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Abstract
High-throughput sequencing facilitates large-scale studies of gene regulation and allows

tracing the associations of individual genomic variants with changes in gene expression.

Compared to classic association studies, allelic imbalance at heterozygous variants captures

the functional effects of the regulatory genome variation with smaller sample sizes and higher

sensitivity. Yet, the identification of allele-specific events from allelic read counts remains

non-trivial due to multiple sources of technical and biological variability, which induce

data-dependent biases and overdispersion. Here we present MIXALIME, a novel

computational framework for calling allele-specific events in diverse omics data with a

repertoire of statistical models accounting for read mapping bias and copy-number variation.

We benchmark MIXALIME against existing tools and demonstrate its practical usage by

constructing an atlas of allele-specific chromatin accessibility, UDACHA, from thousands of

available datasets obtained from diverse cell types.

Availability: https://github.com/autosome-ru/MixALime, https://udacha.autosome.org

Keywords: allele-specific expression, allele-specific accessibility, chromatin-altering variants,
background allelic dosage, regulatory variants, sequence variant effects, SNP, mixturemodel
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Introduction
Nowadays, genome- and transcriptome-wide association studies1,2 are the primary source of

information on hereditary components of phenotypic traits, including disease susceptibility3.

Yet, prioritization of causative genomic variants among multiple candidates remains a

challenge, involving both statistical fine-mapping and functional annotation. The functional

annotation of variant effects remains a no less challenge as themajority of disease-associated

variants are non-coding4,5, and the diversity of mechanisms of gene regulation complicates the

interrogation of non-coding variant effects.

Rich data facilitating analysis of non-coding variants is being obtained with modern

omics technologies based on next-generation sequencing. Particularly, large-scale omics data

facilitate the detection of heterozygous sites where the read counts are non-randomly

distributed between homologous chromosomes. The allele-specific single-nucleotide variants

and polymorphisms, AS-SNVs and AS-SNPs, are characterized by an imbalanced number of

sequenced reads carrying one or the other allele6. Depending on the particular omics protocol,

the allelic imbalance may reveal the association or direct variant impact on allele-specific

transcription factor binding (AS-binding, ASB) using ChIP-Seq data7–11, allele-specific

chromatin accessibility (ASA) using e.g. DNase-Seq or ATAC-Seq8,12–16, allele-specific DNA

methylation17,18, and allele-specific gene expression per se9,19–29. From here on, we jointly call

these observations allele-specific events (ASEs) related to sequence variant-dependent gene

regulation.

The analysis of ASEs became a major topic at the crossroads of genetics and functional

genomics, and various strategies for allelic bias identification have been developed in the past

decade30. A workflow for the identification of ASEs starts with acquiring the list of SNVs,

counting the reads supporting particular alleles at heterozygous sites, i.e., obtaining the

SNV-level allelic coverage, and assessing the statistical significance of the observed allelic

imbalance (see Figure 1A). While identifying candidate SNVs through variant calling stands on

solid ground31–33, estimating the statistical significance of the allelic imbalance remains

challenging.

The source of the problem is the generally unknown expected distribution of allelic

read counts in the case of allele balance, which is needed for statistical control. In some

experimental setups, the control is available directly, for example, when studying

asynchronous replication, where the pre-replication G1 cells were used to determine the

unbiased expected ratio of allelic signals34,35. Yet, this is not the case for themajority of studies

mapping transcription activity, DNA accessibility, or protein-DNA binding, which do not yield

direct measurements of the allelic DNA dosage.

There are several technical sources of the excessive variability of the allelic read counts

across the genome. First, the allelic imbalance is biased by heterogeneity at the level of cells or

samples that inflates the read count variation. Second, false allelic imbalance may arise from

genotyping errors, e.g., if somatic mutations present in a fraction of cells are mistaken for

germline variants. The thirdmajor source is the referencemapping bias from the readmapping

procedure in the absence of the personalized genome: the reads carrying non-reference alleles

are either non-mapped or mismapped to wrong, sometimes multiple locations, with the

tradeoff between dropout and mismapping rates controlled by the mismatch mapping

penalty36. Consequently, depending on the read mapping strategy, the reads carrying the

non-reference allele of a particular SNV become depleted on average, skewing both the overall
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and SNV-level allelic read counts.Without the personal genome at hand, this effect can only be

counteredwith a variant-aware read realignment36.

Eventually, all these factors result in an overdispersed allelic count distribution that

does not follow the convenient and commonly used binomial model where the allelic imbalance

significance is assessed by a simple binomial test with the fixed success probability of p =
½8,37–39. A possible solution is to consider p as a random number coming from the beta

distribution yielding the beta-binomial model12,13,40–44 (see Figure 1B-D, left subpanels).

However, both the naive and beta-binomial approaches assume that the total number of reads

at a genomic position is known, while in reality an unknown fraction of the total reads is

missing, e.g., due to the readmapping bias.

An alternative model assumes that the number of reads supporting the reference or

the alternative allele are measured independently and represent random variables following

Poisson45 or negative binomial46–50 laws. The latter approach is similar to that used in

differential gene expression tools like edgeR51. It is appropriate for haplotype-resolved data

where the reads coming from paternal and maternal genomes can be fully separated, but less

justified if the alleles and allelic read counts are not explicitly and unambiguously assigned to

particular haplotypes or subgenomes. In this case, the convenient random variable can be the

number of reads supporting the alternative allele given the fixed number of reads at the

reference allele10,52,53 (see Figure 1B-D, right subpanels), resulting in the negative binomial

model (seeMethods for the substantiation).

In addition to the factors discussed above, the allele-specific analysis is complicated by

the copy number variation (CNV)42. CNVs yield sporadic regions with increased allelic

imbalance in normal cells, and, to a greater extent, in tumor samples and immortalized cell

lines, which often exhibit global aneuploidy and other types of genome instability (see Figure
1E, left subpanel). Several solutions to counter this issue have been suggested. First, the

CNV-affected regions can be tracked with the DNA input control. Many available packages for

ASE calling rely on these data as a direct source of expected allelic read counts at the sites or

regions of interest13,28,37,39,40,54–65. CNV-rich regions are then either excluded from consideration

or processed in a special way, where an allelic copy number of 1:L is scoredwith a binomial test
with p set to 1/(L+1)23,61,66. Unfortunately, in many cases neither CNV profiling nor DNA control

sequencing is available, or the latter has a shallow read coverage. Yet, it remains possible to

account for the CNVs explicitly e.g. by estimating the background allelic dosage yielded by

CNVs directly from the variant calls10. In the end, the allelic imbalance at variants in CNV

regions is scored by the mixture model arising from the multiplied and non-multiplied alleles

(see Figure 1E, right subpanel).
Here we present MIXALIME (MIXture models for ALlelic IMbalance Estimation), a

versatile framework for identifying ASEs from different types of high-throughput sequencing

data. We describe an end-to-endworkflow from read alignments to statistically significant ASE

calls, accounting for copy-number variation and read mapping biases. MIXALIME offers

multiple scoring models, from the simplest binomial to the beta negative binomial mixture, can

incorporate background allelic dosage, and account for read mapping bias. MIXALIME

estimates the distribution parameters from the dataset itself, can be applied to sequencing

experiments of various designs, and does not require dedicated control samples. We

demonstrate MIXALIME performance against existing methods and present its large-scale

application, UDACHA (Uniform Database of Allele-specific CHromatin Accessibility in the

human genome), built by systematic ASE calling across 5858 human chromatin accessibility

datasets.
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Results

A general workflow from readmapping to ASE calling withMIXALIME

The overall workflow is shown in Figure 2 and includes three stages: readmapping, SNP calling,
and ASE identification. The read mapping can be performed by any modern software (e.g.

