

1 **Murine Parainfluenza Virus Persists in Lung Innate Immune Cells Sustaining**
2 **Chronic Lung Pathology**

3
4 Ítalo Araujo Castro¹, Yanling Yang¹, Victoria Gnazzo¹, Do-Hyun Kim², Steven J. Van
5 Dyken², Carolina B. López¹.

6
7 ¹Department of Molecular Microbiology and Center for Women's Infectious Diseases
8 Research, Washington University School of Medicine, Saint Louis, Missouri, USA.
9 ²Department of Pathology & Immunology, Washington University School of Medicine,
10 Saint Louis, Missouri, USA.

11
12 **Summary**

13
14 Respiratory viruses including the human parainfluenza viruses (hPIVs) are a constant
15 burden to human health, with morbidity and mortality frequently increased after the acute
16 phase of the infection. Although is proven that respiratory viruses can persist *in vitro*, the
17 mechanisms of virus or viral products persistence, their sources, and their impact on
18 chronic respiratory diseases *in vivo* are unknown. Here, we used Sendai virus (SeV) to
19 model hPIV infection in mice and test whether virus persistence associates with the
20 development of chronic lung disease. Following SeV infection, virus products were
21 detected in lung macrophages, type 2 innate lymphoid cells (ILC2s) and dendritic cells
22 for several weeks after the infectious virus was cleared. Cells containing viral protein
23 showed strong upregulation of antiviral and type 2 inflammation-related genes that

24 associate with the development of chronic post-viral lung diseases, including asthma.
25 Lineage tracing of infected cells or cells derived from infected cells suggests that distinct
26 functional groups of cells contribute to the chronic pathology. Importantly, targeted
27 ablation of infected cells or those derived from infected cells significantly ameliorated
28 chronic lung disease. Overall, we identified persistent infection of innate immune cells as
29 a critical factor in the progression from acute to chronic post viral respiratory disease.

30

31 **Introduction**

32

33 Infections with respiratory RNA viruses pose a constant threat to human health. It
34 is estimated that Respiratory Syncytial Virus (RSV) alone is associated with more than
35 149,000 fatal cases of lower respiratory tract infection worldwide every year¹. Among
36 paramyxoviruses, human metapneumovirus (hMPV) is responsible for approximately
37 643,000 hospitalizations and >16,000 deaths globally² every year, while hPIV accounts
38 for 725,000 hospitalizations and >34,000 deaths^{2,3}. Within the pediatric population, acute
39 lower respiratory infections of viral etiology remain the leading cause of mortality in the
40 absence of a pandemic^{4,5}.

41 In addition to the public health burden, acute respiratory viral infections at an early
42 age are associated with the development of chronic lung diseases including asthma and
43 chronic obstructive pulmonary disease (COPD), while infections later in life can lead to
44 severe exacerbations of these conditions^{6,7}. Influenza, RSV, hMPV, hPIV, and rhinovirus
45 infections have been linked to development and progression of COPD and lung fibrosis

46 in humans, and more recently SARS-CoV-2 infection was implicated in chronic lung
47 diseases⁸⁻¹⁰.

48 It has been long established that RNA viruses can persist in humans. The best
49 studied example is measles virus that persists in the central nervous system of patients
50 with subacute sclerosing panencephalitis^{11,12}. Other examples include Ebola virus
51 persistence in the testis¹³ and chikungunya virus persistence in the joints¹⁴. In addition,
52 accumulating evidence suggests that respiratory viruses can establish persistent
53 infections in the lung¹⁵⁻¹⁷. A comprehensive screening of post-mortem tissue from fatal
54 COVID-19 cases indicated presence of viral proteins, viral RNA, and infectious SARS-
55 CoV-2 in the respiratory tract and other anatomical sites for longer than 30 days after
56 symptom onset¹⁵. Prolonged viral shedding has been reported in stem cell transplant
57 recipient patients¹⁸ and immunocompromised patients infected with hPIV^{16,18}. In addition,
58 high detection rates of hPIV3 in turbinate epithelial cells were reported in patients
59 suffering from post-viral olfactory dysfunction¹⁹. Prolonged exposure to viral RNA and
60 antigens, even in the absence of infectious viral particles, can work as immune stimulation
61 factors and contribute to chronic inflammation^{20,21}. Therefore, it is critical to better
62 understand the mechanisms of virus or viral products persistence, the sources of the
63 virus, and their impact on chronic respiratory diseases.

64 Here, we used respiratory infection with the murine paramyxovirus Sendai (SeV;
65 recently renamed Murine respirovirus) to model hPIV infections in mice and study the
66 persistence of virus and viral products and their impact on chronic lung disease. We show
67 that viral antigens and RNA are present in specific innate immune cells populations in the
68 lung long after the acute infection has been cleared. Importantly, we demonstrate that

69 infected cells, as well as cells derived from infected cells, play critical roles in maintaining
70 post-viral chronic lung pathology.

71

72 **Results**

73

74 **Severe SeV lower respiratory tract infection leads to long term persistence of viral**
75 **protein and RNA in the lung.**

76 To evaluate whether mouse parainfluenza viruses persist in the respiratory tract,
77 we infected mice intranasally with a sublethal dose of SeV strain 52 that induced severe
78 respiratory disease, as we and others have described previously^{22,23}. We monitored
79 disease progression from 3 to 49 days post-infection (dpi), analyzing virus load and
80 presence of virus proteins in the lungs at these time points (**Figure 1A**). Day 49 post
81 infection has been established as a standard timepoint to study post-SeV chronic lung
82 disease as pathology has plateaued by then²⁴. Acute weight loss following SeV infection
83 was maximal between days 7 and 8 post-infection, with animals losing about 25% of their
84 original weight (**Figure 1B**). All mice fully recovered their weights by day 35 post-infection.
85 As expected, virus RNA and infectious particles were detected in whole lung
86 homogenates on day 3 post-infection, however, only viral RNA was detected on day 49
87 post-infection (**Figure 1C**). Immunofluorescence analysis for SeV nucleoprotein (NP) and
88 RNAscope analysis for NP RNA (mRNA and genomic RNA) revealed a different
89 distribution of NP in the acute and chronic phases of the infection. While NP was mostly
90 detected in the airways lining epithelium on 3 dpi, SeV positive signal on day 49 post-

91 infection was mostly found in the alveolar compartment associated with infiltrating cells
92 (**Figure 1D**).

93 The chronic pulmonary disease caused by SeV was marked by intense tissue
94 remodeling, with expansion of basal epithelial cells (Krt5⁺) in well-delimited lesions. It was
95 noticeable that cells persistently expressing viral NP were adjacent to Krt5⁺ lesions,
96 frequently organized in patches (**Figure 1E, subpanels E1-3**), while no NP⁺ cells were
97 found in the unaffected areas of the lung (**Figure 1E, subpanel E4**). Overall, these
98 observations demonstrate that viral RNA and viral proteins are detectable in the chronic
99 phase of the infection, weeks after infectious virus has been cleared²³, and indicate that
100 there is a differential distribution of virus-infected cells in the lung during the acute (day
101 3) and chronic (day 49) phases of the infection.

102

103 **Persistent SeV proteins are detected in type 2 innate lymphoid cells (ILC2s),**
104 **macrophages and dendritic cells.**

105 Given the diversity of cells that compose the lung inflammatory microenvironment
106 during SeV-driven chronic disease and that most of the persistent SeV NP⁺ cells were
107 in the alveolar compartment (**Figure 1D, E**), we hypothesized that the persistent NP
108 signal was mostly related to resident and infiltrating immune cells. We then used a panel
109 of markers representing cell types frequently found in SeV-driven infiltrates in mouse
110 lungs to characterize SeV NP⁺ cells by immunofluorescence and flow cytometry. Initially,
111 after using antibodies against CD3 (T lymphocytes), CD11c and CD11b (dendritic cells -
112 DCs), F4/80 (macrophages) and Thy1.2 (T cells and ILCs), we observed that CD11c⁺,
113 CD11c⁺CD11b⁺, F4/80⁺ and CD3-Thy1.2⁺ cells were found to be positive for SeV NP in

114 lung sections from 49 dpi (**Figure 2A**). Myeloid- cells, CD11c⁺, CD11b⁺ and double-
115 positive cells, likely DCs (**Figure 2A-a1**) and macrophages (**Figure 2A-a2**), were found
116 frequently co-expressing SeV NP, either diffusely dispersed through the lung section or
117 clustered surrounding blood and lymphatic vessels. Unexpectedly, SeV NP signal was
118 also detected in CD3-Thy1.2⁺ cells in a considerably high frequency (**Figure 2A-a3**).

119 To quantify and better characterize the cell subtypes that are sources of persistent
120 virus antigens, we employed multiplex spectrum flow cytometry to analyze SeV-infected
121 mouse lungs at the chronic stage of the infection (**Figure S1**). Single-cell suspensions
122 obtained from acute SeV infection yielded on average $13.8 \pm 2.9\%$ live, NP⁺ cells. On day
123 49 after infection, the percentage of live NP⁺ cells was $2.12 \pm 0.7\%$ (representative dot
124 plots in **Figure 2B** and quantitative analysis in **Figure 2C**). We then analyzed individual
125 cell subtypes to determine the percentage of SeV NP⁺ cells within each subset. Amongst
126 lymphoid-origin cells, ILC2s displayed the highest percentages and MFI of NP expression
127 ($15.7 \pm 3.5\%$) (**Figure 2D** and **E**, left panels). Meanwhile, tissue macrophages (TMs)
128 ($12.01 \pm 1.3\%$) and DCs ($8.65 \pm 3\%$) were the myeloid subsets with the highest percentages
129 of NP signal among the cell types analyzed (**Figure 2D** and **E**, right panels). Altogether,
130 our data strongly indicate that macrophages, ILC2s and dendritic cells are the main
131 sources of persistent virus antigens during chronic SeV infection.

132

133 **Innate immune cells sustain type 2-inflammation during SeV-driven chronic lung**
134 **disease.**

135 Macrophages, dendritic cells and ILC2s participate in the establishment of chronic
136 lung disease upon SeV infection through the IL-33/IL-13 axis²⁵. Finding these cells

137 harboring persistent viral products raised additional questions about their impact on the
138 pathogenesis of chronic lung disease. We sorted ILC2s and macrophages from SeV-
139 infected IL-13 reporter (sm13)^{26,27} mouse lungs at 49 dpi and analyzed their
140 transcriptomic signatures against mock-infected animals to characterize their activation
141 state. ILC2s displayed a total of 732 differentially expressed genes (DEGs) over mock,
142 with 276 being upregulated and 456 being downregulated (P<0.05 and LogFC>2) (**Figure**
143 **3A**). We observed a significant increase of ILC2 hallmark genes²⁸, including *Gata3*, *Rora*,
144 *IL5*, *IL13*, *Areg*, *Klrg1*, and *Il1rl1* (ST2) (**Figure 3B**), as well as genes known to be
145 increased in the context of RNA virus infection (**Figure 3C**). Gene set enrichment analysis
146 (GSEA) showed that lung ILC2s from SeV-infected were enriched in pathways previously
147 linked to SeV infection²⁹, including the TNFR2 non-canonical NF- κ B pathway (**Figure**
148 **3G**). Moreover, DEGs from sorted ILC2s show signatures associated with type 2 immune
149 responses and inflammation, supporting the role of ILC2s in maintaining the chronic type
150 2 immunopathology observed in SeV-infected lungs at 49 dpi (**Figure 3G**). Lung
151 macrophages from SeV-infected mice displayed 478 upregulated DEGs compared to
152 mock (**Figure 3D**), from which classical genes involved in Th2 inflammation³⁰, including
153 *Arg1*, *Chil3*, *Ccl11*, *Il1rl1* (ST2), and *Il33* were significantly increased (**Figure 3E**). In
154 addition, these macrophages had transcriptomic signatures associated to increased
155 phagocytic activity³¹ such as *Cd63*, *Cd68*, and *Fcgr2b* (**Figure 3F**). Similar to what was
156 shown for ILC2s, upregulated genes in macrophages were enriched in GSEA signatures
157 directly involved in chronic lung disease (**Figure 3G**). These findings indicated that innate
158 immune cells display a strong gene expression polarization towards type 2 inflammatory
159 responses and show transcriptomic footprints that are indicative of virus infection and

160 chronic lung diseases, confirming their involvement in the pathogenesis of post-viral
161 chronic lung disease.

162

163 **Virus-infected cells and/or cells derived from them contribute to the chronic**
164 **inflammatory state following SeV infection.**

165 Long-term exposure to viral antigens and RNA in the respiratory tract is likely to
166 have important implications on the tissue microenvironment. To directly evaluate the
167 transcriptome of persistently infected cells, we generated a double-reporter virus by
168 inserting an eGFP and a Cre recombinase as independent genes between the N and the
169 P genes of the SeV Cantell strain (rSeV-C^{eGFP-Cre}) (**Figure S2A**). We then used rSeV-
170 C^{eGFP-Cre} to infect tdTomato reporter mice that contain a Cre reporter allele flanked by
171 loxP-STOP cassettes (**Figure S2B**). We harvested lungs on day 49 pi for flow cytometry
172 and FACS analysis (**Figure 4A**). Infection with rSeV-C^{eGFP-Cre} progressed in a similar way
173 as our previously described SeV-52 model. Weight loss of up to 20% of the original weight
174 was observed until day 9 post-infection, with steady recovery until no differences from
175 uninfected animals by day 21 (**Figure 4A**). Upon transcription of the viral genome, Cre is
176 expressed and excises the loxP-STOP cassette that blocks the tdTomato gene construct
177 leading to expression of the reporter. Virus-infected cells, cells that cleared the infection
178 in a non-cytolytic manner, and cells derived from these cells will have constitutive
179 expression of the tdTomato fluorescent protein (tdTom) (**Figure S2B**). At 3 dpi, the
180 frequency of tdTom⁺ cells in infected lungs was 21.3% \pm 0.6%, and this number decreased
181 to 10 \pm 2.6% at 49 dpi (**Figure 4B-C**, includes a representative sample). From these cells,
182 at 3 dpi 84.4% \pm 3.8% were characterized as non-immune (CD45⁻) and 15.4% \pm 3.8% were

183 characterized as immune cells (CD45⁺) (**Figure 4D-E**, includes a representative sample),
184 similar to what we observe during SeV-52 acute infections. The proportion of non-immune
185 tdTom⁺ cells at 49 dpi remained high (90.9%±0.3%) and immune cells accounted for
186 8.8%±0.2% of all tdTom⁺ events (**Figure 4D-E**, includes a representative sample). As
187 previously reported, the constitutive expression of tdTomato upon Cre exposure is
188 independent of further viral replication, and all tdTom⁺ cells, even those that cleared the
189 infection would express the reporter protein³². To differentiate cells persistently
190 expressing viral protein from all other tdTom⁺ cells, we combined tdTom detection with
191 SeV NP staining. Using this strategy, we identified three distinct cell populations in tdTom
192 reporter mice on day 49 after infection with rSeV-C^eGFP-Cre: tdTom⁺NP⁻, tdTom⁺NP⁺, and
193 negative cells (**Figure 4F**). We then sorted these populations for transcriptome analysis.
194 To increase RNA yields, we used three pools of two individual infected animals for sorting.
195 In addition, we obtained negative cells from mock-infected tdTom reporter animals as
196 controls. The samples were subjected to total RNA-seq. We found reads mapping to the
197 viral genome or the eGFP reporter gene in all three tdTom⁺NP⁻ cell pools and in all three
198 tdTom⁺NP⁺ pools (**Figure 4G**). Alignment to the rSeV-C^eGFP-Cre genome showed viral
199 reads mapping to multiple viral genes, including the polymerase L gene in some of the
200 pools (**Figure H**), confirming that tdTom⁺NP⁻ cells have been exposed to the virus either
201 by direct infection or through their progenitors.

