

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Hitching a ride in the phyllosphere: Surfactant production of *Pseudomonas* spp. causes co-swarming of *Pantoea eucalypti* 299R

Michael Kunzler¹, Rudolf O. Schlechter¹, Lukas Schreiber² and Mitja N.P.

Remus-Emsermann¹

¹Institute for Biology - Microbiology, Freie Universität Berlin, Königin-Luise Straße 12-16, 14195 Berlin, Germany

²Institute for Cellular and Molecular Botany, Bonn University, Kirschallee 1-3, 53115 Bonn, Germany

* Correspondence: m.remus-emsermann@fu-berlin.de

Abstract

Here we demonstrate the beneficial effect of surfactant-producing *Pseudomonads* on the phyllosphere model strain *Pantoea eucalypti* 299R. To do so, we conducted a series of experiments in environments of increasing complexity. *P. eucalypti* 299R and *Pseudomonas* sp. FF1 (Pff1) or *P. eucalypti* 299R and the surfactant-deficient mutant *P. sp.* FF1::ΔviscB (Pff1ΔviscB) were co-inoculated in broth, on swarming agar plates, and on plants. In broth, there were no differences in the growth dynamics of *P. eucalypti* 299R when growing in the presence of Pff1 or Pff1ΔviscB. By contrast, on swarming agar plates, *P. eucalypti* was able to co-swarm with Pff1. Co-swarming led to a significant increase in the area colonized and, consequently, a boost in total biomass when compared to *P. eucalypti* growing with Pff1ΔviscB or in monoculture. Finally *in planta*, there were no significant effects on the population density of *P. eucalypti* 299R during co-colonization of *Arabidopsis thaliana*. However, utilizing the single cell bioreporter for reproductive success (CUSPER), we found a temporally distinct beneficial effect of Pff1 on co-inoculated *P. eucalypti* 299R subpopulations that did not occur in presence of Pff1ΔviscB. This led us to formulate a model for the positive effect of surfactant production during leaf colonization. To generalize our results, we tested the effect of three additional surfactant-producing *Pseudomonads* and their respective surfactant knockout mutants on *P. eucalypti* 299R on swarming agar. Resulting in similar co-swarming patterns in *P. eucalypti* 299R and showing that this organism is able to take advantage of competitors during surface colonization. Our results indicate that surfactant-dependent co-motility might be common during leaf colonization and add yet another facet to the already manyfold roles of surfactants.

Keywords

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Fluorescent proteins, bioreporter, reproductive success, CUSPER, bacteria-bacteria interactions

Introduction

The microbial habitat that is presented by leaf surfaces, the so-called phyllosphere, is densely colonized by microorganisms. Among these microorganisms, bacteria are the most abundant and prevalent group, establishing non-random patterns of colonization on leaves. Bacteria have a tendency to aggregate with one another in close proximity, rather than being distributed homogeneously along the leaf surface, suggesting the role of deterministic processes on leaf colonization (R. O. Schlechter, Miebach, and Remus-Emsermann 2019). In recent years, much attention has been paid to leaf colonizers and the factors that drive leaf colonization at the population and the community level. For example, the host plant species influences leaf colonization and bacterial community composition (Mercier and Lindow 2000; Bodenhausen et al. 2014; Lajoie and Kembel 2021), leading to recurring patterns of bacterial communities on leaves, at least at low phylogenetic resolution, from year to year (Vorholt 2012; Howe et al. 2023).

At the same time, microbe-microbe interactions affect community assemblages on leaves (Carlström et al. 2019; Martin Schäfer et al. 2023; M. Schäfer, Vogel, and Bortfeld-Miller 2022). However, many of the mechanisms driving these interactions remain unclear. In studies where bacterial communities are relatively simple, it appears that nutrient overlap has a limited impact on leaves (R. O. Schlechter et al. 2023; Remus-Emsermann and Schlechter 2018; Martin Schäfer et al. 2023). This suggests that the highly segregated leaf environment constrains interspecies bacterial interactions, despite their tendency to co-aggregate (Monier and Lindow 2005; Remus-Emsermann et al. 2014). As proximity is a key factor for interaction, mobility might emerge as an important factor that is shaping interactions and, ultimately, bacterial communities. In general, mobility on leaves has received limited attention, with most studies being related to the presence of flagellar genes in *Pseudomonas* spp. (van der Wal et al. 2013; Haefele and Lindow 1987; Delmotte et al. 2009). Since roughly 5% of the leaf surface is colonized by bacteria (Remus-Emsermann et al. 2014) and not all leaf-colonizing bacteria are flagellated (Bai et al. 2015), other means of mobility must be present on leaves. This may include movement mediated by colony expansion or gliding motility (Su et al. 2012; Martínez, Torello, and Kolter 1999), or spread by dew (Van Stan et al. 2020; Beattie 2011). The genera *Pantoea* and *Pseudomonas* are known to be a very common leaf colonizer (Rastogi et al. 2012; Vorholt 2012). Both taxa interact with their plant host in various ways, ranging from pathogenicity to plant protection (Xin, Kvitko, and He 2018; Zengerer et al. 2018; Ramette et al. 2011; Vrancken et al. 2013).

