〰〰〠渠ਰ〰〳㌲〹㔠〰〰〠渠ਰ〰〳㌲㌲〠〰〰〠渠ਰ〰〳㌲㜰㠠〰〰〠渠ਰ〰〳㌳ㄱ㔠〰〰〠渠ਰ〰〳㌳㐷㔠〰〰〠渠ਰ〰ㄴ㐵ㄹ㤠〰〰〠渠ਰ〰〴㜸㘹㔠〰〰〠渠ਰ〰〴㜸㜷㤠〰〰〠渠ਰ〰〴㜸㠵㌠〰〰〠渠ਰ〰〴㤷㘱㈠〰〰〠渠ਰ〰〵〳ㄵ㐠〰〰〠渠ਰ〰ㄵ㘰㌲㠠〰〰〠渠ਰ〰ㄷ㤵㈳㘠〰〰〠渠ਰ〰〶㤴㌸ㄠ〰〰〠渠ਰ〰〵〳ㄷ㘠〰〰〠渠ਰ〰〵〳㔳㈠〰〰〠渠ਰ〰〵〵㘷㐠〰〰〠渠ਰ〰〵〵㘹㘠〰〰〠渠ਰ〰〵〵㠷㤠〰〰〠渠ਰ〰〵〶ㄴ㘠〰〰〠渠ਰ〰〵〶㐰〠〰〰〠渠ਰ〰〵〶㘲㔠〰〰〠渠ਰ〰〵〷〱㔠〰〰〠渠ਰ〰〵〷㐳〠〰〰〠渠ਰ〰〵〷㜸㠠〰〰〠渠ਰ〰〵〸ㄸ㌠〰〰〠渠ਰ〰〵〸㔹㜠〰〰〠渠ਰ〰〵〸㤵㔠〰〰〠渠ਰ〰〵〹㌵ㄠ〰〰〠渠ਰ〰〵〹㜶㔠〰〰〠渠ਰ〰〵㄰ㄲ㌠〰〰〠渠ਰ〰〵㄰㔱㌠〰〰〠渠ਰ〰〵㄰㤱㤠〰〰〠渠ਰ〰〵ㄱ㈸㈠〰〰〠渠ਰ〰〵ㄱ㘷㌠〰〰〠渠ਰ〰〵ㄲ〸㐠〰〰〠渠ਰ〰〵ㄲ㐴㐠〰〰〠渠ਰ〰〵ㄲ㠴㌠〰〰〠渠ਰ〰〵ㄳ㈵㜠〰〰〠渠ਰ〰〵ㄳ㘱㜠〰〰〠渠ਰ〰〵ㄴ〱㔠〰〰〠渠ਰ〰〵ㄴ㐲㤠〰〰〠渠ਰ〰〵ㄴ㜸㜠〰〰〠渠ਰ〰〵ㄵㄸㄠ〰〰〠渠ਰ〰〵ㄵ㔹㔠〰〰〠渠ਰ〰〵ㄵ㤵㔠〰〰〠渠ਰ〰〵ㄶ㌴㤠〰〰〠渠ਰ〰〵ㄶ㜵㜠〰〰〠渠ਰ〰〵ㄷㄱ〠〰〰〠渠ਰ〰〵ㄷ㔰㘠〰〰〠渠ਰ〰〵ㄷ㤲㈠〰〰〠渠ਰ〰〵ㄸ㈷㤠〰〰〠渠ਰ〰〵ㄸ㘷〠〰〰〠渠ਰ〰〵ㄹ〸ㄠ〰〰〠渠ਰ〰〵ㄹ㐴㈠〰〰〠渠ਰ〰〵ㄹ㠳㜠〰〰〠渠ਰ〰〵㈰㈴㤠〰〰〠渠ਰ〰〵㈰㘰㔠〰〰〠渠ਰ〰〵㈱〰㈠〰〰〠渠ਰ〰〵㈱㐱㤠〰〰〠渠ਰ〰ㄹ㤷㈸〠〰〰〠渠ਰ〰〵㈱㜷㘠〰〰〠渠ਰ〰ㄹ㤹㌱〠〰〰〠渠ਰ〰㈰〱㌹〠〰〰〠渠ਰ〰〵㈳㠰㤠〰〰〠渠ਰ〰〵㈴ㄴ〠〰〰〠渠ਰ〰〵㈴㌵㜠〰〰〠渠ਰ〰〶㜴㌶㘠〰〰〠渠ਰ〰〶㜴㐴〠〰〰〠渠ਰ〰〶㜴㔵〠〰〰〠渠ਰ〰〶㜵〹㈠〰〰〠渠ਰ〰〶㤴㘳㠠〰〰〠渠ਰ〰〶㤷㤲㜠〰〰〠渠ਰ〰〶㤷㤴㤠〰〰〠渠ਰ〰〶㤸ㄲ㐠〰〰〠渠ਰ〰〶㤸㌷ㄠ〰〰〠渠ਰ〰〶㤸㜲㠠〰〰〠渠ਰ〰〶㤸㤹ㄠ〰〰〠渠ਰ〰〷〲㈵㜠〰〰〠渠ਰ〰〷〳〳㔠〰〰〠渠ਰ〰〷〳㄰㠠〰〰〠渠ਰ〰〷〳㐵㜠〰〰〠渠ਰ〰〷〳㠲ㄠ〰〰〠渠ਰ〰〷〴ㄸ㈠〰〰〠渠ਰ〰〷〴㈵㔠〰〰〠渠ਰ〰〷〴㘰㘠〰〰〠渠ਰ〰〷〴㤷〠〰〰〠渠ਰ〰〷〵㌳ㄠ〰〰〠渠ਰ〰〷〵㐰㐠〰〰〠渠ਰ〰〷〵㜵㐠〰〰〠渠ਰ〰〷〶ㄱ㠠〰〰〠渠ਰ〰〷〶㐷㠠〰〰〠渠ਰ〰〷〶㔵ㄠ〰〰〠渠ਰ〰〷〶㠹㤠〰〰〠渠ਰ〰〷〷㈶㈠〰〰〠渠ਰ〰〷〷㘲㐠〰〰〠渠ਰ〰〷〷㘹㜠〰〰〠渠ਰ〰〷〸〴㜠〰〰〠渠ਰ〰〷〸㐰㤠〰〰〠渠ਰ〰〷〸㜷ㄠ〰〰〠渠ਰ〰〷〸㠴㐠〰〰〠渠ਰ〰〷〹ㄹ㌠〰〰〠渠ਰ〰〷〹㔵㔠〰〰〠渠ਰ〰〷〹㤱㔠〰〰〠渠ਰ〰〷〹㤸㠠〰〰〠渠ਰ〰〷㄰㌳㔠〰〰〠渠ਰ〰〷㄰㘹㐠〰〰〠渠ਰ〰〷ㄱ〵㘠〰〰〠渠ਰ〰〷ㄱㄲ㤠〰〰〠渠ਰ〰〷ㄱ㐷㔠〰〰〠渠ਰ〰〷ㄱ㠳㔠〰〰〠渠ਰ〰〷ㄲㄹ㘠〰〰〠渠ਰ〰〷ㄲ㈶㤠〰〰〠渠ਰ〰〷ㄲ㘱㠠〰〰〠渠ਰ〰〷ㄲ㤸㈠〰〰〠渠ਰ〰〷ㄳ㌴㌠〰〰〠渠ਰ〰〷ㄳ㐱㘠〰〰〠渠ਰ〰〷ㄳ㜶㔠〰〰〠渠ਰ〰〷ㄴㄲ㤠〰〰〠渠ਰ〰〷ㄴ㐹〠〰〰〠渠ਰ〰〷ㄴ㔶㌠〰〰〠渠ਰ〰〷ㄴ㤱㌠〰〰〠渠ਰ〰〷ㄵ㈷㠠〰〰〠渠ਰ〰〷ㄵ㘴〠〰〰〠渠ਰ〰〷ㄵ㜱㌠〰〰〠渠ਰ〰〷ㄶ〶㌠〰〰〠渠ਰ〰〷ㄶ㐲㠠〰〰〠渠ਰ〰〷ㄶ㜹ㄠ〰〰〠渠ਰ〰〷ㄶ㠶㐠〰〰〠渠ਰ〰〷ㄷ㈱㐠〰〰〠渠ਰ〰〷ㄷ㔷㜠〰〰〠渠ਰ〰〷ㄷ㤳㜠〰〰〠渠ਰ〰〷ㄸ〱〠〰〰〠渠ਰ〰〷ㄸ㌶ㄠ〰〰〠渠ਰ〰〷ㄸ㜲㌠〰〰〠渠ਰ〰〷ㄹ〸㔠〰〰〠渠ਰ〰〷ㄹㄵ㠠〰〰〠渠ਰ〰〷ㄹ㔰㠠〰〰〠渠ਰ〰〷ㄹ㠷ㄠ〰〰〠渠ਰ〰〷㈰㈳㈠〰〰〠渠ਰ〰〷㈰㌰㔠〰〰〠渠ਰ〰〷㈰㘵㜠〰〰〠渠ਰ〰〷㈱〲㈠〰〰〠渠ਰ〰〷㈱㌸㌠〰〰〠渠ਰ〰〷㈱㐵㘠〰〰〠渠ਰ〰〷㈱㠰㘠〰〰