

Crespo-Bellido et al.

Phylogeographic analysis of *Begomovirus* coat and replication-associated proteins

Alvin Crespo-Bellido^a, J. Steen Hoyer^a, Yeissette Burgos-Amengual^{ab}, Siobain Duffy^a

^aDepartment of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, the State University of New Jersey, New Brunswick, New Jersey

^bDepartment of Biology, University of Puerto Rico at Mayagüez

Address correspondence to Siobain Duffy, duffy@sebs.rutgers.edu

Crespo-Bellido et al.

1 **ABSTRACT**

2 Begomoviruses are globally distributed plant pathogens that significantly limit crop
3 production. These viruses are traditionally described according to phylogeographic
4 distribution and categorized into two groups: begomoviruses from the Africa, Asia,
5 Europe, and Oceania (AAEO) region and begomoviruses from the Americas.
6 Monopartite begomoviruses are more common in the AAEO region while bipartite
7 viruses predominate in the Americas, where the begomoviruses lack the V2/AV2 gene
8 involved in inter-cellular movement and RNA silencing suppression found in AAEO
9 begomoviruses. While these features are generally accepted as lineage-defining, the
10 number of known species has doubled due to sequence-based discovery since 2010.
11 To reevaluate the geographic groupings after the rapid expansion of the genus, we
12 conducted phylogenetic analyses for begomovirus species representatives of the two
13 longest and most conserved begomovirus proteins: the coat and replication-associated
14 proteins. Both proteins still largely support the broad AAEO and Americas begomovirus
15 groupings, except for sweetpotato-infecting begomoviruses that form an independent,
16 well-supported clade for their coat protein regardless of the region they were isolated
17 from. Our analyses do not support more fine-scaled phylogeographic groupings.
18 Monopartite and bipartite genome organizations are broadly interchanged throughout
19 the phylogenies and the absence of the V2/AV2 gene is highly reflective of the split
20 between Americas and AAEO begomoviruses. We observe significant evidence of
21 recombination within the Americas and within the AAEO region, but rarely between the
22 regions. We speculate that increased globalization of agricultural trade, the invasion of

Crespo-Bellido et al.

- 23 polyphagous whitefly vector biotypes and recombination will blur begomovirus
- 24 phylogeographic delineations in the future.

Crespo-Bellido et al.

25 INTRODUCTION

26 The *Geminiviridae* family consists of plant-infecting viruses with broad host range
27 that can severely constrain agricultural crop production [1]. Genus *Begomovirus*
28 constitutes the most speciose out of the 14 currently approved geminivirus genera, with
29 445 established species listed in the current Master Species List of the International
30 Committee on the Taxonomy of Viruses (MSL38 v2, <https://ictv.global/msl>). The
31 begomoviruses are whitefly-transmitted, mostly dicot-infecting pathogens that cause
32 significant crop losses in tropical and subtropical regions around the world [2]. The
33 success of begomoviruses as emerging pathogens is facilitated by international
34 agricultural trade, the widespread distribution of the polyphagous whitefly vector
35 (*Bemisia tabaci* cryptic species complex), and adaptation fueled by high mutation
36 frequencies and frequent genetic exchange through recombination and reassortment [3-
37 5].

38 Historically, two major begomovirus groups have been recognized based on
39 phylogeographic distribution and evolutionary features: begomoviruses originally
40 identified in Africa, Asia, Europe, and Oceania (AAEO) region, and begomoviruses first
41 isolated from the Americas [6, 7]. These “AAEO” and “Americas” begomovirus
42 designations are used in lieu of the traditional phrases “Old World” and “New World” for
43 accuracy throughout this work, given that Australia – which is lumped with Afro-Eurasia
44 for begomovirus classification – is generally considered part of “the New World”
45 (including in the wine industry). While widely accepted, not all begomovirus species
46 follow this coarse geographic grouping. The sweetpotato-infecting begomoviruses
47 (known as “sweepoviruses”) are not split at continent scales, but rather form a distinct

Crespo-Bellido et al.

48 clade, with some viruses discovered in samples collected in the Americas and others
49 discovered in samples from the AAE0 region [4, 8, 9]. An additional group of legume-
50 infecting begomoviruses known as the “legumoviruses” is also considered a distinct
51 lineage from the two broad regional groups, although all legumoviruses have been
52 sampled in the AAE0 region [8, 10, 11].

53 All begomovirus genomes are organized into one (monopartite) or two (bipartite)
54 circular single-stranded DNA (ssDNA) segments, each independently encapsidated in
55 twinned, quasi-icosahedral particles that are characteristic of geminiviruses [11].
56 Segments range from ~2.5-2.8kb. For bipartite begomoviruses the two segments are
57 referred to as DNA-A and DNA-B. Monopartite genomes are homologous to the DNA-A
58 segment of bipartite begomoviruses. All infectious genomes described thus far have at
59 least five protein-encoding open reading frames (ORFs). On the virion-sense strand,
60 they possess the *V1* (in monopartites) or *AV1* (in bipartites) gene which codes for the
61 coat protein (CP). The complementary-sense strand encodes the replication-associated
62 protein Rep (C1/AC1), the transcriptional activator protein TrAP (C2/AC2), a replication
63 enhancer REn (C3/AC3), and an RNA-silencing suppressor C4/AC4 (functions reviewed
64 in [12, 13]). The AAE0 begomoviruses possess an additional ORF called *V2/AV2* which
65 codes for a protein associated with movement and silencing-suppression [6, 13, 14].
66 Recent studies have suggested possible functional roles for additional DNA-A ORFs:
67 C5/AC5 [15-17], C6 [18], C7 [19] and V3 [20, 21]. However, transcription and translation
68 of these ORFs has only been studied in a very small number of begomoviruses, such as
69 the intensively studied, pandemic tomato yellow leaf curl virus (TYLCV) [21].

Crespo-Bellido et al.

70 The DNA-B of bipartite begomoviruses encodes a nuclear shuttle protein NSP in the
71 virion-sense (*BV1*) and an intercellular movement protein MP in the complementary
72 sense (*BC1*). For DNA-B, a recent study showed that an additional ORF *BV2* is
73 translated during infection [22]. The segments of bipartite begomoviruses share a
74 conserved region (CR) of ~200 nucleotides that includes a stem-loop structure with a
75 conserved nonanucleotide where rolling-circle replication is initiated. Additionally, the
76 CR contains several regulatory elements, including multiple copies of cis elements
77 known as iterons that are specific binding sites for Rep during replication [23].

78 There is evidence that several features distinguish most begomoviruses isolated
79 in the Americas from their AAEO region counterparts: a different number and
80 arrangement of iterons in the CR [23, 24], a conserved PWRsMaGT motif in the N-
81 terminal domain of CP [14], an RFATDKS motif in the REn protein [25], shorter genome
82 segments [26] and the aforementioned lack of V2/AV2. Additionally, Americas
83 begomoviruses were thought to be exclusively bipartite until recent reports of
84 monopartite begomoviruses in the Americas with Americas-type features [27-32]. It has
85 been suggested that the preponderance of bipartite begomoviruses in the Americas
86 may stem from the lack of V2/AV2 [8, 14], because the V2 protein is thought to be the
87 main mediator of inter-cellular movement during infection for monopartite viruses [16,
88 33, 34] – although this remains controversial [35]. Under this hypothesis, the absence of
89 the movement capabilities of V2/AV2 increases the reliance of DNA-A on the movement
90 functions of DNA-B proteins and leads to stronger interdependence between the
91 segments [26].

Crespo-Bellido et al.

92 More than 100 species have been discovered since the last large-scale
93 phylogenetic analyses of the genus [8, 9]. As a result, we sought to update our
94 understanding of begomovirus evolution by creating updated, comprehensive
95 phylogenies for the two main proteins in the monopartite/DNA-A genome segments: CP
96 and Rep. We pursued an amino-acid-sequence-based approach instead of evaluating
97 the evolution of the entire monopartite genome/DNA-A segment because extensive
98 genomic divergence results in an unreliable nucleotide alignment, especially in the
99 intergenic regions. We believe that this protein-based approach is phylogenetically
100 robust given that the CP and Rep are the two most conserved begomovirus proteins [7,
101 12, 36-38] and together they are encoded by ~70% of nucleotides in the segment. We
102 mapped genomic features and geographic location onto our phylogenies and showed
103 that the evolution of these proteins is largely reflective of the traditional geographic
104 delineations, though there are notable exceptions. The CP and Rep phylogenies are
105 significantly incongruent with each other, suggesting extensive recombination within but
106 not between the two main geographic regions. The vast majority of AAEQ
107 begomoviruses are monopartite while most Americas begomoviruses are considered
108 bipartite, although five independent evolutions of a monopartite genome organization in
109 Americas begomoviruses are observed. The results also reveal that the
110 presence/absence of V2/AV2 is highly correlated with CP and Rep evolution and
111 support the absence of V2/AV2 as a lineage-defining feature of Americas
112 begomoviruses. Additionally, our results confirm that genome/DNA-A segment length
113 correlates with presence/absence of V2/AV2.

114 **METHODS**

Crespo-Bellido et al.

115 **Sequence retrieval of begomovirus RefSeq exemplar CP and Rep sequences.**

116 Annotated begomovirus coding sequences corresponding to each begomovirus species
117 exemplar with a RefSeq accession number listed in the ICTV Virus Metadata Resource
118 (VMR #18, 2021-10-19, <https://ictv.global/vmr>) were downloaded from GenBank in
119 protein FASTA file format (June 2023). CP and Rep amino acid sequences were
120 extracted and split into separate data sets for analysis. Several RefSeq sequences were
121 misannotated in NCBI, most commonly with CP and V2/AV2 protein ORFs mislabeled
122 as the other (sequences listed in Supplemental file 1). We confirmed the identity of
123 the ORF products by performing a BLAST search [39]
124 (<https://blast.ncbi.nlm.nih.gov/Blast.cgi>) of the non-redundant protein database at NCBI
125 and included the homologous sequences in their corresponding data sets. For exemplar
126 sequences missing ORF annotations (listed in Supplemental file 1), ORFfinder
127 (<https://www.ncbi.nlm.nih.gov/orffinder/>) was used to identify CP and Rep ORFs that
128 were subsequently translated and added to each corresponding data set after BLAST
129 confirmation [39].

130 Metadata associated with each exemplar in our data set – including country of
131 isolation, geographic designation (i.e., AAE0/Americas), genome segmentation (i.e.,
132 monopartite/bipartite), presence/absence of V2/AV2 and length of genome/DNA-A
133 segments – are included in Supplemental file 1. Based on historical context within
134 begomovirology [7], AAE0 begomoviruses in this study are defined as those whose
135 exemplars were sampled outside of the Americas whereas Americas begomoviruses
136 are those sampled within North America (including Central America and the Caribbean)
137 and South America. AAE0 begomovirus genomes are labeled as bipartite if they are

Crespo-Bellido et al.

138 associated in GenBank with a DNA-B segment and monopartite if they are not. Since
139 Americas begomoviruses are generally considered bipartite due to a perceived reliance
140 on a DNA-B segment to successfully establish a systemic infection, exemplars are
141 labeled as bipartite if they are associated in the VMR with a DNA-B segment,
142 monopartite if there is experimental evidence demonstrating their ability to
143 systematically infect the host species from which they were isolated in the absence of a
144 DNA-B segment or 'undetermined' if no DNA-B segment had been sampled along with
145 it. The presence/absence of V2/AV2 was determined for each exemplar using
146 ORFfinder and BLAST [39].

147 **Alignments and phylogenetic analysis.** Multiple sequence alignments were
148 constructed using the MUSCLE method [40] as implemented in MEGA 11 [41] and
149 manually corrected using AliView v1.26 [42]. After an initial alignment inspection,
150 exemplars with either severely truncated (i.e., length < 50% of the average length of the
151 protein) or very divergent (i.e., causing us to doubt protein homology) CP or Rep
152 sequences were excluded from the data set (Supplemental table 1). Our final CP and
153 Rep data sets contained amino acid sequences from 432 begomovirus species. Due to
154 the difficulties in aligning the Rep sequences at the N- and C- terminal ends, the
155 alignment was trimmed to eliminate all residues prior to the iteron related domain (i.e.,
156 the known Rep functional region closest to the Rep start [23]) in the N-terminus and
157 after a conserved geminivirus motif found near the C-terminus, which corresponds to
158 where other circular, Rep-encoding single-stranded DNA viruses possess an arginine
159 finger motif [43, 44]. Alignments have been archived as Zenodo records at
160 <https://zenodo.org/record/8338685>.

Crespo-Bellido et al.

161 Maximum likelihood (ML) trees were inferred with IQ-Tree v2.0.7 [45] using the
162 best fitting substitution model identified by the built-in ModelFinder feature [46]. Tree
163 inference was performed with 3000 ultrafast bootstrap (UFBoot) replicates, a
164 perturbation strength of 0.2 and a stopping rule requiring an iteration interval of 500
165 iterations between unsuccessful improvements to the local optimum. The -bnni flag was
166 enabled to reduce the risk of overestimating branch supports with UFBoot due to severe
167 model violations. Midpoint-rooted consensus phylogenies were annotated and
168 visualized using Treeviewer [47]. Tree files in NEXUS format available on Zenodo at
169 <https://zenodo.org/record/8338685>. [48-50]

170 **Begomovirus exemplar genome/DNA-A length distributions.** The distribution of
171 monopartite genome and bipartite DNA-A segment lengths for each begomovirus
172 exemplar was calculated using R version 4.2.0 [51] and visualized using the
173 *gghistogram* function in the *ggpubr* R package [52].

174 **Shannon entropy scores for CP and Rep data sets.** Shannon entropy scores- which
175 describe the amount of information within a variable [53] (in this case, amino acid
176 sequence alignments)– were calculated as a measure of protein diversity for sets of
177 aligned protein sequences using an adapted Python script from [54] available at
178 <https://github.com/acrespo-virevol/shannon-entropy>.