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

However, their interaction within communities has not received much attention, despite some initial efforts (Monier and Lindow 2005).

Phyllosphere-colonizing Pseudomonads have previously been studied with regard to their ability to produce surfactants (S. Oso et al. 2021; Burch et al. 2014; Hernandez and Lindow 2019; Simisola Oso et al. 2019; Schreiber et al. 2005). Interestingly, a fitness advantage of surfactant-producing Pseudomonads over their surfactant-deficient counterparts was evident only under specific conditions such as fluctuating humidity (Burch et al. 2014). Otherwise, surfactant production did not seem to affect the ability of Pseudomonads to colonize leaves (S. Oso et al. 2021).

Surfactants have been suggested to have multiple roles in the phyllosphere, including increased spread of water by reducing surface tension, improved nutrient diffusion from the apoplast to the phyllosphere by increasing cuticle permeability (Schreiber et al. 2005), and increased drought resistance due to their hygroscopic nature (Burch et al. 2014; Hernandez and Lindow 2019). On semi-solid media, surfactants are necessary for swarming, and it has been shown that it can facilitate the mobilization of some bacteria in a process called co-swarming (Morin et al. 2022). However, the effect of surfactant-producing bacteria on a second colonizer in the phyllosphere has, to our knowledge, not been studied.

Bacterial mobility relies on various mechanisms. Swimming motility is an active form of movement, powered by rotating flagella, occurring in liquid or low-viscosity conditions (Ha, Kuchma, and O'Toole 2014). Gliding motility is movement on surfaces, independent of flagella or pili (McBride 2001). Another surface-associated motility mode is sliding motility, driven by excreted biosurfactants, preventing cells from forming thick biofilm layers and aiding dispersal on the surface they inhabit (Wadhwa and Berg 2022). Twitching motility is mediated by type IV pili, which propels bacteria by retraction, while swarming motility is the coordinated movement of multiple bacteria across solid or semisolid surfaces, requiring flagella, a functional quorum sensing system, and surfactant biosynthesis (Merz, So, and Sheetz 2000). With this mechanism, bacteria co-migrate in side-by-side groups called rafts, instead of individually as in swimming motility (Kearns 2010).

Previously, we developed a bioreporter, CUSPER, to measure the number of divisions of individual cells of the bacterium *Pantoea eucalypti* 299R (syn. *Erwinia herbicola* 299R, syn. *Pantoea agglomerans* 299R) after they arrive in new environments. This bioreporter for reproductive success is based on the dilution of green fluorescent protein (GFP) during cell division. Thereby, the GFP intensity becomes a direct proxy for the number of experienced divisions (Remus-Emsermann and Leveau 2010; Remus-Emsermann et al. 2012). In a previous study, we observed that *Pseudomonas* spp. increased the single-cell reproductive success of *P. eucalypti* 299R (Pe299R) *in planta* despite being strong competitors *in vitro* (R. O. Schlechter et al. 2023). Given the common feature of surfactant production in

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Pseudomonads (Raaijmakers et al. 2010; Simisola Oso et al. 2019), we hypothesized that surfactant production increases the reproductive success of a second colonizer in the phyllosphere. To test this, we investigated the interactions between Pe299R, surfactant-producing *Pseudomonas* isolates, and their respective knockout mutants in various conditions, ranging from liquid medium, agar surfaces, and leaves. We observed contrasting results in liquid cultures compared to agar surfaces and leaves.