〠渠ਰ〰〷㈲ㄶ㠠〰〰〠渠ਰ〰〷㈲㔲㤠〰〰〠渠ਰ〰〷㈲㘰㈠〰〰〠渠ਰ〰〷㈲㤵㌠〰〰〠渠ਰ〰〷㈳㌱㘠〰〰〠渠ਰ〰〷㈳㘷㜠〰〰〠渠ਰ〰〷㈳㜵〠〰〰〠渠ਰ〰〷㈴㄰ㄠ〰〰〠渠ਰ〰〷㈴㐶〠〰〰〠渠ਰ〰〷㈴㠱㠠〰〰〠渠ਰ〰〷㈴㠹ㄠ〰〰〠渠ਰ〰〷㈵㈴㌠〰〰〠渠ਰ〰〷㈵㘰㠠〰〰〠渠ਰ〰〷㈵㤷〠〰〰〠渠ਰ〰〷㈶〴㌠〰〰〠渠ਰ〰〷㈶㌹ㄠ〰〰〠渠ਰ〰〷㈶㜵㌠〰〰〠渠ਰ〰〷㈷ㄱ㔠〰〰〠渠ਰ〰〷㈷ㄸ㠠〰〰〠渠ਰ〰〷㈷㔳㤠〰〰〠渠ਰ〰〷㈷㠹㤠〰〰〠渠ਰ〰〷㈸㈵㜠〰〰〠渠ਰ〰〷㈸㌳〠〰〰〠渠ਰ〰〷㈸㘸ㄠ〰〰〠渠ਰ〰〷㈹〴㈠〰〰〠渠ਰ〰〷㈹㐰㜠〰〰〠渠ਰ〰〷㈹㐸〠〰〰〠渠ਰ〰〷㈹㠲㜠〰〰〠渠ਰ〰〷㌰ㄸ㤠〰〰〠渠ਰ〰〷㌰㔴㠠〰〰〠渠ਰ〰〷㌰㘲ㄠ〰〰〠渠ਰ〰〷㌰㤷㌠〰〰〠渠ਰ〰〷㌱㌳ㄠ〰〰〠渠ਰ〰〷㌱㘸㜠〰〰〠渠ਰ〰〷㌱㜶〠〰〰〠渠ਰ〰〷㌲ㄱ〠〰〰〠渠ਰ〰〷㌲㐷㌠〰〰〠渠ਰ〰〷㌲㠳㌠〰〰〠渠ਰ〰〷㌲㤰㘠〰〰〠渠ਰ〰〷㌳㈵ㄠ〰〰〠渠ਰ〰〷㌳㘱ㄠ〰〰〠渠ਰ〰〷㌳㤷〠〰〰〠渠ਰ〰〷㌴〴㌠〰〰〠渠ਰ〰〷㌴㌹㌠〰〰〠渠ਰ〰〷㌴㜵〠〰〰〠渠ਰ〰〷㌵㄰㜠〰〰〠渠ਰ〰〷㌵ㄷ㠠〰〰〠渠ਰ〰〷㌵㔲㠠〰〰〠渠ਰ〰〷㌵㠹ㄠ〰〰〠渠ਰ〰〷㌶㈵〠〰〰〠渠ਰ〰〷㌶㌲㌠〰〰〠渠ਰ〰〷㌶㘷㐠〰〰〠渠ਰ〰〷㌷〳㔠〰〰〠渠ਰ〰〷㌷㌹㘠〰〰〠渠ਰ〰〷㌷㐶㤠〰〰〠渠ਰ〰〷㌷㠱㠠〰〰〠渠ਰ〰〷㌸ㄷ㜠〰〰〠渠ਰ〰〷㌸㔳㘠〰〰〠渠ਰ〰〷㌸㘰㤠〰〰〠渠ਰ〰〷㌸㤵㤠〰〰〠渠ਰ〰〷㌹㌲㈠〰〰〠渠ਰ〰〷㌹㘸〠〰〰〠渠ਰ〰〷㌹㜵ㄠ〰〰〠渠ਰ〰〷㐰㄰ㄠ〰〰〠渠ਰ〰〷㐰㐶㈠〰〰〠渠ਰ〰〷㐰㠲ㄠ〰〰〠渠ਰ〰〷㐰㠹㐠〰〰〠渠ਰ〰〷㐱㈴㌠〰〰〠渠ਰ〰〷㐱㘰㔠〰〰〠渠ਰ〰〷㐱㤶㐠〰〰〠渠ਰ〰〷㐲〳㜠〰〰〠渠ਰ〰〷㐲㌸㠠〰〰〠渠ਰ〰〷㐲㜵㐠〰〰〠渠ਰ〰〷㐳ㄱ㔠〰〰〠渠ਰ〰〷㐳ㄸ㠠〰〰〠渠ਰ〰〷㐳㔴〠〰〰〠渠ਰ〰〷㐳㤰㌠〰〰〠渠ਰ〰〷㐴㈶㔠〰〰〠渠ਰ〰〷㐴㌳㠠〰〰〠渠ਰ〰〷㐴㘹〠〰〰〠渠ਰ〰〷㐵〵㌠〰〰〠渠ਰ〰〷㐵㐱㘠〰〰〠渠ਰ〰〷㐵㐸㤠〰〰〠渠ਰ〰〷㐵㠳㤠〰〰〠渠ਰ〰〷㐶㈰㘠〰〰〠渠ਰ〰〷㐶㔶㜠〰〰〠渠ਰ〰〷㐶㘴〠〰〰〠渠ਰ〰〷㐶㤹〠〰〰〠渠ਰ〰〷㐷㌵㔠〰〰〠渠ਰ〰〷㐷㜱㘠〰〰〠渠ਰ〰〷㐷㜸㤠〰〰〠渠ਰ〰〷㐸ㄳ㠠〰〰〠渠ਰ〰〷㐸㔰ㄠ〰〰〠渠ਰ〰〷㐸㠶㈠〰〰〠渠ਰ〰〷㐸㤳㔠〰〰〠渠ਰ〰〷㐹㈸㐠〰〰〠渠ਰ〰〷㐹㘴㤠〰〰〠渠ਰ〰〷㔰〱ㄠ〰〰〠渠ਰ〰〷㔰〸㐠〰〰〠渠ਰ〰〷㔰㐳㘠〰〰〠渠ਰ〰〷㔰㠰㈠〰〰〠渠ਰ〰〷㔱ㄶ㌠〰〰〠渠ਰ〰〷㔱㈳㘠〰〰〠渠ਰ〰〷㔱㔸㤠〰〰〠渠ਰ〰〷㔱㤵㔠〰〰〠渠ਰ〰〷㔲㌱㠠〰〰〠渠ਰ〰〷㔲㌸㤠〰〰〠渠ਰ〰〷㔲㜳㘠〰〰〠渠ਰ〰〷㔳㄰ㄠ〰〰〠渠ਰ〰〷㔳㐶㈠〰〰〠渠ਰ〰〷㔳㔳㔠〰〰〠渠ਰ〰〷㔳㠸㘠〰〰〠渠ਰ〰〷㔴㈵〠〰〰〠渠ਰ〰〷㔴㘱㈠〰〰〠渠ਰ〰〷㔴㘸㔠〰〰〠渠ਰ〰〷㔵〳㘠〰〰〠渠ਰ〰〷㔵㐰〠〰〰〠渠ਰ〰〷㔵㜶ㄠ〰〰〠渠ਰ〰〷㔵㠳㐠〰〰〠渠ਰ〰〷㔶ㄸ㌠〰〰〠渠ਰ〰〷㔶㔴㜠〰〰〠渠ਰ〰〷㔶㤰㤠〰〰〠渠ਰ〰〷㔶㤸㈠〰〰〠渠ਰ〰〷㔷㌲㤠〰〰〠渠ਰ〰〷㔷㘹㌠〰〰〠渠ਰ〰〷㔸〵㐠〰〰〠渠ਰ〰〷㔸ㄲ㜠〰〰〠渠ਰ〰〷㔸㐷㠠〰〰〠渠ਰ〰〷㔸㠴㈠〰〰〠渠ਰ〰〷㔹㈰㐠〰〰〠渠ਰ〰〷㔹㈷㜠〰〰〠渠ਰ〰〷㔹㘲㜠〰〰〠渠ਰ〰〷㔹㤹㈠〰〰〠渠ਰ〰〷㘰㌵㌠〰〰〠渠ਰ〰〷㘰㐲㐠〰〰〠渠ਰ〰〷㘰㜷㔠〰〰〠渠ਰ〰〷㘱ㄳ㤠〰〰〠渠ਰ〰〷㘱㔰〠〰〰〠渠ਰ〰〷㘱㔷㌠〰〰〠渠ਰ〰〷㘱㤲㐠〰〰〠渠ਰ〰〷㘲㈸㠠〰〰〠渠ਰ〰〷㘲㘴㤠〰〰〠渠ਰ〰〷㘲㜲㈠〰〰〠渠ਰ〰〷㘳〷〠〰〰〠渠ਰ〰〷㘳㐳㌠〰〰〠渠ਰ〰〷㘳㜹㐠〰〰〠渠