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A growing body of work shows that autonomic signals provide a priv-
ileged evidence-stream to capture various aspects of subjective and
neural states. This work investigates the potential for autonomic
markers to track the effects of psychedelics — potent psychoactive
drugs with important scientific and clinical value. For this purpose,
we introduce a novel Bayesian framework to estimate the entropy of
heart rate dynamics under psychedelics. We also calculate Bayesian
estimates of mean heart rate and heart rate variability, and inves-
tigate how these measures relate to subjective reports and neural
effects. Results on datasets covering four drugs — lysergic acid
diethylamide (LSD), dimethyltryptamine (DMT), psilocybin, and sub-
anaesthetic doses of the dissociative agent ketamine — show consis-
tent increases in mean heart rate, high-frequency heart rate variabil-
ity, and heart rate entropy during the psychedelic experience. More-
over, these effects have predictive power over various dimensions
of the psychedelic experience. Changes in heart rate entropy were
found to be correlated with increases in brain entropy, while other
autonomic markers were not. Overall, our results show that a cost-
efficient autonomic measure has the potential to reveal surprising
detail about subjective and brain states, opening up a range of new
research avenues to explore in both basic and clinical neuroscience.

Autonomic nervous system | Psychedelics | Heart-brain interaction |

Biomarkers

Conscious experience is supported by the confluence of
numerous bodily processes, which involve not only the
brain, but also other systems such as the autonomous nervous
system. Indeed, there is growing evidence supporting a fun-
damental role of the autonomic system in the generation of
subjective experience and the sense of selfhood (1-3). It is
now becoming clear that autonomic function is not restricted
to homeostatic regulation and ‘fight or flight’ responses, but is
also critically involved in cognitive processes such as attention,
memory, and decision-making (4, 5), as well as in experiential
phenomena such as emotional processing and regulation (6, 7)
and body awareness (8, 9). Thus, the autonomic system has
the potential to provide valuable insights into the physiologi-
cal substrates that support human cognition (10) — which is
also attractive from a practical perspective, considering that
reliable measurements of heart activity are relatively simple
and inexpensive, compared to measurements of brain activity.

Building on the above evidence, here we investigate the po-
tential for autonomic markers to track the effects of psychedelic
substances — potent psychoactive drugs capable of inducing

profound changes in perception, cognition, and conscious ex-
perience (11). Psychedelics are exceptional tools for inducing
perturbations to human consciousness, which is critical for
exploring the mechanisms linking mind and brain (12, 13).
More practically, evidence from phase II clinical trials sug-
gests that psychedelic drug administration combined with
psychotherapy may have efficacy for treating various mental
health presentations, including depression, end-of-life distress,
tobacco addiction, and alcoholism (14, 15). It is noteworthy
that the majority of the efforts (such as Refs. (16-21)) trying
to explain how psychedelics work has been mainly focused on
the brain, broadly neglecting the rest of the body. Considering
how the psychedelic experience affects these cognitive and
experiential processes, and how relevant these effects may be
for their clinical efficacy, the autonomic nervous system offers
an essential and complementary evidence stream to enrich
our understanding of how psychedelics act to produce their
therapeutic and consciousness-altering effects.

This work also takes inspiration from intriguing parallels
that exist between empirical findings related to psychedelic
brain dynamics and general investigations on heart rate vari-
ability (HRV) — a popular way of studying the autonomic ner-
vous system by assessing how heart rate changes over time (22—
24). On the one hand, research has found that while classic
psychedelics (e.g. lysergic acid diethylamide [LSD], psilocy-
bin, and dimethyltryptamine [DMT]) act primarily on the
5-HT2a receptor, and the atypical psychedelic ketamine exerts
its effects primarily via NMDA receptor antagonism (25), they
both reliably disrupt important markers of spontaneous brain
function at wakeful rest evidenced, e.g., by reductions of alpha
power and large-scale network integrity (26-29). This, in turn,
induces a mode of brain function characterised by an enhanced
brain entropy (i.e. more diverse and less stereotyped patterns
of activity), which supports the enriched experience typical of
the psychedelic state as suggested by theoretical (16, 19, 30, 31)
and empirical (32-34) work. Consistently, but in another or-
gan — the heart — a vast body of work has established a link
between the temporal variability of heart beats and health,
where such variability is high in healthy controls and reduced
in a wide range of conditions (23). These empirical findings
support the view that the heart is not a mere metronome, but
rather a flexible organ that dynamically supports interactions
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with a complex and changing environment (35). Interestingly,
metrics of dynamical complexity have been found to extract
valuable information from the non-linear aspects of heart rate
fluctuations (36, 37). By contemplating these two lines of
research, it is then natural to ask: is it possible to measure
the variability of heart dynamics in a way that is analogous to
how brain entropy is measured? If so, do psychedelics increase
this ‘heart entropy’ too? Would changes between brain and
heart entropy be correlated, and would they be predictive of
subjective experience?