202 After identifying two major cell subsets relevant to virus-host interactions in
203 persistent SeV infection, we sought to understand their role in pathogenesis by comparing
204 the host transcriptomic profiles of tdTom⁺NP⁻ and tdTom⁺NP⁺ cells. Transcriptomic
205 analysis of the different pools showed differentially expressed genes (DEGs) in

206 tdTom⁺NP⁻ and tdTom⁺NP⁺ cells over mock (**Figure 5A**) ($p < 0.05$ and $\text{LogFC} > 2$). Negative
207 cells showed no significant transcriptomic changes over mock (**Figure 5A**), suggesting
208 that only direct virus-host interactions lead to long-term host gene expression changes,
209 rather than a more widespread effect to non-infected cells in the lung.

210 From the identified DEGs, 2376 were exclusive of tdTom⁺NP⁻ and 387 DEGs were
211 exclusive of tdTom⁺NP⁺ cells (**Figure 5B**). Gene Ontology (GO) analysis indicated that
212 tdTom⁺NP⁻ cells have gene expression signatures associated to extracellular matrix
213 organization, epithelial cell migration, wound healing, lung epithelial cell differentiation,
214 tissue remodeling and keratinocyte proliferation (**Figure 5C**), of note, the extracellular
215 matrix organization factors *Col1a1*, *Col3a1*, *Col5a1*, and *Fbln1*, and the cell proliferation
216 factors *Cd34*, *Tgfb3*, *Cldn1*, *Egfr*, and *Fgf10*, all included in the wound healing pathway
217 (**Figure 5D**).

218 Differently, tdTom⁺NP⁺ DEGs included genes associated with mononuclear cell
219 proliferation and migration, response to virus, positive regulation of inflammatory
220 response, lymphocyte activation, and innate immune response (**Figure 5C**). Genes
221 involved in lymphocyte activation and proliferation included *Cd44*, *Itgb2*, *Cd274*, *Cd2*, and
222 *Card11*. Among genes involved in positive regulation of innate immune responses, *Cd68*,
223 *Chil3*, *Fcgr3*, *Fcer1g* and *Fcgr1* are examples of myeloid-related genes, *Gata3*, and *Thy1*
224 are examples of innate lymphoid-related genes (**Figure 5D**), and *Il33* is a known gene
225 involved in Type-2 immunopathology²².

226 Gene set enrichment analysis (GSEA) comparing tdTom⁺NP⁻ and tdTom⁺NP⁺ cell
227 transcriptomes confirmed the distinct transcriptomes of these cell populations. Survivor
228 tdTom⁺NP⁻ cells had enriched signatures associated to tissue remodeling, keratinization,

229 and tissue homeostasis-related pathways (**Figure 5E**). On the other hand, persistent
230 $\text{tdTom}^+\text{NP}^+$ cells had enriched signatures mapping almost exclusively to immune and
231 inflammation-related pathways, such as myeloid cell development, innate immunity, lung
232 cancer, and oxidative phosphorylation (**Figure 5E**). These observations indicate that
233 while cells that cleared SeV infection initiate and maintain a transcriptomic program to
234 control inflammation and to resolve lung injury, cells persistently exposed to viral products
235 have a pro-inflammatory profile with potential implications on lung pathogenesis.

236

237 **Persistent infected cells and its progeny are directly involved in the progression of**
238 **chronic lung disease.**

239 We next set out to investigate the impact of persistent infected cells in the lung
240 chronic disease progression. To do this, we combined our rSeV-C^{eGFP-Cre} with Cre-
241 inducible Diphtheria toxin receptor (iDTR) mice³³, where SeV-infected cells constitutively
242 express DTR. DTR-expressing cells would then be susceptible to specific ablation
243 following DT administration. We then intranasally injected the iDTR mice with either PBS
244 (mock) or 2×10^5 TCID₅₀/animal of rSeV-C^{eGFP-Cre}, treated with two consecutive doses of
245 DT, and analyzed their lungs by flow cytometry at 5 dpi to check for depletion of infected
246 cells (**Figure S3A**). The DT treatment did not impact disease progression, and both
247 infected groups lost up to 20% of their original weight and recovered thereafter (**Figure**
248 **6B**). Flow cytometry quantification of SeV NP⁺ cells indicated that two consecutive DT
249 doses were sufficient to deplete more than 80% of infected cells (**Figure S3B-C**) as
250 described previously³³. To deplete persistent infected cells, we waited until 21 dpi to avoid
251 the acute and clearance phases of SeV infection and used the same 2-dose DT regime,

252 with the final time point for analysis at 49 dpi (**Figure 6A**). Infected groups showed the
253 typical signs of disease progression following SeV infection, and the DT regime did not
254 cause weight loss in the 5 days following intraperitoneal administration (**Figure 6B**). As
255 expected, infected mice that were not treated with DT had the typical signs of chronic lung
256 disease caused by SeV, including alveolitis, bronchiolization of the alveolar compartment,
257 and bronchoalveolar lymphoid tissue (BALT) formation²² (**Figure 6C**). Noticeably, DT-
258 mediated ablation of persistently infected and survivor cells decreased the intensity of the
259 lung disease (**Figure 6C-D**), and lung sections displayed minimal pathology compared
260 with untreated controls. Targeted DT ablation of SeV NP⁺ cells also significantly
261 decreased the area affected by chronic lesions, marked by intense agglomeration of basal
262 stem cells (Krt5⁺) and transitory epithelial cells (Krt8⁺) (**Figure 6E-F**), hence
263 demonstrating that persistent infected cells and its progeny are directly involved in the
264 progression of SeV-driven chronic lung disease.

265

266 **Discussion**

267 RNA virus-host interactions are proving more complex and intricated than they
268 were thought to be. Increasing evidence shows that a diversity of RNA viruses can remain
269 in their host in different forms past acute illness recovery, clearance of infectious viral
270 particles and development of specific immunity, resulting in harmful long-term clinical
271 manifestations with epidemiological implications^{20,34,35}. Frequently, persistent RNA
272 infections are found in very specific niches, for instance, the CNS, testis, ocular tissue,
273 and secondary lymphoid organs. Here, using a natural host-pathogen model, we describe
274 the implications of respiratory virus persistence in a non-canonical immune privileged site,

275 the lower respiratory tract. In accordance to previous reports for SARS-CoV2 and
276 influenza virus^{17,36}, we showed detection not only of SeV RNA from multiple viral genes
277 for up to 49 dpi, but also of viral antigens, indicating that some level of persistent viral
278 RNA translation is still in place during the persistent phase of the infection, even with
279 undetectable infectious viral particles. Importantly, we identified ILC2, macrophages and
280 dendritic cells as the main cells harboring persistent viral products in the lung, and we
281 demonstrate that depletion of cells that have been directly infected or those derived from
282 infected cells significantly reduce chronic post-viral lung disease.

283 Our data indicate that between the early stages of SeV infection and the later
284 chronic lung inflammation there is a major shift of viral antigen and RNA cell sources
285 (**Figures 1 and 2**). As expected, based on previous reports³⁷ airway cells were the major
286 source of viral proteins and RNA on day 3 post-SeV infection. However, on day 49 post-
287 infection cells in the alveolar compartment were the sources of viral products, with no
288 detectable virus RNA nor antigens in epithelial cells. Upon immunofluorescence and flow
289 cytometry, these viral product sources were characterized as dendritic cells,
290 macrophages and ILC2s. One of the hallmarks of the chronic SeV-driven
291 immunopathology is the increased number of alternatively activated macrophages
292 (AAMs) and monocyte-derived dendritic cells in infected mouse lungs³⁸⁻⁴⁰. These cells
293 were shown to partner with ILC2s, also found in increased numbers in this condition,
294 contributing to chronic type 2 inflammation in an IL-33/IL-13 axis-dependent manner²⁵. In
295 light of our findings, we hypothesize that immune cells with phagocytic activity, such as
296 macrophages and dendritic cells, interact with SeV-infected epithelial cells and become
297 sources of viral RNA and protein, as previously shown that macrophages and dendritic

298 cells remain positive for SeV RNA by qPCR for up to 21 dpi⁴⁰. The transcriptomic
299 signatures of sorted macrophages during SeV chronic lung disease support these
300 observations, with strong Th2 polarization and increased expression of phagocytic
301 activity-related genes (**Figure 3**), but no significant changes in markers suggestive of
302 active viral infection (data not shown).

303 For the myeloid compartment, phagocytosis of viral-infected cells is a known
304 pathway whereby professional phagocytes could acquire viral antigens and even become
305 infected. Unexpectedly, we found ILC2s as one of the most significant sources of
306 persistent viral subproducts following SeV infection. Since ILC2s lack phagocytic activity,
307 our results suggest that expression of SeV antigens is a consequence of viral infection.
308 ILC2s from SeV persistently infected lungs displayed upregulated ILC2 hallmark IL-2-
309 STAT5 and Th2 inflammation genes, corroborating previous studies covering ILC2 roles
310 in post-viral respiratory disease^{28,41}. However, we also reported genes upregulated during
311 viral infection, such as *Ifitm1* and *Traf1*, involved in viral infection response pathways. To
312 the best of our knowledge, this is the first report demonstrating the persistent expression
313 of viral antigens in innate lymphoid cells.

314 Typical infections caused by highly cytopathic viruses were thought to follow a
315 canonical chain of events culminating with cell lysis, tissue damage, release of pro-
316 inflammatory mediators, and viral clearance. Nonetheless, it was recently shown that cells
317 can overcome viral infection in a non-lytic way and either the infected surviving cell or its
318 daughter cells have diverse long-term implications⁴²⁻⁴⁶. For instance, influenza A virus
319 (IAV)-directly infected or derived from infected club cells showed a pro-inflammatory
320 profile that implicated in lung pathology in mice⁴², while also exerting a protective role

321 against secondary infections⁴³. Survivor epithelial cells from another respiratory
322 orthomyxovirus infection, influenza B virus (IBV), were also shown to be critical to
323 maintain respiratory barrier function in a murine model of IBV infection⁴⁵. The infection by
324 SeV, a murine respirovirus, also left a significant percentage of survivor cells in mouse
325 lungs, from which the majority were epithelial cells (**Figure 4**). Interestingly, even as early
326 as 3 dpi, CD45⁺ immune cells were positive for the reporter tdTom, indicating active viral
327 replication or phagocytosis of infected cells. After 49 days of the infection, CD45⁺ immune
328 cells were still part of the tdTom⁺ cell pool, suggesting that for paramyxoviruses the
329 diversity of survivor cells goes beyond the epithelial compartment.

330 As suggested previously, survivor cells could act as long-term sources of viral
331 antigens⁴⁷ with potential role in chronic lung disease development and lung healing. We
332 successfully combined the cell-fate tracing system using Cre-dependent tdTom reporter
333 mice/rSeV-C^{eGFP-Cre} with virus antigen detection to better characterize survivor and virus
334 persistent cells. For both survivor cells with or without persistent expression of SeV NP
335 (tdTom⁺NP⁻ and tdTom⁺NP⁺), SeV RNA was detected and coverage analysis after
336 RNAseq indicated multiple viral genes represented, including the polymerase L gene,
337 suggestive of low replicative levels in SeV persistent cells. Based in our previous cell
338 characterization of persistent SeV-antigen expressing cells, we hypothesized that the
339 survivor tdTom⁺NP⁺ cells were exclusively immune cells.

340 Cells that manage to survive a non-cytolytic clearance of RNA viruses after the
341 acute stages of the infection can maintain abnormal transcriptomic footprints for weeks⁴⁶.
342 After following SeV-infected mice for a long-term post-infection (49 dpi) but also keeping
343 in mind that the chronic lung disease is present at this timepoint, we assessed the

344 transcriptomic signatures of tdTom⁺ cells in comparison with negative and mock cells.
345 Surprisingly, deep transcriptomic changes were observed only in survivor tdTom⁺NP⁻ and
346 tdTom⁺NP⁺ cells. Negative cell transcriptomes resembled mock cells, giving no significant
347 differentially expressed genes. A similar observation was made with uninfected cells from
348 IBV infected mice at 14 days in comparison with their correspondent controls⁴⁵. These
349 findings indicate that at later stages of paramyxovirus infection, the lung transcriptomic
350 changes are a result of direct virus-cell interaction events and not due to responses to
351 secondary secreted mediators. Given the diversity of survivor cells that we described from
352 a respiratory paramyxovirus infection, we expected correspondent diverse roles in
353 pathogenesis. We observed that tdTom⁺NP⁻ cells presented gene expression signatures
354 matching to tissue remodeling, wound healing, and lung regeneration pathways, typically
355 seen in survival epithelial cells from respiratory orthomyxovirus infections^{42,45}. However,
356 infected cells expressing persistent SeV antigens (tdTom⁺NP⁺ cells) displayed a different
357 gene signature enriched in proinflammatory genes, matching the gene expression profiles
358 we described from sorted innate immune cells from SeV-driven chronic lung disease.

