

1 **Dissecting the properties of circulating IgG against Group A Streptococcus through a
2 combined systems antigenomics-serology workflow**

3

4

5 Sounak Chowdhury^{1*}, Alejandro Gomez Toledo^{1*}, Elisabeth Hjortswang¹, James T
6 Sorrentino², Nathan E Lewis³, Anna Bläckberg¹, Simon Ekström⁴, Arman Izadi¹, Pontus
7 Nordenfelt¹, Lars Malmström¹, Magnus Rasmussen¹, Johan Malmström¹

8

9

10 ¹. Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund
11 University, Lund, Sweden

12 ². Bioinformatics and Systems Biology Graduate Program, University of California, San
13 Diego, La Jolla, CA, USA

14 ³. Departments of Pediatrics and Bioengineering, University of California, San Diego, La
15 Jolla, CA, USA

16 ⁴. BioMS, Lund, Sweden

17

18 * Equal contribution

19

20 Corresponding author: Johan Malmström

21 Email: johan.malmstrom@med.lu.se

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38 **Abstract**

39
40 Most individuals maintain circulating antibodies against various pathogenic bacteria as a
41 consequence of previous exposures. However, it remains unclear to what extent these
42 antibodies contribute to host protection. This knowledge gap is linked to the need for better
43 methods to characterize antimicrobial polyclonal antibodies, including their antigen and
44 epitope repertoires, subclass distribution, glycosylation status, and effector functions. Here,
45 we showcase a generic mass spectrometry-based strategy that couples systems
46 antigenomics and systems serology to characterize human antibodies directly in clinical
47 samples. The method is based on automated affinity purification workflows coupled to an
48 integrated suite of high-resolution MS-based quantitative, structural- and glyco-proteomics
49 readouts.

50 We focused on *Streptococcus pyogenes* (Group A *Streptococcus*; GAS), a major human
51 pathogen still awaiting an approved vaccine. Our methodology reveals that both healthy and
52 GAS infected individuals have circulating Immunoglobulin G (IgG) against a subset of
53 genetically conserved streptococcal proteins, including numerous toxins and virulence
54 factors. The antigen repertoire targeted by these antibodies was relatively constant across
55 healthy individuals, but considerably changed in GAS bacteremia. Detailed analysis of the
56 antigen-specific IgG indicates inter-individual variation regarding titers, subclass distributions,
57 and Fc-signaling capacity, but not in epitope and Fc-glycosylation patterns. Importantly, we
58 show that the IgG subclass has a major impact on the ability of GAS-antibodies to trigger
59 immune signaling, in an antigen- and Fc receptor- specific fashion. Overall, these results
60 uncover exceeding complexity in the properties of GAS-specific IgG, and showcase our
61 methodology as high-throughput and flexible workflow to understand adaptive immune
62 responses to bacterial pathogens.

63
64 **Significance statement**

65
66 Most people develop polyclonal antibodies against bacterial pathogens during infections but
67 their structural and functional properties are poorly understood. Here, we showcase a
68 combined systems antigenomics and systems serology strategy to quantify key antibody
69 properties directly in clinical samples. We applied this method to characterize polyclonal
70 antibody responses against *Streptococcus pyogenes*, a major human pathogen. We mapped
71 the antigen and epitope landscape of anti-streptococcal antibodies circulating in healthy adult
72 plasma, and their changes during blood infections. We further demonstrate the analytical
73 power of our approach to resolve individual variations in the structure and effector functions
74 of antigen-specific antibodies, including a dependency between immunoglobulin subclass and
75 Fc- signaling capacity.

76 **Introduction**

77
78 Immunoglobulin G (IgG) is a central effector molecule of adaptive immunity that leverages
79 protective responses against microbial infections. IgG binds to the surface of viral and bacterial
80 pathogens, and to soluble toxins, to neutralize their capacity to damage host tissues.
81 Neutralization is mediated by the fragment antigen-binding (Fab) region, which recognizes
82 epitopes on microbial proteins and polysaccharides. Neutralizing Fab binding prevents key
83 steps in the establishment of an infection, including pathogen adhesion and cellular invasion.
84 Besides neutralization, antigen-bound IgG can also trigger the initiation of the classical
85 complement pathway, as well as other protective responses, such as antibody-dependent
86 cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP)(1). These
87 effector functions are finetuned by the structure of the fragment crystallizable (Fc) region,
88 especially by the Fc subclass and glycosylation, which synergistically modulate the IgG affinity
89 for complement and immune cell receptors(2).

90 During antimicrobial responses, polyclonal IgG targets several antigens on a given pathogen,
91 and various epitopes within each antigen, resulting in a broader range of protective responses
92 compared to monoclonal IgG. However, characterizing the properties of polyclonal antibodies
93 at a systems-wide level, including their antigenic repertoires, binding epitopes, subclass
94 distributions, glycosylation patterns, and effector functions, remains a significant analytical
95 challenge(3). In turn, a poor understanding of the structural and functional IgG features that
96 contribute to host protection prevents the identification of useful correlates of immunity to
97 major human pathogens, and the development of antimicrobial vaccines(4, 5).

98 Recently, efforts in reverse vaccinology have led to the development of systems antigenomic
99 approaches that exploit the availability of annotated genome data, novel surface display
100 technologies, and proteomics workflows, to characterize microbial antigens recognized by
101 antibodies and T-cells (6–11). Systems antigenomics has been successful in defining
102 pathogen-specific antibody antigenomes, (i.e., the spectrum of molecules expressed by a
103 given pathogen that are recognized by host antibodies), a central bottleneck of most vaccine
104 development pipelines(12, 13). However, with an obvious focus on antigen identification,
105 systems antigenomics does not inform on other antibody properties beyond Fab binding.
106 Advances in Omics technologies have also sparked the field of systems serology, a collection
107 of integrative approaches to analyze various antibody features and functions, coupled to
108 advanced computational and statistical methods(14–17). Systems serology has been useful
109 to deconvolute immune correlates of protection and vaccine efficacy for the Human
110 Immunodeficiency Virus (HIV)(18), *Mycobacterium tuberculosis* (MTB)(19), and SARS-CoV-
111 2(20, 21). However, the starting point of systems serology is typically one or a few preselected
112 antigen(s), a choice that often relies on previously acquired knowledge.

113 Mass spectrometry (MS) is a highly sensitive and flexible analytical method to identify proteins,
114 to measure protein abundances, and to characterize both post-translational modifications and
115 protein-protein interactions. We hypothesized that the wide flexibility of modern MS
116 technologies opens new opportunities to combine systems antigenomics and systems
117 serology, to provide an unbiased way to identify relevant antigens, followed by a focused
118 multilayered characterization of the antigen-specific antibodies. Here, we demonstrate an
119 automated and quantitative workflow based on combined principles from both systems
120 antigenomics and systems serology, and applied to analyze antibody responses against
121 Group A *Streptococcus* (GAS), a major bacterial pathogen and a significant source of human
122 morbidity and mortality worldwide(22).

123 **Results**

124 Most adult individuals have circulating IgG antibodies against GAS, but their structural and
125 functional properties remain poorly understood(23). To address this challenge, we developed
126 a two-step approach to i) determine the GAS-antigenome, and ii) characterize the titers,
127 epitope repertoires, immune signaling capacity, subclass distributions, and N-linked
128 glycosylation profiles of the antigen-specific IgG (**Fig. 1A**). This approach was built on
129 streamlining antigen/antibody affinity purification workflows using an automated liquid-
130 handling platform, coupled to a suite of high-resolution MS-based quantitative, structural- and
131 glyco-proteomics readouts.

132 **Mapping the GAS- antigenome.** To define the GAS-antigenome, we exploited GAS-specific
133 IgG circulating in human plasma as a tool to isolate antigens from pools of bacterial proteins
134 via affinity purification coupled to LC-MS/MS (**Fig. 1B**). First, the SF370 strain, a clinically
135 relevant M1 GAS serotype, was biochemically fractionated into defined pools of potentially
136 antigenic proteins (**Fig. S1A-E**). The identity and cellular localization of bacterial proteins in
137 pools from a typical preparation are presented in **Fig. 1C-D and supplemental table 1**. We
138 primarily focused on surface exposed and secreted proteins since they are more likely to be
139 recognized by host antibodies. Next, we used two IgG sources to isolate antigens from these
140 bacterial fractions: i) pharmaceutical-grade intravenous immunoglobulin G (IVIG), and ii)
141 commercial pooled human plasma (HP). Both IVIG and HP contain IgG antibodies from many
142 different individuals, including clones directed against multiple GAS antigens (**Fig. 1E-F**). IgG
143 was immobilized on Protein G columns, and the bacterial fractions were passed through the
144 columns to enrich for GAS antigens. Retained antigens were eluted and characterized by LC-
145 MS/MS. This antigenomics approach identified a total of 39 antigens: 13 were unique to the
146 IVIG, 2 were unique to HP, and 24 were common to both IVIG and HP (**Fig. 1G-H &**
147 **supplemental table 2**). The method was highly reproducible and generated a similar number
148 of identifications across replicates (**Fig. S2A-D**). The GAS antigenome was enriched in

149 virulence factors, including toxins (e.g., SLO), superantigens (e.g., SPEC, MEZ), anti-
150 phagocytic proteins (e.g., M1), and enzymes (e.g., C5AP, HYLA). A few proteins of unknown
151 functions (e.g., PRGA) or without an obvious link to GAS virulence (e.g., ribosomal RPLA and
152 RPSB) were also identified (**Supplemental table 2**). We conclude that GAS-specific IgG
153 circulating in human plasma targets a small subset of bacterial antigens, many of which are
154 well-known virulence determinants.

