

1 **Title:** Insectivorous birds and bats outperform ants in the top-down regulation of arthropods
2 across strata of a Japanese temperate forest

3 Elise Sivault^{a,b*}, Jan Kollross^{a,b*}, Leonardo Re Jorge^{a,b}, Sam Finnie^{a,b}, David Diez-Méndez^{a,b},
4 Sara Fernandez Garzon^{a,b}, Heveakore Maraia^{a,b}, Jan Lenc^{a,b}, Martin Libra^a, Masashi
5 Murakami^c, Tatsuro Nakaji^d, Masahiro Nakamura^e, Rachakonda Sreekar^{a,f}, Legi Sam^a,
6 Tomokazu Abe^c, Matthias Weiss^{a,b}, Katerina Sam^{a,b}

7 ^aBiology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske
8 Budejovice, Czech Republic

9 ^bUniversity of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic

10 ^cFaculty of Science, Chiba University, Chiba, Japan

11 ^dSapporo Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido
12 University, Sapporo, Hokkaido, Japan

13 ^eTomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido
14 University, Sapporo, Hokkaido, Japan

15 ^fCentre for Biodiversity and Conservation Science, School of Environment, The University of
16 Queensland, Queensland, Australia

17 *Elise Sivault and Jan Kollross share the position of the first author.

18 **Corresponding author:** Elise Sivault, Biology Centre CAS, Institute of Entomology, Ceske
19 Budejovice, Branisovska 31, Czech Republic, sivault.e@gmail.com.

20

21

22 **Abstract**

23 1. Birds, bats, and ants are recognized as significant arthropod predators. However, empirical
24 studies reveal inconsistent trends in their relative roles in top-down control across strata. Here,
25 we describe the differences between forest strata in the separate effects of birds, bats, and ants
26 on arthropod communities and their cascading effects on plant damage.

27 2. We implemented a factorial design to exclude vertebrates and ants in both the canopy and
28 understory. Additionally, we separately excluded birds and bats from the understory using
29 diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and
30 assessed herbivory damage.

31 3. Arthropods responded similarly to predator exclusion across forest strata, with a density
32 increase of 81% on trees without vertebrates and 53% without both vertebrates and ants.
33 Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat
34 exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were
35 excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone
36 increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-
37 significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod
38 density or herbivory damage across strata.

39 4. Our results reveal that the effects of birds and bats on arthropod density and herbivory
40 damage are similar between the forest canopy and understory in this temperate forest. In
41 addition, ants were not found to be significant predators in our system. Furthermore, birds, bats,
42 and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These
43 findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining
44 ecological balance across different strata of a temperate forest.

45 **Keywords:** Arthropod density, herbivory damage, predator exclosures, forest canopy, forest
46 understory, trophic cascades.

47 **Introduction**

48 Arthropod herbivores play a critical role as primary consumers of leaf tissue in forest
49 ecosystems (Coley, 1991; Coley & Barone, 1996). This may have various effects not only on
50 individual plants but also on vegetation as a whole, such as plant growth and fitness (Garcia &
51 Eubanks, 2019), species composition (Bagchi et al., 2014), and nutrient cycling (Belovsky &
52 Slade, 2000; Chapman et al., 2003).

53 By feeding on arthropod herbivores, insectivorous predators indirectly increase plant
54 biomass, creating what is commonly known as top-down control or a trophic cascade (Paine,
55 1966, 1980). However, the strength of top-down control by insectivorous predators varies due
56 to factors such as prey availability (Garrett et al., 2022), predation rate (i.e., the consumption
57 of prey by predators per unit of time; Thomine et al., 2020), and the magnitude of non-
58 consumptive effects (i.e., alterations in prey behaviour in the presence of predators; Kollross
59 et al., 2023). Given the complexity of food webs, the degree of top-down control is context-
60 dependent, leading to variations even within a single forest and among different forest strata.
61 Unfortunately, research on trophic cascades has so far predominantly focused on easily
62 accessible forest understories (Denmead et al., 2017; Ocampo-Ariza et al., 2023), limiting our
63 understanding of their full extent (e.g., forest canopy).

64 The impact of different predator groups on arthropod densities can vary, and when
65 their effects overlap, it can become challenging to distinguish the individual contributions of
66 each predator group (Mooney, 2007; Perfecto & Vandermeer, 1996; Richards & Coley, 2007;
67 Sih et al., 1998). An obvious step to evaluating trophic cascades is thus to observe what

68 happens when the abundance or community composition of predators is altered. To address
69 this, a common experimental approach is the use of exclosure experiments (Maas et al.,
70 2019), which exclude different predator groups from insect prey and foliage.

71 Vertebrate insectivores such as birds and bats often act as top predators of terrestrial
72 arthropods (Böhm et al., 2011; Johnson et al., 2010; Karp & Daily, 2014; Maas et al., 2013;
73 Mooney et al., 2010; Nyffeler et al., 2018). Previous research has generally emphasised the
74 significant impact of insectivorous birds on arthropod communities (Bael et al., 2008;
75 Mooney et al., 2010). However, it is important to note that most of these studies did not solely
76 assess the effect of bird exclusion but rather considered the impact of both bird and bat
77 exclusions combined (Greenberg et al., 2000; Holmes et al., 1979; Sam et al., 2023; Singer et
78 al., 2017; Van Bael et al., 2003), with a few exceptions (Bouarakia et al., 2023; Cassano et al.,
79 2016; Kalka & Kalko, 2006; Williams-Guillén et al., 2008). The classical approach of
80 covering foliage with a net successfully excludes both predator groups but does not allow the
81 predatory effects of each group to be assessed separately. As a result, the individual
82 contributions of insectivorous birds and bats to top-down control remain poorly understood.

83 In addition to vertebrate insectivores, certain groups of arthropod insectivores,
84 particularly ants, are also expected to have a significant role in trophic cascades. Although
85 they have been extensively studied as natural enemies and biological control agents (Mestre et
86 al., 2012; Philpott & Armbrecht, 2006; Rosumek et al., 2009; Schifani et al., 2020; Tobing &
87 Kuswardani, 2018), their importance as key predators remains uncertain both in tropical and
88 temperate forests (Pérez-España, 2021; Sanders & van Veen, 2011; Thurman et al., 2019) and
89 various other habitats (Blaise et al., 2021; Bulgarini et al., 2021; Ohyama et al., 2020; Tuma
90 et al., 2020). The ambiguity persists because only a limited number of studies have aimed to
91 exclude ants whilst also considering vertebrate predators. Additionally, these studies often
92 focus either on the forest understory (Denmead et al., 2017; Ocampo-Ariza et al., 2023) or the

93 canopy (Singer et al., 2017). Findings have been mixed, with studies showing both negative
94 (Denmead et al., 2017; Singer et al., 2017) and positive (Ocampo-Ariza et al., 2023) effects of
95 ants on the abundance of mesopredators and herbivorous arthropods.

96 The combined predatory activity of multiple groups may have additive (Morrison &
97 Lindell, 2012; Williams-Guillén et al., 2008), synergistic (Losey & Denno, 1998) or even
98 antagonistic effects (Ferguson & Stiling, 1996; Mooney, 2007) on the control of arthropods.
99 Compared to ants, insectivorous birds and bats primarily target larger arthropods (Philpott et
100 al., 2004; Van Bael et al., 2003), and their diurnal and nocturnal foraging behaviour gives
101 them access to distinct prey types. In such instances, their combined impact on arthropod
102 communities equals the sum of the arthropods consumed by each group independently (i.e.,
103 additive effect). That considered, and acknowledging the distinct dietary preferences observed
104 among ants, birds, and bats, we expect that they will evenly and strongly affect arthropod
105 communities and that their effects will be additive [H1].

106 It remains unclear whether, or under which conditions, predators indirectly affect
107 plants (Mooney et al., 2010). This uncertainty emerges because predators can also function as
108 intraguild predators, consuming predatory arthropods. This can have a negative effect on
109 plants, and consequently, when predators simultaneously consume predatory arthropods and
110 herbivores, their net effect on plants could be dependent on the balance between these two
111 factors (Gras et al., 2016; Ocampo-Ariza et al., 2023). While the theory on trophic
112 interactions predicts that the effect of vertebrate exclusion might be moderately
113 counterbalanced by the release of spiders, carabid beetles and other predatory arthropods
114 (Hölldobler & Wilson, 1990), the existence of such release in the absence of ants appears to
115 be minimal, at least in tropical habitats (Gras et al., 2016). We can expect that the impact of
116 birds and bats as intraguild predators on arthropods will have a relatively mild cascading

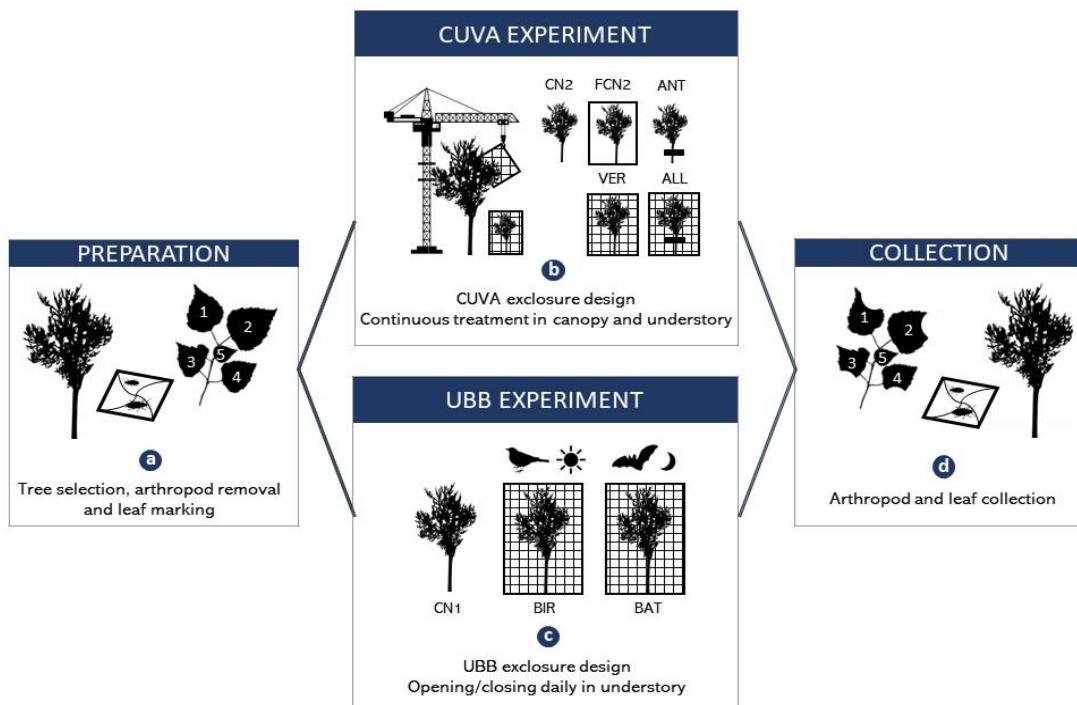
117 effect on plant damage [**H2a**]. Conversely, ants with comparatively weaker intraguild
118 predation abilities are likely to exhibit a more pronounced influence on plant damage [**H2b**].

119 Forest canopies are crucial for the overall functioning of forest ecosystems (Ozanne et
120 al., 2003). According to ecological theories, species interactions are more intense and species
121 richness is higher in the warmer and more productive forest canopies than in the cooler
122 understories (Basset et al., 2015; Janzen, 1970; Nakamura et al., 2017; Schemske et al., 2009).

123 However, this is not always consistent with empirical findings. Various studies have reported
124 an opposite or variable pattern of abundance and diversity of different arthropod taxa across
125 tropical, subtropical, and even temperate forest canopies (Aikens et al., 2013; Basset et al.,
126 2003; Compton et al., 2000; De Dijn, 2003; De Vries, 1988; DeVries et al., 1997; Haack et
127 al., 2022; Hill et al., 1992; Intachat & Holloway, 2000; Larrivée & Buddle, 2009; Schulze et
128 al., 2001; Ulyshen, 2011). Moreover, the effects of predators on plants through trophic
129 cascades have seldom been investigated across the strata of temperate forests (Aikens et al.,
130 2013; Böhm et al., 2011).

