

1 **CRISPR/Cas9-based disease modelling and functional correction of**  
2 **Interleukin 7 Receptor alpha Severe Combined Immunodeficiency in T-**  
3 **lymphocytes and hematopoietic stem cells**

4  
5 Rajeev Rai<sup>1</sup>, Zohar Steinberg<sup>1</sup>, Marianna Romito<sup>1</sup>, Federica Zinghirino<sup>1</sup>, Yi-Ting Hu, Nathan  
6 White, Asma Naseem<sup>1</sup>, Adrian J Thrasher<sup>1,2</sup>, Giandomenico Turchiano<sup>1</sup>, Alessia  
7 Cavazza<sup>1,2</sup>

8  
9 <sup>1</sup>Infection, Immunity and Inflammation Teaching and Research Department, Great Ormond Street Institute of  
10 Child Health, University College London, United Kingdom <sup>2</sup>NIHR Great Ormond Street Hospital Biomedical  
11 Research Centre, London, United Kingdom

12  
13 Correspondence should be addressed to A.C. ([a.cavazza@ucl.ac.uk](mailto:a.cavazza@ucl.ac.uk))

14  
15 **Running title:** A gene editing strategy to treat IL7R-SCID

16  
17 **Keywords:** Gene editing; hematopoietic stem cells; T cells; immunodeficiency; disease  
18 modelling.

19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39

40 **ABSTRACT**

41

42 Interleukin 7 Receptor  $\alpha$  Severe Combined Immunodeficiency (IL7R-SCID) is a life-  
43 threatening disorder caused by homozygous mutations in the *IL7RA* gene. Defective IL7R  
44 expression in humans hampers T cell precursors proliferation and differentiation during  
45 lymphopoiesis resulting in absence of T cells in newborns, who succumb to severe infections  
46 and death early after birth. Previous attempts to tackle IL7R-SCID by viral gene therapy have  
47 shown that unregulated IL7R expression predisposes to leukaemia, suggesting the application  
48 of targeted gene editing to insert a correct copy of the *IL7RA* gene in its genomic locus and  
49 mediate its physiological expression as a more feasible therapeutic approach. To this aim, we  
50 have first developed a CRISPR/Cas9-based IL7R-SCID disease modelling system that  
51 recapitulates the disease phenotype in primary human T cells and hematopoietic stem and  
52 progenitor cells (HSPCs). Then, we have designed a knock-in strategy that targets *IL7RA* exon  
53 1 and introduces via homology directed repair a corrective, promoterless *IL7RA* cDNA  
54 followed by a reporter cassette through AAV6 transduction. Targeted integration of the  
55 corrective cassette in primary T cells restored IL7R expression and rescued functional  
56 downstream IL7R signalling. When applied to HSPCs further induced to differentiate into T  
57 cells in an Artificial Thymic Organoid system, our gene editing strategy overcame the T cell  
58 developmental block observed in IL7R-SCID patients, while promoting full maturation of T  
59 cells with physiological and developmentally regulated IL7R expression. Finally, genotoxicity  
60 assessment of the CRISPR/Cas9 platform in HSPCs using biased and unbiased technologies  
61 confirmed the safety of the strategy, paving the way for a new, efficient, and safe therapeutic  
62 option for IL7R-SCID patients.

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78 **INTRODUCTION**

79  
80 The group of severe combined immunodeficiencies (SCID) represents the most serious  
81 form of primary immunodeficiency diseases, affecting approximately one infant in every  
82 50,000 live births. SCID is characterized by a block in T cell development or function, variably  
83 associated with defects in B or natural killer (NK) lymphocytes. IL7R deficiency causes  
84 approximately 10% of SCID cases, and the majority of T-B+NK+ cases [1]. IL7R-SCID is  
85 caused by biallelic loss-of-function mutations in the *IL7RA* gene, which encodes for the  $\alpha$  chain  
86 of the interleukin-7 receptor (IL7R).

87 The interaction of IL-7 with IL7R leads to the recruitment of intracellular signalling  
88 molecules and to activation of multiple downstream signalling pathways which are important  
89 for transcriptional activation of genes involved in T cell differentiation, survival, maturation,  
90 and TCR rearrangement. IL7R expression is restricted to T lymphocytes in humans and it is  
91 tightly regulated during T cell development to ensure correct cell maturation [2]. In the human  
92 thymus,  $\alpha\beta$  T cell thymopoiesis proceeds from haematopoietic stem and progenitor cells  
93 (HSPCs) via common lymphoid progenitors (CLPs) which commit to the T-lineage following  
94 Notch signalling. CLPs differentiate into double-negative (DN1, DN2, DN3; CD4 $^-$ CD8 $^-$ ), then  
95 double-positive (DP; CD4 $^+$ CD8 $^+$ ) thymocytes, which are positively selected for TCR  
96 functionality and become single-positive (SP) CD4 $^+$  or CD8 $^+$  mature T cells [3]. Only CLPs  
97 express IL7R without requiring it, allowing human *IL7RA*-deficient CLPs to develop into  
98 normal B-cells [4]. From the DN2 stage, BCL-2 expression, essential for protecting thymocytes  
99 from apoptosis, becomes IL7-dependent. IL7R also promotes V(D)J recombination in DN2–3  
100 cells and T cell receptor  $\gamma$  (TCR $\gamma$ ) rearrangement and is thus essential for  $\gamma\delta$  T cell development  
101 [5]. IL7R expression is then downregulated at the DN4 stage and disappears in DP thymocytes,  
102 when TCR- $\alpha\beta$  becomes expressed and takes over the anti-apoptotic role (reviewed in [2]). As  
103 such, disruption of IL-7 signalling arrests T cell development at the DN2-3 stage in *IL7RA*-  
104 knockout mice [5,6], preventing productive TCR rearrangement and leading to T cell  
105 lymphopenia. Absence of T lymphocytes results in profound failure of both humoral and  
106 cellular immunity, with severe and opportunistic infections and failure to thrive, leading to fatal  
107 outcome within the early years of life of IL7R-SCID children.

108 Hematopoietic stem cell transplantation (HSCT) from matched sibling donors is the  
109 leading therapy for patients with SCID, [7] however it is available to less than 20% of patients.  
110 While matched HSCT often successfully reconstitutes T cells in IL7R-SCID patients and raises  
111 their low immunoglobulin levels [8], mismatched-donor transplantation is associated with

112 aggressive graft-versus-host disease, long-term hepatic complications of myeloablative  
113 conditioning, insufficient immune reconstitution, and mortality, especially if infection occurs  
114 [9]. Consequently, HSCT does not represent a viable therapeutic option for the remaining  
115 patients lacking a suitable donor. Genetic correction of autologous patient HSPCs and  
116 subsequent transplantation eliminates the risk of alloreactivity associated with HSCT and  
117 facilitates the use of sub-myeloablative conditioning. Successful gene therapy approaches for  
118 ADA-SCID and SCID-X1 have demonstrated the applicability of this technology to treat rare  
119 genetic diseases that affect the hematopoietic system [10]. However, pre-clinical gene therapy  
120 studies using a retroviral vector to introduce a correct copy of *IL7RA* in HSPCs derived from  
121 IL7R-deficient mice showed that constitutive, unregulated and ectopic expression of the  
122 protein can promote non-lymphoid cell proliferation, causing pre-leukemic neutrophil  
123 expansion and splenomegaly [11]. Evidence also suggests that forced IL7R expression  
124 throughout thymopoiesis diminishes the DN4 cell pool due to DP cell overconsumption and  
125 reduces thymic cellularity and peripheral T cell numbers [12]. Moreover, *IL7RA* gene  
126 amplification and human gain-of-function mutations that increase IL-7 sensitivity associate  
127 with T-ALL [13,14], while IL7R overexpression may also protect pre-leukemic T cells from  
128 apoptosis, allowing time for additional mutations to accumulate [15]. Ultimately, it has been  
129 shown that IL7R overexpression predisposes mice to thymoma [16] and inflammatory bowel  
130 disease [17]. Taken together, these observations highlight the need of tight *IL7RA*  
131 transcriptional regulation for therapeutic correction of IL7R-SCID. While the introduction of  
132 *IL7RA* specific regulatory regions in the viral vector design could serve this purpose, no studies  
133 have succeeded so far in correcting this disease through viral gene therapy, mostly due to: 1)  
134 difficulties in defining the minimum regulatory regions required to recapitulate endogenous  
135 IL7R expression; 2) the complex regulatory networks needed to control *IL7RA* transcription  
136 and translation are prohibitively large for incorporation into a viral vector to achieve tight  
137 physiological regulation; 3) semi-random vector integration pattern, which may impact on  
138 transgene expression.

139 An alternative to using virus-based gene therapy is to utilize genome editing, to correct  
140 the endogenous *IL7RA* locus while avoiding issues of unregulated transgene expression. Gene  
141 editing uses programmable nuclease to generate site-specific genomic double-strand breaks  
142 (DSBs) in which desired alterations can be introduced during DNA repair. The major repair  
143 pathway is non-homologous end joining (NHEJ), in which the DSB site gains a random  
144 assortment of small insertions and/or deletions (indels) and point mutations. The alternative  
145 pathway is homology-directed repair (HDR), in which a donor template with flanking arms

146 homologous to the DSB-surrounding region accurately integrates into the DSB site. This allows  
147 targeted therapeutic transgene integration as a platform for correcting multiple mutations [18].  
148 Robust protocols have been developed for CRISPR/Cas9 gene-editing in HSPCs [19,20,21]  
149 and several gene editing platforms to treat primary immunodeficiency diseases relying on high-  
150 fidelity HDR to integrate a therapeutic transgene in its own locus have been developed  
151 preclinically (reviewed in [22]), reaching up to 70% of HSPCs correction and complete  
152 haematopoietic reconstitution in mice, establishing the safety and efficacy of this approach.

153 In this study, we aim to develop a safe and effective CRISPR/Cas9-mediated genome  
154 editing platform to treat IL7R-SCID by directly knocking-in a IL7RA cDNA in frame with the  
155 endogenous *IL7RA* translational start codon, allowing regulated transcription from the  
156 promoter and enhancers naturally present in the locus, as well as the functional correction of  
157 all the mutations in the *IL7RA* gene responsible for the onset of the disease. Given the rarity of  
158 the disease and the difficulty in accessing patient blood samples, we devised a disease  
159 modelling strategy based on a multiplexed HDR platform to mimic both IL7R deficiency in T  
160 cells and HSPCs from healthy donors, as well as its restoration by monoallelic or biallelic  
161 knock-in of the corrective IL7RA cDNA through gene editing. By taking advantage of this  
162 system, we showed almost complete restoration of IL7R expression and function in IL7RA  
163 cDNA knocked-in T cells, as well as rescue of T cell development when the corrective  
164 transgene is incorporated in *IL7RA* knock-out HSPCs. Overall, this study demonstrates the  
165 feasibility and safety of a CRISPR/Cas9-based platform as a viable therapeutic approach to  
166 treat IL7R-SCID and paves the way for its potential clinical translation.

167

## 168 MATERIALS AND METHODS

169

### 170 Culture of human CD34+ HSPCs and T cells

171 Under written informed consent, CD34+ HSPCs were isolated from GCSF mobilized healthy  
172 donor apheresis using CD34+ Microbead kit (Miltenyi Biotec, UK). The percentage of purified  
173 CD34+ cell was analysed by flow cytometry staining with anti-human CD34 PE antibody  
174 (BioLegend, UK). The cells were cultured in StemSpan SFEM II medium (StemCell  
175 Technologies, UK) supplemented with Stem Cell Factor (100 ng/mL, Peprotech, UK),  
176 Thrombopoietin (50 ng/mL, Peprotech), Fms-like Tyrosin kinase 3 Ligand (100 ng/mL,  
177 Peprotech), Interleukin-3 (30 ng/mL, Peprotech), Interleukin-6 (50 ng/mL, Peprotech),  
178 StemRegenin-1 (1  $\mu$ M, Sigma, UK) and UM171 (35 nM, StemCell Technologies). The cells  
179 were incubated at 37°C / 5% CO<sub>2</sub> for two days prior to gene editing.

180 To isolate T cells, human peripheral blood from healthy donors were first collected under  
181 written informed consent. After Ficoll gradient, the isolated peripheral blood mononuclear cells  
182 were cultured in X-VIVO 15 medium (Lonza, UK) supplemented with 5% human AB serum  
183 (Lonza), Interleukin-2 (50 ng/mL, Peprotech), Interleukin-7 (10 ng/mL, Peprotech) and  
184 activated by CD3-CD28 Dynabeads (ThermoFisher Scientific, UK). After incubating at 37°C  
185 / 5% CO<sub>2</sub> for three days, the Dynabeads were removed by DynaMag Magnet (ThermoFisher  
186 Scientific) before performing any gene editing experiment.

### 187 **Methylcellulose CFU assay**

188 The colony-forming unit (CFU) assay was performed by seeding 500 cells in six-well plates  
189 containing MethoCult Enriched (StemCell Technologies) after 4 days of editing. After 14 days  
190 of incubation at 37 °C/5% CO<sub>2</sub>, different types of colonies including CFU-Erythroid (E), CFU-  
191 Macrophage (M), CFU-Granulocyte (G), CFU-GM and CFU-GEM were counted based on  
192 their morphological appearance.