BWA-MEM or STAR/HISAT2, depending on the data67–69). The SNP calling, e.g. with bcftools

mpileup or GATK HaplotypeCaller31,32, must provide not only variant calls but allelic read

counts. At the final step, MIXALIME comes into play: it fits the scoringmodel and estimates the

significance of the allelic imbalance at each variant followed by obtaining combined P-values
across individual samples or replicates and correction for multiple testing. This general scheme

can be improved, first, by filtering the alignment with WASP36 after the SNP calling step to

reduce the reference mapping bias in the absence of a personalized genome. Second, the

genome-wide track of the relative background allelic dosage of aneuploid or CNV-rich samples

can be estimated with BABACHI10,70. For commonly used immortalized cell lines this may

significantly reduce the overdispersion and thus improve the reliability of ASE calling.

MIXALIME's approach to ASE calling

The core idea of MIXALIME is the assumption that ASEs are rare events amongmultiple SNVs

without significant allelic imbalance. Hence, the task can be reformulated as an outlier

detection problem within a specified null distribution. The choice of the null distribution

depends on the usage scenario and MIXALIME offers multiple models to handle allelic read

count distributions with varying degrees of overdispersion. In addition to conventional

binomial or beta-binomial distributions for allelic read count modeling, MIXALIME introduces

means to explicitly address asymmetric mapping bias with left-truncated negative binomial

(NB), beta negative binomial (BetaNB), and a novel marginalized compound negative binomial

(MCNB) distributions, seeMethods.

Let's denote the read count at the allele 1 (e.g. the reference allele, Ref) as , and the𝑥
respective read count at the allele 2 (e.g. the alternative allele, Alt) as . In MIXALIME we𝑦
assume that the mean number of reads mapped to Alt across SNPs is linearly𝑟 = 𝐸[𝑦]
dependent on the respective read counts mapped to Ref:𝑥

𝑟(𝑥,  𝑎,  𝑏) = 𝑏𝑥 + 𝑎,
where are and are trainable parameters. Then, in the case of diploid CNV-free genome𝑎 𝑏
segments, is assumed to be distributed with a mean equal to , where is NB, BetaNB, or𝑦 𝐹 𝑟 𝐹
MCNB distribution, with the rate parameter p =½ held fixed.

CNVs and aneuploidy increase the relative background allelic dosage, BAD, which is the
local ratio of major to minor copy numbers10. In the case of BAD > 1, the read counts are

modeled as a mixture of two distributions with different fixed rate parameters𝐹 𝑝
1
 = 𝐵𝐴𝐷

𝐵𝐴𝐷 + 1

and . MIXALIME obtains maximum likelihood estimates (MLEs) of model𝑝
2
 = 1 − 𝑝

1

parameters using gradient descent. In the end, SNVs are scored by computing P-values for a
given and itsMLEs, and the P-values are combined across samples or replicates.𝐹 

MIXALIME is implemented in Pythonwith JAX framework for automatic differentiation

and just-in-time compilation of the likelihood function, fitting the model is performed with

scipy L-BFGS-B optimizer. MIXALIME can be installed with pip from PyPI repository, includes

extensive built-in documentation, and accepts a commonVCF format for input.
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MIXALIME performs ASE calling with adaptive sensitivity

To quantitatively assess the performance of different statistical models available inMIXALIME

against existing state-of-the-art approaches, we used the cap analysis of gene expression data,

CAGE-Seq, from 109 samples of 31 human hearts53. For MIXALIME, we followed the basic

workflow (see Figure 2 and Methods) skipping the estimation of background allelic dosage, as

the samples from normal tissues should have diploid chromosome counts and CAGE yields a

negligible coverage outside of transcription start sites thus not allowing to call CNVs or

reconstruct BADmaps without external data.

For comparison, we performed ASE calling with existing tools that were suitable for the

SNV-level CAGE data: QuASAR, originally designed for AS RNA-Seq, and BaalChIP, designed

for detecting ASB in ChIP-Seq40,42. Both tools use the beta-binomial distribution tomodel read

counts. For QuASAR, we combined resulting P-values across individuals in the sameway as for
MIXALIME allowing us to compare the results directly. Complete lists of significant ASEs from

MIXALIMEmodels, QuASAR, and BaalChIP can be found in Supplementary Table S1.
As there is no gold standard benchmark for ASEs, we estimated the reliability of ASE

calls through 'proxy' by checking the overlap between the identified ASEs and known

regulatory SNPs (rSNPs): (1) published ASBs from the ADASTRA database and (2) expression

quantitative trait loci, eQTLs, fromGTEx10,71. In brief, we assumed that amore sensitivemethod

must detect more ASEs at a comparable significance threshold, whereas the method with a

better specificity must provide a better overlap with ASBs from ADASTRA and eQTLs from

GTEx. For a note, this definition of specificity and sensitivity has only an indirect relation to the

respective classification performance metrics, as both eQTLs and ASBs encompass only

subsets of true positive ASEs, most of which remain yet unidentified.

The beta-binomial model, implemented in QuASAR, demonstrates high specificity, i.e.,

yields a higher fraction of ASE calls overlapping with ASBs and eQTLs, but low sensitivity, i.e.

generates the low number of detected ASEs in the whole range of significance thresholds

(Figure 3A). However, at 0.05 FDR-corrected P-value (Figure 3A, B), MIXALIME's beta

negative binomial (BetaNB) model identifies three times more ASE counts than QuASAR

(1676 as compared to 594 ASEs) with only a minor loss of specificity (the fraction of GTEx

eQTLs drops from 0.49 to 0.46, while the ADASTRAASB fraction remains at 0.55).

The alternative models including Binomial, NB, and MCNB, allow up to 8 fold increase

in detected ASEs at 5% FDR at the cost of reduced overlap with known regulatory variants (e.g.

for NB, eQTLs/ASBs fraction drops to 0.32/0.45, respectively). Finally, the Regularized BetaNB

model yields intermediate results with 3357 ASEs of which 36% and 47% were annotated as

eQTLs and ASBs, respectively. Thus, the desired priority of sensitivity over specificity and vice

versa can be achievedwithMIXALIME's alternative scoringmethods.

To estimate the significance of the observed overlap between ASEs and known rSNPs,

we used Fisher’s exact tests, and the most conservative BetaNB model completely

outperformed all other variants with Fisher’s log2(odds ratios) for eQTLs and ASBs of 1.6 and

1.4, and -log10(P-value) of 87 and 65, respectively.
Summing up, MIXALIME models offer multiple scenarios for ASE calling, including

strict (BetaNB), balanced (BetaNB regularized at the model fit stage), or permissive (MCNB

and NB) solutions with a desired trade-off between sensitivity and specificity (Figure 3C, left).
Considering QuASAR, its ASEs overlap significantly the MIXALIME results with 222 ASEs

shared with BetaNB (Fisher’s exact test P-value < 10-15, odds ratio = 10.4). The ASEs from the

intersection expectedly show the highest fractions of eQTLs and ASBs, while 1454

BetaNB-exclusive cases have the same or even higher eQTL and ASB fractions compared to
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372 cases exclusive to QuASAR (Figure 3C, right). Thus, compared to QuASAR, MIXALIME's

BetaNB reaches better sensitivity without loss of specificity.

Comparison to BaalChIP is a bit more complicated. First, by design, BaalChIP is

applicable to groups of samples with a shared set of variants, e.g. belonging to one individual.