131 According to the optimal foraging theory, predators should allocate more time to
132 foraging in areas with higher prey density to reduce search time (Balza et al., 2020; Emlen,
133 1966; MacArthur & Pianka, 1966; Piel et al., 2021). Additionally, the majority of birds in
134 temperate forests are expected to be foraging strata generalists (Marra & Remsen Jr, 1997).
135 Similarly, in the northern hemisphere, there is no clear stratification of bat species
136 composition between the canopy and understory (Collins & Jones, 2009; Kalcounis et al.,
137 1999; Plank et al., 2012; Zeus et al., 2017). In contrast, understory dominance is more
138 pronounced among ants in temperate forests (Seifert, 2008). In light of these observations, we
139 predict that the impact of predators on arthropods will be more pronounced in strata with
140 higher arthropod densities, thereby attracting birds and bats [**H3a**]. Conversely, following our

141 hypothesis [H2b], we expect a more pronounced effect of predators on plants in the forest
142 understory, which is anticipated to be richer in ants in temperate forests **[H3b]**.


143 To address the aforementioned hypotheses, we individually excluded birds, bats and
144 ants in a fully factorial design that allowed us to separate the effects of predators on the
145 arthropod communities in the understory and canopy of a temperate forest in Japan. We
146 complemented our research on the impact of predators on arthropods and plants by
147 conducting surveys of the excluded predator communities.

148

149 **Materials and Methods**

150 ***Study site***

151 We conducted our experiment in the Tomakomai experimental forest in Japan (42° 40' 48.0"N
152 141° 35' 24.0"E, 50m a.s.l.). The study area covers a total of 2,720 hectares and has canopy
153 crane access (Figure S1.1 in Appendix S1). It is situated on a hillside within the district,
154 approximately 4 kilometres from the Pacific Ocean. The forest belongs to a cool, temperate
155 zone and is composed of approximately 25% artificially planted conifers (e.g., *Picea glehnii*
156 and *Abies sachalinensis*) and 75% young secondary deciduous forest, mainly occupied by
157 broad-leaf trees dominated by oak (*Quercus crispula*), ash (*Fraxinus lanuginosa*), maple
158 (*Acer mono*, *A. palmatum*) and elm (*Ulmus davidiana*), regenerated after typhoon damage
159 (Wu et al., 2019). The temperature ranges from -22°C to 28 °C depending on seasonality.
160 Annual precipitation ranges between 800 to 1,600 mm.

161

162 Figure 1. Schematic design of the experimental setup used in the study: (a) Pre-selection of
163 individuals, removal of arthropods and assessment of preexisting herbivory on developing
164 leaves to establish a baseline for the experiment; (b) Canopy - Understory Vertebrate and Ant
165 exclusion (CUVA) experiment setup performed on branches in the canopy and on saplings in
166 the understory; (c) Understory Bird and Bat exclusion (UBB) experiment, performed only on
167 saplings in the understory; (d) Final arthropod collection and leaf herbivory survey at the end
168 of each experiment. CN1 and CN2 = control treatments, FCN2 = frame-control treatment,
169 ANT = ant exclusion, VER = exclosure of vertebrate predators, ALL = exclosure of
170 vertebrates and ants, BIR - bird exclosure, BAT = bat exclosure.

171 ***Treatment preparation***

172 We preselected eight plant species in the understory and seven in the canopy (Table S1.1)
173 based on their abundance in the forest understory and canopy, and accessibility from the crane
174 (Figure 1a). For each plant species, we identified suitable individuals - “saplings” (i.e., young
175 trees, 1.5-3 m tall) in the understory and canopy “branches” (i.e., 1-1.5 m long branches of

176 adult trees). The branches in the canopy had a comparable size and number of leaves to the
177 saplings in the understory. They extended to heights ranging from 12 to 22 metres (Matsuo et
178 al., 2022), resulting in a vertical separation of approximately 10.5 to 20.5 metres between the
179 canopy and the understory.

180 We carried out two distinct experiments, each was conducted twice; first in 2018 and
181 then replicated in 2019, using a distinct set of individuals each year. A total of 120 saplings
182 were used each year for the Understory Bird and Bat exclusion (UBB) experiment, which was
183 conducted exclusively in the understory. For the Canopy - Understory Vertebrate and Ant
184 exclusion (CUVA) experiment, we used 84 branches and 160 saplings each year (Table S1.2
185 and S1.3). To establish a baseline at the beginning of the experiment, we removed all
186 arthropods from the understory saplings and canopy branches. After the first leaves were fully
187 developed, we randomly chose three small twigs from each sapling, once having at least ten
188 leaves and no herbivory. Each twig was marked and had ten leaves numbered individually
189 with a permanent marker. Then, we randomly assigned the individuals to a given experiment
190 (UBB or CUVA) and a treatment.

191 ***Canopy - understory vertebrate and ant exclusion (CUVA)***

192 The CUVA experiment was conducted in both the canopy and understory (Figure S1.1),
193 between May and July 2018 and 2019 (Table S1.4), until the end of the growing season which
194 was determined by the leaf fall of *Prunus* species. The experiment lasted 65 ± 3 days. The
195 experimental design consisted of setting up exclosures of vertebrates (VER), ants (ANT), and
196 all predators combined (ALL). Each treatment was matched with a CUVA experiment control
197 treatment (CN2), and a frame-control treatment (FCN2, Figure 1b). Each treatment was set on
198 five individual saplings in the understory and three branches in the canopy for each of the
199 eight/seven plant species in each year of collection (Table S1.2).

200 We constructed vertebrate exclosures (VER) using bamboo poles covered with
201 agricultural transparent green netting, with a mesh size of 3 x 3 cm, which was comparable to
202 mesh sizes used in other enclosure studies (e.g., Greenberg: 29x29 mm, Greenberg et al.
203 2000; Mols and Visser: 25x25 mm, Mols & Visser 2002; Van Bael: 20x20 mm, Van Bael et
204 al. 2003). Each enclosure measured 2 x 2 x 2.5 m and had a total volume of 10 m³ in the
205 understory, while in the canopy, they measured 1.5 x 1.5 x 1.5 m with a volume of 3.38 m³,
206 enclosing an average of 1.63 m² (\pm S.E. 0.06) of leaf area. The vertebrate exclosures were set
207 permanently for the whole duration of the experiment in each year. The nets made firm
208 contact with the ground in the lower part of the exclosures (Figure S1.2), and we securely
209 fastened them to branches for canopy branches. Our observations confirmed that small
210 insectivorous lizards and terrestrial mammals could access the exclosures, although we rarely
211 observed them. We took special care to ensure that the foliage of the inner sapling did not
212 touch the netting or cage construction, preventing flying vertebrates from accessing
213 arthropods through the mesh. Importantly, the enclosure materials neither attracted arthropods
214 nor caused damage to leaves or branches, and they did not reduce light exposure.

215 Ants (ANT) were excluded using a Tanglefoot sticky pest barrier (Philpott et al., 2004;
216 Philpott et al., 2008). We applied the adhesive in a 10-15 cm wide stripe around the entire
217 circumference at either the breast height of sapling trunks or the thickest section of canopy
218 branches. Additionally, we removed all tall herbs and foliage in the surrounding area that
219 could act as vegetation bridges, so the individual tree would not become accessible to ants
220 after the treatment was set up.

221 To exclude all predators (ALL) we used a combination of the aforementioned
222 methodology to exclude vertebrates and ants. Additionally, tangle glue was applied along any
223 supportive ropes attached to the cage that could be used as a bridge for foraging ants.

224 The controls (CN2) were not enclosed by any constructions or protected by a
225 tanglefoot barrier. The frame-controls (FCN2), on the other hand, were surrounded by
226 identical bamboo constructions with dimensions 2 x 2 x 2.5 m (Figure S1.2). However, we
227 did not surround these structures with agricultural nets. We used this treatment to investigate
228 whether the construction had any unintended effects on the experiment, such as deterring
229 vertebrate predators or attracting more mesopredators.

230 ***Understory bird and bat exclusion (UBB)***

231 The UBB experiment was conducted between May and June in 2018 and 2019 (i.e., the whole
232 experiment was replicated twice) (Table S1.4). The exclosure experiment always lasted 30 ± 2
233 days. We set up exclosures for birds (BIR) and bats (BAT) with additional UBB experiment
234 control saplings (CN1) (Figure 1c). Each of the three treatments was set on five individual
235 saplings per plant species each year (Table S1.3). We exclusively conducted this experiment
236 in the understory.

237 To exclude birds (BIR) or bats (BAT) separately, we used similar exclosure cages to
238 those used for the VER treatments (Figure S1.2). The netting was pulled up to allow predators
239 to access the sapling and down to exclude them. We moved the netting up or down ± 30 min
240 around sunrise and ± 30 min around sunset, ca. 4:15 AM and ca. 6:40 PM in mid-May,
241 respectively, adjusted to the real sunrise and sunset daily. For BIR exclosures, we opened the
242 exclosures during the night and closed them during the day and vice versa for BAT. As for
243 CN2, individuals in CN1 were only marked.

244 ***Collection of the experiments***

245 The leaves marked at the beginning of the experiments were collected at the end of the
246 experiments (Figure 1d). Individual leaves were scanned (EPSON, 600 dpi, colourful tiff
247 format) within 12 hours of collection (Figure S1.2). To analyse insect herbivory, we first

248 outlined any missing parts of leaves in Photoshop® using the protocol established by Sam et
249 al. (2020). Then, we calculated the remaining area (a) and the full expected area of each leaf
250 (b), in cm^2 using ImageJ version 1.47 (National Institute of Health, USA) in order to calculate
251 the total area eaten by herbivores (c), $(c = b - a)$ per leaf. We then calculated the proportion of
252 leaf area loss as c/b . To determine the total leaf area of each individual sapling or branch, we
253 calculated the mean leaf area based on the leaves collected for herbivory assessment. Then we
254 multiplied it by the total leaf count in each sapling or branch using the mean value obtained
255 from three independent estimations conducted by sampling technicians.

256 To survey the effect of our treatments at the end of each experiment, we first accessed
257 the individuals and cut open the cages where needed. We lowered the crown of the
258 individuals above a 1.5 x 1.5 m beating sheet, shook the foliage vigorously five times and
259 quickly captured all arthropods that had fallen on the sheet (Figure S1.2). We then inspected
260 the leaves for any concealed arthropods and took notes on any arthropods that escaped during
261 the beating process. We stored the arthropods in vials filled with DNA grade 95% ethanol
262 solution. All individual arthropods were later categorised into morpho-species, measured, and
263 identified into their taxonomic order in the laboratory in the Czech Republic. Individuals were
264 then assigned to one of four feeding guilds: predator, leaf chewer, sapsucker, or no
265 relationship (i.e., arthropod with no consumptive effect on other arthropods or plants, NR).
266 The developmental stage of the arthropods was taken into account when assigning them to
267 feeding guilds. For instance, adult Lepidoptera were classified as having "no relationship,"
268 while their caterpillars were categorised as "chewers". To calculate arthropod density, the
269 number of arthropod individuals was determined per square metre of total leaf area of the
270 individual sapling or branch. Closer identifications were done where needed to assign each
271 individual to a given feeding guild.

272 **Predator survey**

273 We used baits to survey both terrestrial (those that nest or forage on or in the leaf litter) and
274 arboreal (those that forage or nest in the canopy) ants. The baits were exposed on eight
275 randomly selected tree individuals of each of the eight focal plant species (i.e., 64 saplings in
276 the understory and 64 branches in the canopy) during the second year of collection (i.e.,
277 2019). We selected trees and branches different from those used in the exclosure experiment
278 for the ant survey to avoid the disturbance of the experiment. Yet, the trees used for the ant
279 survey were growing in the same plot but randomly scattered among the individuals used for
280 the exclosures and were of a similar size and amount of foliage. Two types of baits (each
281 roughly 2-3 cm³) were used: 1) tuna chunks in vegetable oil (Giana®) and 2) cotton balls
282 soaked in sugar paste and wrapped in a piece of gauze. Baits were set out at each selected
283 sapling or canopy branch, attached with a string and separated by at least 20 cm, and an
284 alternating position of the bait was used (i.e., lower or higher on the trunk of saplings, and
285 either closer or further from the trunk on canopy branches, or altering positions on a fork-
286 shaped branch if available). We checked the baits after 4 hours of exposure and visually
287 morphotyped and counted any ants feeding on them. Up to five individuals of each
288 morphotype crawling on the bait were collected and put into 2 ml vials filled with DNA-grade
289 ethanol (99%). During sampling, information about the time, weather conditions, bait
290 position, ant morphotype and the abundance per morphotype was recorded on datasheets. We
291 later identified ants in the laboratory using the species level key (Ichinose, 1990; Imai et al.,
292 2003) based on records of existing ant species at the study site (Ichinose, 1990). While
293 collecting the baits, the surrounding branches were examined for additional ants that may
294 have been feeding on the baits prior to inspection.