359 To address the impact of SeV-survivor cells in the subsequent chronic lung
360 pathology, we employed Cre-inducible diphtheria toxin receptor (iDTR) mice in
361 combination with our rSeV-C^eGFP-C^{re} virus and performed DT-mediated ablation of viral
362 infected cells and its progeny way after the timepoints were SeV infection is considered
363 cleared. Unfortunately, we were not able to specifically deplete persistent SeV-survivor
364 NP⁻ or NP⁺ cell populations one at a time at this point due to lack of appropriate tools
365 available to us. Regardless of the fact that DT ablation affects all DTR-expressing
366 populations (persistent infected, virus-cleared, and its progeny), and not only the survivor

367 NP⁺ cells, there was a significant impact on pathogenesis, reinforcing that the chronic
368 Th2-biased inflammation induced by survivor SeV NP⁺ cells is a key factor to the
369 maintenance of the “post-viral” chronic lung disease.

370 In summary, our study demonstrates that paramyxovirus RNA and antigens persist
371 in the lower respiratory tract associated with innate immune cells for months after the viral
372 infection is thought to be cleared. More importantly, clearance of SeV infection is not
373 complete, leaving a complex collection of survivor cells including epithelial and immune
374 cells, each carrying distinct transcriptomic signatures. Long-term expression of virus
375 antigens by survivor cells was proven to be a key factor for the immunopathology of
376 paramyxovirus infection as a persistent source of activation for innate immune cells,
377 which leads to maintenance of the robust type 2 environment in the SeV-driven chronic
378 lung disease. Our data not only shed light into the cellular fate following respiratory
379 infections and its long-term implications on chronic disease, but also pave the road for
380 studies to further characterize the functions of persistent virus antigen-expressing cells
381 and designing antiviral strategies.

382

383 **Materials and Methods**

384

385 **Mice, Virus Infection and Virus Titration**

386 Seven- to 9-weeks old female wt C57BL/6 mice were either bred in house or purchased
387 from Taconic Biosciences (Rensselaer, NY). B6.Cg-Gt(ROSA)26Sor^{tm14(CAG-tdTomato)Hze}/J
388 (tdTomato) and C57BL/6-Gt(ROSA)26Sor^{tm1(HBEGF)Awai}/J (iDTR) mice were either bred in
389 house or purchased from The Jackson Laboratory. B6.129S4(C)-II13^{tm2.1Lky}/J (sm13)

390 mice were previously described^{26,27} and bred at Washington University in St. Louis.
391 Sendai virus strain 52 (SeV-52) stocks were expanded in 10-days-old embryonated
392 chicken eggs (Charles River Laboratories, Wilmington, MA) and virus titers were
393 determined using end-point dilution tissue culture infectious dose (TCID₅₀) infectivity
394 assays⁴⁸ in LLC-MK2 cells. For mice infections, animals were anesthetized with standard
395 doses of Xylazine/Ketamine and injected intranasally with 40 µL of either PBS or diluted
396 virus to a final dose of 5x10⁴ TCID₅₀ for SeV-52 or 5x10⁵ TCID₅₀ for rSeV-C^{eGFP-Cre},
397 corresponding to 10 times the virus ID50 ensuring that all mice were infected. Mouse
398 groups were then monitored for weight loss as an indicator of disease progression for up
399 to 49 dpi. To obtain lung viral titers, lung lobes were homogenized in 0.1% Gelatin,
400 clarified by centrifugation, and analyzed by infectivity assays in LLC-MK2 cells. iDTR mice
401 were administered with 100 ng of Diphtheria toxin (DT) (Sigma) intraperitoneally at days
402 3 and 4 for depletion of rSeV-C^{eGFP-Cre}-infected cells. To achieve depletion of persistently
403 infected and survivor cells, DT treatment was performed at days 21 and 22 post-infection.
404

405 **Generation of rSeV-C^{eGFP-Cre}**

406 The full-length SeV Cantell viral antigenome sequence (NCBI accession number
407 OR764764) was inserted into the pSL1180 vector flanked at the 5' by the T7 polymerase
408 promoter and a Hammer-head Ribozyme (Hh-Rbz) and at the 3' by a second Ribozyme,
409 and the T7 terminator. The reporter eGFP and the recombinase Cre genes were inserted
410 as independent reading frames between the virus genes N and P, flanked by the
411 duplicated N/P intergenic region. A NotI restriction site was inserted after the eGFP gene,
412 as well as 4 nucleotides after the Cre gene to ensure the whole genome would meet the

413 paramyxovirus “rule of six”. Three helper plasmids were made by cloning NP, P, and L
414 genes of SeV Cantell into the pTM1 vector. All these plasmids were confirmed by
415 nanopore sequencing.

416 To rescue the recombinant virus, BSR-T7 cells grown in DMEM containing 10%
417 FBS, 50ng/mL Gentamicin, 1mM Sodium Pyruvate, and 2mM L-Glutamine were
418 transfected with a plasmid’s mixture containing 4.0 µg pSL1180- rSeV-C^{eGFP-Cre} 1.44 µg
419 pTM1-NP, 0.77 µg pTM1-P and 0.07 µg pTM1-L using Lipofectamine LTX according to
420 manufacturer’s guidelines. After a 5 h incubation, the medium was changed to infection
421 medium (DMEM containing Pen/Strep, 35% Bovine Serum Albumin (BSA) (Sigma), 5%
422 NaHCO₃) with 1 µg/mL TPCK-treated trypsin (Worthington Biochem. Corporation), then
423 cells were incubated at 37°C. The monolayers were monitored daily for eGFP expression
424 and harvested on day 4 post-transfection. After 3 freeze-thaw cycles, the supernatants
425 were clarified by centrifugation and used to infect 10-day-old embryonated chicken eggs
426 through the allantoic cavity. After incubation for 40 hours at 37°C, 40 – 70% humidity, the
427 allantoic fluids were harvested and the TCID₅₀ was measured using LLC-MK2 cells.

428

429 **RNA extraction and RT-qPCR**

430 Lung samples were homogenized in TRIzol (Ambion Inc.), and total RNA was extracted
431 following manufacturer’s guidelines. To remove any trace of DNA contaminants, 1 µg of
432 total RNA was treated with DNase I (Thermo scientific) following manufacturer’s
433 guidelines and cDNA synthesis was then carried out with the High-Capacity cDNA
434 Reverse Transcription kit (Applied biosystems). For quantitative analysis by RT-PCR
435 (qPCR), 10 ng/µL of cDNA was amplified using SYBR Green Mastermix (Thermofisher)

436 in a BioRad C1000 Touch thermal cycler (BioRad). SeV NP (forward 5-
437 TGCCCTGGAAGATGAGTTAG-3', reverse 5'-GCCTGTTGGTTGTGGTAAG-3')
438 relative copy numbers were normalized to mouse GAPDH (forward 5-
439 CTCCCACCTCCACCTTCG-3', reverse 5'-CCACCACCCCTGTTGCTGTAG-3') and
440 corrected for mouse alpha-Tubulin (forward 5'-TGCCTTGTCACGGTATG-3', reverse
441 5'-CTGGAGCAGTTGACGACAC-3') expression as described previously²².

442

443 **Generation of recombinant huFc-SeV NP antibody**

444 Sequence of the mouse variable heavy and kappa chains were obtained by using
445 SMARTer 5' RACE technology (Takara Bio, USA) adapted for antibodies to amplify the
446 variable genes from heavy and kappa chains for each hybridoma based on isotype.
447 Briefly, RNA was extracted from each hybridoma using Qiagen RNeasy Mini Kit (Qiagen,
448 Valencia, CA), followed by first stand cDNA synthesis using constant gene specific 3'
449 primers (GSP) based on the specific isotype of the hybridoma and incubation with the
450 SMARTer II A Oligonucleotide and SMARTscribe reverse transcriptrase. Amplifying PCR
451 of the first stand cDNA product was then performed using SeqAmp DNA
452 Polymerase (Takara) with a nested 3' primer to the constant genes and a 5' universal
453 primer based on universal primer sites added to the 5' end during cDNA generation.
454 Purified PCR product was then submitted for Sanger sequencing using 3' constant gene
455 primers (GeneWiz, South Plainfield, NJ). Sequence results were blasted against the
456 IMGT human databank of germline genes using V-Quest (<http://imgt.org>) and analyzed
457 for CDR3/junction identity and V(D)J usage. Clones were chosen from each clonal family,
458 and DNA was synthesized and cloned in-framed into pcDNA3.4 vector containing a

459 human IgG1 constant region and a human kappa light chain constant region, making a
460 chimeric mouse variable/human constant antibody. (GenScript USA Inc., Piscataway,
461 NJ). Heavy and light cloned plasmids were mixed 1:1 and transfected into Expi293 cells
462 according to manufacture protocol (ThermoFisher). Supernatants were harvested five
463 days later and purified on protein A/G Hi-Trap columns on an AKTA FPLC (Cytiva).
464 Antibody was eluted off the columns at low pH and dialyzed against 1xPBS. Antibody
465 quantitation was performed by 280/260 absorbance on a Nanodrop spectrophotometer
466 (DeNovix).

467

468 **Histopathology and tissue immunofluorescence**

469 Mice lungs were perfused with 8 mL PBS and inflated with 0.7 mL of OCT compound
470 (Tissue-Tek) mixed 1:1 v/v with 4% paraformaldehyde (Electron Microscopy Sciences)
471 diluted in PBS. Inflated lungs were snap-frozen and stored at -80°C until sectioning.
472 Tissue sections (4 µm) were stained with hematoxylin and eosin, and chronic lung
473 disease was scored on a scale of 0 to 3 for alveolitis, peribroncholitis and airway
474 metaplasia. Percentage values and area affected was determined, multiplied by the
475 intensity scores previously defined, and the resulting weighted scores were graphed. For
476 immunostaining analysis, tissue sections were washed in PBS to remove OCT, and Fc
477 receptor blockade was performed using anti-mouse Fc γ RIII/II (FcBlock) (Jackson
478 Immunoresearch) diluted 1:200 in PBS containing 1% bovine serum albumin (BSA).
479 Surface staining was performed using a panel of antibodies targeting T cells, B cells,
480 macrophages, and dendritic cells (**Supplementary Table 1**) at 4°C overnight. Sections
481 were washed in PBS and surface antibodies were detected with anti-Rat AlexaFluor-488

482 secondary antibody (BioLegend). After surface staining, sections were permeabilized with
483 0.2% Saponin (Sigma) diluted in PBS containing 1% BSA and FcBlock (1:200), and
484 intracellular staining was performed using recombinant hu-mouse anti SeV-NP antibody
485 conjugated with AlexaFluor-647 (1:1000) (Invitrogen) in combination with either anti-Krt5
486 (1:500) (BioLegend) or anti-Krt8 (1:200) for 1 h at room temperature. Intracellular primary
487 antibodies were detected with anti-Rabbit AlexaFluor 488 or anti-Rat AlexaFluor 488
488 secondary antibodies. Nuclear staining was performed with Hoechst (Invitrogen) and
489 tissue autofluorescence was quenched using 1 x True Black (Biotium) diluted in 70%
490 ethanol. Slides were mounted with Fluormount-G (Invitrogen) and images were acquired
491 using a Zeiss Axio observer Widefield fluorescence microscope, using 5x and 20x
492 objectives.

493

494 **Fluorescence RNA *in situ* hybridization**

495 RNA *in situ* hybridization was performed using RNAscope Multiplex Fluorescent Reagent
496 Kit v2 (Advanced Cell Diagnostics, Inc., Newark, NJ, USA) according to the
497 manufacturer's instructions. Lung sections (4 μ m) were washed as described in the
498 previous paragraph and hybridized for 2 h at 40°C with the RNAscope probe V-SeV-NP-
499 C1 (Cat. No. 1118511-C1) targeting the genomic RNA sequence of NP gene.
500 Preamplifier, amplifier, HRP-labeled oligos, and TSA plus (Cyanine3 or Cyanine5) (Akoya
501 biosciences) dye was then hybridized at 40°C. Nuclear staining was performed with DAPI,
502 and images were acquired as described in the previous sub-session.

503

504 **Multicolor flow cytometry and cell sorting**

505 At 3 and 49 dpi, mouse lungs were inflated with 0.7 mL of digestion mix containing
506 collagenase A (Sigma), dispase (Thermofisher), liberase TL (Sigma) and DNase I
507 (Sigma) and incubated at 37°C for 30 min with agitation. Digested samples were then
508 briefly vortexed and filtered through a 70-µm filter mesh to obtain single-cell suspensions.
509 The obtained cells were washed with PBS containing 5% FBS, treated with red blood
510 cells lysis buffer (Sigma), and total viable cells were quantified with trypan blue staining
511 using an automated cell counter (TC-20 Automated Cell Counter; BioRad). For each
512 sample, 2x10⁶ cells were resuspended in PBS supplemented with 1% BSA and 2 mM
513 EDTA (Corning). Next, Fc receptor blockade and viability staining were simultaneously
514 performed using Rat anti-mouse Fc γ RIII/II (CD16/32; BD Biosciences) and ZombieNIR
515 (BioLegend) for 10 min at room temperature. To define major cell subpopulations (**Fig**
516 **S1**) we employed a panel of 16 antibodies (**Table S1**) to stain for surface markers. For
517 intracellular staining of Sendai virus NP, cells were fixed/permeabilized with the FoxP3/
518 Transcription Factor Staining Buffer Set (eBioscience) following manufacturer's
519 guidelines, and incubated with recombinant hu-mouse anti-SeV NP antibody, conjugated
520 with AlexaFluor-647 (Invitrogen) for 1h at 4°C.

521 To isolate specific lung cell populations with fluorescent activated cell sorting
522 (FACS), surface staining was performed as mentioned above using a panel of lineage-
523 specific markers (**Supplementary Table 1**). Live CD45⁺, Lineage⁻, Thy1.2⁺ and sm13⁺
524 cells were defined as ILC2s. Macrophages were obtained from the same single-cell
525 suspensions mentioned above using the Anti-F4/80 MicroBeads UltraPure, mouse
526 (Miltenyi Biotec) isolation kit. All flow cytometry experiments were performed using a
527 Cytek Aurora spectral flow cytometer (Cytek Biosciences), with acquisition of at least

528 1x10⁶ total events. FACS experiments were performed using a BD-FACS Aria-II. Data
529 analysis was done using FlowJo V12 software (Tree Star Inc.).