ਰ〰〷㘳㠶㜠〰〰〠渠ਰ〰〷㘴㈱㜠〰〰〠渠ਰ〰〷㘴㔷㤠〰〰〠渠ਰ〰〷㘴㤴〠〰〰〠渠ਰ〰〷㘵〱㌠〰〰〠渠ਰ〰〷㘵㌶㐠〰〰〠渠ਰ〰〷㘵㜳ㄠ〰〰〠渠ਰ〰〷㘶〹㈠〰〰〠渠ਰ〰〷㘶ㄶ㔠〰〰〠渠ਰ〰〷㘶㔱㐠〰〰〠渠ਰ〰〷㘶㠷㔠〰〰〠渠ਰ〰〷㘷㈳㘠〰〰〠渠ਰ〰〷㘷㌰㤠〰〰〠渠ਰ〰〷㘷㘵㜠〰〰〠渠ਰ〰〷㘸〱㠠〰〰〠渠ਰ〰〷㘸㌷㠠〰〰〠渠ਰ〰〷㘸㐴㤠〰〰〠渠ਰ〰〷㘸㜹㐠〰〰〠渠ਰ〰〷㘹ㄵ㜠〰〰〠渠ਰ〰〷㘹㔱㜠〰〰〠渠ਰ〰〷㘹㔹〠〰〰〠渠ਰ〰〷㘹㤴㌠〰〰〠渠ਰ〰〷㜰㌰㠠〰〰〠渠ਰ〰〷㜰㘷㌠〰〰〠渠ਰ〰〷㜰㜴㘠〰〰〠渠ਰ〰〷㜱〹㜠〰〰〠渠ਰ〰〷㜱㐶㈠〰〰〠渠ਰ〰〷㜱㠲㐠〰〰〠渠ਰ〰〷㜱㠹㜠〰〰〠渠ਰ〰〷㜲㈴㜠〰〰〠渠ਰ〰〷㜲㘱〠〰〰〠渠ਰ〰〷㜲㤷〠〰〰〠渠ਰ〰〷㜳〴㌠〰〰〠渠ਰ〰〷㜳㌹㐠〰〰〠渠ਰ〰〷㜳㜶〠〰〰〠渠ਰ〰〷㜴ㄲㄠ〰〰〠渠ਰ〰〷㜴ㄹ㐠〰〰〠渠ਰ〰〷㜴㔴㘠〰〰〠渠ਰ〰〷㜴㤱ㄠ〰〰〠渠ਰ〰〷㜵㈷㌠〰〰〠渠ਰ〰〷㜵㌴㘠〰〰〠渠ਰ〰〷㜵㘹㘠〰〰〠渠ਰ〰〷㜶〵㜠〰〰〠渠ਰ〰〷㜶㐱㠠〰〰〠渠ਰ〰〷㜶㐹ㄠ〰〰〠渠ਰ〰〷㜶㠳㘠〰〰〠渠ਰ〰〷㜷㈰〠〰〰〠渠ਰ〰〷㜷㔶〠〰〰〠渠ਰ〰〷㜷㘳ㄠ〰〰〠渠ਰ〰〷㜷㤸ㄠ〰〰〠渠ਰ〰〷㜸㌴㐠〰〰〠渠ਰ〰〷㜸㜰㠠〰〰〠渠ਰ〰〷㜸㜸ㄠ〰〰〠渠ਰ〰〷㜹ㄳㄠ〰〰〠渠ਰ〰〷㜹㐹㈠〰〰〠渠ਰ〰〷㜹㠵㈠〰〰〠渠ਰ〰〷㜹㤲㔠〰〰〠渠ਰ〰〷㠰㈷㐠〰〰〠渠ਰ〰〷㠰㘳㜠〰〰〠渠ਰ〰〷㠱〰〠〰〰〠渠ਰ〰〷㠱㌸㤠〰〰〠渠ਰ〰〷㠴ㄸ㐠〰〰〠渠ਰ〰〷㠴㌳㌠〰〰〠渠ਰ〰〷㠷ㄲ㠠〰〰〠渠ਰ〰〷㠷㈷㜠〰〰〠渠ਰ〰〷㠷㔰㠠〰〰〠渠ਰ〰〷㠷㠹㘠〰〰〠渠ਰ〰〷㠸㈳㌠〰〰〠渠ਰ〰〷㠸㔰ㄠ〰〰〠渠ਰ〰〷㠸㠹ㄠ〰〰〠渠ਰ〰〷㠹㈹㠠〰〰〠渠ਰ〰〷㠹㘵㤠〰〰〠渠ਰ〰〷㤰〵〠〰〰〠渠ਰ〰〷㤰㐵㜠〰〰〠渠ਰ〰〷㤰㠱㘠〰〰〠渠ਰ〰㈰〳㐷㈠〰〰〠渠ਰ〰㈰〳㤲〠〰〰〠渠ਰ〰㈰〴㈸㠠〰〰〠渠ਰ〰㈰〴㤷ㄠ〰〰〠渠ਰ〰〸㌸㠸㔠〰〰〠渠ਰ〰〸㌹〶㠠〰〰〠渠ਰ〰〸㌹㌳㔠〰〰〠渠ਰ〰〸㌹㜲㌠〰〰〠渠ਰ〰〸㐰ㄳ〠〰〰〠渠ਰ〰〸㐰㐹㐠〰〰〠渠ਰ〰〸㐰㠷㈠〰〰〠渠ਰ〰〸㐱㈷㈠〰〰〠渠ਰ〰〸㐱㘳㜠〰〰〠渠ਰ〰〸㐲〲㜠〰〰〠渠ਰ〰〸㐲㐳㌠〰〰〠渠ਰ〰〸㐲㜹ㄠ〰〰〠渠ਰ〰〸㐳ㄷ㘠〰〰〠渠ਰ〰〸㐳㔸㈠〰〰〠渠ਰ〰〸㐳㤴㐠〰〰〠渠ਰ〰〸㐴㌲㜠〰〰〠渠ਰ〰〸㐴㜳㐠〰〰〠渠ਰ〰〸㐵〹㜠〰〰〠渠ਰ〰〸㐵㐶㈠〰〰〠渠ਰ〰〸㐵㠴㈠〰〰〠渠ਰ〰〸㐶㈰㌠〰〰〠渠ਰ〰〸㐶㔸㈠〰〰〠渠ਰ〰〸㐶㤸㈠〰〰〠渠ਰ〰〸㐷㌴㔠〰〰〠渠ਰ〰〸㐷㜲㤠〰〰〠渠ਰ〰〸㐸㄰㤠〰〰〠渠ਰ〰〸㐸㔰〠〰〰〠渠ਰ〰〸㐸㤱㈠〰〰〠渠ਰ〰〸㐹㈷㐠〰〰〠渠ਰ〰〸㔱ㄹ㐠〰〰〠渠ਰ〰㈰〵㔲〠〰〰〠渠ਰ〰㈰〵㜱㔠〰〰〠渠ਰ〰〹㠸ㄳ㈠〰〰〠渠ਰ〰〹㠸ㄸ〠〰〰〠渠ਰ〰〹㠹ㄹ㠠〰〰〠渠ਰ〰〹㤲㌹ㄠ〰〰〠渠ਰ〰〹㤷㔴㐠〰〰〠渠ਰ〰㄰〱㐸〠〰〰〠渠ਰ〰㄰〱㔰㈠〰〰〠渠ਰ〰㄰〱㘹㌠〰〰〠渠ਰ〰㄰〱㤷㠠〰〰〠渠ਰ〰㄰〲㌷ㄠ〰〰〠渠ਰ〰㄰〲㘷㘠〰〰〠渠ਰ〰㄰〲㤸㔠〰〰〠渠ਰ〰㄰〳㈹㜠〰〰〠渠ਰ〰㄰〳㘳㔠〰〰〠渠ਰ〰㄰〳㜰㠠〰〰〠渠ਰ〰㄰〴〱㠠〰〰〠渠ਰ〰㄰〴㌲㤠〰〰〠渠ਰ〰㄰〴㘶㠠〰〰〠渠ਰ〰㄰〵〵㜠〰〰〠渠ਰ〰㄰〵㐶ㄠ〰〰〠渠ਰ〰㄰〵㠲㈠〰〰〠渠ਰ〰㄰〶ㄸ㔠〰〰〠渠ਰ〰㄰〶㔶㐠〰〰〠渠ਰ〰㄰〶㤲㘠〰〰〠渠ਰ〰㄰〷㌱㐠〰〰〠渠ਰ〰㄰〷㜱㤠〰〰〠渠ਰ〰㄰〸〸ㄠ〰〰〠渠ਰ〰㄰〸㐷ㄠ〰〰〠渠ਰ〰㄰〸㠷㔠〰〰〠渠ਰ〰㄰〹㈳㐠〰〰〠渠ਰ〰㄰〹㔸㠠〰〰〠渠ਰ〰㄰〹㤵㤠〰〰〠渠ਰ〰㄰㄰㌲㈠〰〰〠渠ਰ〰㄰㄰㘹㤠〰〰〠渠ਰ〰㄰ㄱ〹㘠〰〰〠渠ਰ〰㄰