155

156 **The GAS-antigenome is conserved across healthy individuals but is altered in GAS**
157 **bacteremia.** In the next step, we analyzed plasma from 10 healthy donors to investigate
158 potential individual variations in the GAS antigenome. In addition, both acute and convalescent
159 plasma from four patients with GAS bacteremia were included to determine whether invasive
160 infections might affect the antigenome profiles. We have previously reported the clinical and
161 serological status of these patients, and no major differences were found between their acute
162 and convalescent plasma(24). The antigenome analysis resulted in the identification of a total
163 of 72 antigens, with an average of ~30 antigens/individual. A substantial overlap was observed
164 across the individual antigenomes, as well as between the individual and the “pooled” (i.e.,
165 IVIG and HP) antigenomes. (**Supplemental table 3**). The level of antigen enrichment varied
166 across samples and correlated with antibody titers measured by ELISA, as evaluated for two
167 antigens: C5AP and PRGA (**Fig. S3**). The antigenome profiles were rank correlated and linked
168 by network analysis using Kendall Tau coefficients (**Fig. 2A**). The networking approach
169 segregated the data into two distinct clusters. Cluster A was driven by antigens enriched in the
170 patients with GAS bacteremia (e.g., ENO, LDH) (**Fig. 2B**), whereas Cluster B was driven by
171 antigens enriched in the healthy group (e.g., MF, PRSA1) (**Fig. 2C**). However, independently
172 of disease status, all individuals had circulating antibodies against a common set of 11
173 antigens, suggesting a potential immunological signature of GAS exposure (**Fig. 2D**). These
174 antigens were primarily GAS virulence factors involved in pathogenesis and immune evasion
175 (e.g., SLO, M1, C5AP, SPEB etc.). The amino acid sequence for each of the 72 antigens was
176 compared across 2275 publicly available GAS genomes, which revealed high gene carriage,
177 based on their presence in >90% of all genomes, and high sequence conservation, based on
178 low sequence entropy and gap occurrences. One notable exception was the M1 protein, due
179 to the high sequence variability of the hypervariable region (HVR) (**Fig. 2E**)(25). In summary,
180 similar to pooled samples, the individual antigenomes converged around a small subset of
181 genetically conserved antigens. These profiles were similar across healthy individuals, but
182 were considerably different in patients with GAS bacteremia.

183

184 **Mapping antigenic sites frequently targeted by circulating GAS-antibodies.** The
185 antigenome analysis pointed to a defined set of antigens commonly targeted by GAS

186 antibodies, but polyclonal IgG may bind to one or multiple epitopes within a given antigen,
187 which might lead to different biological outcomes. To determine the epitope landscape of the
188 GAS-specific IgG, we implemented an epitope extraction (EpXT) workflow (**Fig. 3A**). We
189 selected three antigens: M1 and C5AP, identified in Cluster A, and PRGA, identified in Cluster
190 B (**Fig. 2A**). All three proteins were recombinantly expressed and subjected to limited
191 proteolysis to generate partially digested protein regions of different sizes. The partial digests
192 were captured by immobilized IVIG antibodies to isolate antigenic protein regions, which were
193 eluted and quantified by LC-MS/MS. The method was first applied to C5AP, a streptococcal
194 serine peptidase with a multidomain structure: a protease-associated domain (PA-domain), a
195 catalytic domain (Cat-domain), and three consecutively arranged fibronectin-type domains
196 (FN-domains) (**Fig. 3B**)(26). The EpXT analysis identified 17 immunogenic peptides
197 (**Supplemental table 4**). Roughly 70% of the total peptide intensity was associated with the
198 Cat-domain, ~15% with the FN1-domain, and only ~5% with the FN2 domain (**Fig. 3B**).
199 Importantly, the interaction of C5AP with IVIG was validated by hydrogen-deuterium exchange
200 mass spectrometry (HDX-MS), which identified two peptide stretches (97-138 aa and 415-466
201 aa) displaying a significant reduction in deuterium uptake upon incubation with IVIG (**Fig. 3C**
202 & **Supplemental table 5**). These binding sites partially overlapped with the ones identified by
203 the EpXT-workflow, demonstrating good agreement between the methods, and singling out
204 the Cat-domain as an immunodominant region (**Fig. 3D**).
205 The interaction between IVIG and the M1-protein was also studied by EpXT. M1 is a dimeric
206 coiled-coiled fibrillar protein with an N-terminal HVR, a variable region encompassing the A
207 domain and B repeats, and a constant region comprising the C repeats and D domain. We
208 identified 23 antigenic peptides across the three regions. Roughly 26% of the intensity was
209 associated with the HVR, 52% with the variable region and 22% with the constant region (**Fig.**
210 **3E**). To address whether similar epitopes are recognized by IgG from different individuals, we
211 interrogated plasma from healthy individuals, as well as the paired acute and convalescent
212 plasma from the patients with GAS bacteremia. The individual epitope patterns were
213 consistent with the pattern observed when using IVIG, both in terms of the peptide identities
214 and their relative intensity distributions (**Fig. 3E**). Overall, the epitope profiles were similar
215 across healthy individuals, and between the acute and convalescent plasma of each patient,
216 although peptides from the constant region of M1 tended to be more enriched when using
217 plasma from patients with bacteremia. Averaging the peptide signal across all samples
218 showed that the HVR and the variable region are the most commonly targeted and
219 immunodominant sites (**Fig. 3F**).
220 Finally, PRGA, an 873 aa long GAS protein of unknown function was also analyzed by EpXT.
221 Since there is no structure available, a molecular model of PRGA was generated, which
222 predicted an extended coiled-coiled structure with an internal globular domain (**Fig. S4**). A

223 total of 6 peptides were identified, with ~90% of the intensity associated with the globular
224 domain, thereby also indicating antibody binding to spatially confined and most likely
225 immunodominant regions of PRGA (**Supplemental table 4**). In conclusion, we show that
226 EpXT can map immunodominant antigenic sites on various GAS antigens. For the M1-protein,
227 these sites are conserved across individuals, suggesting common mechanisms of epitope
228 recognition.

229

230 **The IgG subclass impacts the ability of anti-M1 antibodies to trigger immune signaling.**

231 In addition to neutralization through antigen and epitope recognition, antibodies can elicit
232 protective effector functions that are dependent on other IgG properties, such as the Fc-
233 glycosylation and the IgG subclass distribution(2). To test how GAS antibodies trigger Fc-
234 dependent immune signaling, recombinant M1, C5AP and PRGA were incubated with IVIG
235 and probed for the activation of FcγR-receptor IIa (CD32), a surrogate for ADCP, and IIIa
236 (CD16), a surrogate for ADCC, using luciferase reporter cell assays. Antibodies against all
237 three antigens elicited both CD32 and CD16 activation, with significant variation observed
238 across the antigens (C5AP>PRGA>M1) (**Fig. 4A & 4B**). These differences could not be
239 explained by titers (M1>C5AP>PRGA) (**Fig. 4C**) or glycosylation, as glycoproteomic analysis
240 of the antigen-specific IgG ruled out major differences in the Fc glycan profiles (**Fig. S5A and**
241 **method section**). However, the LC-MS/MS quantification of the affinity-purified IgG
242 subclasses using proteotypic Fc peptides showed that more IgG of each subclass was pulled
243 down using M1 as a bait, compared to C5AP and PRGA (**Fig. 4D**). The subclass distribution
244 was also skewed and M1-antibodies were more enriched in the IgG2 and IgG3 subclasses,
245 compared to antibodies recognizing the two other antigens.

246 To better determine the impact of the IgG subclass on the ability of anti-M1 antibodies to trigger
247 FcγR-signaling, we took advantage of the monoclonal mAb25 that specifically binds to the M1-
248 protein with high affinity(27). This monoclonal antibody allowed us to rule out potential
249 confounding factors, such as the relative contribution of mixed subclasses and different
250 epitope binding patterns of the M1-specific IgG in IVIG(28). Notably, whereas the mAb25 in
251 IgG1 or IgG4 scaffolds displayed almost no measurable FcγR-receptor activation, swapping
252 to IgG2 or IgG3 both resulted in robust induction of CD32-signaling (**Fig. 4E**), whereas only
253 IgG3 was capable of triggering CD16-signaling (**Fig. 4F**). These results indicate that the
254 proportionally higher levels of IgG2 and IgG3 among the M1 enriched IgG correlate with
255 enhanced FcγR-receptor activation for this antigen.

256 Next, we investigated whether anti-M1 antibodies isolated from different healthy donors and
257 individuals with GAS bacteremia were also subject to variation regarding their capacity to
258 trigger CD32 and CD16 activation. As shown in **Fig.4G-H**, roughly half of the samples showed
259 Fc-signaling activity over the baseline with substantial variation observed across individuals.

260 In general, responding individuals had higher antibody titers than low responders, which
261 correlated well with their increased ability to pull down M1 from the bacterial fractions (**Fig. 4I**).
262 However, the IgG subclasses that were enriched varied considerably between individuals (**Fig.**
263 **4J**). Finally, as observed for pooled IVIG samples, glycan analysis revealed no major variation
264 in Fc glycosylation across individuals (**Fig. S5B**). Combined, these results indicate that a direct
265 correlation between the structural properties of the antigen-specific IgG repertoires and Fc_YR-
266 signaling is challenging to decipher in polyclonal antibody pools. In contrast, using defined
267 monoclonal antibodies demonstrate that the IgG subclass has a major impact on the capacity
268 of anti-M1 antibodies to trigger immune signaling. A final summary of the main structural and
269 functional properties of circulating GAS-specific antibodies uncovered by the systems
270 antigenomics-serology workflow is presented in **Fig. 5**.

271

272 **Discussion**

273 In this study we developed a novel MS-centered methodology that couples systems
274 antigenomics to systems serology to dissect the key properties of polyclonal antibody
275 responses directly in human samples, in a reproducible, high-throughput and flexible
276 manner. The method involves surveying the antigen repertoire targeted by the antibodies
277 using fractionated pools of bacterial proteins and immunologically reactive sera. Once the
278 antigens are identified and ranked, they are recombinantly expressed and the antigen-specific
279 IgG is interrogated as to their structural and functional properties, including epitope
280 repertoires, subclass distribution, Fc glycosylation pattern, and capacity to trigger immune
281 signaling. We applied this methodology to dissect the key features of naturally occurring GAS-
282 specific IgG circulating in adult human plasma.

283 GAS has been the subject of intensive research due to its high disease burden, broad
284 spectrum of pathogenic mechanisms, and geographically constrained serotype
285 prevalence(25). A roadmap towards a GAS vaccine has recently been outlined by the World
286 Health Organization (WHO) to contain the burden of both local and invasive streptococcal
287 infections, as well as their autoimmune sequelae(29). However, major challenges remain,
288 including the lack of reliable immune correlates of infection and protection, and a poor
289 understanding of the evolution of the immune response against GAS during natural exposures.
290 Notably, the incidence of GAS infections is high in school-age children but typically declines
291 throughout life, which suggests the buildup of protective immunity during the lifetime of an
292 individual(25).