Here we address these questions by leveraging a novel
Bayesian method to estimate the entropy of heart rate (HR)
dynamics. Our method provides estimates of HR entropy with
high temporal resolution, thus allowing us to effectively track
psychedelic drug action on cardiac activity over time. By in-
vestigating multiple datasets covering four different drugs (the
classic serotonergic psychedelics LSD, DMT, and psilocybin,
as well as the dissociative agent ketamine at sub-anaesthetic
dosage), our results reveal that psychedelics consistently in-
crease heart rate entropy, and that this increase provides
information for predicting subjective reports that is comple-
mentary to known brain-based biomarkers. These findings
open new opportunities to use autonomic signals for tracking
the psychedelic state, with important implications for future
clinical applications.

Results

A. Bayesian estimation of heart rate dynamics under
psychedelics. The first step in our analysis was to validate the
proposed Bayesian method to estimate heart dynamics from
electrocardiogram (ECG) time series data of subjects under
the effects of psychedelic drugs. For this, we used four datasets
pertaining to LSD, DMT, psilocybin, and ketamine in healthy
human volunteers (N = 20, 12, 15, and 20, respectively). Of
these, the LSD dataset consists of a stable period occurring
approximately four hours after administration, while the other
datasets consist of a continuous period including before and
after drug injection, hence reflecting the pharmacokinetics of
the drug’s action (see Methods for details).

For each dataset, we extracted inter-beat intervals and used
this information to reconstruct heart rate dynamics with a
novel Bayesian approach (see Methods). Briefly, our method
describes heart dynamics by formulating a posterior distribu-
tion over sequences of heart rate values — henceforth called
‘heart rate trajectories’ — conditioned on the observed se-
quence of inter-beat intervals. We then efficiently sample
this posterior distribution with a Markov chain Monte Carlo
(MCMC) approach to obtain 500 heart rate trajectories for
each subject on each condition (either drug or placebo), some
of which are illustrated in Figure 1. As a comparison, we also
extracted heart rate dynamics via the standard (frequentist)
approach, which provides a single trajectory (red curve in
Figure 1). When compared with the standard approach, it
is observed that the proposed Bayesian method provides a
both a smooth average reconstruction of the HR time-series,
as well as an ensemble of trajectories that captures the overall
variability. Also, as expected, the data from DMT, psilocybin
and ketamine show large changes in the minutes following
injection, while the data from LSD exhibit less pronounced
changes, possibly due to the fact that ECG recordings in this
condition took place at the plateau of subjective effects (i.e.
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Fig. 1. lllustration of our Bayesian method to estimate heart rate dynamics.
Each panel shows the data of a single sample subject, for which we plot 40 heart
rate trajectories sampled from the model’s posterior (gray), as well as their mean
(black). The result of a standard frequentist estimation of the heart rate trajectory is
also plotted for comparison (red). Injection of the drug takes place at ¢ = 0 for the
DMT, psilocybin, and ketamine data, while for LSD the data corresponds to 4 hours
after injection.

after the peak).

B. Consistent changes in autonomic markers between drug
and placebo. After confirming the suitability of our approach,
we used the ensemble of trajectories obtained in the previ-
ous step to build a new Bayesian estimator of the entropy
of heart rate dynamics (see Methods for details). Crucially,
following Bayesian principles, we compute average entropy as
the average of the entropies of each of the 500 sampled HR
trajectories (which, due to the non-linearity of entropy, is not
equivalent to the entropy of the mean HR trajectory). Another
innovation in our approach is to estimate entropy by training
and testing the model on different datasets, which relies on the
particular capabilities of the Context Tree Weighted (CTW)
algorithm (38): while standard methods (e.g. the Lempel-Ziv
algorithm (39)) estimate entropy by quantifying the diversity
of observed patterns (40), the CTW algorithm allows us to as-
sess pattern diversity in a signal using the patterns of another
signal as reference. Accordingly, the CTW algorithm allowed
us to estimate entropy by training over the data of the whole
placebo session, and testing over small windows of data from
either drug or placebo session.

Equipped with this method, we sought to investigate
whether HR biomarkers could track the evolution of the
psychedelic state. We calculated HR entropy over overlapping
windows of 60 samples, corresponding to 60 seconds of data.
Additionally, we calculated the mean heart rate, and the low-
and high-frequency heart rate variability (HRV) (see Meth-
ods). The results were then analysed via cluster-statistics (41)
looking for differences over the time course of either drug or
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Fig. 2. Heart rate biomarkers change under psychedelics. Columns 1-3: Profiles of temporal evolution of mean heart rate, low (LF-HRV) and high (HF-HRV) frequency
heart-rate variability, and heart-rate entropy for DMT, psilocybin, and ketamine. Each biomarker is normalised by its average value before drug injection. Coloured windows
correspond to statistically cluster-corrected significant differences (p < 0.05) of either drug (red) or placebo (gray) with respect to their baseline. Column 4: Changes of the
same biomarkers for LSD (versus placebo) 4 hours after its injection (x*=: p < 0.001). Note that no pharmacokinetic profiles are available for this compound.

placebo sessions with respect to their baseline for the DMT,
psilocybin, and ketamine datasets, and paired t-tests for the
LSD dataset (see Methods). Results show that HR markers
exhibit significant changes after drug administration for all
compounds, with increases in mean HR, high-frequency HRV,
and HR entropy (Figure 2). Increases in low-frequency HRV
are observed only in DMT and psilocybin. Increases in mean
HR appear earlier for all drugs, followed by increases in HRV
and HR entropy. Interestingly, results in the following sections
illustrate how different autonomic markers have distinctive
predictive power over neural and subjective effects.