295 We used point counts and Song Meter recordings to assess bird communities. Point
296 counts were carried out at 16 points regularly spaced along a 2,350-m transect at the study

297 site; successive points were 150 ± 5 m apart to avoid overlap and up to 120 m apart in
298 elevation. All birds seen or heard within a fixed radius of 0–50 m (estimated or measured by a
299 laser rangefinder) were recorded (Sam et al., 2019), and the height of the individual above
300 ground was noted. We started surveys 15 minutes before sunrise, each count lasted 15
301 minutes so that all 16 points were surveyed before 11:00 (i.e., such a survey on all 16 points
302 represents one replication in time) (Sam et al., 2019) during the second year of collection (i.e.,
303 2019). All points were surveyed equally, and the survey was replicated fifteen times (i.e., in
304 15 days). A Song Meter SM3BAT (Wildlife Acoustics Inc.) with one external acoustic
305 (SMM_A1, Wildlife Acoustic) and one ultrasonic (SMM_U1, Wildlife Acoustic) microphone
306 was set to record the first 10 minutes of every 30 minutes (10 min recording, 20 min sleeping)
307 from 3:00 AM to 9:00 PM. The Song Meter was set up for 15 days in the forest canopy (17m
308 above the ground) during the first month of the experiment and for 15 days in the forest
309 understory (1.5m above the ground) during the second month of the first year of collection
310 (i.e., 2018). We used manual identification of the bird calls from the recordings and
311 determined species richness and relative abundances of birds in the understory and canopy.

312 Similarly, we estimated bat communities using the same Song Meter. The Song Meter
313 was set for 14 days in the forest canopy and 14 days in the forest understory during the second
314 year of collection (i.e., 2019) using the same parameters as the bird survey. The recordings
315 were divided into five-second files and analysed by opening each WAV file in Kaleidoscope
316 Pro Software (Wildlife Acoustics Inc.) and manually inspecting the spectrograms for bat
317 echolocation pulses. The sampling rate was 192 kHz. Echolocation call types were recognised
318 from the recordings and attributed to a bat species (when possible) based on literature (Fukui
319 et al. 2004). We measured bat activity from the Song Meter recordings as a proxy of
320 abundance. We defined a ‘bat pass’ as a sequence with at least two recognisable echolocation
321 pulses per species emitted by a flying bat within a 5-second sound file (Kerbiriou et al., 2019).

322 Bat activity was quantified as the number of bat passes recorded for each species. Later on,
323 we used the Handbook of the Mammals of the World (Zachos, 2020) and Handbook of the
324 Birds of the World (Del Hoyo et al., 1996) to obtain the body weight and feeding guild of
325 each bird or bat species to determine the biomass of insectivorous predators at each forest
326 strata.

327 ***Statistical analysis***

328 We first built linear mixed-effect models using the package “lme4” (Bates et al., 2015), to test
329 the effect of treatment (factor of 4 levels), strata (factor of 2 levels) and their interaction on
330 log-transformed total arthropod densities (number of individuals per cm² of foliage) and
331 arthropod densities partitioned into four feeding guilds: chewers, mesopredators, sapsuckers
332 and no relationship (hereafter referred to as NR) for the CUVA experiment. All the models
333 additionally contained the sampling year (factor of 2 levels) as a fixed effect and individual
334 trees (factors of 361 levels) and plant species (factor of 8 levels) as random effects. We also
335 considered strata both as a fixed effect and as a random slope for the plant species (referred to
336 as Plant species: Strata in Table 3) to account for species differences between strata. Then, we
337 ran generalised linear mixed-effect models using the package ‘glmmTMB’ (Brooks et al.,
338 2017), using a beta error distribution and the same predictors as above to model herbivory
339 damage (the proportion of the leaf area lost per branch). All the models contained the
340 sampling year as a fixed effect and individual trees, branches (factor of 487 levels) and plant
341 species as random effects. We again considered strata both as a fixed effect and as a random
342 slope for the plant species. To select the best models, we used the AICctab function from the
343 ‘bbmle’ package (Bolker & Bolker, 2017), which computes the corrected Akaike information
344 criterion of all our models (Table S2.1, S2.2). For each best model, we obtained estimated
345 marginal means (= emmeans) and comparisons among all variable levels (Table S2.3, S2.4,

346 S2.5, S2.6, S2.7), using the ‘emmeans’ package (Lenth, 2018). We controlled the model’s
347 quality and fit with the ‘performance’ package (Lüdecke et al., 2021).

348 We then constructed linear mixed-effect models to test the effect of treatment (factor
349 of 3 levels) on log-transformed total arthropod densities and arthropod densities partitioned in
350 four feeding guilds: chewers, predators, sapsuckers and NR for the UBB experiment. All the
351 models contained the sampling year as a fixed effect and plant species (factor of 8 levels) as a
352 random effect. Then, generalised linear mixed-effect models using a beta error distribution
353 were used to determine the effect of treatment on herbivory damage. All the models contained
354 the sampling year as a fixed effect and plant species and individual trees (factor of 240 levels)
355 as random effects. The best models were selected following the same method as for the
356 CUVA experiment (Table S2.8, S2.9), as well as for their estimated marginal means (Table
357 S2.10).

358 We used Wilcoxon rank sum tests to compare total arthropod densities, predator,
359 chewer, sapsucker and NR densities, and herbivory between canopy and understory control
360 treatments (CN2) as well as total arthropod and mesopredator densities between control
361 (CN2) and frame-control (FCN2) in the understory. All analyses were performed using R
362 Statistical Software (v4.3.1; R Core Team, 2020).

363 **Results**

364 ***Arthropod density and herbivory damage after the CUVA experiment***

365 In total, we collected 10,649 arthropods from 488 individual branches and saplings across 9
366 plant species (i.e., two years combined). We found that the overall arthropod densities, as well
367 as predatory arthropod densities, on control individuals, were significantly lower in the
368 canopy than in the understory ($W = 2245, P = 0.002$ and $W = 2539, P < 0.001$) (Figure S3.1),

369 whereas the arthropod chewer, sapsucker and NR densities on controls did not vary
370 significantly between forest strata (see Table 1 for more details).

371

372 Table 1: Mean arthropod density per square metre (i.e., total and split into feeding guilds) and
373 herbivory damage (%) found in the control individuals in the canopy and understory (\pm
374 standard error). Significant comparisons between the canopy and understory are marked as
375 follows: * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$.

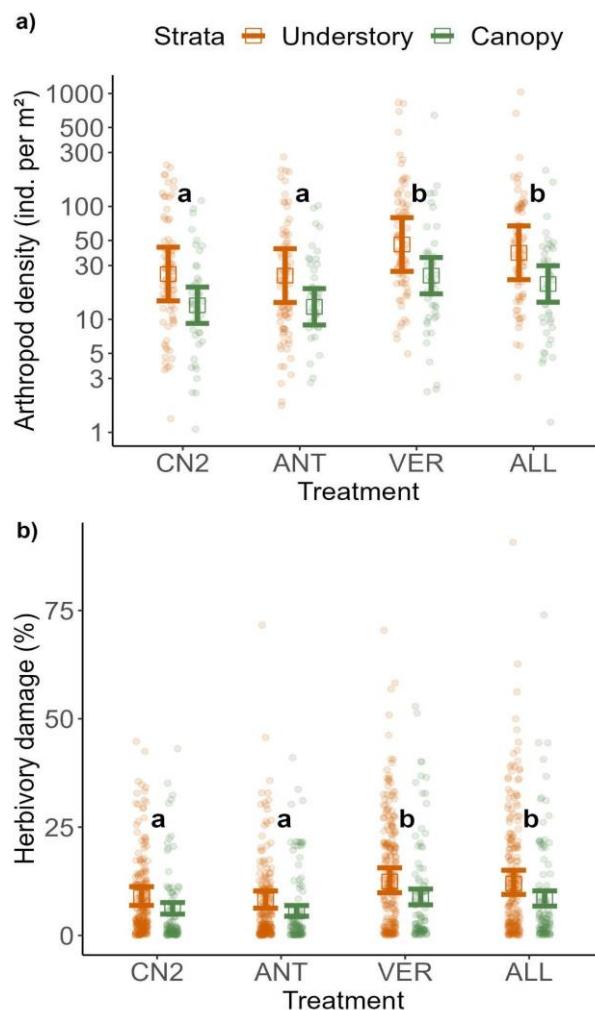
Strata	Total arthropods **	Chewers	Predators ***	Sapsuckers	NR	Herbivory (%) ***
Canopy	22.2 \pm 3.9	2.8 \pm 0.5	5.0 \pm 1.0	2.9 \pm 0.6	11.4 \pm 3.2	5.1 \pm 0.5
Understory	46.1 \pm 6.0	13.2 \pm 3.9	24.3 \pm 4.3	1.9 \pm 0.5	6.6 \pm 1.4	8.5 \pm 0.3

376

377 Ant exclusion was relatively effective, we only collected a total of 49 ants in ALL and
378 ANT understory treatments (which excluded ants) and 3 ants in the canopy. In contrast, 140
379 and 100 ants were found in VER and CN2 understory treatments respectively, accounting for
380 approximately 7% of all collected arthropods, while only 4 ants were recorded in VER and
381 CN2 in total in the canopy (Table S3.1).

382 In both the canopy and understory, only VER and ALL exclusions led to a significant
383 increase in arthropod density (Figure 2a). Arthropod density increased by 82 % in VER and
384 53 % in ALL compared to the controls ($z = -5.086$, $P < 0.001$; $z = 3.631$, $P = 0.001$,
385 respectively) (Table 2) in both the canopy and understory. The effect of ANT exclusion did
386 not differ significantly from the control in both the canopy and the understory (Table 2 and
387 Table S2.11).

388 Among the control treatment individuals, herbivory damage was significantly higher
389 in the understory than in the canopy ($W = 1290370$, $P < 0.001$) with a 60 % increase in
390 herbivory in the understory (Table 1).


391 In both the canopy and understory, only VER and ALL exclusions led to a significant
392 increase in herbivory damage. In the canopy, herbivory increased by 42 % in VER and 36 %
393 in ALL (Table 2) compared to the controls ($z = -5.386$, $P < 0.001$; $z = 4.726$, $P < 0.001$,
394 respectively) (Figure 2b). In the understory, herbivory increased by 42 % and 35 % (Table 2)
395 in comparison to the controls ($P < 0.001$) (Figure 2b). The effect of ANT exclusion did not
396 differ significantly from the controls in both the canopy and understory (Table 2).

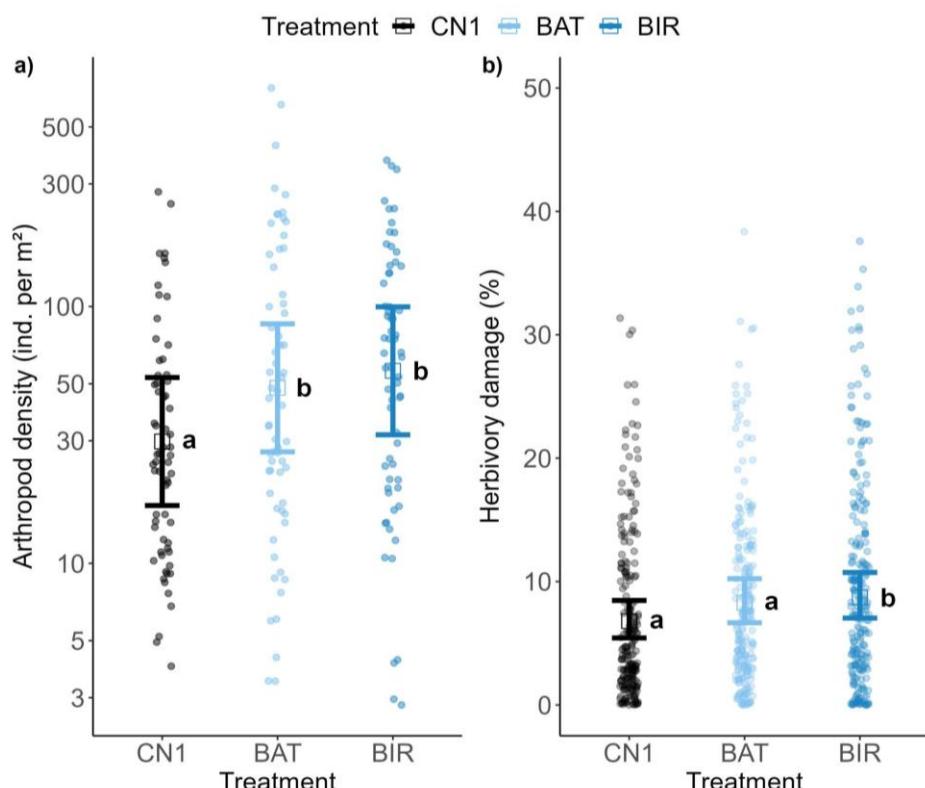
397 Table 2: The percentage increase or decrease of arthropod density and herbivory damage
398 between VER, ALL, and ANT treatments compared to CN2 (controls). The significance is
399 marked as follows: * $P \leq 0.05$, ** $P \leq 0.01$, *** $P \leq 0.001$.