293 Our data confirm that most adults have circulating IgG against the GAS antigenome, a
294 relatively small subset of streptococcal antigens that are genomically conserved across GAS
295 isolates, and commonly targeted by circulating antibodies across multiple individuals. A typical
296 GAS genome codes for ~1800 proteins(30, 31) so the finding that the size of the GAS

297 antigenome is on average 30 antigens/individual raises the question why some proteins are
298 more frequently targeted by host antibodies than others. According to our data, the GAS
299 antigenome covers a wide range of molecular structures and functions, ranging from
300 multimeric adhesion proteins, such as the M-protein, to highly specific monomeric proteases,
301 such as C5AP. However, despite its smaller size compared to the expected proteome, the
302 GAS antigenome is enriched in virulence factors. Since GAS is a human-adapted pathogen,
303 it is possible that some of these factors have been targeted by host antibodies as a
304 consequence of an arms race between bacterial virulence and host immunity during evolution.
305 In addition to high genomic conservation, most of these factors are known to directly facilitate
306 the establishment of a successful infection, and may therefore be produced in high amounts
307 during host-pathogen encounters compared to other streptococcal proteins, which in turn
308 might result in greater accessibility to immune and antigen-presenting cells. In addition, the
309 antigenic breath of the GAS-specific antibodies might also be dynamically regulated by the
310 immune status, which would be in line with our finding that the GAS antigenome is different in
311 patients with bacteremia compared to healthy individuals. Although the size of our cohort was
312 rather small to draw firm conclusions, our data suggest that the GAS antigenome is sensitive
313 to ongoing infections, which can be further explored by combining our techniques with larger
314 and more defined clinical cohorts covering different types of streptococcal infections.
315 Another possibility for the seemingly small size of the GAS antigenome might be due to
316 technical rather than biological reasons. Our antigenomics strategy relies on fractionated
317 protein pools extracted from growing bacteria, and hence changes in the culture conditions
318 might result in altered proteome profiles that would lead to some antigens being missed due
319 to differential expression. Indeed, some virulence factors such as the streptococcal
320 endoglycosidase EndoS was not identified in our screen, despite anti-EndoS antibodies being
321 widely present in human plasma(32). It is therefore possible that both growing conditions (e.g.,
322 exponential vs stationary growth phases, presence vs absence of plasma etc.) or even the
323 specific strain used to generate the bacterial protein pools might determine the repertoire of
324 antigens available to the antibodies during the screen. Still, our findings are in line with
325 previous studies using completely different methods, such as protein arrays and surface
326 display technology, which suggests that most of the core antigenome is efficiently captured by
327 our methodology(7, 10, 11, 33). The relatively high agreement between these studies and the
328 antigenome profiling presented in this report, confirms our notion that natural exposure to GAS
329 results in a distinct serological signature dictated by the immunological recognition of a
330 relatively small and well-defined set of streptococcal antigens. As opposed to these previous
331 studies, here we generated libraries of bacterial proteins through biochemical fractionations.
332 This has the advantage of reducing the high costs and expertise associated with surface
333 display and protein array technology, making our strategy more amenable to any biochemical

334 laboratory with access to standard bacterial growth facilities and equipment. Additionally,
335 cellular fractionation allows querying properly folded proteins associated with relevant and
336 immunologically accessible compartments, such as membrane and cell wall proteins, since
337 the actual localization of many proteins might still be difficult to predict using genome mining
338 and reverse vaccinology strategies. Finally, our workflow is flexible and fully automated, and
339 can be exploited to query a wide range of growing conditions and cohorts, as well as being
340 easily adapted to analyze other bacteria.

341 In addition to analyzing the GAS antigenome, we took a step further and developed
342 approaches to map the epitope landscape of selected GAS antigens. Interestingly, antibody
343 recognition was invariably associated with defined antigen sites or immunodominant regions.
344 Although much is known regarding T-cell immunodominance, the basis for B-cell and antibody
345 immunodominance is less well understood(34). Our detailed dissection of the epitope
346 landscape of the M protein, a promising immunogen for a GAS vaccine, showed that the HVR
347 and the variable region are major interaction sites for naturally occurring GAS antibodies. The
348 variability of the HVR is thought to be the result of selective pressure on the bacteria to escape
349 the immune response, since type-specific antibodies are protective against infections(35, 36).
350 However, previous studies indicated that the HVR might be only weakly immunogenic(37),
351 which contrast with our observation of antibodies binding to the HVR across all samples
352 studied. One possible explanation for this discrepancy is that natural exposure to GAS is often
353 accompanied by a robust induction of the immune response during infection, which might
354 create an appropriate environment for selection of B-cell clones targeting the HVR. These
355 conditions might not be completely phenocyped by immunization studies using laboratory
356 animals.

357 Finally, our approaches also facilitated the analysis of key attributes of the Fc regions of
358 naturally occurring GAS-specific antibodies. We show that GAS antibodies can engage
359 multiple FcγRs and robustly trigger immune signaling, at least *in vitro*, in an antigen- and Fc
360 receptor- specific manner. The affinity of FcγRs for IgG varies with the Fc structure, in
361 particular the subclass and glycosylation, and enrichment of specific subclasses and pro- or
362 anti-inflammatory glycan structures is often an avenue exploited by the host immunity to
363 modulate the affinity of these interactions during infection and vaccination(2). In the case of
364 M-specific antibodies, signaling varied across individuals, correlated with IgG titers, and was
365 modulated by the IgG subclass distribution. Complement deposition and opsonophagocytosis
366 mediated by type-specific antibodies recognizing the HVR region of the M protein is a well-
367 known correlate of protection against GAS-infections(36). However, whether FcγRs also
368 contribute to protection is less clear. FcγRs are important orchestrators of immunomodulation
369 and protection against many pathogens, aiding in phagocytosis and immune cell

370 degranulation. Whether these mechanisms are also relevant for GAS infections *in vivo*
371 remains to be determined.

372 **Data availability statement**

373 The mass spectrometry and HDExaminer analysis files have been deposited to the MassIVE
374 repository with the dataset identifier MSV000093310.

375

376 **Competing interest information**

377 The authors declare no competing interests.

378

379 **Acknowledgements**

380 J.M. is a Wallenberg academy fellow (KAW 2017.0271) and is also funded by the Swedish
381 Research Council (Vetenskapsrådet, VR) (2019-01646 and 2018-05795), the Wallenberg
382 foundation (WAF grant number 2017.0271), and Alfred Österlunds Foundation. L.M. is funded
383 by the Swedish Research Council (Vetenskapsrådet, VR) (VR-2020-02419) and Alfred
384 Österlunds Foundation. This work was supported by generous funding from NIGMS (R35
385 GM119850 to N.E.L.) and the Novo Nordisk Foundation (NNF20SA0066621 to N.E.L.).

386

387 **References**

388

- 389 1. L. L. Lu, T. J. Suscovich, S. M. Fortune, G. Alter, Beyond binding: Antibody effector
390 functions in infectious diseases. *Nat. Rev. Immunol.* **18**, 46–61 (2018).
- 391 2. T. T. Wang, J. V Ravetch, Functional diversification of IgGs through Fc glycosylation.
392 *J. Clin. Invest.* **129**, 3492–3498 (2019).
- 393 3. C. Loos, D. A. Lauffenburger, G. Alter, Dissecting the antibody-OME: past, present,
394 and future. *Curr. Opin. Immunol.* **65**, 89–96 (2020).
- 395 4. R. Rappuoli, A. Santoni, A. Mantovani, Vaccines: An achievement of civilization, a
396 human right, our health insurance for the future. *J. Exp. Med.* **216**, 7–9 (2019).
- 397 5. A. J. Pollard, E. M. Bijk, A guide to vaccinology: from basic principles to new
398 developments. *Nat. Rev. Immunol.* **21**, 83–100 (2021).
- 399 6. C. S. Dobson, *et al.*, Antigen identification and high-throughput interaction mapping by
400 reprogramming viral entry. *Nat. Methods* **19** (2022).
- 401 7. M. J. Rodríguez-Ortega, *et al.*, Characterization and identification of vaccine
402 candidate proteins through analysis of the group A Streptococcus surface proteome.
403 *Nat. Biotechnol.* **24**, 191–197 (2006).
- 404 8. D. Maione, *et al.*, Identification of a universal Group B streptococcus vaccine by
405 multiple genome screen. *Science* **309**, 148–50 (2005).
- 406 9. D. L. Doolan, *et al.*, Identification of Plasmodium falciparum antigens by antigenic

407 analysis of genomic and proteomic data. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 9952–
408 9957 (2003).

409 10. G. Bensi, *et al.*, Multi high-throughput approach for highly selective identification of
410 vaccine candidates: The group a streptococcus case. *Mol. Cell. Proteomics* **11**, 1–12
411 (2012).

412 11. A. Fritzer, *et al.*, Novel conserved group A streptococcal proteins identified by the
413 antigenome technology as vaccine candidates for a non-M protein-based vaccine.
414 *Infect. Immun.* **78**, 4051–4067 (2010).

415 12. A. Sette, R. Rappuoli, Reverse vaccinology: Developing vaccines in the era of
416 genomics. *Immunity* **33**, 530–541 (2010).

417 13. K. L. Seib, X. Zhao, R. Rappuoli, Developing vaccines in the era of genomics: A
418 decade of reverse vaccinology. *Clin. Microbiol. Infect.* **18**, 109–116 (2012).

419 14. K. B. Arnold, A. W. Chung, Prospects from systems serology research. *Immunology*
420 **153**, 279–289 (2018).

421 15. L. R. L. Davies, *et al.*, Polysaccharide and conjugate vaccines to *Streptococcus*
422 *pneumoniae* generate distinct humoral responses. *Sci. Transl. Med.* **14**, 1–14 (2022).

423 16. B. Bernshtain, *et al.*, Systems approach to define humoral correlates of immunity to
424 *Shigella*. *Cell Rep.* **40** (2022).

425 17. P. Gilchuk, *et al.*, Integrated pipeline for the accelerated discovery of antiviral antibody
426 therapeutics. *Nat. Biomed. Eng.* **4**, 1030–1043 (2020).

427 18. A. W. Chung, *et al.*, Dissecting Polyclonal Vaccine-Induced Humoral Immunity against
428 HIV Using Systems Serology. *Cell* **163**, 988–998 (2015).

429 19. L. L. Lu, *et al.*, A Functional Role for Antibodies in Tuberculosis. *Cell* **167**, 433–
430 443.e14 (2016).

431 20. S. R. Mackin, *et al.*, Fc-γR-dependent antibody effector functions are required for
432 vaccine-mediated protection against antigen-shifted variants of SARS-CoV-2. *Nat.*
433 *Microbiol.* **8**, 569–580 (2023).