### 193 **Selection of gRNAs**

194 All the gRNAs used in this study, each with 20 nucleotide length sequences, were identified  
195 using the online design tool created by the Zhang lab (<https://zlab.bio/guide-design-resources>).  
196 Chemically modified gRNAs (Synthego, USA) contained 2-O-methyl-3'-phosphorothioate at  
197 the three terminal positions at both 5' and 3' ends (Synthego, USA)

198

### 199 **Cloning of donor templates and AAV6 production**

200 Both KO and KI AAV6 donor vectors carrying 400 bp homology arms on each side were  
201 cloned into the pAAV-MCS plasmid containing AAV2 specific ITRs. Each of the two KO  
202 constructs comprised of either EFS-GFP (AAV6\_EFS-GFP) or EFS-mCHERRY cassette  
203 (AAV6\_EFS-mCHERRY) while the two IL7R corrective AAV6 contained codon optimized  
204 *IL7R* cDNA followed by either an EFS-GFP (AAV6\_coIL7RA\_EFS-GFP) or EFS-  
205 mCHERRY cassette (AAV6\_coIL7RA\_EFS-mCHERRY\_KI). HEK293T cells were  
206 transfected with the AAV6 donor plasmid and pDGM6 helper plasmid, and after 72 hours the  
207 viral particles were collected by iodixanol gradient and purified using 10K MWCO Slide-A-  
208 Lyzer G2 Dialysis Cassette (ThermoFisher Scientific). AAV6 titre was determined by Quick  
209 Titre AAV quantification kit (Cell BioLabs, USA).

210

211 **Electroporation and transduction of cells**

212 CD34+ HSPCs, human primary T cells and DG-75 cells were electroporated using the Neon  
213 Transfection kit (ThermoFisher Scientific) at 1600 volts / 10 ms / 3 pulses. The  
214 ribonucleoprotein (RNP) complex was made by combining High Fidelity Cas9 protein (IDT)  
215 with *IL7RA* targeting gRNAs at a molar ratio of 1:2 (Cas9:gRNA). To generate biallelic  
216 knockout (KO<sup>-/-</sup>), the electroporated cells were transduced with AAV6\_EFS-GFP and  
217 AAV6\_EFS-mCHERRY. For biallelic correction (KO<sup>+/+</sup>), the cells were transduced with  
218 AAV6\_coIL7RA\_EFS-GFP and AAV6\_IL7R\_EFS-mCHERRY whereas for monoallelic  
219 correction (KO<sup>+/+</sup>) cells were transduced with the AAV6\_EFS-GFP and  
220 AAV6\_coIL7RA\_EFS-mCHERRY. The MOI used for each AAV6 was 25,000 vector  
221 genomes/cell. After 48 hours in culture, the gene edited cells were sorted by flow cytometry  
222 for the collection of highly enriched GFP<sup>+</sup>, mCherry<sup>+</sup> and GFP<sup>+</sup>/mCherry<sup>+</sup> populations.

223

224 **Artificial Thymic Organoid system**

225 To generate Artificial Thymic Organoids (ATOs), 0.15x10<sup>6</sup> of murine stromal cells expressing  
226 human delta like ligand 1 (Sigma) were combined with 7.5x10<sup>3</sup> of sorted and enriched KO<sup>-/-</sup>,  
227 KI<sup>+/+</sup> or KI<sup>+/+</sup> CD34+ HSPCs. ATOs seeded with healthy donor HSPCs (WT) were used as a  
228 positive control. Each ATO pellet was resuspended in 5 µL of RB-27 medium comprising of  
229 RPMI 1640 (Thermofisher Scientific), 4% B-27 supplement (Thermofisher Scientific), 30 µM  
230 L-ascorbic acid 2-phosphate sesquimagnesium salt hydrate (Sigma), 1% penicillin-  
231 streptomycin (Thermofisher Scientific), 5 ng/mL human FLT3 ligand and 5 ng/mL human IL-  
232 7. Five µL of ATO suspension was seeded on 0.4 µm Millicell Transwell insert (Sigma) and  
233 placed in a 6-well plate containing 1 mL of RB-27 medium. The medium was changed and  
234 replaced with fresh RB-27 medium every 3-4 days. Each ATO was harvested for flow  
235 cytometry analysis at week 4, 6 and 8 post seeding.

236

237 **Flow cytometry analyses**

238 BD FACSAria II (BD Bioscience) instrument was used for cell sorting of CD34+ HSPCs and  
239 T cells. For surface and intracellular staining, CytoFLEX (Beckman Coulter, UK) instrument  
240 was used while FlowJo v10 software (FlowJo LLC, USA) was used to analyse subsequent data.  
241 For IL7R protein detection, bulk unsorted KO<sup>-/-</sup>, KI<sup>+/+</sup> and KI<sup>+/+</sup> T cells were fixed with 1x  
242 Fixation buffer (ThermoFisher Scientific) for 30 min at room temperature. After washing, the  
243 fixed cells were permeabilised in 1x Permeabilization buffer (ThermoFisher Scientific) and  
244 stained with IL7R PE antibody (BioLegend) for 30 min at room temperature and analysed on

245 flow cytometry. The percentage of total IL7R expression on KO<sup>-/-</sup>, KI<sup>+/−</sup> and KI<sup>+/+</sup> were  
246 determined by gating on the GFP<sup>+</sup> /mCherry<sup>+</sup> double positive population.

247 For pSTAT5 detection, bulk unsorted KO<sup>-/-</sup>, KI<sup>+/−</sup> and KI<sup>+/+</sup> T cells were cultured in X-VIVO  
248 15 medium (Lonza) in the absence of serum and cytokines for 12 hours. After stimulation with  
249 10 ng/mL of either IL-2 or IL-7 cytokines for 10 minutes, the cells were fixed in 4% PFA for  
250 15 minutes at room temperature and permeabilised in Perm III buffer (BD Bioscience) for 30  
251 minutes on ice. The cells were stained with pSTAT5 BV421 (BioLegend) antibody and  
252 analysed by flow cytometry. The precise impact of KO<sup>-/-</sup>, KI<sup>+/−</sup> and KI<sup>+/+</sup> on activated STAT5p  
253 was determined by gating on GFP<sup>+</sup> /mCherry<sup>+</sup> double positive population. Stimulated and  
254 unstimulated healthy donor T cells were used as positive and negative control, respectively.

255

## 256 **Digital droplet PCR analysis**

257 The frequency of integrated GFP and mCherry cassettes in sorted population was quantified  
258 by Digital droplet PCR. For each reaction in a total volume of 27  $\mu$ L, 60 ng of genomic DNA  
259 was combined with 1x PerfeCT Multiplex qPCR ToughMix (Quantabio, USA), 0.05  $\mu$ M  
260 Fluorescein (ThermoFisher Scientific), 1  $\mu$ M each of GFP forward and reverse primer, 1  $\mu$ M  
261 each of mCherry forward and reverse primers, 0.25  $\mu$ M FAM labelled probe specific for GFP  
262 target amplicon, 0.25  $\mu$ M HEX labelled probe specific for mCherry target amplicon, 1  $\mu$ M each  
263 of reference SPDR forward and reverse primer, 0.25  $\mu$ M Cy5 labelled probe specific for  
264 reference SPDR amplicon and nuclease free water. All the primers and probes were synthesized  
265 by Eurofins Genomics, Germany. Each reaction was inserted into Sapphire chips and run on  
266 Naica 3 Colour system (Stilla Technologies, France). The PCR conditions used was: 1 cycle  
267 of initial denaturation at 95°C for 10 min and 50 cycles comprising of denaturation (95°C for  
268 30 sec), annealing (54°C for 30 sec) and extension (60°C for 6 min). After PCR, the chips were  
269 scanned and analysed by CrystalReader and CrystalMiner software (Stilla Technologies),  
270 respectively. The percentage of GFP or mCherry cassette integrated per haploid genome is  
271 calculated by the number of target amplicons positive droplets from either FAM or HEX  
272 channel divided by the number of reference amplicon positive droplets acquired from Cy5  
273 channel.

## 274 **Validation of predicted off-target sites by deep sequencing**

275 Potential off target sites for *IL7RA* gRNA detected by COSMID webtool [30] and GUIDE-seq  
276 were validated by high throughput next generation sequencing. CD34+ HSPCs from three

277 healthy donors were edited with IL7R RNP complex as described above, and genomic DNA  
278 was harvested after 72h. PCR purified amplicons of 200 bp were generated from the list of off  
279 target primers. End repair, adaptor ligation and PCR indexing was performed on the denatured  
280 amplicons using NEB Next Ultra II DNA library prep kit for Illumina (New England Biolabs,  
281 UK). The resulting FASTQ files from RNP treated samples for each of the off target amplicons  
282 were analysed for indels through CRISPResso2 webtool [45] by comparing them with  
283 untreated samples.

#### 284 **GUIDE-seq**

285 Identification of potential off-target sites by GUIDE-seq [29] was performed by Creative  
286 Biogene. One million HEK293T cells were transfected with 12 µg HIFI Cas9,  
287 4 µg *IL7RA* gRNA4 and 5 pmol of dsODN using Lonza Nucleofector 4-D (program CM-137).  
288 At 48 h post transfection, genomic DNA was extracted and sheared using a Covaris S220  
289 Focussed-ultrasonicator to an average length of 500 bp. After end-repaired, A-tailed and  
290 ligation with adaptors containing 8-nt random molecular index, the DNA library was sequenced  
291 using Illumina MiSeq. The subsequent datasets were analysed using either the *guideseq* Python  
292 package software [46].

#### 293 **CAST-seq**

294 Chromosomal aberration analysis by single targeted LM-PCR (CAST-seq) was performed and  
295 analysed as described in Turchiano et al [ 31]. Briefly, 1x10<sup>6</sup> HSPCs were nucleofected with  
296 spCas9;gRNA4 RNP targeting *IL7RA* or mock nucleofected in duplicate. At day 4 post  
297 nucleofection genomic DNA was extracted and 500 ng of gDNA from each sample were  
298 randomly digested with NEBNext® Ultra™ II FS DNA Library Prep Kit for Illumina (NEB  
299 #E6177) to obtain fragments of ca. 350 bp and linkers were ligated. The first PCR was  
300 performed with *IL7RA* specific primer and decoy oligonucleotide together with the linker  
301 specific primer. A nested PCR was performed with the *IL7RA* and linker specific primers  
302 carrying Truseq adaptor sequences. Samples high-throughput sequencing was performed with  
303 MiSeq V2 500 cycles kit (MS-102-2003, Illumina). Data were analysed by filtering out non-  
304 specific reads utilizing the mock nucleofected sample as a control and by comparing duplicate  
305 samples. Finally, the retrieved hits were classified as chromosomal aberrations coming from  
306 the on-target specific activity (ON), spCas9 OFF-target activity (OT), homology mediated  
307 recombination events (HR) and from natural breaking sites (NBS).

308 **Ethics and animal approval statement**

309 For usage of human CD34<sup>+</sup> HSPC from healthy and WAS donors, informed written consent  
310 was obtained in accordance with the Declaration of Helsinki and ethical approval from the  
311 Great Ormond Street Hospital for Children NHS Foundation Trust and the Institute of Child  
312 Health Research Ethics (08/H0713/87).

313

314 **RESULTS**

315

316 **Design and testing of a CRISPR/Cas9 platform to edit the *IL7RA* locus**

317 To mediate the site-specific integration of a corrective *IL7RA* cDNA in  
318 the *IL7RA* genomic locus (**Figure 1A**), we designed different gRNAs targeting the first exon  
319 of the *IL7RA* gene and tested their activity in Jurkat cells. Allelic disruption (indels formation)  
320 rates of up to 84% were obtained with gRNA4 (**Supplementary Figure 1**), which was utilized  
321 for all further experiments. Delivery of the gRNA pre-complexed to a Cas9 protein as  
322 ribonucleoproteins (RNP) to peripheral blood (PB)-derived CD34<sup>+</sup> HSPCs from healthy  
323 donors yielded up to 81% of indels formation (**Figure 1B**). To deliver the donor DNA molecule  
324 which serves as a template for HDR-mediated repair, we created an AAV6 vector that contains  
325 a GFP reporter cassette flanked by sequences homologous to the *IL7RA* genomic regions  
326 surrounding the gRNA cut site (**Figure 1C**). By RNP electroporation followed by transduction  
327 with the AAV6 donor vector, we observed targeted integration of the PGK-GFP reporter  
328 cassette in up to 52% of HSPCs, with no significant decrease in cell viability compared to  
329 mock-targeted HSPCs (**Figure 1B-D**). To evaluate the capacity of edited HSPCs to  
330 differentiate into multiple lineages, cells were subjected to in vitro colony forming unit (CFU)  
331 assays. Edited cells retained their clonogenic potential and produced similar frequencies of  
332 erythroid and myeloid cells without lineage skewing compared to controls, while yielding  
333 similar number of colonies of mock-treated cells (**Figure 1E**).