400

	Arthropod density		Herbivory damage	
	Canopy	Understory	Canopy	Understory
VER-CN2	82 %***	82 %***	42 %***	42 %***
ALL-CN2	53 %***	53 % ***	36 %***	35 %***
ANT-CN2	-2 %	-3 %	-9 %	-9 %

401

402


403 Figure 2: Total densities of all arthropods per square metre of foliage (a) and herbivory
404 damage (%) (b) on surveyed saplings and branches of the CUVA (Canopy and Understory
405 Vertebrate and Ant exclusion) experiment. Each individual data point represents (a) the
406 density of arthropods or (b) the percentage of herbivory damage on either a canopy branch
407 (green) or sapling individual in the understory (orange). The y-axis of (a) is on a log scale.
408 Square and whiskers mark estimated marginal means and standard errors of the most
409 parsimonious model. Significant pairwise comparisons between predictors were tested by
410 Tukey post hoc tests and are indicated with letters (note that the results are the same for
411 canopy and understory). CN2 = control treatment, ANT = ant exclusion, VER = vertebrate
412 exclusion, ALL = all predator exclusion.

413

414 **Arthropod density and herbivory damage after the UBB experiment**

415 In total, we collected 2,544 arthropods from 240 saplings across 8 plant species at the end of
416 the UBB experiments (i.e., two years combined). The exclusion of birds led to a significant
417 increase in mean arthropod density by 89 % in comparison to the control trees ($z = 3.789$, $P <$
418 0.001). Similarly, in the absence of bats, arthropod density increased significantly by 63 % in
419 comparison to the control saplings ($z = 2.876$, $P = 0.012$) (Figure 3a).

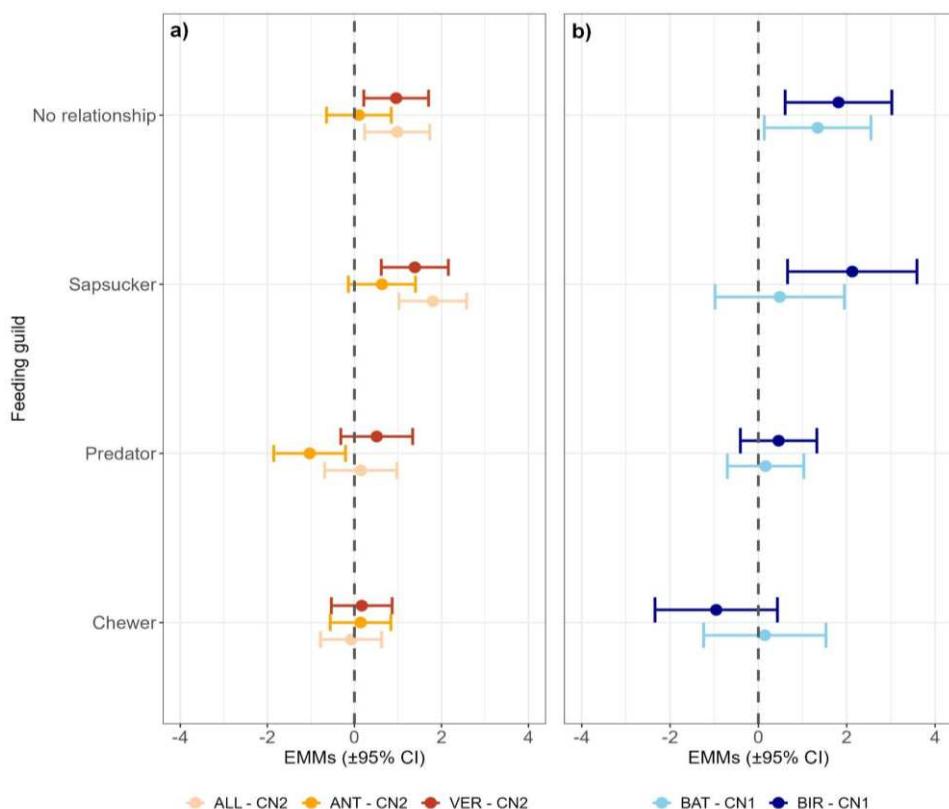
420 However, only the exclusion of birds led to significantly increased mean herbivory
421 damage ($z = 2.827$, $P = 0.013$) by 28% in comparison to the controls (Figure 3b). The effect
422 of bat exclusion was detectable (+ 22% in comparison to the control) but non-significant ($z =$
423 2.221, $P = 0.067$).

424

425 Figure 3: Effects of the exclusion of birds and bats on the total densities of all arthropods per
426 square metre of foliage (a) and on the herbivory damage of individual saplings of the UBB
427 (Understory Bird and Bat exclusion) experiment. Individual data point represents a density of

428 arthropods (a) or herbivory damage (b) on an individual sapling. The y-axis of (a) is on a log
429 scale. Square and whiskers mark estimated marginal means and standard errors of the most
430 parsimonious model. Significant pairwise comparisons between predictors were tested by
431 Tukey post hoc tests and are indicated with letters. Note that four extreme values of
432 herbivory have been removed from the BIR raw data for visualisation purposes (b). CN1 =
433 control treatment, BAT = bat enclosure, BIR = bird enclosure.

434

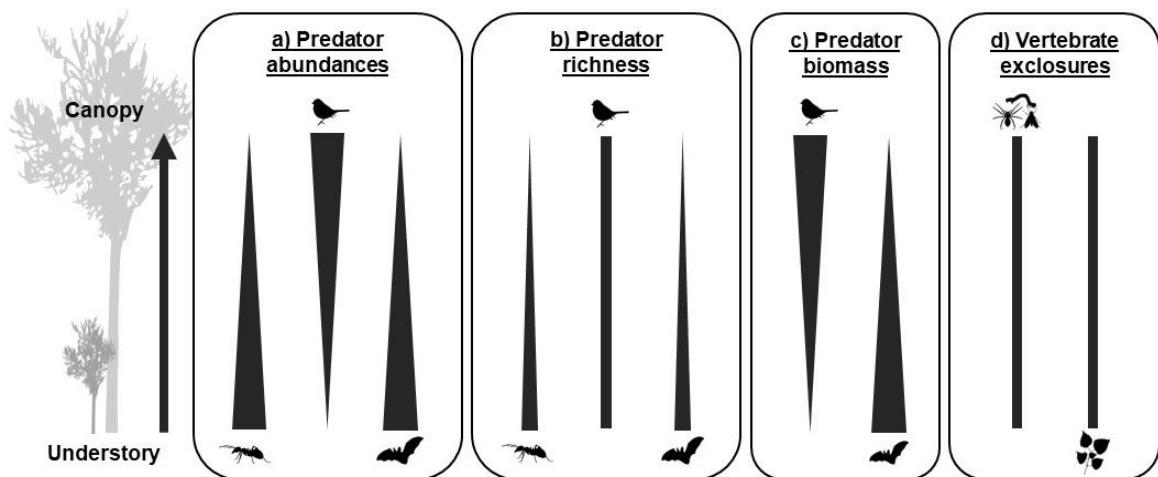

435 ***Arthropod feeding guilds***

436 During the CUVA experiment, sapsuckers were the most abundant feeding guild (5403
437 individuals), found on 48% of saplings and branches, followed by no relationship arthropods
438 (2231, present on 73%), predators (1865, present on 84%), and leaf chewers (1150, present on
439 58%). In the UBB experiment, predators (894, present on 89% of saplings) and sapsuckers
440 (662, present on 68% of saplings) were dominant, followed by leaf chewers (526, present on
441 72%) and NR (462, present on 57%).

442 Across the CUVA experiment, only the sapsucker ($z = 3.531, P = 0.001$; $z = 4.547, P$
443 < 0.001) and NR ($z = 2.529, P = 0.032$; $z = 2.575, P = 0.028$) arthropods exhibited significant
444 increases in their densities, with increments of 297% and 161% after the exclusion of
445 vertebrates (VER) and 504% and 166% after the exclusion of all predators (ALL),
446 respectively (Figure 4a). Additionally, the exclusion of ants (ANT) resulted in a significant
447 64% reduction in the densities of predatory arthropods ($z = -2.442, P = 0.041$). None of the
448 exclusions had a significant impact on chewer densities (Table S3.2). It is important to note
449 that the strata did not exhibit significant interactions with the treatments for any of the
450 arthropod densities (Table S2.2); therefore, they were not considered in these results.

451 At the end of the UBB experiment, the NR ($z = 2.17$, $P = 0.058$; $z = 2.94$, $P = 0.007$)
452 significantly increased their densities after excluding bats and birds independently by 285 and
453 517 % respectively. In addition, the sapsucker arthropods significantly increased their
454 densities by 741 % after the removal of birds ($z = 2.84$, $P = 0.009$). Neither the chewers nor
455 the predatory arthropods significantly changed their densities after the exclusion of bats and
456 birds (Figure 4b).

457 We did not find significant differences in the densities of total arthropods ($W = 1491$,
458 $P = 0.545$) and predatory arthropods ($W = 1626$, $P = 0.887$) between controls (CN2) and
459 frame-controls (FCN2) (Figure S3.2, S3.3, respectively).


460
461 Figure 4: Caterpillar plot showing how the feeding guilds (predatory arthropods, chewing
462 herbivores, sapsucking herbivores and NR) respond to (a) all (ALL, beige), ant (ANT, orange)
463 and vertebrate (VER, red) exclusion treatments in the CUVA (Canopy and Understory
464 Vertebrate and Ant exclusion) experiment using canopy and understory data combined and to

465 (b) bat (BAT, light blue) and bird (BIR, dark blue) exclusion treatments in the UBB
466 (Understory Bird and Bat exclusion) experiment (understory only). The X-axis shows the
467 estimated marginal means (EMMs) of each treatment against the control (dashed line = no
468 change from control) with a 95% confidence interval of the most parsimonious model
469 including the variable treatment. When the confidence interval is strictly above or below the
470 dashed line, the effect is significant. CN2 = control treatment for the CUVA experiment. CN1
471 = control treatment for the UBB experiment.

472

473 ***Vertebrate and arthropod predators***

474 Overall, we identified a total of 22 insectivorous bird species comprising 1,167 bird
475 calls using point counts and recordings (i.e., two methods combined), as well as 5
476 insectivorous bat species consisting of 79 bat passes from recordings and 7 ant species from
477 908 individuals caught on baits (Table S3.4). The surveys conducted across different strata
478 revealed that insectivorous birds were 139 % more abundant in the canopy than in the
479 understory whereas insectivorous bat activity and ant abundance were 238 and 1,264 %
480 greater in the understory than in the canopy (Figure 5a). For insectivorous birds, species
481 richness was similar within strata, while a greater number of ants and bats (i.e., 40 and 33 %
482 more species, respectively) were found in the understory (Figure 5b). In addition, bird
483 biomass was 90% greater in the canopy than in the understory, whereas bat biomass was
484 258% greater in the understory than in the canopy (Figure 5c).

485

486 Figure 5: Simple comparisons between canopy and understory levels for (a) insectivorous
487 predators (ants, birds, bats) (b) richness (ants, birds, bats) (c) biomass (birds and
488 bats) (d) CUVA (Canopy and Understory Vertebrate and Ant exclosure) experiment results
489 (effect on arthropod densities and herbivory damage in VER). Note that the size of the arrow
490 depends on the magnitude of the difference between the canopy and the understory.

491

492 **Discussion**

493 Vertebrate predators (i.e., birds and bats together), but not ants, played a crucial role in
494 preventing arthropod outbreaks and indirectly protecting plants from herbivory damage. Our
495 results reveal that their effect was similarly strong in both the forest canopy and understory.
496 Specifically, the absence of vertebrates led to nearly double the density of arthropods,
497 indirectly increasing the herbivory damage by almost half, regardless of the strata.
498 Additionally, the individual effects of the bird, bat and ant exclusions demonstrated an
499 antagonistic rather than an additive impact on arthropod density. In contrast to vertebrate
500 predators, ants did not significantly impact either arthropod communities (except for
501 mesopredators) or herbivory damage in any forest strata. Our study underscores the
502 significance of vertebrate predator presence in maintaining the equilibrium of trophic

503 cascades in both the canopy and understory of temperate ecosystems. These findings
504 contribute to our understanding of the role of stratification in trophic cascades within
505 temperate regions, an area that has been relatively unexplored in previous research (Aikens et
506 al., 2013; Böhm et al., 2011).