ㄱ㐵㜠〰〰〠渠ਰ〰㄰ㄱ㠲㐠〰〰〠渠ਰ〰㄰ㄲ㈰㔠〰〰〠渠ਰ〰㄰ㄲ㔶㠠〰〰〠渠ਰ〰㄰ㄲ㤵㠠〰〰〠渠ਰ〰㄰ㄳ㌶㠠〰〰〠渠ਰ〰㄰ㄳ㜳ㄠ〰〰〠渠ਰ〰㄰ㄴ〵㘠〰〰〠渠ਰ〰㄰ㄶ㘴㜠〰〰〠渠ਰ〰㄰ㄶ㜹㘠〰〰〠渠ਰ〰㄰ㄷ〹㤠〰〰〠渠ਰ〰㄰ㄹ㠹㐠〰〰〠渠ਰ〰㄰㈰〴㌠〰〰〠渠ਰ〰㄰㈲㔳ㄠ〰〰〠渠ਰ〰㄰㈲㘸〠〰〰〠渠ਰ〰㄰㈴㘴㜠〰〰〠渠ਰ〰㄰㈴㜹㘠〰〰〠渠ਰ〰㄰㈵ㄱ㠠〰〰〠渠ਰ〰㄰㈵㐳㠠〰〰〠渠ਰ〰㄰㈵㠷㈠〰〰〠渠ਰ〰㄰㈶㌲㜠〰〰〠渠ਰ〰㄰㈶㘸㔠〰〰〠渠ਰ〰㄰㈷㄰㘠〰〰〠渠ਰ〰㄰㈷㔴㘠〰〰〠渠ਰ〰㄰㈷㤰㘠〰〰〠渠ਰ〰㄰㈸㈹㠠〰〰〠渠ਰ〰㄰㈸㜰㈠〰〰〠渠ਰ〰㄰㈹〶ㄠ〰〰〠渠ਰ〰㄰㈹㐷〠〰〰〠渠ਰ〰㄰㈹㠹㜠〰〰〠渠ਰ〰㄰㌰㈶〠〰〰〠渠ਰ〰㄰㌰㘶㜠〰〰〠渠ਰ〰㄰㌱〹㔠〰〰〠渠ਰ〰㄰㌱㐵㜠〰〰〠渠ਰ〰㄰㌱㠹ㄠ〰〰〠渠ਰ〰㄰㌲㌴㔠〰〰〠渠ਰ〰㄰㌲㜰㘠〰〰〠渠ਰ〰㄰㌳㄰㤠〰〰〠渠ਰ〰㄰㌳㔲㠠〰〰〠渠ਰ〰㄰㌳㠸㜠〰〰〠渠ਰ〰㄰㌴㔶ㄠ〰〰〠渠ਰ〰㄰㌷㈳㜠〰〰〠渠ਰ〰㄰㌷㌸㘠〰〰〠渠ਰ〰ㄱ㔶㤶ㄠ〰〰〠渠ਰ〰ㄱ㔶㤹㘠〰〰〠渠ਰ〰ㄱ㔷ㄳ〠〰〰〠渠ਰ〰ㄱ㔷㤹㐠〰〰〠渠ਰ〰ㄱ㘲㈸㘠〰〰〠渠ਰ〰ㄱ㘷㘵㔠〰〰〠渠ਰ〰ㄱ㘷㘷㜠〰〰〠渠ਰ〰ㄱ㘷㤶ㄠ〰〰〠渠ਰ〰ㄱ㜰㤱㐠〰〰〠渠ਰ〰ㄱ㜰㤳㘠〰〰〠渠ਰ〰ㄱ㜱㈱㈠〰〰〠渠ਰ〰ㄱ㜶㈶㈠〰〰〠渠ਰ〰㈰〵㤸ㄠ〰〰〠渠ਰ〰㈰〶㐱㠠〰〰〠渠ਰ〰ㄱ㜶㈸㐠〰〰〠渠ਰ〰ㄱ㜶㘱〠〰〰〠渠ਰ〰ㄱ㜶㠹㈠〰〰〠渠ਰ〰ㄱ㜷㈴㘠〰〰〠渠ਰ〰ㄱ㜷㔳㜠〰〰〠渠ਰ〰ㄱ㠱㘵㠠〰〰〠渠ਰ〰ㄱ㠶㔳ㄠ〰〰〠渠ਰ〰ㄱ㠶㔵㌠〰〰〠渠ਰ〰ㄱ㠶㠹ㄠ〰〰〠渠ਰ〰ㄱ㤴㈴㠠〰〰〠渠ਰ〰㈰〶㠰㘠〰〰〠渠ਰ〰㈰〷㄰㈠〰〰〠渠ਰ〰㈰〷㌶㌠〰〰〠渠ਰ〰㈰〷㜶ㄠ〰〰〠渠ਰ〰㈰〸〳㜠〰〰〠渠ਰ〰㈰〸㈵㤠〰〰〠渠ਰ〰㈰〸㔵㤠〰〰〠渠ਰ〰㈰〸㠳㤠〰〰〠渠ਰ〰㈰〹〹㤠〰〰〠渠ਰ〰㈰〹㌶㘠〰〰〠渠ਰ〰ㄱ㤴㈷〠〰〰〠渠ਰ〰ㄱ㤴㔳㠠〰〰〠渠ਰ〰ㄱ㤴㜸㌠〰〰〠渠ਰ〰ㄱ㤴㤳㌠〰〰〠渠ਰ〰㈰〹㔹㈠〰〰〠渠ਰ〰㈰〹㜹㘠〰〰〠渠ਰ〰ㄱ㤵ㄵ㘠〰〰〠渠ਰ〰ㄱ㤵㌲㐠〰〰〠渠ਰ〰ㄱ㤵㔳㔠〰〰〠渠ਰ〰ㄱ㤷㘶㐠〰〰〠渠ਰ〰ㄲ〲㈶㠠〰〰〠渠ਰ〰ㄲ〲㈹〠〰〰〠渠ਰ〰ㄲ〲㘸㔠〰〰〠渠ਰ〰ㄲ〷㤹㐠〰〰〠渠ਰ〰ㄲ〸〱㘠〰〰〠渠ਰ〰ㄲ〸㌶㘠〰〰〠渠ਰ〰ㄲ〸㘵㠠〰〰〠渠ਰ〰ㄲㄱ㈵㌠〰〰〠渠ਰ〰ㄲㄲㄷ㌠〰〰〠渠ਰ〰ㄲㄲㄹ㐠〰〰〠渠ਰ〰ㄲㄲ㔳㘠〰〰〠渠ਰ〰ㄲㄴ㘶㠠〰〰〠渠ਰ〰ㄲㄴ㘹〠〰〰〠渠ਰ〰ㄲㄴ㠶㤠〰〰〠渠ਰ〰ㄲㄵㄲ㜠〰〰〠渠ਰ〰ㄲㄵ㔱㐠〰〰〠渠ਰ〰ㄲㄵ㠳ㄠ〰〰〠渠ਰ〰ㄲㄷ㐹㤠〰〰〠渠ਰ〰ㄲㄹㄹ㌠〰〰〠渠ਰ〰ㄲㄹ㔵㜠〰〰〠渠ਰ〰ㄲ㈱㈷㐠〰〰〠渠ਰ〰ㄲ㈳〱㐠〰〰〠渠ਰ〰ㄲ㈳㌷㤠〰〰〠渠ਰ〰ㄲ㈵㄰㌠〰〰〠渠ਰ〰ㄲ㈶㠴㘠〰〰〠渠ਰ〰ㄲ㈷㈱〠〰〰〠渠ਰ〰ㄲ㈸㤴㤠〰〰〠渠ਰ〰ㄲ㌰㜰㤠〰〰〠渠ਰ〰ㄲ㌱〷㌠〰〰〠渠ਰ〰ㄲ㌲㘹〠〰〰〠渠ਰ〰ㄲ㌴㌳㐠〰〰〠渠ਰ〰ㄲ㌴㘹㠠〰〰〠渠ਰ〰ㄲ㌶㌰㜠〰〰〠渠ਰ〰ㄲ㌷㤳㤠〰〰〠渠ਰ〰ㄲ㌸㌰㌠〰〰〠渠ਰ〰ㄲ㌹㤱〠〰〰〠渠ਰ〰ㄲ㐱㔴〠〰〰〠渠ਰ〰ㄲ㐱㤰㌠〰〰〠渠ਰ〰ㄲ㐳㔱㈠〰〰〠渠ਰ〰ㄲ㐵ㄴ㈠〰〰〠渠ਰ〰ㄲ㐵㔰㘠〰〰〠渠ਰ〰ㄲ㐵㠹㜠〰〰〠渠ਰ〰ㄲ㐶㌰㔠〰〰〠渠ਰ〰ㄲ㐶㘶㠠〰〰〠渠ਰ〰ㄲ㐸㌲㈠〰〰〠渠ਰ〰ㄲ㐹㤹㠠〰〰〠渠ਰ〰ㄲ㔰㌶ㄠ〰〰〠渠ਰ〰ㄲ㔲〸㈠〰〰〠渠ਰ〰ㄲ㔳㠳〠〰〰〠渠ਰ〰ㄲ㔴ㄹ㐠〰〰〠渠ਰ〰ㄲ㔵㤱㔠〰〰〠渠ਰ〰ㄲ㔷㘶〠〰〰〠渠ਰ〰ㄲ㔸〲㐠〰〰〠渠ਰ〰ㄲ㔹㜴㌠〰〰〠渠ਰ〰ㄲ㘱㐸㐠〰〰〠渠ਰ〰ㄲ㘱㠳㠠〰〰〠渠ਰ〰ㄲ㘲㈲㤠〰〰〠渠ਰ〰ㄲ㘲㘳㠠〰〰〠渠ਰ〰ㄲ㘳〰㈠〰〰〠渠ਰ〰ㄳㄶ㠳