334 We next assessed the ability of our gene editing protocol to restore functional IL7R  
335 expression when a corrective cDNA is knocked-in at the selected site. The PGK-GFP reporter  
336 cassette in the AAV6 donor vector was therefore replaced with a codon divergent and  
337 promoterless *IL7RA* cDNA (co*IL7RA*) followed by a synthetic Bovine Growth Hormone  
338 polyadenylation (pA) signal (**Figure 1M**). Codon optimisation introduced changes in the Cas9  
339 target sequence of the co*IL7RA* cDNA to prevent Cas9 from re-cutting the integrated cassette.  
340 To quantify the level of IL7R protein expressed from the co*IL7RA* cDNA knocked-in in frame

341 with *IL7RA* promoter and enhancer, we developed an *in vitro* model of IL7R deficiency using  
342 a human B-lymphocyte DG-75 cell line that expresses IL7R in normal conditions. To generate  
343 *IL7RA* knock-out (KO) cell clones, we designed 5 different gRNAs targeting *IL7RA* exons 2-5  
344 to introduce mutations that would abrogate the *IL7RA* open reading frame (**Figure 1F**). The  
345 RNP complexes containing gRNA5-9 were nucleofected in DG-75 cells and the efficacy of  
346 gene editing assessed by a T7 Endonuclease 1 (T7E1) assay and TIDE analysis, showing up to  
347 37% of cutting frequency when gRNA6 was employed, which in turn led to a significant  
348 reduction of IL7R expression as detected by flow cytometry (**Figure 1G-1**). Clonal populations  
349 of *IL7RA* KO cells were manually selected from the edited cell bulk and assessed for IL7R  
350 deficiency by immunoblotting; clone #65 showed complete abrogation of IL7R protein  
351 expression (**Figure 1L**), further confirmed by *IL7RA* open reading frame disruption  
352 downstream the gRNA6 cut site as revealed by Sanger sequencing (**Supplementary Figure**  
353 **1D**) and was thus utilized in the following experiments as an IL7R deficiency cell model.  
354 Electroporation of DG-75 clone #65 with the Cas9:gRNA4 RNP complex followed by  
355 transduction at increasing doses of the AAV6 donor template carrying the co*IL7RA*-pA  
356 cassette (**Figure 1M**) led to the successful insertion of the therapeutic cDNA at the *IL7RA* locus  
357 by HDR at a frequency plateauing 40% of the cells, when a multiplicity of infection (MOI) of  
358 50,000 was used (**Figure 1N**). This corresponded to a proportional restoration of IL7R protein  
359 expression (38% of the protein level detected in wild-type DG-75 cells; **Figure 1N**), suggesting  
360 that our strategy has the potential to fully rescue physiological IL7R expression in the target  
361 cell upon knock-in of the corrective cDNA.

362

### 363 **Modelling and correcting IL7R-SCID in T-lymphocytes by multiplexed gene editing**

364 Expression of the appropriate level of IL7R in target cells is critical to ensure  
365 therapeutic effectiveness. To evaluate this however, acquiring a considerable number of IL7R-  
366 SCID patient T cells or HSPCs from the peripheral blood or the bone marrow would be  
367 required, which poses challenges due to the very rare nature of the disease, the early age of  
368 IL7R-SCID infants, and the invasiveness of the procedure. To overcome this challenge, we  
369 devised an HDR multiplexing platform to mimic both *IL7RA* KO and co*IL7RA* cDNA  
370 monoallelic and biallelic knock-in (KI) in human primary hematopoietic cells derived from  
371 healthy donors. The *IL7RA* KO multiplexing strategy entails the use of two distinct AAV6  
372 donor vectors carrying either an elongation factor 1 $\alpha$  short (EFS) promoter-driven GFP or  
373 mCherry reporter cassette. The integration of these cassettes into the *IL7RA* exon 1 at the  
374 gRNA4 cut site via HDR simultaneously abrogates endogenous *IL7RA* transcription (and thus

375 protein expression) and expresses reporter genes permitting the selection of GFP<sup>+</sup>/mCherry<sup>+</sup>  
376 double positive cells that underwent biallelic gene KO (**Figure 2A, top panel**). A similar  
377 strategy allows selection of cells that bear biallelic KI of the corrective transgene, by utilising  
378 AAV6 donor vectors that carry the GFP or mCherry reporter gene preceded by the coIL7RA  
379 cDNA; the simultaneous integration of these cassettes in the *IL7RA* locus will again abrogate  
380 endogenous *IL7RA* transcription while expressing the therapeutic cDNA together with the  
381 respective reporter gene (**Figure 2A, bottom panel**). As monoallelic correction of the *IL7RA*  
382 locus is in principle sufficient for the disease treatment due to the functional immune systems  
383 observed in heterozygous parents of IL7R-SCID patients [8], we also paired one KO with one  
384 KI AAV6 donor vector carrying two different reporter genes, to mimic KO of the endogenous  
385 *IL7RA* gene in both alleles and KI of the corrective cassette in one allele (**Figure 2A, middle**  
386 **panel**).

387 T cells isolated from the PB of three different healthy donors were electroporated with  
388 the Cas9:gRNA4 RNP complex and transduced with the combination of AAV donor vectors  
389 required to achieve either complete *IL7RA* KO (KO<sup>-/-</sup>), monoallelic coIL7RA cDNA KI  
390 coupled with monoallelic *IL7RA* KO (KI<sup>+-/-</sup>), or biallelic coIL7RA cDNA KI (KI<sup>++/-</sup>). HDR-  
391 mediated transgene integration was successfully achieved as measured by flow cytometry, with  
392 an average of 2.5-4.5% of biallelic and 10-15% of monoallelic integration per each reporter  
393 gene, respectively, totalling an average of 25-34% of editing frequency of the *IL7RA* locus  
394 across conditions (**Figure 2B**). GFP<sup>+</sup>/mCherry<sup>+</sup> double-positive cells were FACS sorted to  
395 obtain pure populations of cells with the desired genotype; flow cytometry gating showed  
396 sufficient separation between populations for effective purification, which was further  
397 confirmed by ddPCR analysis on individually sorted populations showing correct integration  
398 of each reporter cassette in approximately 50% of the GFP<sup>+</sup>/mCherry<sup>+</sup> double-positive cells  
399 (**Supplementary Figure 2**). To evaluate the restoration of IL7R expression in T cells in which  
400 the coIL7RA cDNA was precisely inserted in frame with the translational start site of the  
401 endogenous *IL7RA* gene, cells were fixed, permeabilised and stained for IL7R intra- and extra-  
402 cellular expression. A proportional analysis of IL7R expression compared to wildtype (WT)  
403 cells is necessary as IL7R is usually stochastically expressed in only a minority of cells even  
404 in healthy donor samples, reflecting its status as an altruistically regulated receptor [12]. Flow  
405 cytometry analysis showed a significantly increased proportion of IL7R-positive cells in WT  
406 and edited cells relative to KO<sup>-/-</sup> cells, with biallelic coIL7RA cDNA KI (KI<sup>++/-</sup>) cells  
407 recapitulating WT expression and monoallelic KI<sup>+-/-</sup> cells exhibiting an intermediate proportion  
408 of IL7R-positive cells (**Figure 2C**). Comparison of IL7R mean fluorescence intensity (MFI) in

409 edited cells showed that biallelic KI of the coIL7RA cassette led to the expression of the protein  
410 at levels comparable to those observed in WT cells, while monoallelic KI<sup>+/−</sup> cells expressed it  
411 at reduced levels, likely reflecting the presence of only one functioning copy of the corrective  
412 cDNA per cell (**Figure 2C**).

413 To assess whether Cas9/AAV6-based integration of the coIL7RA cDNA restores IL7R  
414 functionality, we evaluated the levels of phosphorylated STAT5 protein (pSTAT5) in KI<sup>+/−</sup>,  
415 KI<sup>+/+</sup>, KO and WT T cells upon IL-7 stimulation. Indeed, binding of the IL-7 cytokine to its  
416 receptor activates a downstream IL7R signalling cascade which results in the phosphorylation  
417 of STAT5 and activation of an IL7R-dependend transcriptional profile [23]. Intracellular  
418 pSTAT5 staining in IL-7-stimulated cells indicated a trend towards restoration of the  
419 proportion of pSTAT5<sup>+</sup> T cells in both biallelic and monoallelic KI cells, while KO cells  
420 showed no IL7R functionality, mimicking pSTAT5 levels detected in unstimulated IL-7 WT  
421 cells (**Figure 2D**). While STAT5 phosphorylation is a common downstream cascade effect of  
422 many cytokines mostly signalling through the common gamma chain receptor in T-  
423 lymphocytes [24], we confirmed that signalling disruption in IL7RA KO and its restoration in  
424 KI cells is strictly dependent on the presence of IL7R, as no significant difference in the  
425 frequency of pSTAT5<sup>+</sup> cells was detected in all experimental groups when cells were  
426 stimulated with IL-2 (**Figure 2E**).

427

#### 428 **Knock-in of a corrective IL7RA cDNA in HSPCs restores T cell development.**

429 Having demonstrated the successful development of a gene editing strategy to model  
430 IL7R deficiency and its correction by HDR-mediated gene knock-in in primary human T cells,  
431 we next assessed if the same approach would be effective when applied to HSPCs, the target  
432 cell type for the definitive treatment of IL7R-SCID. Because IL7R expression is neither  
433 detectable nor required in these cells, therapeutic success of the gene editing platform applied  
434 to HSPCs would be demonstrated by differentiation into mature TCR $\alpha\beta^+$ CD3<sup>+</sup> cells, which is  
435 abrogated in the SCID phenotype. Furthermore, during the differentiation process from HSPCs  
436 to T cells, tight regulation of IL7R expression is necessary to faithfully recapitulate its  
437 physiological role during T cell development and homeostasis. To evaluate these aspects, we  
438 took advantage of the 3D Artificial Thymic Organoid (ATO) system, which models the *in vitro*  
439 differentiation and maturation of T cells from HSPCs, allowing us to elucidate the precise  
440 stages in which T cell developmental blocks occur in SCIDs and if gene editing is able to  
441 ameliorate such developmental obstructions [25,26].

442 To this aim, HSPCs isolated from the PB of three different healthy donors were  
443 electroporated with the Cas9:gRNA4 RNP complex and transduced with the combination of  
444 AAV donor vectors required to obtain *IL7RA* KO ( $KO^{-/-}$ ), monoallelic ( $KI^{+/-}$ ) and biallelic  
445 ( $KI^{+/+}$ ) co*IL7RA* cDNA KI. HDR-mediated transgene integration was successfully achieved as  
446 measured by flow cytometry, with a frequency of 0.4-4% of biallelic and 6-21% of monoallelic  
447 integration per each reporter gene, respectively, totalling an average of 28.4% of editing  
448 frequency of the *IL7RA* locus across conditions (**Figure 3A**). ATOs seeded with edited and  
449 FACS sorted cell populations, alongside unmanipulated wild-type HSPCs, were cultured for  
450 6-8 weeks and their final compositions characterized by flow cytometric analysis of  
451 thymopoietic surface markers at different time points to track T cell development (**Figure 3B**  
452 and **Supplementary Figure 3A, B**). By week 4 post seeding, ATOs were able to recapitulate  
453 the two early phenotypic stages of thymic T cell progenitors: multipotent CD34+CD7-CD5-  
454 early thymic progenitors (ETP) and developmentally downstream CD34+CD7+CD5+ pro-T2  
455 progenitors (**Figure 3C**), identified based on a classification scheme using CD5 and CD7  
456 markers [27]. At this stage, WT,  $KI^{+/-}$ ,  $KI^{+/+}$  and  $KO^{-/-}$  groups show similar proportions of ETPs;  
457 however, pro-T2 progenitors are already absent from the  $KO^{-/-}$  sample, reflecting the known  
458 IL7R dependence of pro-T2 cell survival during thymopoiesis [27]. Contrary to this, the  
459 frequency of both precursor types in the monoallelic and biallelic KI samples resembled those  
460 observed in the WT samples, suggesting that knock-in of the corrective co*IL7RA* cDNA does  
461 rescue pro-T2 cell survival and the block in T cell development observed in patients. ATOs  
462 were further assessed for complete T cell maturation at week 6 and week 8 of culture. Similar  
463 trends as observed at earlier time points were borne out in the pre-T (CD34- CD7+ CD5+),  
464 early double positive (EDP; CD34-CD3-CD4+CD8+), and mature T cell (CD34- CD3+  
465 TCR $\alpha\beta$ + ) populations at 6 and 8 weeks of culture, when the frequencies of these populations  
466 in the KI samples again recapitulated the behaviour of WT samples, while  $KO^{-/-}$  ones kept  
467 exhibiting curtailed thymocyte proportions (**Figure 3D** and **Supplementary Figure 3B**).  
468 These results indicate that *IL7RA* KO recapitulates the expected pro-T2 block in thymopoiesis  
469 and that coIL7R KI rescues all thymocyte populations downstream of the initial IL7R  
470 dependence at the pro-T2 stage. HAs previously discussed, IL7R expression derived from a  
471 gene addition approach must be tightly controlled throughout T cell development to avoid the  
472 occurrence of adverse events and dysregulated immunity. When looking at IL7R protein  
473 abundance in the samples seeded on ATOs, we observed correct restoration of protein  
474 expression mediated by the co*IL7RA* cDNA knocked-in in the *IL7RA* locus in both KI  
475 experimental groups, with biallelic KI achieving an average of 65% of WT IL7R expression in

476 both pre-T and mature T cells. Most importantly, IL7R was not constitutively expressed  
477 throughout cell differentiation, but correctly shut down at the immature EDP stage and  
478 subsequently reactivated at the mature DP cell stage (**Figure 3E, F**). Overall, these data show  
479 that HDR-mediated knock-in of a *coIL7RA* cDNA in frame with its endogenous regulatory  
480 regions mediates sufficient protein expression to relieve the block in T cell development  
481 observed in IL7R-deficient patients and does so in a physiologically regulated fashion.

