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Abstract Mastering navigation in environments with limited visibility is crucial for survival. While the hippocampus
has been associated with goal-oriented navigation, its specific role in real-world behaviour, particularly in scenarios
with partial observability, remains elusive. To investigate this, we combined deep reinforcement learning (RL) mod-
elling with behavioural and neural data analysis. First, we trained RL agents to perform reward-based navigational
tasks in partially observable environments. We show that agents equipped with recurrent hippocampal circuitry, as
opposed to a purely feedforward network, successfully learned the tasks, resembling animal behaviour. By employing
neural dimensionality reduction, our models predicted reward, strategy and temporal representations, which we vali-
dated using large-scale hippocampal neuronal recordings. Moreover, hippocampal RL agents predicted state-specific
trajectories and action certainty, which mirror empirical findings. In contrast, agents trained in fully observable en-
vironments failed to capture experimental data, suggesting that partial observability is implicit in goal-driven tasks.
Finally, we show that hippocampal-like RL agents demonstrated improved generalisation across novel task condi-
tions. In summary, our findings suggest a key role of hippocampal networks in facilitating learning in naturalistic
environments.

Introduction
As we navigate new environments, we must learn to integrate incomplete sensory information towards desired goals.
How biological neural networks perform this feat is not fully understood.

The hippocampus is classically associated with building a cognitive map of the environment and the storage of
episodic memories [1-3]. However, growing evidence suggests that the hippocampus also supports goal-driven be-
haviour [4-8]. For example, Wikenheiser and Redish [4] showed that the hippocampus is indeed involved in planning
routes towards desired goals. Moreover, their work suggests that hippocampal sequence events, known as "replay",
serve as a mechanism for goal-directed navigation, facilitating memory-based trajectory planning and guiding subse-
quent navigational behaviour. Other studies have shown that the hippocampus, and the hippocampal CA3 region in
particular, is involved in maintaining information in working memory that is needed during navigational tasks when
sensory cues are no longer present [9-11]. Given that in most naturalistic conditions animals do not have contin-
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uous access to the full environment, we postulate that the hippocampus may have evolved to support goal-driven
navigation in environments in which sensory information is not always present.

The hippocampus has been traditionally conceptualised using Hopfield neural networks, known for their capacity
for autoassociative memory storage [12, 13]. More recent studies have demonstrated that recurrent neural network
models of the hippocampus, trained for navigation tasks, exhibit specific cell types tuned to spatial information [14-
17], including the commonly observed place cells and grid cells [18, 19]. Furthermore, some of these models have also
considered the role of hippocampal networks in reward-based navigation tasks [6, 7, 20]. However, how hippocampal
networks contribute to navigating goal-oriented environments under realistic conditions and what are its implications
for our understanding of animal behaviour and the underlying neural substrates has remained unclear.

Here, we show that the hippocampal circuitry is well placed to deal with environments with realistic conditions,
such as limited visibility and cue uncertainty. To that end, we combine behavioural and neural data analysis together
with deep reinforcement learning (RL) modelling on similar task setups. Both animals and agents were trained to per-
form ego-allocentric strategies on a T-maze. Our models consist of a neural network with three-layered hippocampal-
like structure trained in a reinforcement learning setting. By contrasting experimental observations with the model
we show that hippocampal networks trained in partial, but not fully observable environments, provide a good match
of neuronal and behavioural observations. Using task-relevant dimensionality reduction we show that hippocam-
pal neurons encode decision, strategy and temporal population activity that can only be explained by a model with
CA3-like recurrence. Moreover, our modelling shows that CA3 recurrence also captures key behavioural features
commonly observed in animals and humans, and that it generalises to different task conditions. This is in contrast
with non-recurrent models, which failed to capture experimental observations. In addition, our work shows that
agents trained in fully observable environments also do not capture experimental observations, thus suggesting the
need to reevaluate previous experimental findings that may have implicitly assumed full observability.

Our work suggests that recurrent hippocampal networks underlie the ability of animals to learn to navigate envi-
ronments with real-world conditions.

Results

We were inspired by a behavioural setup in which animals were trained on a Plus-maze (Fig. 1A) to perform a goal-
driven navigational task while following two strategies, egocentric and allocentric [5]. In the egocentric (self-centred)
rule, the reward was always positioned in the same location with respect to the animal, i.e. regardless of the north or
south starting location. For the allocentric (world-centred) rule, the reward is at the same location irrespective of the
animal’s starting position, and the animal needs to turn left or right depending on whether they start from a north or
south position. Training was conducted in a block-wise fashion with interleaved blocks of allocentric and egocentric
tasks, each one with sub-blocks corresponding to different starting locations (i.e., north versus south). Despite the
relatively complex nature of these tasks with multiple rules, rats achieve a good performance (Fig. 1B).

Next, we aimed to study the underlying architectural principles that enable such goal-driven navigation. To this
end, we contrast animal behaviour and (hippocampal) neural data with artificial reinforcement learning (RL) agents
with a hippocampal-like architecture. To mimic the experimental setup described above, we simulated a 2D minigrid
environment [21], which consists of a starting state and two terminal states: rewarded and non-rewarded (Fig. 1C).
To capture both north and south starting states, we use different sensory cues (Fig. 1D). Together, this task setup
results in four sub-tasks (or rules): allocentric north and south, and egocentric north and south (illustrated in Fig. 1E).

Agents with CA3-like recurrence learn ego-allocentric goal-driven tasks
Our hippocampal RL models are based on standard deep reinforcement learning models, specifically, Deep Q-networks
(DQN) [22] as outlined in the Methods section. These models feature a three-layer hippocampal-like structure: the in-
put layer emulates entorhinal input to the Dentate Gyrus (DG), the first layer represents CA3, the second CA1, and the
output layer encodes action-state values, denoted as Q(a, s) (Fig. 2A,B). The entorhinal cortex (EC) is known to supply
the hippocampus with a spatial map of the environment [19], which we approximate using the 2D top-down spatial
map from the minigrid environment within our model (Fig. 1C). Additionally, the output layer captures state-action Q
values, serving as an abstraction of hippocampal-to-striatum functional connectivity [23].