Material and methods

Bacteria, strain construction and growth conditions

All bacteria used in this study are listed in Table 1. Bacteria were routinely grown on lysogeny broth agar (LB-Agar, HiMedia). *Pantoea eucalypti* 299R was equipped with a constitutively expressed red fluorescent mScarlet-I protein gene and the plasmid pCUSPER (R. O. Schlechter et al. 2023). The resulting strain will be referred to as Pe299R_{CUSPER} from here onwards. To maintain the plasmid carrying the reproductive success construct in Pe299R_{CUSPER}, the agar was supplemented with 50 mg L⁻¹ kanamycin (Roth). Constitutively cyan-fluorescent derivatives of strains *Pseudomonas* sp. Pff1 (Pff1_{cyan}) and *Pseudomonas* sp. Pff1::ezTn5-viscB (Pff1ΔviscB_{cyan}) used in this study were generated using plasmid pMRE-Tn7-141 (R. O. Schlechter et al. 2018) explained elsewhere using conjugation and the auxotrophic donor strain *E. coli* ST18 (R. Schlechter and Remus-Emsermann 2019; Thoma and Schobert 2009). Strains *Pseudomonas* sp. Pff2, *Pseudomonas* sp. Pff2::ezTn5-viscB, *Pseudomonas* sp. Pff3, *Pseudomonas* sp. Pff3::ezTn5-massB, *Pseudomonas* sp. Pff4, and *Pseudomonas* sp. Pff4::ezTn5-massB were characterized elsewhere and carry Tn5-knockout insertions in the viscosin B (*viscB*) or the massetolide B (*massB*) genes, respectively (S. Oso et al. 2021). Those genes were previously shown to be responsible for surfactant production.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Table 1 Bacterial strains used in this study

Name	Relevant genotype/ properties	Antibiotic resistance	Abbreviation	Origin
<i>Escherichia coli</i> ST18	pMRE-Tn7-145; red fluorescent	Cm, Gent, Amp		(R. O. Schlechter et al. 2018)
<i>Escherichia coli</i> ST18	pMRE-Tn7-141; cyan fluorescent	Cm, Gent, Amp		(R. O. Schlechter et al. 2018)
<i>Pantoea eucalypti</i> 299R		Rif		(Remus-Emsermann et al. 2013)
<i>Pantoea eucalypti</i> 299R	::Tn7-145; pCUSPER; red fluorescent, growth bioreporter	Rif, Gent, Kan	Pe299R _{CUSPER}	(R. O. Schlechter et al. 2023)
<i>Pseudomonas</i> sp. FF1			Pff1	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF1	::Tn7-141; cyan fluorescent	Gent	Pff1 _{cyan}	This study
<i>Pseudomonas</i> sp. FF1	::ezTn5-viscB	Kan	Pff1ΔviscB	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF1	::ezTn5-viscB::Tn7-141; cyan fluorescent	Gent, Kan	Pff1ΔviscB _{cyan}	This study
<i>Pseudomonas</i> sp. FF2			Pff2	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF2	::ezTn5-viscB	Kan	Pff2ΔviscB	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF3			Pff3	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF3	::ezTn5-viscB	Kan	Pff3ΔmassB	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF4			Pff4	(S. Oso et al. 2021)
<i>Pseudomonas</i> sp. FF4	::ezTn5-viscB	Kan	Pff4ΔmassB	(S. Oso et al. 2021)

In vitro co-inoculation assay

To investigate the co-colonization of Pe299R_{CUSPER}, Pff1_{cyan} or Pff1ΔviscB_{cyan} *in vitro*, all strains were grown in 3 mL M9 minimal media ($\text{Na}_2\text{HPO}_4 \cdot 7\text{H}_2\text{O}$ 64 g L^{-1} , KH_2PO_4 15 g L^{-1} , NaCl 2.5 g L^{-1} , NH_4Cl 5.0 g L^{-1}) supplemented with 200 μM FeCl_3 (to avoid production of autofluorescent pyoverdines by *Pseudomonads*) and 0.13% w/v glucose, fructose and sorbitol each (M9 3C) overnight at 30°C and 200 rpm. Five hundred μL of each overnight culture were then used to inoculate 50 mL M9 3C, respectively. After six hours, cultures were washed twice by centrifugation at 2,000 g for 5 minutes and resuspension in PBS. Suspensions were diluted to an optical density (OD600nm) of 1 and the following treatments were prepared: Pe299R_{CUSPER}, Pe299R_{CUSPER} vs. Pff1_{cyan}, Pe299R_{CUSPER} vs. Pff1ΔviscB_{cyan}, Pff1_{cyan}, and Pff1ΔviscB_{cyan}. These suspensions were diluted into either M9 supplemented

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

with glucose 0.4% w/v (M9gluc), M9 3C, or LB to a final OD600nm of 0.04 for each strain. Triplicate treatments were pipetted into a 96-well plate and placed into a CLARIOstar Plus microplate reader (BMG Labtech). The fluorescence of the mScarlet-I expressing Pe299R_{CUSPER} was determined by excitation at 530-570 nm and measuring emission at 580-620 nm while *Pseudomonas* produced mTurquoise2 was excited at 400-440 nm and its emission was measured at 450-490 nm using the CLARIOstar software (version 5.70, BMG Labtech). Measurements were performed in 20-min intervals for 42 hours. The plate was incubated at 30°C and the plate was shaken in a double orbital at 200 rpm between measurements.