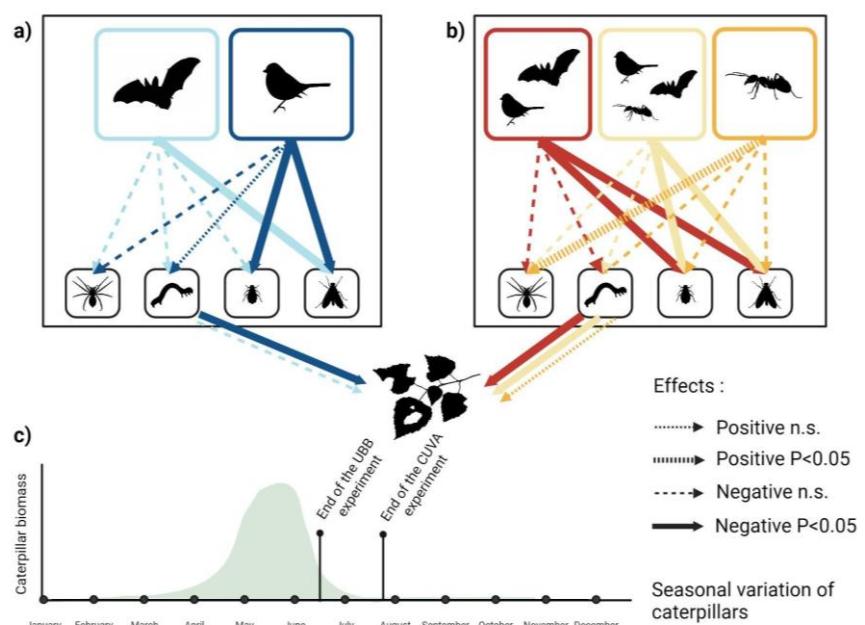
507 To provide context, the density of arthropods observed on control individuals revealed
508 a consistent trend: there were more arthropods per leaf area in the understory compared to the
509 canopy, irrespective of their trophic roles, except for the sapsuckers. This trend was
510 particularly pronounced among predatory arthropods in contrast to chewers, aligning with the
511 established notion that vertical stratification of herbivores in temperate forests is relatively
512 weak (Basset, 2003). Higher abundances or densities of arthropods in the understory have
513 been attributed to various factors, including the greater stability of the microclimate closer to
514 the ground (Parker et al., 1995), dispersal limitation after emergence (Brown, 1997) and the
515 distribution of quality food resources (Basset, 2003). In line with the trend in arthropod
516 distribution, we observed a 60 % increase in herbivory damage on understory control saplings
517 when compared to canopy control branches. Additionally, mean herbivory damage was
518 approximately 8% in our study, which closely matches the findings from previous studies in
519 temperate forests, which typically report herbivory damage levels around 5-10% (Gossner et
520 al., 2014; Reynolds & Crossley, 1997; Wang et al., 2016).

521 In contrast to our first hypothesis [H1], which postulated that predators would have a
522 strong and additive effect on arthropod communities, our results indicate that vertebrate
523 predators (VER) and ants (ANT) exhibit antagonistic effects when compared to the
524 combination of vertebrate predators with ants (ALL). Similarly, bats (BAT) and birds (BIR)
525 show antagonistic effects when compared to vertebrate predators (VER). This could imply
526 that despite their differing activity periods, birds and bats may be partially competing for the

527 same prey resources. Indeed, birds and bats both display a preference for large prey (Philpott
528 et al., 2004; Sam et al., 2023; Sivault et al., 2023; Van Bael et al., 2003), potentially leading to
529 a constraint in prey availability, thereby diminishing their collective effect. On the other hand,
530 it is possible that the differing collection times of the two experiments (i.e., a one-month
531 difference) might account for the observed pattern (Figure 6). We collected arthropods from
532 the VER exclosures later in the season, which could lead to differences in prey availability
533 and size.

534 Furthermore, during the UBB and CUVA experiments, only BIR, BAT, VER, and
535 ALL treatments significantly prevented arthropod outbreaks in both the canopy and
536 understory, whereas the ANT treatment did not. These results contrast with previous studies
537 in temperate forests where ants were shown to reduce the abundance of nearby insects (Gras
538 et al., 2016; Sanders & van Veen, 2011). Looking at the ant species found during our surveys
539 (Table S3.4), all of them are generalists, suggesting that ants were not a particularly important
540 mesopredator in our system. In fact, their mutualism with sap-sucking insects may have been
541 more relevant than their potential role as mesopredators in our study (Offenberg, 2001).
542 Furthermore, the relative abundance of ants (ca. 7% of all arthropods) makes them important
543 prey items for vertebrates.

544 Both the results of the UBB and CUVA experiments also showed that the removal of
545 vertebrates mainly affected the densities of NR arthropods and sapsuckers, but not chewers
546 and mesopredators (Figure 6). The lack of effects on chewers appears to be related to the
547 difference in time frame between the two experiments. Due to the necessary duration
548 constraints of the CUVA experiment required for the effective accumulation of predator and
549 herbivore effects, the arthropod collection occurred after the peak of caterpillar abundances
550 observed previously in similar Japanese forests (Murakami, 2002; Sayama et al., 2012;


551 Verboven et al., 2001). Therefore, we did not collect many chewers at the end of the CUVA
552 and UBB experiments, diminishing the overall effects of treatments on chewers. Surprisingly,
553 ant exclusion led to a significant reduction in mesopredator densities. This could be because
554 ants were classified as mesopredators in our study, and their removal may impact the overall
555 mesopredator pattern. Additionally, ants can serve as an important food source for other
556 predatory arthropods through myrmecophagy, such as spiders (Aranea), bugs (Heteroptera;
557 Brandt & Mahsberg, 2002), net-winged insects (Neuroptera), or flies (Diptera; Aceves-
558 Aparicio et al., 2022; Wilson, 2000).

559 In treatments where birds were absent (VER, ALL, and BIR exclosures), we observed
560 an increase in sapsucker densities. This was unexpected, as we did not anticipate birds to feed
561 abundantly on sapsuckers. Their small size and sessility likely make them inconspicuous to
562 vertebrate insectivores which is consistent with recent findings in tropical areas (Ferreira et
563 al., 2023; Ocampo-Ariza et al., 2023). It, therefore, seems likely that the increase in their
564 densities observed here is due to an indirect interaction with vertebrate insectivores, since
565 some insectivorous birds (e.g., *Parus minor*, *Sitta europaea*) found abundantly in Tomakomai
566 forest consume other taxa, such as mesopredators (ants, wasps or spiders), and mutualists
567 (ants) (Eguchi, 1980; Wesołowski et al., 2019), that positively affect the sapsuckers by
568 relieving predation pressure.

569 Regarding mesopredator densities, vertebrates (VER) did not act as intraguild
570 predators significantly in the CUVA experiment, therefore contrary to [H2a], their net effect
571 on herbivory damage appeared significant (Figure 6). The 42 % increase in herbivory in the
572 vertebrate exclosures, compared to the controls, was comparable to the change in damage
573 found after vertebrate predator exclusion in a German canopy (ca. 23 to 44%; Böhm et al.,
574 2011), but greater than in other temperate canopies (ca. 0-15 %; Barber & Marquis, 2009;

575 Beilke & O'Keefe, 2023; Lichtenberg & Lichtenberg, 2002) and understories (ca. 0-18%);
576 Barber & Marquis, 2009; Dekeukeleire et al., 2019; Maguire et al., 2015).

577 Bird exclosures led to an indirect increase in herbivory damage, whereas bat
578 exclosures had a weak impact within the UBB experiment. Moreover, the effects of birds and
579 bats on herbivory seemed to be additive. It is possible that the effect on herbivory damage was
580 more detectable than changes in arthropod densities, as herbivory accumulated throughout the
581 experiments, whereas arthropod collection was confined to a specific day. Consequently, the
582 magnitudes of these effects exist on distinct scales, and they are markedly biased. Contrary to
583 the second part of the second hypothesis [H2b] but following their weak effect on arthropods,
584 the effect of ants on herbivory damage was not detectable (Figure 6), when combined with
585 vertebrates, the effect remains significant but to a lesser extent.

586

587 Figure 6: Distinct effects of bats and birds (UBB experiment - Understory Bird and Bat
588 exclosure) (a), combined (VER), combined with ants (ALL) or predatory ants alone (ANT)
589 (CUVA experiment - Canopy and Understory Vertebrate and Ant exclosure) (b) on

590 mesopredators (spider), chewers (caterpillar), sapsuckers (aphid), NR (fly) densities and
591 herbivory damage (leaf) (canopy and understory combined). Effects were assessed through
592 generalised linear mixed models (GLMMs) (Table S2.2 and Table S2.9). The generic seasonal
593 variation of caterpillar biomass in Japan, accompanied by the time frame of our experiments,
594 is depicted at the bottom of the plot, following the results of Verboven et al. (2001),
595 Murakami (2002), and Sayama et al. (2012) (c).

596 In contrast to the third hypothesis that the effect of predators will be more pronounced
597 in the strata with higher arthropod densities [H3a], our observations revealed that vertebrate
598 predators had a similar impact on arthropod densities both in the forest canopy and
599 understory. This result aligns with other studies from temperate forests where vertebrate
600 predation pressure on arthropods did not differ between vertical strata (Aikens et al., 2013;
601 Boege & Marquis, 2006). Yet, it contradicted the optimal foraging theory, as we observed
602 lower arthropod densities in the canopy than in the understory. Our predator surveys revealed
603 that the abundance of insectivorous birds was 140% higher in the canopy than in the
604 understory. In contrast, bats and ants were found to be the most abundant and rich in the
605 understory. Therefore, the similar impacts on arthropods observed across strata may be
606 attributed to the balanced predation pressure, with an increased presence of birds in the
607 canopy and greater abundances of bats and ants in the understory. This stratification of bats
608 followed previous observations in the Tomakomai experimental forest, where they exhibit
609 some degree of niche partitioning (Fukui et al., 2004); however, it is important to note that the
610 bat sampling effort is much lower than that for birds in this study, as such, these results
611 warrant a nuanced interpretation.

612 Our surveys confirmed the partitioning of ant species among distinct forest strata, with
613 the majority of ant species being located in the understory (Seifert, 2008). Despite a relatively

614 modest count of ant morphospecies (7 morphospecies in the forest understory and 5
615 morphospecies in the forest canopy), the use of ant baits indicated a considerably higher ant
616 abundance in the forest understory. This pattern aligns with a comprehensive study conducted
617 by Floren et al. (2014), which identified that arboreal ants exhibited only 12 % of the species
618 found in temperate sites. This could be attributed to the ability of ants in tropical forests to
619 construct additional nesting forms, such as epiphytic nests. These nesting structures are
620 frequently absent in temperate forests, primarily due to differences in climatic conditions
621 (Blüthgen & Feldhaar, 2010; Liefke et al., 1998), which limit the opportunity for many ant
622 species to adapt to canopy conditions (Floren et al., 2014).

623 Our results contradicted the second part of our third hypothesis [H3b], where we
624 anticipated a stronger effect of predators in the forest understory. We found that the herbivory
625 damage, resulting from trophic cascades between predators and plants, was consistent
626 between the forest canopy and understory, likely independent of ant activity. As previously
627 noted, the effect of ants on arthropod communities, and consequently their impact on
628 herbivory, appears to be relatively minor within the studied temperate forest. These results
629 follow the same pattern as arthropod density, suggesting that predation pressure on
630 phytophagous insects may also be consistent within strata. However, we failed to detect
631 significant changes in the density of chewers in our study, likely due to the phenology of
632 caterpillars (Figure 6). To our knowledge, there is limited research on herbivory levels in the
633 understory and canopy of temperate forests, (but see Gossner et al., 2014; Reynolds &
634 Crossley, 1997; Wang et al., 2016 for the herbivory levels in temperate understories).
635 Therefore, further research is necessary to determine if this observed pattern is consistent
636 across other temperate forests.

637 **Conclusion**

638 Our study demonstrates that birds and bats, but not ants, play a crucial role in reducing
639 arthropods in both the temperate forest canopy and understory, leading to a significant
640 decrease in plant damage. Given that insectivorous bats and birds are present in numerous
641 terrestrial ecosystems (Maas et al., 2013), the importance of their predation likely extends to
642 many other areas. In addition, being threatened by various factors worldwide such as habitat
643 loss, hunting, and the impacts of climate change (Benitez-Lopez et al., 2017; Donald et al.,
644 2001; Stephens et al., 2016), it is imperative that we prioritise the conservation of these
645 essential predators. This work also prompted several exciting follow-up considerations that
646 could deepen our understanding of the intricate relationships between bats, birds, insects, and
647 plant communities. For instance, exploring how these effects change in tropical forests, and
648 understanding the impact of bottom-up control on the patterns found here. It was shown that
649 the predation rate by ants strongly changes with increasing latitude, suggesting a potentially
650 more pronounced impact in tropical regions (Zvereva et al., 2020), than what we have
651 observed in this temperate study. Additionally, the effects of top-down and bottom-up forces
652 on generalist and specialist herbivores differ, with bottom-up forces exerting stronger effects
653 on specialists (Vidal & Murphy, 2018). Hence, future studies must consider the role of
654 bottom-up forces to encompass a critical aspect of most ecological interactions.