Motivated by the existence of recurrent connectivity in CA3 [24] and in line with previous work in which brain
areas are modelled as gated recurrent neural networks [25, 26] we model CA3 using a Gated Recurrent Unit (GRU)
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Figure 1. Ego-allocentric task setup in animals and reinforcement learning agents. (A) Top, experimental setup in which
rats were placed in a plus-shaped maze [5]. The task consists of reaching the reward at the end of one of two arms following
either egocentric (pink) or allocentric (purple) rules. Bottom: both animal and artificial agents were trained by interleaving blocks
of allocentric and egocentric (see main text). (B) Animal performance on allocentric and egocentric tasks following the setup shown
in (A) across 5 animals. (C) The experimental setup in (A) was simulated using a grid world environment. This setup was then used
to train reinforcement learning agents in ego- and allocentric tasks. Environment observability was modelled by defining a visible
range around the animal (light gray box; see main text for details), which is limited to the current cell alone when the agent enters
the terminal arms. A total of four cues (cf. (D)) are placed in the environment, two for north starting state and two for the south
starting state. Trophy and red cross represent rewarding and non-rewarding terminal states, respectively (not made visible to the
agent). (D,E) Schematic showing the cues used (D) and the four possible allocentric and egocentric rules (E). Dotted line represents
the ideal path towards the reward starting north/south. Cues are presented near the starting positions where key/box refer to the
north starting point and lava/ball to the south one. In the allocentric task, the reward is always on the same side regardless of the
starting position. In egocentric task, the reward is always on the right side of the starting position.

network [27], which we denote as hippocampal deep recurrent Q-Network (hcDRQN). In addition, we contrast this
network with three other networks: a purely feedforward hippocampal Deep Q-Network (hcDQN) and two hcDQNs
augmented with artificial continual learning algorithms. We considered two continual learning models to contrast
our results with modern deep learning solutions to similar multi-task learning problems. In particular, we included
two of the most popular methods: Elastic Weight Consolidation (ML-EWC; [28]) and Synaptic Intelligence (ML-SI; [29]).
Motivated by the lack of evidence suggesting that replay of previous memories from the hippocampus to itself, we did
not use the experience replay buffer in our model. One output Q-value head is not sufficient to solve all the tasks we
consider (see Fig. STA), even in the presence of a replay buffer. Therefore, to ensure that the network could solve the
two tasks (ego and allocentric) we use task-specific heads at the output (see Methods), which in biological networks
could be implemented through task-switching contextual signals [30].

First, we compare the hippocampal deep reinforcement learning models (Fig. 2B) with animals by contrasting
their task performance (Fig. 1B). We trained the models using the grid environment described above and following a
similar training procedure (trial-by-trial) used to train animals with blocks of allocentric trials alternated with blocks of
egocentric trials (Fig. 1A, bottom). Within each block we alternate the two starting (north/south) positions. Our results
show that the hippocampal-like network, hcDRQN, can successfully learn multiple tasks (Fig. 2D). The hcDRQN model
not only yields the best performance on both tasks but is also the only model that can learn allocentric tasks while
other models perform around chance level. This is because models that fail to truly learn the tasks will default to
memorising to always turn right at the decision point as this behaviour will work 3 of the 4 sub-tasks (allo-south,
ego-north and ego-south; see more details in Fig. 4). This is in line with the performance of the animals, showing
that animals can learn both strategies (Fig. 1B). In addition, our results show that a non-plastic recurrent CA3 is not
sufficient to learn all tasks (fixed hcDRQN model). Studying how the performance evolves over trials within each
allocentric and egocentric block, shows that allocentric performance drops for hcDQN after each switch between

3 of 21


https://doi.org/10.1101/2023.11.09.565503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.565503; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

A D Allocentric Egocentric Overall (Allo + Ego)
Hippocampal trisynaptic circuit ek ***:*** s o
Sokokok
— Fokokok ns ook
e\i 100 HokokoK ns ek
9 100 - - 100
)
5 80 .
E 80 o 80 I
5 I [ ¢
60 60 60
9 T .
T
40 I I ’1 40 40
S NI @ S NN ¢ S S & 5 ¢
OQ_O o PRy JS\ Q‘2_0 & S ¢ f\ Qq_o e S ¢ Vé\
‘\L °$ AN @\ ‘(‘(l 0$ AN e\ &\(4 0$ AN ex
S S S
S 9 9
< S N
B E Allocentric Egocentric Overall (Allo + Ego)
. 100 100 100
DG = state 5 o./ —> : —> Q(s,a) 2 ,/—/——_
= 98 4
hcDRQN . o 80 4 901
v
CAl 5 v ol t v
g 60 1 801
g 94 4 ¥
° B ] v
701
° ° & 40 924 —— hcDRQN
DG=state — |1l = || —» Qsa) hcDQN
N N ; ; . ; 90 1~ . , . . 60 1 . ; , ;
50 100 150 200 0 50 100 150 200 0 50 100 150 200
Trial
CA3 CA1 ras
c F Allocentric Egocentric 100 Overall (Allo + Ego)
1004 100.0 -
— 901 hcDQN
S
B —+— hcDRQN 99,0 90 |
3 sod ! } } y
c
©
£ ;o]
L 98.01 801
T
a g0
50 - . . . 97.0 - . . . 70 y y ~
Vi . 3x3 5x5 7x7  Full view 3x3 5x5 7x7  Full view 3x3 5x5 7x7  Full view
lew size