179 **Comparison of begomovirus exemplar CP and Rep phylogenies.** A tanglegram of
180 the CP and Rep ML phylogenies was created using the *dendextend* R package [55].
181 The ML trees were input into R and converted into dendrograms for the tanglegram
182 analysis using the *ape* R package [56]. The tanglegram was disentangled by iteratively
183 rotating inner branches of one tree while the other remained static until the

Crespo-Bellido et al.

184 entanglement could not be reduced any further using the 'step2side' method with
185 *dendextend*.

186 **RESULTS**

187 The 432 begomovirus species representatives in our data set were sampled
188 across 59 countries and classified as either Africa-Asia-Europe-Oceania (AAEO) or
189 Americas begomoviruses (Figure 1). There is unevenness in the data set with respect to
190 sampling region, with 253 sequence exemplars sampled in the AAEO region and 179
191 sequence exemplars sampled in the Americas. India (n=65), Brazil (n=60) and China
192 (n=53) are the three countries with the most sequence exemplars in the data set, with
193 no other country providing more than 30 species representatives (Figure 1).

194 **The Americas begomoviruses, which lack V2/AV2, are distinct.** The maximum
195 likelihood (ML) phylogeny for the complete CP amino acid sequence alignment is shown
196 in Figure 2. The midpoint root separates the sweepoviruses from the rest of the
197 sequences, indicating that sweepovirus CPs - which were sampled in Asia, Europe, and
198 North and South America - have significantly diverged from those of all other
199 begomoviruses (distance from the midpoint root depicted in Fig. S1). Aside from the
200 sweepoviruses, the phylogenetic analysis supports an Americas-type CP monophyletic
201 clade with the sole exception of the tomato latent virus (ToLV) exemplar from Cuba, a
202 known interspecific recombinant that inherited its CP from the AAEO TYLCV introduced
203 to the Americas in the 1990s [57, 58]. On the other hand, the Corchorus yellow vein
204 virus (CoYVV) exemplar from Vietnam is the sole begomovirus sampled in the AAEO
205 region for which the CP clusters with Americas sequences. This virus and Corchorus

Crespo-Bellido et al.

206 golden mosaic virus (CoGMV), which was also identified in Vietnam [14, 59], have been
207 described as a distinct AAE0 begomovirus lineage with Americas begomovirus-type
208 features that is basal to the Americas begomovirus clade based on phylogenetic
209 analysis of DNA-A and DNA-B segments [8, 14]. In our analysis, the CoGMV CP does
210 appear to be basal to the Americas clade (Fig. 2). However, the CoYVV CP is closely
211 related to sequences deeply nested within the Americas clade, which suggests that the
212 CoYVV CP originates from a contemporaneous Americas-type lineage.

213 Outside of the sweepovirus clade (whose members are all monopartite), we see
214 that most of the AAE0 sequences are classified as monopartite (194/242=80%)
215 whereas most of the Americas exemplars are confirmed to be bipartite (142/176=81%,
216 Fig. 2; Fig. S1). The CP phylogeny does not support a single origin for bipartitism from a
217 monopartite ancestor, nor a single origin of monopartism from bipartitism in the
218 Americas. There are five monopartite exemplars from the Americas in our data set with
219 demonstrated ability to systematically infect wild host species (disregarding the highly
220 susceptible experimental lab host *Nicotiana benthamiana*) in the absence of a DNA-B
221 segment - Corchorus yellow vein Cuba virus [32], tomato leaf curl purple vein virus [30],
222 tomato leaf deformation virus [28, 60], tomato mottle leaf curl virus [27] and tomato
223 twisted leaf virus [29] - and their placement on the tree indicates that their monopartite
224 genome structure has evolved multiple times via independent loss of DNA-B.

225 The presence/absence of V2/AV2 is more reflective of the evolution of the
226 begomovirus CP than geographic region or genome segmentation (Fig. 2, Fig. S1). We
227 observe that every exemplar in the Americas-type CP clade lacks a V2/AV2 whereas all
228 other exemplars except the bipartite soybean chlorotic blotch virus (SbCBV) possess a

Crespo-Bellido et al.

229 V2/AV2 gene. The absence of V2/AV2 is supported as a clade-defining feature of
230 begomoviruses in the Americas. Given the fact that the SbCBV CP is closely related to
231 other CPs of begomoviruses with an V2/AV2 gene – which is consistent with analyses
232 of the entire DNA-A segment [61] - it is likely that the lack of an AV2 homolog represents
233 a recent deletion of AV2 in SbCBV.

234 Further analysis of the sequences reveals that clades are not structured by
235 continent (Fig. S1). The sweepovirus CP clade is strongly supported even though
236 exemplars were sampled across four continents. The Americas-type CPs do not show a
237 separation between North and South American exemplars and are significantly
238 intermixed. Interestingly, 46/51 African sequences cluster together in a well-supported
239 clade (highlighted in Fig. S1). This mostly-African clade includes the CP of a Spanish
240 representative of the highly invasive and recombinogenic tomato yellow leaf curl virus
241 [62, 63] and two of its descendants through recombination – ToLV from Cuba [57] and
242 tomato leaf curl Liwa virus from Oman [64]. It also includes a close relative of TYLCV,
243 tomato yellow leaf curl Sardinia virus (TYLCSaV) from Italy, along with two descendent
244 lineages – tomato yellow leaf curl Axarquia virus and tomato yellow leaf curl Malaga
245 virus, both from Spain – that stemmed from separate recombination events with TYLCV
246 [65, 66]. The close relationship of the European TYLCV and TYLCSaV sequences with
247 African exemplars may suggest an African origin for these tomato-infecting viruses. An
248 additional Asian exemplar from Oman within the clade, okra leaf curl Oman virus, is also
249 a recombinant that inherited its CP from the African cotton leaf curl Gezira virus [67].
250 The last member of the clade is the whitefly-associated begomovirus 7 from Spain,

Crespo-Bellido et al.

251 which has yet to be characterized in detail but is a close relative of African tomato-
252 infecting viruses based on analysis of the DNA-A [68].

253 **The begomovirus Rep phylogeny is incongruent with the CP phylogeny.** The ML
254 phylogeny for the trimmed Rep amino acid sequence alignment (see Methods) is shown
255 in Figure 3. The midpoint root separates the Americas from the AAE0 and sweepovirus
256 exemplars. In contrast to the CP phylogeny, the sweepovirus Rep sequences are not
257 highly diverged and cluster within the AAE0 clade. Interestingly, the Rep sequences of
258 sweepoviruses do not constitute a monophyletic clade, as the sweetpotato leaf curl
259 Hubei virus (SPLCHbV) Rep falls outside of the main sweepovirus cluster (Fig. 3, Fig.
260 S2). It is probable that the SPLCHbV Rep was inherited through recombination with a
261 distantly related AAE0 virus. In the Rep phylogeny, ToLV clusters within the Americas
262 clade with its closest relative, the bipartite Sida golden mottle virus (SiGMoV), which is
263 consistent with previous recombination analyses identifying a SiGMoV-like virus as the
264 likely parent for the ToLV Rep [57]. The CoGMV and CoYVV Rep sequences are closely
265 related to each other and to other contemporaneous AAE0 sequences. Except for the
266 sweepoviruses, the Rep phylogeny supports AAE0 and Americas begomovirus Reps as
267 separate monophyletic clades.

268 As in the CP phylogeny, the Rep tree does not support a single origin for bipartite
269 genomes from a monopartite ancestor. Additionally, the five monopartite begomoviruses
270 from the Americas do not appear to be closely related based on the evolutionary
271 relationships of their Reps. ToLV presents an interesting case in that its major parent is
272 likely a bipartite begomovirus that acquired the CP and V2 through recombination [57],
273 which resulted in a shift towards a monopartite genome organization.

Crespo-Bellido et al.

274 The Rep phylogeny does not show clustering at the continent level and the well-
275 supported African clade in the CP is not observed for Rep (Fig. S2). Interestingly, the
276 TYLCV and TYLCSaV Reps also cluster with African sequences although the clade is
277 not well-supported.

278 A comparison of the CP and Rep trees reveals a significant level of incongruency
279 between the phylogenies (Fig. 4), which is suggestive of extensive recombination. The
280 tanglegram suggests high levels of recombination within the Americas and AAEO
281 regions but few cases between them. The exceptions are exemplars already discussed:
282 ToLV, CoYVV and CoGMV. The sweepoviruses also display high levels of incongruency
283 between protein phylogenies, likely related to the large divergence between
284 sweepovirus CP and other CP sequences.

285 **More diversity in the CP and Rep of AAEO begomoviruses compared to Americas
286 begomoviruses.** We estimated Shannon entropy scores as a general measure of
287 protein diversity for each alignment. Since the CP sequences of the sweepoviruses are
288 so diverged, we removed them from both the CP and Rep data sets when assessing
289 diversity for the AAEO and Americas data sets. We placed the ToLV CP in the AAEO
290 data set and the CoYVV and CoGMV CPs in the Americas-type data set given that the
291 ToLV CP clusters with AAEO sequences while CoYVV and CoGMV are more closely
292 related to Americas CP sequences (Fig. 2). The Shannon entropy scores are higher for
293 AAEO sequences (CP= 0.448; Rep= 0.506) than for Americas sequences (CP= 0.192;
294 Rep= 0.376), indicating higher overall diversity in AAEO begomoviruses.

295 **Genome/DNA-A length is correlated with geographic region and the
296 presence/absence of V2/AV2.** It has been suggested that the absence of V2/AV2 in

Crespo-Bellido et al.

297 Americas begomoviruses may be a consequence of one or multiple deletions totaling
298 >100 nucleotides (nt) of its proximal promoter region [26]. We decided to explore the
299 distribution of monopartite genome/bipartite DNA-A segment lengths in the context of
300 AAEO, Americas and sweepovirus groupings, and presence/absence of the V2/AV2
301 ORF (Fig. 5). The lengths of genome/DNA-A segments largely follow a regional
302 distribution, with the more-frequently-bipartite begomoviruses from the Americas having,
303 on average, segments ~130 nt shorter (mean length= 2626.5 nt) than the AAEO region
304 viruses (mean length= 2754.6 nt). The monopartite sweepoviruses, regardless of
305 location, have among the largest genomes (mean length= 2792.9 nt). The strong
306 correlation between geographic region and genome/DNA-A segment length appears to
307 be largely due to the presence (mean length= 2757.3 nt) and absence (mean length=
308 2627.1 nt) of V2/AV2.

309 **DISCUSSION**

310 The *Begomovirus* genus represents an economically important group of
311 emergent plant pathogens that has significantly expanded in the last decade through
312 sequencing-based discovery [5]. We sought to construct robust and updated
313 phylogenies that will serve as resources for future comparative analyses. Using one
314 exemplar sequence per virus species has obvious limitations (particularly for inferences
315 about host range) but was effective for our purpose here. We confirmed the major
316 groupings proposed by Briddon et al. [8], supported by Mondal et al. [9], and used in the
317 9th ICTV report [10]: sweepoviruses are distinct from other begomoviruses, and the two
318 distinct groups of viruses from AAEO and the Americas. We do not see support for
319 breaking down the geography within the regions more finely – and even the more

Crespo-Bellido et al.

320 specifically named clades in the previous analysis had representatives from non-titular
321 countries [8]. We also do not observe an equivalent to the “outsiders” group highlighted
322 by Briddon et al. in either phylogeny.

323 We observe well-supported clades that include legume-infecting begomoviruses
324 from Asia in both of our analyses (Fig. S1 and S2), which correspond to a previously
325 defined lineage of begomoviruses classified as the “legumoviruses” (also known as
326 “legume yellow mosaic viruses”) that includes mungbean yellow mosaic virus,
327 mungbean yellow mosaic India virus, Dolichos yellow mosaic virus, horsegram yellow
328 mosaic virus and kudzu mosaic virus [8, 69] along with more recently characterized
329 close relatives from Asia: velvet bean severe mosaic virus [70], Rhynchosia yellow
330 mosaic virus [71] and Rhynchosia yellow mosaic India virus [72]. Two other legume-
331 infecting begomoviruses from Africa referenced as “legumoviruses” in the literature –
332 soybean mild mottle virus and Desmodium mottle virus [61] – cluster with the Asian
333 “legumoviruses” for CP but not for Rep. Two additional African viruses referred to as
334 “legumoviruses” – soybean chlorotic blotch virus and cowpea golden mosaic virus –
335 cluster together in a separate clade for both CP and Rep. The evolutionary relationships
336 and overall polyphyly for these African and Asian legume-infecting begomoviruses
337 agrees with previous analyses based on DNA-A segments [61] but conflicts with a more
338 recent analysis claiming monophyly for the African and the Asian species [73].
339 Interestingly, other legume-infecting exemplars from Asia – such as French bean leaf
340 curl virus, senna leaf curl virus and pea leaf distortion virus – are not closely related to
341 the African/Asian “legumovirus” clade. As legume-infecting begomoviruses are more

Crespo-Bellido et al.

342 broadly distributed, we suggest that researchers should minimize use of the word
343 “legumovirus” going forward.

344 The CP phylogeny supports three designations: a monophyletic, V2/AV2-less
345 Americas clade (including CoYVV and CoGMV), a paraphyletic AAE0 group and a
346 sweepovirus clade. On the other hand, the Rep phylogeny is largely consistent with two
347 groups: an Americas clade and AAE0 group (including CoYVV, CoGMV and
348 sweepoviruses). However, the lack of V2/AV2 is much more reflective than geography
349 of the evolution of CP and Rep, with SbCBV as the sole exception for CP and the
350 recombinant ToLV and putative recombinants CoYVV and CoGMV as the exceptions for
351 Rep.