ㄠ〰〰〠渠ਰ〰ㄳㄷ㈱㤠〰〰〠渠ਰ〰ㄳㄷ㘲㌠〰〰〠渠ਰ〰ㄳㄷ㤸㠠〰〰〠渠ਰ〰ㄳㄸ㌲㐠〰〰〠渠ਰ〰ㄳ㈱ㄱ㤠〰〰〠渠ਰ〰ㄳ㈱㈶㠠〰〰〠渠ਰ〰ㄳ㈱㔱㘠〰〰〠渠ਰ〰ㄳ㈳㐸㌠〰〰〠渠ਰ〰ㄳ㈳㘳㈠〰〰〠渠ਰ〰ㄳ㈳㘶〠〰〰〠渠ਰ〰ㄳ㈳㜷㜠〰〰〠渠ਰ〰ㄳ㈳㠷㔠〰〰〠渠ਰ〰ㄳ㈴〵〠〰〰〠渠ਰ〰ㄳ㈴㈹㜠〰〰〠渠ਰ〰ㄳ㈴㘵㐠〰〰〠渠ਰ〰ㄳ㈴㤴㤠〰〰〠渠ਰ〰ㄳ㐹㔴㜠〰〰〠渠ਰ〰ㄳ㐹㜲㈠〰〰〠渠ਰ〰ㄳ㐹㤶㤠〰〰〠渠ਰ〰ㄳ㔰ㄹ㌠〰〰〠渠ਰ〰ㄳ㔰㐱㠠〰〰〠渠ਰ〰ㄳ㔰㠰㜠〰〰〠渠ਰ〰ㄳ㔱㈱㌠〰〰〠渠ਰ〰ㄳ㔱㔷㠠〰〰〠渠ਰ〰ㄳ㔱㜵㜠〰〰〠渠ਰ〰ㄳ㔱㤷㘠〰〰〠渠ਰ〰ㄴ㈲〸ㄠ〰〰〠渠ਰ〰ㄴ㈲ㄳ〠〰〰〠渠ਰ〰ㄴ㈲㈵ㄠ〰〰〠渠ਰ〰ㄴ㈲㈸㜠〰〰〠渠ਰ〰ㄴ㈲㌲㌠〰〰〠渠ਰ〰ㄴ㈳ㄲ㘠〰〰〠渠ਰ〰ㄴ㐵㐴〠〰〰〠渠ਰ〰ㄴ㠰㈹㜠〰〰〠渠ਰ〰ㄴ㠰㌲〠〰〰〠渠ਰ〰ㄴ㠰㜲㌠〰〰〠渠ਰ〰ㄴ㠰㤴〠〰〰〠渠ਰ〰ㄴ㠱㈹ㄠ〰〰〠渠ਰ〰ㄴ㠱㘴ㄠ〰〰〠渠ਰ〰ㄴ㠱㤹㈠〰〰〠渠ਰ〰ㄴ㠲㌴ㄠ〰〰〠渠ਰ〰ㄴ㠲㜰㤠〰〰〠渠ਰ〰ㄴ㠳〶㈠〰〰〠渠ਰ〰ㄴ㠳㐰㠠〰〰〠渠ਰ〰ㄴ㠳㜵㜠〰〰〠渠ਰ〰ㄴ㠴ㄳ㤠〰〰〠渠ਰ〰ㄴ㠴㐹ㄠ〰〰〠渠ਰ〰ㄴ㠴㜱㌠〰〰〠渠ਰ〰ㄴ㠵〹㈠〰〰〠渠ਰ〰ㄴ㠵㐶ㄠ〰〰〠渠ਰ〰ㄴ㠵㠳㈠〰〰〠渠ਰ〰ㄴ㠶ㄸ㔠〰〰〠渠ਰ〰ㄴ㠶㔳㜠〰〰〠渠ਰ〰ㄴ㠶㠸㠠〰〰〠渠ਰ〰ㄴ㠷㈶㤠〰〰〠渠ਰ〰ㄴ㠷㘳㤠〰〰〠渠ਰ〰ㄴ㠸〰㜠〰〰〠渠ਰ〰ㄴ㠸㌷㜠〰〰〠渠ਰ〰ㄴ㠸㜲㤠〰〰〠渠ਰ〰ㄴ㠹〷㘠〰〰〠渠ਰ〰ㄴ㠹㐲㠠〰〰〠渠ਰ〰ㄴ㠹㠱ㄠ〰〰〠渠ਰ〰ㄴ㤰ㄷ㤠〰〰〠渠ਰ〰ㄴ㤰㔴㤠〰〰〠渠ਰ〰ㄴ㤰㤱㘠〰〰〠渠ਰ〰ㄴ㤱㈶㠠〰〰〠渠ਰ〰ㄴ㤱㘱㤠〰〰〠渠ਰ〰ㄴ㤱㤷ㄠ〰〰〠渠ਰ〰ㄴ㤲㌲㈠〰〰〠渠ਰ〰ㄴ㤲㘹〠〰〰〠渠ਰ〰ㄴ㤳〴㈠〰〰〠渠ਰ〰ㄴ㤳㌹㌠〰〰〠渠ਰ〰ㄴ㤳㜴㔠〰〰〠渠ਰ〰ㄴ㤴ㄲ㠠〰〰〠渠ਰ〰ㄴ㤴㐹㜠〰〰〠渠ਰ〰ㄴ㤴㠵〠〰〰〠渠ਰ〰ㄴ㤵㈰ㄠ〰〰〠渠ਰ〰ㄴ㤵㔵㈠〰〰〠渠ਰ〰ㄴ㤵㤰㐠〰〰〠渠ਰ〰ㄴ㤶㈷㌠〰〰〠渠ਰ〰ㄴ㤶㘴㌠〰〰〠渠ਰ〰ㄴ㤶㤹㐠〰〰〠渠ਰ〰ㄴ㤷㌴㔠〰〰〠渠ਰ〰ㄴ㤷㘹㜠〰〰〠渠ਰ〰ㄴ㤸〴㠠〰〰〠渠ਰ〰ㄴ㤸㌹㠠〰〰〠渠ਰ〰ㄴ㤸㜴㔠〰〰〠渠ਰ〰ㄴ㤹〹㔠〰〰〠渠ਰ〰ㄴ㤹㐶㠠〰〰〠渠ਰ〰ㄴ㤹㠱㠠〰〰〠渠ਰ〰ㄵ〰ㄶ㠠〰〰〠渠ਰ〰ㄵ〰㔱㜠〰〰〠渠ਰ〰ㄵ〰㠶㘠〰〰〠渠ਰ〰ㄵ〱㈲㔠〰〰〠渠ਰ〰ㄵ〱㔷㔠〰〰〠渠ਰ〰ㄵ〱㤲㘠〰〰〠渠ਰ〰ㄵ〲㈷㘠〰〰〠渠ਰ〰ㄵ〲㘲㐠〰〰〠渠ਰ〰ㄵ〲㤷㔠〰〰〠渠ਰ〰ㄵ〳㌲㜠〰〰〠渠ਰ〰ㄵ〳㜰㔠〰〰〠渠ਰ〰ㄵ〴〷㈠〰〰〠渠ਰ〰ㄵ〴㐴ㄠ〰〰〠渠ਰ〰ㄵ〵ㄵ㜠〰〰〠渠ਰ〰ㄵ〷㘱㈠〰〰〠渠ਰ〰ㄵ〷㤸㘠〰〰〠渠ਰ〰ㄵ〸㌳㘠〰〰〠渠ਰ〰ㄵ〸㘸㘠〰〰〠渠ਰ〰ㄵ〹〳㜠〰〰〠渠ਰ〰ㄵ〹㌸㠠〰〰〠渠ਰ〰ㄵ〹㜴㔠〰〰〠渠ਰ〰ㄵ㄰〹㐠〰〰〠渠ਰ〰ㄵ㄰㐴㔠〰〰〠渠ਰ〰ㄵ㄰㜹㐠〰〰〠渠ਰ〰ㄵㄱㄴ㐠〰〰〠渠ਰ〰ㄵㄱ㔰㈠〰〰〠渠ਰ〰ㄵㄳ㐵ㄠ〰〰〠渠ਰ〰ㄵㄴ〷㠠〰〰〠渠ਰ〰ㄵㄴ㐳㔠〰〰〠渠ਰ〰ㄵㄴ㜹㌠〰〰〠渠ਰ〰ㄵㄵㄴ㠠〰〰〠渠ਰ〰ㄵㄵ㔰〠〰〰〠渠ਰ〰ㄵㄵ㠵㜠〰〰〠渠ਰ〰ㄵㄶ㈳ㄠ〰〰〠渠ਰ〰ㄵㄶ㔹㈠〰〰〠渠ਰ〰ㄵㄶ㤵ㄠ〰〰〠渠ਰ〰ㄵㄷ㌱ㄠ〰〰〠渠ਰ〰ㄵㄷ㐴㌠〰〰〠渠ਰ〰ㄵㄸ〷㠠〰〰〠渠ਰ〰ㄵㄸ㘰㐠〰〰〠渠ਰ〰ㄵㄸ㘹〠〰〰〠渠ਰ〰ㄵㄹㄱ㐠〰〰〠渠ਰ〰ㄵㄹ㘳〠〰〰〠渠ਰ〰ㄵㄹ㜰㔠〰〰〠渠ਰ〰ㄵ㈰㜹㈠〰〰〠渠ਰ〰ㄵ㈱㔹㔠〰〰〠渠ਰ〰ㄵ㈱㜰㌠〰〰〠渠ਰ〰ㄵ㈲㐳㈠〰〰〠渠ਰ〰ㄵ㈲㜹㐠〰〰〠渠ਰ〰ㄵ㈳ㄵ㠠〰〰〠渠ਰ〰ㄵ㈳㔲㔠〰〰〠渠ਰ〰ㄵ㈳㠸㤠〰〰〠渠ਰ〰ㄵ㈴㈵ㄠ〰〰〠渠ਰ〰ㄵ㈴㘱㐠〰〰〠渠ਰ〰ㄵ㈴㤸〠〰〰〠渠ਰ〰ㄵ㈵㌴㔠〰