Degree of observability

Figure 2. Reinforcement learning agents with CA3 recurrence jointly learn ego and allocentric tasks. (A) Classical hippocam-
pal trisynaptic circuitry: entorhinal cortex (EC), dentate gyrus (DG), and hippocampus CA3 and CA1 layers. (B) Schematics of re-
inforcement learning (RL) agents with hippocampal-like architecture modelled as deep-Q-networks (DQN) used to learn the goal-
driven tasks described in Fig. 1. In our models the DG receives a simplified (partially observable) map of the environment which is
processed by the CA3-CA1 pathway and then CA1 projects to the reward system to compute the Q-value of state-action pairs, Q(s,a).
We consider two main models: (i) with CA3 recurrence (hcDRQN, top) or (ii) with CA3 as a feedforward network (hcDQN, bottom).
Both models consist of two hidden layers (CA3 and CA1). (C) Minigrid environment showing 3x3 and full view size (orange outline).
(D) Performance of all models for allocentric (left), egocentric (middle) or both (right) tasks. For comparison with modern machine
learning solutions to multi-task learning we also consider two popular algorithms: elastic weight consolidation (ML-EWC) and synap-
tic intelligence (ML-SI). (E) Learning curves for both hcDQN and hcDRQN, showing that the former fails to learn allocentric tasks.
Arrows represent switching points. (F) Task performance of RL agents as environment observability is progressively incremented.
Both models achieve the same performance under full observability whereas only the hcDRQN agent can learn tasks under non-full
observability. Error bars represent standard error of the mean over 5 different initial conditions.

north vs. south scenarios (Fig. 2E). Although we report only hcDQN compared to hcDRQN, the other two models
(ML-SI and ML-EWC) present the same behaviours as hcDQN and cannot solve allocentric tasks (see Fig. S1B).

CA3 recurrence is needed in partially observable environments

Next, we aimed to show that CA3 recurrence is indeed required for partial, but not full environmental observability.
To demonstrate this, we tested hcDRQN and hcDQN in environments with different degrees of visibility (3x3, 5x5,
7x7, and full view; Fig. 2C). We expected a model without CA3 recurrence (i.e. DQN) to be able to solve all tasks
in environments with full observability (i.e. all information continuously available). Our results show that the non-
recurrent model, hcDQN, only succeeds to learn both allo and egocentric tasks when the full view is provided (Fig. 2F).
We expected that models learn to solve the task in these conditions by continuously rely on having access to the
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task-specific cues. To test this continuous reliance on sensory cues we removed the cues after the decision point
(Fig. S2). Our results show that both models completely fail to complete the tasks.

Given that in most realistic environments animals are unlikely to have continuous access to the full environment
our results suggest that CA3 recurrence plays an important role in supporting goal-driven behaviours under natural-
istic conditions.

Task-relevant neuronal dynamics in agents and animals
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Figure 3. Strategy, temporal, and outcome neural dynamics in RL agents and animals. (A) Demixed principal components
corresponding to task strategy (allocentric and egocentric for both north and south start locations), time and decision (correct
and incorrect). hcDRQN components show separate task strategies whereas hcDQN mixes task strategies. (B) Mean squared error
between normalised model and animal data demixed components. We also contrast agents trained with full and partial observability
(cf. Fig. S3). (C) Percentage of explained variance for Decision, Strategy, Interaction and Time components (cf. full components in
Fig. S4).

To contrast the neural dynamics predicted by the hippocampal RL agents with experimental observations recorded
from awake performing animals we performed dimensionality reduction on CA1 recordings. In particular, we used
demixed PCA (dPCA), which enabled us to extract behaviourally-relevant dimensions.

We extracted task-specific neural encodings from the agent throughout learning. The neural activity of the mod-
elled CA1 layer of the agents was stored throughout learning and used to perform dPCA (see Methods for details).
This analysis revealed three task-encoding components of interest in the hcDRQN agent (Fig. 3A). First, we find a clear
separation at the population level between allo and egocentric tasks for hcDRQN, but not hcDQN (Fig. 3 left). The
fact that hcDQN shows a mixed strategy component is consistent with the fact that it cannot learn both allo and ego-
centric strategies. Next, we find that both hcDRQN and hcDQN exhibit a temporally decaying population dynamics
(Fig. 3A middle). Finally, we observe decision- or outcome-specific components predicting that CA1 encodes reward
prediction errors well before reaching the decision point.

Next, we tested the predictions generated by our RL agents using tetrode recordings obtained from 612 CA1
neurons. The results of the dPCA show that the data qualitatively validate the results predicted by the hcDRQN
agent for the strategy-specific components, but not the hcDQN agent (Fig. 3A bottom). We also observe stronger
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neuronal activations in the allocenctric tasks compared to the egocentric tasks, in line with experimental observations
(Fig. S5). To better quantify model-data match we used a normalised mean-squared error metric (see Methods).
This metric shows that, indeed, hcDRQN better captures experimentally observed strategy neural dynamics (Fig. 3B
left). For the time-specific components we observe a decaying component as predicted by the RL agents. Although
both the hcDRQN and hcDQN look qualitatively very similar, the error metric shows that hcDRQN provides a better
match with the data (Fig. 3B middle). Finally, the decision component also reveals a separation between correct and
incorrect trials as predicted by the models, but in contrast to the models this separation remains after the reward
point. However, we should point out that reward point in experimental data simply means that a sensor close to the
reward was triggered, thus there is likely some delay between triggering the sensor and actually perceiving reward.
As before we used the model-data error metric on the decision components (up to the reward point) and found no
differences between the hcDQN and hcDRQN (Fig. 3B right).

Models trained under full observability conditions do not appear to provide a good match with experimental ob-
servations. To further support this point, we compared model neural dynamics in agents trained with full continuous
access to the environment (Fig. S3). Our error metric shows that agents trained with full observability provide a poor
match to neural dynamics when compared to agents trained under partial observability (Fig. 3B). These results pro-
vide further support for CA3 recurrence as being important to navigate environments under naturalistic conditions.