352 **Begomoviruses remain largely delimited by geography.** The evolutionary split
353 between the AAE0 and Americas begomoviruses was proposed to be a consequence
354 of the dissolution of the Bering land bridge between Asia and North America 20-30
355 MYA, which may have significantly limited dispersal between these regions until more
356 recent human migration [74]. Increasing globalization of agricultural trade has been
357 linked with plant virus emergence and epidemics, stemming from encounters between
358 introduced crops and the native viruses of a region, climate change, and the spread of
359 plant viruses and their vectors throughout the world [75-77]. There are a few examples
360 of begomovirus introductions across regions such as TYLCV throughout the Americas
361 [58, 78, 79], Abutilon mosaic virus in the United Kingdom [38] and New Zealand [80],
362 squash leaf curl virus in the Middle East [81] and watermelon chlorotic stunt virus in
363 North America [82, 83]. As a result, viral exchange between the AAE0 and Americas
364 regions could be reflected in these phylogenies. Past introductions may also be

Crespo-Bellido et al.

365 revealed by the presence of cross-region hybrid species, such as ToLV in the Americas
366 and potentially CoYVV and CoGMV in the AAEO region. Yet, we see no other examples
367 of sequences clustering outside the region they were sampled from. It is possible that
368 introduced viral species have not been recovered due to uneven and insufficient
369 sampling; although the detection of novel begomovirus species has more than doubled
370 in the last decade, sequencing is concentrated in certain countries (Fig. 1) which may
371 be biasing the recovered diversity of begomoviruses. Sequencing also has largely been
372 focused on economically important crops, an approach that underestimates the diversity
373 that exists in wild plants and weeds that act as viral reservoirs and have been implicated
374 as sources for recombinant lineages and novel virus species [84-87]. Additionally, while
375 high-throughput sequencing methods are established as essential tools for plant virus
376 discovery [88, 89], infrastructure gaps still hinder plant virus discovery and management
377 in some regions of the world [90]. As sequencing continues to become broader and
378 more accessible, more introduced viral species may be discovered.

379 Vector-virus co-adaptation might also contribute to the lack of cross-region
380 begomovirus species spread. The CP interacts with many proteins from the vector (and
381 its endosymbionts) in ways that determine transmission and transmission efficiency [91-
382 93]. It is possible that local whitefly biotypes are not well-adapted to support the efficient
383 transmission of introduced begomoviruses, limiting their potential for spread. This could
384 be one reason for the largely-African clade in the CP tree (but not the Rep tree): there
385 may be an undetermined molecular evolutionary signature of adaptation to African
386 whitefly populations that unite these sequences. However, we may expect localized co-
387 adaptation to break down in the future with the introduction of invasive vector biotypes

Crespo-Bellido et al.

388 or species between regions. For instance, the introduction of the invasive Middle East-
389 Asia Minor 1 (MEAM1, formerly known as B) and Mediterranean (MED, formerly known
390 as Q) whitefly biotypes in the Americas may facilitate the emergence of introduced
391 AAEO begomoviruses and of new recombinant species. MEAM1 exhibits greater
392 polyphagy and can colonize tomato more efficiently than native populations, which has
393 resulted in tomato epidemics across South America through the transference of
394 indigenous begomoviruses from wild plant hosts into tomato [94-96]. The greater host
395 range, along with increased capacity for environmental adaptation, may also explain the
396 gradual displacement of local whitefly populations by MEAM1 in most agricultural
397 regions of Latin America [94, 97-99]. The MED biotype is also a successful invader in
398 the Americas [94, 100-102], and is resistant to pesticides compared to MEAM1 and
399 indigenous whiteflies [103, 104], so it will likely also be successful at displacing
400 indigenous whiteflies in managed ecosystems. Ultimately, the continuous spread of
401 these invasive vector species increases the likelihood that a co-adapted, introduced
402 AAEO begomovirus will successfully spread and be detected. It may also promote
403 coinfection in a wider variety of hosts and, consequently, the conditions for the
404 emergence of novel recombinants. The relationship between different whiteflies and
405 monopartite and bipartite viruses are just beginning to be elucidated [105-107], and
406 future work may connect the success of monopartite begomoviruses in the Americas
407 with cross-region, introduced whitefly vectors.

408 Recombination is a major mechanism of speciation for begomoviruses [4, 108,
409 109]. Although we see frequent recombination within regions, cross-region
410 recombinants are rare in our analyses (Fig. 5). AAEO-Americas begomovirus

Crespo-Bellido et al.

411 recombination events may be under strong negative selection, given that recombination
412 between significantly diverged viruses could disrupt intragenomic co-adaptation and
413 selection will act to maintain co-evolved protein-protein and protein-DNA interactions
414 [110]. However, the few examples of emergent cross-region recombinants (ToLV and
415 CoYVV) demonstrate that it is possible. Without significant improvements in quarantine
416 and more careful trade of planting materials, it can be anticipated that more
417 begomoviruses will be introduced from AAEO to the Americas and vice versa,
418 increasing the chances for inter-region recombination.[110-114]

419 **V2/AV2 function likely varies across the genus.** Both the CP and Rep trees (Fig 2, 3)
420 show that monopartite and bipartite genome organizations are frequently interchanged
421 in the AAEO region (although monopartite viruses appear much more prevalent) and
422 that monopartite viruses evolved at least five separate times from bipartite relatives in
423 the Americas. It has been suggested that the V2/AV2 of AAEO bipartite begomoviruses
424 is a vestigial gene from monopartite ancestors that may increase fitness but is no longer
425 required for movement [115], and that the loss of the V2/AV2 gene led to the prevalence
426 of bipartite viruses in the Americas [8, 14]. This conventional wisdom has broken down
427 with additional sampling and experimentation. For instance, Sri Lankan cassava
428 mosaic virus is a bipartite virus, but its DNA-A alone can infect *Nicotiana benthamiana*
429 (although coinfecting with its DNA-B increases symptom development) [116]. A similar
430 pattern has been found with two other AAEO bipartite viruses: tomato yellow leaf curl
431 Thailand virus in tomato [117] and tomato leaf curl Gujarat virus in *N. benthamiana*
432 [118]. Corresponding results have been seen with in *N. benthamiana* with the DNA-A of
433 two Americas begomoviruses (tomato chlorotic mottle virus [119] and Sida golden

Crespo-Bellido et al.

434 mosaic Braco virus [120]), and the fact that these infectious clones were unable to
435 replicate in the solanaceous hosts in which they were found may imply that they need a
436 DNA-B for successful infection of some hosts. That some bipartite DNA-As can infect
437 some hosts without DNA-B, and that infectious clones of DNA-A segments are
438 successful in the hyper-susceptible laboratory host *N. benthamiana* [121] but not
439 originally identified field hosts make the designations of monopartite and bipartite more
440 fluid than expected. Similarly, the confirmed monopartite pepper yellow vein Mali virus is
441 frequently associated with a DNA-B component in the field, and laboratory testing
442 showed that it infects more cells, replicates to higher DNA levels and transmits more
443 effectively when coinfecting with a DNA-B [122]. That begomoviruses might be
444 functionally monopartite and bipartite in different hosts, or under different conditions,
445 helps explain frequent transitions between monopartite and bipartite genome
446 organizations in the CP and Rep phylogenies.

447 The intra- and inter-cellular movement proteins on the DNA-B segment may not
448 be as essential in all hosts as previously assumed – they could lend a competitive
449 advantage against other viruses in some hosts, and/or be needed to counter a host
450 defense pathway in others. Conversely, the movement functions of the DNA-B proteins
451 may be adequately performed in the monopartite viruses (and the DNA-A segments
452 capable of infecting as independent infectious clones) by other proteins. The CP of
453 AAE0 monopartite begomoviruses, aided by host factors and other viral proteins like V2
454 and C5, possesses the nucleocytoplasmic trafficking functions for intracellular
455 movement that are carried out by the nuclear-shuttle protein in the DNA-B segment of
456 bipartite begomoviruses [34, 123, 124]. Indeed, the nuclear shuttle protein may be a

Crespo-Bellido et al.

457 distant homolog of the CP [125]. Cell-to-cell movement is attributed mainly to V2 in
458 monopartite viruses [34, 115, 124, 126], with assistance of C5 for docking to the
459 plasmodesmata [16]. Yet, the multiple examples of monopartite Americas
460 begomoviruses lacking V2 [27-32, 60] suggest that V2 is not essential for systemic
461 movement for all begomoviruses. It is possible that other proteins may supply the
462 movement functions of V2 in its absence, as begomovirus proteins are highly
463 multifunctional [13, 127]. For example, a study with the TYLCV-Israel strain showed that
464 loss-of-function V2 mutants retain the ability to establish systemic yet attenuated
465 infection [35]. However, abolishing the expression of C4 – which is already implicated in
466 movement in some species – inhibited systemic infection [35]. Additionally, a newly
467 discovered small gene, V3, can target plasmodesmata and partly aid cell-to-cell
468 trafficking of movement-deficient mutants of turnip mosaic virus [20]. Thus, movement is
469 potentially a highly evolvable redundant function of multiple genes that may support
470 inter-cellular movement for the no-V2 monopartite begomoviruses. Alternatively, it was
471 proposed that phloem-limited begomoviruses may have a reduced need for protein-
472 mediated inter-cellular movement [27, 128], although this needs experimental
473 assessment. The phloem-limited monopartite Americas begomoviruses ToLDeV [60]
474 and ToMoLCV [27] provide an excellent system to explore this hypothesis. However,
475 careful assessment of inter-cellular movement capabilities for these highly
476 multifunctional proteins must be done on a case-by-case basis, given that (i)
477 begomovirus positional homologs are not necessarily functional homologs [129] and (ii)
478 many begomovirus proteins are also suppressors of RNA silencing and defective
479 infection phenotypes may result from failure to suppress host defenses.

Crespo-Bellido et al.

480 An additional feature of the V2/AV2-less Americas viruses is that their overall
481 genomes/DNA-A are, on average, 130 nucleotides shorter than those from AAE0 (Fig.
482 5). Ho et al. [26] attributed shorter segment lengths to progressive deletion of the
483 V2/AV2 promoter region within the conserved region. We did not observe a systematic
484 difference between CP and Rep lengths in our analyses, indicating that the difference
485 likely lies in the length of the long intergenic region. As AAE0 begomoviruses are
486 thought to be ancestral to those in the Americas – in part because of the larger
487 sequence diversity found in Africa, Asia, Europe and Oceania compared to
488 begomoviruses in the Americas for both DNA-A proteins (this study) and DNA-B
489 segments [54] – this implies a directionality to the difference: American begomoviruses
490 likely experienced a genome reduction. Simplification and reduction in genome size
491 may be the dominant mode of genomic evolution, occasionally interrupted by periods of
492 complexification [130]. Additionally, high degree of overlapping gene regions in
493 geminivirus genomes may suggest strong pervasive selection for smaller genomic
494 segments [131, 132]. Interestingly, these shorter Americas DNA-As are accompanied by
495 DNA-B segments that are, on average, 113 nt shorter than their AAE0 counterparts
496 [26].

497 **Sweepovirus CPs group outside other begomovirus CPs.** Sweepovirus CP
498 sequences display significant divergence from the rest of all the begomovirus CPs (Fig
499 2 and Fig S1). However, sweepovirus Reps are comfortably nested within the AAE0
500 Rep sequences. The incongruencies between sweepovirus CP and Rep sequences
501 suggest that they may be the product of recombination between a typical AAE0
502 begomovirus for the Rep and a highly diverged begomovirus for the CP, or otherwise

Crespo-Bellido et al.

503 experienced selection pressures that drove the evolution of a unique CP through
504 repeated fixation of mutations. Sweepoviruses are often the sister clade to all other
505 begomoviruses in phylogenetic analyses [8, 10] and could resemble early
506 begomoviruses more than other extant species. Of course, recombination among
507 geminivirus genera may have created this relationship as well [6, 133-135]. One factor
508 that could indicate sweepoviruses retain some ancestral begomovirus traits is their
509 length, on average longer than the non-sweepovirus begomoviruses (Fig. 5). All of the
510 closely related genera to *Begomovirus* have members with longer genomes than
511 begomoviruses ($\geq 2.9\text{kb}$): *Maldovirus* [136], *Topocuvirus* [134, 136], *Grablovirus* [134,
512 136], *Turncurtovirus* [134, 136], *Opunvirus* [136], *Curtovirus* [134, 136], *Citlodavirus*
513 [134, 136, 137], *Mulcrilevirus* [134, 136, 137]. Additionally, Fontenele et al. [138]
514 speculate that a larger, citlodavirus-like ancestor may have been an intermediate step in
515 the evolution of bipartite begomoviruses from a monopartite ancestor because
516 citlodaviruses have a movement protein that resembles the one on begomovirus DNA-B
517 segments.

518 **No evidence that CoYVV and CoGMV are ancestral to Americas-type
519 begomoviruses.** It was suggested that the genomic features of the CoYVV and
520 CoGMV exemplars from Vietnam and basal relationship to Americas-type viruses for
521 their complete DNA-A segments is evidence that Americas-type begomoviruses were
522 present in Afro-Eurasia prior to continental separation [14, 74]. However, phylogenetic
523 analyses revealed that the CP of CoYVV is closely related to the CP of contemporary
524 Americas begomoviruses while the CoGMV CP is basal but also closely related to the
525 Americas CP clade (Fig. 2). On the other hand, both the Rep of CoYVV and CoGMV

Crespo-Bellido et al.