434 21. P. Kaplonek, *et al.*, ChAdOx1 nCoV-19 (AZD1222) vaccine-induced Fc receptor
435 binding tracks with differential susceptibility to COVID-19. *Nat. Immunol.* **24**, 1161–
436 1172 (2023).

437 22. J. R. Carapetis, A. C. Steer, E. K. Mulholland, M. Weber, The global burden of group
438 A streptococcal diseases. *Lancet Infect Dis* **5**, 685–694 (2005).

439 23. M. Reglinski, S. Sriskandan, *Streptococcus pyogenes* (Elsevier Ltd, 2014).

440 24. T. De Neergaard, *et al.*, Invasive streptococcal infection can lead to the generation of
441 cross-strain opsonic antibodies 1,2 (2022).

442 25. S. Brouwer, *et al.*, Pathogenesis, epidemiology and control of Group A Streptococcus
443 infection. *Nat. Rev. Microbiol.* **21**, 431–447 (2023).

444 26. C. K. Brown, *et al.*, Structure of the streptococcal cell wall C5a peptidase. *Proc. Natl.*
445 *Acad. Sci. U. S. A.* **102**, 18391–18396 (2005).

446 27. W. Bahnan, *et al.*, A human monoclonal antibody bivalently binding two different
447 epitopes in streptococcal M protein mediates immune function. *EMBO Mol. Med.* **15**,
448 1–21 (2023).

449 28. Z. C. Tan, *et al.*, Mixed IgG Fc immune complexes exhibit blended binding profiles
450 and refine FcR affinity estimates. *Cell Rep.* **42**, 112734 (2023).

451 29. J. Vekemans, *et al.*, The Path to Group A Streptococcus Vaccines: World Health
452 Organization Research and Development Technology Roadmap and Preferred
453 Product Characteristics. *Clin. Infect. Dis.* **69**, 877–883 (2019).

454 30. M. R. Davies, *et al.*, Atlas of group A streptococcal vaccine candidates compiled using
455 large-scale comparative genomics. *Nat. Genet.* **51**, 1035–1043 (2019).

456 31. K. H. Cho, G. C. Port, M. Caparon, Genetics of group A streptococci. *Gram-Positive*
457 *Pathog.*, 67–85 (2019).

458 32. P. Åkesson, *et al.*, Low antibody levels against cell wall - Attached proteins of
459 Streptococcus pyogenes predispose for severe invasive disease. *J. Infect. Dis.* **189**,
460 797–804 (2004).

461 33. M. Reglinski, M. Gierula, N. N. Lynskey, R. J. Edwards, S. Sriskandan, Identification
462 of the Streptococcus pyogenes surface antigens recognised by pooled human
463 immunoglobulin. *Sci. Rep.* **5**, 1–9 (2015).

464 34. Gunnar Lindahl, Subdominance in Antibody Responses: Implications for Vaccine
465 Development. *Microbiol. Mol. Biol. Rev.* **85**, 1–28 (2021).

466 35. H. Frost, J. L. Excler, S. Sriskandan, A. Fulurija, Correlates of immunity to Group A
467 Streptococcus: a pathway to vaccine development. *npj Vaccines* **8** (2023).

468 36. S. K. Tsoi, P. R. Smeesters, H. R. C. Frost, P. Licciardi, A. C. Steer, Correlates of
469 Protection for M Protein-Based Vaccines against Group A Streptococcus. *J. Immunol.*
470 *Res.* **2015** (2015).

471 37. J. Lannergrd, *et al.*, The hypervariable region of streptococcus pyogenes M protein
472 escapes antibody attack by antigenic variation and weak immunogenicity. *Cell Host*
473 *Microbe* **10**, 147–157 (2011).

474 38. J. R. Engen, T. E. Wales, Analytical Aspects of Hydrogen Exchange Mass
475 Spectrometry. *Annu. Rev. Anal. Chem.* **8**, 127–148 (2015).

476

477

478

479

480

481 **Main figure legends**

482

483 **Fig.1. The GAS-specific IgG antigenome (A)** Schematic representation of the two-step
484 approach integrating systems antigenomics and systems serology. The systems antigenomics
485 strategy involves the identification of antigenic targets from biochemical fractions of bacterial
486 proteins using host derived IgG as a guide. Selected antigens are then recombinantly
487 produced and analyzed in a streamlined workflow of various systems serology techniques to
488 deconvolute structural and functional attributes of the antigen specific IgG. **(B)** Schematic
489 summary of the antigen identification workflow used in this study. **(C)** Overlap of the bacterial
490 proteins identified across secreted (S), cell wall (CW) and membrane (M) fractions during a
491 typical biochemical fractionation of the SF5370 GAS proteome. **(D)** Differential protein
492 expression across bacterial fractions. The protein values were normalized using a Z-score
493 normalization and subjected to Pearson correlation clustering. **(E)** Immunoblot analysis of
494 GAS antigens in S, CW and M fractions using IVIG. **(F)** Immunoblot analysis of GAS antigens
495 in S, CW and M fractions using pooled human plasma. Immunoblots are representative
496 images of at least 2 independent experiments. **(G)** Volcano plot displaying the significant
497 antigens recognized by IVIG and **(H)** pooled human plasma. Statistically significant
498 identifications were assessed by 2-way ANOVA with a Bonferroni correction for multiple
499 testing.

500

501 **Fig. 2. The GAS-specific IgG antigenome across healthy and sepsis individuals. (A)**
502 Rank correlation network of the 72 GAS antigens identified across different individuals. Nodes
503 represent each identified GAS antigen and the distance between the nodes is defined by
504 edges encoding Kendall tau coefficients for each pairwise comparison. The color of the edges
505 reflects positive (red) or negative (blue) correlation coefficients. To be considered part of the
506 antigenome, the proteins were required to be present in at least two out of three biological
507 replicates, and identified by at least two quantifiable peptides, having at least a two-fold
508 enrichment over the negative control (Xolair, a commercial anti-IgE monoclonal). Pearson
509 correlation clustering of the log2 intensity of the antigens in **(B)** Cluster A, **(C)** Cluster B and
510 **(D)** the 11 common antigens across healthy and sepsis individuals. **(E)** Sequence
511 conservation plots of the 72 antigens based on the analysis of gap frequency, entropy and
512 gene carriage of each protein across 2275 GAS genomes (left), and zoom in plot of the
513 antigens excluding M1 (right). Residues with high conservation have low entropy, whereas
514 residues with low conservation have high entropy. Gaps indicate insertion and deletion in
515 sequences.

516

517 **Fig. 3: Epitope mapping of GAS antigens. (A)** Schematic representation of the epitope
518 extraction workflow (EpXT) to identify epitopes on recombinantly expressed antigens. **(B)**
519 Identified peptides (marked red) by EpXT mapped onto the crystal structure of C5AP (left) and
520 their relative intensity (%) is shown on the C5AP cartoon (right). **(C)** Deuterium uptake plots
521 for two peptide stretches of C5AP alone (yellow) and when incubated with IVIG (blue). **(D)**
522 Identified peptides (marked blue) by HDX-MS (left) and overlapping epitopes identified by both
523 HDX-MS and EpXT mapped onto the crystal structure of C5AP (right). **(E)** Heatmap of M1
524 peptide intensities across IVIG, healthy and sepsis individuals. **(F)** Consensus epitope
525 landscape across all individuals with more than 5% epitope frequency are displayed in the M1
526 cartoon and the M1 model.

527

528 **Fig. 4: GAS-specific antibodies trigger immune signaling in an antigen- and receptor-
529 specific manner. (A)** Fc γ RII (CD32) and **(B)** Fc γ RIII (CD16) activity assay of M1, C5AP and
530 PRGA specific antibodies present in IVIG. **(C)** Antibody titers in IVIG against M1, C5AP and
531 PRGA. **(D)** Subclass enrichment profiles of antigen-specific IgG in IVIG. **(E)** Fc γ RII (CD32)
532 and **(F)** Fc γ RIII (CD16) activity assay of mAB25 in IgG1-4 scaffolds. **(G)** Fc γ RII (CD32) and
533 **(H)** Fc γ RIII (CD16) activity assay of M1-specific antibodies across individual plasma samples.
534 **(I)** Correlation plot of M1 enrichment and titers across healthy and infected individuals. **(J)**
535 Subclass enrichment profiles of M1-specific IgG across individuals after normalizing the
536 intensity of pulldowns (I_p) against the bulk (I_b). Statistical significance was assessed by two-
537 way ANOVA, * $p<0.05$. The results are the average of experiments done in triplicates, and
538 reproduced at least three times.

539

540 **Fig. 5: Schematic summary of the GAS-specific IgG antigenome and the structural and
541 functional properties of circulating GAS-specific IgG uncovered by the systems
542 antigenomics-serology pipeline.**

543

544

Materials and methods

546

Patient enrolment and sample collection

548 The sampling of patients with bacteremia was approved by the regional ethics committee of
549 Lund University, (2016/939, with amendment, 2018/828). Oral and written consents were
550 obtained from included participants. During 2018-2020, four patients with GAS bacteraemia
551 in Region Skåne, Sweden, were enrolled in the study. Acute sera were collected within five
552 days after hospital admission, and convalescent sera were collected after 4-6 weeks.
553 Information on the four included patients is given by *de Neergaard et.al* (24). Citrated blood

554 samples were collected from 10 healthy donors. Platelet-poor plasma was prepared by
555 centrifugation at 2000 x g for 10 min and stored at -80°C until use. Ethical approval was
556 obtained from the local ethics committee (approval 2015/801).

557

558 **Biochemical fractionation of GAS proteins**

559 A single colony of the M1 GAS serotype SF370 was precultured in Todd-Hewitt broth
560 supplemented with 0.6% yeast extract (THY) at 37°C and 5% CO₂ for 16-18 hr (OD_{620nm} = 0.8)
561 and then the bacteria was sub-cultured in either protein reduced THY broth or regular THY
562 broth. The protein reduced THY broth was prepared by passing THY broth through a 0.22-μm-
563 pore-size-filter and then filtered using a 10-kDa molecular mass cut-off. For the secreted
564 fractions, bacteria grown in protein reduced THY broth at 37°C & 5% CO₂ till the mid-
565 logarithmic phase (OD_{620nm}=0.4-0.5) were harvested at 3000 g for 15min at 4°C and the culture
566 supernatant was filtered using a 0.22-μm-pore-size-filter unit. The filtered supernatant was
567 concentrated using ice cold 1X phosphate buffered saline (PBS) using amicon ultracel 10kDa
568 molecular weight cutoff centrifugal filtration unit (Millipore) at 4000g for 15 minutes (min) and
569 stored in -20°C until further use.