530

531 **RNA-seq of sorted cells**

532 For both ILC2 and macrophages obtained from SeV-infected sm13 mice, and for tdTom⁺,
533 tdTom⁺NP⁺, and negative cells obtained from rSeV-C^{eGFP-Cre}-infected tdTom mice, total
534 RNA was extracted from at least three cell pools per condition, using KingFisher APEX
535 automated RNA Extraction and Purification system (ThermoFisher) according to the
536 manufacturer's guidelines. Each ILC2 and Macrophage sample, as well as tdTom⁺,
537 tdTom⁺NP⁺, and negative cell samples was a resulting pool of cells from 2 individual
538 animals. Total cDNA libraries were prepared from 100 ng of starting RNA using TruSeq
539 Total RNA Library Prep Kit, with subsequent Ribo-Zero Human/Mouse/Rat Sample Prep
540 Kit following manufacturer's instructions. Libraries were run on Illumina NovaSeq 6000 to
541 generate 150 bp, paired-end reads, resulting in 79-120 million reads per sample with an
542 average Phred score of 35.75.

543

544 **Viral reads and host transcriptome analysis**

545 Sequencing adaptors were removed from the raw sequencing data using Cutadapt⁴⁹.
546 Trimmed reads were then mapped to the mouse transcriptome (Ensembl release 79,
547 EnsDb.Mmusculus.v79) using Kallisto, with 60 bootstraps per sample⁵⁰. Subsequent
548 import and annotation of transcripts were done in R environment using the TxImport
549 package⁵¹. Differentially expressed genes (DEGs) (p value < 0.05, fold change > 2)
550 between pairwise comparisons were obtained by linear modeling and Bayesian statistics

551 using the VOOM function from the Limma package⁵². Gene Ontology (GO) analysis was
552 done using the enrichGO function from the ClusterProfiler package⁵³ with a p value cut-
553 off of 0.05. Gene Set Enrichment Analysis (GSEA) was performed using the Molecular
554 Signatures Database (MSigDB) msigdb R package⁵⁴ including pathways found in the
555 C2, C5 and H Mus Musculus gene collections^{55,56}. Finally, reads mapping the mouse
556 genome were removed from the trimmed dataset using Bowtie2 v2.4.1⁵⁷ and virus
557 coverage was obtained using SAMtools v1.15⁵⁸ after aligning the non-host reads to the
558 rSeV-C^{eGFP-Cre} genome using Bowtie2. Virus coverage per sample was visualized using
559 the ggplot2 R package⁵⁹. All data analysis was performed in RStudio (v. 2023.06.0+421).
560

561 **Statistical analysis**

562 Statistical significance was inferred using GraphPad Prism software version 9.0
563 (GraphPad Software, San Diego, CA). For animal experiments, group size consisted of
564 3-7 mice per group. The weight-loss curve was analyzed by calculating the area under
565 the curve (AUC) from both groups and comparing them using student t-tests. One-way
566 and Two-way analysis of variance (ANOVA) with either Holm-Sídák or Bonferroni post-
567 test was used to estimate the statistical significance between conditions of the remaining
568 experiments. P values <0.05 were considered significant.

569

570 **Data deposition**

571 Next generation sequencing raw data of SeV-52 and rSeV-C^{eGFP-Cre} experiments
572 described in Figs 3, 4, and 5 was deposited in SRA under accession number
573 PRJNA1034107.

574

575 **Acknowledgements**

576 We thank J. Andrew Duty from the Center for Therapeutic Antibody Development, Drug
577 Discovery Institute, Icahn School of Medicine, Mount Sinai, New York, NY, USA for the
578 technical support in the generation of the SeV humanized antibody used in this study. We
579 thank the Tissue Histology Core at the Center for Reproductive Health Sciences,
580 Department of Obstetrics & Gynecology, Washington University School of Medicine, Saint
581 Louis, MO, USA for all the support with the tissue sectioning and histologic staining. We
582 also thank the Flow Cytometry & Fluorescent Activated Cell Sorting Core at the
583 Department of Pathology & Immunology, Washington University School of Medicine,
584 Saint Louis, MO, USA for the help with the cell sorting experiments.

585

586 This project was funded by NIH grants AI127832 and A137062, and the Washington
587 University BJC Investigator program (to C.B.L), NIH grants HL148033, AI176660, and
588 AI163640 (to S.J.V.D.), and the National Research Korea Award NRF-2020
589 R1A6A3A03037855 (to D.-H.K).

590

591 **Declaration of interests**

592 The authors declare no competing interests.

593

594

595

596

597 **References**

598

599 1 Shi, T. *et al.* Global, regional, and national disease burden estimates of acute
600 lower respiratory infections due to respiratory syncytial virus in young children in
601 2015: a systematic review and modelling study. *The Lancet* **390**, 946-958 (2017).
[https://doi.org/10.1016/S0140-6736\(17\)30938-8](https://doi.org/10.1016/S0140-6736(17)30938-8)

602 2 Wang, X. *et al.* Global burden of acute lower respiratory infection associated with
603 human metapneumovirus in children under 5 years in 2018: a systematic review
604 and modelling study. *Lancet Glob Health* **9**, e33-e43 (2021).
[https://doi.org/10.1016/S2214-109X\(20\)30393-4](https://doi.org/10.1016/S2214-109X(20)30393-4)

605 3 Weinberg, G. A. *et al.* Parainfluenza Virus Infection of Young Children: Estimates
606 of the Population-Based Burden of Hospitalization. *The Journal of Pediatrics* **154**,
607 694-699 (2009). <https://doi.org/10.1016/j.jpeds.2008.11.034>

608 4 O'Brien, K. L. *et al.* Causes of severe pneumonia requiring hospital admission in
609 children without HIV infection from Africa and Asia: the PERCH multi-country
610 case-control study. *The Lancet* **394**, 757-779 (2019).
[https://doi.org/10.1016/S0140-6736\(19\)30721-4](https://doi.org/10.1016/S0140-6736(19)30721-4)

611 5 Okomo, U., Idoko, O. T. & Kampmann, B. The burden of viral respiratory
612 infections in young children in low-resource settings. *Lancet Glob Health* **8**, e454-
613 e455 (2020). [https://doi.org/10.1016/S2214-109X\(20\)30037-1](https://doi.org/10.1016/S2214-109X(20)30037-1)

614 6 Chen, J. *et al.* Long term outcomes in survivors of epidemic Influenza A (H7N9)
615 virus infection. *Scientific Reports* **7**, 1-8 (2017). <https://doi.org/10.1038/s41598-017-17497-6>

616 7 Taylor, M. S. *et al.* A Conserved Distal Lung Regenerative Pathway in Acute
617 Lung Injury. *American Journal of Pathology* **188**, 1149-1160 (2018).
<https://doi.org/10.1016/j.ajpath.2018.01.021>

618 8 Sapey, E. & Stockley, R. A. COPD exacerbations · 2: Aetiology. *Thorax* **61**, 250-
619 258 (2006). <https://doi.org/10.1136/thx.2005.041822>

620 9 Sivakumaran, S., Alsallakh, M. A., Lyons, R. A., Quint, J. K. & Davies, G. A.
621 Estimating the contribution of respiratory pathogens to acute exacerbations of

627 COPD using routine data. *Journal of Infection* **86**, 233-238 (2023).
628 <https://doi.org/10.1016/j.jinf.2023.01.012>

629 10 Andreas, A., Doris, L., Frank, K. & Michael, K. Focusing on severe infections with
630 the respiratory syncytial virus (RSV) in adults: Risk factors, symptomatology and
631 clinical course compared to influenza A / B and the original SARS-CoV-2 strain.
632 *Journal of Clinical Virology* **161**, 105399-105399 (2023).
633 <https://doi.org/10.1016/j.jcv.2023.105399>

634 11 Wendorf, K. A. *et al.* Subacute Sclerosing Panencephalitis: The Devastating
635 Measles Complication That Might Be More Common Than Previously Estimated.
636 *Clinical Infectious Diseases* **65**, 226-232 (2017).
637 <https://doi.org/10.1093/cid/cix302>

638 12 Griffin, D. E. Measles virus persistence and its consequences. *Curr Opin Virol*
639 **41**, 46-51 (2020). <https://doi.org/10.1016/j.coviro.2020.03.003>

640 13 Deen, G. F. *et al.* Ebola RNA Persistence in Semen of Ebola Virus Disease
641 Survivors — Final Report. *New England Journal of Medicine* **377**, 1428-1437
642 (2015). <https://doi.org/10.1056/NEJMoa1511410>

643 14 Hoarau, J.-J. *et al.* Persistent Chronic Inflammation and Infection by
644 Chikungunya Arthritogenic Alphavirus in Spite of a Robust Host Immune
645 Response. *The Journal of Immunology* **184**, 5914-5927 (2010).
646 <https://doi.org/10.4049/jimmunol.0900255>

647 15 Stein, S. R. *et al.* SARS-CoV-2 infection and persistence in the human body and
648 brain at autopsy. *Nature* **612** (2022). <https://doi.org/10.1038/s41586-022-05542-y>

649 16 Greninger, A. L. *et al.* Human parainfluenza virus evolution during lung infection
650 of immunocompromised individuals promotes viral persistence. *Journal of*
651 *Clinical Investigation* **131** (2021). <https://doi.org/10.1172/JCI150506>

652 17 Owusu, D. *et al.* Persistent SARS-CoV-2 RNA Shedding without Evidence of
653 Infectiousness: A Cohort Study of Individuals with COVID-19. *Journal of*
654 *Infectious Diseases* **224**, 1362-1371 (2021). <https://doi.org/10.1093/infdis/jiab107>

655 18 Tabatabai, J. *et al.* Parainfluenza virus infections in patients with hematological
656 malignancies or stem cell transplantation: Analysis of clinical characteristics,

657 nosocomial transmission and viral shedding. *PLoS One* **17**, e0271756 (2022).
658 <https://doi.org/10.1371/journal.pone.0271756>

659 19 Wang, J. H., Kwon, H. J. & Jang, Y. J. Detection of parainfluenza virus 3 in
660 turbinete epithelial cells of postviral olfactory dysfunction patients. *Laryngoscope*
661 **117**, 1445-1449 (2007). <https://doi.org/10.1097/MLG.0b013e318063e878>

662 20 McCarthy, M. K. & Morrison, T. E. Persistent RNA virus infections: do PAMPS
663 drive chronic disease? *Current Opinion in Virology* **23**, 8-15 (2017).
664 <https://doi.org/10.1016/j.coviro.2017.01.003>

665 21 Griffin, D. E. Why does viral RNA sometimes persist after recovery from acute
666 infections? *PLOS Biology* **20**, e3001687-e3001687 (2022).
667 <https://doi.org/10.1371/journal.pbio.3001687>

668 22 Garcia, G. L., Valenzuela, A., Manzoni, T., Vaughan, A. E. & López, C. B.
669 Distinct Chronic Post-Viral Lung Diseases upon Infection with Influenza or
670 Parainfluenza Viruses Differentially Impact Superinfection Outcome. *American*
671 *Journal of Pathology* **190**, 543-553 (2020).
672 <https://doi.org/10.1016/j.ajpath.2019.11.003>

673 23 Burke, C. W., Bridges, O., Brown, S., Rahija, R. & Russel, C. J. Mode of
674 Parainfluenza Virus Transmission Determines the Dynamics of Primary Infection
675 and Protection from Reinfection. *Plos Pathogens* **9** (2013).
676 <https://doi.org/10.1371/journal.ppat.1003786>

677 24 Byers, D. E. *et al.* Long-term IL-33-producing epithelial progenitor cells in chronic
678 obstructive lung disease. *J Clin Invest* **123**, 3967-3982 (2013).
679 <https://doi.org/10.1172/JCI65570>

680 25 Wu, K. *et al.* Group 2 Innate Lymphoid Cells Must Partner with the Myeloid–
681 Macrophage Lineage for Long-Term Postviral Lung Disease. *The Journal of*
682 *Immunology* **205**, 1084-1101 (2020). <https://doi.org/10.4049/jimmunol.2000181>

683 26 Liang, H. E., Reinhardt, R. L., Bando, J. K., Sullivan, B. M., Ho, I. C. & Locksley,
684 R. M. Divergent expression patterns of IL-4 and IL-13 define unique functions in
685 allergic immunity. *Nat Immunol* **13**, 58-66 (2011). <https://doi.org/10.1038/ni.2182>

686 27 Van Dyken, S. J. *et al.* A tissue checkpoint regulates type 2 immunity. *Nat*
687 *Immunol* **17**, 1381-1387 (2016). <https://doi.org/10.1038/ni.3582>

688 28 Wu, X. *et al.* BATF promotes group 2 innate lymphoid cell–mediated lung tissue
689 protection during acute respiratory virus infection. *Science Immunology* **7** (2022).
690 <https://doi.org/10.1126/sciimmunol.abc9934>

691 29 Xu, J. *et al.* Replication defective viral genomes exploit a cellular pro-survival
692 mechanism to establish paramyxovirus persistence. *Nature Communications* **8**
693 (2017). <https://doi.org/10.1038/s41467-017-00909-6>

694 30 Schuurhof, A. *et al.* Gene Expression Differences in Lungs of Mice during
695 Secondary Immune Responses to Respiratory Syncytial Virus Infection. *Journal*
696 of *Virology* **84**, 9584-9594 (2010). <https://doi.org/10.1128/jvi.00302-10>

697 31 Ravi, L. I. *et al.* A systems-based approach to analyse the host response in
698 murine lung macrophages challenged with respiratory syncytial virus. *BMC*
699 *Genomics* **14** (2013). <https://doi.org/10.1186/1471-2164-14-190>

700 32 Young, A. R. *et al.* Dermal and muscle fibroblasts and skeletal myofibers survive
701 chikungunya virus infection and harbor persistent RNA. *PLoS Pathog* **15**,
702 e1007993 (2019). <https://doi.org/10.1371/journal.ppat.1007993>

703 33 Buch, T. *et al.* A Cre-inducible diphtheria toxin receptor mediates cell lineage
704 ablation after toxin administration. *Nature Methods* **2**, 419-426 (2005).
705 <https://doi.org/10.1038/nmeth762>