C. Predictive power of autonomic markers evolves over time.

After observing consistent changes in various markers of heart
rate dynamics due to psychedelics, we sought to investigate
how these effects are related to drug effects on the brain
and on subjective experience as they unfold over time. As
a proof of concept, we performed exploratory analyses on
the predictive ability of these markers in the DMT dataset,
motivated by the short-lived dynamics of DMT action (that
are fully captured within the data) and the rich questionnaire
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data available from that study. Considering the exploratory
nature of these analyses, we focus the report of our findings
in the resulting effect sizes (in particular, explained variance
R?), while providing indications of significance testing only
for reference.

We first studied how much of the between-subjects variance
of brain entropy changes could be explained by HR entropy.
For this analysis, we calculated the brain entropy using the
EEG data recorded during the DMT experience with the same
CTW algorithm used on the heart rate (see Methods). We then
calculated the proportion of explained variance (RQ) of brain
entropy from changes in HR entropy, at different timepoints
during the DMT experience and with different lags between
heart and brain signals. Results reveal two periods of substan-
tial correlation between HR and brain entropy (Figure 3a):
one during the peak experience, 0-5 minutes after injection,
and another one 9-12 minutes after injection. In contrast, the
mean heart-rate shows a much smaller R?, highlighting the
superior predictive power of HR entropy metric over mere HR,
changes.

We then investigated the predictive power of autonomic
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Fig. 3. Predictive power of heart-rate biomarkers can change dynamically. a) The explained variance (R2) of changes in brain entropy predicted via changes in HR
entropy reveals two periods of substantial correlation between them during the DMT experience. In contrast, changes in mean heart-rate are much less correlated with changes
in brain entropy. Each block corresponds to a 10-second epoch, considering lags of up to 30 seconds with respect to HR entropy. Heatmaps thresholded by non-parametric
confidence intervals can be found in Supplementary Figure 6. b) Autonomic markers can explain up to 70% of the between-subjects variance of various dimensions of the
DMT experience, which were rated retrospectively via a single visual-analoge scale score. Those four subjective scales represent different types of relationships: intensity
dominated by mean HR, challenging experience by HR entropy, complex imagery alternating between HRV, HRM, and entropy at different times. Dashed black line represents
95" percentile of the null distribution (equivalent to the significance threshold of an uncorrected one-tailed hypothesis test with « = 0.05).

makers over behavioural reports. For this, we used question-
naire data in the form of numerical values (from visual analog
scales) that retrospectively characterise the whole psychedelic
experience. Similarly, as with brain entropy, we calculated the
explained variance within a rank regression using the score
of each subject as dependent variable and the value of the
change of heart rate marker as independent variable. Results
show that different markers have distinctive predictive power
at different timepoints, which can explain up to 70% of the
variance between subjects in the reports of various dimensions
of the DMT experience (Figure 3b).

D. Topographical brain-heart association and complementar-
ity in predictive power. Finally, we sought to investigate how
heart entropy relates to changes in brain entropy in specific
areas, and if these associations lead to a redundant or comple-
mentary ability to predict subjective responses. For this, we
carried out exploratory analyses focused on the LSD dataset,
which includes MEG data (thus, superior signal-to-noise ra-
tio and spatial localisation than EEG) plus anatomical MRI

data to perform source reconstruction, and the largest number
of samples considering number of subjects (20), conditions
(drug vs placebo), and settings (4) (see Methods), leading to
160 data samples — which can be exploited via linear mixed-
effect modelling. Please note that the other datasets were not
suitable for these analyses, as the DMT data is low-density
EEG and the psilocybin and ketamine datasets do not have
high-quality subjective data.

As a first analysis, we calculated the changes in brain en-
tropy via the CTW algorithm similarly as in the previous
section, but this time applied on source signals reconstructed
at the centroids of the regions in the automated anatomical
labelling (AAL-90) atlas (42) (see Methods). We then esti-
mated the relationship between changes in heart and brain
entropy via linear mixed-effects modelling using heart entropy
as the dependent variable, brain entropy and condition (drug
or placebo) as fixed effects, and non-nested random intercepts
for subject ID and setting (see Methods). The significance of
the association was measured via a log-likelihood test compar-
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Fig. 4. Relationship between heart and brain entropy changes under LSD. a) 17 regions from the automated anatomical labelling (AAL) parcellation exhibit significant
statistical associations (after multiple comparison correction) with the observed changes in heart entropy. Areas include precuneus, mid cingulate, and sensorimotor regions. b)
Predictive power of brain and autonomic markers over various aspects of the subjective experience after LSD administration, as shown via linear mixed-effect modelling. Top
row corresponds to the drug-related effect of a single heart marker (i.e. interaction between the marker and the drug), and bottom row corresponds to the combined effect of
two markers (i.e. three-way interaction between drug and two markers). Substantial positive interactions are observed between brain and autonomic markers. For comparability,
all markers are z-scored before regression. Error bars represent the 95% confidence intervals of the coefficient estimates.