570 For the cell wall and membrane fractions, bacteria were sub-cultured in regular THY broth at
571 37°C & 5% CO₂ to mid-logarithmic phase (OD_{620nm} 0.4-0.5) and the cells were harvested at
572 3000 g for 15min at 4°C. The bacterial pellets were kept on ice for a brief period of 5 min
573 followed by resuspension in 5 ml chilled TES buffer (50mM Tris-HCl, 1mM EDTA, 20% sucrose
574 (w/v) sucrose, pH 8.0) containing 1mM phenylmethylsulfonyl fluoride (PMSF, Roche) at 7560g
575 for 20 minutes at 4°C. For bacterial cell wall lysis, 1.15ml of ice-cooled mutanolysin mix (1ml
576 TES buffer, 100 μl lysozyme (100mg/ml in TES), 50 μl mutanolysin (Sigma-Aldrich, 5000U/ml
577 in 0.1M K₂HPO₄, pH 6.2) was added to the cells for 2 hr at 37°C at 200rpm shaking. Cells
578 were then centrifuged at 14000g for 5min and the resulting supernatant had the cell wall
579 fractions which was stored in -20°C until further use.

580 To isolate membrane proteins, the cell pellets were washed twice in 1 ml HEPES-buffer at
581 3500g for 5min and the cells were then dissolved in 1% HEPES. 2 μl of 0.5 μG/μL trypsin was
582 added to cells for 60 min at 37°C at 500 rpm to shave off the membrane proteins and the
583 reaction was stopped by incubating the cells on ice for 2 min before centrifuging them at 1000g
584 for 15min at 4°C. The supernatant containing the membrane proteins was then collected and
585 stored in -20°C. Cell pellets were further treated with RIPA lysis buffer for 15 minutes and
586 centrifuged 3500g for 5min to collect the intracellular fractions.

587

588 **IgG immunoblotting**

589 Secreted, cell wall, and membrane GAS protein fractions were separated on SDS-PAGE
590 (Criterion TGX Gels, 4%-20% precast gels, Bio-Rad) and proteins were transferred to PVDF

591 membranes using the trans-blot turbo transfer system (BioRad) according to the
592 manufacturer's instructions. The membranes were blocked with 5% bovine serum albumin
593 (BSA) in PBST (PBS + 0.05 % Tween 20) for 1 hr at 37°C, followed by incubation with IVIG
594 (Octagam) (1:100) and pooled human plasma (1:10, Innovative research) overnight at 4°C.
595 After washing, the membranes were incubated with protein G-HRP conjugate (1:3000, Bio-
596 Rad) for 1 hr at 37°C. The membranes were then developed using clarity western ECL
597 substrate (Bio-Rad) and visualized in the ChemiDoc MP Imaging System (Bio-Rad).

598

599 **Enzyme-linked immunosorbent (ELISA) assay**

600 To measure GAS-specific antibodies, 96 well Nunc microtiter plates were coated with 100 μ l
601 of recombinant M1, C5AP and PRGA (5 μ g/ml) overnight at 4°C followed by PBST (PBS + 0.05
602 % Tween 20) wash. Plates were blocked with 2% BSA (100 μ l/well) in PBST for 30 min at
603 37°C. After washing with PBST, IVIG (1:100) and plasma (1:10) was added in dilution series
604 in triplicates and incubated at 37°C for 1 hr and then washed with PBST. 100 μ l/ well of protein
605 G-HRP conjugate (1:3000, Bio-Rad) in PBS was added and incubated for 1 hr at 37°C and
606 then washed with PBST. The reaction was developed using 100 μ l/well ABTS (20 ml Sodium
607 Citrate pH 4.5 + 1ml ABTS + 0.4 ml H₂O₂) for 30 min and the OD was measured at 450 nm.

608

609 **Fc γ R-luciferase reporter cell assay**

610 Jurkat-Lucia NFAT-CD16 (Fc γ RIII) and CD32 (Fc γ RII) cells (InvivoGen) were used to probe
611 the ability of antigen specific IgG to trigger antibody-dependent cellular cytotoxicity (ADCC)
612 and antibody-dependent cell-mediated phagocytosis (ADCP). Nunclon delta surface plates
613 (Thermo Scientific) were coated with 100 μ l of 5 μ g/ml of M1, C5AP and PRGA overnight at
614 4°C followed by 1XPBS wash. 100 μ l of different antibody sources (100 μ g/100 μ l) *i.e.*, IVIG
615 (1 μ l of IVIG diluted with PBS to a final volume of 100 μ l), Xolair (10 μ l of Xolair diluted with
616 PBS to a final volume of 100 μ l) and human plasma (10 μ l of human plasma diluted with PBS
617 to a final volume of 100 μ l) were added and incubated for 1hr at 37°C. After 1XPBS wash, 200
618 μ l of CD16 and CD32 cells (100,000 cells/100 μ l) in IMDM with 10% heat-inactivated fetal
619 bovine serum (FBS) and Pen-Strep (100 U/ml-100 μ g/ml) were respectively added and
620 incubated at 37°C for 6hr. After a brief centrifugation for 10 min at 150g, 20 μ l of the
621 supernatant was added to 50 μ l of QUANTI-Luc (InvivoGen) in opaque microtiter plates and
622 the luciferase activity was measured in luminometer.

623

624 **Affinity purification of bacterial antigens**

625 IgGs from different sources were purified in a 96 well plate (Greiner) using the Protein G
626 AssayMAP Bravo (Agilent) system, according to the manufacturer's instructions. Briefly, 1 μ l of
627 IVIG (Octagam), 10 μ l of Xolair (Omalizumab) and 10 μ l of human plasma was diluted with

628 PBS to a final volume of 100 μ l and then applied to pre-equilibrated Protein G columns.
629 Columns were washed with PBS, before applying a pool of 100 μ g secreted, 100 μ g cell wall
630 and 100 μ g membrane fractions. The antigen-antibody complex was then eluted in 0.1M
631 glycine (pH=2) and the final pH was neutralized with 1M Tris, and saved until further use. The
632 proteins were denatured using 8 M urea solution and 5 mM Tris(2-carboxyethyl) phosphine
633 hydrochloride (TCEP) was then added for 60 min at 37°C to reduce the disulfide bonds
634 followed by alkylation with 10 mM iodoacetamide in the dark at room temperature for 30 min.
635 100 mM ammonium bicarbonate was added followed by the addition of 0.5 μ G/ μ L sequencing-
636 grade trypsin (Promega) for protein digestion at 37°C for 18 h. The activity of trypsin was
637 inhibited by dropping the pH to 2-3 by the addition of 10% trifluoroacetic acid (TFA, Sigma).
638 The samples were loaded on Evosep tips to separate the digested peptides using nanoflow
639 reversed-phase chromatography with an Evosep One liquid chromatography (LC) system
640 (Evosep One) and analyzed on timsTOF Pro mass spectrometer (Bruker Daltonics).

641

642 **Antigen-specific IgG pulldowns**

643 Antigen specific IgG was purified from IVIG and human plasma in a 96 well plate setup
644 according to the manufacturer's instructions. IgG from 100 μ l of human plasma (~100 μ g/100
645 μ l) was pre-enriched using the Protein G AssayMAP Bravo (Agilent) technology as described
646 above. Eluted IgG was diluted to a final volume of 500 μ l with 1XPBS and then buffer
647 exchanged in 50K centrifugal filters (Amicon Ultra-0.5 ml, Merck) for 10 min at 14000g and
648 was finally resuspended in 100 μ l of 1XPBS and treated as bulk IgG enriched from human
649 plasma. For the antigen specific pulldowns, 20 μ g of recombinantly expressed M1, C5AP and
650 PRGA with streptavidin tag were immobilized on pre-equilibrated AssayMAP Streptavidin
651 columns (Agilent Technologies). Columns were washed with 1XPBS and then 100 μ l of IVIG
652 (1 μ l of IVIG diluted with 1XPBS to a final volume of 100 μ l) and 90 μ l of pre-enriched IgG from
653 human plasma was applied followed by 1XPBS wash. Elution was done using 100 μ l of 0.1M
654 glycine (pH=2) and the final pH was neutralized with 20 μ l of 1M Tris. 120 μ l of antigen specific
655 IgG, 1 μ l of IVIG and 10 μ l of bulk IgG from human plasma was diluted to a final volume of
656 220 μ l using 100 mM ammonium bicarbonate, followed by digestion to peptides using 1 μ g
657 trypsin at 37°C for 18 hr and the digestion was stopped using 20% TFA (Sigma) to pH 2 to 3.
658 Peptide clean-up was performed using AssayMAP C18 columns (Agilent Technologies)
659 according to manufacturer's protocol. Samples were dried using vacuum concentrator
660 (Eppendorf) and resuspended in 20 μ l .1% formic acid (FA, Fisher Chemical) followed by a
661 brief sonication for 5 min before analyzing on a Q Exactive HF-X mass spectrometer (Thermo
662 Scientific).

663

664 **Epitope extraction (EpXT)**

665 To benchmark the EpXT workflow Pierce Protein G magnetic beads (Thermo Scientific) were
666 used. For IgG enrichment, 50 μ l of protein G beads was washed with 1XPBS, before 1 μ l of
667 IVIG (Octagam) diluted with PBS to a final volume of 100 μ l (100 μ g/100 μ l) was added and
668 incubated for 1 hr followed by 1XPBS wash. 10 μ g of recombinant C5AP and PRGA was
669 trypsinized with 1 μ g of trypsin (Sequencing Grade Modified Trypsin, Promega) for 15 min at
670 37°C and the trypsin activity was inhibited by incubating at 100°C for 5 min. The peptide digest
671 was then incubated with protein G enriched IgG for 1 hr and then washed with 1XPBS before
672 eluting with 100 μ l of 0.1 M glycine (pH=2) and the pH was finally neutralized with 1M Tris.
673 Peptide clean-up was performed on Evosep columns as mentioned above before analyzing
674 on a timsTOF Pro mass spectrometer (Bruker).

675 For M1 EpXT analysis IgGs from IVIG and human plasma were purified in a 96 well plate
676 (Greiner) using the Protein G AssayMAP Bravo (Agilent) system. 1 μ l of IVIG (Octagam) and
677 10 μ l of human plasma was diluted with PBS to a final volume of 100 μ l (100 μ g/100 μ l) and
678 then applied to pre-equilibrated Protein G columns. Columns were washed with PBS, before
679 applying the M1 peptide digest. The M1 peptide digest was prepared by incubating 10 μ g of
680 M1 with .1 μ g trypsin at 37°C for 15 min followed by a brief incubation at 100°C for 5 min. After
681 PBS wash, the M1 peptide-antibody complex was then eluted in 0.1M glycine (pH=2) and the
682 final pH was neutralized with 1M Tris. Peptide clean-up was performed on Evosep columns
683 according to the manufacturer instructions before analyzing on a timsTOF Pro mass
684 spectrometer (Bruker Daltonics).