706 34 Diallo, B. *et al.* Resurgence of Ebola Virus Disease in Guinea Linked to a
707 Survivor With Virus Persistence in Seminal Fluid for More Than 500 Days. *Clin*
708 *Infect Dis* **63**, 1353-1356 (2016). <https://doi.org/10.1093/cid/ciw601>

709 35 Nelson, A. N. *et al.* Association of persistent wild-type measles virus RNA with
710 long-term humoral immunity in rhesus macaques. *JCI Insight* **5** (2020).
711 <https://doi.org/10.1172/jci.insight.134992>

712 36 Keeler, S. P., Agapov, E. V., Hinojosa, M. E., Letvin, A. N., Wu, K. & Holtzman,
713 M. J. Influenza A Virus Infection Causes Chronic Lung Disease Linked to Sites of
714 Active Viral RNA Remnants. *The Journal of Immunology* **201**, 2354-2368 (2018).
715 <https://doi.org/10.4049/jimmunol.1800671>

716 37 Zhang, Y. *et al.* Respiratory Enterovirus (like Parainfluenza Virus) Can Cause
717 Chronic Lung Disease if Protection by Airway Epithelial STAT1 Is Lost. *J*
718 *Immunol* **202**, 2332-2347 (2019). <https://doi.org/10.4049/jimmunol.1801491>

719 38 Kim, E. Y. *et al.* Persistent activation of an innate immune response translates
720 respiratory viral infection into chronic lung disease. *Nat Med* **14**, 633-640 (2008).
721 <https://doi.org/10.1038/nm1770>

722 39 Kim, W. K. *et al.* Deficiency of melanoma differentiation-associated protein 5
723 results in exacerbated chronic postviral lung inflammation. *Am J Respir Crit Care
724 Med* **189**, 437-448 (2014). <https://doi.org/10.1164/rccm.201307-1338OC>

725 40 Wang, X. *et al.* TLR3-Activated Monocyte-Derived Dendritic Cells Trigger
726 Progression from Acute Viral Infection to Chronic Disease in the Lung. *J Immunol*
727 (2021). <https://doi.org/10.4049/jimmunol.2000965>

728 41 Fonseca, W., Lukacs, N. W., Elesela, S. & Malinczak, C. A. Role of ILC2 in Viral-
729 Induced Lung Pathogenesis. *Frontiers in Immunology* **12**, 1-11 (2021).
730 <https://doi.org/10.3389/fimmu.2021.675169>

731 42 Heaton, N. S., Langlois, R. A., Sachs, D., Lim, J. K., Palese, P. & tenOever, B. R.
732 Long-term survival of influenza virus infected club cells drives immunopathology.
733 *J Exp Med* **211**, 1707-1714 (2014). <https://doi.org/10.1084/jem.20140488>

734 43 Hamilton, J. R., Sachs, D., Lim, J. K., Langlois, R. A., Palese, P. & Heaton, N. S.
735 Club cells surviving influenza A virus infection induce temporary nonspecific
736 antiviral immunity. *Proc Natl Acad Sci U S A* **113**, 3861-3866 (2016).
737 <https://doi.org/10.1073/pnas.1522376113>

738 44 Wheeler, D. L., Athmer, J., Meyerholz, D. K. & Perlman, S. Murine Olfactory Bulb
739 Interneurons Survive Infection with a Neurotropic Coronavirus. *J Virol* **91** (2017).
740 <https://doi.org/10.1128/JVI.01099-17>

741 45 Dumm, R. E., Fiege, J. K., Waring, B. M., Kuo, C. T., Langlois, R. A. & Heaton,
742 N. S. Non-lytic clearance of influenza B virus from infected cells preserves
743 epithelial barrier function. *Nat Commun* **10**, 779 (2019).
744 <https://doi.org/10.1038/s41467-019-08617-z>

745 46 Reuther, P. *et al.* Persistent RNA virus infection is short-lived at the single-cell
746 level but leaves transcriptomic footprints. *Journal of Experimental Medicine* **218**
747 (2021). <https://doi.org/10.1084/jem.20210408>

748 47 Heaton, N. S. Revisiting the concept of a cytopathic viral infection. *PLoS Pathog*
749 **13**, e1006409 (2017). <https://doi.org/10.1371/journal.ppat.1006409>

750 48 Reed, L. J. M. & Muench, H. A simple method of estimating fifty percent
751 endpoints. *American Journal of Hygiene* **27**, 493-497 (1938).

752 49 Martin, M. Cutadapt removes adapter sequences from high-throughput sequence
753 reads. *EMBnet Journal*, 1-3 (2011). <https://doi.org/10.14806/ej.17.1.200>

754 50 Shi, W. A Bioconductor R pipeline for analysis of RNA-seq data. *Protocol*
755 *Exchange* (2015). <https://doi.org/10.1038/protex.2015.039>

756 51 Soneson, C., Love, M. & Robinson, M. Differential analyses for RNA-seq:
757 transcript-level estimates improve gene-level inferences [version 2; peer review:
758 2 approved]. *F1000Research* **4** (2016).
<https://doi.org/10.12688/f1000research.7563.2>

760 52 Ritchie, M. E. *et al.* limma powers differential expression analyses for RNA-
761 sequencing and microarray studies. *Nucleic Acids Research* **43**, e47-e47 (2015).
<https://doi.org/10.1093/nar/gkv007>

763 53 Yu, G., Wang, L. G., Han, Y. & He, Q. Y. clusterProfiler: an R package for
764 comparing biological themes among gene clusters. *OMICS* **16**, 284-287 (2012).
<https://doi.org/10.1089/omi.2011.0118>

766 54 Liberzon, A., Subramanian, A., Pinchback, R., Thorvaldsdóttir, H., Tamayo, P. &
767 Mesirov, J. P. Molecular signatures database (MSigDB) 3.0. *Bioinformatics* **27**,
768 1739-1740 (2011). <https://doi.org/10.1093/bioinformatics/btr260>

769 55 Ashburner, M. *et al.* Gene Ontology: tool for the unification of biology. *Nature*
770 *Genetics* **25**, 25-29 (2000). <https://doi.org/10.1038/75556>

771 56 Liberzon, A., Birger, C., Thorvaldsdóttir, H., Ghandi, M., Mesirov, J. P. &
772 Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set
773 collection. *Cell Syst* **1**, 417-425 (2015). <https://doi.org/10.1016/j.cels.2015.12.004>

774 57 Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. *Nat*
775 *Methods* **9**, 357-359 (2012). <https://doi.org/10.1038/nmeth.1923>

776 58 Danecek, P. *et al.* Twelve years of SAMtools and BCFtools. *Gigascience* **10**
777 (2021). <https://doi.org/10.1093/gigascience/giab008>

778 59 Wickham, H. *ggplot2: Elegant Graphics for Data Analysis*. (Springer, 2016).

779

780

781 **Figure 1. Viral antigens and RNA persist in mouse lungs after SeV-driven acute**
782 **illness. A.** Timeline of the study design. Mice were inoculated with either phosphate-
783 buffered saline (mock) or 5×10^4 tissue culture infectious dose (TCID₅₀) of SeV 52 per
784 animal. Lungs were analyzed on days 3 and 49 post-infection. **B.** Disease progression
785 was monitored by measuring weight loss through the experiment. Data are representative
786 of 4 independent experiments (mean \pm SD). For SeV-infected and mock groups the area
787 under the curve (AUC) was calculated and t-tests were performed for statistical
788 significance analysis. ****P<0.0001. **C.** Whole lung homogenates were harvested at days
789 3 and 49 post-infection and both SeV NP RNA expression and infectious virus titers were
790 quantified by qPCR and infectivity assays respectively. Relative RNA quantitation by
791 qPCR was normalized to mouse GAPDH and β -Actin. Two-way analysis of variance with
792 Holm-Sídák post-test was used to estimate statistical significance between groups. N = 5
793 animals per group. *P<0.05; **P<0.01; ****P<0.0001. **D.** SeV-infected lungs were stained
794 for SeV NP (white staining, upper panels) using immunofluorescence and for SeV NP
795 RNA using RNAscope (white staining, lower panels). Nuclear staining (Hoechst for
796 immunofluorescence and DAPI for RNAscope) in blue. Representative images of 3
797 independent experiments. Scale bars: 100 μ m. **E.** SeV-infected lungs were stained for
798 basal stem cells (Krt5⁺, green staining) and SeV NP (magenta staining) to localize SeV
799 NP⁺ cells in relation to areas displaying chronic lesions (dashed areas, subpanels E1-E3)
800 and unaffected areas (subpanel E4). Arrowheads indicate SeV NP⁺ cells, more detailed
801 in the correspondent zoomed inset panels. Images were taken using a widefield
802 microscope. Left panel, tiling image, 5x magnification. Right subpanels, 20x
803 magnification. Right insets: digital zooms from the correspondent 20x magnification

804 images. Scale bars: Left panel. 500 μ m; Subpanels. 100 μ m. Images are representative
805 of 3 independent experiments, 5 mice per group.

806

807 **Figure 2. Diverse lung immune cells express SeV NP during chronic infection. A.**
808 Characterization of immune cells expressing SeV NP from cryopreserved mouse lungs
809 after 49 dpi by immunofluorescence. Tissue sections were stained for SeV NP (magenta)
810 in combination with the surface markers CD3 (T lymphocytes), CD11c, CD11b (dendritic
811 cell subsets), F4/80 (macrophages), and Thy1.2 (Innate Lymphoid Cells and some T
812 lymphocyte subsets) in green and red. Nuclear staining is displayed in blue. White arrows
813 indicate individual SeV NP⁺ cells. Images were taken in a widefield fluorescence
814 microscope using a 20x magnification scope. Scale bars: 25 μ m. Representative images
815 from three independent experiments, 5 mice per condition. Right panels: insets from the
816 dashed areas. **B-E.** Lungs from SeV-infected mice were harvested at 3 and 49 dpi,
817 enzymatically digested, and analyzed by multiplex spectral flow cytometry with a panel of
818 16 antibodies to quantify **(B and C)** and characterize **(D and E)** SeV⁺ cells. **B.**
819 Representative dot plots of SeV NP⁺ cells (% of live) comparing acute (3 dpi) with long-
820 term (49 dpi) SeV infection. SeV NP⁺ gates were drawn based on the isotype control and
821 the mock-infected samples. **C.** Frequency of SeV NP⁺ cells gated on total live cells from
822 SeV 3 days-, SeV 49 days-, and mock-infected lungs. **D.** Representative histograms of
823 SeV NP⁺ fluorescence intensity from 9 individual cell subsets, B cells, ILC2s, T CD4⁺
824 lymphocytes, T CD8⁺ lymphocytes, NK cells, Polymorphonuclear cells (PMNs), Alveolar
825 macrophages (AMs), Tissue macrophages (TMs), and Dendritic cells (DCs) at 49 dpi.
826 Histograms from SeV-infected animals are displayed in red while histograms from mock-

827 infected animals are displayed in gray. **E**. Frequency and mean fluorescence intensity
828 (MFI) of SeV NP⁺ cells within lymphoid- and myeloid-origin cell subsets. All multiple
829 comparisons were done with one-way ANOVA and Holm-Sídák post-test. *P<0.05;
830 **P<0.01; ***P<0.0005; ****P<0.0001. Data representative of two independent
831 experiments, 4-5 animals per condition, total 1 million events acquired per animal.

832

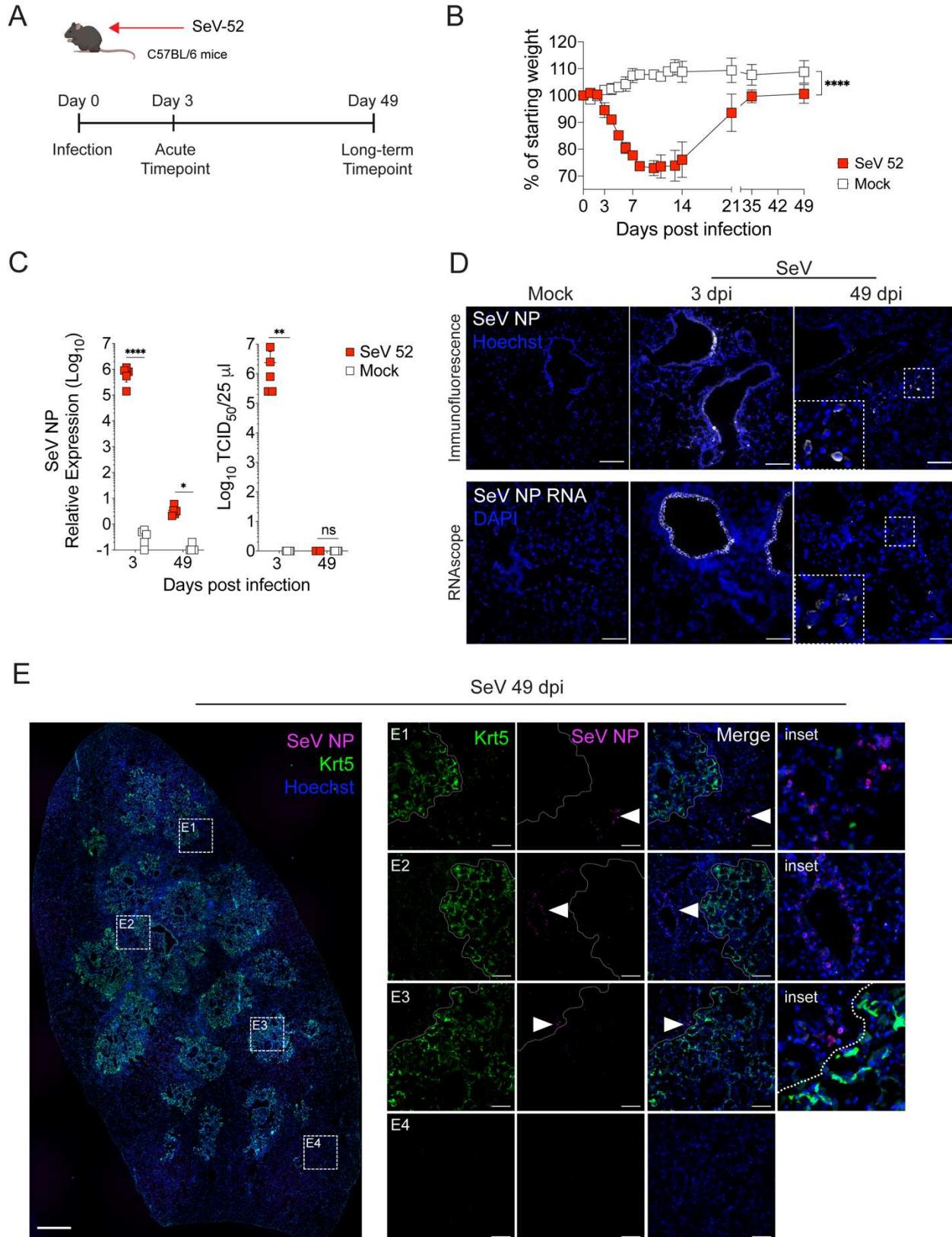
833 **Figure 3. Type 2 innate lymphoid cells and macrophages are persistently activated**
834 **in a type 2 inflammation manner during SeV chronic lung disease.** Lung type 2 innate
835 lymphoid cells (ILC2s) (**A-C**), and macrophages (**D-F**) were isolated either from SeV- or
836 mock-infected mouse lungs after 49 dpi and subjected to bulk RNA-seq. **A** and **D**. Volcano
837 plots indicating differentially expressed genes detected in ILC2s and macrophages,
838 respectively, from SeV-infected lungs over mock. P<0.05, LogFC>2. **B-C**. Scattered dot
839 plots showing expression of ILC2 hallmark genes (**B**) and virus-related ISGs (**C**). Each
840 dot corresponds to an individual pool of cells (n = 6 animals pooled in pairs per condition).
841 **E-F**. Scattered dot plots indicating expression of Th2 polarization (**E**) and phagocytic
842 activity (**F**) genes from macrophages. Each dot corresponds to cells obtained from an
843 individual animal (minimum n = 3 animals per condition). Data are displayed as mean ±
844 SD. Two-way analysis of variance (ANOVA) with Bonferroni post-test was used to
845 estimate statistical significance between multiple comparisons. *P<0.05; **P<0.01;
846 ****P<0.0001. CPM, copies per million. **G**. Bubble chart showing gene set enrichment
847 analysis (GSEA) of upregulated genes in ILC2s and macrophages sorted from SeV 49
848 dpi lungs. Bubble size indicates gene set size per GSEA pathway, while bubble color
849 gradient indicates Normalized Enrichment Scores (NES) values.