Finally, we contrast the degree of explained variance across models and data. hcDRQN captures explained vari-
ance across behavioural variables in a way that more closely matches awake tetrode recordings (Fig. 3C). Of particular
interest is the fact that hcDQN relies more on mixed (or interaction) components (37%) compared to hcDQN (13%)
and animal (9%), which is in line with its inability to fully solve all the tasks.

In summary, our neural dynamics analysis suggests that the hippocampus is indeed involved in task strategy,
temporal integration and reward-based decision, in line with the predictions made by hcDRQN RL agents.

Hippocampal RL agents with recurrence capture animal behaviour
In order to contrast the behaviour of RL agents with that of animals we studied the trajectories taken during the tasks
after learning. We studied the trajectories made by both RL agents and animals (Fig. 4A). To enable a comparison with
agent trajectories we discretised animal trajectories into a 9x9 grid. The behavioural trajectories show that hcDRQN
better captures animal behaviour in terms of time spent at the starting point, decision and the terminal state (Fig. 4A).
On the other hand, the hcDQN agent fails to discriminate between the two allocentric tasks and instead learns only
one policy (allocentric south). Next, to quantify the time spent on each state we calculated the ratio between individual
states and the final state. This state-to-end ratio shows that hcDRQN better approximates animal behaviour also at
a finer level and for allocentric strategies in particular (Fig. 4B,C). Next, to study whether the better fit of hcDRQN
to animal behaviour is specific or general we made this analysis across all possible subtasks (Fig. 4D). Our results
show that hcDRQN clearly outperforms hcDQN, except for a minor effect on the allocentric north when compared
to allocentric south. When analysing RL agents trained with full observability we observed more mixed outcomes,
suggesting that also for behavioural data partial observability better aligns with our results above (Fig. S6, S7).
Overall, hcDRQN provides a better match to animal behaviour, further supporting an important role of CA3 recur-
rence in the hippocampal circuitry.

Agent’s behaviour predicts state-dependent action values

Because the recurrent RL agent is able to solve both ego and allocentric tasks we expected this to result in state-action
value predictions that are generally more uncertain when compared to the non-recurrent model. To examine this in
more detail we analysed the action-values for each state. This highlights the sequence of actions that makes hcDQN
take the wrong arm and the correct policy learnt by hcDRQN for both allocentric tasks. Interestingly, on average,
hcDRQN has higher Q-values than hcDQN, which reflects the fact that it learns all tasks (Fig. 5B). Next, we studied
action selection certainty by calculating the Q-value variance across all possible Q-values for a given state (Fig. 5B).
This analysis shows that hcDRQN starts with lower action certainty but that it gradually increases over states until
the terminal state. This reflects the effect of appropriate cue integration towards a decision. In contrast, hcDQN
becomes less certain after the initial state. Interestingly, the difference in terms of certainty between hcDRQN and
hcDQN becomes even stronger when agents are trained under full observability (Fig. S8). The fact that the model that
can solve all tasks (hcDRQN) is initially less certain and becomes more certain about its choices is in line with classical
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Figure 4. Hippocampal RL agents with recurrence capture animal behaviour. (A) Time spent on each maze state across the
four strategies for: rats, hcDRQN and hcDQN. Animals spend more time at the decision and rewarded terminal points. hcDRQN
better captures animal behaviour and hcDQN fails to solve allocentric north task (cf. Fig. 2). (B) Time spent on each state normalised
to the time spent on the final (terminal) state in models and animal. (C) Error between a given model and animal behavioural data.
(D) Error between a given model and animal behavioural data across all possible task-pairs. hcDRQN shows overall closer match to
animal behaviour when compared to hcDQN. Error bars represent standard error of the mean over 5 different initial conditions.

animal and human behavioural observations [31]. In the decision making literature expert subjects are often less
certain then naive subjects, which is related to the Dunning-Kruger effect.

Recurrence enables generalisation to stochastic environments

Until now we have trained RL agents in environments in which cues are always present. However, recurrent neural
networks are well placed to deal with stochastic environments by integrating evidence over time [32, 33]. To test the
effect of stochasticity on the different agents we created environments in which cues randomly appear and disappear
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Figure 5. Agent’'s behaviour predicts state-dependent action values. (A) Schematic illustrating state-action policy for hcDRQN
and hcDQN for allocentric north subtask. It highlights that hcDRQN solves the task and that it is more uncertain about which action
(i.e. different actions have similar values) until the decision point. Each state is represented by 3 coloured arrows corresponding to
the state Q-values where darker colour means higher value. (B) Top: The state-value certainty given by the variance over Q-values for
each state shows that hcDRQN increases its certainty as it gets closer to the decision state and terminal state (see arrows). Bottom:
Average state-values over environmental states. Error bars represent standard error of the mean over 5 different initial conditions.

60% Cue probability 10 50% Cue probability 10 40% Cue probability 10 30% Cue probability 10 20% Cue probability 1o 10% Cue probability 10

o
o

g 0.5 - 0.5 0.5 -0.5 0.5
5
00 § [ | -0.0 | -0.0 | -0.0 | H oo | H oo
g
[ -059 [ -05 [ ~05 [ -05 [ -05 [ -05
-1.0 -1.0 -1.0 -1.0 -1.0 -1.0
Overall Allocentric Egocentric
100 100 100
= 80 S 80 \ g 80
8 g g
5 60 G 60 g 60
£ —— hcDRQN £ £
£ 40 hcDQN £ a0 2 40
& || Chance & &
20— r r r r T 20— r r r r T 20— r r r - T
60 50 40 30 20 10 60 50 40 30 20 10 60 50 40 30 20 10
Cue probability (%) Cue probability (%) Cue probability (%)
Overall 60% Cue probability 40% Cue probability 30% Cue probability 10% Cue probability
100 1.0 1.0 1.0 1.0
S g0 ~05 T 0.5 -05 - 0.5
v . 2
g — 5
& 60 o 00 § 0.0 -0.0 -0.0
£ —— Trained with prob. cue . S . : :
S —— Trained without prob. cue _05° _ _ _
£ 40 0.5 0.5 0.5 0.5
g | Chance n [ < u [ L [ [
20— T . . . . -1.0 -1.0 -1.0 -1.0
60 50 40 30 20 10

Cue probability (%)

Figure 6. Recurrence enables better generalisability to stochastic environments. (A) Change in state-occupancy (with proba-
bilistic cues - without probabilistic cues) for the hcDRQN agent across different degrees of cue removal. (B) hcDRQN outperforms
hcDQN across different degrees of probabilistic cues. (C) Performance of hcDRQN agents trained with probabilistic cues compared
to without. (D) Change in state-occupancy of hcDRQN agents trained with probabilistic cues.