Second, BaalChIP uses a Bayesian framework and provides not P-values but credible intervals
of the allelic ratio estimates. Thus, for comparison against BaalChIP,MIXALIMEwas rerunwith

the P-values combined not across the whole set of samples but separately for each individual.
In this setting, BetaNB and BetaBinomialMIXALIMEmodels at 5% FDR performed similarly to

BaalChIP in terms of the number of identified ASEs and ASB/eQTL overlap significance.

However, the permissive models including Binomial, NB, MCNB, and Regularized BetaNB

(Figure 3D), provided significantly better results as the statistical power in this comparison

was limited by the number of samples and aggregation depth (2 to 6 samples) per individual.

Summing up, larger aggregation depth across more samples or replicates allows

efficient application of strict BetaNB models, while permissive models suit better given a few

samples or replicates, and in both scenarios, MIXALIME outperforms existing tools.

MIXALIME efficiently accounts formapping bias and CNVs

MIXALIME compensates for systematic mapping bias by fitting separatemodels for scoring the

imbalance towards Ref and Alt alleles. However, it cannot account for site-specific bias, which

can be handled by WASP filtering of the read alignment. To clarify the added value of WASP

and also test MIXALIME performance at different sample sizes, we rerun the ASE calling with

and without WASP using randomly selected 10, 25, 50, 75, or all 109 heart samples (see

Methods and Supplementary Table S2). Each time we considered ASEs with 5% FDR, applied

Fisher's exact test against GTEx eQTLs, and estimated the relative P-value and odds ratio

against the results of the Binomial scoringmodel as baseline (Figure 4A).
As expected, in terms of agreement with eQTLs, stricter MIXALIME models perform

better at higher sample sizes, both with and without WASP filtering. However, comparing

WASP-filtered against unfiltered data, at large enough sample sizes WASP becomes

unnecessary or even reduces the overall performance. Thus, as a rule of thumb,WASP filtering

should be applied at small sample sizes as allowing to apply more permissive scoring models,

but can be safely omitted otherwise.

It is also interesting to compare advanced MIXALIME models against the Binomial

baseline. For example, when there are only 10-20 samples available, strict models including

BetaBinomial and BetaNB show worse P-values compared to the Binomial model due to the

limited number of ASEs, and it gets even worse without the WASP filter. On the other hand,

when data from all 109 samples are aggregated, the BetaNB model demonstrates a two-fold

increase in -log10(P-value) and log2(odds ratio) of overlap with eQTLs compared to those of the
Binomial model (87.1 and 1.6 versus 40.8 and 0.9, respectively).

To estimate the effect of aneuploidy and CNVs on the ASE calling, we applied

MIXALIME to 157 chromatin accessibility datasets (98 DNase-Seq and 59 ATAC-Seq),

performed for presumably diploid (WA09, HCASMC, fibroblasts) and highly aneuploid (K562

and 22RV1) cells types (Supplementary Table S3). Each time,MIXALIMEwas used either with

or without a BABACHI-generated BAD map, fitting a mixture or a basic model, respectively.

We compared the detected ASEs with ASBs of ADASTRA, see Figure 4B and Supplementary
Table S4. For chromatin accessibility data under study, permissive MIXALIME models achieve

better performance in most cases. For aneuploid cells, BAD-aware mixture models are

consistently more effective resulting in higher odds ratios for all tested cell lines and
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sometimes improving the significance as well. For normal diploid cells, allowing for BAD in fact

reduces sensitivity, possibly due to clusters of neighboring AS sites being attributed to local

CNV regions during BAD map reconstruction. For instance, the differences in -log10(P-value)
and log2(odds ratio) between the BAD-aware mixture and basic models are 19.3 and 0.6,

respectively, for regularized BetaNB applied to ATAC-Seq K562 samples, which are known to

be mostly triploid, whereas ATAC-Seq performed on WA09 diploid cells results in

-log10(P-value) and log2(odds ratio) differences equal -11.4 and -0.13, respectively. Finally, the

BetaBinomial model scores poorly in all scenarios, suggesting its application should be avoided

despite its popularity in AS studies.

MIXALIME allows for differential ASE calling

In addition to basic ASE calling, MIXALIME allows the user to test differential allele specificity

between two groups of samples. For this purpose, it starts by fitting the model parameters to

the whole dataset, as in the standard ASE calling, with a fixed rate parameter , e.g. with = ½𝑝 𝑝
in the diploid case. Next, for each SNP separately, MIXALIME frees the parameter and fits it𝑝
to the test and control groups separately obtaining the SNP-specific and estimates.𝑝

𝑡𝑒𝑠𝑡
𝑝

𝑐𝑜𝑛𝑡𝑟𝑜𝑙

Finally, MIXALIME employs either Wald or likelihood-ratio test for evaluating whether the

difference between and is significant to identify differential ASEs. Conveniently,𝑝
𝑡𝑒𝑠𝑡

𝑝
𝑐𝑜𝑛𝑡𝑟𝑜𝑙

this approach is implemented for all model distributions present inMIXALIME.

For practical illustration, we reused the CAGE data for human hearts and split it by

donor sex (53 male and 56 female samples). The two-groupWald test identified 73 sex-specific

ASEs at 5% FDR of which 64 were present in the dbSNP common set (see Supplementary
Table S5). Given the diversity of samples, it was possible to validate Ref/Alt ASE effects for

particular SNPs by comparing the Alt/Alt versus Ref/Ref homozygotes. In our case, significant

ASEs showed sex-specificity concordant with homozygous samples, while other variants did

not demonstrate such tendency (Wilcoxon rank sum test P-value ~0.05 for 23 sex-specific

ASEs, P-value = 0.23 for other 1599 SNPs for which there were both hetero- and homozygous
samples available, Supplementary Figure S1A).

Next, we used ANANASTRA72 to annotate these ASEs with ASBs, which resulted in 39

intersected SNPs (61%). Among transcription factors that bind these ASBs, ZFX, Zinc Finger

X-Chromosomal Protein, turned out to be the most common with seven target ASBs, three of

which (rs11730091, rs131804, rs28418438) were concordant with its binding motif. Two of

those were annotated as GTEx eQTLs in the heart for numerous genes including GATB and

TYMP involved in mitochondria functioning and angiogenesis. ZFX is differentially expressed

between males and females (Supplementary Figure S1B, one-sided Wilcoxon rank sum test

P-value < 10-13), suggesting a direct involvement of the respective ASEs in the sex-specific

regulatory program of the human heart.

UniformDatabase of Allele-Specific Chromatin Accessibility

To showcase MIXALIME applicability to large-scale heterogeneous data, we performed ASE

calling across the complete set of 5858 chromatin accessibility datasets uniformly reprocessed

and available in GTRD (Figure 5A, Supplementary Table S6)72,73. SNP calling was performed

with GATK using read alignments from 1850/3801/207 DNase-/ATAC-/FAIRE-Seq

experiments; we kept only sufficiently covered common heterozygous SNPs (0/1 in VCF GT

field). The next steps included genotype- and metadata-based sample clusterization and

subsequent BABACHI background allelic dosage estimation run separately for each group of
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related samples sharing cell types and variant calls (see Methods). Finally, we applied

MIXALIME and detected 142312/105901/1167 total allele-specific chromatin accessibility

sites at 84028/56014/1162 rsSNPs across 240/359/10 cell types, respectively. Most of the

ASEs were unique for DNase-Seq or ATAC-Seq data even at the level of rsSNP IDs

(Supplementary Figure S2A), primarily due to different sets of assessed cell types. Yet, for

intersecting significant ASEs passing 5% FDR in matchedDNase- and ATAC-Seq cell types, the

allelic imbalance was mostly concordant, likely revealing the true effect these ASEs reflect or

induce in the corresponding chromatin regions (Supplementary Figure S2B).
To further verify the reliability of ASE calls for selected cell types, we compared the

respective open chromatin ASEs against ADASTRA ASBs for 6 cell lines with multiple

candidate ASBs in ADASTRA and candidate ASEs in UDACHA and found the statistically

significant overlap of ASEs with ASBs as well as a correlated allelic imbalance (Supplementary
Table S7). However, the absolute numbers of coinciding SNPs were not high. Thus, UDACHA
assesses quite a different quantity than ADASTRA highlighting allelic imbalance at many

previously unexplored rSNPs even in well-studied cell types such as K562 or MCF7. We also

annotated the genomic localization of UDACHA ASEs (Figure 5B, compare with Figure 4C in

ADASTRA10). As expected, significant ASEs compared to all candidate sites prefer promoter

and enhancer regions, although, in absolute counts, introns and intergenic regions carrymany

ASEs as well.