850

851 **Figure 4. Paramyxovirus infection clearance is not complete and leaves long-term**
852 **survivor cells in the lower respiratory tract expressing persistent viral RNA and**
853 **viral proteins. A.** B6.Cg-Gt(ROSA)^{tdTom} (tdTom) mice were inoculated intranasally with
854 either PBS (mock) or 5x10⁵ TCID₅₀ rSeV-C^eGFP-C^{re}. Lungs were harvested at 3, and 49 dpi
855 for flow cytometry (FC) analysis, and cell sorting at 49 dpi. Weight loss was recorded up
856 to 21 dpi to monitor disease progression. Data (mean±SD) are representative of 2
857 individual experiments (minimum 3 mice per group). **B.** Representative dot plots
858 comparing percentage of tdTom⁺ cells in mouse lungs during acute (3 dpi) and chronic
859 (49 dpi) rSeV- C^eGFP-C^{re} infection. **C.** Frequency of tdTom⁺ cells gated on total live cells
860 from rSeV-C^eGFP-C^{re} 3 days-, rSeV- C^eGFP-C^{re} 49 days-, and mock-infected lungs. Data are
861 shown as mean±SD. Statistical significance was estimated with one-way ANOVA using
862 Bonferroni post-test. ***P<0.005. **D-E.** Characterization of immune (CD45⁺) and non-
863 immune (CD45⁻) cell proportions within tdTom⁺ cells. Representative dot plots (**D**) and
864 quantification (**E**) of CD45 staining in tdTom⁺ cells during acute (3 dpi) and chronic (49
865 dpi) rSeV-C^eGFP-C^{re} infection. Statistical significance was estimated with two-way ANOVA
866 and Holm-Sídák post-test. *P<0.05. **F.** Combination of tdTom and SeV NP detection
867 enables sorting of two distinct subsets of VID cells, SeV-infected cells persistently
868 expressing viral antigens (tdTom⁺NP⁺) and SeV-infected/survivor cells only (tdTom⁺NP⁻).
869 Representative dot plots indicating the gating strategy used for sorting 3 cell
870 subpopulations from rSeV-C^eGFP-C^{re}-infected lungs tdTom⁺NP⁻, tdTom⁺NP⁺, and negative.
871 Negative cells from mock-infected lungs were also sorted. Data representative of 2
872 individual experiments, 6 mice per condition. **G.** Sorted cells were pooled (2 mice) and

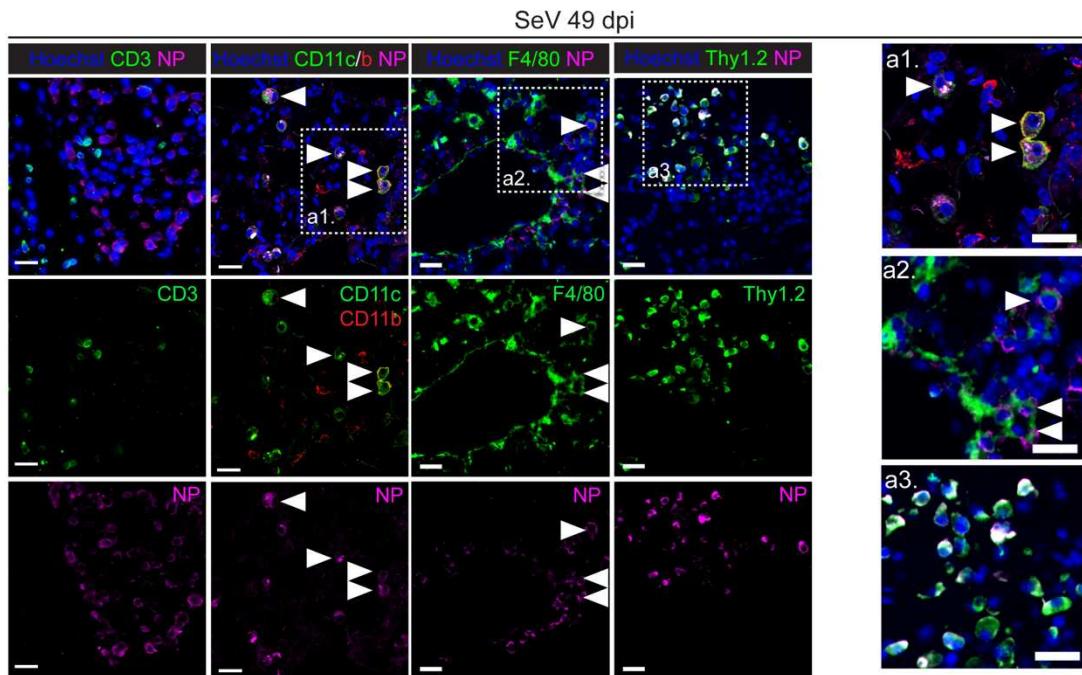
873 subjected to RNAseq. Normalized viral reads per 10^8 total reads are displayed per
874 individual pool of tdTom⁺NP⁻ and tdTom⁺NP⁺ cells. **H.** Coverage analysis indicating
875 normalized viral reads per genome position in each individual cell pool. Viral specific gene
876 regions and reporter genes are indicated in light gray.

877

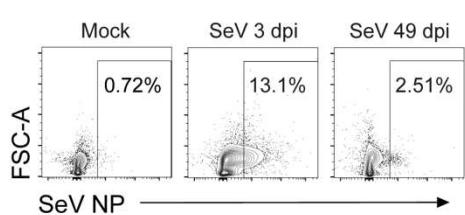

878 **Figure 5. Viral clearance and persistence entails opposing transcriptional**
879 **programs in long-term SeV-infected lungs.** Viral infected and cells derived from them
880 sorted from tdTom mice infected with rSeV-C^{eGFP}Cre at 49 dpi were subjected to bulk
881 RNAseq and host transcriptome analysis. **A.** Volcano plots indicating differentially
882 expressed genes (DEGs) in tdTom⁺NP⁻, tdTom⁺NP⁺, and Negative cells against Mock
883 negative cells. **B.** Venn diagram showing overlapping DEGs from tdTom⁺NP⁻ and
884 tdTom⁺NP⁺, as well as exclusive DEGs from each cell subset. **C.** Bar graphs showing
885 gene ontology (GO) enrichment analysis of each of the VID cell subsets (tdTom⁺NP⁻ and
886 tdTom⁺NP⁺) exclusive DEGs. **D.** Heatmaps of selected gene collections from the GO
887 pathways in **C.** Shown are fold change (FC) values of tdTom⁺NP⁻ and tdTom⁺NP⁻ are
888 displayed. Columns groups are color-coded following the same patterns on **C.** and **B.** **E.**
889 Gene set enrichment assay (GSEA) bubble chart indicating the most significant enriched
890 pathways of tdTom⁺NP⁺ transcriptome signatures in comparison with tdTom⁺NP⁻ cells.
891 Bubble color gradient indicates Normalized enrichment score (NES), and bubble sizes
892 correspond to gene set size on each pathway.

893

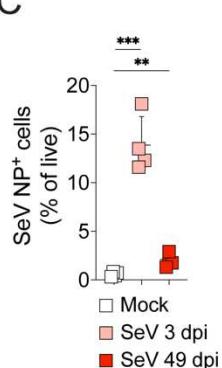
894 **Figure 6. Chronic lung pathology induced by paramyxovirus infection is dependent**
895 **on long-term surviving and persistently infected cells. A.** Diphtheria toxin regime

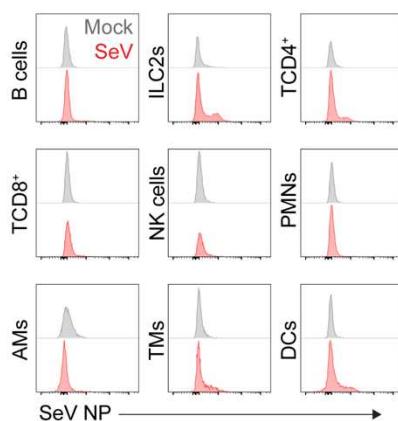

896 treatment and timepoints for tissue harvesting and analysis. **B.** Disease progression was
897 assessed by monitoring animal weight loss until 26 dpi. Graphs are representative of 2
898 independent experiments and depict mean weight loss values \pm SD, 4 mice per condition.
899 **C.** Mouse lungs were harvested at 49 dpi and tissue sections were stained with
900 Hematoxylin and Eosin to compare pathological changes between the analysis groups.
901 Top panels indicate representative images of whole lung sections (Brightfield, 5x
902 magnification tiled images, Scale bars: 1 mm) and bottom panels indicate zoomed-in
903 images from the indicated areas (Brightfield, 5x magnification tiled images, scale bars:
904 100 μ m). 4 animals per condition. **D.** Lung sections from SeV +DT and SeV -DT groups
905 were blindly scored for histopathological changes. Total area affected, percentage of
906 airway structures affected, and intensity of alveolitis, peribroncholitis, and bronchus-
907 associated lymphoid tissue (BALT) expansion were determined for every individual lung
908 sample. Individual weighted scores values \pm SD are indicated. Data representative of 2
909 individual experiments, 4-7 mice per condition. **E.** Lung sections were stained for the
910 tissue remodeling and chronic lung lesion markers Krt5 (green) and Krt8 (magenta) with
911 immunofluorescence to check for chronic lung lesion progression. Nuclear staining is
912 displayed in blue. The dashed area indicates chronic lung lesions and areas of intense
913 tissue remodeling. Images were taken with a widefield microscope. Upper panels, tiling
914 images, 20x magnification, scale bars: 500 μ m. Lower panels: 20x magnification, scale
915 bars: 100 μ m. **F.** Quantification of chronic lung lesion area (%) over total lung section
916 area. Mean values \pm SD are shown. Data are representative of two individual experiments,
917 4-7 mice per condition. Statistical significance was estimated using one-way ANOVA and
918 Bonferroni post-test. *P<0.05.