482

#### 483 **Off-target analysis confirms the safety of the gene editing platform**

484 One of the potential concerns associated with gene editing is the introduction of  
485 unwanted genetic modifications at off-target sites and the occurrence of gross chromosomal  
486 rearrangements, posing a huge risk for clinical therapeutic applications involving engineered  
487 nucleases [28]. To determine the specificity of our gRNA targeting *IL7RA*, we delivered the  
488 CRISPR/gRNA4 RNP to HSPCs derived from the PB of three different healthy donors and  
489 assessed the presence of indels at non-specific sites using GUIDE-seq (genome-wide, unbiased  
490 identification of DSBs enabled by sequencing) an unbiased genome-wide analysis tool [29], as  
491 well as the bioinformatic prediction tool COSMID [30]. Analysis of the GUIDE-seq  
492 sequencing data retrieved 10 different off-target sites at extremely low read numbers (**Figure**  
493 **4A** and **Supplementary Table 1**). However, targeted deep sequencing of these sites in  
494 CRISPR-treated and mock-treated HSPCs from three different healthy donors demonstrated no  
495 significant gene disruption at the genomic locations tested (**Figure 4B**). In parallel, off-target  
496 activity at the top 10 genomic sites showing high homology with *IL7RA* gRNA target sequence  
497 (up to 3 mismatches) by COSMID was measured by targeted deep-sequencing in treated and  
498 mock-treated HSPCs. At a read depth of 50,000x we could not detect any genetic disruption at  
499 a statistically significant frequency compared to mock-treated controls in all genomic sites  
500 tested (**Figure 4B** and **Supplementary Table 1**). Lastly, we sought to identify the potential  
501 occurrence of large chromosomal aberrations, such as translocations, insertions or deletions, at  
502 off- and on-target gRNA cutting sites by using the CAST-seq technology [31]. For this  
503 analysis, we edited HSPCs with a Cas9:gRNA4 RNP complex containing a wild-type  
504 recombinant Cas9 protein, to be able to evaluate the presence of remote and rare rearrangement  
505 events that would not be detectable when using a high fidelity Cas9. Despite this, the CAST-  
506 seq analysis confirmed the safety of this gene editing platform, with only rearrangements at the  
507 *IL7RA* on-target locus being visible because of non-HDR mediated DNA repair at the  
508 CRISPR/Cas9 cut site (**Figure 4C, D**).

509

510 **DISCUSSION**

511

512 Here, we report the successful application of a CRISPR/Cas9-based gene editing  
513 platform to model and correct a rare and devastating primary immunodeficiency, IL7R-SCID,  
514 through editing of the *IL7RA* locus in primary human T cells and HSPCs. There has been a  
515 limited number of studies showing treatment options for this disease and this work represents  
516 the first evidence of therapeutically relevant genetic correction in primary cells using a gene  
517 editing approach. IL7R-SCID represents an ideal candidate for gene editing applications for  
518 many reasons: 1) previous studies demonstrated the efficacy of genetically-corrected HSPCs  
519 in curing different forms of SCID [32,33,34]; 2) safety issues raised by preclinical studies using  
520 viral gene therapy approaches for IL7R SCID suggest the need of a physiologically regulated  
521 and restricted IL7R expression during T cell development [11,16], which can be achieved  
522 through *in situ* gene editing; 3) the tremendous selective advantage that functionally corrected  
523 cells have compared to mutated cells in a SCID setting [32,35] can compensate for the relative  
524 low HDR correction rates that can be obtained in more primitive, long-term repopulating HSCs  
525 [21] and could ideally allow infusion of autologous gene edited cells without pharmacological  
526 conditioning; 4) absence of a definitive treatment available to all the patients urges the need  
527 for new, innovative treatments to be established.

528 Our strategy restores IL7R expression by integrating a full-length, codon optimised  
529 *IL7RA* cDNA next to *IL7RA* endogenous translational start site on chromosome 5, utilising a  
530 highly specific gRNA cutting at the beginning of the *IL7RA* first exon and an AAV6 donor  
531 vector carrying a promoterless therapeutic cassette. This approach mediates the targeted  
532 integration of one/two correct copy/ies of the co*IL7RA* cDNA per cell, maintaining a normal  
533 gene copy number and reducing the risks of genotoxicity caused by the semi-random  
534 integration of copies in the genome of patient's cells observed with viral gene therapy  
535 approaches [36]. Moreover, controlled integration of the corrective cDNA in the *IL7RA* locus  
536 allows the transcriptional regulation by endogenous regulatory elements, ensuring  
537 physiological *IL7RA* expression upon integration of the cassette. In addition, our platform can  
538 treat all disease-causing mutations with only one set of reagents thus representing a universal  
539 platform that could be applied to all IL7R-SCID patients and ideally to many other rare genetic  
540 disorders that require correction of the genetic defects at the HSPC level. The gene editing  
541 platform devised by us performed efficiently when tested in a *IL7RA* KO B-cell line, in T cells  
542 and in healthy human HSPCs, with high levels of targeted integration of the cassette in the  
543 desired locus and no major disruption in cell viability and HSPCs colony forming and.

544 differentiation capacity *in vitro*. However, the limited access to precious SCID patient cells  
545 limits our ability to evaluate whether expected thresholds for clinical efficacy are met in terms  
546 of editing efficiency, protein expression and function, as well as toxicity. To overcome this  
547 barrier, we have developed a multiplexing gene editing system that can efficiently mimic gene  
548 knock-out and knock-in by taking advantage of the simultaneous HDR-mediated integration of  
549 two expression cassettes with distinct reporter genes that allow FACS sorting of pure cell  
550 populations with the desired genotype. While modelling strategies similar to ours have been  
551 already devised [37,38], here we show its versatility in modelling both monoallelic and biallelic  
552 gene correction in two human primary cell types, T cells and HSPCs.

553 By applying our multiplexed targeted integration approach to T cells, we were able to  
554 completely abrogate IL7R expression and downstream signalling, thus obtaining a pure  
555 population of IL7R KO cells that recapitulate the IL7R-SCID defect. On the other hand,  
556 efficient monoallelic and biallelic KI of the corrective coIL7RA cDNA restored near  
557 physiological levels of protein expression, especially in the biallelic configuration, validating  
558 the use of our gene editing platform for therapeutic purposes. Assaying IL7R expression and  
559 signalling pathways is important not only for evaluating whether cDNA integration restores  
560 physiological IL7R expression and functionality, but also whether these lie below thresholds  
561 associated with oncogenic transformation risk [11,35]. Levels of phosphorylation of STAT5  
562 are a widely used readout for IL7R signalling, as it represents a major downstream transcription  
563 factor mediating IL-7-dependent survival and differentiation programs [39]. We indeed  
564 confirmed that KI<sup>+/+</sup> and KI<sup>+-</sup> cells showed significantly greater IL7R expression and pSTAT5  
565 levels than KO T cells, while no IL7R overexpression or pSTAT5 over-phosphorylation were  
566 observed in these samples relative to WT T cells. Moreover, correction of the pSTAT5  
567 signalling cascade by gene KI was IL7R-specific, as no changes in the signalling pathways  
568 were observed across experimental conditions when T cells were stimulated with IL-2 instead  
569 of IL-7.

570 Because a potential gene editing application for IL7R-SCID would require the  
571 manipulation of HSPCs as the target population, we implemented the same disease modelling  
572 strategy to those cells, in order to assess a) achievable rates of gene correction; b) functional  
573 correction of HSPCs' capability to give rise to mature T cells once gene edited; and c)  
574 restoration of physiological protein expression in mature T cells. Evidence from bone marrow  
575 transplantation in IL7R-SCID patients and preclinical gene therapy studies have shown that as  
576 little as 10% of corrected cells engrafting the host bone marrow is sufficient to functionally  
577 cure T-B+ SCIDs due to the selective advantage of corrected cells over SCID cells [8,32].

578 While the efficiency of biallelic KI of the corrective cassette in HSPCs failed to meet the 10%  
579 threshold, total editing efficiencies including monoallelic KI cells frequently exceeded 25%.  
580 As such, total KI efficiency achieved is a clinically relevant figure for IL7R-SCID as, being an  
581 autosomal recessive disorder, even monoallelic correction alone is sufficient to enable normal  
582 haematopoiesis in carrier parents [8]. Previous work by our group [40] and others [20] with  
583 similar gene editing strategies applied to HSPCs reached KI rates sensibly higher than those  
584 achieved in our modelling system. We believe that this discrepancy could be due to the  
585 increased viral burden of transduction with two AAV viruses required for multiplexed HDR at  
586 high MOI, which likely artificially suppressed edited cell survival as a result of cell toxicity  
587 [41]. Moreover, the increased length of the HDR donor molecules due to the inclusion of an  
588 EFS-GFP/mCherry cassette also likely reduced KI efficiency compared to smaller clinical  
589 constructs lacking reporter genes [19,42]. This is backed up by results obtained in previous  
590 works using multiplexed HDR platforms [37,38], and additionally by the increased KI rates (up  
591 to 58%) achieved in this study when only one AAV donor vector carrying the shorter coIL7RA  
592 cDNA cassette was employed to edit HSPCs. Overall, the evidence suggests that by further  
593 counteracting gene editing- and AAV-related toxicities (e.g. by reducing the MOI used for  
594 AAV transduction, by inhibiting DNA Damage Repair pathways [42] or by optimising HSPC  
595 culture conditions [21]), we could further improve our overall KI rates *in vitro* to ensure  
596 engraftment of corrected IL7R-SCID HSPCs at therapeutically beneficial levels *in vivo*.

597 As the hallmark of IL7R-SCID is the immunodeficiency caused by an IL7R-dependent  
598 T-lymphocyte developmental block, we sought to understand if our gene editing platform could  
599 restore HSPCs' ability to give rise to mature T cells *in vitro*, by taking advantage of the ATO  
600 system. The IL7RA-KO ATO model successfully recapitulated the block in thymopoiesis and  
601 absence of mature T cells seen in IL7R-SCID patients. The observation of diminished cell  
602 populations arising from differentiating KO<sup>-/-</sup> HSPCs from the pro-T stage onwards agrees with  
603 previous works showing that abrogation of IL7R function causes blocks at the pro-T2/DN2  
604 stage of thymopoiesis [6], as thymocyte survival becomes reliant on IL-7-dependent BCL-2  
605 expression [5]. Some studies reported that this block occurs at the pre-T/DN3 stage instead,  
606 indicating there may be some variability between ATO and mouse studies, though there is  
607 broad agreement in the literature that IL7R-deficient development cannot proceed to the DP  
608 stage, as also shown by our data. On the other hand, coIL7RA-KI ATOs showed the successful  
609 overcoming of the above-mentioned developmental block when IL7R expression is reinstated,  
610 with cell frequencies detected at every developmental stage tested being comparable to WT  
611 ATOs in both mono- and bi-allelic KI conditions. Importantly, we demonstrated that IL7R

612 expression is tightly regulated during lymphopoiesis in the ATO system, with correct down-  
613 regulation of the protein expression at the intermediate EDP/DP stages followed by its  
614 reintegration in mature TCR<sup>+</sup> TCR $\alpha\beta^+$  cells, highlighting the indisputable advantage of our  
615 gene editing strategy that relies on endogenous regulatory regions for gene expression. When  
616 checking the frequency of cells expressing IL7R upon gene editing and T cell differentiation,  
617 we observed an average of 65% IL7R<sup>+</sup> cells (as a fraction of WT IL7R<sup>+</sup> cells) in both  
618 monoallelic and biallelic KI samples at both the Pre-T and mature T cell stages analysed,  
619 exhibiting an MFI equivalent to that detected in T cells derived from WT HSPCs. The fact that  
620 we do not see an increase in IL7R expression going from monoallelic to biallelic cDNA KI  
621 suggests that there may be a maximum threshold of protein expression that can be achieved  
622 with our system, or that the populations analysed by FACS using established panels of markers  
623 contain heterogeneous population of T cells at different developmental stages and thus with  
624 different IL7R expressing levels when pushed to differentiate in the ATO system. The final,  
625 intriguing possibility is that intronless coIL7RA cDNA used in our KI strategy lacks important  
626 regulatory elements that limit transgene expression when placed under its endogenous  
627 promoter and enhancer. A previous Cas9–AAV6 gene editing approach for X-linked chronic  
628 granulomatous disease showed undetectable transgene expression using an intronless exon 1–  
629 13 cDNA, but retention of intron 1 by downstream integration of an exon 2–13 cDNA was  
630 necessary and sufficient for physiological gene expression, presumably due to the presence of  
631 key intron-encoded regulatory regions [43]. Intronic IL7R-SCID-associated mutations have  
632 been reported as causing splicing aberrations [13], but in light of Sweeney et al.’s work they  
633 may also have unexplored regulatory significance. Future work could include bioinformatic  
634 assessment of putative regulatory regions in the IL7R introns, generation of cDNA constructs  
635 incorporating the minimal critical sequences and reassessment of KI cell function and HDR  
636 rates with the enlarged construct size. Inclusion of the ~600-bp woodchuck hepatitis virus  
637 posttranscriptional regulatory element (WPRE) could also be an effective potential strategy for  
638 improving cDNA expression [44]. Addition of such sequences in the donor vector may  
639 however increase the size of the integrant and therefore be detrimental to the rates of targeted  
640 integration of the therapeutic cassette. Nevertheless, as heterozygous parents of SCID patients  
641 have functional immune systems, an IL7R protein expression of at least 50% of WT levels is  
642 thought to be sufficient to rescue the disease phenotype, thus validating the efficacy of our gene  
643 editing platform in its current design. Moreover, the strong selective advantage of IL7R-  
644 corrected cells over deficient ones in a SCID setting may lead to eradication of the disease even

645 when infusing HSPCs with much lower correction rates and protein expression levels than  
646 those achieved here [32]. Additionally, the lack of an increase in protein expression in biallelic  
647 versus monoallelic KI cells and relative to WT cells does imply that coIL7RA integration does  
648 not predispose T cells to overexpression of IL7R, an important safety aspects giving that IL7R  
649 overexpression associated with clonal dominance and thymocyte lymphoma [16]. While a  
650 limitation of this study is that it mostly relies on an *in vitro* assessment of the platform, it  
651 suggests that our gene-editing strategy successfully rescues thymopoiesis through IL7R  
652 expression reconstitution when applied to primary human HSPCs and has the potential to  
653 perform similarly when assessed in immunodeficient mouse models and IL7R-SCID clinical  
654 trials using patients-derived cells.