(Fig. 6). We study two scenarios: (i) incremental random cue removal during inference (i.e. after learning) and (ii)
effect random cue removal on learning. During inference, the performance of hcDRQN gradually decreases as the
likelihood of cue removal increases. In contrast, for hcDQN, which lacks recurrence, its performance decreases as
soon as the cues are removed, regardless of the degree of removal. This highlights the lack of evidence integration of
hcDQN, while hcDRQN can handle a high degree of removal 90% while maintaining performance above 80%. When
comparing the hcDRQN trajectories to the model without cue removal, the agent switches to the default 'turn left’
policy when little or no cues are present. In addition, the model spends more time in the start and middle corridors
because it must observe cues before deciding which arm to turn onto. Next, we tested the idea that if the agent was
trained in a stochastic environment, this should result in the model being more robust to cue removal. Indeed, when
trained under these conditions the model performs consistently better than a model trained without random cue
removal (10% improvement). When analysing trajectory behaviour, our model predicts that agents spend more time
on the starting location to integrate sensory evidence for longer before committing to a decision.
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Taken together, these results suggest that CA3 recurrence also plays an important role in learning to navigating
stochastic environments.

hcDRQN generalises to different task conditions
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Figure 7. hcDRQN shows better generalisation to maze length, cue removal, distractors and sensory noise. (A) T-maze setup
for increased length of the middle corridor, cue removal and random noise. (B) Performance decrease over gradual increase of the
maze length shows that hcDRQN can handle middle maze length being 32 steps. Black arrows on the X-axis represent maze corridor
length of 4 steps utilised during training. (C,D) Animal and model performance when cues are removed from the environment. Both
hcDRQN (light green) and animal (blue) allocentric navigation are highly dependent on cues while egocentric is not affected by cue
removal. On the other hand, hcDQN fails to solve both allocentric tasks. (E) When adding a distractor cue, hcDQN drops to chance
level while hcDRQN can still solve most of the tasks. (F) When adding white Gaussian noise to the cues hcDRQN is more stable and
robust when compared to hcDQN. Error bars represent standard error of the mean over 5 different initial conditions.

Finally, we tested whether the RL agents considered here can generalise to different task conditions not experi-
enced during training (Fig. 7A). First, we tested different lengths of the initial maze corridor (Fig. 7B). This allowed
us to test whether the RL agents memorise the tasks or learn to integrate the cue information and maintain it in
memory to trigger the right action at the decision point. Our results show that hcDRQN performance is very robust
across a large range of lengths, whereas hcDQN defaults to chance level. This demonstrates that indeed the hcDRQN
has successfully learned to integrate cue information, which is then maintained in its recurrent memory for action
selection when required.

Next, we tested the models on the same environment it was trained on, but removing a set of cues at a time.
Note that this is complete removal of cues, rather than stochastic cues as in the previous section. When retaining all
cues the performance obtained by all models is in line with the training performance, with hcDRQN being the best
model and the only one doing better than chance in the allocentric tasks (Fig. 7D, all cues). This demonstrates that
the models were able to remember all the tasks on which they were trained. To test for generalisation, we gradually
reduced the number of cues available in the environment. Our results show that hcDRQN is the only model that can
handle half of the cues being removed. Interestingly, cue removal is more detrimental to allocentric navigation than
egocentric navigation. This result is in line with experimental observations, in which allocentric but not egocentric
task performance is impaired upon cue removal [34](Fig. 7C). In contrast, models trained with full observability cannot
generalise, as they rely on the presence of specific cues (Fig. S9).

Finally, we repeated the original task on the T-maze adding a distractor cue and adding (Gaussian) white noise
to the cues. When a distractor cue is introduced, hcDQN's performance drops to chance level, whereas hcDRQN
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achieves a success rate of approximately 70% (Fig. 7E). To test the robustness of both models to noise we tested
a range of noise levels (Fig. 7F). The hcDRQN model can handle a relatively large degree of cue noise without any
changes in the overall performance, while hcDQN is more unstable and shows a faster decrease in performance as
the noise is increased.

Taken together, our generalisation tests demonstrate that hcDRQN generalises better to different and realistic
task conditions, in line with animal behaviour.

Discussion

Naturalistic behaviour almost always relies on navigating environments with limited visibility. Here, we have shown
that recurrent hippocampal networks play a pivotal role in such environmental setups. Our investigation began by
training RL agents to perform ego-allocentric tasks within partially observable environments. Remarkably, agents
equipped with recurrent hippocampal circuitry successfully mastered these tasks, mirroring real-world animal be-
haviour. Additionally, our models predicted reward, strategy, and temporal neuronal representations, which we
validated through extensive hippocampal neuronal recordings. Furthermore, hippocampal-like RL agents predicted
state-specific trajectories and action uncertainty, closely resembling experimental observations. In stark contrast,
agents trained in fully observable environments failed to replicate the experimental data. Most importantly, these
hippocampal-like RL agents demonstrated enhanced generalisation capabilities across novel task conditions.

Motivated by the challenging conditions that animals often face in the wild, we have focused on a task setup with
partial observability. This is also supported by the lack of visual acuity in rodents [35, 36]. In addition, when our models
were trained with full observability, they could not generalise (Fig. S9), which further suggests that partial observability
provides a better model of animal behaviour. hcDRQN performs particularly well in partial environments, in line with
previous research in artificial neural networks [37]. Partially observable environments represent a more real-world
setup, which suggests that hippocampal CA3 region may have evolved to support the ability to navigate partially
observable environments.