919 **Figure 1.**
920



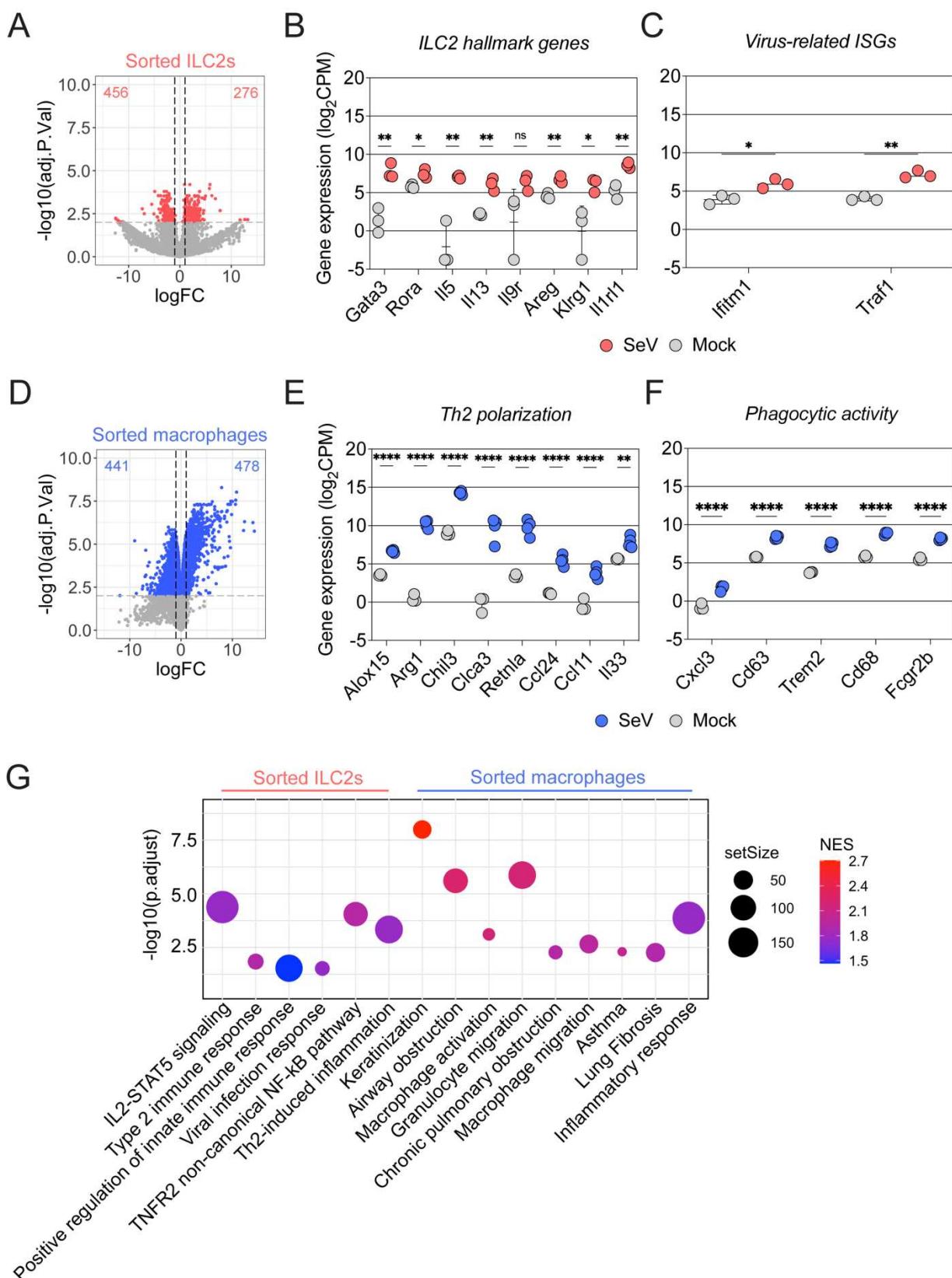
922 **Figure 2.**
923


A


B

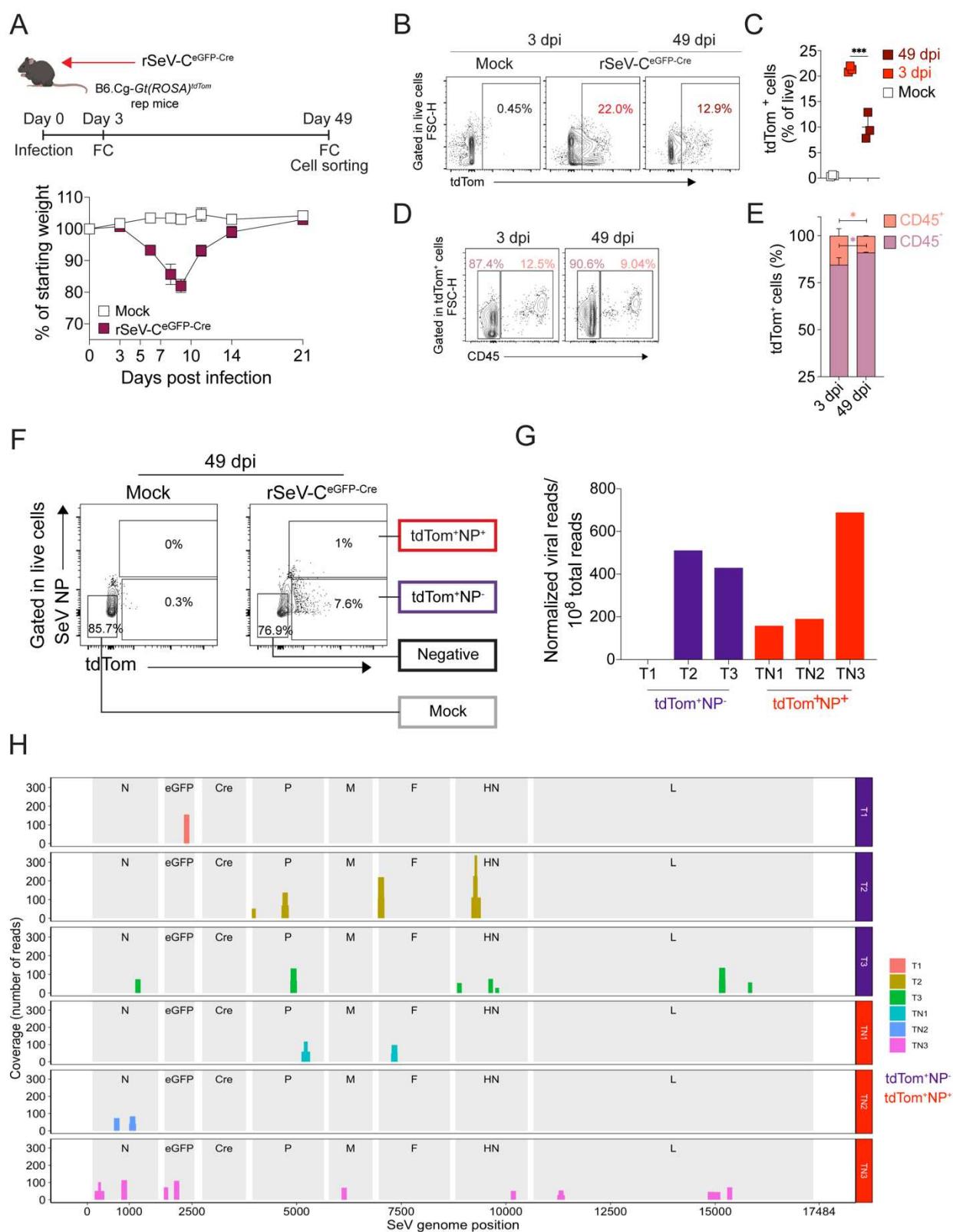
C

D


E

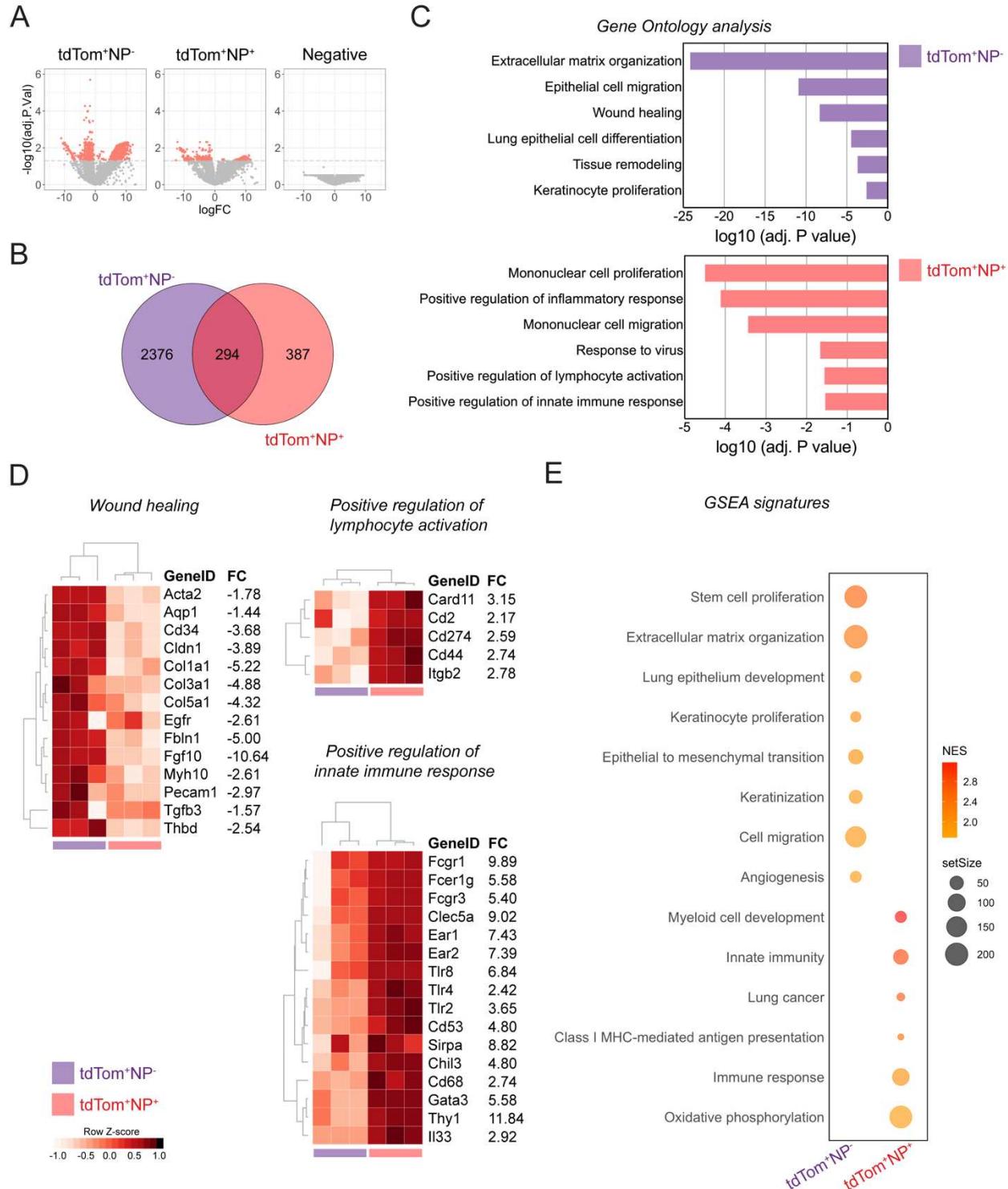
924
925
926
927
928

929
930


Figure 3.