ing this model against a similar model using only condition
as fixed effect, and the resulting p-values were corrected via a
Benjamini-Hochberg false discovery rate procedure (43). This
analysis reveals that changes in heart and brain entropy are
positively correlated in various brain areas located predomi-
nantly in regions of the default-mode network and sensorimotor
networks (Figure 4a).

Next, we investigated the predictive power of heart and
brain markers over subjective responses. For this purpose, we
constructed linear mixed models to predict the scores on visual
analog scales related to six features of the LSD experience:
simple and complex imagery, positive mood, intensity of the
experience, ego dissolution, and emotional arousal. Each model
considered one of these subjective scores as the dependent
variable, and used heart and brain biomarkers as predictors,”
and random intercepts for subject ID and setting (see Methods).
We consider two types of models: using a single marker as
predictor, and using two markers and their interaction. When
considering markers individually (Figure 4b, top), we found
that brain entropy is the strongest predictor of simple and
complex imagery and ego dissolution, HR entropy of positive
mood, and mean HR of intensity and emotional arousal. When
considering pairs of predictors (Figure 4b, bottom), results
reveal various substantial positive interactions, particularly
between brain entropy and the autonomic markers, which
suggests that knowing the state of the autonomic system
substantially increases the predictive power over subjective
scores.

Discussion

In this paper we put forward a new method to compute markers
of heart-rate dynamics and showcased it on data from subjects
experiencing the effects of different psychedelic compounds,

*We didn’t include LF-HRV, as it didn’t exhibit consistent changes in the previous analyses.
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which let us probe this altered state of consciousness from
the lens of the autonomic nervous system. Results show that
psychedelic drugs induce consistent increases in mean heart
rate, high-frequency HRV, and HR entropy. This is a relatively
uncommon pattern, as increases in HR are typically accompa-
nied by decreases in heart variability (both spectral and/or
entropic), while simultaneous increases of both have been ob-
served in profiles associated to emotions such as ‘joy’ (44) —
which are hard to elicit in the laboratory.

These autonomic changes were found to have predictive
power over various dimensions of the psychedelic experience.
Additionally, changes in HR entropy were found to be cor-
related with changes in brain entropy, while having comple-
mentary predictive power on particular subjective responses.
Overall, these findings illustrate how autonomic signals, when
assessed with adequate analytical tools, can provide valuable
information on various aspects of the psychedelic experience

— including aspects that are known to be predictive of sub-

sequent mental health outcomes. It is important to remark
that the present study leveraged prior data to investigate the
predictive power of autonomic biomarkers without assessing
their causal role. Future work may design new experiments
to investigate further their underlying mechanics, and clarify
whether the observed autonomic effects are the result of a
simultaneous action of psychedelic compounds on the heart
and the brain, or if the cardiac effects are secondary to a direct
effect on the brain — while assessing potential bidirectional
causality between heart and brain activity.

A key ingredient of our analyses was the utilisation of a
novel Bayesian method to estimate heart rate dynamics. In
contrast to standard frequentist approaches, our method de-
scribes heart rate dynamics via a posterior distribution over
potential trajectories conditioned on observed inter-beat in-
tervals, which can be effectively sampled. We used these
trajectories to estimate Bayesian estimators of the mean HR,
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HF-HRV, and HR entropy, leading to effective biomarkers.
Future work may apply this approach to build Bayesian es-
timators of other popular metrics, e.g. fractality or other
non-linear properties of heart rate dynamics (24, 37), which
may be used to explain and track changes linked to a variety
of interventions or conditions of interest.

Most studies of the effect of psychedelics on heart activ-
ity have focused on sympathetic effects (which are related
to actions requiring quick responses), consistently reporting
increases in heart rate, systolic blood pressure, and pupil
size (45-49). Studies have also focused on the relationship
between psychedelic use and cardiac diseases (50, 51). In
contrast, the effects of psychedelics on the parasympathetic
system (which drives slower autonomic reactions, e.g. relax-
ation after stress) have been much less investigated. The only
systematic investigation of HRV on psychedelics to date — to
the best of our knowledge — reported no significant changes
in high-frequency HRV (typically associated with parasympa-
thetic activity) after LSD administration (52), suggesting that
the acute effects of psychedelics may predominantly rely on
sympathetic activity. The differences between previous results
and those presented here, particularly related to changes on
high-frequency HRV, may be associated with the benefits of
the proposed Bayesian approach to estimate HRV.