Finally, we used GTEx to estimate whether different groups of SNPs displayed

concordant or discordant allelic imbalance between cell types are special in terms of the

eQTL-reflected association with gene expression. As in ADASTRA, the switching ASEs with

'antiparallel' behavior, i.e. with opposite allelic preference in different cell types, affectedmore

target genes according to GTEx, both for DNase- and ATAC-Seq ASEs, suggesting such variants

affect promiscuous enhancers regulating transcription of multiple genes in cell type-specific

manner (Figure 5C).

Discussion
ASE calling methods are diverse and rapidly evolving. There aremethods that avoid the classic

binomial or beta-binomial approach but nonetheless share their limitations, such as using the

chi-square goodness of fit test19,74 or G-test56. In special cases, such as identifying allele-specific

topologically associating domains75 or allele-specific DNA replication and methylation, the

authors compared Z-scores against a fixed threshold, performed Fisher’s exact test, or

chi-square test of independence with categorical variables e.g. such as allele (Ref/Alt), the

molecule type (RNA/DNA), the cell cycle phase (G1/S), or cytosine methylation state

(methylated/unmethylated)18,39,76,77. Yet, with so many methods for ASE calling, only a few are

generally applicable to call ASEs from a generic set of heterozygous SNVs and do not rely on

control DNA sequencing, phased haplotypes, or extensive replication. Further, the majority of

existing packages are designed with RNA-Seq data in mind and estimate gene-, transcript- or

exon-level allelic imbalance taking into account that closely located SNVs in mRNAs can

physically share the allele-specific expression. A simple approach is to leave a single top SNV

per feature, e.g. with the highest read count27,28,40, but there are better strategies based on

merging allele-specific counts on individual SNVs through phasing37,62,65, pseudo-phasing58,61,63,

or test statistics combination60, thereby improving but complicating the pipeline and limiting

applicability to the other types of sequencing data.

In this study, we described MIXALIME, a generally applicable ASE calling software.

MIXALIME can handle the standard VCF files and score the SNV-level allelic imbalance with
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multiple models using the allelic coverage at individual SNVs. MIXALIME allows the user to

combine the results across any number of samples and takes into account the background

allelic dosage induced by CNVs. In contrast to many other tools, it does not require phased

genomes, DNA input control, or some specific experimental design that includes a large

number of replicates. The default MIXALIME pipeline allows direct ASE estimation from VCF

files yielded by an SNP-caller (Supplementary Figure S3).
MIXALIME is user-friendly and offers a number of options for fine-tuning ASE calling

thus enhancing its applicability. First of all, the user may useWASP to correct themapping bias

that can affect subsequent ASE estimation especially when the number of samples is small

(Figure 4A), but it is not mandatory. Second, CNVs can be taken into account if the samples are
assumed to be polyploid, which can use either the externally obtained CNV profile or a BAD

map reconstructed with BABACHI (Figure 4B). Finally, depending on the size of the input data,
the optimal ASE scoringmodel may vary from strict BetaNB to permissive NB andMCNB, with

the compromise regularized BetaNBmodel being applicable in most cases.

From our test with 109 CAGE experiments, we came up with a general

recommendation to run BetaNB when the number of samples exceeds 50, MCNB when the

number of samples is 10 or less, and regularized BetaNB otherwise (Supplementary Figure
S3). While we cannot guarantee that these recommendations would hold for any experiment

type with arbitrary coverage, MIXALIME provides detailed model fit plots that can be used to

guide the selection of the model and ensure that the mode distribution adequately fits the

observed data (Supplementary Figure S4).
Overall, MIXALIME allows the user to estimate allele-specific events using different

types of experiments across hundreds of samples in a relatively short time compared to the

other existing ASE calling tools. In particular, for MIXALIME it takes about 15 minutes to

estimate ASE significance for 109 heart samples starting from VCF files and using 1 modern

computing core, which is more than nearly half a minute used by QuASAR but remains

negligible compared to the computational load of read mapping and SNP calling. Further,

MIXALIME offers multithreading out-of-the-box, does not require extra data pre-processing,

andworks significantly faster than BaalChIPwhich takesmore than 9 hours to identify ASEs.

Taking advantage of MIXALIME versatility, we created an allele-specific chromatin

accessibility database UDACHA from 5858 uniformly reprocessed chromatin accessibility

datasets which included 1850 DNase-Seq, 3801 ATAC-Seq, and 207 FAIRE-Seq experiments

available in GTRD. The resulting database includes 249380 ASEs in total that are preferably

located within promoter and enhancer regions compared to other candidate SNPs and

enriched by GTEx eQTLs (Figure 4B, C) and ADASTRA ASBs (Supplementary Table S7). In
addition to the variants that have been already annotated in other databases, UDACHA

includes many newly discovered rSNPs and makes use of different experiment types that

complement each other.

To sum up, in this paper we described MIXALIME, the versatile user-friendly tool for

ASE estimation using various data types, and UDACHA, the comprehensive allele-specific

chromatin accessibility database. We believe these resources will help the scientific

community decipher gene regulation and facilitate studies of regulatory variants by turning

the complicated analysis of omics allele-specificity into a routine, reliable, and easily

reproducible procedure.
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Methods

MIXALIMEmodels

Given allelic read count data, MIXALIME can fit several statistical models (see below) under

the following assumptions:

1. ASEs are rare, hence their identification can be framed as an outlier detection problem;

2. The mean of the read count at the allele 2 (e.g. the alternative allele, Alt) linearly𝑟
depends on the read count at the allele 1 (e.g. the reference allele, Ref), and𝑥
vice-versa:

;𝑟(𝑥,  𝑏,  𝑎) =  𝑏 𝑥 +  𝑎
3. Read counts at an allele 2 (or allele 1) are distributed according to a law with a𝐹

probability density function .𝑓
Specifically, can be negative binomial (NB), beta negative binomial (BetaNB), BetaNB, or𝐹
marginalized compound negative binomial (MCNB). The NB-based distributions have an

advantage of over binomial distribution as they allow for the assumption 2 that the mean

number of reads mapped to one allele (proportional to ) is linearly dependent on the read𝑟
counts mapped to the other allele. A brief overview of models is given below, see

Supplementary Methods78 for details and a formal substantiation. MIXALIME uses the

left-truncated at variant of distributions, as SNVs with low coverage at a particular allele𝑙
should be pre-filtered to avoid technical false positive variant calls and somatic mutations. In

this study, we use = 4, i.e. only counts are allowed. The generalMIXALIMEmodel is𝑙 ≥ 5
𝑦 ~ 𝐹(𝑟(𝑥,  𝑏

𝑥
, 𝑎

𝑥
),  𝑝,  θ

𝑥
, 𝑙),

𝑥 ~ 𝐹(𝑟(𝑦,  𝑏
𝑦
, 𝑎

𝑦
),  𝑝,  θ

𝑦
,  𝑙),

where is an optional extra parameter controlling for variance (e.g., , see BetaNB below).θ  κ
Note that estimatable parameters of the model are considered independently for the

distributions of reference allele count and alternative allele count . In each case, we assume𝑥 𝑦
the other allele to be fixed (e.g. for the distribution of the read counts at the reference allele,𝑥
we assume the read count at the alternative allele to be known). The key feature of this𝑦
approach is that it enables separate scoring of allelic imbalance favoring each of the two alleles.