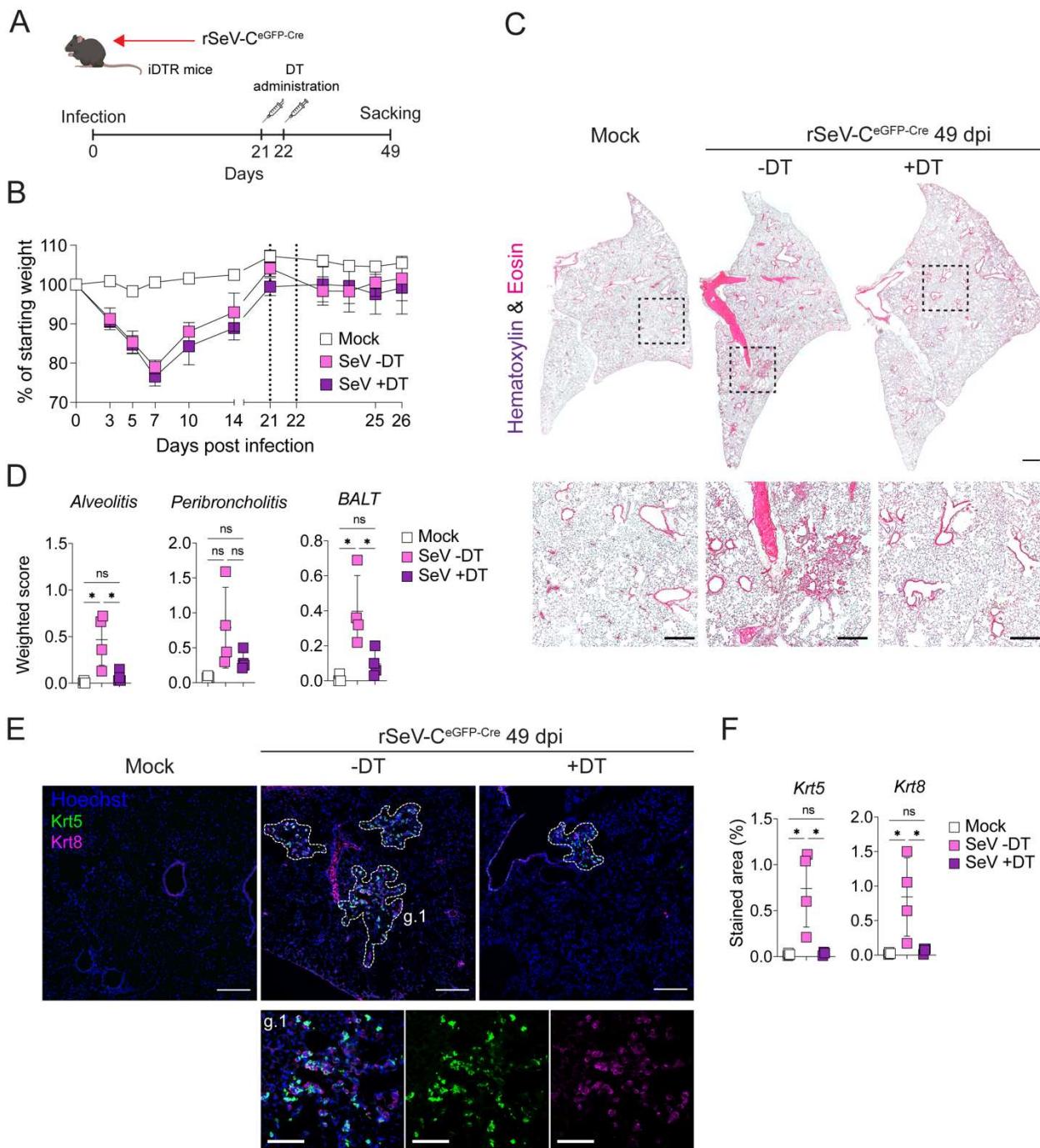
931

932 **Figure 4.**


933

934

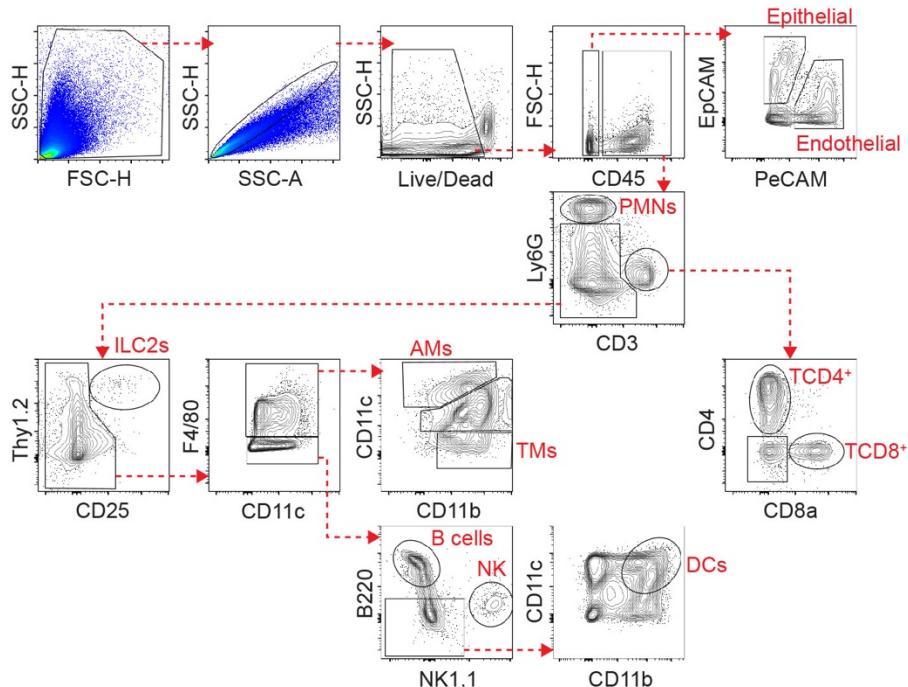
935


936 **Figure 5.**
937

938
939
940
941
942

943 **Figure 6.**

944

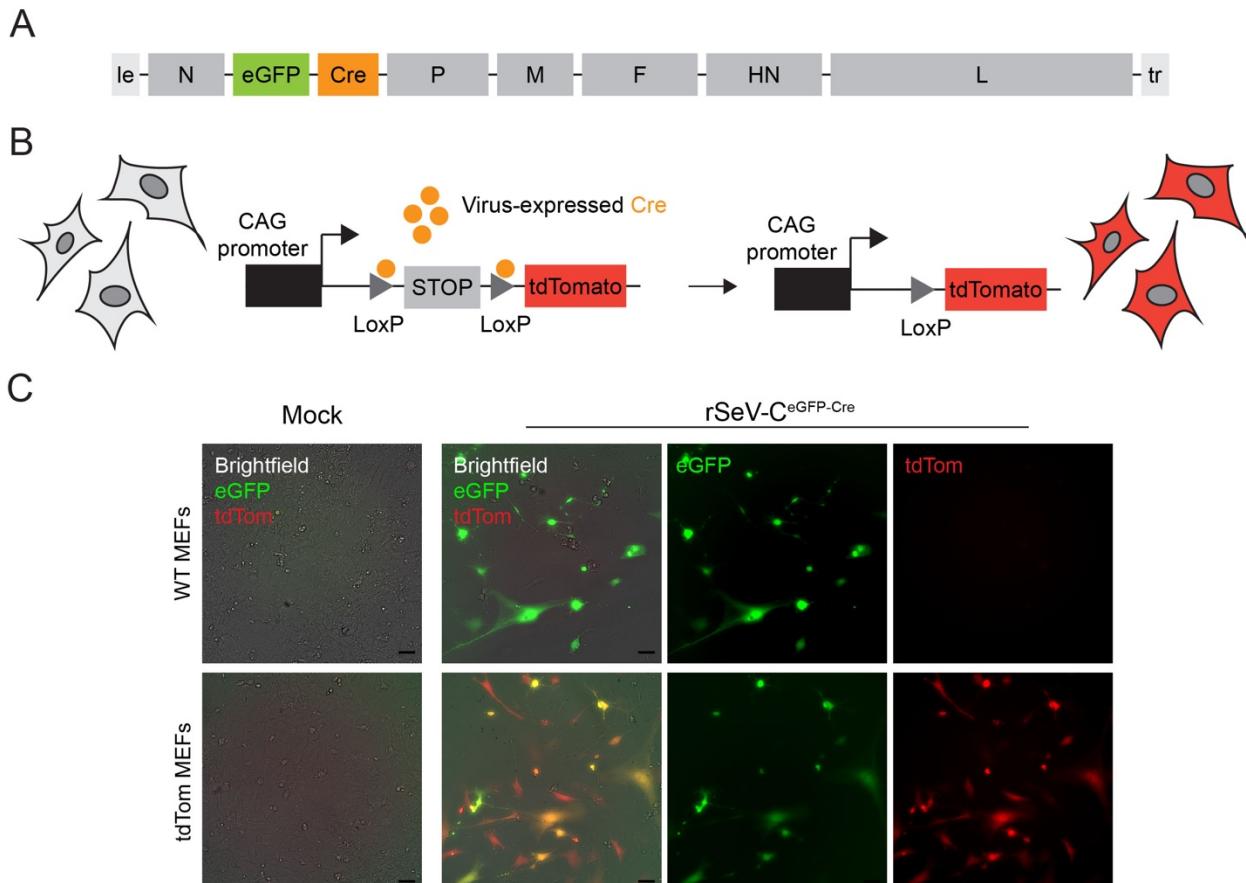


945
946

947

948

949

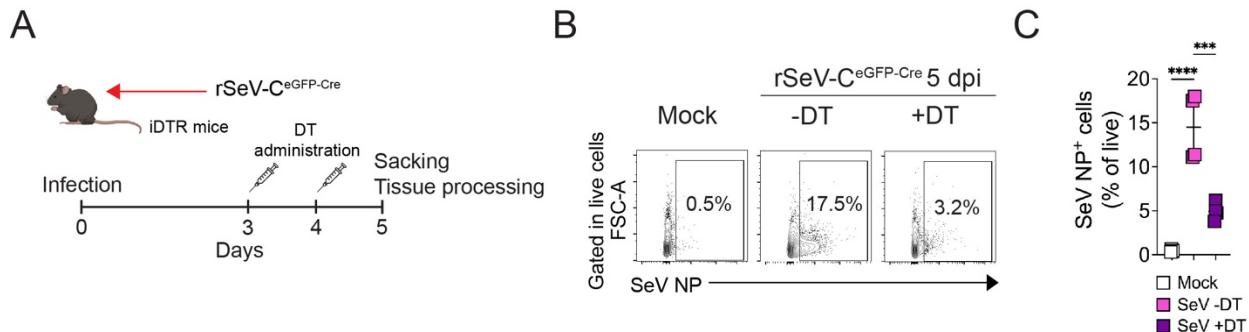


950
951

Figure S1. Gating strategy for spectral flow cytometry analysis of SeV-infected lungs.

952 Representative dot plots indicating the following cell subsets defined from live cells: Epithelial
953 cells ($CD45^- EpCAM^+ PeCAM^+$), Endothelial cells ($CD45^- EpCAM^+ PeCAM^+$), Polymorphonuclear
954 cells (PMNs) ($CD45^+ Ly6G^+ CD3^-$), T CD4 $^+$ lymphocytes ($CD45^+ Ly6G^- CD3^+ CD4^+ CD8a^-$), T CD8 $^+$
955 lymphocytes ($CD45^+ Ly6G^- CD3^+ CD4^- CD8a^+$), Type 2 innate lymphoid cells (ILC2s) ($CD45^+ Ly6G^-$
956 $CD3^- Thy1.2^+ CD25^+$), Alveolar macrophages (AMs) ($CD45^+ Ly6G^- CD3^- F4/80^+ CD11c^{hi} CD11b^{low}$),
957 Tissue macrophages (TMs) ($CD45^+ Ly6G^- CD3^- F4/80^+ CD11c^{low} CD11b^{hi}$), B cells ($CD45^+ Ly6G^-$
958 $CD3^- F4/80^- B220^{hi}$), Natural killer cells (NK) ($CD45^+ Ly6G^- CD3^- F4/80^- B220^- NK1.1^{hi}$), Dendritic cells
959 (DCs) ($CD45^+ Ly6G^- CD3^- F4/80^- B220^- NK1.1^- CD11c^{hi} CD11b^{hi}$).
960

961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979



980
981
982
983
984

Figure S2. Generation of a Cre-expressing recombinant Sendai virus. A. Genome schematics showing the insertion of eGFP and the recombinase Cre genes as independent reading frames in the SeV Cantell genome, between the virus genes N and P, to generate a Cre-expressing SeV recombinant virus (rSeV-C^{eGFP-Cre}). **B.** Schematic design showing Cre recombination of the LoxP-STOP-tdTomato reporter gene cassette leading to constitutive expression of the tdTomato fluorescent protein. **C.** Murine embryonic fibroblasts (MEFs) from either WT C57BL/6 mice or tdTomato reporter mice were infected *in vitro* at a multiplicity of infection (MOI) of 0.01 TCID₅₀/cell to test the robustness of the reporter system. Representative images from two independent experiments were taken after 24 hpi using a widefield fluorescence microscope. eGFP signal (green) and tdTomato signal (red) were overlaid on brightfield images of WT and tdTomato-infected MEFs. 20x magnification. Scale bars: 50 μ m.

996
997
998
999
1000
1001
1002
1003

1004

1005

1006

1007 **Figure S3. Diphtheria toxin administration efficiently depletes SeV infected cells. A.**
1008 Experimental design showing diphtheria toxin (DT) regime treatment and timepoints for tissue
1009 harvesting and analysis. **B.** Representative dot plots of rSeV-CeGFP-Cre -infected lungs analyzed
1010 by flow cytometry for SeV NP expression. 50,000 events acquired. **C.** Quantification of SeV NP⁺
1011 cell frequency (% of live) detected by flow cytometry at 5 dpi. Mean values ±SD are displayed,
1012 data are representative of 2 individual experiments, 4-5 mice per group. One way ANOVA with
1013 Bonferroni post-test was used to estimate statistical significance between groups. ***P<0.0005,
1014 ****P<0.0001.

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043 **Table S1. Key reagents**

1044

Reagent	Company	Catalog N.
Antibodies		
Anti-mouse EpCAM (CD326) BV421 antibody	Biolegend	118225
Anti-mouse Ly6G eFluor450 antibody	eBioscience	48-5931-82
Anti-mouse CD8a BV570 antibody	Biolegend	100740
Anti-mouse PeCAM (CD31) BV605 antibody	Biolegend	102427
Anti-mouse CD4 BV711 antibody	Biolegend	100447
Anti-mouse F4/80 BV785 antibody	Biolegend	123141
Anti-mouse Thy1.2 (CD90.2) AlexaFluor 488 antibody	Biolegend	105316
Anti-mouse NK1.1 BB700 antibody	BD Biosciences	566502
Anti-mouse B220 PerCP-eFluor 710 antibody	eBioscience	46-0452-82
Anti-mouse CD25 PE antibody	eBioscience	12-0251-81
Anti-mouse CD64 PE-Cy5 antibody	Thermofisher	MA5-38711
Anti-mouse CD11c PE-Cy7 antibody	eBioscience	25-0114-82
Anti-mouse CD11b AlexaFluor 700 antibody	BD Pharmingen	557960
Anti-mouse CD45.2 APC-eFluor 780 antibody	eBioscience	47-0454-82
Anti-mouse CD3 APC-Fire 810 antibody	Biolegend	100268
Anti-mouse CD11c FITC antibody	eBioscience	11-0114-85
Rabbit anti-mouse Krt5 antibody	Biolegend	905504
Rat anti-mouse Krt8 antibody	DSHB	TROMA-I
Rat anti-mouse CD3 antibody	BD Biosciences	555273
Rat anti-mouse F4/80 antibody	BD Biosciences	565409
Rat anti-mouse B220 antibody	BD Biosciences	553084
Rat anti-mouse Thy1.2 (CD90.2) antibody	Biolegend	140301
Rat anti-mouse CD16/CD32 (FcBlock)	Biolegend	101320
anti-mouse CD3 biotin-conjugated	Biolegend	309806
anti-mouse CD4 biotin-conjugated	Biolegend	100244
anti-mouse CD8a biotin-conjugated	Biolegend	100508
anti-mouse/human CD11b biotin-conjugated	Biolegend	11704
anti-mouse Ly6G/Ly6C (Gr-1) biotin-conjugated	Biolegend	101204
anti-mouse NK1.1 biotin-conjugated	Biolegend	108403
anti-mouse CD49b (Pan-NK) biotin-conjugated	Biolegend	108704
anti-mouse CD19 biotin-conjugated	Biolegend	108903
anti-mouse Ter-119 (Erythroid cells) biotin-conjugated	Biolegend	115504
anti-mouse CD11c biotin-conjugated	Biolegend	116203
anti-mouse TCR gamma/delta biotin-conjugated	Biolegend	117304
anti-mouse CD170 (Siglec-F) biotin-conjugated	Biolegend	118103
anti-mouse CD90.2 (Thy1.2) Antibody biotin-conjugated	Biolegend	155512
anti-human CD4 Antibody biotin-conjugated	Biolegend	140314
Goat Anti-Rabbit AlexaFluor488 Secondary antibody	Invitrogen	A-11008
Anti-Rat AlexaFluor488 Secondary antibody	Biolegend	405418
Goat Anti-Rat AlexaFluor647 Secondary antibody	Invitrogen	A-21247
Commercial assays		
RNAscope® Multiplex Fluorescent Detection Kit v2	ACD	323110
RNAscope® Target Retrieval Reagents	ACD	322000
RNAscope® 2.5 HD Detection Reagents-BROWN	ACD	322310
TSA Plus Fluorescein Kit 50-150 slides	Akoya biosciences	NEL741001KT
TSA Plus Cyanine 3 Kit 50-150 slides	Akoya biosciences	NEL744001KT
TSA Plus Cyanine 5 Kit 50-150 slides	Akoya biosciences	NEL745001KT
Power SYBR™ Green PCR Master Mix	ThermoFisher	4367660
High Capacity cDNA Reverse Transcription Kit	Applied Biosystems	4368813

Zombie NIR™ Fixable Viability Kit	Biolegend	423106
AlexaFluor 647 Antibody Labeling kit	ThermoFisher	A20186
General reagents		
BSA	Sigma	A3059-100G
TPCK-treated Trypsin	Worthington Biochem. Corporation	#LS003750
EDTA	Corning	46-034-CI
DNAse I (for molecular biology)	ThermoScientific	#EN0252
Paraformaldehyde (PFA)	Electron Microscopy Sciences	15714-5
Saponin	Sigma	47036-50G-F
Collagenase A	Sigma	10103586001
Dispase	Gibco	17105-041
Liberase TL	Sigma	5401020001
DNAse I (for tissue digestion)	Sigma	10104159001

1045