The observed increase of HR entropy under psychedelics —
which captures non-linear aspects of the variability of heart-
rate — suggests interesting lines of future investigation related
to the parallels between brain and heart entropy. Previous
work has proposed HRV as an indicator of health, with this
variability being reduced in a wide range of conditions such
as hypertension, aortic valve disease, myocardial infarction,
diabetes, smoking, and alcohol consumption, to name just a
few (23, 53-55). A separate line of investigation has found
that increased brain entropy under psychedelics predicts im-
provements in mental health via an intermediary report of
psychological insight (56), suggesting that psychedelics may
favour information processing at a greater information granu-
larity. Increased brain entropy under psychedelics may also
imply greater system flexibility (31), supporting a learning-
based mechanism to psychedelic therapy (19). Furthermore,
preliminary evidence indicates that increased entropy may
predict subsequent increases in neuronal and psychological
plasticity (17, 19, 20). We speculate that these entropic effects
in brain and heart activities may reflect a common underly-
ing principle: that diversity in the spontaneous dynamics of
living systems offers an adaptive advantage in complex en-
vironments (57, 58). Future work with larger sample sizes
may investigate dynamical interactions between heart and
brain entropies, to elucidate causal (59) or synergistic (60) re-
lationships between. The complementarity of brain and heart
entropy to predict certain dimensions of the psychedelic expe-
rience is particularly interesting, and future work may explore
the mechanisms underlying this phenomenon. Future work
may also investigate if the correlated increases between heart
and brain entropy are unique to psychedelics, or whether they
correspond to broader physiological adjustments. Intriguingly,
the correspondence observed between brain entropy and HRV
under psychedelics may be disrupted in mental disorders —
e.g. brain entropy is increased in schizophrenia (61, 62) and
some cases of depression (63, 64) while HRV is reduced (65).
Confirming this decoupling between heart and brain entropies

and uncovering its driving mechanisms, perhaps using com-
putational approaches similar to Ref. (66), is an interesting
line of future work that could deepen our understanding of
the relationship between psychedelics and mental health more
broadly.

This work represents a first step into exploring the rela-
tionship between the altered state of consciousness induced by
psychedelics and the autonomic system — a rich space that
deserves further investigations. Interestingly, interoceptive
feedback has been shown to play a crucial role in the embod-
ied experience and the sense of self (67), as demonstrated in
various paradigms where changes in body ownership corre-
spond to changes in the ability to sense heartbeats through
bodily sensations (68, 69). Moreover, the role of interoceptive
signals in self-related processing has also been demonstrated
in neural responses to heartbeats in paradigms related to self-
related thoughts (70), mirror self-identification (71), and the
embodiment of virtual avatars (72). While analysing neural
responses to heartbeats provides valuable insights, the inter-
action between the brain and the heart also involves highly
non-trivial dynamics (73), which have been speculated to be
related to ongoing autonomic changes which — in turn — may
reflect various dimensions of conscious experience (10). Future
work may deepen our understanding of the physiology under-
lying the altered states of consciousness, e.g. by studying their
effect on different markers of the brain-heart interaction, such
as heartbeat-evoked potentials (74), phase synchronisation
(75), or directed interactions (76). Indeed, it is sometimes
argued that peripheral physiological changes observed under
psychedelics should be seen as nuisance signal to be regressed
from statistical modelling pertaining to acute brain effects;
however, an alternative view is that these changes are part of
the experience itself, and therefore the corresponding signals
may be a bearers of signal rather than noise.

The results presented here have broader implications be-
yond the psychedelic experience, providing insights on the
brain-heart link and its relevance for cognitive neuroscience,
psychiatry, and biomedical sciences (10). In particular, the
ability to effectively track altered states of consciousness (such
as the psychedelic state) from heart signals alone opens new op-
portunities for a wide range of practical applications. In effect,
in contrast to the brain, obtaining reliable and reproducible
measures of heart activity is comparatively easier (77), while
being less intrusive and significantly more affordable. Future
studies may, for example, leverage the proposed techniques to
build reliable predictors of specific aspects of experiences under
altered states (related to psychedelics or not) that may be used
for clinical applications and naturalistic studies. Furthermore,
the methods introduced in this work have the potential to
provide real-time biofeedback, which could eventually be used
by therapists or patients for adjusting the rate of administra-
tion of a specific substances — e.g. continuous infusion of
DMT (78). Overall, the development of cheap, readily avail-
able autonomic biomarkers for mental states has huge practical
and clinical potential. We hope that the work presented here
will stimulate further efforts to measure and incorporate multi-
variate physiological signals beyond the brain, in order to offer
a more holistic and comprehensive approach to psychology,
psychiatry, and medicine.
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Materials and Methods

Datasets. The LSD dataset corresponds to previously unpublished
data from the experiment originally reported in Refs. (26, 34).
Twenty subjects participated in the study by attending two experi-
mental sessions: one in which they received intravenous (i.v.) saline
solution (i.e. placebo), and one in which they received i.v. LSD
(751ng). The order of the sessions was randomised, separated by
two weeks, and participants were blind to the order (i.e. single
blind design). MEG and ECG data were collected under four con-
ditions: resting state with eyes closed, listening with eyes closed
to instrumental ambient music (tracks from the album “Eleusian
Lullaby” by Alio Die), resting state with eyes open (focusing on a
fixation dot), and watching a silent documentary (segments of the
“Frozen Planet” documentary series produced by the BBC). LSD
was injected approximately four hours prior to the ECG recording.