This way we model the referencemapping bias implicitly as a difference between r parameters
for reference and alternative distributions.

Once is chosen, the model parameters are estimated with either the maximum𝐹
likelihood (ML) or, for regularized BetaNB, with amaximum-a-posteriori approach, see Section

7 in SupplementaryMethods78. MIXALIME provides the following set of models.

NB. To use this model, we assume a linear read mapping bias and a negative binomial

distribution of for a given , and, symmetrically, the same for :𝑦 𝑥 𝑦
𝑦 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑁𝐵(𝑟(𝑥,  𝑏

𝑥
, 𝑎

𝑥
),  𝑝,  𝑙),

𝑥 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑁𝐵(𝑟(𝑦,  𝑏
𝑦
, 𝑎

𝑦
),  𝑝,  𝑙),

where is the left truncated at negative binomial distribution, can be𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑁𝐵, 𝑙 𝑟
considered to reflect an expected number of read counts at a fixed allele, are𝑏

𝑥
,  𝑏

𝑦
,  𝑎

𝑥
,  𝑎

𝑦

active parameters to be estimated, is a fixed rate parameter equal to in case of diploid and𝑝 1
2

CNV-free genomic regions.
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BetaNB. Similarly to the generalization from a binomial to a beta-binomial model, we

can assume and apply a convenient reparametrization of in terms of its𝑝 ~ 𝐵𝑒𝑡𝑎(α,  β) 𝐵𝑒𝑡𝑎
mean and "concentration" 79:µ κ

𝑝 ~ 𝐵𝑒𝑡𝑎(µ,  κ),  α =  µκ,  β =  (1 − µ)κ.
This compound model can be marginalized to the beta negative binomial distribution by

integrating out , therefore:𝑝
𝑦 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑒𝑡𝑎𝑁𝐵(𝑟(𝑥,  𝑏

𝑥
, 𝑎

𝑥
),  µ, κ,  𝑙),

𝑥 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑒𝑡𝑎𝑁𝐵(𝑟(𝑦,  𝑏
𝑦
, 𝑎

𝑦
),  µ, κ,  𝑙),

where is the left truncated at beta negative binomial distribution.𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝐵𝑒𝑡𝑎𝑁𝐵 𝑙
Regularized BetaNB. BetaNB model provides conservative P-value estimates as the

beta negative binomial distribution at small values of is very heavy-tailed compared to theκ
negative binomial distribution, and small may provide the optimal fit for the datasets withκ
lots of ASEs consequently penalizing their significance. Thus, on the one hand, it is convenient

to be able to compromise the goodness of fit for greater sensitivity by encouraging higher

values of . On the other hand, high coverage data has lower variance, i.e. higher are expectedκ κ
at higher values of the fixed allele read count c. We introduce a regularization that

accommodates this observation by assuming that the reciprocal of follows Laplaceκ
distribution:

1
κ  ~ 𝐿𝑎𝑝𝑙𝑎𝑐𝑒(0,  β(α,  𝑛)),  β(α,  𝑛,  𝑐) =  α 𝑛 𝑐,  

where is a scale parameter, is a regularization multiplier/hyperparameter, and is a totalβ α 𝑛
number of observations. Here, the scale parameter gradually increases as we slide farther

across the dataset towards higher coverage at a fixed allele, and the size multiplier makes𝑛 α
more dataset-agnostic.

MCNB. The NB and BetaNB models are built on the assumption that the read count at

the fixed allele is known. In practice, the read count at the preselected allele is not measured

exactly and should be considered a random variable itself. Let's assume that the alternative

allele read count is distributed as a zero-truncated binomial random variable ( ). The𝑦 𝑍𝑇𝐵𝑖𝑛
zero-truncation is necessary to accommodate for the two facts: the allele-specificity is

undefined for homozygous SNVs, and, technically, in NB.𝑟 > 0
Let's consider the followingmodel:

𝑦 ~ 𝑁𝐵(𝑥
^
,  𝑝),  𝑥

^
 ~ 𝑍𝑇𝐵𝑖𝑛(𝑟,  1 −  𝑝).

It turns out that can bemarginalized out and amarginal distribution of can be obtained (see𝑥
^

𝑦
the proof in Appendix C of SupplementaryMethods78):

𝑓
𝑀𝐶𝑁𝐵

(𝑦|𝑟,  𝑝) = 𝑟 (1−𝑝)2𝑝𝑟 + 𝑦 − 1

1 − 𝑝𝑟  
2
𝐹

1
(1 − 𝑟,  𝑦 + 1,  2;  − (1−𝑝)2

𝑝 ),

where is the Gauss hypergeometric function. 
2
𝐹

1

Thus, the resultingMCNBmodel is

𝑦 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑀𝐶𝑁𝐵(𝑟(𝑥,  𝑏
𝑥
, 𝑎

𝑥
),  𝑝,  𝑙),

𝑥 ~ 𝐿𝑒𝑓𝑡𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑𝑀𝐶𝑁𝐵(𝑟(𝑦,  𝑏
𝑦
, 𝑎

𝑦
),  𝑝,  𝑙).

Mixturemodels. Suppose that (or in the case of BetaNB), which happens𝑝 ≠ 1
2  µ ≠ 1

2  

for SNVs located in CNVs or duplicated chromosomes. For instance, there might be three

copies of a maternal allele and one copy of a paternal allele in a tetraploid organism, which

results in and . Most of the time, the completely phased𝑝
𝑚

 =  3
4  𝑝

𝑝
 =  1

4  =  1 − 𝑝
𝑚

 

personal genome and even partial haplotypes are not available, i.e. the exact number of copies
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of the reference and the alternative allele for any particular SNP remain unknown. However, it

remains possible to estimate the ratio of themajor to theminor allele copy numbers, that is the

relative background allelic dosage (BAD), directly from SNP calls with an unsupervised

approach or from an experimentally obtained CNVmap10.

We tackle this problem by assuming that each read is coming from one (e.g. maternal)

chromosome with probability and from the other chromosome (e.g. paternal) with𝑤 
probability , where BAD defines the balance between and . This is done1 − 𝑤 𝑤 1 − 𝑤 
naturally with themixture distribution:

𝑓
𝑀𝑖𝑥

(𝑥|𝑝, 𝑤,  θ) =  𝑤 𝑓(𝑥|𝑝,  θ) +  (1 − 𝑤)𝑓(𝑥|1 − 𝑝,  θ),

where is either NB, BetaNB, or MCNB distribution function, is a parameter vector with𝑓 θ 𝑤 
and excluded, , and is a weight in themixturemodel, an active parameter to be𝑝 𝑝 = 𝐵𝐴𝐷

𝐵𝐴𝐷 + 1  𝑤

estimated from the data.