655

656 **References**

657 Aceves-Aparicio, A., Narendra, A., McLean, D. J., Lowe, E. C., Christian, M., Wolff, J. O.,
658 Schneider, J. M., Herberstein, M. E. (2022). Fast acrobatic maneuvers enable arboreal
659 spiders to hunt dangerous prey. *Proceedings of the National Academy of Sciences*,
660 119(40). <https://doi.org/10.1073/pnas.2205942119>

- 661 Aikens, K. R., Timms, L. L., & Buddle, C. M. (2013). Vertical heterogeneity in predation
662 pressure in a temperate forest canopy. *PeerJ*, 1. <https://doi.org/10.7717/peerj.138>
- 663 Bael, S. A. V., Philpott, S. M., Greenberg, R., Bichier, P., Barber, N. A., Mooney, K. A., &
664 Gruner, D. S. (2008). Birds as predators in tropical agroforestry systems. *Ecology*,
665 89(4), 928-934. <https://doi.org/10.1890/06-1976.1>
- 666 Bagchi, R., Gallery, R. E., Gripenberg, S., Gurr, S. J., Narayan, L., Addis, C. E., Freckleton,
667 R. P., Lewis, O. T. (2014). Pathogens and insect herbivores drive rainforest plant
668 diversity and composition. *Nature*, 506(7486), 85-88.
669 <https://doi.org/10.1038/nature12911>
- 670 Balza, U., Lois, N. A., Polito, M. J., Pütz, K., Salom, A., & Raya Rey, A. (2020). The
671 dynamic trophic niche of an island bird of prey. *Ecology and evolution*, 10(21),
672 12264-12276. <https://doi.org/10.1002/ece3.6856>
- 673 Barber, N. A., & Marquis, R. J. (2009). Spatial variation in top-down direct and indirect
674 effects on white oak (*Quercus alba* L.). *The American Midland Naturalist*, 162(1),
675 169-179. <https://doi.org/10.1674/0003-0031-162.1.169>
- 676 Basset, Y. (2003). Arthropods of tropical forests: spatio-temporal dynamics and resource use
677 in the canopy. Cambridge University Press.
- 678 Basset, Y., Cizek, L., Cuénoud, P., Didham, R. K., Novotny, V., Ødegaard, F., Roslin, T.,
679 Tishechkin, A. K., Schmidl, J., Winchester, N. N. (2015). Arthropod distribution in a
680 tropical rainforest: tackling a four dimensional puzzle. *Plos one*, 10(12).
681 <https://doi.org/10.1371/journal.pone.0144110>

- 682 Basset, Y., Hammond, P. M., Barrios, H., Holloway, J. D., & Miller, S. E. (2003). Vertical
683 stratification of arthropod assemblages. *Arthropods of tropical forests*, 17-27.
684 Cambridge University Press.
- 685 Bates, D., Kliegl, R., Vasishth, S., & Baayen, H. (2015). Parsimonious mixed models. arXiv
686 preprint. <https://doi.org/10.48550/arXiv.1506.04967>
- 687 Beilke, E. A., & O'Keefe, J. M. (2023). Bats reduce insect density and defoliation in
688 temperate forests: An exclusion experiment. *Ecology*, 104(2).
689 <https://doi.org/10.1002/ecy.3903>
- 690 Belovsky, G., & Slade, J. (2000). Insect herbivory accelerates nutrient cycling and increases
691 plant production. *Proceedings of the National Academy of Sciences*, 97(26), 14412-
692 14417. <https://doi.org/10.1073/pnas.250483797>
- 693 Benitez-Lopez, A., Alkemade, R., Schipper, A., Ingram, D. J., Verweij, P., Eikelboom, J., &
694 Huijbregts, M. (2017). The impact of hunting on tropical mammal and bird
695 populations. *Science*, 356(6334), 180-183. <https://doi.org/10.1126/science.aaj1891>
- 696 Blaise, C., Mazzia, C., Bischoff, A., Millon, A., Ponel, P., & Blight, O. (2021). The key role
697 of inter-row vegetation and ants on predation in Mediterranean organic vineyards.
698 *Agriculture, Ecosystems & Environment*, 311.
699 <https://doi.org/10.1016/J.AGEE.2021.107327>
- 700 Blüthgen, N., & Feldhaar, H. (2010). Food and shelter: how resources influence ant ecology.
701 *Ant ecology*, 115-136. <https://doi.org/10.1093/acprof:oso/9780199544639.003.0007>
- 702 Boege, K., & Marquis, R. J. (2006). Plant quality and predation risk mediated by plant
703 ontogeny: consequences for herbivores and plants. *Oikos*, 115(3), 559-572.
704 <https://doi.org/10.1111/j.2006.0030-1299.15076.x>

- 705 Böhm, S. M., Wells, K., & Kalko, E. K. (2011). Top-down control of herbivory by birds and
706 bats in the canopy of temperate broad-leaved oaks (*Quercus robur*). *Plos one*, 6(4).
707 <https://doi.org/10.1371/journal.pone.0017857>
- 708 Bolker, B., & Bolker, M. B. (2017). Package ‘bbmle’ . Tools for General Maximum
709 Likelihood Estimation, 641.
- 710 Bouarakia, O., Linden, V. M., Joubert, E., Weier, S. M., Grass, I., Tscharntke, T., Foord, S.H.,
711 Taylor, P. J. (2023). Bats and birds control tortricid pest moths in South African
712 macadamia orchards. *Agriculture, Ecosystems & Environment*, 352.
713 <https://doi.org/10.1016/J.AGEE.2023.108527>
- 714 Brandt, M., & Mahsberg, D. (2002). Bugs with a backpack: the function of nymphal
715 camouflage in the West African assassin bugs *Paredocla* and *Acanthaspis* spp. *Animal*
716 *Behaviour*, 63(2), 277-284. <https://doi.org/10.1006/anbe.2001.1910>
- 717 Brooks, M. E., Kristensen, K., Van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A.,
718 Skaug, H. J., Machler, M., Bolker, B. M. (2017). glmmTMB balances speed and
719 flexibility among packages for zero-inflated generalized linear mixed modeling. *The R*
720 *journal*, 9(2), 378-400. <https://doi.org/10.32614/Rj-2017-066>
- 721 Brown, K. S. (1997). Diversity, disturbance, and sustainable use of Neotropical forests:
722 insects as indicators for conservation monitoring. *Journal of Insect conservation*, 1(1),
723 25-42. <https://doi.org/10.1023/A:1018422807610>
- 724 Bulgarini, G., Castracani, C., Mori, A., Grasso, D. A., & Maistrello, L. (2021). Searching for
725 new predators of the invasive *Halyomorpha halys*: the role of the black garden ant
726 *Lasius niger*. *Entomologia Experimentalis et Applicata*, 169(9), 799-806.
727 <https://doi.org/10.1111/eea.13075>

- 728 Cassano, C. R., Silva, R. M., Mariano-Neto, E., Schroth, G., & Faria, D. (2016). Bat and bird
729 exclusion but not shade cover influence arthropod abundance and cocoa leaf
730 consumption in agroforestry landscape in northeast Brazil. *Agriculture, Ecosystems &*
731 *Environment*, 232, 247-253. <https://doi.org/10.1016/j.agee.2016.08.013>
- 732 Coley, P. D. (1991). Comparison of herbivory and plant defenses in temperate and tropical
733 broad-leaved forest. *Plant-animal interactions: evolutionary ecology in tropical and*
734 *temperate regions*, 25-49.
- 735 Coley, P. D., & Barone, J. (1996). Herbivory and plant defenses in tropical forests. *Annual*
736 *Review of Ecology and Systematics*, 27(1), 305-335.
737 <https://doi.org/10.1146/annurev.ecolsys.27.1.305>
- 738 Collins, J., & Jones, G. (2009). Differences in bat activity in relation to bat detector height:
739 implications for bat surveys at proposed windfarm sites. *Acta Chiropterologica*, 11(2),
740 343-350. <https://doi.org/10.3161/150811009X485576>
- 741 Compton, S. G., Ellwood, M. D., Davis, A. J., & Welch, K. (2000). The flight heights of
742 chalcid wasps (hymenoptera, Chalcidoidea) in a lowland Bornean rain forest: fig
743 wasps are the high fliers 1. *Biotropica*, 32(3), 515-522. <https://doi.org/10.1111/j.1744-7429.2000.tb00497.x>
- 745 De Dijn, B. (2003). Vertical stratification of flying insects in a Surinam lowland rainforest.
746 Arthropods of tropical forests , 110-122. Cambridge University Press.
- 747 De Vries, P. (1988). Stratification of fruit-feeding nymphalid butterflies in a Costa Rican
748 rainforest. *Journal of Research on the Lepidoptera*, 26(1-4), 98-108.
- 749 Dekeukeleire, D., van Schrojenstein Lantman, I. M., Hertzog, L. R., Vandegehuchte, M. L.,
750 Strubbe, D., Vantieghem, P., Martel, A., Verheyen, K., Bonte, D., Lens, L. (2019).

- 751 Avian top-down control affects invertebrate herbivory and sapling growth more
752 strongly than overstorey species composition in temperate forest fragments. *Forest*
753 *ecology and management*, 442, 1-9. <https://doi.org/10.1016/j.foreco.2019.03.055>
- 754 Del Hoyo, J., Elliot, A., & Sargatal, J. (1996). *Handbook of the Birds of the World*. Lynx
755 Edicions.
- 756 Denmead, L. H., Darras, K., Clough, Y., Diaz, P., Grass, I., Hoffmann, M. P., Nurdiansyah,
757 F., Fardiansah, R., Tscharntke, T. (2017). The role of ants, birds and bats for
758 ecosystem functions and yield in oil palm plantations. *Ecology*, 98(7), 1945-1956.
759 <https://doi.org/10.1002/ecy.1882>
- 760 DeVries, P. J., Murray, D., & Lande, R. (1997). Species diversity in vertical, horizontal, and
761 temporal dimensions of a fruit-feeding butterfly community in an Ecuadorian
762 rainforest. *Biological Journal of the Linnean Society*, 62(3), 343-364.
763 <https://doi.org/10.1111/j.1095-8312.1997.tb01630.x>
- 764 Donald, P. F., Green, R., & Heath, M. (2001). Agricultural intensification and the collapse of
765 Europe's farmland bird populations. *Proceedings of the Royal Society of London.*
766 *Series B: Biological Sciences*, 268(1462), 25-29.
767 <https://doi.org/10.1098/rspb.2000.1325>
- 768 Eguchi, K. (1980). The feeding ecology of the nestling great tit, *Parus major minor*, in the
769 temperate ever-green broadleaved forest II. With reference to breeding ecology.
770 *Researches on Population Ecology*, 22(2), 284-300.
771 <https://doi.org/10.1007/BF02530852>
- 772 Emlen, J. M. (1966). The role of time and energy in food preference. *The American*
773 *Naturalist*, 100(916), 611-617. <https://doi.org/10.1086/282455>

- 774 Ferguson, K. I., & Stiling, P. (1996). Non-additive effects of multiple natural enemies on
775 aphid populations. *Oecologia*, 108(2), 375-379. <https://doi.org/10.1007/BF00334664>
- 776 Ferreira, D. F., Jarrett, C., Wandji, A. C., Atagana, P. J., Rebelo, H., Maas, B., & Powell, L.
777 L. (2023). Birds and bats enhance yields in Afrotropical cacao agroforests only under
778 high tree-level shade cover. *Agriculture, Ecosystems & Environment*, 345.
779 <https://doi.org/10.1016/j.agee.2022.108325>
- 780 Floren, A., Wetzel, W., & Staab, M. (2014). The contribution of canopy species to overall ant
781 diversity (Hymenoptera: Formicidae) in temperate and tropical ecosystems.
782 *Myrmecological News*, 19(March), 65-74.
- 783 Fukui, D., Agetsuma, N., & Hill, D. A. (2004). Acoustic identification of eight species of bat
784 (Mammalia: Chiroptera) inhabiting forests of southern Hokkaido, Japan: potential for
785 conservation monitoring. *Zoological Science*, 21(9), 947-955.
786 <https://doi.org/10.2108/zsj.21.947>
- 787 Garcia, L. C., & Eubanks, M. D. (2019). Overcompensation for insect herbivory: a review and
788 meta-analysis of the evidence. *Ecology*, 100(3). <https://doi.org/10.1002/ecy.2585>
- 789 Garrett, D. R., Pelletier, F., Garant, D., & Bélisle, M. (2022). Combined influence of food
790 availability and agricultural intensification on a declining aerial insectivore.
791 *Ecological monographs*, 92(3). <https://doi.org/Artn E151810.1002/Ecm.1518>
- 792 Gossner, M. M., Pašalić, E., Lange, M., Lange, P., Boch, S., Hessenmöller, D., Müller, J.,
793 Socher, S. A., Fischer, M., Schulze, E.-D. (2014). Differential responses of herbivores
794 and herbivory to management in temperate European beech. *Plos one*, 9(8).
795 <https://doi.org/10.1371/journal.pone.0104876>