The area under the curve of the red and cyan fluorescence kinetic of each sample was determined in Prism 10.0.1 (Graphpad). As cyan fluorescence kinetics exhibited a negative change in fluorescence that was media dependent, the data was corrected by a constant value as to move every datapoint above the baseline before the absolute area under the curve was determined.

Swarming assays

To determine the swarming ability of Pe299R_{CUSPER}, Pff1_{cyan}, and Pff1ΔviscB_{cyan}, each strain was inoculated onto soft agar. Soft agar plates were prepared with 0.83% w/v lysogeny broth agar, (LB-Agar, HiMedia) with a final agar concentration of 0.5% w/v. The center of the plate was inoculate with 10 µL of bacterial suspension (OD600nm = 1, prepared as above) and pictures were taken after 24 h of incubation at 30°C using a darfield illuminator (Parkinson 2007) in a dark chamber (MultilImage Light Cabinet) with attached Axiocam 105 (Zeiss) and Zen Core (version 3.2, Zeiss).

LB soft agar was prepared by diluting standard LB agar with ddH₂O in a 1:2 ratio, supplemented with 200 µM FeCl₃. Two mL soft agar was then distributed into a 6-well microtiter plate (Greiner). After the agar cured, a 1.5 µL drop of washed bacterial suspensions (adjusted OD600nm = 0.5) was placed in the middle of each well. The following monocultures and mixtures were prepared: (i) Pe299R_{CUSPER}, (ii) Pe299R_{CUSPER} vs. Pff1_{cyan}, (iii) Pe299R_{CUSPER} vs. Pff1ΔviscB_{cyan}, and (iv) Pff1_{cyan}, and Pff1ΔviscB_{cyan}. The plates were then incubated at 30°C for 16 hours. Afterwards, the plates were placed into a CLARIOstar Plus Microplate reader (BMG Labtech). The fluorescence of the mScarlet-I expressing Pe299R_{CUSPER} was determined by exciting the sample at 530-570 nm and measuring emission at 580-620 nm while *Pseudomonas* produced mTurquoise2 was excited at 400-440 nm and its emission was measured at 450-490 nm. The plates were scanned using the 30 x 30 Matrix scan mode of the CLARIOstar software using bottom optics to obtain the spatial information of each strain. This resulted in a two-dimensional distribution of red and cyan

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

fluorescence data. Background subtraction was performed individually for each datapoint. Data was visualized using the heatmap function of Prism. Total fluorescence of the red fluorescence channel was used as a proxy to determine the total biomass of Pe299R_{CUSPER}. The experiment was performed four times on LB soft agar.

Additionally, to test if co-swarming also occurs when Pe299R_{CUSPER} co-colonises agar surfaces with other swarming pseudomonads, Pe299R_{CUSPER} was co-inoculated with Pff2, Pff3, and Pff4, as well as their respective surfactant deficient mutants on soft LB agar.

Plant growth

Plants were prepared as explained in Miebach et al. (Miebach et al. 2020). Briefly, *Arabidopsis thaliana* Col-0 seeds were sterilized by vortexing in 70% v/v ethanol for two minutes. The ethanol was then removed by pipetting, and the seeds were treated with 50% v/v household bleach (NaOCl, 2.47%) and 0.02% v/v Tween-20 for 7 minutes. Afterwards, seeds were washed three times with sterile water. Sterilized seeds were kept in water and stratified in dark at 4°C for three days. After stratification, seeds were sown on cut pipette tips (~5 mm in length) pre-filled with ½ strength Murashige-Skoog (½ MS) agar medium, placed in a petri dish with ½ MS agar. Petri dishes were closed with parafilm (Bemis) and were placed in a M-5-Z growth cabinet (PolyKlima) with a 11/13 day/night interval (including 30 minutes dusk and 30 minutes dawn during which the lights slowly increase in intensity), 80% relative humidity, and 210 $\mu\text{mol s}^{-1}\text{m}^{-2}$ light intensity.