Legacy models. For convenience and benchmarking, MIXALIME provides conventional

binomial and beta-binomial models. Note that those models do not use the mixture

distributions to model count data for . However, for the beta-binomial model, estimate𝑝 ≠ 1
2

the concentration parameter is separately estimated for each BAD.κ
Fitting the models to the observed read counts. Line parameters , and, when𝑟 𝑎,  𝑏

applicable, mixture and concentration parameters and can be estimatedwithML. However,𝑤 κ
to accommodate for possible non-linearities in the behavior of depending on the fixed allele,𝑟
we use local ML81 instead: a dataset is separated into a set of overlapping windows of a

constant size centered at each fixed allele read count, and ML estimation is done for each

window separately (see Section 7.3 of SupplementaryMethods78 for more details).

MIXALIMEworkflow and implementation

MIXALIME usage implies going through several steps (see Supplementary Figure S3 and

Figure 5 in Supplementary Methods78), including model parameter estimation (fit), calculating

raw P-values for each unique pair of read counts (reference allele count , alternative allele𝑥
count ), combining raw P-values across user-defined groups of samples, correcting the𝑦
P-values for multiple testing, and, finally, exporting results in a tabular form. Optionally, it is

possible to inspect the goodness of fit and, if necessary, identify the differential ASEs between

two groups of samples.

MIXALIME accepts variant calls in either VCF or BED-like format, the BADmaps can be

provided either directly in BED-like files or, for VCF, as separate files. OnceMIXALIME is done

preprocessing input data, it packs all the necessary information into a single project file. This

enables MIXALIME projects to be easily portable between machines without keeping the

initial variant files.

Once the model parameter estimates are obtained, ASEs can be identified in individual

samples, and right-tailed P-values across samples of user-defined groups are combined with

the Mudholkar-George logitpmethod82. For individual samples, the ASE effect size is estimated

as , where is either the reference allele read count or the alternative𝐸𝑆[𝑧] =  𝑙𝑜𝑔
2
(𝐸

𝐹
[𝑧]/𝑧

^
) 𝑧 𝑥

allele read count , and is the observed read count. The combined ASE effect size is estimated𝑦 𝑧
^

across samples as a weighted average using P-values as weights. For technical details of− 𝑙𝑜𝑔
10

computing p-values for various distributions, see Section 9.1 in SupplementaryMethods78.

MIXALIME is implemented in Python 3.7 programming language. It relies on JAX

framework for automatic differentiation of the log-likelihood function and its just-in-time
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compilation for optimal performance. The optimization of the ML problem is performed with

the L-BFGS-B routine provided by the scipy package. In the process, the parameter is𝑤
bounded in interval , the concentration parameter is bounded in interval(0,  1) κ (0,  10000)
with the upper bound necessary to make the optimizer avoid attempting to rise to infinity ifκ
applied to underdispersed datasets. MIXALIME parameter estimation procedure is parallelized

across BADs, and the choice of a fixed allele, and the scoring procedure is parallelized across

SNVs. Computation of p-values is done with the help of arbitrary precision algebra package

gmpy2, which proved to be crucial for computing CDFs of BetaNB andMCNB distributions. A

user interacts with MIXALIME using a command-line interface, with each step

(reading/preprocessing input data, estimating parameters, computing P-values, combining
P-values across groups, exporting data) invokedwith a separate command. The documentation
is accessible using the --help command line argument.

Overview of the sequencing data used in the study

In this study we used several high-throughput sequencing datasets obtained from different

sources.

1. To illustrate the distributions of allele-specific read counts we used 85 ChIP-Seq

datasets obtained WA01 cells and processed in ADASTRA10 (used in Figure 1B), 152
human heart left ventricle RNA-Seq samples from Sigurdsson et al.48 (used in Figure
1C), 109 human heart CAGE-Seq samples fromDeviatiiarov et al.53 (used in Figure 1D),
and 59 ATAC-Seq datasets of UDACHA listed in Supplementary Table S3 (used in

Figure 1E);
2. 109 human heart CAGE-Seq samples from Deviatiiarov et al.53 were used to compare

MIXALIME with QuASAR (Figure 3A-C and Figure 4A), two 'singleton' samples were

excluded from the comparison against BaalChIP (see Figure 3D), see below for details;

the same 109 CAGE-Seq samples were used in analysis of the sex-specific differential

allelic imbalance (Figure S1);
3. To evaluate the effect of CNVs on the naive and BAD-aware allele-specific analyses

(Figure 4B), 59 ATAC-Seq and 98 DNase-Seq samples of UDACHA listed in

Supplementary Table S3were used;
4. 3801 ATAC-Seq, 1850 DNase-Seq and 207 FAIRE-Seq samples (Supplementary Table

S6) fromGTRD73were used to build the UDACHA database.

CAGE data and preprocessing pipeline

In the primary analysis, we used 109 FASTQ files of CAGE-Seq experiments performed on 31

human hearts and described in 53. The reads were mapped against hg38 human genome using

hisat2 (v.2.2.1) with comprehensive GENCODE annotation (v.39) and --very-sensitive

preset. Second, filter_reads.py Python script (Stamatoyannopoulos Lab github) was used

to filter out the reads containing more than 2 mismatches and mapping quality < 10. Next,

SNP-calling and allelic read counting were performed using the approach of 12 for DNase I

processing pipeline and included the following steps: (1) bam files from different samples of

one individual were merged using samtools (v.1.10) merge; (2) SNP-calling was performed

using bcftools (v.1.10.2) mpileup with --redo-BAQ --adjust-MQ 50 --gap-frac

0.05 --max-depth 10000 and callwith --keep-alts --multiallelic-caller;

(3) the resulting SNPswere split into biallelic records using bcftools normwith --check-ref

x -m - followed by filtering with bcftools filter -i "QUAL>=10 & FORMAT/GQ>=20
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& FORMAT/DP>=10" --SnpGap 3 --IndelGap 10 and bcftools view -m2 -M2 -v

snps leaving only biallelic SNPs covered by 10 or more reads; (4) SNPswere annotated using

bcftools annotate with --columns ID,CAF,TOPMED and dbSNP (v.151) 83,

heterozygous variants located on the reference chromosomes with GQ ≥ 20, depth ≥ 10, and

allelic counts ≥ 5 for each allele were filtered for each individual with awk (v.5.0.1), (5)

optionally, WASP (v.0.3.4) was used together with hisat2 and filter_reads.py to find,

remap, and filter the SNP-overlappind reads that failed tomap back to the same location after

the alleles swapping according to WASP procedure, (6) Python

count_tags_pileup_new.py script was used to perform sample-level allelic read counts

with pysam (v.0.20.0) and recode_vcf.py was used to convert the resulting BED files to

VCF. Additionally, to produce VCF files containing both heterozygous and homozygous

positions, the heterozygous filter from step (4) was turned off.

To estimateMIXALIMEmodels performance using a different number of heart samples,

i.e. 10, 25, 50, and 75 randomly chosen samples out of 109, ASE estimation procedure was

repeated 5 times for each number of samples, mean Fisher’s exact test -log10(P-values),
log2(odds ratios) and number of ASEs are shown in Figure 4A with the full results available in

Supplementary Table S2.

Application of existing ASE callingmethods

To assess MIXALIME performance against other available instruments, we performed ASE

calling with QuASAR (v.0.1) and BaalChIP (v.1.0.0).

ASE calling with QuASAR was performed from WASP-filtered input VCF files with

homozygous positions and minor allele frequencies (MAF) from 1000 genomes as listed in

dbSNP (v.151). According to the QuASAR manual (https://github.com/piquelab/QuASAR), we

estimated the priors for the genotypes from MAF and used fitAseNullMulti for each

individual separately to perform genotyping followed by the ASE inference with

aseInference. To obtain the resulting significance estimations, we combined the

sample-level P-values via logitp function from the metap R package (v.1.8) and performed

Benjamini-Hochbergmultiple testing correction as inMIXALIME.