- 796 Gras, P., Tscharntke, T., Maas, B., Tjoa, A., Hafsa, A., & Clough, Y. (2016). How ants,
797 birds and bats affect crop yield along shade gradients in tropical cacao agroforestry.
798 *Journal of Applied Ecology*, 53(3), 953-963. <https://doi.org/10.1111/1365-2664.12625>
- 799 Greenberg, R., Bichier, P., Angon, A. C., MacVean, C., Perez, R., & Cano, E. (2000). The
800 impact of avian insectivory on arthropods and leaf damage in some Guatemalan coffee
801 plantations. *Ecology*, 81(6), 1750-1755. <https://doi.org/10.2307/177321>
- 802 Haack, N., Borges, P. A., Grimm-Seyfarth, A., Schlegel, M., Wirth, C., Bernhard, D., Brunk,
803 I., Henle, K., Pereira, H. M. (2022). Response of common and rare beetle species to
804 tree species and vertical stratification in a floodplain forest. *Insects*, 13(2), 161.
805 <https://doi.org/10.3390/insects13020161>
- 806 Hill, C. J., Gillison, A. N., & Jones, R. E. (1992). The spatial distribution of rain forest
807 butterflies at three sites in North Queensland, Australia. *Journal of Tropical Ecology*,
808 8(1), 37-46. <https://doi.org/10.1017/S0266467400006064>
- 809 Hölldobler, B., & Wilson, E. O. (1990). *The ants*. Harvard University Press.
- 810 Holmes, R. T., Schultz, J. C., & Nothnagle, P. (1979). Bird predation on forest insects: an
811 exclosure experiment. *Science*, 206(4417), 462-463.
812 <https://doi.org/10.1126/science.206.4417.462>
- 813 Chapman, S. K., Hart, S. C., Cobb, N. S., Whitham, T. G., & Koch, G. W. (2003). Insect
814 herbivory increases litter quality and decomposition: an extension of the acceleration
815 hypothesis. *Ecology*, 84(11), 2867-2876. <https://doi.org/10.1890/02-0046>
- 816 Ichinose, K. (1990). The Ant Fauna of the Tomakomai Experiment Forest, Hokkaido
817 University (Hymenoptera: Formicidae) with Notes on the Nuptial Season. *Research*
818 *Bulletins of College Experiment Forests*, 47(1), 137-144.

- 819 Imai, H. T., Kihara, A., Kondoh, M., Kubota, M., Kuribayashi, S., Ogata, K., Onoyama, K.,
820 Taylor, R. W., Terayama, M., Tsukii, Y., Yoshimura, M., Ugawa, Y. (2003). Ants of
821 Japan. Gakken.
- 822 Intachat, J., & Holloway, J. (2000). Is there stratification in diversity or preferred flight height
823 of geometroid moths in Malaysian lowland tropical forest? *Biodiversity &*
824 *Conservation*, 9(10), 1417-1439. <https://doi.org/10.1023/A:1008926814229>
- 825 Janzen, D. H. (1970). Herbivores and the number of tree species in tropical forests. *The*
826 *American Naturalist*, 104(940), 501-528. <https://doi.org/10.1086/282687>
- 827 Johnson, M., Kellermann, J., & Stercho, A. (2010). Pest reduction services by birds in shade
828 and sun coffee in Jamaica. *Animal conservation*, 13(2), 140-147.
829 <https://doi.org/10.1111/j.1469-1795.2009.00310.x>
- 830 Kalcounis, M., Hobson, K., Brigham, R., & Hecker, K. (1999). Bat activity in the boreal
831 forest: importance of stand type and vertical strata. *Journal of Mammalogy*, 80(2),
832 673-682. <https://doi.org/10.2307/1383311>
- 833 Kalka, M., & Kalko, E. K. (2006). Gleaning bats as underestimated predators of herbivorous
834 insects: diet of *Micronycteris microtis* (Phyllostomidae) in Panama. *Journal of*
835 *Tropical Ecology*, 22(1), 1-10. <https://doi.org/10.1017/S0266467405002920>
- 836 Karp, D. S., & Daily, G. C. (2014). Cascading effects of insectivorous birds and bats in
837 tropical coffee plantations. *Ecology*, 95(4), 1065-1074.
- 838 Kerbiriou, C., Bas, Y., Le Viol, I., Lorrilliere, R., Mougnot, J., & Julien, J. F. (2019).
839 Potential of bat pass duration measures for studies of bat activity. *Bioacoustics*, 28(2),
840 177-192. <https://doi.org/10.1080/09524622.2017.1423517>

- 841 Kollross, J., Jancuchova-Laskova, J., Kleckova, I., Freiberga, I., Kodrik, D., & Sam, K.
- 842 (2023). Nonlethal Effects of Predation: The Presence of Insectivorous Birds (*Parus*
843 major) Affects The Behavior and Level of Stress in Locusts (*Schistocerca gregaria*).
844 *Journal of Insect Behavior*, 36(1), 68-80. <https://doi.org/10.1007/s10905-023-09820-z>
- 845 Larrivée, M., & Buddle, C. M. (2009). Diversity of canopy and understorey spiders in north-
846 temperate hardwood forests. *Agricultural and Forest Entomology*, 11(2), 225-237.
847 <https://doi.org/10.1111/j.1461-9563.2008.00421.x>
- 848 Lenth, R. (2018). Emmeans: Estimated marginal means, aka least-squares means (Version R
849 Package Version 1.2.4.).
- 850 Liefke, C., Dorow, W., Hölldobler, B., & Maschwitz, U. (1998). Nesting and food resources
851 of syntopic species of the ant genus *Polyrhachis* (Hymenoptera, Formicidae) in West-
852 Malaysia. *Insectes sociaux*, 45(4), 411-425. <https://doi.org/10.1007/s000400050098>
- 853 Lichtenberg, J. S., & Lichtenberg, D. A. (2002). Weak trophic interactions among birds,
854 insects and white oak saplings (*Quercus alba*). *The American Midland Naturalist*,
855 148(2), 338-349. [https://doi.org/10.1674/0003-0031\(2002\)148\[0338:Wtiabi\]2.0.Co;2](https://doi.org/10.1674/0003-0031(2002)148[0338:Wtiabi]2.0.Co;2)
- 856 Losey, J. E., & Denno, R. F. (1998). Positive predator–predator interactions: enhanced
857 predation rates and synergistic suppression of aphid populations. *Ecology*, 79(6),
858 2143-2152. <https://doi.org/10.2307/176717>
- 859 Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021).
860 performance: An R package for assessment, comparison and testing of statistical
861 models. *Journal of Open Source Software*, 6(60). <https://doi.org/10.21105/joss.03139>

- 862 Maas, B., Clough, Y., & Tscharntke, T. (2013). Bats and birds increase crop yield in tropical
863 agroforestry landscapes. *Ecology Letters*, 16(12), 1480-1487.
864 <https://doi.org/10.1111/ele.12194>
- 865 Maas, B., Heath, S., Grass, I., Cassano, C., Classen, A., Faria, D., Gras, P., Williams-Guillén,
866 K., Johnson, M., Karp, D. S. (2019). Experimental field exclosure of birds and bats in
867 agricultural systems—Methodological insights, potential improvements, and cost-
868 benefit trade-offs. *Basic and Applied Ecology*, 35, 1-12.
869 <https://doi.org/10.1016/j.baae.2018.12.002>
- 870 MacArthur, R. H., & Pianka, E. R. (1966). On optimal use of a patchy environment. *The
871 American Naturalist*, 100(916), 603-609. <https://doi.org/10.1086/282454>
- 872 Maguire, D. Y., Nicole, T., Buddle, C. M., & Bennett, E. M. (2015). Effect of fragmentation
873 on predation pressure of insect herbivores in a north temperate deciduous forest
874 ecosystem. *Ecological Entomology*, 40(2), 182-186. <https://doi.org/10.1111/een.12166>
- 875 Marra, P. P., & Remsen Jr, J. (1997). Insights into the maintenance of high species diversity
876 in the Neotropics: habitat selection and foraging behavior in understory birds of
877 tropical and temperate forests. *Ornithological Monographs*, 445-483.
878 <https://doi.org/10.2307/40157547>
- 879 Matsuo, T., Hiura, T., & Onoda, Y. (2022). Vertical and horizontal light heterogeneity along
880 gradients of secondary succession in cool-and warm-temperate forests. *Journal of
881 Vegetation Science*, 33(3). <https://doi.org/10.1111/jvs.13135>
- 882 Mestre, L., Piñol, J., Barrientos, J., Cama, A., & Espadaler, X. (2012). Effects of ant
883 competition and bird predation on the spider assemblage of a citrus grove. *Basic and
884 Applied Ecology*, 13(4), 355-362. <https://doi.org/10.1016/j.baae.2012.04.002>

- 885 Mols, C. M., & Visser, M. E. (2002). Great tits can reduce caterpillar damage in apple
886 orchards. *Journal of Applied Ecology*, 39(6), 888-899. <https://doi.org/10.1046/j.1365-2664.2002.00761.x>
- 888 Mooney, K. A. (2007). Tritrophic effects of birds and ants on a canopy food web, tree growth,
889 and phytochemistry. *Ecology*, 88(8), 2005-2014. <https://doi.org/10.1890/06-1095.1>
- 890 Mooney, K. A., Gruner, D. S., Barber, N. A., Van Bael, S. A., Philpott, S. M., & Greenberg,
891 R. (2010). Interactions among predators and the cascading effects of vertebrate
892 insectivores on arthropod communities and plants. *Proceedings of the National
893 Academy of Sciences*, 107(16), 7335-7340. <https://doi.org/10.1073/pnas.1001934107>
- 894 Morrison, E. B., & Lindell, C. A. (2012). Birds and bats reduce insect biomass and leaf
895 damage in tropical forest restoration sites. *Ecological Applications*, 22(5), 1526-1534.
896 <https://doi.org/10.1890/11-1118.1>
- 897 Murakami, M. (2002). Foraging mode shifts of four insectivorous bird species under
898 temporally varying resource distribution in a Japanese deciduous forest.
899 *Ornithological Science*, 1(1), 63-69. <https://doi.org/10.2326/osj.1.63>
- 900 Nakamura, A., Kitching, R. L., Cao, M., Creedy, T. J., Fayle, T. M., Freiberg, M., Hewitt, C.
901 N., Itioka, T., Koh, L. P, Ma, K. (2017). Forests and their canopies: achievements and
902 horizons in canopy science. *Trends in ecology & evolution*, 32(6), 438-451.
903 <https://doi.org/10.1016/j.tree.2017.02.020>
- 904 Nyffeler, M., Şekercioğlu, Ç. H., & Whelan, C. J. (2018). Insectivorous birds consume an
905 estimated 400–500 million tons of prey annually. *The Science of Nature*, 105, 1-13.
906 <https://doi.org/10.1007/s00114-018-1571-z>

- 907 Ocampo-Ariza, C., Vansynghe, J., Bertleff, D., Maas, B., Schumacher, N., Ulloque-
908 Samatelo, C., Yovera, F. F., Evert, T., Ingolf, S. D., Tscharntke, T. (2023). Birds and
909 bats enhance cacao yield despite suppressing arthropod mesopredation. *Ecological
910 Applications*, 33(5). <https://doi.org/10.1002/eap.2886>
- 911 Offenberg, J. (2001). Balancing between mutualism and exploitation: the symbiotic
912 interaction between Lasius ants and aphids. *Behavioral Ecology and Sociobiology*,
913 49(4), 304-310. <https://doi.org/10.1007/s002650000303>
- 914 Ohyama, L., King, J. R., & Jenkins, D. G. (2020). Are tiny subterranean ants top predators
915 affecting aboveground ant communities? *Ecology*, 101(8).
916 <https://doi.org/10.1002/ecy.3084>
- 917 Ozanne, C. M., Anhuf, D., Boulter, S. L., Keller, M., Kitching, R. L., Körner, C., Meinzer, F.
918 C., Mitchell, A. W., Nakashizuka, T., Dias, P. L., Stork, N. E., Wright, S. J.,
919 Yoshimura, M., Dias, P. S. (2003). Biodiversity meets the atmosphere: a global view
920 of forest canopies. *Science*, 301(5630), 183-186.
921 <https://doi.org/10.1126/science.1084507>
- 922 Paine, R. T. (1966). Food web complexity and species diversity. *The American Naturalist*,
923 100(910), 65-75. <https://doi.org/10.1086/282400>
- 924 Paine, R. T. (1980). Food webs: linkage, interaction strength and community infrastructure.
925 *Journal of Animal Ecology*, 49(3), 667-685. <https://doi.org/10.2307/4220>
- 926 Parker, G. G. (1995). Structure and microclimate of forest canopies. *Forest canopies*, 73-106.
927 Academic press.
- 928 Pérez-España, S. (2021). Eciton Army ants—Umbrella species for conservation in neotropical
929 forests. *Diversity*, 13(3), 136. <https://doi.org/10.3390/d13030136>