Classical hippocampal models suggest that CA3 recurrency enables pattern completion [38, 39], while more re-
cent computational models propose that the hippocampus creates a predictive map of the environment through
successor representations (SR) [40]. Our research aligns with the SR view and reveals task-specific reward prediction
traces (see Fig. 3). Furthermore, our findings underscore the essential role of CA3 in constructing the hippocampal
predictive map, consistent with the predictive view of hippocampal function [40]. In another set of studies recurrent
neural networks (RNNs) have been trained to support spatial navigation. They have shown that RNNs develop spatial
receptive fields similar to experimental findings [14-16]. For instance, Cueva and Wei [15] demonstrated grid-like
spatial response patterns, border cells, and band-like cells in trained RNNs. Similarly, Banino et al. [14] revealed grid
cell-like representations when training deep recurrent reinforcement learning networks for 3D navigation. Uria et al.
[16] trained a similar system, yielding neurons with spatial receptive fields akin to those in Banino et al. [14], Cueva
and Wei [15]. While these studies emphasize the importance of recurrent connectivity in hippocampal networks, they
do not assess their function in partial observability and its relationship to experimental observations, which is a focus
of our work.

Our results show that a model with a recurrent layer (hcDRQN) without experience replay outperforms alterna-
tive methods that were specifically designed for continual learning (even when a multi-head setting is considered),
consistent with recent machine learning findings [41]. Given that hcDRQN is a systems-level approximation of the
hippocampal system, it suggests that the brain relies on a combination of recurrent neural networks to continually
adapt to new situations, at least in navigational tasks. It remains to be tested how general these principles are across
other areas of the brain. Our models do not use a memory buffer that retains all previous experiences. However,
recent work has introduced generative replay models [42, 43] which circumvent the problem of storing all previous
experiences. In the future, it would be of interest to explore these variants.

Because our focus is on contrasting models with neuroscientific observations, we have used the same continually
interleaving ego- and allocentric tasks as employed experimentally. Interestingly, when tested on egocentric tasks
our models are more robust to the removal of cues when compared to allocentric tasks (Fig. 7C), consistent with
experimental observations [34]. However, the tasks that we have used here represent only a small subset of all the
possible challenges that animals are only faced with. This means that our model-animal comparison is relatively
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unfair as animals have to deal with much more than solving these two tasks. Conversely, it is also true that there
are many more biological principles that we have not considered in our models. All these elements remain to be
explored in future work.

Our model shows that CA3 recurrence is needed to solve all the tasks we tested due to its ability to remember
the relevant sensory cues. This in line with experimental results showing that the CA3 region is involved in main-
taining working memory representation for delayed-to-match sample tasks [9-11]. Moreover, our work shows that
the hippocampus encodes reward prediction error signals. This mirrors the growing evidence suggesting that the
hippocampus interacts with the reward-system [44, 45].

Overall, our work suggests that hippocampal networks play a critical role in the ability of animals to continuously
adapt to the environment under realistic conditions and with good generalisation properties.
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Methods

We begin by outlining the deep reinforcement learning approaches employed in this study, followed by an explanation
of the methods utilised for the analysis of neural data.

Reinforcement learning models

We developed a deep reinforcement learning model consistent with the hippocampal architecture. To train the mod-
els we designed a custom-built 2D gym-minigrid maze [21], mimicking the T-maze environment (Fig. 1a) in line with
common experimental setups, which allow us to compare our models with the behavioural and neural data [5]. In
order to capture cues commonly placed on external walls in experimental setups we placed four cues in the envi-
ronment in both allocentric and egocentric trials, in line with [5]. At the beginning of any given trial the agent was
placed at the start of the north or south arms of the maze following the same setup of the animal experiments, and
we closed access to the opposite arm thus converting the maze into a T-maze. We considered two terminal states:
one rewarded and one unrewarded. After reaching a terminal state (rewarded/unrewarded) we allowed the agent
to continue exploring for three extra time steps which allowed us to model the animal behaviour right after reward
consumption. During model training we extracted neural activities which we used to contrasted model and animal
neural data. Note that direct sensory information about the terminal states was not given as input to the agent.

Deep RL agents:

Reinforcement learning (RL) models an agent that observes the environment and takes an action a. This action tran-
sitions the agent into a new state s of the environment which might give back a reward r according to the utility
of the action selected. This can be formally defined by a Markov Decision Process as tuple of (S, A, P, R,~) where
S is the set of all the states, A is the action set, P the transition matrix P(s’|s, a) from current state s to the next
state s’ when taking action a. The objective is to maximise the expected total rewards, called return G; defined as
G: = 3/, 7" *Rii1 where t is the current time step, R.+1 is the reward obtained at time ¢ + 1, v is a discount factor
such that 0 <+ < 1and T is the time at which the episode terminates.

For the hippocampal RL models we build on the standard deep reinforcement learning models. In particular,
we use Deep Q-networks (DQN) [22], in which states s are provided as input to an artificial neural network that are
then mapped onto value-action pairs Q(s, a). The network is trained using state-outcome transition tuples, (s, a, s’, r),
where s is the current state, a is the action, r denotes reward outcome and s’ the next state. The error function used
to train the hippocampal network follows a Q-update function as E; at step i:

Ei(0; = Esao rmn(r +ymax, Q(s', 3 6;7) — Q(s, a; 6;))’ (1

where 6 denotes the network weights, v is the discount factor and D is the dataset of past trajectories. As done by
standard DQNs we use the concept of target network (6~) which helps to stabilise learning (see Methods).