526 cluster within the AAE0 group (Fig. 3). These results suggest that CoYVV and
527 potentially CoGMV may be relatively recent recombinants that inherited their CP from
528 Americas begomoviruses and their Rep from AAE0 begomoviruses, rather than
529 exemplars providing evidence that Americas begomoviruses evolved from AAE0-type
530 ancestors prior to the separation of the continents. The presented alternative that
531 begomoviruses may have evolved in the AAE0 region, and a progenitor of the current
532 Americas begomoviruses was introduced more recently through human migration
533 appears much more likely [8, 59]. Alternatively, the ancestry of the Americas CP
534 sequences could involve recombination between a CoGMV-like virus and a
535 begomovirus of unknown ancestry. Nonetheless, the CoYVV and CoGMV exemplars do
536 not provide enough evidence to infer an origin for the Americas begomovirus clade. We
537 recommend careful interpretation of DNA-A segment phylogenies since intermediate
538 evolutionary relationships like the ones observed for the *Corchorus* viruses from
539 Vietnam may be the product of recombination, as traditional phylogenetic analyses will
540 average across distinct evolutionary histories within recombinant segments.

541 **Moving away from “New World/Old World” terminology.** The Americas No-V2/AV2
542 and the AAE0 groups are typically referred to as “New World” and “Old World”
543 begomoviruses, respectively. In this work we have deliberately avoided these vaguely
544 defined historical terms, which allude to the European rediscovery of the Americas in
545 1492. While there is a clear geographical pattern indicating that the AAE0 and Americas
546 lineages independently co-diversified with their hosts for a long period of time, three
547 begomovirus species lacking V2/AV2 have been isolated from AAE0: from *Corchorus*
548 species in Vietnam and India that often group with viruses from the Americas [14, 59,

Crespo-Bellido et al.

549 139] and from soybean in Nigeria [61]. Despite current usage, we suggest that it does
550 not make sense to use the phrase “New World” while referring to any of these three viral
551 species. Further, all sweepoviruses can be considered more closely related to viruses
552 from the AAE0 region than the Americas, regardless of country of isolation, which may
553 be related to the distinctive history of sweetpotato movement across the Pacific [140].
554 Finally, usage of the term “New World” is inconsistent outside of begomovirology. Many
555 authors classify Australia as part of “the New World”, i.e., not part of Europe. Because
556 the first sequenced isolate of tomato leaf curl virus was from Australia [141] and since
557 that sequence clusters with sequences from African and Asia, we believe it is currently
558 useful to consider Oceania together with Afro-Eurasia in defining begomovirus groups.
559 (Note that the word “Oceania” is also used differently in different contexts).

560 Regardless, geographically named clades may be of decreasing importance in
561 begomovirology in upcoming decades. Several important plant host-virus pairs have
562 resulted from ‘new encounters’ [77, 81-83], and the two large geographically defined
563 lineages are no longer fully distinct, as evidenced by the recombinant origin of tomato
564 latent virus [57] after the worldwide spread of TYLCV.

Crespo-Bellido et al.

ACKNOWLEDGEMENTS

We would like to thank members of the Duffy lab at Rutgers University and our colleagues at the Hanley-Bowdoin lab in North Carolina State University for feedback and a critical reading of this manuscript. This work was supported by US NSF award OIA-1545553 to SD, an HHMI Gilliam Fellowship for Advanced Study for ACB. YBA was supported by the RISE program at Rutgers University.

Crespo-Bellido et al.

565 REFERENCES

- 566 1. **Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO et al.** World
567 Management of Geminiviruses. *Annu Rev Phytopathol* 2018;56:637-677.
- 568 2. **Seal SE, vandenBosch F, Jeger MJ.** Factors Influencing Begomovirus Evolution and
569 Their Increasing Global Significance: Implications for Sustainable Control. *Critical Reviews in*
570 *Plant Sciences* 2006;25(1):23-46.
- 571 3. **Navas-Castillo J, Fiallo-Olive E, Sanchez-Campos S.** Emerging virus diseases
572 transmitted by whiteflies. *Annu Rev Phytopathol* 2011;49:219-248.
- 573 4. **Fiallo-Olive E, Navas-Castillo J.** The Role of Extensive Recombination in the Evolution
574 of Geminiviruses. *Curr Top Microbiol Immunol* 2023;439:139-166.
- 575 5. **Fiallo-Olivé E, Navas-Castillo J.** Begomoviruses: what is the secret (s) of their
576 success? *Trends in Plant Science* 2023.
- 577 6. **Rybicki EP.** A phylogenetic and evolutionary justification for three genera of
578 Geminiviridae. *Arch Virol* 1994;139(1-2):49-77.
- 579 7. **Harrison B, Robinson D.** Natural Genomic and Antigenic Variation in Whitefly-
580 Transmitted Geminiviruses (Begomoviruses). *Annu Rev Phytopathol* 1999;37:369-398.
- 581 8. **Briddon RW, Patil BL, Bagewadi B, Nawaz-ul-Rehman MS, Fauquet CM.** Distinct
582 evolutionary histories of the DNA-A and DNA-B components of bipartite begomoviruses. *BMC*
583 *Evol Biol* 2010;10:97.
- 584 9. **Mondal D, Mandal S, Shil S, Sahana N, Pandit GK et al.** Genome wide molecular
585 evolution analysis of begomoviruses reveals unique diversification pattern in coat protein gene
586 of Old World and New World viruses. *Virusdisease* 2019;30(1):74-83.
- 587 10. **King AM, Lefkowitz E, Adams MJ, Carstens EB.** *Virus taxonomy: ninth report of the*
588 *International Committee on Taxonomy of Viruses*: Elsevier; 2011.
- 589 11. **Fiallo-Olive E, Lett JM, Martin DP, Roumagnac P, Varsani A et al.** ICTV Virus
590 Taxonomy Profile: Geminiviridae 2021. *J Gen Virol* 2021;102(12).
- 591 12. **Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S.** Geminiviruses: masters
592 at redirecting and reprogramming plant processes. *Nat Rev Microbiol* 2013;11(11):777-788.
- 593 13. **Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F et al.** Insights into the
594 multifunctional roles of geminivirus-encoded proteins in pathogenesis. *Archives of Virology*
595 2022;167(2):307-326.
- 596 14. **Ha C, Coombs S, Revill P, Harding R, Vu M et al.** Molecular characterization of
597 begomoviruses and DNA satellites from Vietnam: additional evidence that the New World
598 geminiviruses were present in the Old World prior to continental separation. *J Gen Virol*
599 2008;89(Pt 1):312-326.
- 600 15. **Zhao S, Gong P, Ren Y, Liu H, Li H et al.** The novel C5 protein from tomato yellow leaf
601 curl virus is a virulence factor and suppressor of gene silencing. *Stress Biology* 2022;2(1):19.
- 602 16. **Zhao S, Gong P, Liu J, Liu H, Lozano-Duran R et al.** Geminivirus C5 proteins mediate
603 formation of virus complexes at plasmodesmata for viral intercellular movement. *Plant Physiol*
604 2023.
- 605 17. **Li F, Xu X, Huang C, Gu Z, Cao L et al.** The AC5 protein encoded by Mungbean yellow
606 mosaic India virus is a pathogenicity determinant that suppresses RNA silencing-based antiviral
607 defenses. *New Phytol* 2015;208(2):555-569.
- 608 18. **Wang Z, Wang Y, Lozano-Duran R, Hu T, Zhou X.** Identification of a novel C6 protein
609 encoded by tomato leaf curl China virus. *Phytopathology Research* 2022;4(1):46.
- 610 19. **Liu H, Chang Z, Zhao S, Gong P, Zhang M et al.** Functional identification of a novel C7
611 protein of tomato yellow leaf curl virus. *Virology* 2023;585:117-126.

Crespo-Bellido et al.

612 20. **Gong P, Zhao S, Liu H, Chang Z, Li F et al.** Tomato yellow leaf curl virus V3 protein
613 traffics along microfilaments to plasmodesmata to promote virus cell-to-cell movement. *Sci
614 China Life Sci* 2022;65(5):1046-1049.

615 21. **Gong P, Tan H, Zhao S, Li H, Liu H et al.** Geminiviruses encode additional small
616 proteins with specific subcellular localizations and virulence function. *Nat Commun*
617 2021;12(1):4278.

618 22. **Chiu CW, Li YR, Lin CY, Yeh HH, Liu MJ.** Translation initiation landscape profiling
619 reveals hidden open-reading frames required for the pathogenesis of tomato yellow leaf curl
620 Thailand virus. *Plant Cell* 2022;34(5):1804-1821.

621 23. **Arguello-Astorga GR, Ruiz-Medrano R.** An iteron-related domain is associated to Motif
622 1 in the replication proteins of geminiviruses: identification of potential interacting amino acid-
623 base pairs by a comparative approach. *Arch Virol* 2001;146(8):1465-1485.

624 24. **Arguello-Astorga GR, Guevara-Gonzalez RG, Herrera-Estrella LR, Rivera-
625 Bustamante RF.** Geminivirus replication origins have a group-specific organization of iterative
626 elements: a model for replication. *Virology* 1994;203(1):90-100.

627 25. **Mauricio-Castillo JA, Torres-Herrera SI, Cardenas-Conejo Y, Pastor-Palacios G,
628 Mendez-Lozano J et al.** A novel begomovirus isolated from sida contains putative cis- and
629 trans-acting replication specificity determinants that have evolved independently in several
630 geographical lineages. *Arch Virol* 2014;159(9):2283-2294.

631 26. **Ho ES, Kuchie J, Duffy S.** Bioinformatic analysis reveals genome size reduction and
632 the emergence of tyrosine phosphorylation site in the movement protein of New World bipartite
633 begomoviruses. *PLoS One* 2014;9(11):e111957.

634 27. **Souza JO, Melgarejo TA, Vu S, Nakasu EYT, Chen LF et al.** How To Be a Successful
635 Monopartite Begomovirus in a Bipartite-Dominated World: Emergence and Spread of Tomato
636 Mottle Leaf Curl Virus in Brazil. *J Virol* 2022;96(18):e0072522.

637 28. **Sanchez-Campos S, Martinez-Ayala A, Marquez-Martin B, Aragon-Caballero L,
638 Navas-Castillo J et al.** Fulfilling Koch's postulates confirms the monopartite nature of tomato
639 leaf deformation virus: a begomovirus native to the New World. *Virus Res* 2013;173(2):286-293.

640 29. **Romay G, Geraud-Pouey F, Chirinos DT, Mahillon M, Gillis A et al.** Tomato Twisted
641 Leaf Virus: A Novel Indigenous New World Monopartite Begomovirus Infecting Tomato in
642 Venezuela. *Viruses* 2019;11(4):327.

643 30. **Macedo MA, Albuquerque LC, Maliano MR, Souza JO, Rojas MR et al.**
644 Characterization of tomato leaf curl purple vein virus, a new monopartite New World
645 begomovirus infecting tomato in Northeast Brazil. *Archives of Virology* 2018;163(3):737-743.

646 31. **Guevara-Rivera EA, Rodriguez-Negrete EA, Arechiga-Carvajal ET, Leyva-Lopez NE,
647 Mendez-Lozano J.** From Metagenomics to Discovery of New Viral Species: Galium Leaf
648 Distortion Virus, a Monopartite Begomovirus Endemic in Mexico. *Frontiers in Microbiology,
649 Original Research* 2022;13.

650 32. **Fiallo-Olive E, Navas-Castillo J.** Molecular and Biological Characterization of a New
651 World Mono-/Bipartite Begomovirus/Deltasatellite Complex Infecting Corchorus siliquosus. *Front
652 Microbiol* 2020;11:1755.

653 33. **Poornima Priyadarshini CG, Ambika MV, Tippeswamy R, Savithri HS.** Functional
654 characterization of coat protein and V2 involved in cell to cell movement of Cotton leaf curl
655 Kokhran virus-Dabawali. *PLoS One* 2011;6(11):e26929.

656 34. **Breves SS, Silva FA, Euclides NC, Saia TFF, Jean-Baptiste J et al.** Begomovirus-
657 Host Interactions: Viral Proteins Orchestrating Intra and Intercellular Transport of Viral DNA
658 While Suppressing Host Defense Mechanisms. *Viruses* 2023;15(7).

659 35. **Hak H, Levy Y, Chandran SA, Belausov E, Loyter A et al.** TYLCV-Is movement in
660 planta does not require V2 protein. *Virology* 2015;477:56-60.

661 36. **Padidam M, Beachy RN, Fauquet CM.** Classification and identification of geminiviruses
662 using sequence comparisons. *J Gen Virol* 1995;76 (Pt 2):249-263.

Crespo-Bellido et al.

663 37. **Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibanez JT et al.** Functional
664 analysis of a novel motif conserved across geminivirus Rep proteins. *J Virol* 2011;85(3):1182-
665 1192.

666 38. **Brown JK, Idris AM, Torres-Jerez I, Banks GK, Wyatt SD.** The core region of the coat
667 protein gene is highly useful for establishing the provisional identification and classification of
668 begomoviruses. *Arch Virol* 2001;146(8):1581-1598.

669 39. **Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ.** Basic local alignment search
670 tool. *J Mol Biol* 1990;215(3):403-410.

671 40. **Edgar RC.** MUSCLE: multiple sequence alignment with high accuracy and high
672 throughput. *Nucleic Acids Res* 2004;32(5):1792-1797.

673 41. **Tamura K, Stecher G, Kumar S.** MEGA11: Molecular Evolutionary Genetics Analysis
674 Version 11. *Mol Biol Evol* 2021;38(7):3022-3027.

675 42. **Larsson A.** AliView: a fast and lightweight alignment viewer and editor for large
676 datasets. *Bioinformatics* 2014;30(22):3276-3278.

677 43. **Krupovic M, Varsani A, Kazlauskas D, Breitbart M, Delwart E et al.** Cressdhaviricota:
678 a Virus Phylum Unifying Seven Families of Rep-Encoding Viruses with Single-Stranded, Circular
679 DNA Genomes. *J Virol* 2020;94(12).

680 44. **Kazlauskas D, Varsani A, Koonin EV, Krupovic M.** Multiple origins of prokaryotic and
681 eukaryotic single-stranded DNA viruses from bacterial and archaeal plasmids. *Nat Commun*
682 2019;10(1):3425.