655 CRISPR/Cas9-mediated targeted integration through HDR provides a potentially safer  
656 strategy of gene correction than viral gene therapy, as it mitigates the risk of oncogenic  
657 transformation and genotoxicity associated with the use of viral vectors [36]. While the safety  
658 of engineered nucleases for therapeutic purposes is still under investigation, with indels  
659 generation at off-target sites being a potential threat to their safe clinical application [28], we  
660 demonstrated absence of non-specific targeting of our gRNA and of major chromosomal  
661 rearrangements upon DNA cutting, using biased and unbiased detection tools. Indeed, deep-  
662 sequencing of 20 putative off-target sites in HSPCs detected through either GUIDE-seq or a  
663 sequence similarity prediction algorithm returned no significant modifications at those sites  
664 when our optimized CRISPR/Cas9 reagents were used. This finding was further confirmed by  
665 a CAST-seq analysis in HSPCs, which showed no evident large chromosomal rearrangements  
666 between on- and putative off-target sites.

667

## 668 CONCLUSIONS

669 Our study provides proof-of-concept of the efficacy and potential safety of a CRISPR-based  
670 gene editing approach to treat IL7R-SCID in primary human T cells and HSPCs using an *in*  
671 *vitro* disease modelling system. This strategy could provide a valuable therapeutic alternative  
672 for all patients affected by this disease and could enable the translation of such technology to  
673 a much wider range of HSC blood disorders.

674

675

676

677

678 **ACKNOWLEDGEMENTS**

679 We thank Dr. Ayad Eddaoudi (Flow Cytometry Core Facility, University College London) for  
680 assistance with flow cytometry and cell sorting;

681

682 **FUNDING**

683 R.R., Y.H., G.T., N.W. and A.J.T. were supported by the Wellcome Trust (104807/Z/14/Z).  
684 A.C., and M.R. were supported by the Sparks-GOSH Children's Charity Grant (V4318); A.C.  
685 and A.N were supported by the Sparks-GOSH Children's Charity Grant (V4522); A.C., Z.S.  
686 and F.Z. were supported by the UKRI MRC Molecular and Cellular Biology Board Grant  
687 (MR/W001314/1); A.C. and G.T. were also supported by the University College London  
688 Therapeutic Acceleration Support fund (MRCCIC7554230 and ICH/GOSH BRC Award  
689 175540) and the NIHR Biomedical Research Centre at Great Ormond Street Hospital for  
690 Children NHS Foundation Trust and University College London.

691

692 **AUTHOR CONTRIBUTIONS**

693 R.R., Z.S., M.R., F.Z., Y.H., N.W., A.N., G.T. performed experiments and analysed data; A.C.,  
694 G.T. and A.J.T. contributed to the study design; A.C. initiated the study, designed experiments,  
695 illustrated data, and wrote the manuscript, with inputs from all the authors.

696

697 **CONFLICT OF INTEREST**

698 A.J.T is on the Scientific Advisory Board of Orchard Therapeutics and Rocket  
699 Pharmaceuticals. The other authors declare no competing interests.

700

701 **AVAILABILITY OF DATA AND MATERIALS**

702 We declare that the data supporting the findings of this study are available within the paper and  
703 its Supplementary Information files or from the authors upon request.

704

705

706

707

708

709 **REFERENCES**

- 710
- 711 1. Fischer, A. Severe combined immunodeficiencies (SCID). *Clin Exp Immunol* **2000**, *122* (2),  
712 143-149. DOI: 10.1046/j.1365-2249.2000.01359.x From NLM.
- 713 2. Mazzucchelli, R.; Durum, S. K. Interleukin-7 receptor expression: intelligent design. *Nat  
714 Rev Immunol* **2007**, *7* (2), 144-154. DOI: 10.1038/nri2023 From NLM.
- 715 3. Hong, C.; Luckey, M. A.; Park, J. H. Intrathymic IL-7: the where, when, and why of IL-7  
716 signaling during T cell development. *Semin Immunol* **2012**, *24* (3), 151-158. DOI:  
717 10.1016/j.smim.2012.02.002 From NLM.
- 718 4. Prietyl, J. A.; LeBien, T. W. Interleukin 7 independent development of human B cells. *Proc  
719 Natl Acad Sci U S A* **1996**, *93* (19), 10348-10353. DOI: 10.1073/pnas.93.19.10348 From NLM.
- 720 5. von Freeden-Jeffry, U.; Solvason, N.; Howard, M.; Murray, R. The earliest T lineage-  
721 committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression.  
722 *Immunity* **1997**, *7* (1), 147-154. DOI: 10.1016/s1074-7613(00)80517-8 From NLM.
- 723 6. Peschon, J. J.; Morrissey, P. J.; Grabstein, K. H.; Ramsdell, F. J.; Maraskovsky, E.; Gliniak,  
724 B. C.; Park, L. S.; Ziegler, S. F.; Williams, D. E.; Ware, C. B.; et al. Early lymphocyte  
725 expansion is severely impaired in interleukin 7 receptor-deficient mice. *J Exp Med* **1994**, *180*  
726 (5), 1955-1960. DOI: 10.1084/jem.180.5.1955 From NLM.
- 727 7. Buckley, R. H.; Schiff, S. E.; Schiff, R. I.; Markert, L.; Williams, L. W.; Roberts, J. L.;  
728 Myers, L. A.; Ward, F. E. Hematopoietic stem-cell transplantation for the treatment of severe  
729 combined immunodeficiency. *N Engl J Med* **1999**, *340* (7), 508-516. DOI:  
730 10.1056/nejm199902183400703 From NLM.
- 731 8. Giliani, S.; Mori, L.; de Saint Basile, G.; Le Deist, F.; Rodriguez-Perez, C.; Forino, C.;  
732 Mazzolari, E.; Dupuis, S.; Elhasid, R.; Kessel, A.; et al. Interleukin-7 receptor alpha (IL-  
7Ralpha) deficiency: cellular and molecular bases. Analysis of clinical, immunological, and  
733 molecular features in 16 novel patients. *Immunol Rev* **2005**, *203*, 110-126. DOI:  
734 10.1111/j.0105-2896.2005.00234.x From NLM.
- 735 9. Heimall, J.; Logan, B. R.; Cowan, M. J.; Notarangelo, L. D.; Griffith, L. M.; Puck, J. M.;  
736 Kohn, D. B.; Pulsipher, M. A.; Parikh, S.; Martinez, C.; et al. Immune reconstitution and  
737 survival of 100 SCID patients post-hematopoietic cell transplant: a PIDTC natural history  
738 study. *Blood* **2017**, *130* (25), 2718-2727. DOI: 10.1182/blood-2017-05-781849 From NLM.
- 739 10. Thrasher, A. J.; Williams, D. A. Evolving Gene Therapy in Primary Immunodeficiency.  
740 *Mol Ther* **2017**, *25* (5), 1132-1141. DOI: 10.1016/j.moltherap.2017.03.018 From NLM.

- 742 11. Jiang, Q.; Li, W. Q.; Aiello, F. B.; Klarmann, K. D.; Keller, J. R.; Durum, S. K. Retroviral  
743 transduction of IL-7Ralpha into IL-7Ralpha/- bone marrow progenitors: correction of  
744 lymphoid deficiency and induction of neutrophilia. *Gene Ther* **2005**, *12* (24), 1761-1768. DOI:  
745 10.1038/sj.gt.3302558 From NLM.
- 746 12. Munitic, I.; Williams, J. A.; Yang, Y.; Dong, B.; Lucas, P. J.; El Kassar, N.; Gress, R. E.;  
747 Ashwell, J. D. Dynamic regulation of IL-7 receptor expression is required for normal  
748 thymopoiesis. *Blood* **2004**, *104* (13), 4165-4172. DOI: 10.1182/blood-2004-06-2484 From  
749 NLM.
- 750 13. Campos, L. W.; Pissinato, L. G.; Yunes, J. A. Deleterious and Oncogenic Mutations in the  
751 IL7RA. *Cancers (Basel)* **2019**, *11* (12). DOI: 10.3390/cancers11121952 From NLM.
- 752 14. Li, Y.; Buijs-Gladdines, J. G.; Canté-Barrett, K.; Stubbs, A. P.; Vroegindeweij, E. M.;  
753 Smits, W. K.; van Marion, R.; Dinjens, W. N.; Horstmann, M.; Kuiper, R. P.; et al. IL-7  
754 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia:  
755 A Genome Sequencing Study. *PLoS Med* **2016**, *13* (12), e1002200. DOI:  
756 10.1371/journal.pmed.1002200 From NLM.
- 757 15. Barata, J. T.; Durum, S. K.; Seddon, B. Flip the coin: IL-7 and IL-7R in health and disease.  
758 *Nat Immunol* **2019**, *20* (12), 1584-1593. DOI: 10.1038/s41590-019-0479-x From NLM.
- 759 16. Laouar, Y.; Crispe, I. N.; Flavell, R. A. Overexpression of IL-7R alpha provides a  
760 competitive advantage during early T-cell development. *Blood* **2004**, *103* (6), 1985-1994. DOI:  
761 10.1182/blood-2003-06-2126 From NLM.
- 762 17. Yamazaki, M.; Yajima, T.; Tanabe, M.; Fukui, K.; Okada, E.; Okamoto, R.; Oshima, S.;  
763 Nakamura, T.; Kanai, T.; Uehira, M.; et al. Mucosal T cells expressing high levels of IL-7  
764 receptor are potential targets for treatment of chronic colitis. *J Immunol* **2003**, *171* (3), 1556-  
765 1563. DOI: 10.4049/jimmunol.171.3.1556 From NLM.
- 766 18. Rai, R.; Thrasher, A. J.; Cavazza, A. Gene Editing for the Treatment of Primary  
767 Immunodeficiency Diseases. *Hum Gene Ther* **2021**, *32* (1-2), 43-51. DOI:  
768 10.1089/hum.2020.185 From NLM.
- 769 19. Charlesworth, C. T.; Camarena, J.; Cromer, M. K.; Vaidyanathan, S.; Bak, R. O.; Carte, J.  
770 M.; Potter, J.; Dever, D. P.; Porteus, M. H. Priming Human Repopulating Hematopoietic Stem  
771 and Progenitor Cells for Cas9/sgRNA Gene Targeting. *Mol Ther Nucleic Acids* **2018**, *12*, 89-  
772 104. DOI: 10.1016/j.omtn.2018.04.017 From NLM.
- 773 20. Bak, R. O.; Dever, D. P.; Porteus, M. H. CRISPR/Cas9 genome editing in human  
774 hematopoietic stem cells. *Nat Protoc* **2018**, *13* (2), 358-376. DOI: 10.1038/nprot.2017.143  
775 From NLM.

- 776 21. Rai, R.; Naseem, A.; Vetharoy, W.; Steinberg, Z.; Thrasher, A. J.; Santilli, G.; Cavazza,  
777 A. An improved medium formulation for efficient ex vivo gene editing, expansion and  
778 engraftment of hematopoietic stem and progenitor cells. *Mol Ther Methods Clin Dev* **2023**, *29*,  
779 58-69. DOI: 10.1016/j.omtm.2023.02.014 From NLM.
- 780 22. Naseem, A.; Steinberg, Z.; Cavazza, A. Genome editing for primary immunodeficiencies:  
781 A therapeutic perspective on Wiskott-Aldrich syndrome. *Front Immunol* **2022**, *13*, 966084.  
782 DOI: 10.3389/fimmu.2022.966084 From NLM.
- 783 23. Owen, D. L.; Farrar, M. A. STAT5 and CD4 (+) T Cell Immunity. *F1000Res* **2017**, *6*, 32.  
784 DOI: 10.12688/f1000research.9838.1 From NLM.
- 785 24. Seet, C. S.; He, C.; Bethune, M. T.; Li, S.; Chick, B.; Gschweng, E. H.; Zhu, Y.; Kim, K.;  
786 Kohn, D. B.; Baltimore, D.; et al. Generation of mature T cells from human hematopoietic stem  
787 and progenitor cells in artificial thymic organoids. *Nat Methods* **2017**, *14* (5), 521-530. DOI:  
788 10.1038/nmeth.4237 From NLM.
- 789 25. Bosticardo, M.; Pala, F.; Calzoni, E.; Delmonte, O. M.; Dobbs, K.; Gardner, C. L.;  
790 Sacchetti, N.; Kawai, T.; Garabedian, E. K.; Draper, D.; et al. Artificial thymic organoids  
791 represent a reliable tool to study T-cell differentiation in patients with severe T-cell  
792 lymphopenia. *Blood Adv* **2020**, *4* (12), 2611-2616. DOI: 10.1182/bloodadvances.2020001730  
793 From NLM.
- 794 26. Awong, G.; Herer, E.; Surh, C. D.; Dick, J. E.; La Motte-Mohs, R. N.; Zúñiga-Pflücker, J.  
795 C. Characterization in vitro and engraftment potential in vivo of human progenitor T cells  
796 generated from hematopoietic stem cells. *Blood* **2009**, *114* (5), 972-982. DOI: 10.1182/blood-  
797 2008-10-187013 From NLM.
- 798 27. Kim, K.; Lee, C. K.; Sayers, T. J.; Muegge, K.; Durum, S. K. The trophic action of IL-7  
799 on pro-T cells: inhibition of apoptosis of pro-T1, -T2, and -T3 cells correlates with Bcl-2 and  
800 Bax levels and is independent of Fas and p53 pathways. *J Immunol* **1998**, *160* (12), 5735-5741.  
801 From NLM.
- 802 28. Blattner, G.; Cavazza, A.; Thrasher, A. J.; Turchiano, G. Gene Editing and Genotoxicity:  
803 Targeting the Off-Targets. *Front Genome Ed* **2020**, *2*, 613252. DOI:  
804 10.3389/fgeed.2020.613252 From NLM.
- 805 29. Tsai, S. Q.; Zheng, Z.; Nguyen, N. T.; Liebers, M.; Topkar, V. V.; Thapar, V.; Wyveldens,  
806 N.; Khayter, C.; Iafrate, A. J.; Le, L. P.; et al. GUIDE-seq enables genome-wide profiling of  
807 off-target cleavage by CRISPR-Cas nucleases. *Nat Biotechnol* **2015**, *33* (2), 187-197. DOI:  
808 10.1038/nbt.3117 From NLM.