To create a model that more closely captures the hippocampal circuitry, we consider a three-layered structure
with the input layer modelling entorhinal input to Dentate Gyrus (DG), the first layer represents CA3, a second layer
represents CA1, and the output encodes the value of a given action-state pair, Q(a, s) (Fig. 2b). The DG input originates
from the entorhinal cortex (EC) which is believed to provide the hippocampus with a spatial map of the environment
[19]. In our model, the EC spatial map is approximated by the 2D top-down spatial map provided by the minigrid
environment (Fig. 1c). The output layer encodes state-action Q values, which abstracts out hippocampal-to-striatum
functional connectivity [23].

All our models have a four-layered structure in which the input layer is of shape (RxC) where R is the number
of rows in the input grid, C the number of columns. The output layer has Nx1 shape (N = 3) denoting the Q-values
for the 3 actions that the agent can take in the environment (left, right, forward). We use a standard discount factor
(y = 0.9), a memory buffer of size 1 and a batch size of 1 during training. Adam is used as the optimiser with a
learning rate « of 0.001. We choose a CA3 layer size of 50 for hcDRQN as well as for all the other models considered.
The learning rate and epsilon for epsilon greedy have been selected using a grid-search. All the hyper parameters
are given in Table S1.

14 of 21


https://doi.org/10.1101/2023.11.09.565503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.565503; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Name Value
Discount factor, v 0.9
Adam learning rate, o 0.001
Epsilon-greedy, ¢, max-min 0.3 - 0.05
Epsilon-decay 0.9
Batch size 1
MLP layers 4
Input size 9/81
Hidden size 50
hcDRQN hidden size 50
Output size 3
Memory size 1
Target update counter 25

Supplementary Table S1. Hyperparameters used to run the experiments given in the paper.

20 Partial observability

a3 In our grid-based environment, models operate under conditions of limited enviromental observability, mirroring
a1 the real-world challenges faced by navigating animals. Moreover, in reality, animals rarely possess complete access
«32  to all pertinent sensory data during navigation. For instance, they may initially focus on cue information but then
a3z shift their attention to executing motor commands to reach their destination. In experimental neuroscience, while
a3a  Ccues are typically positioned along the outer walls of a room [5], animals do not continuously fixate on these cues.
435 Additionally, maze setups often involve the incorporation of walls of varying heights, further restricting the visual
436 input available to the animals.

437 To substantiate the importance of CA3 in navigation and its ability to better align with experimental findings in
a3s  partially observable environments, we compare our models against those trained with full visibility. This compari-
430 Son underscores the significance of CA3 and its capacity to more accurately capture experimental outcomes when
a0 Navigating in environments with limited sensory input.

w1 Training details

a2z The training phase consisted of a block of allocentric and egocentric trials. Specifically, each block contains 25 trials,
a3 and there were a total of 4 blocks (allocentric north/south, egocentric north/south). The agents were first exposed
aaa  to blocks of allocentric trials in the north direction, which were then alternated with blocks of allocentric trials in the
a5 south direction. This alternating pattern was repeated four times before switching to the egocentric trials. The same
aas  North/south combination was maintained throughout the entire duration of the egocentric trials. In total, the training
427 consistented of 10,000 individual trials (200 blocks each with 25 trials for both ego and allocentric tasks).

a8 A two-head setup is utilised, where the final layer outputs two Q-values: Q-value-allo and Q-value-ego. The state
420 input to the models are 2D matrices where cues, walls and no-walls were encoded as scalar values. For the partial
a0 View the observation size was 9 (3x3) while for the full view was 81 (9x9).

=1 Generalisation tests
a2 We performed four types of generalisation tests (Fig. 7):

453 1. Longer maze: In this test, the length of the starting corridor was increased while keeping the length of the two
454 terminal arms constant.

455 2. Cue removal: Different combinations of cue removal were performed, ranging from removing all cues to remov-
456 ing none. The cues were removed at the beginning of the trial, meaning that the agent had no access to the cue
457 at any point during the task. This is in contrast to the experiments on probabilistic cue removal (Fig. 6), where
458 the agent still had access to these cues with a given probability.

459 3. Distractor: Another cue (represented by a scalar value) was added just next to (below) the existing cues.

460 4. Random noise: We added normally distributed noise, A'(u, ¢®) with ¢ = 0 and o2 in the range of (1,15).
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Continual learning algorithms

To compare with modern artificial algorithms capable of multi-task learning we tested Elastic Weight Consolidation
(EWC) and Synaptic Intelligence (SI). Hyperparameters were selected through a hyperparameter search (the EWC
weight importance was set to 800 and the Sl weight importance to 30).

Experiments with fully observable environments

We repeated the main results with a fully observable environment with both hcDRQN and hcDQN models. Although
both models can learn all tasks in terms of performance, their dPCA analysis does not show a clear separation of all the
components. In hcDRQN, decision and strategy follow the same trends with activity dropping to zero right after the
reward point. This is the opposite of the partial view hcDRQN and animal activity where strategy components keep the
separation even after the reward point. Moreover, hcDRQN fails to capture the time component. The hcDQN model
completely fails to separate the strategy north compoents. Overall, given that full view model fails to capture dPCA
components we argue that the fully observable environment does not provide a good match of the hippocampal data.
We run further tests to analyse the animal trajectories and the generalisation capabilities of these full view RL models.
Although most of the trajectory maps show close match between the animal and hcDRQN, there are situations in
which the hcDQN seems to be a better match to animal data. The generalisation tests highlight the limits of the
fully observable models, as cue are gradually removed performance drops drastically, emphasising the dependency
of these models on the cues. Animal performance and partial view RL models show evidence that egocentric task
do not rely on cues, however the fully observable models remain highly depended on the cues. Overall our results
suggest that hcDRQN trained with partial observability provides an overall best match with animal behaviour and
neuronal encodings.