The DMT dataset corresponds to an experiment first reported
in Ref. (33). Thirteen subjects attended two experimental sessions
receiving placebo and DMT using a fixed order design, in which
subjects received placebo first, followed by DMT. Brain activity
was recorded continuously using a 32-channel Brainproducts EEG
system, which included an ECG channel. As this was a pilot study,
different participants received different doses of DMT (participants
were blind to the dose received). Three participants received 7mg,
four received 14 mg, one received 18 mg and five received 20 mg of
DMT fumarate in a 2mL sterile solution over 30 seconds. This was
followed by a saline flush lasting 15 seconds. Participants were asked
to keep their eyes closed while wearing an eye mask throughout the
recordings and low-volume ambient music played in the background
to ensure psychological safety.

The psilocybin dataset was first reported in Ref. (79). In this
study fifteen healthy male volunteers received placebo and then
psilocybin in separate scans conducted on the same day. 275-channel
MEG were recorded, including a five minute baseline period and
five minutes after infusion of psilocybin. The infusion of psilocybin
took approximately 60 seconds and consisted of 2 mg of psilocybin
dissolved in 10 mL of saline. Participants were seated in the MEG
scanner with their eyes open and asked to fixate on a cross. As
this dataset didn’t have a ECG channel, so the cardiac activity was
extracted from the MEG data via independent component analysis.

The ketamine dataset was first reported in Ref. (80) and consisted
of nineteen healthy male volunteers. On separate days participants
received either an infusion of saline or ketamine. The ketamine
infusion consisted of an initial bolus of 0.25 mg/kg mg/kg delivered
over approximately 60 seconds, followed by a maintenance infusion
of 0.375 mg/kg/hour. In this experiment, participants lay supine in
the MEG scanner while 275-channel MEG and ECG was recorded
with their eyes open and fixating on a cross. Five minutes of baseline
was recorded prior to the infusion commencing, and ten minutes
from the commencement of the infusion.

Data preprocessing. Inter-beat intervals were estimated from the
ECG via a semi-automated procedure where first the ECG was pro-
cessed via a wavelet transform, and then peaks where detected using
the findpeaks function in MATLAB (v R2020b) with manually ad-
justed minimum height and minimum inter-beat distance. Then,
an ectopic correction was performed, where a heart-beat interval
was declared abnormal if its length was more than 20% different
from the previous one. Datasets with more than 15% of ectopic
beats were rejected for being too noisy — leading to the rejection of
only 4 time series from the ketamine dataset (four different subjects,
two in drug and two in placebo conditions). Otherwise, ectopic
beats were corrected by replacing them for the linear interpolation
between the previous and successive beat. The resulting sequence
of inter-beat intervals was used to estimate heart rate dynamics,
either via the Bayesian or the frequentist approach.

Bayesian estimation of heart rate dynamics. Here we provide an
overview of our approach to estimate heart rate dynamics — full
technical details can be found in Ref. (81).

The conventional, frequentist method to calculate instantaneous
heart rate is to estimate the inter-beat intervals Ij,, and then com-
pute HRfeq(t) = 60/Iy(t). From a statistical perspective, this
expression can be understood as the outcome of an elementary
method of inference that delivers as estimate the number of beats

Rosas & Mediano et al.

one would see if all beats were separated by the same inter-beat
interval I,. In contrast, our Bayesian framework conceives the heart
rate as a hidden process that drives the actual observed heartbeats,
the statistical properties of which can be estimated via generative
modelling. Our modelling approach is based on two time series
that correspond to the values of dynamical processes with sampling
frequency fs =1Hz: z+, which counts the number of heart beats in
a temporal bin of length At (i.e. between the present moment and
the previous sample), and z¢, which represents the heart rate that
drives the corresponding heart beats (see Figure 5). In general, we
assume that the heart beats x+ are observed, and that sequence of
heart rates z; follows a hidden stochastic process whose statistical
properties can nevertheless be inferred.

Heart rate (inferred):

Heart beats (observed):

=)

Fig. 5. Proposed heart rate state-space modelling approach. The observable
data (the heart beats, =) are assumed to be driven by the dynamics of a hidden
stochastic process (the heart rate, z), which cannot be directly measured but can be
inferred from the data.