685

686 **LC-MS/MS proteome analysis**

687 Peptide analysis using data-dependent mass spectrometry (DDA-MS) was performed on a Q
688 Exactive HFX instrument (Thermo Scientific) connected to an Easy-nLC 1200 system (Thermo
689 Scientific). An Easy-Spray column (50-cm, column temperature of 45°C, Thermo Scientific)
690 operated at a maximum pressure of 8×10^7 Pa separated the peptides, and a linear gradient
691 of 4% to 45% acetonitrile in aqueous 0.1% formic acid was run for 65 min. One full MS scan
692 (resolution of 60,000 for a mass range of 390 to 1210, automatic gain control = 3e6) was
693 followed by MS/MS scans (resolution of 15,000, automatic gain control = 1e5) of the 15 most
694 abundant signals. 2 m/z isolation width was set for precursor ions and higher-energy
695 collisional-induced dissociation (HCD) at a normalized collision energy of 30 was used for
696 fragmentation. For peptide analysis on timsTOF Pro, a 30 SPD method (gradient length = 44
697 min) was used for the separation using an 8 cm x 150 μ m Evosep column packed with 1.5 μ m
698 ReproSil-Pur C18-AQ particles. A captive source coupled to Evosep One was mounted on the
699 timsTOF Pro mass spectrometer (Bruker Daltonics) which was operated in DDA PASEF mode
700 with 10 PASEF scans per acquisition cycle with accumulation and ramp times of 100 ms each.

701 The target value was set to 20,000, dynamic exclusion was set to 0.4 min and singly charged
702 precursors were excluded. The isolation width was 2 Th for m/z < 700 and 3 Th for m/z>800.

703

704 **Glycoproteomics analysis**

705 Purified IgG glycopeptides were analyzed on a Q Exactive HF-X mass spectrometer (Thermo
706 Fisher Scientific) connected to an EASY-nLC 1200 ultra-HPLC system (Thermo Fisher
707 Scientific). Peptides were trapped on precolumn (PepMap100 C18 3 μ m; 75 μ m \times 2 cm;
708 Thermo Fisher Scientific) and separated on an EASY-Spray column (Thermo Fisher
709 Scientific). Mobile phases of solvent A (0.1% formic acid), and solvent B (0.1% formic acid,
710 80% acetonitrile) were used to run a linear gradient from 4 to 45% over 60 min. MS scans
711 were acquired in data-dependent mode with the following settings, 60,000 resolution @ m/z
712 400, scan range m/z 600-1800, maximum injection time of 200 ms, stepped normalized
713 collision energy (SNCE) of 15 and 35%, isolation window of 3.0 m/z, data-dependent HCD-
714 MS/MS was performed for the ten most intense precursor ions.

715

716 **Hydrogen-deuterium exchange mass spectrometry (HDX-MS)**

717 The HDX-MS analysis was made using automated sample preparation on a LEAP H/D-X
718 PALTM platform interfaced to an LC-MS system, comprising an Ultimate 3000 micro-LC
719 coupled to an Orbitrap Q Exactive Plus MS. HDX was performed on 1.2 mg/ml C5AP and IVIG
720 (8 mg/mL), in 1X PBS, at a ratio of 1:2 and 1:5 in one continuous run, with runs of the apo
721 state made in between the interaction runs, in total 4 replicate runs were made for the apo
722 state, for the pAb interaction states triplicate samples were run. 5 μ l HDX samples were diluted
723 with 25 μ l 20 mM PBS, pH 7,4 or HDX labelling buffer of the same composition prepared in
724 D₂O, pH_(read) 7.0. The HDX labelling was carried out for t = 0, 30, 300, 600 and 1800s at 4°C.
725 The labelling reaction was quenched by dilution of 30 μ l labelled sample with 30 μ l of 1% TFA
726 (Sigma), 0.4 M TCEP (Sigma), 4 M Urea (Sigma), pH 2.5 at 1°C. 60 μ l of the quenched sample
727 was directly injected and subjected to online pepsin digestion at 4°C (in-house immobilized
728 pepsin column, 2.1 x 30 mm). The online digestion and trapping were performed for 4 minutes
729 using a flow of 50 μ L/min 0.1 % FA (Sigma), pH 2.5. The peptides generated by pepsin
730 digestion were subjected to on-line SPE on a PepMap300 C18 trap column (1 mm x 15mm)
731 and washed with 0.1% FA (Sigma) for 60s. Thereafter, the trap column was switched in-line
732 with a reversed-phase analytical column, Hypersil GOLD, particle size 1.9 μ m, 1 x 50 mm, and
733 separation was performed at 1°C using a gradient of 5-50 % B over 8 minutes and then from
734 50 to 90% B for 5 minutes, the mobile phases were 0.1 % FA (A) and 95 % acetonitrile/0.1 %
735 FA (B). Following the separation, the trap and column were equilibrated at 5% organic content,
736 until the next injection. The needle port and sample loop were cleaned three times after each
737 injection with mobile phase 5% methanol (MeOH) / 0.1% FA, followed by 90% MeOH / 0.1%

738 FA and a final wash of 5% MeOH / 0.1% FA. After each sample and blank injection, the Pepsin
739 column was washed by injecting 90 μ L of pepsin wash solution 1% FA / 4 M urea / 5% MeOH.
740 In order to minimize carry-over a full blank was run between each sample injection. Separated
741 peptides were analysed on a Q Exactive Plus MS, equipped with a HESI source operated at
742 a capillary temperature of 250 °C with sheath gas 12, Aux gas 2 and sweep gas 1 (au). For
743 HDX analysis MS full scan spectra were acquired at 70K resolution, automatic gain control =
744 3e6, Max IT 200ms and scan range 300-2000. For identification of generated peptides
745 separate undeuterated samples were analysed using data dependent MS/MS with HCD
746 fragmentation.

747

748 **Proteomics data analysis**

749 The DDA data was analysed in MaxQuant (version 2.0.3.0). The protein database used for
750 the searches were *Homo sapiens proteome* (UniProt proteome identifier UP000005640), GAS
751 proteome (UniProt proteome identifier UP000000750) compiled with common contaminants
752 from other species in-house. Carbamidomethyl (C) modification was set as fixed modification
753 and oxidation (M) and acetyl (Protein N-term) was set to variable modification. 1% protein
754 false discovery rate (FDR) was allowed and match between runs was enabled. The LFQ
755 intensities reported by MaxQuant was used for analysis. The resulting DDA data sets were
756 analyzed in Perseus (version1.6.15.0 and 2.0.7.0) and R studio (version-4.2.0). Both side t-
757 test with a FDR of 0.05 was used for volcano plot analysis.

758

759 **Antigenome network analysis**

760 All statistical methods were implemented using Python (version 3.6.10). Antigen intensities
761 across IVIG, pooled human plasma, healthy donor plasma, and acute and convalescent phase
762 plasma were scaled and ranked. First the antigen-by-antigen Kendall Tau measure was made
763 for correspondence in antigen presentation. Second the sample-by-sample Kendall Tau
764 measure was made for correspondence in sample antigen profiles. The Benjamini-Hochberg
765 procedure was used to control for a FDR of <0.10. The significant Kendall Tau measures
766 formed a network where nodes are defined by antigens and edges between nodes are the
767 Kendall Tau measure. Visualization and analysis of the network layers were conducted
768 through Cytoscape.

769

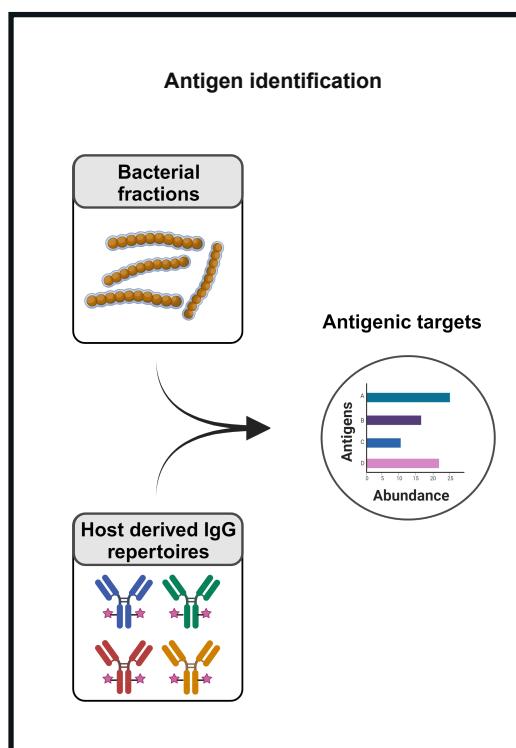
770 **HDX-MS data analysis**

771 PEAKS Studio X Bioinformatics Solutions Inc. (BSI, Waterloo, Canada) was used for peptide
772 identification after pepsin digestion of undeuterated samples. The search was done on a
773 FASTA file with only the RDB sequence, search criteria was a mass error tolerance of 15 ppm
774 and a fragment mass error tolerance of 0.05 Da, allowing for fully unspecific cleavage by