〰〠渠ਰ〰ㄵ㈵㔲㠠〰〰〠渠ਰ〰㈰㄰〴㜠〰〰〠渠ਰ〰㈰㄰㔰㐠〰〰〠渠ਰ〰㈰㄰㠷㤠〰〰〠渠ਰ〰㈰ㄱ㌴㈠〰〰〠渠ਰ〰ㄵ㈵㜹㔠〰〰〠渠ਰ〰ㄵ㈶ㄸ㈠〰〰〠渠ਰ〰ㄵ㈶㐸㤠〰〰〠渠ਰ〰ㄵ㈶㔹㔠〰〰〠渠ਰ〰ㄵ㈶㘵㐠〰〰〠渠ਰ〰ㄵ㈸〹〠〰〰〠渠ਰ〰ㄵ㘰㔸㔠〰〰〠渠ਰ〰ㄵ㘲〱㘠〰〰〠渠ਰ〰ㄵ㘲〳㠠〰〰〠渠ਰ〰ㄵ㘲㐳㌠〰〰〠渠ਰ〰ㄵ㘲㠴㘠〰〰〠渠ਰ〰ㄵ㘳㈱〠〰〰〠渠ਰ〰ㄵ㘳㔹㤠〰〰〠渠ਰ〰ㄵ㘴〰㔠〰〰〠渠ਰ〰ㄵ㘴㌶㤠〰〰〠渠ਰ〰ㄵ㘴㜶㈠〰〰〠渠ਰ〰ㄵ㘵ㄷ㔠〰〰〠渠ਰ〰ㄵ㘵㔴〠〰〰〠渠ਰ〰ㄵ㘵㤳㘠〰〰〠渠ਰ〰ㄵ㘶㌵㈠〰〰〠渠ਰ〰ㄵ㘶㜱㘠〰〰〠渠ਰ〰ㄵ㘷ㄱ〠〰〰〠渠ਰ〰ㄵ㘷㔲㜠〰〰〠渠ਰ〰ㄵ㘷㠹㈠〰〰〠渠ਰ〰ㄵ㘸〷㤠〰〰〠渠ਰ〰ㄵ㘸㌵㔠〰〰〠渠ਰ〰ㄵ㘸㘰㤠〰〰〠渠ਰ〰ㄵ㘸㠳㐠〰〰〠渠ਰ〰ㄷ㠴〰㈠〰〰〠渠ਰ〰ㄷ㠴〶㌠〰〰〠渠ਰ〰ㄷ㠴ㄷ㌠〰〰〠渠ਰ〰ㄷ㠴㐱㤠〰〰〠渠ਰ〰ㄷ㤵㔳㌠〰〰〠渠ਰ〰ㄸ㔳ㄲㄠ〰〰〠渠ਰ〰ㄸ㔳ㄴ㐠〰〰〠渠ਰ〰ㄸ㔳㔳㌠〰〰〠渠ਰ〰ㄸ㔳㤳㤠〰〰〠渠ਰ〰ㄸ㔴㌰㈠〰〰〠渠ਰ〰ㄸ㔴㘹ㄠ〰〰〠渠ਰ〰ㄸ㔵〹㔠〰〰〠渠ਰ〰ㄸ㔵㐵㤠〰〰〠渠ਰ〰ㄸ㤶㘷㔠〰〰〠渠ਰ〰ㄸ㤷〶㐠〰〰〠渠ਰ〰ㄸ㤷㌵㌠〰〰〠渠ਰ〰ㄸ㤷㘸㌠〰〰〠渠ਰ〰ㄹ〰㈷㔠〰〰〠渠ਰ〰ㄹ〰㐲㔠〰〰〠渠ਰ〰ㄹ〰㜲㈠〰〰〠渠ਰ〰ㄹ〳㔱㠠〰〰〠渠ਰ〰ㄹ〳㘶㠠〰〰〠渠ਰ〰ㄹ〶ㄵ㜠〰〰〠渠ਰ〰ㄹ〶㌰㜠〰〰〠渠ਰ〰ㄹ〸㈷㔠〰〰〠渠ਰ〰ㄹ〸㐲㔠〰〰〠渠ਰ〰ㄹ〸㘱〠〰〰〠渠ਰ〰ㄹ〸㠷㠠〰〰〠渠ਰ〰ㄹ〹㈲㌠〰〰〠渠ਰ〰ㄹㄲ〱㤠〰〰〠渠ਰ〰ㄹㄲㄶ㤠〰〰〠渠ਰ〰ㄹㄴㄳ㜠〰〰〠渠ਰ〰ㄹㄴ㈸㜠〰〰〠渠ਰ〰ㄹㄴ㌱㘠〰〰〠渠ਰ〰ㄹㄴ㐱㔠〰〰〠渠ਰ〰ㄹㄴ㠰㘠〰〰〠渠ਰ〰ㄹㄵ㈱㐠〰〰〠渠ਰ〰ㄹㄵ㔷㤠〰〰〠渠ਰ〰ㄹㄸㄷㄠ〰〰〠渠ਰ〰ㄹㄸ㌲ㄠ〰〰〠渠ਰ〰ㄹ㈰㠱〠〰〰〠渠ਰ〰ㄹ㈰㤵㤠〰〰〠渠ਰ〰ㄹ㠳ㄸ㌠〰〰〠渠ਰ〰ㄹ㠳㈴㜠〰〰〠渠ਰ〰ㄹ㠳㌵㘠〰〰〠渠ਰ〰ㄹ㠳㌹㐠〰〰〠渠ਰ〰ㄹ㠳㐳〠〰〰〠渠ਰ〰ㄹ㠳㠱㈠〰〰〠渠ਰ〰ㄵ㈸㈰㤠〰〰〠渠ਰ〰ㄱ㤵㜳㤠〰〰〠渠ਰ〰〴㜸㤶㘠〰〰〠渠ਰ〰〳ㄴ㐷〠〰〰〠渠ਰ〰ㄷ㠴㔱〠〰〰〠渠ਰ〰㈰ㄱ㜷〠〰〰〠渠ਰ〰ㄱ㜷㘳㜠〰〰〠渠ਰ〰ㄴ㈳㌱㈠〰〰〠渠ਰ〰ㄱ㔸㄰㜠〰〰〠渠ਰ〰〹㤲㔳〠〰〰〠渠ਰ〰㈰ㄳㄲ㤠〰〰〠渠ਰ〰㈰ㄷ㜰㈠〰〰〠渠ਰ〰ㄱ㜹㌸㐠〰〰〠渠ਰ〰〴㠰〰㜠〰〰〠渠ਰ〰ㄷ㠵㠵ㄠ〰〰〠渠ਰ〰〶㜵㈰㔠〰〰〠渠ਰ〰〴㠹㌶㔠〰〰〠渠ਰ〰〱㘱㌶㐠〰〰〠渠ਰ〰㈰ㄸ㜷㜠〰〰〠渠ਰ〰ㄴ㈴ㄶ㠠〰〰〠渠ਰ〰㈰㈳㘷㜠〰〰〠渠ਰ〰〰㌰〱㈠〰〰〠渠ਰ〰ㄴ㈵㈰㤠〰〰〠渠ਰ〰㈰㈴㠲ㄠ〰〰〠渠ਰ〰〹㤳㌸㘠〰〰〠渠ਰ〰ㄹ㠳㤲ㄠ〰〰〠渠ਰ〰〹㤴㘶ㄠ〰〰〠渠ਰ〰〰㌰㔳㔠〰〰〠渠ਰ〰ㄴ㈶㔲㈠〰〰〠渠ਰ〰〳ㄷ㘴㜠〰〰〠渠ਰ〰〱㘴㘴ㄠ〰〰〠渠ਰ〰ㄵ㌰㈷㔠〰〰〠渠ਰ〰ㄴ㈷㌷㠠〰〰〠渠ਰ〰ㄱ㤵㤶㜠〰〰〠渠ਰ〰〹㤵㘱㘠〰〰〠渠ਰ〰ㄴ㈹㌷ㄠ〰〰〠渠ਰ〰㈰㈵ㄹ㤠〰〰〠渠ਰ〰ㄹ㠵ㄹ㘠〰〰〠渠ਰ〰ㄵ㌱㔵〠〰〰〠渠ਰ〰ㄲ〸㠱〠〰〰〠渠ਰ〰ㄱ㤶㜴㌠〰〰〠渠ਰ〰ㄱ㘰〱㐠〰〰〠渠ਰ〰㈰㈹㘴〠〰〰〠渠ਰ〰〶㠳㜲㠠〰〰〠渠ਰ〰〳ㄹ〴㐠〰〰〠渠ਰ〰ㄴ㌶㠱㜠〰〰〠渠ਰ〰㈰㌰㤱㘠〰〰〠渠ਰ〰ㄵ㐹〵〠〰〰〠渠ਰ〰㈰㌸ㄲ㔠〰〰〠渠ਰ〰㈰㌸㠰㈠〰〰〠渠ਰ〰㈰㐰㈵〠〰〰〠渠ਰ〰〶㠵〰㌠〰〰〠渠ਰ〰ㄱ㤷〴㐠〰〰〠渠ਰ〰ㄱ㤷㈷㘠〰〰〠渠ਰ〰〴㤷ㄸ㐠〰〰〠渠ਰ〰ㄷ㤵㄰㠠〰〰〠渠ਰ〰ㄴ㐴㘳㠠〰〰〠渠ਰ〰ㄴ㐴㜹〠〰〰〠渠ਰ〰㈰㐵㜱㠠〰〰〠渠ਰ〰㈰㐶〱㈠〰〰〠渠ਰ〰ㄱ㘱㐱ㄠ〰〰〠渠ਰ〰ㄱ㘱㘴㤠〰〰〠渠ਰ〰〱㘵㤸㌠〰〰〠渠ਰ〰〱㘶㔷〠〰〰〠渠ਰ〰ㄴ㐴㠸㜠〰〰〠渠