Computing details

All experiments were conducted on the BluePebble super computer at Bristol; mostly on GPUs (GeForce RTX 2080 Ti)
and some on CPUs (Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz). We did not record the total computing time for the
experimental results presented in this paper, but this can be estimated as follows. To train each model (one seed with
all the task-specific trials) takes approx 1 hour and 30 min. For each of the models we run 5 random seeds, resulting
in approx 6 hours per model. When recording the activations, the total time is around 8 hours. Testing a single model
for one seed takes approx 5 min. Overall total time it takes to run our models is 32 hours (8 x 4) for training with 5
seeds and 2 hours for the testing results with 5 seeds.

Statistical analysis

Due to the inherent variability of the starting conditions on the learning path of these models, we trained our models
across 5 different randomly selected seeds. To assess the significance of all relevant figures, we conducted a two-
sided paired t-test on the relative alterations across the various seeds. Significance levels are denoted as follows: *
(p < 0.05), ** (p < 0.01), *** (p < 0.001), and **** (p < 0.0001).

Data and code availability
We used the PyTorch library for all reinforcement learning models. The code and respective simulated data used for
our experiments is available at https://github.com/neuralml/hcRL.

Neural and behavioural experimental data

Neural data analysis using demixed PCA

We used the neural activities of 612 hippocampal CA1 neurons from five behaving rats were recorded, which were
obtained in the dorsal and ventral CA1 using multiple tetrodes (Fig. 3a; see full details in Ciocchi et al. [5]). Spike
sorting was used to assign spikes to different neurons (full details in [5]), which were then converted to firing rates of
individual neurons using a sliding window. Animals were trained on a T-maze task in which rats had to follow both
allocentric and egocentric navigational rules to reach reward points (Fig. 3a). We performed demixed Principal Com-
ponent Analysis (dPCA) [46] on the neuronal firing rates using with 3 behavioural variables - trial decision, strategy
and time (dPCA \ = 2.919e~% was found using grid-search as done by [46]). We used the dPCA code made available
by the authors of [46] in https://github.com/machenslab/dPCA.
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Behavioural data
The behavioural data (i.e. animal task performance) consists of a total of 47067 trials recorded over multiple days (3
to 7) from a total of 5 animals [5]. However, as some animals only had a maximum of 800 continuous trials we used

a maximum of 800 continual trials per animal.
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Supplementary Figure S1. Model performance with/without multi-head, replay buffer, different numbers of CA3 neurons
and model learning curves. (A) Only hcDRQN model trained with two heads and without experience replay is able to solve all the
tasks while all the variants with one/two head and with/without experience replay reach only 75% performance. (B) Changing the
number of CA3 neurons has no effect on the final performance. (C) Learning curves for hcDQN, hcDRQN, ML-EWC, ML-SI.
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Supplementary Figure S2. CA3 recurrence is needed in partially observable environments. (A) Minigrid environment showing
full view size with cue removal with agent at the decision point. (B) Task performance with cue removal after the agent reaches
the decision point for both hcDQN and hcDRQN trained with full observability. Dotted line represents performance of partial view

models.
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Supplementary Figure S3. Outcome, strategy and temporal neural dynamics in RL agents with full view. (A) Demixed PCA
components corresponding to Decision - Correct vs Incorrect, Strategies - Allocentric and Egocentric. Qualitatively, full view hcDRQN
shows similar trends for decision and strategies, but fails to capture the time component. Full view hcDQN presents mixing activity
for strategy components. (B) Percentage of explained variance for different components.
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(red). (B) Variances explained by each demixed principal component. In the pie chart, the total data variance is divided per task-
specific variable. (C) Dot products between all pairs of demixed principal components is shown in the upper-right triangle. Stars
denote the pairs that are significantly non-orthogonal. Correlation among all demixed principal component pairs is displayed in the
lower-left triangle. (D) Top row: first three decision components; second row: first three strategy components; third row: first three
time components; last row: first two decision/strategy interaction components. Figure produced using code made available by [46]
(follows a similar structure to the figures available in the original dPCA paper).
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Supplementary Figure S5. Task-specific neural activity. Comparing neural activity between allocentric vs egocentric tasks shows
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while hcDQN shows higher activity in egocentric tasks.
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Supplementary Figure S6. Trajectory maps for RL models trained with full observability. (A) We repeat the same analysis as
done in Fig. 4 with full view models. (B) Time spent on each state normalised to the time spent on the final (terminal) state in models
and animal. (C) Error between agents and animals for each strategy shows that hcDRQN better captures animal behaviour. (D) Error
between models and animal across all possible task-pairs shows mixed behaviour in terms of which model provides a closer match
to animal behaviour. (E) Error between all possible task-pairs shows that full view hcDRQN errors are lower for Allo North task ratios
while in full view hcDQN are lower for Allo South task. 20 of 21


https://doi.org/10.1101/2023.11.09.565503
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.09.565503; this version posted November 10, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Allo 1 vs Allo 2

Ego 1 vs Ego 2

Allo1vs Ego 1 Allo 1 vs Ego 2 Allo 2 vs Ego 2 Allo 2 vs Ego 2
0.004 I I 0.020 0.020 ]:
0.02 :
0.003 0.004 0.02
s 0.015 0.015
= 0.002
m 0.002 0.01 0.01 0.010 0.010
0.001 0.005 0.005
o=
0.000 0.000 0.00 0.00 0.000 0.000
> S > > > > >
(;\@?’ S &0 (;\@b KO &0 (.\\((\b S &0 (.\\@” S &o &@’0 S &o (.\\@’0 S &o
¥ E ¥ & ¥ E RAIVGORES RV ¥ &S

Supplementary Figure S7. Error between animal and model trajectory-occupancy maps (cf. Fig. 4). Error between all possible
task-pairs shows that hcDRQN (trained with partial view) more closely matches animal data when compared to hcDQN (trained with

partial view).
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Supplementary Figure S8. State-dependent action values for full view model. Top: The state-value certainty given by the
variance over Q-values for each state. Bottom: Average state-values.
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Supplementary Figure S9. Generalisation test with partial and full view. (A,B) Effect of cue removal on models trained with
partial view and a long-maze. (C,D) Effect of cue removal on models trained with full view and short-maze.
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