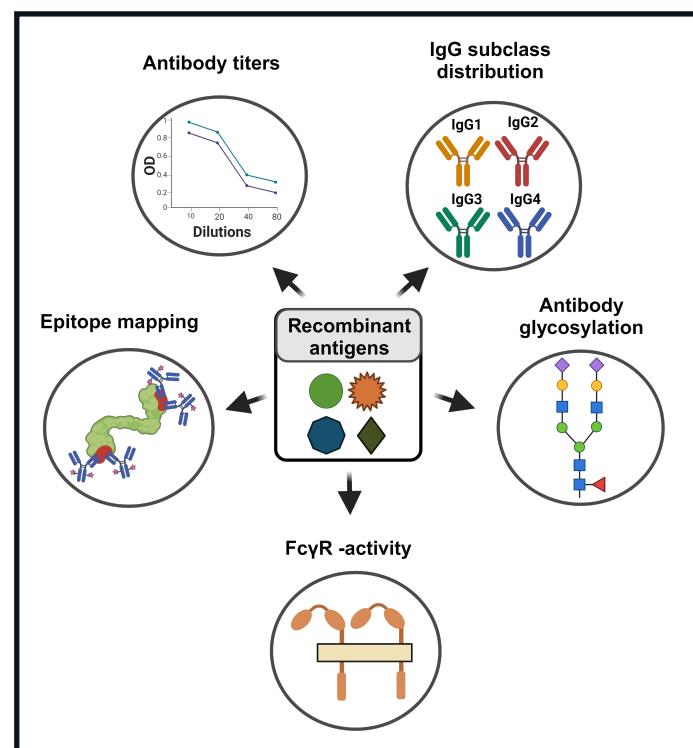
775 pepsin. Peptides identified by PEAKS with a peptide score value of $\log P > 25$ and no
776 modifications were used to generate peptide lists containing peptide sequence, charge state
777 and retention time for the HDX analysis. HDX data analysis and visualization was performed
778 using HDExaminer, version 3.1.1 (Sierra Analytics Inc., Modesto, US). The analysis was made
779 on the best charge state for each peptide, allowed only for EX2 and the two first residues of a
780 peptide was assumed unable to hold deuteration. Due to the comparative nature of the
781 measurements, the deuterium incorporation levels for the peptic peptides were derived from
782 the observed relative mass difference between the deuterated and non-deuterated peptides
783 without back-exchange correction using a fully deuterated sample (38). As a full deuteration
784 experiment was not made full deuteration was set to 75% of maximum theoretical uptake. The
785 presented deuteration data is the average of all high and medium confidence results. The
786 allowed retention time window was ± 0.5 minute. The spectra for all time points were manually
787 inspected; low scoring peptides, obvious outliers and any peptides where retention time
788 correction could not be made consistent were removed.

789

790 **Gene carriage, entropy and gap analysis for GAS antigenome**

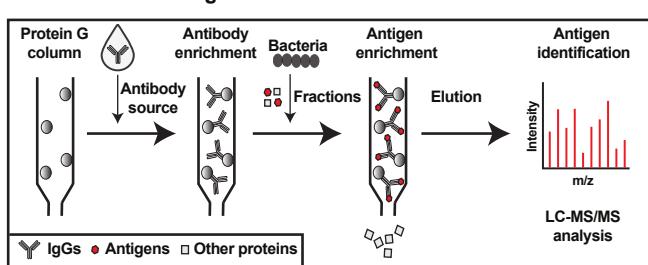

791 A Basic Local Alignment Search Tool database (BLAST version 2.12) was built on all
792 *Streptococcus pyogenes* genomes available in The Bacterial and Viral Bioinformatics
793 Resource Center (BV-BRC, as of 2023-03-28). The sequences of all the antigens were
794 separately searched towards the database using BLASTp, and all hits covering more than
795 70% of the query sequence were extracted and multiple sequence alignment (MSA) was
796 generated with MUSCLE (version 3.8.1551). The Shannon entropy and frequency of gaps
797 were calculated, based on the MSA to indicate the level of conservation within a group of
798 sequences.

799

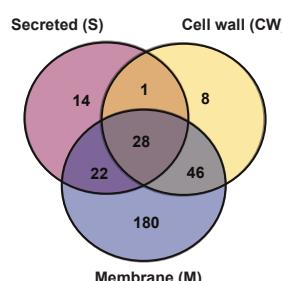

800

801

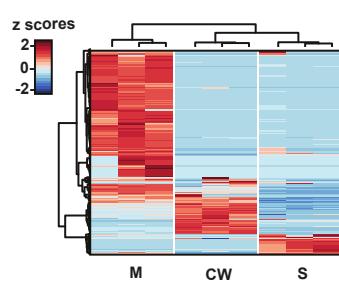
A Systems Antigenomics

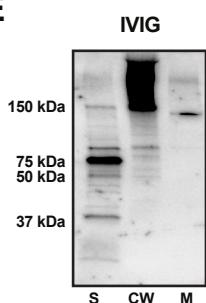


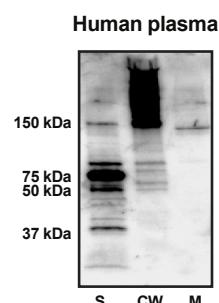
Systems Serology

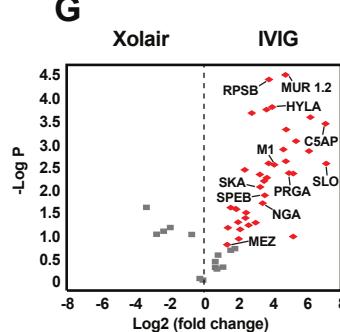


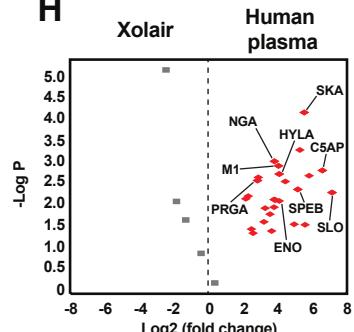
B

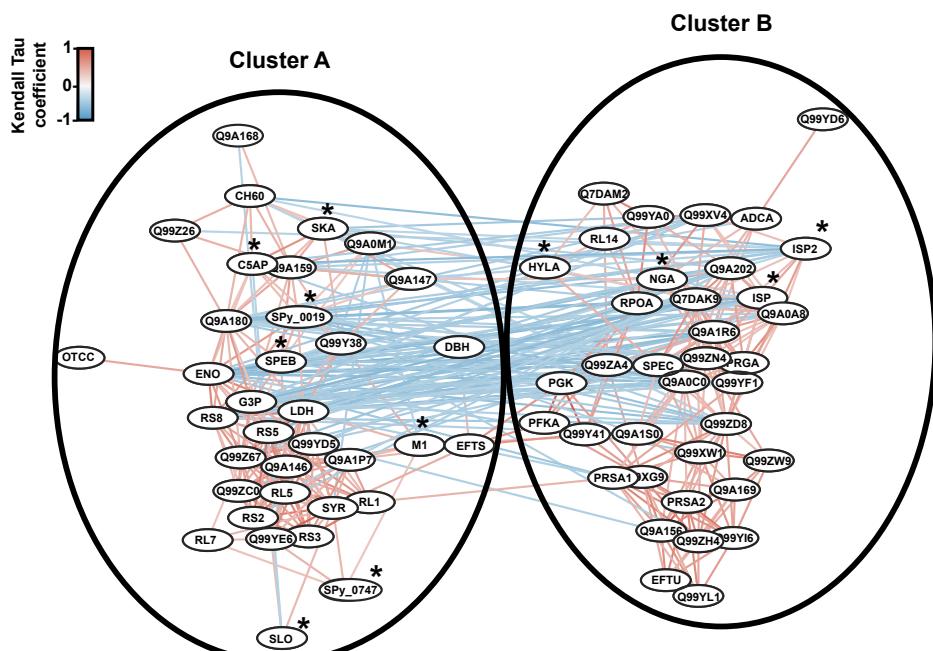

Antigen identification workflow

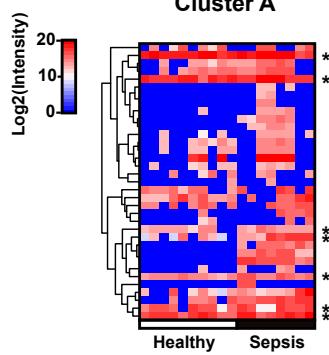

C

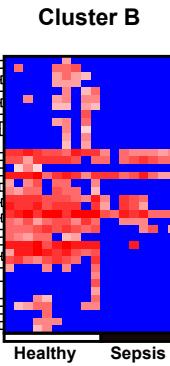

D


E

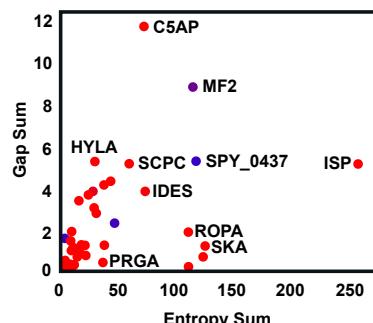
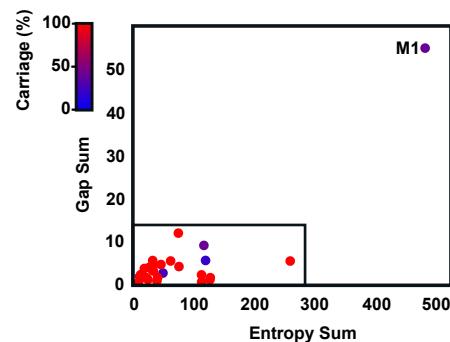