€

In order to build a joint probability distribution over heart
beats x1,...,x7 and heart rates z1,..., 2z, we follow the state-
space literature (82) in adopting the following assumptions: (i) the
dynamics of the heart rate are Markovian; and (ii) given the value
of heart rate z¢, the number of heartbeats at that given temporal
bin z: is conditionally independent of other heart rate values at
different timepoints. These assumptions allow us to express the
joint distribution of heart rate and heartbeat counts as:

T

Sor,zr) = pz0)p(a ) [ [ palz-pedz). 1)
t=2

p(.Tl,Zl, i

Therefore, the specification of the full model requires only three
ingredients: the heart rate dynamics in the form of the condi-
tional probability p(z¢|z¢t—1), the link between heart rate and heart
beats p(zt|zt), and the distribution of the initial condition p(z1).
As described in Ref. (81), we model p(z¢|z¢) using a Poisson dis-
tribution and a small bin size in order to guarantee good sta-
tistical fit, while we model p(z¢|zt—1) and p(z1) using a Gamma
Markov chain (GMC) (83, 84). Using the resulting generative model
p(x1,21,...,27,2r) and Bayes’ rule, one can describe heart rate
dynamics not via a point estimate (i.e. as a single, most likely
trajectory) but as following the posterior distribution:

,TT)- 2]

This posterior distribution describes the most likely heart rate
trajectories z1,...,zxN given the observed data x1,...,zxN.

Thanks to these modelling choices, p(z1, ..., zr|z1,...,27) can
be efficiently sampled via a Gibbs sampler (85) — proposed in
Ref. (86). Our experiments suggest that the resulting model is
generally non-ergodic, which motivated the following sampling pro-
cedure. To generate one trajectory, we run the Gibbs sampler
Ny = 2 x 10* iterations, and discard the first Ng = 5 x 103. We
calculate the mean value of the remaining N, — Ny runs and take
the result as a single trajectory. For each sequence of heartbeats
(corresponding to different drugs, subjects, and experimental con-
ditions), we iterate this procedure Ng = 500 times, initialising the
Gibbs sampler every time with new random initial conditions. As
discussed in Ref. (81), the Gibbs sampler depends on two hyper-
parameters # and 7 that determine the prior and estimation of
a connectivity strength parameter of the Gamma Markov chain
denoted by ~. For all datasets we use § = 10 and 7 = 1. The
sampling of heart rate trajectories was done using a combination of
Python (v. 3.9.1) and Julia (v. 1.5.3), using code available in the
repository github.com/ferosas/BayesianAtHeart.

HRBayes :  21,--.,27 ~p(21,...,27|T1,. ..
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Bayesian estimators of properties of heart dynamics. We used the
sampled trajectories of heart rate dynamics to build Bayesian esti-
mators of properties of heart rate dynamics. To explain this part of
the method, we introduce the shorthand notation z = (21,...,27)
and ¢ = (z1,...,z7) for sampled trajectories of heart rate and
heart beats respectively, and let F(z) be a scalar function of this
trajectory — i.e. any scalar property of the heart rate trajectory,
such as its mean value or entropy. Then, the generative model above
can be used to derive the posterior distribution of the property F,
which corresponds to p(F(z)|x). Sampled trajectories can be used
to estimate various properties of this posterior — e.g. its mean:

F =Y "F()pl) 3

where the value of the property F for each possible trajectory is
weighted by the likelihood of such trajectory given the observed data.
If F is a linear property, then Eq. (3) accepts a shortcut: it reduces
to B = F(2), where Z is the average trajectory under the posterior
p(z|x). We used this shortcut to build Bayesian estimators of mean
heart rate and its low and high frequency components. To extract
the power in low and high-frequencies in the average spectrum of
the HR dynamics, we calculated a spectral decomposition of the
variance of the average HR trajectory. Specifically, we first filtered
the average heart rate trajectories using a bandpass Butterworth
filter of order 2 over standard bands (0.04-0.15 Hz for low-frequency
and 0.15—4 Hz for high-frequency components), and then calculated
the variance of the resulting signal. The results in the first three
columns in Figure 2 use HRV calculated over partially overlapping
sliding windows of 60 seconds separated by 1 second.

Estimating heart rate entropy. Brain entropy in M/EEG data is usu-
ally calculated via Lempel-Ziv complexity (referred to as LZ), which
estimates how diverse the patterns exhibited by a given signal
are (30, 34). The method was introduced by engineers Abraham
Lempel and Jacob Ziv to study the statistics of binary sequences (39)
(later becoming the basis of the well-known zip compression algo-
rithm), and has been used to study patterns in M/EEG activity for
more than 20 years. It has become a popular method to track states
of consciousness, displaying consistent decreases under anaesthe-
sia (87, 88) and sleep (89), and increases during psychedelics (32, 33),
meditation (90),T and states of ‘low’ associated with music impro-
visation (92).

There are two issues that make it challenging to apply LZ com-
plexity to heart rate data: the need of a binarisation step combined
with the non-stationarity of the time series (observed here in all
drugs except LSD), and the relatively short length of the time series
(LZ is usually estimated on M/EEG data over windows of thou-
sands of samples, which is challenging with a sampling frequency of
1Hz). We addressed these challenges with two innovations, which
we explain the following.

First, entropy estimation in M/EEG requires the binarisation
of the data, which is often done by thresholding on the signal’s
mean value. While this particular choice usually doesn’t have a big
impact on the entropy estimates (87), it becomes problematic with
highly non-stationary data, as it could lead to an underestimation
of the entropy due to long periods of the signal being either above or
bellow its mean value. To avoid this problem, instead of thresholding
based on the mean value, we threshold according to the sign of the
derivative — hence a ‘1’ implies the signal is increasing and a ‘0’
that it is decreasing.