- 809 30. Cradick, T. J.; Qiu, P.; Lee, C. M.; Fine, E. J.; Bao, G. COSMID: A Web-based Tool for  
810 Identifying and Validating CRISPR/Cas Off-target Sites. *Mol Ther Nucleic Acids* **2014**, *3* (12),  
811 e214. DOI: 10.1038/mtna.2014.64 From NLM.
- 812 31. Turchiano, G.; Andrieux, G.; Klermund, J.; Blattner, G.; Pennucci, V.; El Gaz, M.;  
813 Monaco, G.; Poddar, S.; Mussolino, C.; Cornu, T. I.; et al. Quantitative evaluation of  
814 chromosomal rearrangements in gene-edited human stem cells by CAST-Seq. *Cell Stem Cell*  
815 **2021**, *28* (6), 1136-1147.e1135. DOI: 10.1016/j.stem.2021.02.002 From NLM.
- 816 32. Schirolì, G.; Ferrari, S.; Conway, A.; Jacob, A.; Capo, V.; Albano, L.; Plati, T.; Castiello,  
817 M. C.; Sanvito, F.; Gennery, A. R.; et al. Preclinical modeling highlights the therapeutic  
818 potential of hematopoietic stem cell gene editing for correction of SCID-X1. *Sci Transl Med*  
819 **2017**, *9* (411). DOI: 10.1126/scitranslmed.aan0820 From NLM.
- 820 33. McAuley, G. E.; Yiu, G.; Chang, P. C.; Newby, G. A.; Campo-Fernandez, B.; Fitz-Gibbon,  
821 S. T.; Wu, X.; Kang, S. L.; Garibay, A.; Butler, J.; et al. Human T cell generation is restored in  
822 CD3 $\delta$  severe combined immunodeficiency through adenine base editing. *Cell* **2023**, *186* (7),  
823 1398-1416.e1323. DOI: 10.1016/j.cell.2023.02.027 From NLM.
- 824 34. Pavel-Dinu, M.; Wiebking, V.; Dejene, B. T.; Srifa, W.; Mantri, S.; Nicolas, C. E.; Lee,  
825 C.; Bao, G.; Kildebeck, E. J.; Punjya, N.; et al. Author Correction: Gene correction for SCID-  
826 X1 in long-term hematopoietic stem cells. *Nat Commun* **2019**, *10* (1), 2021. DOI:  
827 10.1038/s41467-019-10080-9 From NLM.
- 828 35. Bousso, P.; Wahn, V.; Douagi, I.; Horneff, G.; Pannetier, C.; Le Deist, F.; Zepp, F.;  
829 Niehues, T.; Kourilsky, P.; Fischer, A.; et al. Diversity, functionality, and stability of the T cell  
830 repertoire derived in vivo from a single human T cell precursor. *Proc Natl Acad Sci U S A*  
831 **2000**, *97* (1), 274-278. DOI: 10.1073/pnas.97.1.274 From NLM.
- 832 36. Cavazza, A.; Moiani, A.; Mavilio, F. Mechanisms of retroviral integration and  
833 mutagenesis. *Hum Gene Ther* **2013**, *24* (2), 119-131. DOI: 10.1089/hum.2012.203 From  
834 NLM.
- 835 37. Bak, R. O.; Dever, D. P.; Reinisch, A.; Cruz Hernandez, D.; Majeti, R.; Porteus, M. H.  
836 Multiplexed genetic engineering of human hematopoietic stem and progenitor cells using  
837 CRISPR/Cas9 and AAV6. *eLife* **2017**, *6*. DOI: 10.7554/eLife.27873 From NLM.
- 838 38. Iancu, O.; Allen, D.; Knop, O.; Zehavi, Y.; Breier, D.; Arbiv, A.; Lev, A.; Lee, Y. N.;  
839 Beider, K.; Nagler, A.; et al. Multiplex HDR for disease and correction modeling of SCID by  
840 CRISPR genome editing in human HSPCs. *Mol Ther Nucleic Acids* **2023**, *31*, 105-121. DOI:  
841 10.1016/j.omtn.2022.12.006 From NLM.

- 842 39. Boudil, A.; Matei, I. R.; Shih, H. Y.; Bogdanoski, G.; Yuan, J. S.; Chang, S. G.;  
843 Montpellier, B.; Kowalski, P. E.; Voisin, V.; Bashir, S.; et al. IL-7 coordinates proliferation,  
844 differentiation and Tcra recombination during thymocyte  $\beta$ -selection. *Nat Immunol* **2015**, *16*  
845 (4), 397-405. DOI: 10.1038/ni.3122 From NLM.
- 846 40. Rai, R.; Romito, M.; Rivers, E.; Turchiano, G.; Blattner, G.; Vetharoy, W.; Ladon, D.;  
847 Andrieux, G.; Zhang, F.; Zinicola, M.; et al. Targeted gene correction of human hematopoietic  
848 stem cells for the treatment of Wiskott - Aldrich Syndrome. *Nat Commun* **2020**, *11* (1), 4034.  
849 DOI: 10.1038/s41467-020-17626-2 From NLM.
- 850 41. Ferrari, S.; Jacob, A.; Cesana, D.; Laugel, M.; Beretta, S.; Varesi, A.; Unali, G.; Conti, A.;  
851 Canarutto, D.; Albano, L.; et al. Choice of template delivery mitigates the genotoxic risk and  
852 adverse impact of editing in human hematopoietic stem cells. *Cell Stem Cell* **2022**, *29* (10),  
853 1428-1444.e1429. DOI: 10.1016/j.stem.2022.09.001 From NLM.
- 854 42. Schirolì, G.; Conti, A.; Ferrari, S.; Della Volpe, L.; Jacob, A.; Albano, L.; Beretta, S.;  
855 Calabria, A.; Vavassori, V.; Gasparini, P.; et al. Precise Gene Editing Preserves Hematopoietic  
856 Stem Cell Function following Transient p53-Mediated DNA Damage Response. *Cell Stem Cell*  
857 **2019**, *24* (4), 551-565.e558. DOI: 10.1016/j.stem.2019.02.019 From NLM.
- 858 43. Sweeney, C. L.; Pavel-Dinu, M.; Choi, U.; Brault, J.; Liu, T.; Koontz, S.; Li, L.; Theobald,  
859 N.; Lee, J.; Bello, E. A.; et al. Correction of X-CGD patient HSPCs by targeted CYBB cDNA  
860 insertion using CRISPR/Cas9 with 53BP1 inhibition for enhanced homology-directed repair.  
861 *Gene Ther* **2021**, *28* (6), 373-390. DOI: 10.1038/s41434-021-00251-z From NLM.
- 862 44. Loeb, J. E.; Cordier, W. S.; Harris, M. E.; Weitzman, M. D.; Hope, T. J. Enhanced  
863 expression of transgenes from adeno-associated virus vectors with the woodchuck hepatitis  
864 virus posttranscriptional regulatory element: implications for gene therapy. *Hum Gene Ther*  
865 **1999**, *10* (14), 2295-2305. DOI: 10.1089/10430349950016942 From NLM.
- 866 45. Pinello, L.; Canver, M. C.; Hoban, M. D.; Orkin, S. H.; Kohn, D. B.; Bauer, D. E.; Yuan,  
867 G. C. Analyzing CRISPR genome-editing experiments with CRISPResso. *Nat Biotechnol*  
868 **2016**, *34* (7), 695-697. DOI: 10.1038/nbt.3583 From NLM.
- 869 46. Tsai, S. Q.; Topkar, V. V.; Joung, J. K.; Aryee, M. J. Open-source guideseq software for  
870 analysis of GUIDE-seq data. *Nat Biotechnol* **2016**, *34* (5), 483. DOI: 10.1038/nbt.3534 From  
871 NLM.

872  
873  
874  
875

876 **FIGURE LEGENDS**

877

878 **Figure 1. Development of a stem cell gene editing platform for IL7RA-SCID. A)**  
879 Schematics of the gene editing strategy used to directly knock-in a codon optimized (co)  
880 IL7RA cDNA close to its endogenous promoter through HDR (HA, homology arm; ATG,  
881 translational start codon; black boxes, exons). **B and C)** HSPCs were electroporated with a  
882 Cas9:gRNA complex and indels frequency was assessed as a measure of NHEJ-mediated repair  
883 ( $n = 3$  experiments, each dot represents a different donor source). HSPCs were also  
884 electroporated and transduced with the AAV6 donor vector containing a PGK-GFP cassette  
885 flanked by *IL7RA* HA and analysed by flow cytometry. HDR-mediated integration of the  
886 cassette can be inferred by the percentage of GFP-positive cells ( $n = 3$  experiments using  
887 HSPCs from 3 different donor sources). **D)** Viability of non-edited (WT) and edited (PGK-  
888 GFP) cells was assessed by flow cytometry 48 hours after gene editing ( $n = 3$  experiments using  
889 HSPCs from 3 different donor sources;  $p = 0.25$ , two tailed paired Student's *t* test). **E)** Absolute  
890 numbers of myeloid (white) and erythroid (red) colonies formed in methylcellulose by unedited  
891 (WT) and edited (PGK-GFP) HSPCs ( $n = 3$  experiments from three different donor  
892 sources;  $p > 0.05$ , as analysed by one-way ANOVA with Bonferroni's multiple comparison  
893 test). **F)** Schematics of the IL7RA gene on chromosome 5. Boxes 1-8 represents exons, where  
894 dark grey, light grey and white exons encode for the extracellular, transmembrane and  
895 intracellular IL7R domains, respectively. Lines represent the regions targeted by the gRNAs,  
896 with gRNAs 5-9 being used for gene knock out and gRNA4 being used for the gene editing  
897 strategy depicted in (A) to knock-in the corrective coIL7RA cDNA. **G)** Example of a T7E1  
898 assay performed on DG-75 cells either untreated (UT) or electroporated with each of the  
899 gRNA5-9 tested (g5 to g9). The cutting efficiency (eff %) was determined by Sanger  
900 sequencing and TIDE analysis. **H)** Quantification of the size and frequency of deletions and  
901 insertions introduced by the NHEJ-mediated repair of the cut site at the *IL7RA* locus by targeted  
902 high-throughput sequencing. Fraction of sequencing reads per type of modification detected  
903 are indicated on the y axis. **I)** Quantification of IL7R expression by flow cytometry in DG-75  
904 cells untreated (UT) or electroporated with gRNA6 (g6). **L)** IL7R protein detection by  
905 immunoblotting of DG-75 single clones sorted from DG-75 cells electroporated with the Cas9-  
906 gRNA6 RNP or untreated (UT). GAPDH expression is used as a reference. **M)** DG-75 cells  
907 were electroporated with the Cas9-gRNA4 RNP and transduced with the AAV6 donor vector  
908 carrying the corrective coIL7RA cDNA flanked by *IL7RA* HAs. **N)** Rates of targeted  
909 integration (HDR%) achieved in HSPCs after electroporation with the Cas9-gRNA4 RNP and