- 930 Perfecto, I., & Vandermeer, J. (1996). Microclimatic changes and the indirect loss of ant
931 diversity in a tropical agroecosystem. *Oecologia*, 108(3), 577-582.
932 <https://doi.org/10.1007/BF00333736>
- 933 Philpott, S. M., & Armbrecht, I. (2006). Biodiversity in tropical agroforests and the ecological
934 role of ants and ant diversity in predatory function. *Ecological Entomology*, 31(4),
935 369-377. <https://doi.org/10.1111/j.1365-2311.2006.00793.x>
- 936 Philpott, S. M., Greenberg, R., Bichier, P., & Perfecto, I. (2004). Impacts of major predators
937 on tropical agroforest arthropods: comparisons within and across taxa. *Oecologia*,
938 140(1), 140-149. <https://doi.org/10.1007/s00442-004-1561-z>
- 939 Philpott, S. M., Perfecto, I., & Vandermeer, J. (2008). Effects of predatory ants on lower
940 trophic levels across a gradient of coffee management complexity. *Journal of Animal
941 Ecology*, 77(3), 505-511. <https://doi.org/10.1111/j.1365-2656.2008.01358.x>
- 942 Piel, G., Tallamy, D. W., & Narango, D. L. (2021). Lepidoptera host records accurately
943 predict tree use by foraging birds. *Northeastern Naturalist*, 28(4), 527-540.
944 <https://doi.org/10.1656/045.028.0410>
- 945 Plank, M., Fiedler, K., & Reiter, G. (2012). Use of forest strata by bats in temperate forests.
946 *Journal of Zoology*, 286(2), 154-162. <https://doi.org/10.1111/j.1469-7998.2011.00859.x>
- 948 Reynolds, B. C., & Crossley Jr, D. (1997). Spatial variation in herbivory by forest canopy
949 arthropods along an elevation gradient. *Environmental Entomology*, 26(6), 1232-1239.
950 <https://doi.org/10.1093/Ee/26.6.1232>
- 951 Richards, L. A., & Coley, P. D. (2007). Seasonal and habitat differences affect the impact of
952 food and predation on herbivores: a comparison between gaps and understory of a

- 953 tropical forest. *Oikos*, 116(1), 31-40. <https://doi.org/10.1111/j.2006.0030-1299.15043.x>
- 954
- 955 Rosumek, F. B., Silveira, F. A., de S. Neves, F., de U. Barbosa, N. P., Diniz, L., Oki, Y.,
- 956 Pezzini, F., Fernandes, G. W., Cornelissen, T. (2009). Ants on plants: a meta-analysis
- 957 of the role of ants as plant biotic defenses. *Oecologia*, 160(3), 537-549.
- 958 <https://doi.org/10.1007/s00442-009-1309-x>
- 959 Sam, K., Jorge, L. R., Koane, B., Amick, P. K., & Sivault, E. (2023). Vertebrates, but not
- 960 ants, protect rainforest from herbivorous insects across elevations in Papua New
- 961 Guinea. *Journal of biogeography*, 50(10), 1803-1816.
- 962 <https://doi.org/10.1111/jbi.14686>
- 963 Sam, K., Koane, B., Bardos, D. C., Jeppy, S., & Novotny, V. (2019). Species richness of birds
- 964 along a complete rain forest elevational gradient in the tropics: Habitat complexity and
- 965 food resources matter. *Journal of biogeography*, 46(2), 279-290.
- 966 <https://doi.org/10.1111/jbi.13482>
- 967 Sam, K., Koane, B., Sam, L., Mrazova, A., Segar, S., Volf, M., Moos, M., Simek, P., Sisol,
- 968 M., Novotny, V. (2020). Insect herbivory and herbivores of *Ficus* species along a rain
- 969 forest elevational gradient in Papua New Guinea. *Biotropica*, 52(2), 263-276.
- 970 <https://doi.org/10.1111/btp.12741>
- 971 Sanders, D., & van Veen, F. F. (2011). Ecosystem engineering and predation: the multi-
- 972 trophic impact of two ant species. *Journal of Animal Ecology*, 80(3), 569-576.
- 973 <https://doi.org/10.1111/j.1365-2656.2010.01796.x>
- 974 Sayama, K., Ito, M., Tabuchi, K., Ueda, A., Ozaki, K., & Hironaga, T. (2012). Seasonal
- 975 trends of forest moth assemblages in Central Hokkaido, Northern Japan. *The Journal*
- 976 of the Lepidopterists' Society
- 66(1), 11-26. <https://doi.org/10.18473/lepi.v66i1.a2>

- 977 Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., & Roy, K. (2009). Is there a
978 latitudinal gradient in the importance of biotic interactions? *Annual Review of
979 Ecology, Evolution, and Systematics.*, 40, 245-269.
- 980 <https://doi.org/10.1146/annurev.ecolsys.39.110707.173430>
- 981 Schifani, E., Castracani, C., Giannetti, D., Spotti, F. A., Reggiani, R., Leonardi, S., Mori, A.,
982 Grasso, D. A. (2020). New tools for conservation biological control: Testing ant-
983 attracting artificial Nectaries to employ ants as plant defenders. *Insects*, 11(2), 129.
984 <https://doi.org/10.3390/Insects11020129>
- 985 Schulze, C. H., Linsenmair, K. E., & Fiedler, K. (2001). Understorey versus canopy: patterns
986 of vertical stratification and diversity among Lepidoptera in a Bornean rain forest.
987 *Plant Ecology*, 153(1), 133-152. 10.1023/A:1017589711553
- 988 Seifert, B. (2008). The ants of Central European tree canopies (Hymenoptera: Formicidae)-an
989 underestimated population? *Canopy arthropod research in Europe*, In
990 Floren, A., & Schmidl, J. (Eds.), *Canopy arthropod research in Europe*
991 (pp. 157–173). Bioform Verlag.
- 992 Sih, A., Englund, G., & Wooster, D. (1998). Emergent impacts of multiple predators on prey.
993 *Trends in ecology & evolution*, 13(9), 350-355. [https://doi.org/10.1016/s0169-5347\(98\)01437-2](https://doi.org/10.1016/s0169-5347(98)01437-2)
- 995 Singer, M. S., Clark, R. E., Lichter-Marck, I. H., Johnson, E. R., & Mooney, K. A. (2017).
996 Predatory birds and ants partition caterpillar prey by body size and diet breadth.
997 *Journal of Animal Ecology*, 86(6), 1363-1371. <https://doi.org/10.1111/1365-2656.12727>

- 999 Sivault, E., Amick, P. K., Armstrong, K. N., Novotny, V., & Sam, K. (2023). Species richness
1000 and assemblages of bats along a forest elevational transect in Papua New Guinea.
1001 *Biotropica*, 55(1), 81-94. <https://doi.org/10.1111/btp.13161>
- 1002 Stephens, P. A., Mason, L. R., Green, R. E., Gregory, R. D., Sauer, J. R., Alison, J., Aunis,
1003 A., Brotons, L., Brutchart, S. H., M., Campedelli, T. (2016). Consistent response of
1004 bird populations to climate change on two continents. *Science*, 352(6281), 84-87.
1005 <https://doi.org/10.1126/science.aac4858>
- 1006 Team, R. C. (2020). R: a language and environment for statistical computing. Version 4.0. 2.
1007 Vienna, Austria. In.
- 1008 Thomine, E., Jeavons, E., Rusch, A., Bearez, P., & Desneux, N. (2020). Effect of crop
1009 diversity on predation activity and population dynamics of the mirid predator
1010 *Nesidiocoris tenuis*. *Journal of Pest Science*, 93(4), 1255-1265.
1011 <https://doi.org/10.1007/s10340-020-01222-w>
- 1012 Thurman, J. H., Northfield, T. D., & Snyder, W. E. (2019). Weaver ants provide ecosystem
1013 services to tropical tree crops. *Frontiers in ecology and evolution*, 7, 120.
1014 <https://doi.org/10.3389/fevo.2019.00120>
- 1015 Tobing, M. C., & Kuswardani, R. A. (2018). The potential of *Myopopone castanea*
1016 (Hymenoptera: Formicidae) as a predator for *Oryctes rhinoceros* Linn. larvae
1017 (Coleoptera: Scarabaeidae). *Journal of Physics: Conference Series*, 1116(5).
1018 <https://doi.org/10.1088/1742-6596/1116/5/052074>
- 1019 Tuma, J., Eggleton, P., & Fayle, T. M. (2020). Ant-termite interactions: an important but
1020 under-explored ecological linkage. *Biological reviews*, 95(3), 555-572.
1021 <https://doi.org/10.1111/brv.12577>

- 1022 Ulyshen, M. D. (2011). Arthropod vertical stratification in temperate deciduous forests:
1023 implications for conservation-oriented management. *Forest ecology and management*,
1024 261(9), 1479-1489. <https://doi.org/10.1016/j.foreco.2011.01.033>
- 1025 Van Bael, S. A., Brawn, J. D., & Robinson, S. K. (2003). Birds defend trees from herbivores
1026 in a Neotropical forest canopy. *Proceedings of the National Academy of Sciences*,
1027 100(14), 8304-8307. <https://doi.org/10.1073/pnas.1431621100>
- 1028 Verboven, N., Tinbergen, J. M., & Verhulst, S. (2001). Food, reproductive success and
1029 multiple breeding in the great tit *Parus major*. *Ardea*, 89(2), 387-406.
- 1030 Vidal, M. C., & Murphy, S. M. (2018). Bottom-up vs. top-down effects on terrestrial insect
1031 herbivores: A meta-analysis. *Ecology Letters*, 21(1), 138-150.
1032 <https://doi.org/10.1111/ele.12874>
- 1033 Wang, X.-F., Liu, J.-F., Gao, W.-Q., Deng, Y.-P., Ni, Y.-Y., Xiao, Y.-H., Kang, F.-F., Wang,
1034 Q., Lei, J.-P., Jiang, Z.-P. (2016). Defense pattern of Chinese cork oak across
1035 latitudinal gradients: influences of ontogeny, herbivory, climate and soil nutrients.
1036 *Scientific reports*, 6(1), 27269. <https://doi.org/10.1038/srep27269>
- 1037 Wesołowski, T., Rowiński, P., & Neubauer, G. (2019). Food of Nuthatch *Sitta europaea*
1038 young in a primeval forest: effects of varying food supply and age of nestlings. *Acta
1039 Ornithologica*, 54(1), 85-104. <https://doi.org/10.3161/00016454AO2019.54.1.008>
- 1040 Williams-Guillén, K., Perfecto, I., & Vandermeer, J. (2008). Bats limit insects in a neotropical
1041 agroforestry system. *Science*, 320(5872), 70-70.
- 1042 Wilson, E. O. (2000). *Sociobiology: The new synthesis*. Harvard University Press.
- 1043 Wu, L., Kato, T., Sato, H., Hirano, T., & Yazaki, T. (2019). Sensitivity analysis of the
1044 typhoon disturbance effect on forest dynamics and carbon balance in the future in a

- 1045 cool-temperate forest in northern Japan by using SEIB-DGVM. Forest ecology and
1046 management, 451. <https://doi.org/10.1016/J.Foreco.2019.117529>
- 1047 Zachos, F. E. (2020). DE Wilson and RA Mittermeier (chief editors): Handbook of the
1048 Mammals of the World. Vol. 9. Bats. Springer.
- 1049 Zeus, V. M., Puechmaille, S. J., & Kerth, G. (2017). Conspecific and heterospecific social
1050 groups affect each other's resource use: a study on roost sharing among bat colonies.
1051 Animal Behaviour, 123, 329-338. <https://doi.org/10.1016/j.anbehav.2016.11.015>
- 1052 Zvereva, E. L., Zverev, V., & Kozlov, M. V. (2020). Predation and parasitism on herbivorous
1053 insects change in opposite directions in a latitudinal gradient crossing a boreal forest
1054 zone. Journal of Animal Ecology, 89(12), 2946-2957. <https://doi.org/10.1111/1365-2656.13350>