683 45. **Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD et al.** IQ-TREE 2:
684 New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. *Mol Biol Evol*
685 2020;37(5):1530-1534.

686 46. **Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.** ModelFinder:
687 fast model selection for accurate phylogenetic estimates. *Nat Methods* 2017;14(6):587-589.

688 47. **Bianchini G, Sánchez-Baracaldo P.** TreeViewer - Cross-platform software to draw
689 phylogenetic trees version 2.1.0. 2023.

690 48. **Bryant D, Moulton V.** Neighbor-net: an agglomerative method for the construction of
691 phylogenetic networks. *Mol Biol Evol* 2004;21(2):255-265.

692 49. **Huson DH, Bryant D.** Application of phylogenetic networks in evolutionary studies. *Mol*
693 *Biol Evol* 2006;23(2):254-267.

694 50. **Bruen TC, Philippe H, Bryant D.** A simple and robust statistical test for detecting the
695 presence of recombination. *Genetics* 2006;172(4):2665-2681.

696 51. **R Development Core Team.** R: A Language and Environment for Statistical Computing.
697 R Foundation for Statistical Computing, Vienna, Austria; 2020. <https://www.r-project.org/>.

698 52. **Kassambara A.** ggpubr: "ggplot2" based publication ready plots. *R package version 04 0*
699 2020;438.

700 53. **Shannon CE.** A mathematical theory of communication. *The Bell system technical*
701 *journal* 1948;27(3):379-423.

702 54. **Dubey D, Hoyer JS, Duffy S.** Limited role of recombination in the global diversification
703 of begomovirus DNA-B proteins. *Virus Res* 2022;323:198959.

704 55. **Galili T.** dendextend: an R package for visualizing, adjusting and comparing trees of
705 hierarchical clustering. *Bioinformatics* 2015;31(22):3718-3720.

706 56. **Paradis E, Schliep K.** ape 5.0: an environment for modern phylogenetics and
707 evolutionary analyses in R. *Bioinformatics* 2019;35(3):526-528.

708 57. **Fuentes A, Carlos N, Ruiz Y, Callard D, Sanchez Y et al.** Field Trial and Molecular
709 Characterization of RNAi-Transgenic Tomato Plants That Exhibit Resistance to Tomato Yellow
710 Leaf Curl Geminivirus. *Mol Plant Microbe Interact* 2016;29(3):197-209.

711 58. **Duffy S, Holmes EC.** Multiple introductions of the Old World begomovirus Tomato
712 yellow leaf curl virus into the New World. *Appl Environ Microbiol* 2007;73(21):7114-7117.

Crespo-Bellido et al.

713 59. **Ha C, Coombs S, Revill P, Harding R, Vu M et al.** Corchorus yellow vein virus, a New
714 World geminivirus from the Old World. *J Gen Virol* 2006;87(Pt 4):997-1003.

715 60. **Melgarejo TA, Kon T, Rojas MR, Paz-Carrasco L, Zerbini FM et al.** Characterization of
716 a New World Monopartite Begomovirus Causing Leaf Curl Disease of Tomato in Ecuador and
717 Peru Reveals a New Direction in Geminivirus Evolution. *Journal of Virology* 2013;87(10):5397-
718 5413.

719 61. **Alabi OJ, Kumar PL, Mgbechi-Ezeri JU, Naidu RA.** Two new 'legumoviruses' (genus
720 Begomovirus) naturally infecting soybean in Nigeria. *Arch Virol* 2010;155(5):643-656.

721 62. **Lefevre P, Martin DP, Harkins G, Lemey P, Gray AJ et al.** The spread of tomato
722 yellow leaf curl virus from the Middle East to the world. *PLoS Pathog* 2010;6(10):e1001164.

723 63. **Diaz-Pendon JA, Canizares MC, Moriones E, Bejarano ER, Czosnek H et al.** Tomato
724 yellow leaf curl viruses: menage a trois between the virus complex, the plant and the whitefly
725 vector. *Mol Plant Pathol* 2010;11(4):441-450.

726 64. **Khan AJ, Akhtar S, Singh AK, Al-Shehi AA, Al-Matrushi AM et al.** Recent evolution of
727 a novel begomovirus causing tomato leaf curl disease in the Al-Batinah region of Oman. *Arch
728 Virol* 2014;159(3):445-455.

729 65. **Monci F, Sánchez-Campos S, Navas-Castillo J, Moriones E.** A Natural Recombinant
730 between the Geminiviruses Tomato yellow leaf curl Sardinia virus and Tomato yellow leaf curl
731 virus Exhibits a Novel Pathogenic Phenotype and Is Becoming Prevalent in Spanish
732 Populations. *Virology* 2002;303(2):317-326.

733 66. **Garcia-Andres S, Monci F, Navas-Castillo J, Moriones E.** Begomovirus genetic
734 diversity in the native plant reservoir *Solanum nigrum*: Evidence for the presence of a new virus
735 species of recombinant nature. *Virology* 2006;350(2):433-442.

736 67. **Akhtar S, Khan AJ, Singh AS, Briddon RW.** Identification of a disease complex
737 involving a novel monopartite begomovirus with beta- and alphasatellites associated with okra
738 leaf curl disease in Oman. *Arch Virol* 2014;159(5):1199-1205.

739 68. **Rosario K, Seah YM, Marr C, Varsani A, Kraberger S et al.** Vector-Enabled
740 Metagenomic (VEM) Surveys Using Whiteflies (Aleyrodidae) Reveal Novel Begomovirus
741 Species in the New and Old Worlds. *Viruses* 2015;7(10):5553-5570.

742 69. **Qazi J, Ilyas M, Mansoor S, Briddon RW.** Legume yellow mosaic viruses: genetically
743 isolated begomoviruses. *Mol Plant Pathol* 2007;8(4):343-348.

744 70. **Zaim M, Kumar Y, Hallan V, Zaidi AA.** Velvet bean severe mosaic virus: a distinct
745 begomovirus species causing severe mosaic in *Mucuna pruriens* (L.) DC. *Virus Genes*
746 2011;43(1):138-146.

747 71. **Ilyas M, Qazi J, Mansoor S, Briddon RW.** Molecular characterisation and infectivity of
748 a "Legumovirus" (genus Begomovirus: family Geminiviridae) infecting the leguminous weed
749 *Rhynchosia minima* in Pakistan. *Virus Res* 2009;145(2):279-284.

750 72. **Jyothsna P, Rawat R, Malathi VG.** Molecular characterization of a new begomovirus
751 infecting a leguminous weed *Rhynchosia minima* in India. *Virus Genes* 2011;42(3):407-414.

752 73. **Mollel HG, Sseruwagi P, Ndunguru J, Alicai T, Colvin J et al.** Desmodium mottle
753 virus, the first legumovirus (genus Begomovirus) from East Africa. *Arch Virol* 2017;162(6):1799-
754 1803.

755 74. **Lefevre P, Harkins GW, Lett JM, Briddon RW, Chase MW et al.** Evolutionary time-
756 scale of the begomoviruses: evidence from integrated sequences in the *Nicotiana* genome.
757 *PLoS One* 2011;6(5):e19193.

758 75. **Thresh J.** The origins and epidemiology of some important plant virus diseases. *Appl
759 Biol* 1980;5:1-65.

760 76. **Jones RAC, Naidu RA.** Global Dimensions of Plant Virus Diseases: Current Status and
761 Future Perspectives. *Annu Rev Virol* 2019;6(1):387-409.

762 77. **Jones RAC.** Disease Pandemics and Major Epidemics Arising from New Encounters
763 between Indigenous Viruses and Introduced Crops. *Viruses* 2020;12(12).

Crespo-Bellido et al.

764 78. **Polston JE, McGovern RJ, Brown LG.** Introduction of Tomato Yellow Leaf Curl Virus in
765 Florida and Implications for the Spread of This and Other Geminiviruses of Tomato. *Plant Dis*
766 1999;83(11):984-988.

767 79. **Mabvakure B, Martin DP, Kraberger S, Cloete L, van Brunschot S et al.** Ongoing
768 geographical spread of Tomato yellow leaf curl virus. *Virology* 2016;498:257-264.

769 80. **Lyttle DJ, Guy PL.** First record of Geminiviruses in New Zealand: Abutilon mosaic virus
770 and Honeysuckle yellow vein virus. *Australasian Plant Pathology* 2004;33(2):321-322.

771 81. **Lapidot M, Gelbart D, Gal-On A, Sela N, Anfoka G et al.** Frequent migration of
772 introduced cucurbit-infecting begomoviruses among Middle Eastern countries. *Virol J*
773 2014;11:181.

774 82. **Fontenele RS, Bhaskara A, Cobb IN, Majure LC, Salywon AM et al.** Identification of
775 the Begomoviruses Squash Leaf Curl Virus and Watermelon Chlorotic Stunt Virus in Various
776 Plant Samples in North America. *Viruses* 2021;13(5).

777 83. **Domínguez-Durán G, Rodríguez-Negrete EA, Morales-Aguilar JJ, Camacho-Beltrán
778 E, Romero-Romero JL et al.** Molecular and biological characterization of Watermelon chlorotic
779 stunt virus (WmCSV): An Eastern Hemisphere begomovirus introduced in the Western
780 Hemisphere. *Crop Protection* 2018;103:51-55.

781 84. **Rivarez MPS, Pecman A, Bacnik K, Maksimovic O, Vucurovic A et al.** In-depth study
782 of tomato and weed viromes reveals undiscovered plant virus diversity in an agroecosystem.
783 *Microbiome* 2023;11(1):60.

784 85. **Hasiow-Jaroszewska B, Boezen D, Zwart MP.** Metagenomic Studies of Viruses in
785 Weeds and Wild Plants: A Powerful Approach to Characterise Variable Virus Communities.
786 *Viruses* 2021;13(10).

787 86. **Garcia-Arenal F, Zerbini FM.** Life on the Edge: Geminiviruses at the Interface Between
788 Crops and Wild Plant Hosts. *Annu Rev Virol* 2019;6(1):411-433.

789 87. **Fiallo-Olive E, Trenado HP, Louro D, Navas-Castillo J.** Recurrent speciation of a
790 tomato yellow leaf curl geminivirus in Portugal by recombination. *Sci Rep* 2019;9(1):1332.

791 88. **Villamor DEV, Ho T, Al Rwahni M, Martin RR, Tzanetakis IE.** High Throughput
792 Sequencing For Plant Virus Detection and Discovery. *Phytopathology* 2019;109(5):716-725.

793 89. **Blawid R, Silva JMF, Nagata T.** Discovering and sequencing new plant viral genomes
794 by next-generation sequencing: description of a practical pipeline. *Annals of Applied Biology*
795 2017;170(3):301-314.

796 90. **Wamonje FO.** Post-COVID-19 Action: Guarding Africa's Crops against Viral Epidemics
797 Requires Research Capacity Building That Unifies a Trio of Transdisciplinary Interventions.
798 *Viruses* 2020;12(11).

799 91. **Wei J, Zhao JJ, Zhang T, Li FF, Ghanim M et al.** Specific cells in the primary salivary
800 glands of the whitefly Bemisia tabaci control retention and transmission of begomoviruses. *J
801 Virol* 2014;88(22):13460-13468.

802 92. **Gottlieb Y, Zchori-Fein E, Mozes-Daube N, Kontsedalov S, Skaljac M et al.** The
803 transmission efficiency of tomato yellow leaf curl virus by the whitefly Bemisia tabaci is
804 correlated with the presence of a specific symbiotic bacterium species. *J Viro*
805 2010;84(18):9310-9317.

806 93. **Ghosh S, Ghanim M.** Factors Determining Transmission of Persistent Viruses by
807 Bemisia tabaci and Emergence of New Virus-Vector Relationships. *Viruses* 2021;13(9).

808 94. **Barbosa Lda F, Marubayashi JM, De Marchi BR, Yuki VA, Pavan MA et al.**
809 Indigenous American species of the Bemisia tabaci complex are still widespread in the
810 Americas. *Pest Manag Sci* 2014;70(10):1440-1445.

811 95. **Krause-Sakate R, Watanabe LFM, Gorayeb ES, da Silva FB, Alvarez DL et al.**
812 Population Dynamics of Whiteflies and Associated Viruses in South America: Research
813 Progress and Perspectives. *Insects* 2020;11(12).

Crespo-Bellido et al.

814 96. **Rocha CS, Castillo-Urquiza GP, Lima AT, Silva FN, Xavier CA et al.** Brazilian
815 begomovirus populations are highly recombinant, rapidly evolving, and segregated based on
816 geographical location. *J Virol* 2013;87(10):5784-5799.

817 97. **Rocha KCG, Marubayashi JM, Navas-Castillo J, Yuki VA, Wilcken CF et al.** Only the
818 B biotype of *Bemisia tabaci* is present on vegetables in São Paulo State, Brazil. *Scientia*
819 *Agricola* 2011;68:120-123.

820 98. **Romay G, Geraud-Pouey F, Chirinos D, Santana M, Galindo-Castro I et al.**
821 Microsatellites reveal widespread predominance of an invasive over an indigenous *Bemisia*
822 *tabaci* in Venezuela. *Phytoparasitica* 2011;39:419-428.

823 99. **Morales FJ, Anderson PK.** The emergence and dissemination of whitefly-transmitted
824 geminiviruses in Latin America. *Archives of virology* 2001;146:415-441.

825 100. **Dalton R.** Whitefly infestations: the Christmas Invasion. *Nature* 2006;443(7114):898-
826 900.

827 101. **da Fonseca Barbosa L, Yuki VA, Marubayashi JM, De Marchi BR, Perini FL et al.**
828 First report of *Bemisia tabaci* Mediterranean (Q biotype) species in Brazil. *Pest Manag Sci*
829 2015;71(4):501-504.