To identify ASEs with BaalChIP, the BAM files obtained afterWASP filtering were used

together with the TSV files containing the per-individual heterozygous positions and the BED

file containing the full-length chromosome regions. These data were passed to BaalChIP and

alleleCounts were used with default parameters to perform allele-specific read counting

as suggested by the BaalChIP authors (https://github.com/InesdeSantiago/BaalChIP). Next,

mergePerGroup, filter1allele, and getASB were used to identify allele-specific

events. The single-sample data (no replicates) from two individuals were excluded before the

read-counting leaving 107 samples from 29 individuals. Tomake a fair comparison, MIXALIME

results were re-collected for the same set of samples.

Chromatin accessibility data and UDACHA pipeline

UDACHA is built from short read alignments produced with bowtie284 against hg38 genome

assembly which were stored internally in the GTRD database73. The UDACHA pipeline was

mainly inherited from ADASTRA10. Briefly, PICARD was used for deduplication, followed by

GATK base quality recalibration and variant calling with GATK HaplotypeCaller. The dbSNP

151 common variant set was used for annotation83. The resulting variant calls were filtered to

meet the following requirements: (1) an SNV must be biallelic and heterozygous (GATK
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annotation GT = 0/1); (2) have read coverage ≥ 5 at both the reference and alternative alleles;
(3) listed as an SNP in the dbSNP 151 common set.

To improve the reliability of BAD calling, the samples were segregated into BAD groups

of the same cell type, experiment series (by GEO GSE or ENCODE biosample), and sharing a

similar set of variants. The latter was checked by running plink285 (plink2

--allow-extra-chr --threads 20 --make-king square), zeroing inter-sample

distances < 0.4, and clustering the samples (complete linkage, correlation metric) at the 0.1

distance threshold. For each BAD group of samples, BABACHI70 [ZENODO doi:

10.5281/zenodo.7901610] was executed with --states

"1,4/3,3/2,2,5/2,3,4,5,6" -p geometric -g 0.98. Samples with extreme

mapping bias N(Ref>Alt) / N(Ref<Alt) > 1.5 were excluded from each BAD group, here N(Ref>Alt) is the

number of variants with higher read count at the reference allele. The BAD groups with less

than 1000 variant calls in total were excluded.

Finally, separately for DNase-Seq, ATAC-Seq, and FAIRE-Seq, we have fitted the

MIXALIME MCNB and BetaNB models. For ASE calling, MCNB was used as a default

permissivemodel, and BetaNBwas used for the cell types withmore than 50 samples.

Annotating UDACHAASEs with genomic locations and eQTLs

The annotation procedure for Figure 5B was inherited from ADASTRA. To analyze an overlap

between ASEs of different types and eQTLs (Figure 5C), we used all significant "variant, gene"
pairs fromGTEx (release V8)71.

Data Availability

MIXALIME is available at pypi, github and ZENODO [doi:10.5281/zenodo.8146508]. UDACHA

database is freely accessible at https://udacha.autosome.org and the source code of the

pipeline is available at github and ZENODO [doi:10.5281/zenodo.8191902].
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Figures and Figure Legends

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 9, 2023. ; https://doi.org/10.1101/2023.11.07.565968doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.07.565968
http://creativecommons.org/licenses/by/4.0/


17

Figure 1.Challenges of ASE calling from various omics data resolved by different statistical

models.

A: A scheme representing the SNPs allele-specific coverages used asMIXALIME input is shown

on the left. The total read counts distribution visualized as heatmap is shown on the right.

B:An example of referencemapping bias found in 85 ChIP-Seq datasets fromADASTRAWA01

cells. The reference read counts distribution across the diagonal heatmap slice is shown on the

left, fitted by the binomial model. The ratio of SNPs with the Ref counts > 20 (dark blue) to

SNPs with the Ref counts < 20 (light blue) is shown in the top-left corner, percentages of both

groups of SNPs are also shown on the sides of the histogram. The reference and alternative

read counts distributions across the horizontal and vertical heatmap slices are shown on the

right, fitted by the negative binomial model.

C: An example of overdispersion found in 152 RNA-Seq datasets obtained from human left

ventricles samples described in Sigurdsson et al. 48. The reference read counts distribution

across the diagonal heatmap slice is shown on the left, fitted by the binomial (dash line) and

beta-binomial (solid line) models. The reference and alternative read counts distributions

across the horizontal and vertical heatmap slices are shown on the right, fitted by the negative

binomial (dash line) and beta negative binomial (solid line) models.

D: An example of extreme reference mapping bias and overdispersion found in 109 heart

CAGE-Seq datasets from Deviatiiarov et al. 53. The histograms are plotted in the samemanner

as in (B) and (C).

E: An example of CNVs with background allelic dosage, BAD, of 2 observed in ATAC-Seq

datasets from UDACHA. The reference read counts distribution across the diagonal heatmap

slice is shown on the left, fitted by the beta-binomial model. The reference and alternative read

counts distributions across the horizontal and vertical heatmap slices are shown on the right,

fitted by themixture of beta negative binomial models.

Abbreviations: ASE - Allele-Specific Event.
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Figure 2.ASE calling withMIXALIME.

Left: different types of omics experiments are suitable for calling allele-specific events, ASEs.

Middle: schematic illustration of ASE calling steps: reads mapping, SNP calling, imbalance

scoring. Right: ASE calling workflow. The reads remapping with WASP filtering, and

background allelic dosage reconstruction with BABACHI are optional steps denoted with

dotted lines.

Abbreviations: ASE - Allele-Specific Event, SNP - Single Nucleotide Polymorphism.
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Figure 3. MIXALIME comparison toQuASAR and BaalChIP using heart CAGE data.

A: The total number (top), the eQTLs-overlapping fraction (middle), and the ASB-overlapping
fraction (bottom) of the significant allele-specific events (ASEs) detected at different FDR

thresholds. The dashed line corresponds toQuASAR results.

B: A radar plot demonstrating the number of significant ASEs (5% FDR), Fisher’s exact test

results against eQTLs/ASBs (significance and odds ratios), and the respective fractions of ASEs.

C: Left: Venn diagrams representing the intersection between ASEs called with three

alternative MIXALIME models (beta-binomial, beta negative binomial, and marginalized

compound negative binomial) and QuASAR, 5% FDR. Middle: the intersection between ASEs

from MIXALIME BetaNB and QuASAR, the asterisk denotes the one-sided Fisher’s exact test

P-value < 10-15, odds ratio > 10. Right: the fractions of eQTLs and ASBs among

BetaNB-exclusive, QuASAR-exclusive, or overlapping ASEs.

D: Violin and box plots demonstrating the number of ASEs (5% FDR) detected in each of 29

individuals, eQTL/ASB fractions, and Fisher's exact test results for ASEs against the respective

annotations.

Abbreviations: ASB - Allele-Specific Binding event, ASE - Allele-Specific Event, eQTL -

expression Quantitative Trait Locus, FDR - False Discovery Rate, MCNB - Marginalized

Compound Negative Binomial, NB - Negative Binomial, Reg. BetaNB - regularized Beta

Negative Binomial.
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Figure 4. Performance assessment ofMIXALIME's alternative scoringmodels.

A: Bubble plots illustrating the overlap between CAGEASEs (with andwithoutWASP filtering)

and Heart eQTLs. The bubble size denotes the number of significant ASEs overlapping eQTLs,

the fill and the border color denote the statistical significance and the log-odds ratio relative to

the results of the Binomial model (left, middle) or relative to the results obtained without

WASP (right), Fisher's exact test.

B: Bubble plots illustrating the overlap between ASEs and ASBs with and without accounting
for the background allelic dosage, results are given relative to the Binomial model (left, middle)

or relative to the no-BAD approach (right). Size, fill, and colors as in (A).