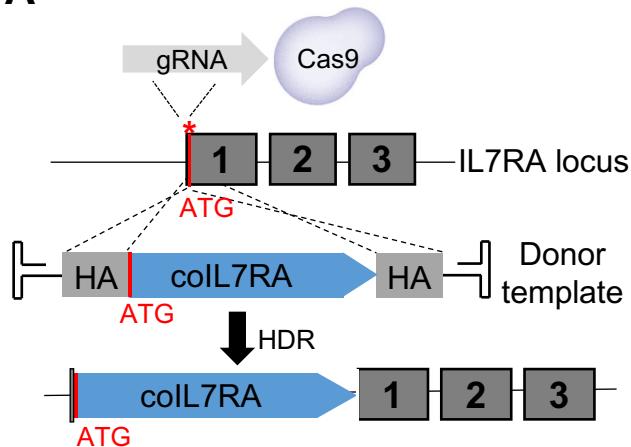
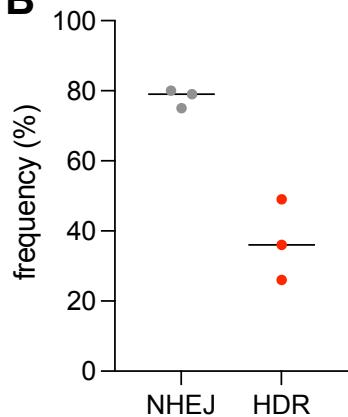
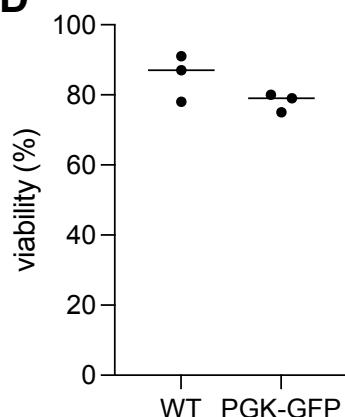
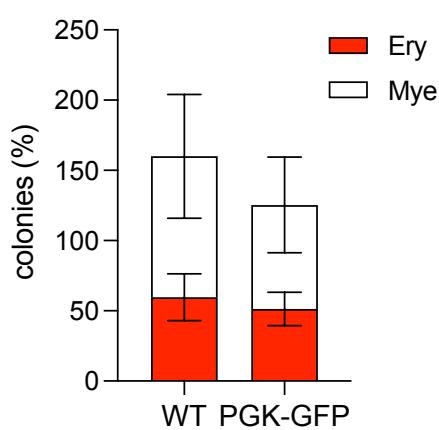
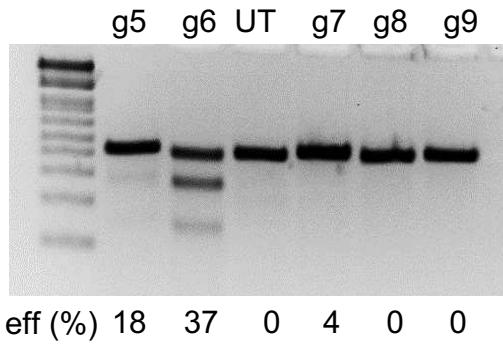
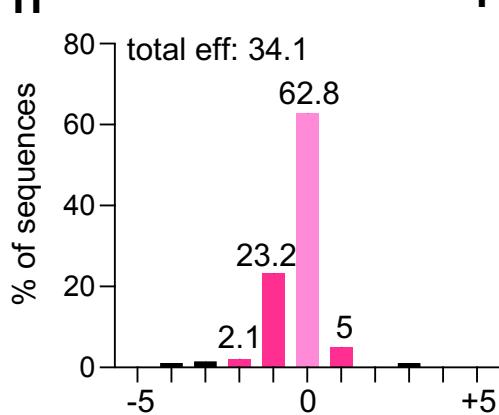
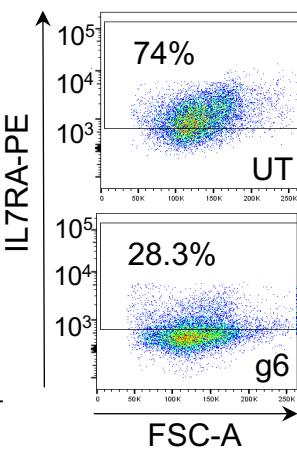
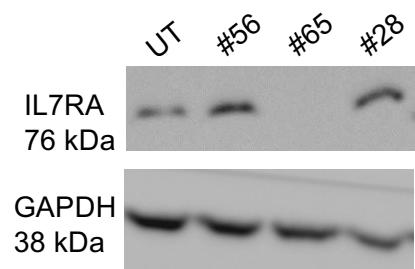
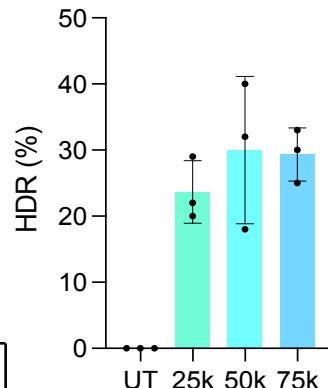
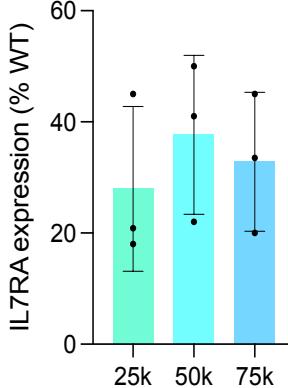
910 transduced with the AAV6 donor vector at different MOIs, as assessed by ddPCR (n=3  
911 experiments, dots represent different HSPC donor sources). **O**) Quantification of IL7R protein  
912 expression by flow cytometry in gene edited HSPCs, relative to IL7R expression detected in  
913 unedited, wild type (WT) HSPCs.

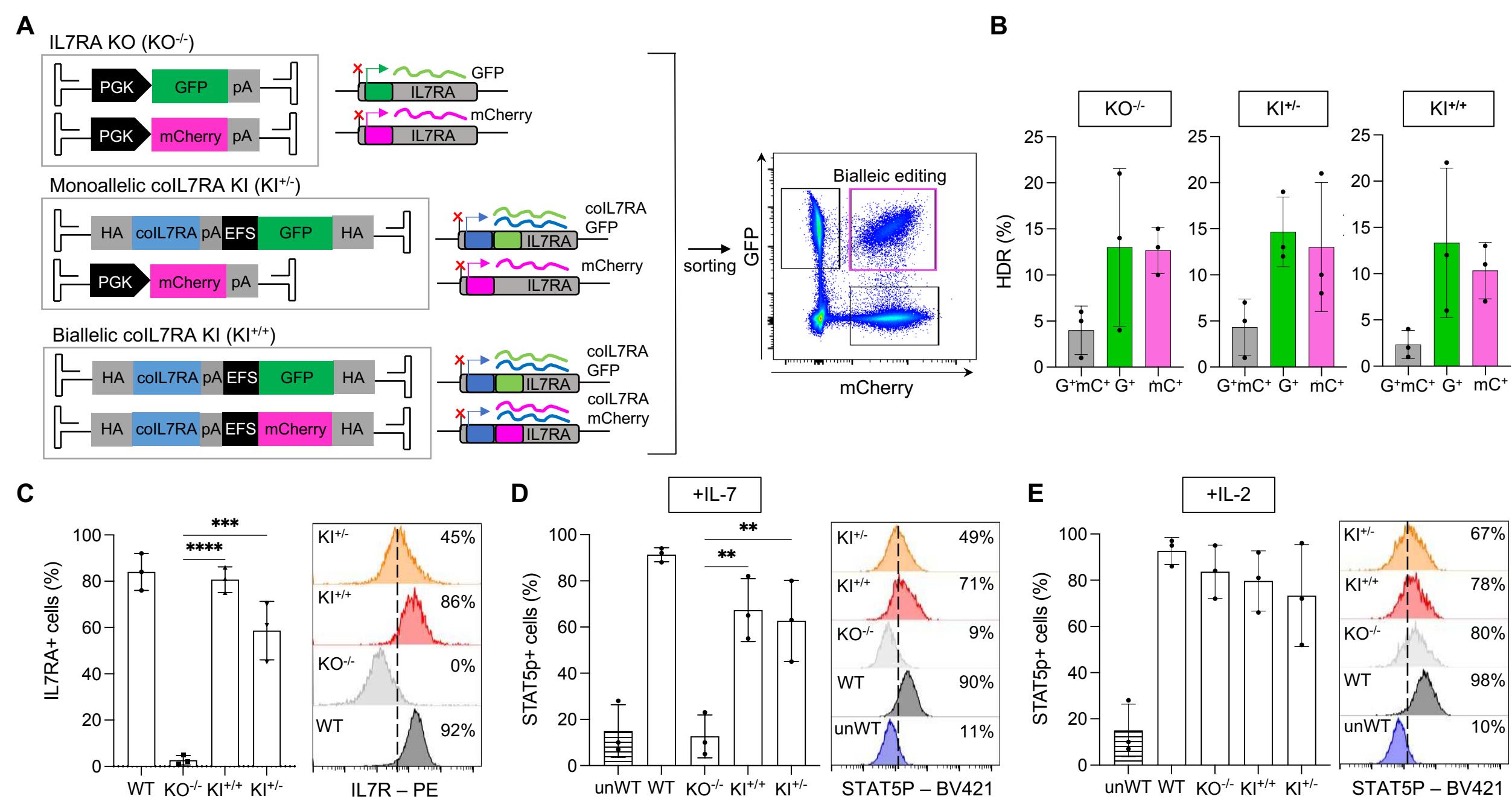
914

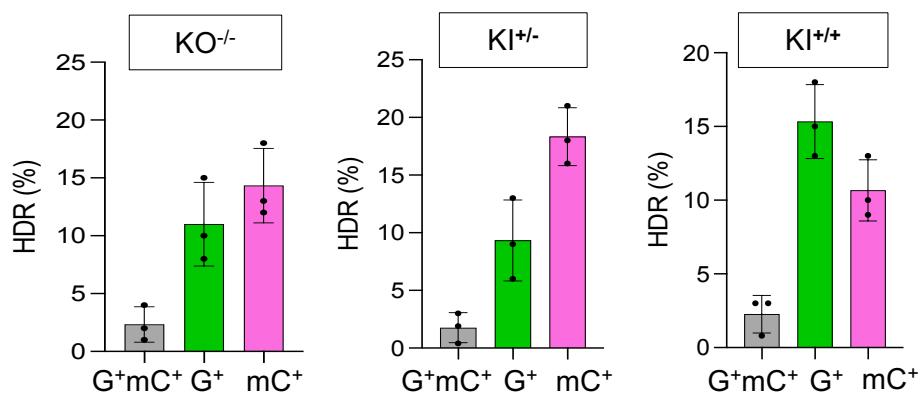
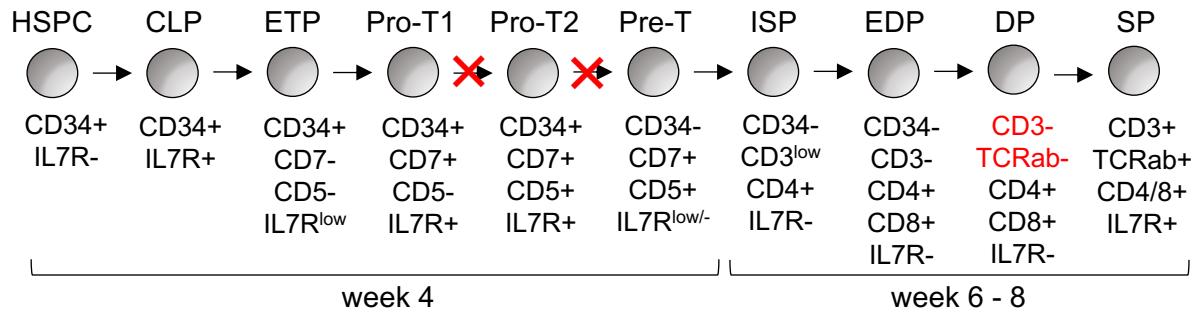
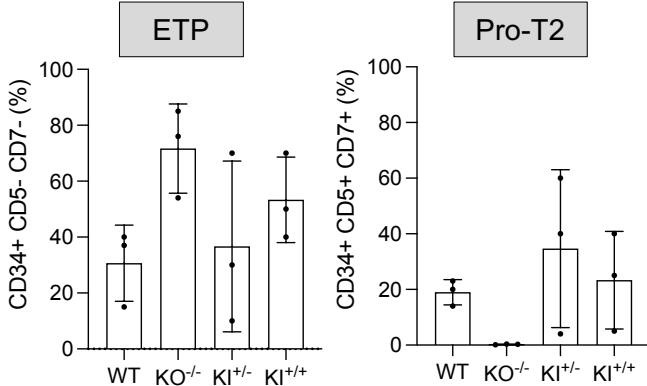
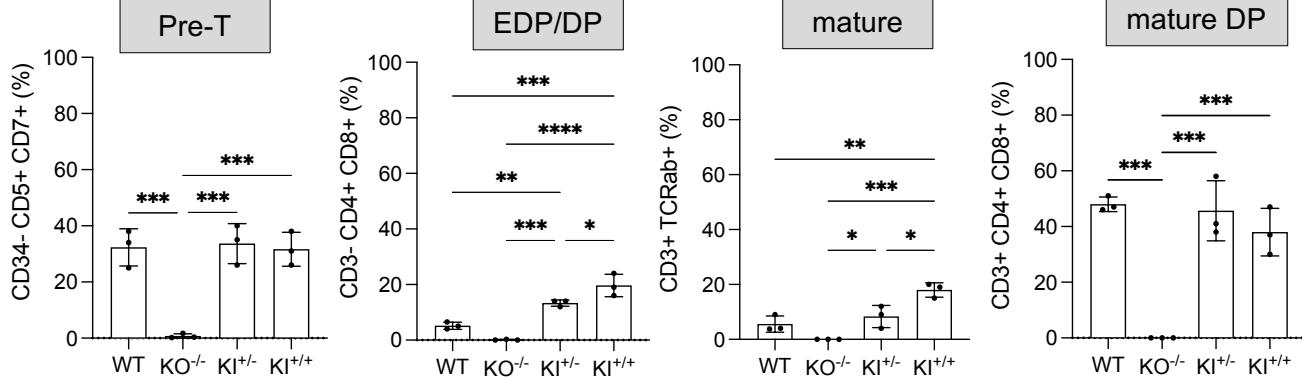
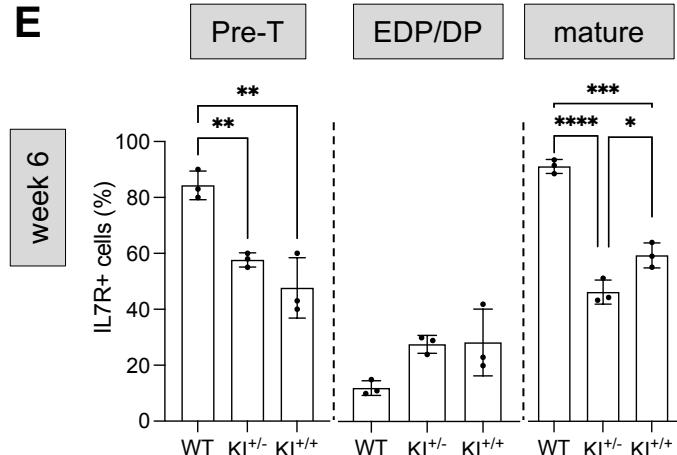
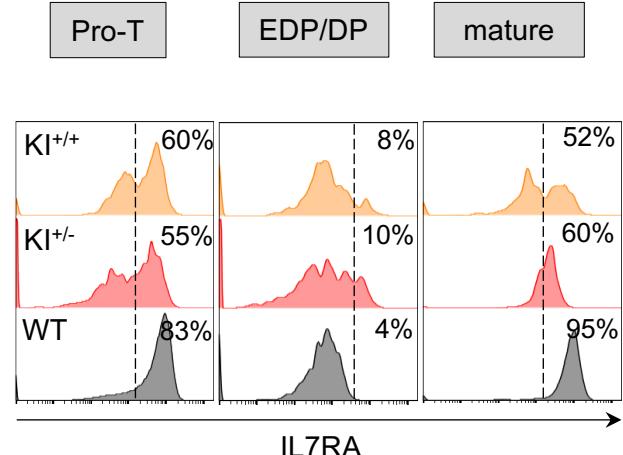
915 **Figure 2. IL7R-SCID disease modelling and correction in primary T cells. A)** Schematic  
916 of the multiplexed gene editing strategy developed to model IL7R-SCID in T cells. T cells  
917 were electroporated with a Cas9-gRNA4 RNP and transduced with a combination of two  
918 different AAV6 donor vectors to generate *IL7RA* knock-out (KO<sup>-/-</sup>) or coIL7RA monoallelic  
919 (KI<sup>+/+</sup>) or biallelic (KI<sup>+/+</sup>) knocked-in T cells. Pure populations of GFP/mCherry (also noted as  
920 G and mC) double or single positive cells were FACS sorted and isolated for further analysis.  
921 **B)** Frequency of targeted integration (HDR%) of the reporter cassettes in a biallelic (G+mC+)  
922 or monoallelic (either G+ or mC+ only) configuration detected in KO<sup>-/-</sup>, KI<sup>+/+</sup> and KI<sup>+/+</sup> T cells  
923 by flow cytometry (n=3 experiments, dots represent different T cell donor sources). **C)**  
924 Quantification of IL7R protein expression by flow cytometry in gene edited and unedited, wild-  
925 type (WT) T cells (left side) and representative histogram overlay plot showing IL7R  
926 expression in all groups, with the percentage of IL7R-positive cells indicated (right side) (n=3  
927 experiments, dots represent different T cell donor sources; \*\*\*p<0.001; \*\*\*p<0.005; one-  
928 way ANOVA with Tukeys's comparison test). **D)** Quantification of STAT5 protein  
929 phosphorylation (pSTAT5) by flow cytometry in gene edited and unedited (WT) T cells  
930 stimulated with IL-7 (left side) and representative histogram overlay plot showing pSTAT5  
931 expression in all groups, with the percentage of pSTAT5-positive cells indicated (right side)  
932 (n=3 experiments, dots represent different T cell donor sources; \*\*p<0.01; one-way ANOVA  
933 with Tukeys's comparison test). **E)** Quantification of STAT5 protein phosphorylation  
934 (pSTAT5) by flow cytometry in gene edited and unedited (WT) T cells stimulated with IL-2  
935 (left side) and representative histogram overlay plot showing pSTAT5 expression in all groups,  
936 with the fraction of pSTAT5-positive cells indicated (right side) (n=3 experiments, dots  
937 represent different T cell donor sources; p>0.5 one-way ANOVA with Tukeys's comparison  
938 test).