ਰ〰〹㤶㠲㌠〰〰〠渠ਰ〰〳㈶㠶㐠〰〰〠渠ਰ〰〳㈷〷㈠〰〰〠渠ਰ〰ㄹ㠶㠰㘠〰〰〠渠ਰ〰ㄹ㠷〹〠〰〰〠渠ਰ〰㈰㐶ㄵ㈠〰〰〠渠ਰ〰㈰㐶㘹ㄠ〰〰〠渠ਰ〰㈰㐶㜸㈠〰〰〠渠ਰ〰ㄴ㐴㤸㠠〰〰〠渠ਰ〰㈰㐶㠷㘠〰〰〠渠ਰ〰㈰㐷ㄵ㐠〰〰〠渠ਰ〰㈰㐷㈹㔠〰〰〠渠ਰ〰㈰㐷㔴㌠〰〰〠渠ਰ〰〹㤶㤲㐠〰〰〠渠ਰ〰ㄹ㠷㈳〠〰〰〠渠ਰ〰ㄴ㐵〹㠠〰〰〠渠ਰ〰〳㈷ㄸ㌠〰〰〠渠ਰ〰〱㘶㠹〠〰〰〠渠ਰ〰ㄵ㘰㈰㤠〰〰〠渠ਰ〰㈰㐷㘵ㄠ〰〰〠渠ਰ〰ㄱ㤷㌶㔠〰〰〠渠ਰ〰ㄱ㘱㜶㠠〰〰〠渠ਰ〰〹㤷〴㌠〰〰〠渠ਰ〰〹㤷ㄴ㠠〰〰〠渠ਰ〰〶㤴㈶㈠〰〰〠渠ਰ〰㈰㐷㜵ㄠ〰〰〠渠ਰ〰㈰㐸㐳㤠〰〰〠渠ਰ〰㈰㐸㐶㈠〰〰〠渠ਰ〰㈰㐸㐸㔠〰〰〠渠ਰ〰㈰㐸㔰㠠〰〰〠渠ਰ〰㈰㐸㔳ㄠ〰〰〠渠ਰ〰㈰㐸㔵㐠〰〰〠渠ਰ〰㈰㐸㔷㜠〰〰〠渠ਰ〰㈰㐸㘰〠〰〰〠渠ਰ〰㈰㐸㘲㌠〰〰〠渠ਰ〰㈰㐸㘴㘠〰〰〠渠ਰ〰㈰㐸㘶㤠〰〰〠渠ਰ〰㈰㐸㘹㈠〰〰〠渠ਰ〰㈰㐸㜱㔠〰〰〠渠ਰ〰㈰㐸㜳㠠〰〰〠渠ਰ〰㈰㐸㜶ㄠ〰〰〠渠ਰ〰㈰㐸㜸㐠〰〰〠渠ਰ〰㈰㐸㠰㜠〰〰〠渠ਰ〰㈰㐸㠳〠〰〰〠渠ਰ〰㈰㐸㠵㌠〰〰〠渠ਰ〰㈰㐸㠷㘠〰〰〠渠ਰ〰㈰㐸㠹㤠〰〰〠渠ਰ〰㈰㐸㤲㈠〰〰〠渠ਰ〰㈰㐸㤴㔠〰〰〠渠ਰ〰㈰㐸㤶㠠〰〰〠渠ਰ〰㈰㐸㤹ㄠ〰〰〠渠ਰ〰㈰㐹〱㐠〰〰〠渠ਰ〰㈰㐹〳㜠〰〰〠渠ਰ〰㈰㐹〶〠〰〰〠渠ਰ〰㈰㐹㈲ㄠ〰〰〠渠ਰ〰㈰㐹㌸㈠〰〰〠渠ਰ〰㈰㐹㔴㈠〰〰〠渠ਰ〰㈰㐹㜰㌠〰〰〠渠ਰ〰㈰㐹㠶㌠〰〰〠渠ਰ〰㈰㔰〲㐠〰〰〠渠ਰ〰㈰㔰ㄸ㔠〰〰〠渠ਰ〰㈰㔰㌵㠠〰〰〠渠ਰ〰㈰㔰㐳㐠〰〰〠渠ਰ〰㈰㔰㔴㈠〰〰〠渠ਰ〰㈰㔰㘲㌠〰〰〠渠ਰ〰㈰㔰㜳ㄠ〰〰〠渠ਰ〰㈰㔰㠹㈠〰〰〠渠ਰ〰㈰㔱〵㌠〰〰〠渠ਰ〰㈰㔱㈱㐠〰〰〠渠ਰ〰㈰㔱㌷㈠〰〰〠渠ਰ〰㈰㔱㔳㌠〰〰〠渠ਰ〰㈰㔱㘹㌠〰〰〠渠ਰ〰㈰㔱㠵㐠〰〰〠渠ਰ〰㈰㔲〱㔠〰〰〠渠ਰ〰㈰㔲ㄷ㘠〰〰〠渠ਰ〰㈰㔲㌳㜠〰〰〠渠ਰ〰㈰㔲㐹㠠〰〰〠渠ਰ〰㈰㔲㘵㤠〰〰〠渠ਰ〰㈰㔲㠱㤠〰〰〠渠ਰ〰㈰㔲㤸〠〰〰〠渠ਰ〰㈰㔳ㄴㄠ〰〰〠渠ਰ〰㈰㔳㌰㈠〰〰〠渠ਰ〰㈰㔳㐶㈠〰〰〠渠ਰ〰㈰㔳㘲㈠〰〰〠渠ਰ〰㈰㔳㜸㈠〰〰〠渠ਰ〰㈰㔳㤴〠〰〰〠渠ਰ〰㈰㔴〹㤠〰〰〠渠ਰ〰㈰㔴㈵㠠〰〰〠渠ਰ〰㈰㔴㐱㜠〰〰〠渠ਰ〰㈰㔴㔷㘠〰〰〠渠ਰ〰㈰㔴㘵㈠〰〰〠渠ਰ〰㈰㔴㜶〠〰〰〠渠ਰ〰㈰㔴㠴ㄠ〰〰〠渠ਰ〰㈰㔴㤴㤠〰〰〠渠ਰ〰㈰㔵〲ㄠ〰〰〠渠ਰ〰㈰㔵〷〠〰〰〠渠ਰ〰㈰㔵ㄲ㜠〰〰〠渠ਰ〰㈰㔵㈸㠠〰〰〠渠ਰ〰㈰㔵㐴㠠〰〰〠渠ਰ〰㈰㔵㘰㤠〰〰〠渠ਰ〰㈰㔵㜷〠〰〰〠渠ਰ〰㈰㔵㤳〠〰〰〠渠ਰ〰㈰㔶〹ㄠ〰〰〠渠ਰ〰㈰㔶㈵〠〰〰〠渠ਰ〰㈰㔶㐱〠〰〰〠渠ਰ〰㈰㔶㔷ㄠ〰〰〠渠ਰ〰㈰㔶㜳ㄠ〰〰〠渠ਰ〰㈰㔶㠸㠠〰〰〠渠ਰ〰㈰㔷〴㠠〰〰〠渠ਰ〰㈰㔷ㄲ㐠〰〰〠渠ਰ〰㈰㔷㈳㈠〰〰〠渠ਰ〰㈰㔷㌱㌠〰〰〠渠ਰ〰㈰㔷㐲ㄠ〰〰〠渠ਰ〰㈰㔷㐷㠠〰〰〠渠ਰ〰㈰㔷㔹㔠〰〰〠渠ਰ〰㈰㔷㠰ㄠ〰〰〠渠ਰ〰㈰㔷㠹㐠〰〰〠渠ਰ〰㈰㔷㤸㠠〰〰〠渠ਰ〰㈰㔸ㄴ㤠〰〰〠渠ਰ〰㈰㔸㌰㤠〰〰〠渠ਰ〰㈰㔸㐷〠〰〰〠渠ਰ〰㈰㔸㘳〠〰〰〠渠ਰ〰㈰㔸㜸㘠〰〰〠渠ਰ〰㈰㔸㠶㈠〰〰〠渠ਰ〰㈰㔸㤷〠〰〰〠渠ਰ〰㈰㔹〵ㄠ〰〰〠渠ਰ〰㈰㔹ㄵ㤠〰〰〠渠ਰ〰㈰㔹㌱㠠〰〰〠渠ਰ〰㈰㔹㐷㘠〰〰〠渠ਰ〰㈰㔹㘳㘠〰〰〠渠ਰ〰㈰㔹㜹㔠〰〰〠渠ਰ〰㈰㔹㤵㔠〰〰〠渠ਰ〰㈰㘰ㄱ㌠〰〰〠渠ਰ〰㈰㘰㈷ㄠ〰〰〠渠ਰ〰㈰㘰㌴㜠〰〰〠渠ਰ〰㈰㘰㐵㔠〰〰〠渠ਰ〰㈰㘰㔳㘠〰〰〠渠ਰ〰㈰㘰㘴㐠〰〰〠渠ਰ〰㈰㘰㠰㐠〰〰〠渠ਰ〰㈰㘰㤵㠠〰〰〠渠ਰ〰㈰㘱ㄱ㠠〰〰〠渠ਰ〰㈰㘱㈷㠠〰〰〠渠ਰ〰㈰㘱㐳㤠〰〰〠渠ਰ〰㈰㘱㔹㜠〰〰〠渠ਰ〰㈰㘱㜵㜠〰〰〠渠ਰ〰㈰㘱㤱㜠〰〰〠渠ਰ〰