To address the issue of the low sampling frequency and resulting
short length of the time series data, we don’t use the classic LZ
algorithm (93) but instead estimate entropy using the Context
Tree Weighted (CTW) algorithm (38). This algorithm has shown
to converge quicker than other entropy rate estimators including
LZ (94). Crucially, the flexibility of the CTW algorithm allows
it to be trained and tested with different datasets: the training
dataset is used to estimate the likelihood of different patterns, while
the test data is used to calculate their frequency. We use this
powerful feature to train the algorithm on all the observed patterns
during the whole placebo session, and test it during small windows
during either drug or placebo sessions. Results reported in Figure 2

T Note that in meditation the effect depends on years of experience, see Ref. (91) for a review.

were obtained using windows of 120 samples. The CTW algorithm
uses one free parameter, which determine the maximum length of
patterns that it accounts for; for simplicity, we set that length to
be equal to the window length.

Calculating brain entropy. For calculating the brain entropy on the
DMT EEG data, we used the CTW algorithm to train and test
over partially overlapping sliding windows of 5 seconds separated
from each other by 1 second. The EEG data was sampled at 1000
Hz, which resulted in 5000 samples per window. This procedure
yielded one entropy estimate per electrode per second, with the
values of entropy during discarded data being imputed via linear
interpolation over time. The resulting values were averaged over
electrodes, giving a single time series of entropy values per subject
with one sample per second.

For the LSD MEG data, we computed source-reconstructed
signals on the centroids of the AAL-90 atlas (42), following the
procedure in Ref. (34). Data was sampled at 600 Hz and divided in
2 s epochs, resulting in windows with 1200 samples. We performed
mean binarisation, computed CTW for each epoch, subject, and
AAL region, and finally averaged across epochs to obtain one CTW
value per subject and region.

Statistical analysis. Cluster statistics (41) for the results in Figure 2
were calculated as follows. Each time series of heart rate properties
(mean HR, low-frequency HRV, high-frequency HRV, heart entropy)
was first normalised by subtracting its baseline value — defined as
the mean value obtained 100 seconds prior to the drug injection.
Then, for each drug (DMT, psilocybin, and ketamine) and each
condition (drug or placebo), a one-sample t-test was performed; then
an adaptive threshold (41) was used to determine cluster candidates;
then a cluster statistic (sum of t-scores of cluster members) was
calculated per cluster. Finally, the significance of each cluster was
determined by repeating the same process 500 times randomly
flipping the sign of the values, and taking the maximal cluster
statistic to build a null distribution against which the original
cluster scores were contrasted against.

The explained variance calculated in Figure 2 corresponds to
the R2 of a rank regression model. Note that this is equivalent to
the square of the Spearmann correlation, and hence is robust to
outliers.

Linear mixed models were used to estimate the relationship
between HR and brain entropy. For this, we constructed a model
using HR entropy as dependent variable, brain entropy (z-scored),
condition (drug vs placebo) and their interaction as fixed effects,
and added non-nested random intercepts for subject ID and setting
(eyes closed, eyes open, music, and video). In standard Wilkinson
notation,

Entropyyr ~ Entropyg,ai,* Condition + (1|ID) + (1|Setting) .

ain

The significance of this model was estimated by calculating a log-
likelihood ratio test against a model that is identical but does not
include brain entropy as fixed effect. The resulting p-value was
FDR-corrected via a standard Benjamini-Hochberg procedure (43).
Figure 4 presents the value of the estimates of the interaction
between brain entropy and condition, which reflects the effect of
brain entropy changes over HR entropy during the drug condition.

Linear mixed-effects modelling was also used to quantify the
predictive power of brain and autonomic markers over subjective
scores. When considering individual markers we built models using a
given visual analog score (VAS) as dependent variable, the marker,
condition, and their interaction as fixed effects, and non-nested
random intercepts for subject ID and setting. As before, the estimate
reported in Figure 4 is the interaction between the biomarker and
condition. When considering two markers, the model was the
same but considered the two markers, condition, and their triple
interaction as fixed effect, with the estimate of the triple interaction
being reported in Figure 4.

All linear mixed models were implemented in R Studio
(v. 2022.12.0+353) using the packages lmer (95) and lmerTest (96).
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This section contains Supplementary Figure 6, supporting the results
on the predictive power of hear-brain biomarkers.
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Fig. 6. Thresholded results of predictive power of heart-to-brain biomarker. Results as in Figure 3a, but here the R? values are thresholded using non-parametric
confidence intervals. Specifically, R? values were calculated for each timepoint, but shuffling the values of heart-rate and brain pairs of data points. Shuffling is done 1000

times per timepoint, which is used to estimate the resulting values of R? under a null distribution. Finally, the 95% quantile is of this distribution is calculated, which is used
threshold the original R? values.
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