Gnotobiotic culture boxes were prepared following the methods described by (Miebach et al. 2020). In brief, Magenta Culture Boxes GA-7 were filled with 90 g finely zeolite clay granulate (Klinoptilolith, 0.2-0.5 mm, Labradorit.de) and autoclaved with lids closed. Lids were previously perforated and holes were covered with a double layer of gas permeable tape (Micropore, 3M). After autoclaving and cooling down, 45 ml of sterile ¾ MS Medium was added per box under aseptic conditions. One week after sowing, seedlings were transferred, including the tips they were germinated on, into prepared Magenta boxes. Four seedlings were placed per box and grown under the same conditions described above.

Plant inoculation

To prepare the inoculum of the different strains, a single colony was selected and used to prepare overnight cultures in LB medium (HiMedia, Pe299RCUSPER with 50 mg L⁻¹ kanamycin respectively). The overnight cultures were then used to inoculate fresh liquid cultures by adding 500 μl of cultures to 50 ml fresh medium. Those cultures were grown to mid exponential phase while shaking at 30°C and 200 rpm. Pe299R_{CUSPER} cultures were supplemented with kanamycin and 1 mM isopropylthio- β -galactoside (IPTG) to induce GFP-expression (Remus-Emsermann and Leveau 2010). When reaching log-phase after

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

approximately 6 hours of growth, cells were pelleted by 5 minutes of centrifugation at 4000 \times g, washed three times and adjusted to an OD_{600nm} of 0.1 with sterile phosphate buffered saline (PBS, 1.37 M NaCl, 27 mM KCl, 100 mM Na₂HPO₄, 18 mM KH₂PO₄, pH 7). Where appropriate, strains were mixed prior inoculation, resulting in a relative OD_{600nm} = 0.05 for each strain.

To inoculate *A. thaliana* plants, Magenta® box lids were temporarily replaced with a lid with only one central hole. Each box was then sprayed with 200 μ l of inoculum with an airbrush paint gun (Ultra Spray gun, Harder & Steenbeck, Norderstedt, Germany). Then, the lids were replaced and plants were placed back into the growth chamber.

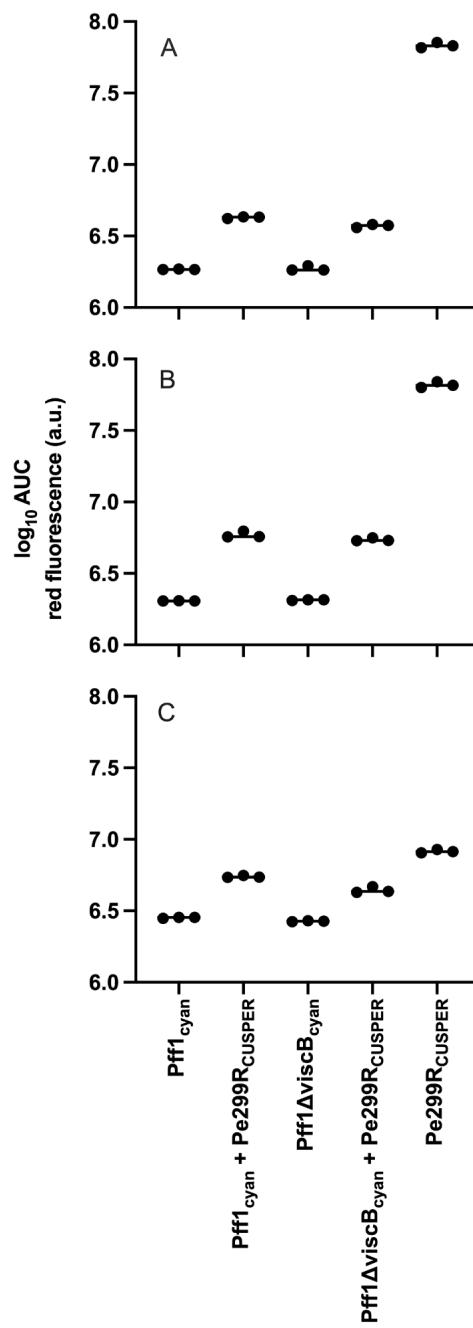
Plant sampling and bacterial cell recovery