830 102. **Bethke JA, Byrne FJ, Hodges GS, McKenzie CL, Shatters Jr RG.** First record of the
831 Q biotype of the sweetpotato whitefly, *Bemisia tabaci*, in Guatemala. *Phytoparasitica*
832 2009;37:61-64.

833 103. **Wang W, Wang S, Han G, Du Y, Wang J.** Lack of cross-resistance between
834 neonicotinoids and sulfoxaflor in field strains of Q-biotype of whitefly, *Bemisia tabaci*, from
835 eastern China. *Pesticide biochemistry and physiology* 2017;136:46-51.

836 104. **Horowitz AR, Kontsedalov S, Khasdan V, Ishaaya I.** Biotypes B and Q of *Bemisia*
837 *tabaci* and their relevance to neonicotinoid and pyriproxyfen resistance. *Arch Insect Biochem*
838 *Physiol* 2005;58(4):216-225.

839 105. **Fiallo-Olivé E, Pan L-L, Liu S-S, Navas-Castillo J.** Transmission of begomoviruses
840 and other whitefly-borne viruses: Dependence on the vector species. *Phytopathology*
841 2020;110(1):10-17.

842 106. **Kennedy GG, Sharpee W, Jacobson AL, Wambugu M, Mware B et al.** Genome
843 segment ratios change during whitefly transmission of two bipartite cassava mosaic
844 begomoviruses. *Sci Rep-Uk* 2023;13(1):10059.

845 107. **Pakkianathan BC, Kontsedalov S, Lebedev G, Mahadav A, Zeidan M et al.**
846 Replication of Tomato yellow leaf curl virus in its whitefly vector, *Bemisia tabaci*. *Journal of*
847 *Virology* 2015;89(19):9791-9803.

848 108. **Crespo-Bellido A, Hoyer JS, Dubey D, Jeannot RB, Duffy S.** Interspecies
849 Recombination Has Driven the Macroevolution of Cassava Mosaic Begomoviruses. *J Virol*
850 2021;95(17):e0054121.

851 109. **Lefevre P, Moriones E.** Recombination as a motor of host switches and virus
852 emergence: geminiviruses as case studies. *Current Opinion in Virology* 2015;10:14-19.

853 110. **Martin DP, Lefevre P, Varsani A, Hoareau M, Semegni JY et al.** Complex
854 recombination patterns arising during geminivirus coinfections preserve and demarcate
855 biologically important intra-genome interaction networks. *PLoS Pathog* 2011;7(9):e1002203.

856 111. **Lefevre P, Martin DP, Hoareau M, Naze F, Delatte H et al.** Begomovirus 'melting pot'
857 in the south-west Indian Ocean islands: molecular diversity and evolution through
858 recombination. *J Gen Virol* 2007;88(Pt 12):3458-3468.

859 112. **Lefevre P, Lett JM, Varsani A, Martin DP.** Widely conserved recombination patterns
860 among single-stranded DNA viruses. *J Virol* 2009;83(6):2697-2707.

861 113. **Lefevre P, Lett JM, Reynaud B, Martin DP.** Avoidance of protein fold disruption in
862 natural virus recombinants. *PLoS Pathog* 2007;3(11):e181.

863 114. **Kazlauskas D, Varsani A, Krupovic M.** Pervasive Chimerism in the Replication-
864 Associated Proteins of Uncultured Single-Stranded DNA Viruses. *Viruses* 2018;10(4).

Crespo-Bellido et al.

865 115. **Rothenstein D, Krenz B, Selchow O, Jeske H.** Tissue and cell tropism of Indian
866 cassava mosaic virus (ICMV) and its AV2 (precoat) gene product. *Virology* 2007;359(1):137-
867 145.

868 116. **Saunders K, Salim N, Mali VR, Malathi VG, Briddon R et al.** Characterisation of Sri
869 Lankan cassava mosaic virus and Indian cassava mosaic virus: evidence for acquisition of a
870 DNA B component by a monopartite begomovirus. *Virology* 2002;293(1):63-74.

871 117. **Rochester DE, DePaulo JJ, Fauquet CM, Beachy RN.** Complete nucleotide sequence
872 of the geminivirus tomato yellow leaf curl virus, Thailand isolate. *J Gen Virol* 1994;75 (Pt
873 3):477-485.

874 118. **Chakraborty S, Pandey PK, Banerjee MK, Kalloo G, Fauquet CM.** Tomato leaf curl
875 Gujarat virus, a New Begomovirus Species Causing a Severe Leaf Curl Disease of Tomato in
876 Varanasi, India. *Phytopathology* 2003;93(12):1485-1495.

877 119. **Galvao RM, Mariano AC, Luz DF, Alfenas PF, Andrade EC et al.** A naturally occurring
878 recombinant DNA-A of a typical bipartite begomovirus does not require the cognate DNA-B to
879 infect *Nicotiana benthamiana* systemically. *J Gen Virol* 2003;84(Pt 3):715-726.

880 120. **Stewart C, Kon T, Rojas M, Graham A, Martin D et al.** Mixed infection of *Sida*
881 *jamaicensis* in Jamaica reveals the presence of three recombinant begomovirus DNA A
882 components. *Arch Virol* 2014;159(9):2509-2512.

883 121. **Bally J, Nakasugi K, Jia F, Jung H, Ho SY et al.** The extremophile *Nicotiana*
884 *benthamiana* has traded viral defence for early vigour. *Nat Plants* 2015;1:15165.

885 122. **Ouattara A, Tiendrébéogo F, Becker N, Urbino C, Thébaud G et al.** Synergy between
886 an emerging monopartite begomovirus and a DNA-B component. *Sci Rep-Uk* 2022;12(1):695.

887 123. **Sharma P, Ikegami M.** Characterization of signals that dictate nuclear/nucleolar and
888 cytoplasmic shuttling of the capsid protein of Tomato leaf curl Java virus associated with DNA
889 beta satellite. *Virus Res* 2009;144(1-2):145-153.

890 124. **Rojas MR, Jiang H, Salati R, Xoconostle-Cazares B, Sudarshana MR et al.**
891 Functional analysis of proteins involved in movement of the monopartite begomovirus, Tomato
892 yellow leaf curl virus. *Virology* 2001;291(1):110-125.

893 125. **Kikuno R, Toh H, Hayashida H, Miyata T.** Sequence similarity between putative gene
894 products of geminiviral DNAs. *Nature* 1984;308(5959):562-562.

895 126. **Moshe A, Belausov E, Niehl A, Heinlein M, Czosnek H et al.** The Tomato yellow leaf
896 curl virus V2 protein forms aggregates depending on the cytoskeleton integrity and binds viral
897 genomic DNA. *Sci Rep* 2015;5:9967.

898 127. **Fondong VN.** Geminivirus protein structure and function. *Mol Plant Pathol*
899 2013;14(6):635-649.

900 128. **Maliano MR, Rojas MR, Macedo MA, Barboza N, Gilbertson RL.** The invasion biology
901 of tomato begomoviruses in Costa Rica reveals neutral synergism that may lead to increased
902 disease pressure and economic loss. *Virus Res* 2022;317:198793.

903 129. **Luna AP, Lozano-Duran R.** Geminivirus-Encoded Proteins: Not All Positional Homologs
904 Are Made Equal. *Front Microbiol* 2020;11:878.

905 130. **Wolf YI, Koonin EV.** Genome reduction as the dominant mode of evolution. *Bioessays*
906 2013;35(9):829-837.

907 131. **Munoz-Baena L, Poon AFY.** Using networks to analyze and visualize the distribution of
908 overlapping genes in virus genomes. *PLoS Pathog* 2022;18(2):e1010331.

909 132. **Martín-Hernández I, Pagán I.** Gene overlapping as a modulator of begomovirus
910 evolution. *Microorganisms* 2022;10(2):366.

911 133. **Varsani A, Shepherd DN, Dent K, Monjane AL, Rybicki EP et al.** A highly divergent
912 South African geminivirus species illuminates the ancient evolutionary history of this family. *Virol*
913 *J* 2009;6:36.

Crespo-Bellido et al.

914 134. **Varsani A, Roumagnac P, Fuchs M, Navas-Castillo J, Moriones E et al.** Capulavirus
915 and Grablovirus: two new genera in the family Geminiviridae. *Arch Virol* 2017;162(6):1819-
916 1831.

917 135. **Heydarnejad J, Keyvani N, Razavinejad S, Massumi H, Varsani A.** Fulfilling Koch's
918 postulates for beet curly top Iran virus and proposal for consideration of new genus in the family
919 Geminiviridae. *Arch Virol* 2013;158(2):435-443.

920 136. **Roumagnac P, Lett JM, Fiallo-Olive E, Navas-Castillo J, Zerbini FM et al.** Establishment of five new genera in the family Geminiviridae: Citlodavirus, Maldovirus,
921 Mulcilevirus, Opunvirus, and Topilevirus. *Arch Virol* 2022;167(2):695-710.

922 137. **da Silva JPH, de Resende FMP, da Silva JCF, de Breuil S, Nome C et al.** Amesuviridae: a new family of plant-infecting viruses in the phylum Cressnaviricota, realm
923 Monodnaviria. *Arch Virol* 2023;168(9):223.

924 138. **Fontenele RS, Abreu RA, Lamas NS, Alves-Freitas DMT, Vidal AH et al.** Passion
925 Fruit Chlorotic Mottle Virus: Molecular Characterization of a New Divergent Geminivirus in
926 Brazil. *Viruses* 2018;10(4).

927 139. **Ghosh R, Paul S, Das S, Palit P, Acharyya S et al.** Molecular evidence for existence of
928 a New World begomovirus associated with yellow mosaic disease of *Corchorus capsularis* in
929 India. *Australasian Plant Disease Notes* 2008;3(1):59-62.

930 140. **Munoz-Rodriguez P, Carruthers T, Wood JRI, Williams BRM, Weitemier K et al.** Reconciling Conflicting Phylogenies in the Origin of Sweet Potato and Dispersal to Polynesia.
931 *Curr Biol* 2018;28(8):1246-1256 e1212.

932 141. **Dry IB, Rigden JE, Krake LR, Mullineaux PM, Rezaian MA.** Nucleotide sequence and
933 genome organization of tomato leaf curl geminivirus. *J Gen Virol* 1993;74 (Pt 1):147-151.

937

Crespo-Bellido et al.

938 Figure Legends

939 **Figure 1. Number of begomovirus species exemplars in this study (n= 432) by**

940 **country of isolation.** Begomovirus exemplar counts are divided into Africa, Asia,

941 Europe, and Oceania (AAEO) and Americas groups based on the country where the

942 viruses were sampled.

943 **Figure 2. Circular midpoint-rooted maximum likelihood phylogenetic tree of**

944 **complete CP amino acid sequences of 432 begomovirus RefSeq species**

945 **exemplars.** The maximum likelihood phylogenetic tree was constructed using IQ-Tree

946 v2.07 with automatic selection of the best-fit substitution model (JTT+I+G4). Tree

947 inference was performed with 3000 ultrafast bootstrap (UFBoot) replicates and a

948 stopping rule of 500 iterations between unsuccessful improvements to the local

949 optimum. Only UFboot branch support values $\geq 80\%$ are shown. Branches are colored

950 based on the region where the exemplar was sampled - Americas exemplars in orange

951 and AAEO exemplars in blue. Sweetpotato-infecting viruses are highlighted and

952 denoted by an image of sweetpotato (public domain). CoGMV= Corchorus golden

953 mosaic virus (RefSeq accession number NC_009644), CoYVV= Corchorus yellow vein

954 virus (RefSeq accession number NC_006358), ToLV= tomato latent virus (RefSeq

955 accession number NC_038963).

956 **Figure 3. Circular midpoint-rooted maximum likelihood phylogenetic tree of**

957 **trimmed Rep amino acid sequences of 432 begomovirus RefSeq species**

958 **exemplars.** The maximum likelihood phylogenetic tree was constructed using IQ-Tree

959 v2.07 with automatic selection of the best-fit substitution model (LG+I+G4). Tree

960 inference was performed with 3000 ultrafast bootstrap (UFBoot) replicates and a

Crespo-Bellido et al.

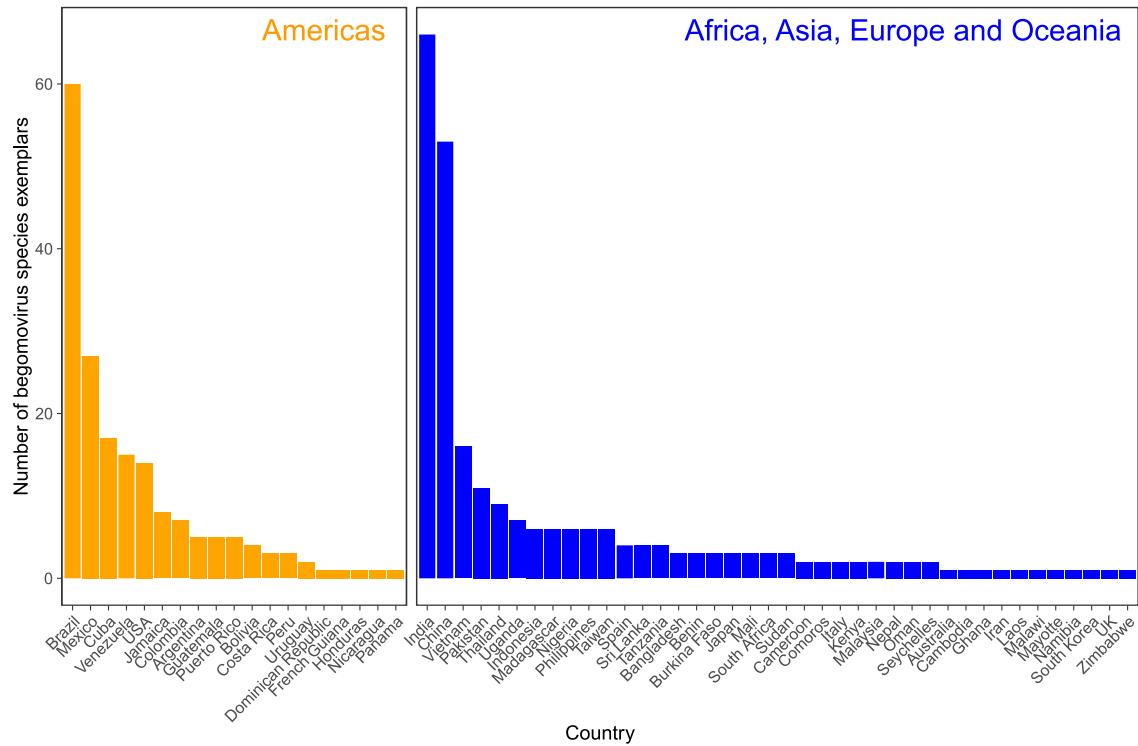
961 stopping rule of 500 iterations between unsuccessful improvements to the local
962 optimum. Only UFboot branch support values $\geq 80\%$ are shown. Branches are colored
963 based on the region where the exemplar was sampled - Americas exemplars in orange
964 and AAEO exemplars in blue. Sweetpotato-infecting viruses are highlighted and
965 denoted by an image of sweetpotato (public domain). CoGMV= *Corchorus golden*
966 mosaic virus (RefSeq accession number NC_009644), CoYVV= *Corchorus yellow vein*
967 virus (RefSeq accession number NC_006358), ToLV= tomato latent virus (RefSeq
968 accession number NC_038963).