㈰㘲〷㜠〰〰〠渠ਰ〰㈰㘲㈳㜠〰〰〠渠ਰ〰㈰㘲㌹㜠〰〰〠渠ਰ〰㈰㘲㔵㐠〰〰〠渠ਰ〰㈰㘲㜱㐠〰〰〠渠ਰ〰㈰㘲㠷㘠〰〰〠渠ਰ〰㈰㘳〳㔠〰〰〠渠ਰ〰㈰㘳ㄹ㔠〰〰〠渠ਰ〰㈰㘳㈷ㄠ〰〰〠渠ਰ〰㈰㘳㌷㤠〰〰〠渠ਰ〰㈰㘳㐶〠〰〰〠渠ਰ〰㈰㘳㔶㠠〰〰〠渠ਰ〰㈰㘳㜲㠠〰〰〠渠ਰ〰㈰㘳㠸㤠〰〰〠渠ਰ〰㈰㘴〴㠠〰〰〠渠ਰ〰㈰㘴㈰㜠〰〰〠渠ਰ〰㈰㘴㈸㌠〰〰〠渠ਰ〰㈰㘴㌹ㄠ〰〰〠渠ਰ〰㈰㘴㐷㈠〰〰〠渠ਰ〰㈰㘴㔸〠〰〰〠渠ਰ〰㈰㘴㜴〠〰〰〠渠ਰ〰㈰㘴㠱㘠〰〰〠渠ਰ〰㈰㘴㤲㐠〰〰〠渠ਰ〰㈰㘵〰㔠〰〰〠渠ਰ〰㈰㘵ㄱ㌠〰〰〠渠ਰ〰㈰㘵㈷㌠〰〰〠渠ਰ〰㈰㘵㐳㌠〰〰〠渠ਰ〰㈰㘵㔹〠〰〰〠渠ਰ〰㈰㘵㜴㤠〰〰〠渠ਰ〰㈰㘵㤰㜠〰〰〠渠ਰ〰㈰㘶〶㠠〰〰〠渠ਰ〰㈰㘶ㄴ㐠〰〰〠渠ਰ〰㈰㘶㈵㈠〰〰〠渠ਰ〰㈰㘶㌳㌠〰〰〠渠ਰ〰㈰㘶㐴ㄠ〰〰〠渠ਰ〰㈰㘶㘰ㄠ〰〰〠渠ਰ〰㈰㘶㜶ㄠ〰〰〠渠ਰ〰㈰㘶㤲㈠〰〰〠渠ਰ〰㈰㘷〸㌠〰〰〠渠ਰ〰㈰㘷㈴㔠〰〰〠渠ਰ〰㈰㘷㐰㘠〰〰〠渠ਰ〰㈰㘷㔶㘠〰〰〠渠ਰ〰㈰㘷㜲㘠〰〰〠渠ਰ〰㈰㘷㠸㜠〰〰〠渠ਰ〰㈰㘸〴㜠〰〰〠渠ਰ〰㈰㘸㈰㠠〰〰〠渠ਰ〰㈰㘸㌶㤠〰〰〠渠ਰ〰㈰㘸㔳〠〰〰〠渠ਰ〰㈰㘸㘹〠〰〰〠渠ਰ〰㈰㘸㠵ㄠ〰〰〠渠ਰ〰㈰㘹〱〠〰〰〠渠ਰ〰㈰㘹ㄶ㤠〰〰〠渠ਰ〰㈰㘹㌳〠〰〰〠渠ਰ〰㈰㘹㐹ㄠ〰〰〠渠ਰ〰㈰㘹㘵㈠〰〰〠渠ਰ〰㈰㘹㠱㌠〰〰〠渠ਰ〰㈰㘹㤷ㄠ〰〰〠渠ਰ〰㈰㜰ㄳㄠ〰〰〠渠ਰ〰㈰㜰㈰㜠〰〰〠渠ਰ〰㈰㜰㌱㔠〰〰〠渠ਰ〰㈰㜰㌹㘠〰〰〠渠ਰ〰㈰㜰㔰㐠〰〰〠渠ਰ〰㈰㜰㘶㔠〰〰〠渠ਰ〰㈰㜰㠲㔠〰〰〠渠ਰ〰㈰㜰㤸㐠〰〰〠渠ਰ〰㈰㜱ㄴ㈠〰〰〠渠ਰ〰㈰㜱㈱㠠〰〰〠渠ਰ〰㈰㜱㌲㘠〰〰〠渠ਰ〰㈰㜱㐰㜠〰〰〠渠ਰ〰㈰㜱㔱㔠〰〰〠渠ਰ〰㈰㜱㜰㜠〰〰〠渠ਰ〰㈰㜱㠹㜠〰〰〠渠ਰ〰㈰㜲〸㜠〰〰〠渠ਰ〰㈰㜲ㄶ㌠〰〰〠渠ਰ〰㈰㜲㈷ㄠ〰〰〠渠ਰ〰㈰㜲㌵㈠〰〰〠渠ਰ〰㈰㜲㐶〠〰〰〠渠ਰ〰㈰㜲㔳㘠〰〰〠渠ਰ〰㈰㜲㘴㐠〰〰〠渠ਰ〰㈰㜲㜲㔠〰〰〠渠ਰ〰㈰㜲㠳㌠〰〰〠渠ਰ〰㈰㜲㤹㌠〰〰〠渠ਰ〰㈰㜳ㄵ㈠〰〰〠渠ਰ〰㈰㜳㌱〠〰〰〠渠ਰ〰㈰㜳㐷〠〰〰〠渠ਰ〰㈰㜳㘳ㄠ〰〰〠渠ਰ〰㈰㜳㜸㤠〰〰〠渠ਰ〰㈰㜳㤴㠠〰〰〠渠ਰ〰㈰㜴㄰㤠〰〰〠渠ਰ〰㈰㜴㈶㠠〰〰〠渠ਰ〰㈰㜴㐲㜠〰〰〠渠ਰ〰㈰㜴㔰㌠〰〰〠渠ਰ〰㈰㜴㘱ㄠ〰〰〠渠ਰ〰㈰㜴㘹㈠〰〰〠渠ਰ〰㈰㜴㠰〠〰〰〠渠ਰ〰㈰㜴㤶ㄠ〰〰〠渠ਰ〰㈰㜵ㄲㄠ〰〰〠渠ਰ〰㈰㜵㈸㌠〰〰〠渠ਰ〰㈰㜵㌵㤠〰〰〠渠ਰ〰㈰㜵㐶㜠〰〰〠渠ਰ〰㈰㜵㔴㠠〰〰〠渠ਰ〰㈰㜵㘵㘠〰〰〠渠ਰ〰㈰㜵㠳㤠〰〰〠渠ਰ〰㈰㜵㤹㤠〰〰〠渠ਰ〰㈰㜶ㄶ〠〰〰〠渠ਰ〰㈰㜶㌲ㄠ〰〰〠渠ਰ〰㈰㜶㐸ㄠ〰〰〠渠ਰ〰㈰㜶㘴㈠〰〰〠渠ਰ〰㈰㜶㠰ㄠ〰〰〠渠ਰ〰㈰㜶㤶〠〰〰〠渠ਰ〰㈰㜷ㄴ㌠〰〰〠渠ਰ〰㈰㜷㈱㤠〰〰〠渠ਰ〰㈰㜷㌲㜠〰〰〠渠ਰ〰㈰㜷㐰㠠〰〰〠渠ਰ〰㈰㜷㔱㘠〰〰〠渠ਰ〰㈰㜷㘷㘠〰〰〠渠ਰ〰㈰㜷㜵㈠〰〰〠渠ਰ〰㈰㜷㠶〠〰〰〠渠ਰ〰㈰㜷㤴ㄠ〰〰〠渠ਰ〰㈰㜸〴㤠〰〰〠渠ਰ〰㈰㜸ㄴ㘠〰〰〠渠ਰ〰㈰㜸㈴〠〰〰〠渠ਰ〰㈰㜸㌱㘠〰〰〠渠ਰ〰㈰㜸㐲㐠〰〰〠渠ਰ〰㈰㜸㔰㔠〰〰〠渠ਰ〰㈰㜸㘱㌠〰〰〠渠ਰ〰㈰㜸㜷㐠〰〰〠渠ਰ〰㈰㜸㠵〠〰〰〠渠ਰ〰㈰㜸㤵㠠〰〰〠渠ਰ〰㈰㜹〳㤠〰〰〠渠ਰ〰㈰㜹ㄴ㜠〰〰〠渠ਰ〰㈰㜹㌰㔠〰〰〠渠ਰ〰㈰㜹㌸ㄠ〰〰〠渠ਰ〰㈰㜹㐸㤠〰〰〠渠ਰ〰㈰㜹㔷〠〰〰〠渠ਰ〰㈰㜹㘷㠠〰〰〠渠ਰ〰㈰㜹㠳㘠〰〰〠渠ਰ〰㈰㜹㤱㈠〰〰〠渠ਰ〰㈰㠰〲〠〰〰〠渠ਰ〰㈰㠰㄰ㄠ〰〰〠渠ਰ〰㈰㐷㠶㤠〰〰〠渠ਰ〰㈰㐸ㄵ㠠〰〰〠渠ਰ〰㈰㐸㌵㤠〰〰〠渠ਰ〰㈰㠰㈰㤠〰〰〠渠ੴ牡楬敲਼㰯卩穥‱㌹㈾㸊獴慲瑸牥昊㈲㈊┥䕏䘊