F

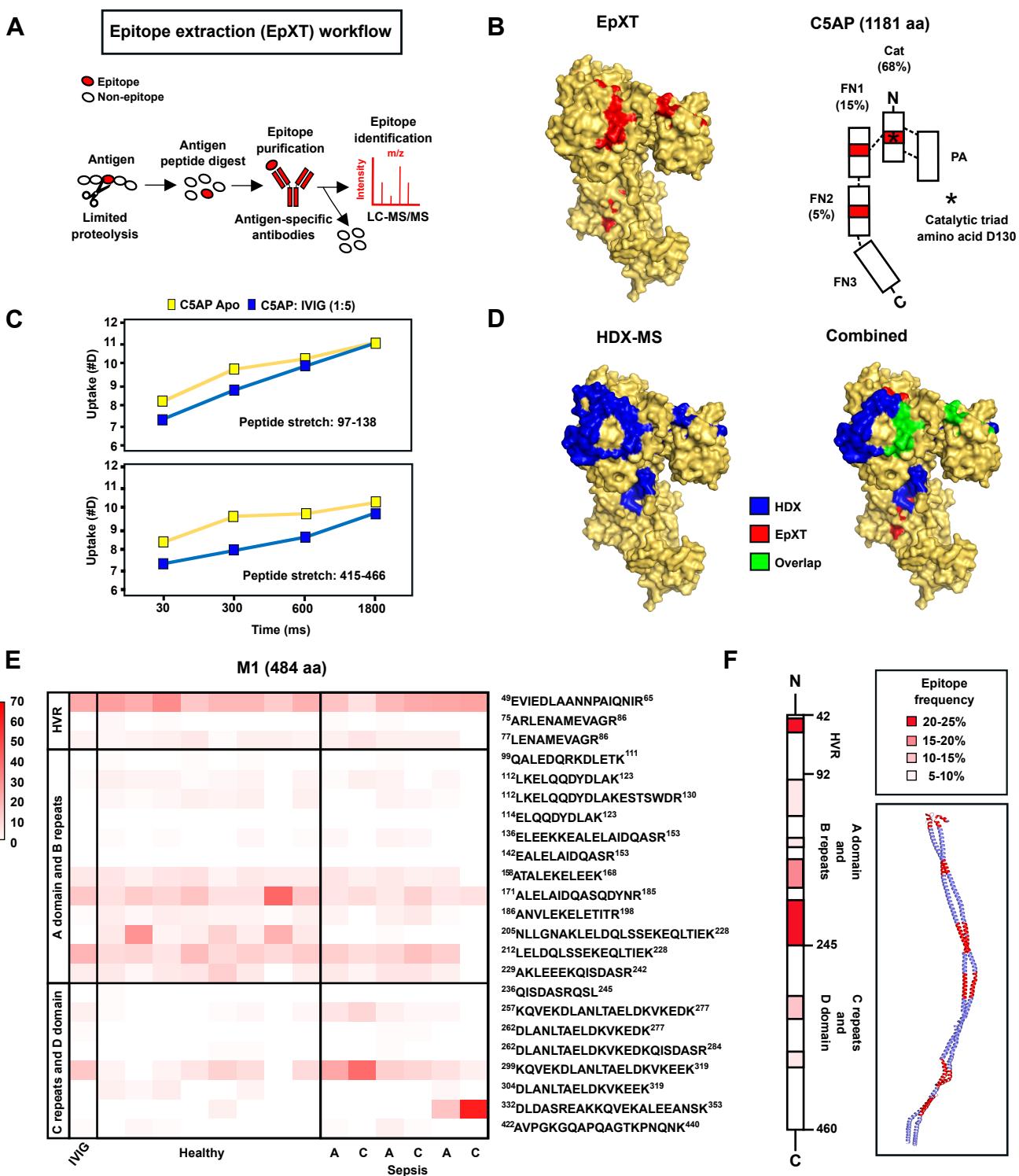

G

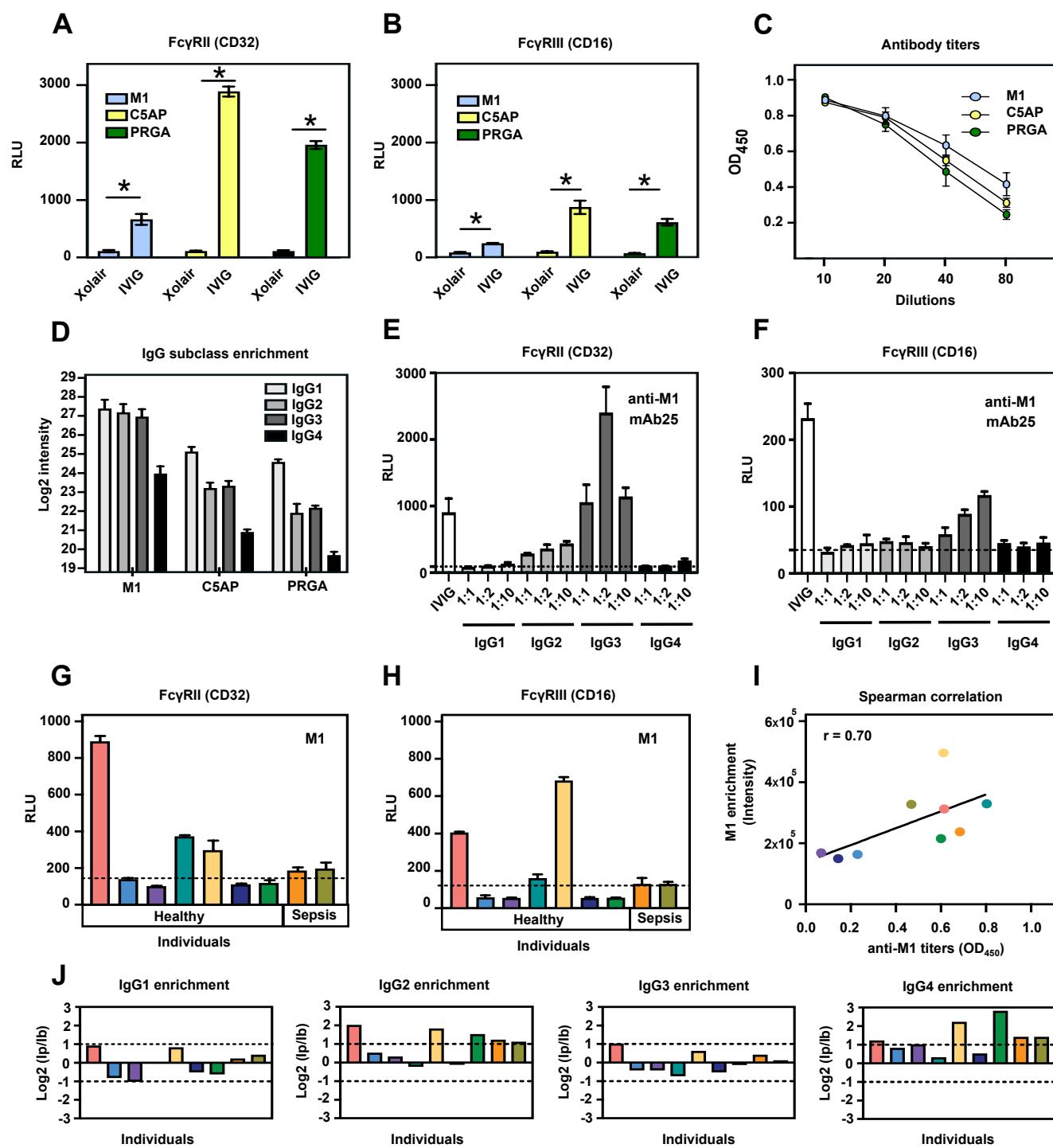

H


A

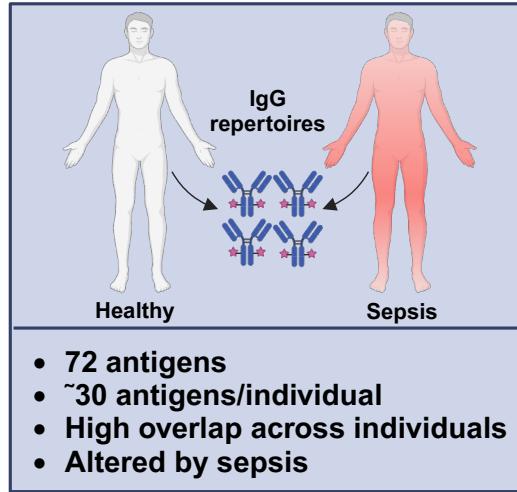
B

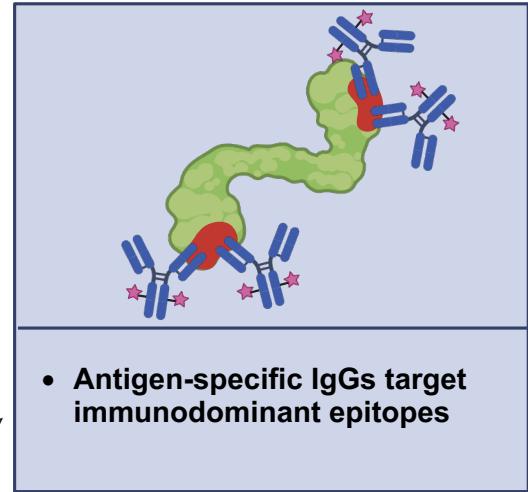


C

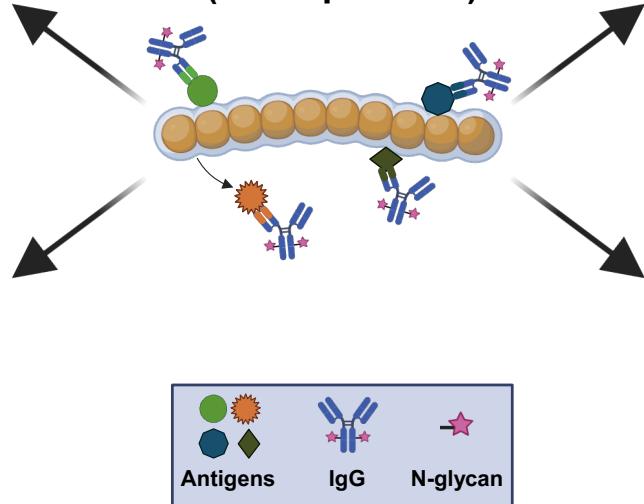


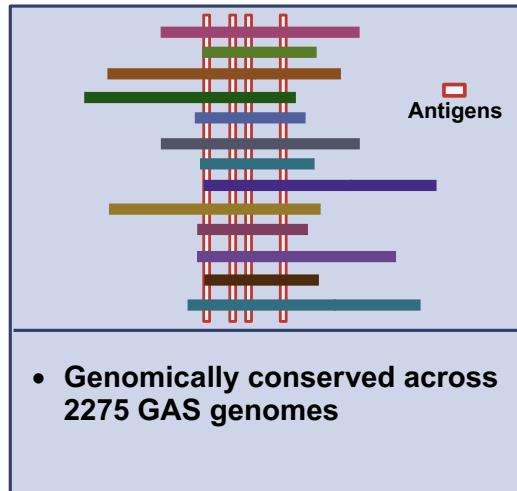

D Common antigens *(>80% of all samples)

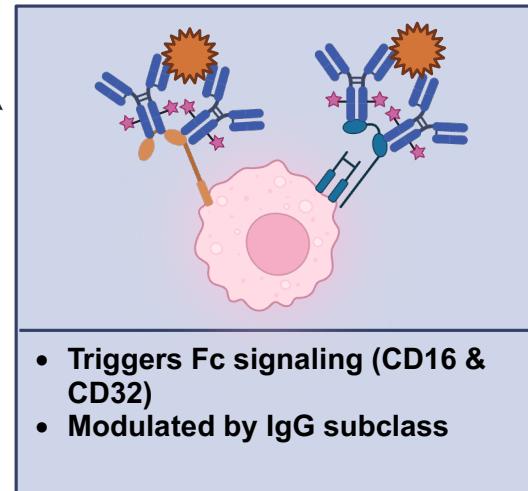
SLO
ISP2
ISP
SPEB
SPy_0019
SKA
C5AP
NGA
M1
SPy_0747
HYLA


E




Antigenome


Epitopes


GAS (~2000 proteins)

Antigen conservation

Immunomodulation