969 **Figure 4. Tanglegram of CP and Rep phylogenies for 432 begomovirus RefSeq**
970 **species exemplars.** Sequences corresponding to the same exemplar are connected
971 by colored lines between each phylogeny. Exemplars from the Americas are orange,
972 AAEO sequences in blue and sweepoviruses are in black.

973 **Figure 5. Genome/DNA-A length distribution for three begomovirus groups:**
974 **Americas, AAEO and sweepoviruses (left) and genome/DNA-A length distribution**
975 **for begomovirus exemplars by presence/absence of V2/AV2 (right).** The length of
976 genomic segments is in number of nucleotides (nt). Mean values for each group are
977 denoted by colored, dashed vertical lines. Americas mean length= 2626.5 nt; AAEO
978 mean length= 2754.6 nt; sweepovirus mean length= 2792.9 nt; absent V2/AV2 mean
979 length= 2627.1 nt; present V2/AV2 mean length= 2757.3 nt.

980 **Figure S1. Midpoint-rooted maximum likelihood phylogenetic tree of complete**
981 **amino acid sequences of 432 begomovirus RefSeq species exemplars.** The
982 maximum likelihood phylogenetic tree was constructed using IQ-Tree v2.07 with
983 automatic selection of the best-fit substitution model (JTT+I+G4). Tree inference was

Crespo-Bellido et al.


984 performed with 3000 ultrafast bootstrap (UFBoot) replicates and a stopping rule of 500
985 iterations between unsuccessful improvements to the local optimum. UFboot branch
986 support values $\geq 80\%$ are shown mid-branch. The scale bar represents the number of
987 substitutions per site. Branches are colored based on the region where the exemplar
988 was sampled - Americas exemplars in orange and AAEO exemplars in blue.
989 Sweepoviruses(brown) and the African clade (yellow) are highlighted. Exemplar labels
990 follow the following format: “virus abbreviation/Rep/[Americas/AAEO]/two-letter country
991 code/RefSeq accession number”.

992 **Figure S2. Midpoint-rooted maximum likelihood phylogenetic tree of trimmed Rep**
993 **amino acid sequences of 432 begomovirus RefSeq species exemplars.** The
994 maximum likelihood phylogenetic tree was constructed using IQ-Tree v2.07 with
995 automatic selection of the best-fit substitution model (LG+I+G4). Tree inference was
996 performed with 3000 ultrafast bootstrap (UFBoot) replicates and a stopping rule of 500
997 iterations between unsuccessful improvements to the local optimum. UFboot branch
998 support values $\geq 80\%$ are shown mid-branch. The scale bar represents the number of
999 substitutions per site. Branches are colored based on the region where the exemplar
1000 was sampled – Americas exemplars in orange and AAEO exemplars in blue.
1001 Sweepoviruses (brown) and Rep S-Lin clade (light red) are highlighted. Exemplar labels
1002 follow the following format: “virus abbreviation/Rep/[Americas/AAEO]/two-letter country
1003 code/RefSeq accession number”.

Crespo-Bellido et al.

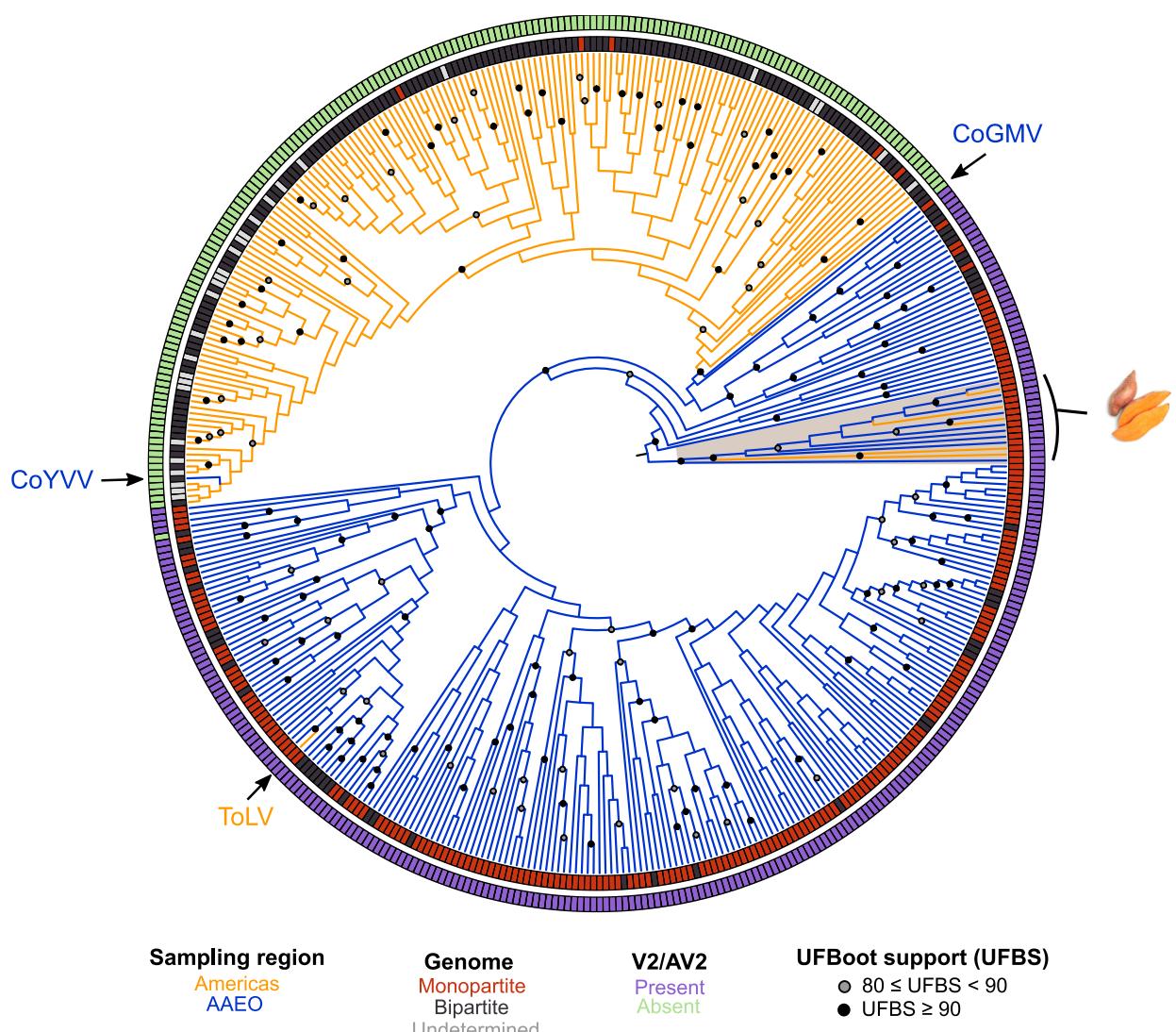

Figures and Tables

Figure 1

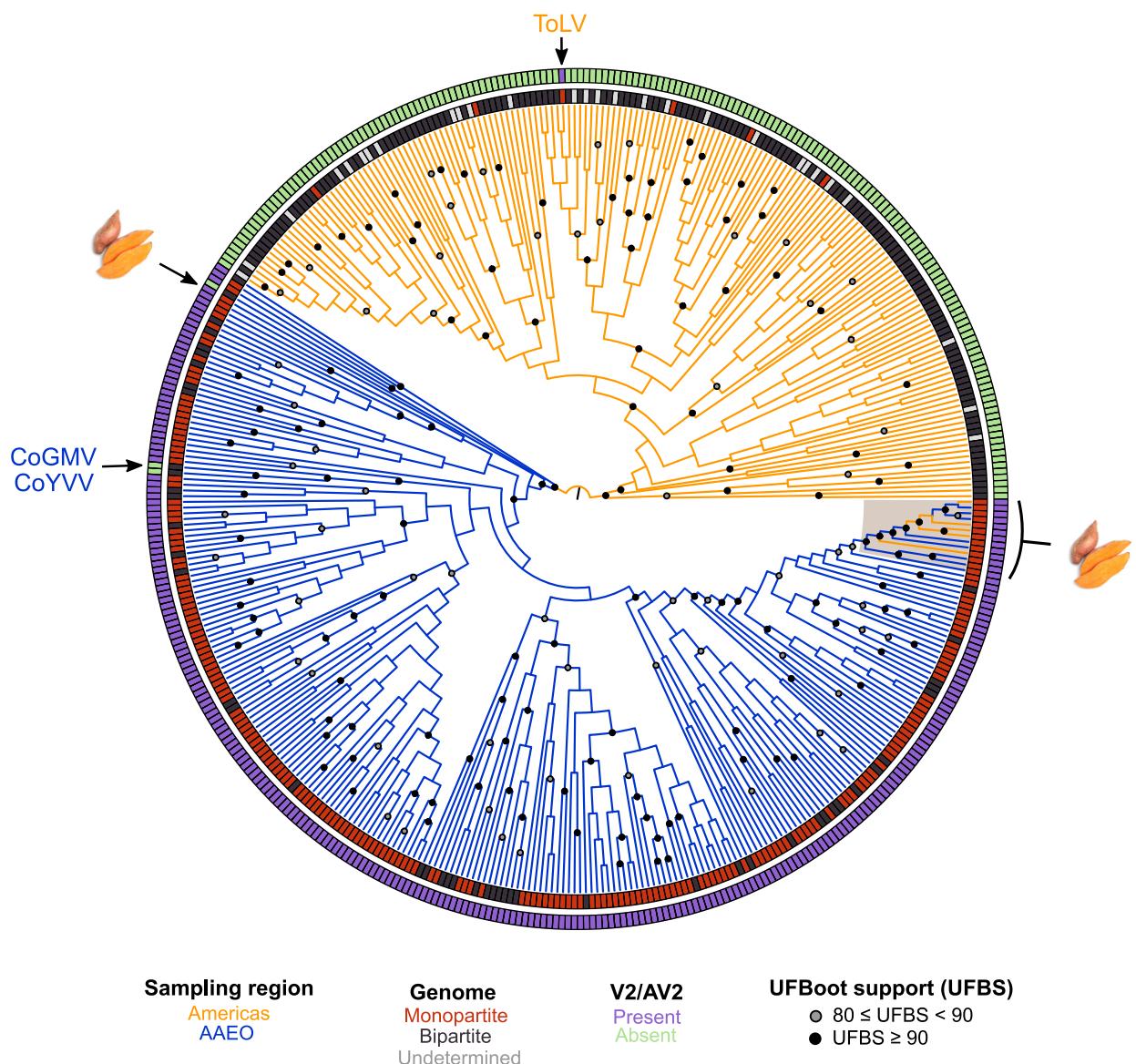

Crespo-Bellido et al.