Abbreviations: ASB - Allele-Specific Binding event, ASE - Allele-Specific Event, BAD -

Background Allelic Dosage, eQTL - expression Quantitative Trait Locus, MCNB -Marginalized

Compound Negative Binomial, NB - Negative Binomial, Reg. BetaNB - regularized Beta

Negative Binomial.
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Figure 5. UDACHA, a uniform large-scale database of allele-specific chromatin accessibility in

the human genome.

A: UDACHAworkflow. First, SNP-calling with GATK is performed fromGTRD read alignments.

Second, samples are grouped according to cell types and plink2 clusters, followed by BABACHI

group-specific BAD reconstruction. Finally, MIXALIME is used to call ASEs. In the end, at 5%

FDR we identified 142,312 / 105,901 / 1,167 ASEs in DNase-Seq / ATAC-Seq / FAIRE-Seq data,

respectively.

B: Chromatin ASEs distribution among different types of genomic regions. The complete bars
correspond to the full sets of rsSNPs coinciding with ASEs called from DNase-Seq (top) and

ATAC-Seq (bottom). Compared to candidate variants, the significant ASEs are more often

found in promoters and enhancers. The percentage of ASEs falling into particular types of

genomic regions is shown on bar labels. The top bar in each subpanel: significant ASEs passing

5% FDR, 84028 sites for DNase-Seq and 56014 sites for ATAC-Seq; bottom bar: candidate

ASEs passing the coverage thresholds and tested for significance, 1227242 sites for DNase-Seq

and 859702 for ATAC-Seq. The annotation procedure is the same as in ADASTRA10.

C: eQTL Enrichment of DNase-Seq (left) and ATAC-Seq (right) rsSNPs of different categories.
Y-axis: CT1↑CT2↓, rsSNPs with ASEs but opposite allelic preferences in different cell types;

CT1↑CT2↑, rsSNPs with ASEs and same allelic preferences across cell types; Single-CT, ASEs

significant in a single cell type. Non-ASEs: SNVs with FDR  above  0.05. X-axis: the number of
eQTL target genes according to GTEx eQTL data. The coloring denotes the odds ratios of the

one-tailed Fisher’s exact test for a particular cell of the table against all other rsSNPs in the

table. The gray cells correspond to non-significant enrichments with P > 0.05 after Bonferroni
correction for the total number of tested cells. The values in the cells denote the numbers of

rsSNPs.

Abbreviations: ASE - Allele-Specific Event, BAD - Background Allelic Dosage, BetaNB - Beta

Negative Binomial, CT - Cell Type, eQTL - expression Quantitative Trait Locus, FDR - False

Discovery Rate, MCNB - Marginalized Compound Negative Binomial, SNP - Single Nucleotide

Polymorphism, UTR - UnTranslated Region.
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Supplementary Data

Supplementary Figures

Supplementary Figure S1.Verifying sex-specific ASEs called byMIXALIME.

A: Y-axis: the relative difference between homozygous male and female samples, log2(Fold

Change) of read counts between samples having both reference or both alternative alleles (0/0

and 1/1 for VCF GT field). X-axis: two SNP groups split by differential ASE FDR, ≥ or < 5%.

Color denotes the ASE effect size, < or ≥ 0. P-value:Wilcoxon rank sum test.

B: Violin plots representing the sex-specific expression of ZFX. Y-axis: log2(counts-per-million)
estimated from gene counts of 53. X-axis: sex. P-value:Wilcoxon rank sum test.

Abbreviations: CPM - Counts-Per-Million, ES - Effect Size, FC - Fold Change, FDR - False

Discovery Rate.
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Supplementary Figure S2.Comparison of UDACHAASEs called in different experiment types.

A: Venn diagrams for ASEs identified from DNase-Seq, ATAC-Seq, and FAIRE-Seq, unique

rsSNPs carrying significant ASEs are counted.

B: Scatter plot of ASEs significance from ATAC-Seq and DNase-Seq. X-axis: -log10(FDR)

estimated from ATAC-Seq, the sign corresponds to the preferred allele, Ref < 0 and Alt > 0.

Y-axis: signed -log10(FDR) from DNase-Seq. The color represents significance and concordancy

(green: concordant, pink: discordant), and the gray dots denote SNPs with FDR > 5%. Only

ASEs with significant allelic bias in both ATAC-Seq and DNase-Seq in the same cell type are

checked for being concordant or discordant.

Abbreviations: ASE - Allele-Specific Event, FDR - False Discovery Rate.
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Supplementary Figure S3. Schematic guidelines forMIXALIME practical application.

MIXALIME allows direct ASE estimation from the VCF files generated by an SNP caller from

BAM alignments. To obtain the input files forMIXALIME, the users may start from FASTQ files,

align them to the genome, and perform SNP calling or, alternatively, use premade alignment

files to call SNPs or the existing premade VCF files. In former cases, theWASP remapping and

filtering procedure may be additionally performed to improve the ASE calling, especially for

low sample sizes. If the external genotyping information is available it can be used to expand or

filter the SNP calls. With the VCF files, BABACHI can be used to reconstruct the BADmaps for

aneuploid samples before running MIXALIME. Finally, ASEs can be estimated with the

MIXALIME selecting the model according to the sample size (see also main Figure 4A). Given
the genotype calls are reliable (e.g. available from an external data or called from a large

collection of samples), MIXALIME default filter requiring at least 5 reads at both alleles can be

relaxed or omitted.

Abbreviations: ASE - Allele-Specific Event, BAD - Background Allelic Dosage, BetaNB - Beta

Negative Binomial, MCNB - Marginalized Compound Negative Binomial, NB - Negative

Binomial, SNP - Single Nucleotide Polymorphism.
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Supplementary Figure S4.Visualization of the BetaNBmodel fits withMIXALIME.

A: BAD = 1, B: BAD = 2. Both plots use the data from 98 DNase-Seq samples of Figure 4B.
Parameter estimates were obtained with local local maximum likelihood. is inferred from the𝑟
line equation with being the current sliding window position. Instead of𝑟(𝑧,  𝑎,  𝑏) 𝑧
concentration , dispersion is plotted for visual clarity as tends to grow to infinity asκ 1

κ κ

coverage increases. Goodness of fit (RMSEA) was computed for particular slices corresponding

to the window position. PDFs of those slices are drawn alongside heatmaps with the first figure

being the PDF of the reference allele read count conditioned on the alternative allele read

count and the second is vice-versa.

Abbreviations: BAD - Background Allelic Dosage; RMSEA - Root Mean Square Error of

Approximation
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SupplementaryMethods

Detailed description of theMIXALIME statistical framework.

Supplementary Tables

Supplementary Table S1.ASEs called by differentMIXALIMEmodels, QuASAR, and BaalChIP,

and the intersection between ASEs and GTEx eQTLs / ADASTRAASBs.

Supplementary Table S2. The results of Fisher’s exact test for association between eQTLs and
ASEs called by differentMIXALIMEmodels with or withoutWASP pre-filtering.

Supplementary Table S3. The datasets used to evaluate the effect of BABACHI-generated
BADmaps on theMIXALIMEASE calls.

Supplementary Table S4. The results of Fisher’s exact test for association between ASBs and
ASEs called byMIXALIME basic andmixturemodels.

Supplementary Table S5. Sex-specific differential ASEs detected in heart CAGE data.
Supplementary Table S6.Overview of the datasets used to construct the UDACHA database.

Supplementary Table S7.Cell type-specific comparison of UDACHAASEs and ADASTRA

ASBs.
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