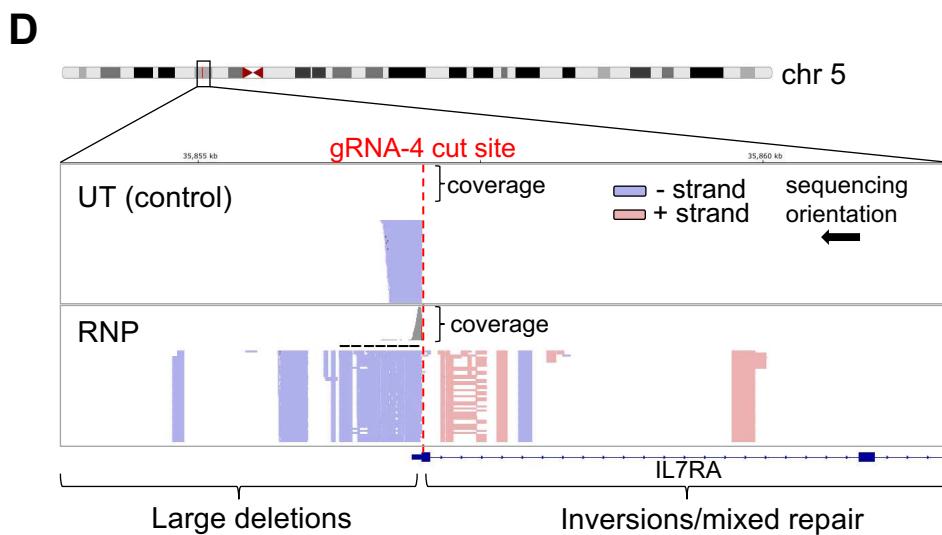
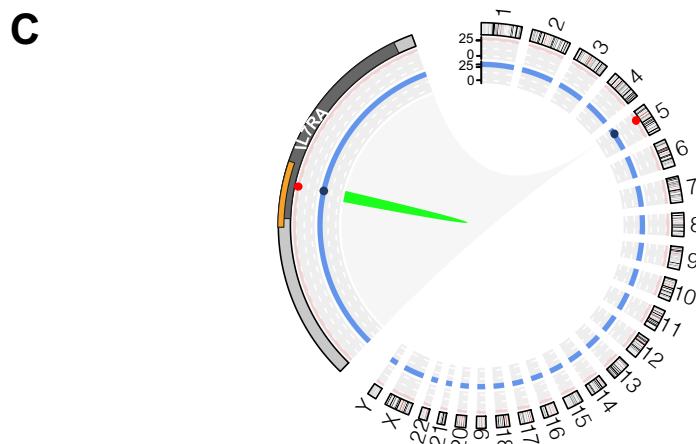
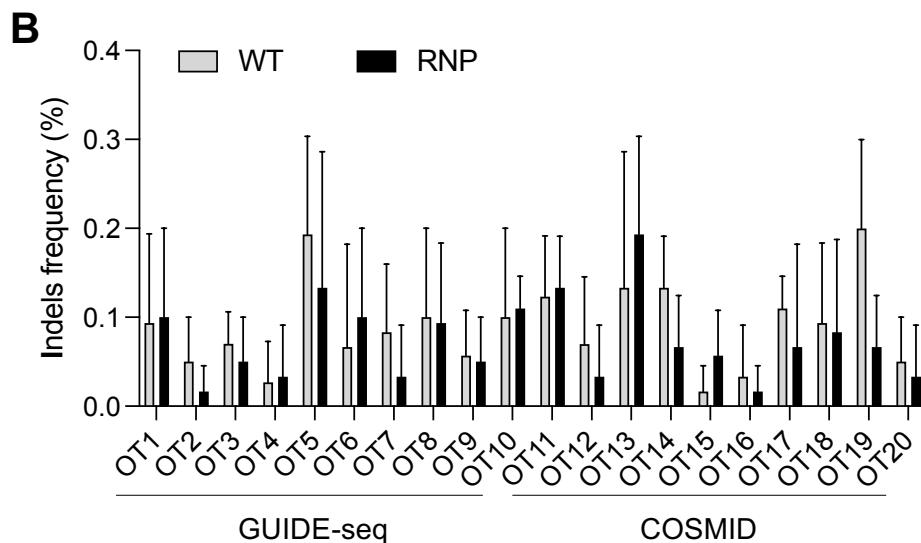
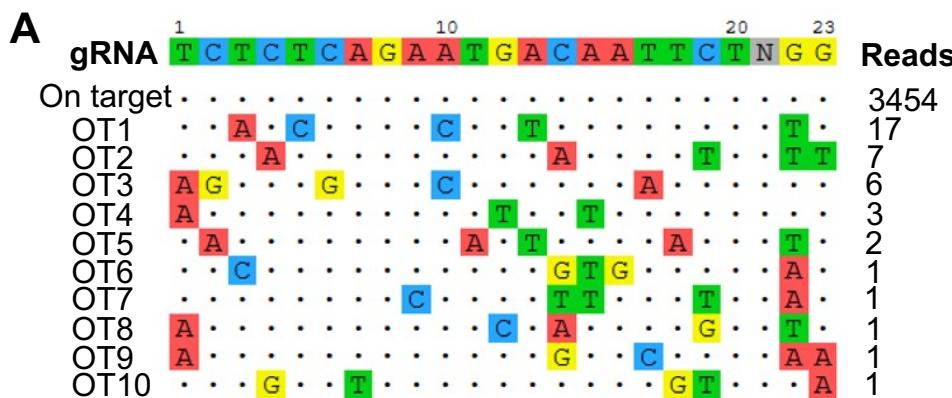
939

940 **Figure 3. Modelling IL7R-SCID correction in HSPCs. A)** Frequency of targeted integration  
941 (HDR%) of the reporter cassettes in a biallelic (G+mC+) or monoallelic (either G+ or mC+  
942 only) configuration detected in KO<sup>-/-</sup>, KI<sup>+/+</sup> and KI<sup>+/+</sup> HSPCs by flow cytometry (n=3  
943 experiments, dots represent different HSPC donor sources). **B)** Schematic of HSPC











944 differentiation into T cells, annotated with the panel of markers relevant to detect T cell  
945 developmental subtypes in flow cytometry analysis 4-8 weeks after seeding HSPCs into  
946 artificial thymic organoids (ATOs). HSPC, haematopoietic stem and progenitor cell; CLP,  
947 common lymphoid progenitor; ETP, early thymic progenitor; Pro-T1 and Pro-T2, progenitor-  
948 T; ISP, immature single positive cell; EDP, early double-positive cell; DP, double-positive cell;  
949 SP, single-positive cell). Red crosses indicate the stages where T cell development is likely to  
950 be interrupted in IL7R-SCID patients. **C)** Frequency of ETP and Pro-T2 cells detected by flow  
951 cytometry in the different samples 4 weeks after HSPC seeding into ATOs (n=3 experiments,  
952 dots represent different HSPC donor sources; p>0.05 for all comparisons, one-way ANOVA  
953 with Tukeys's comparison test). **D)** Frequency of Pre-T, EDP/DP, and mature DP cells detected  
954 by flow cytometry in the different samples 6 weeks after HSPC seeding into ATOs (n=3  
955 experiments, dots represent different HSPC donor sources; \*\*\*\*p<0.001; \*\*\*p<0.005; \*\*  
956 p<0.01; \*p<0.05; one-way ANOVA with Tukeys's comparison test). **E)** Frequency of IL7R  
957 protein expressing cells in gene edited and unedited (WT) Pre-T, EDP/DP and mature T cells  
958 as detected by flow cytometry (n=3 experiments, dots represent different HSPC donor sources;  
959 \*\*\*\*p<0.001; \*\*\*p<0.005; \*\* p<0.01; \*p<0.05; one-way ANOVA with Tukeys's  
960 comparison test). **F)** Representative histogram overlay plot showing IL7R expression in all  
961 experimental groups at the Pre-T, EDP/DP and mature T cell stages, with the percentage of  
962 IL7R-positive cells indicated on the right.


963







964 **Figure 4. Genotoxicity analysis in edited HSPCs. A)** Sequences of off-target sites identified  
965 by GUIDE-seq for *IL7RA* gRNA-4. The intended target sequence is shown in the top line with  
966 mismatches to the on-target site shown and highlighted in colour. GUIDE-seq sequencing read  
967 counts are shown to the right of each site. **B)** Targeted high-throughput sequencing of off-target  
968 sites detected by either GUIDE-seq or COSMID in edited (RNP) or electroporated-only (WT)  
969 HSPCs (n = 3 experiments from 3 different HSPC donor sources; no significant difference  
970 between RNP and WT samples when pooled and analysed with two-tailed paired Student's t  
971 test). **C)** Visualization of chromosomal rearrangements detected by CAST-seq. The Circos plot  
972 shows a cluster of chromosomal rearrangement at the on-target site (green). From the outer to  
973 the inner layer, the orange rectangle shows the DNA location of the rearrangement cluster; the  
974 grey rectangle represents the *IL7RA* gene from the transcriptional start site to transcriptional  
975 termination site; a red ring indicates the alignment score against the gRNA sequence and a blue  
976 ring indicates the length of sequence homology. **D)** Qualitative CAST-Seq analysis. Integrative  
977 Genomics Viewer (IGV) plots illustrate CAST-Seq reads surrounding the target site within a





978 window of 6 kb. Mapped CAST-Seq reads are represented by bars. Blue and red bars indicate  
979 sequences aligning with the negative or positive strand, respectively. Coverage (i.e., the  
980 number of mapped reads) is indicated in the middle and gene locations at the bottom. The  
981 positions of the on-target gRNA cutting site is emphasized by a red dotted line.

982

**A****B****D****E****F****G****H****I****L****N****O****M****Figure 1**



**Figure 3****A****B****C****D****E****F**

**Figure 4**