Figure 2

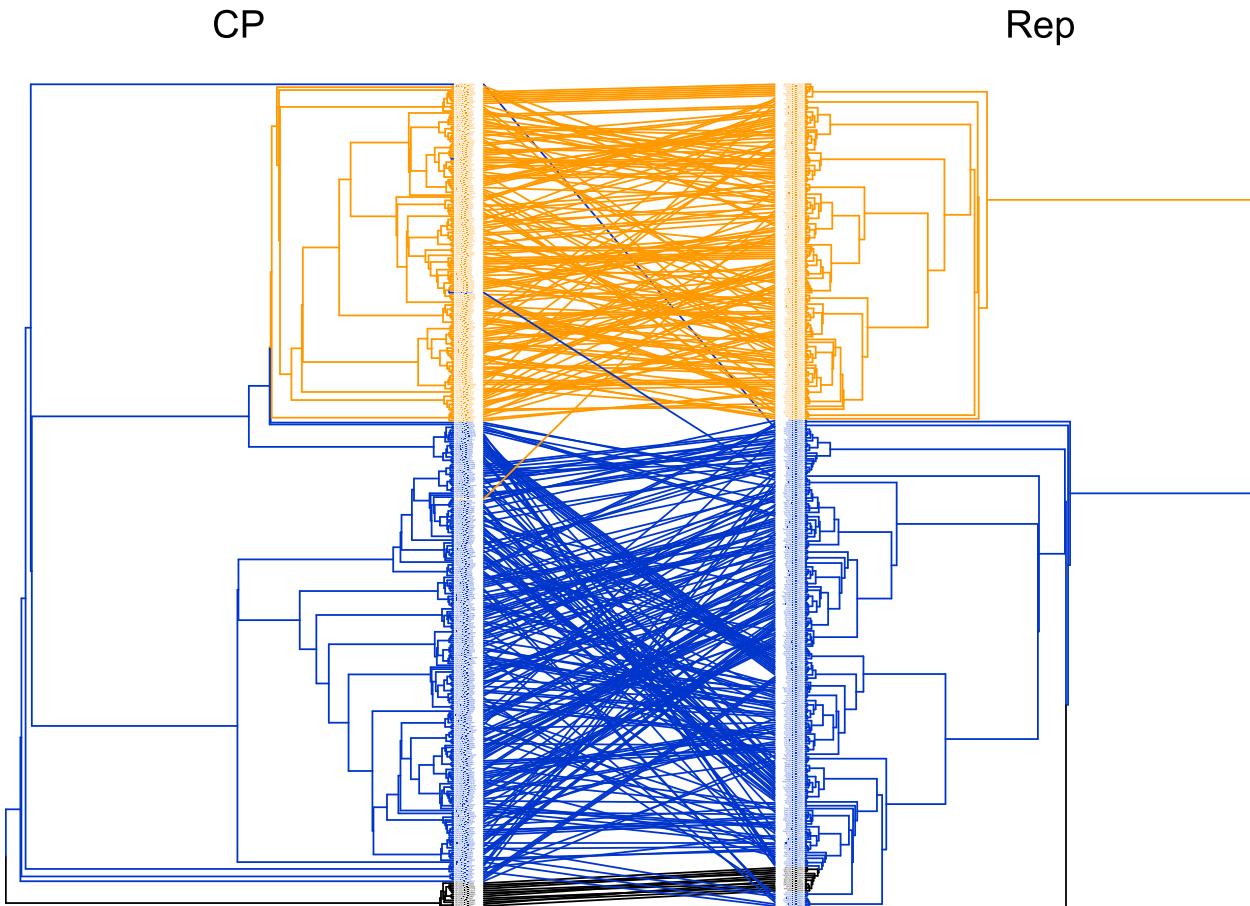

Crespo-Bellido et al.

Figure 3

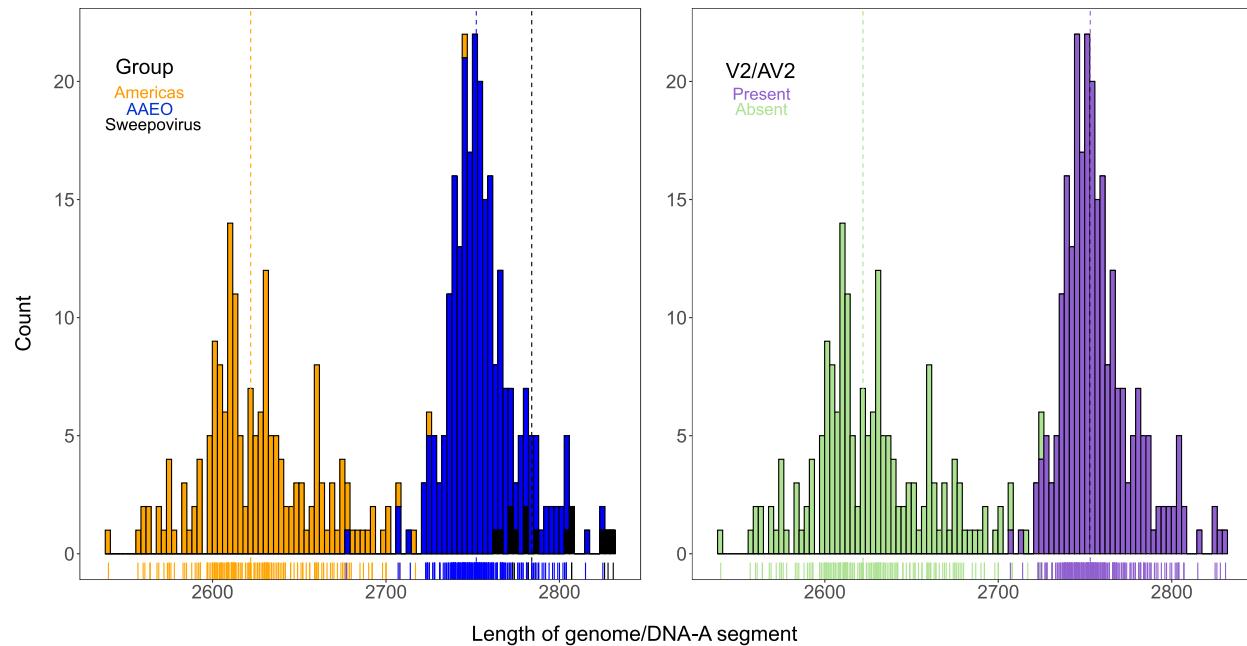

Crespo-Bellido et al.

Figure 4

Crespo-Bellido et al.

Figure 5

Crespo-Bellido et al.

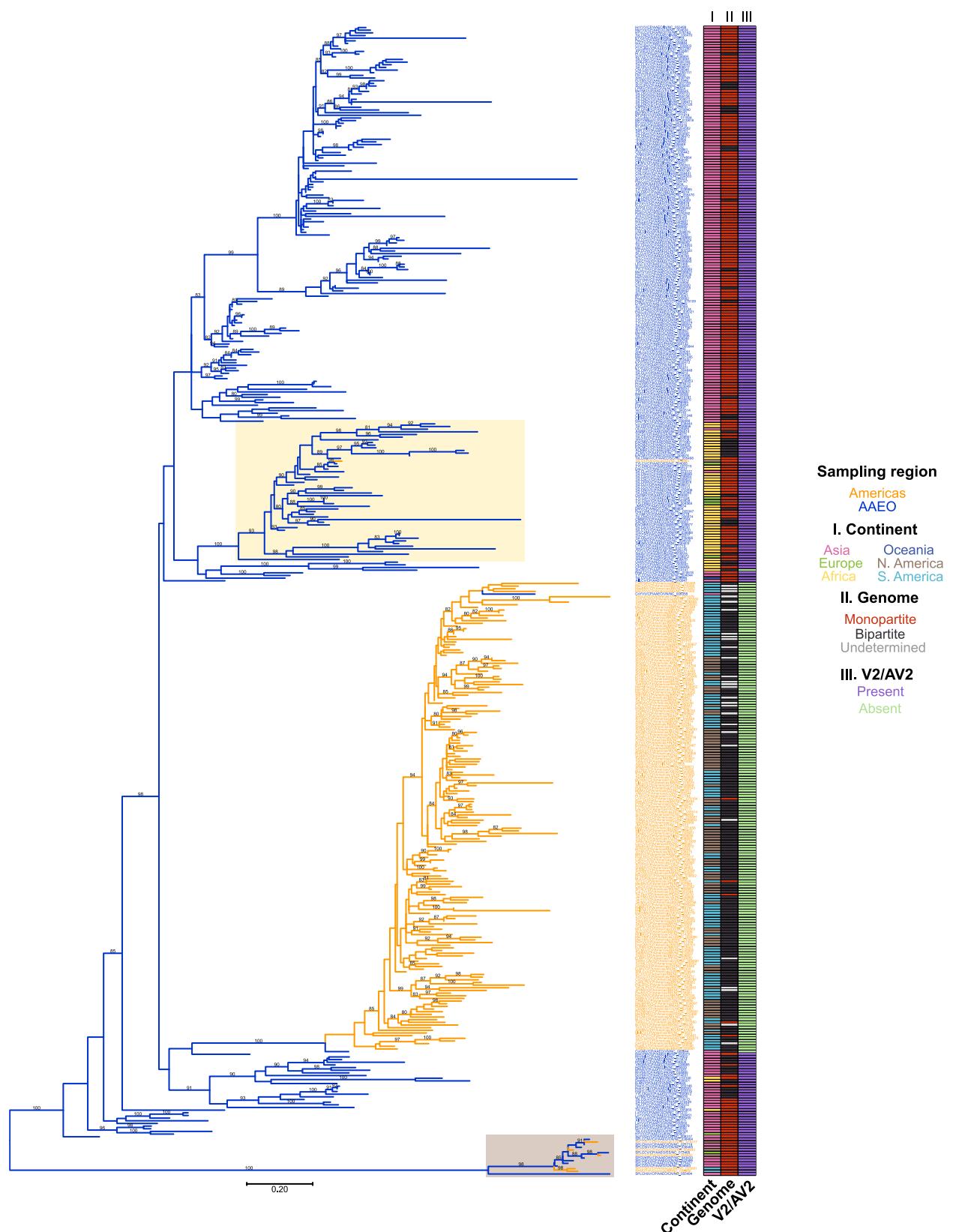

Supplementary Material

Table S1. Begomovirus species exemplars listed in the VMR that were not used in this study.

VMR exemplars not used in this study (RefSeq accession number)	Reason
Bean golden yellow mosaic virus (NC_038791)	Truncated Rep
Chino del tomate Amazonas virus (NC_038443)	Significantly divergent Rep
Chilli leaf curl Bhavanisagar virus (NC_055130)	Truncated Rep
Cleome golden mosaic virus (NC_015397)	Significantly divergent and truncated Rep
Corchorus yellow vein mosaic virus (NC_020473)	Truncated Rep
Polygala garcinii virus (NC_037068)	Significantly divergent Rep
Sunn hemp leaf distortion virus (NC_013019)	Both CP and Rep listed as nonfunctional in GenBank (sequences not annotated as a result)
Sidastrum golden leaf spot virus (NC_038462)	Significantly divergent CP
Sida golden yellow spot virus (NC_038992)	Significantly divergent CP
Tomato golden leaf distortion virus (NC_043122)	Significantly divergent Rep
Tomato leaf curl Joydebpur virus (NC_074895)	Truncated CP and Rep
Tomato leaf curl Moheli virus (NC_038897)	Truncated Rep
West African Asystasia virus 3	Does not have a RefSeq accession

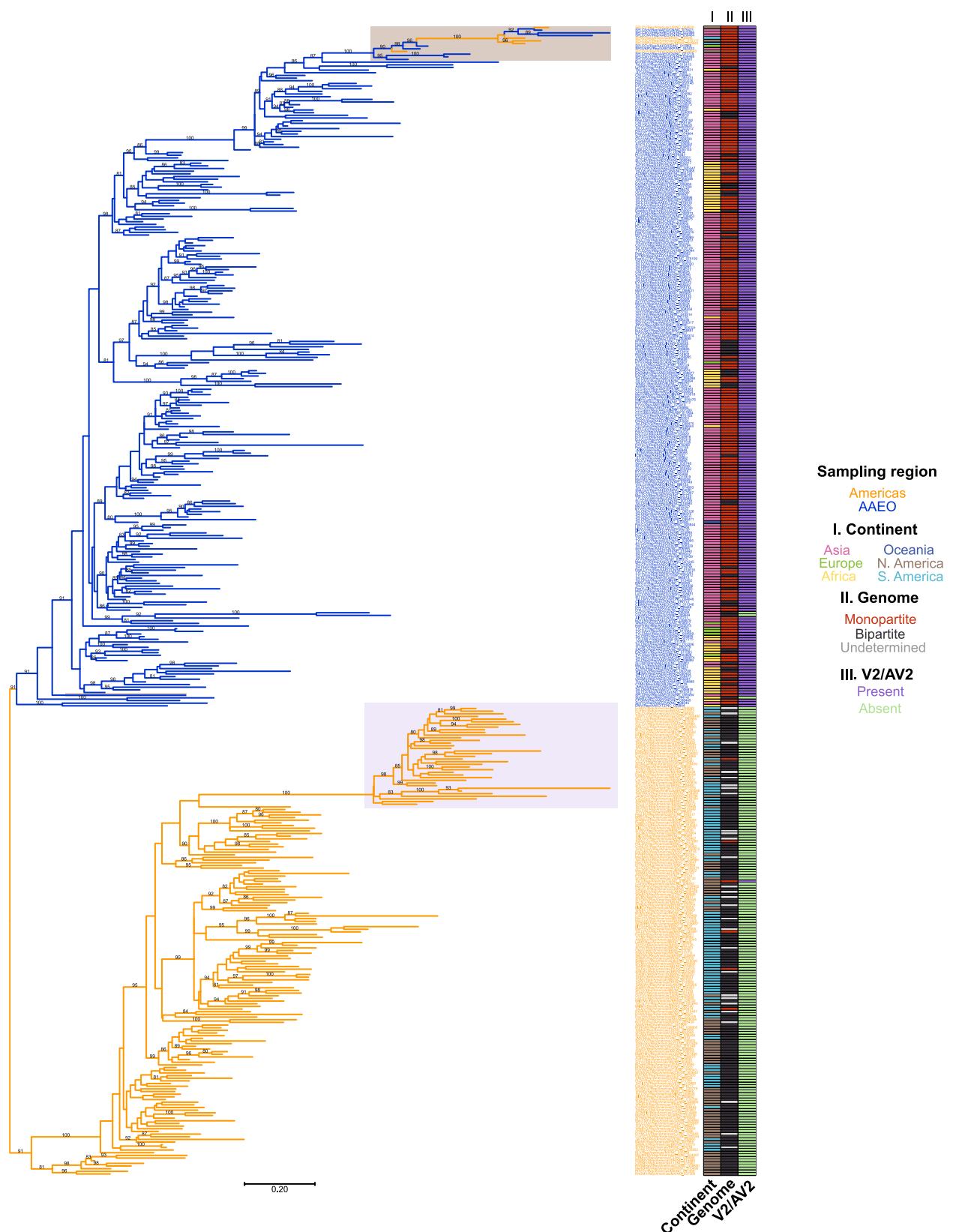

Crespo-Bellido et al.

Figure S1

Crespo-Bellido et al.

Figure S2