Three-week-old plants were sampled after 0 h, 12 h, 18 h and 24 h post inoculation. Plants were sampled by harvesting the total aboveground material using sterile forceps and scissors. Plant material was transferred into a 15-ml centrifuge tube, and fresh weight was determined before 1 ml PBS was added to recover leaf surface-attached bacteria. The samples were then vortexed for 15 seconds and sonicated for 5 minutes at 75% intensity in a sonication bath (Emmi 12 HC, EMAG). Leaf washes were recovered from the tubes and a 100 μ l aliquot was used to determine colony forming units (CFU) by serial dilution on LB agar supplemented with rifampicin (50 mg/L) and kanamycin (50 mg/L) to select for Pe299R_{CUSPER}. The remaining leaf wash was centrifuged for 10 minutes at 15,000 \times g at 4°C, the supernatant was discarded, and the resulting bacterial pellet resuspended was fixed overnight in 4% w/v paraformaldehyde in PBS at 4°C. After fixation, the PFA was removed by three washing steps with sterile PBS. After the last washing step, the pellets were resuspended in 50 μ l PBS mixed with 50 μ l 96% v/v ethanol and stored at -20°C until they were analyzed. All samples were analyzed within two weeks.

Microscopical analysis of CUSPER signals and image cytometry

Recovered bacterial cells were analyzed using widefield fluorescence microscopy as described elsewhere (R. O. Schlechter et al. 2023). Briefly, cells were drop spotted onto 1% w/v agarose slabs on a microscopy slide and covered with a cover slip. An AxioImager Z2 microscope (Zeiss) with a AxioCam 712 mono camera (Zeiss) and X-cite Xylis broad spectrum LED light source (Excelitas) were used. Images were acquired at 1000 \times magnification (EC Plan-Neofluar 100 \times /1.30 Ph3 Oil M27 objective) in phase contrast, green fluorescence and red fluorescence (Zeiss filter sets 38HE (BP 470/40-FT 495-BP 525/50) and 43HE (BP 550/25-FT 570-BP 605/70), respectively) using the software Zen 3.3 (Zeiss). At least 120 cells were acquired per biological replicate which consisted of bacteria pooled from four different plants. Images were analyzed using FIJI and as described previously

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves


(Schindelin et al. 2012; R. O. Schlechter et al. 2023). Briefly, Pe299_{CUSPER} cells were identified using their constitutive red fluorescence and the thresholding method "intermodes". The resulting regions of interest were converted into a binary mask. Artifacts were excluded by analyzing only particles sizes from 0.5–2.5 μm and excluding cells touching the image edges. All images were manually curated using the phase contrast images to exclude false positive red fluorescent particles. The mask was then used to determine green fluorescence intensity of Pe299R_{CUSPER} cells. In addition, the average background fluorescence was measured by randomly sampling the background area of each image. Background fluorescence was subtracted from the data. As previously described, the number of experienced divisions of every cell was determined by calculating \log_2 (average cell's GFP fluorescence at t=0 divided by single cell's fluorescence at time t) (Remus-Emsermann and Leveau 2010).

Results

Pseudomonads negatively affect growth of Pe299R_{CUSPER} *in vitro*

To investigate the interaction of Pe299R_{CUSPER} with Pff1_{cyan} or Pff1 Δ viscB_{cyan} in homogeneous conditions, they were grown in shaken liquid cultures. Under these conditions, there was a strong decrease of Pe299R_{CUSPER} red fluorescence when it was co-inoculated with Pff1_{cyan} or Pff1 Δ viscB_{cyan} (Figure 1). Different media had slightly different effects on this interaction and the decrease ranged from >90% decrease in M9gluc or M9 3C to >30% reduction in LB. This effect was not associated with the *Pseudomonas* red autofluorescence. By contrast, the effect of Pe299R_{CUSPER} on Pff1_{cyan} and Pff1 Δ viscB_{cyan} was much smaller. Only in rich LB growth medium, we could detect a significant negative effect of Pe299R_{CUSPER} on the Pseudomonads (Supplemental Figure 1). In conclusion, the Pseudomonads had a strong negative effect on Pe299R_{CUSPER} *in vitro*, while Pe299R_{CUSPER} is barely affecting the growth of the Pseudomonad strains.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Figure 1 Impact of *Pff1_{cyan}* and *Pff1ΔviscB_{cyan}* on the growth of *Pe299R_{CUSPER}* in different media. The effect on *Pe299R_{CUSPER}* growth was measured by determining the area under the curve of the red fluorescence of *Pe299R_{CUSPER}* monocultures and co-inoculations of *Pe299R_{CUSPER}* and the Pseudomonads. A) M9 supplemented with glucose B) M9 supplemented with glucose, fructose and sorbitol and C) LB. Note that the y-axis is on a \log_{10} scale.

Swarming on solid media

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

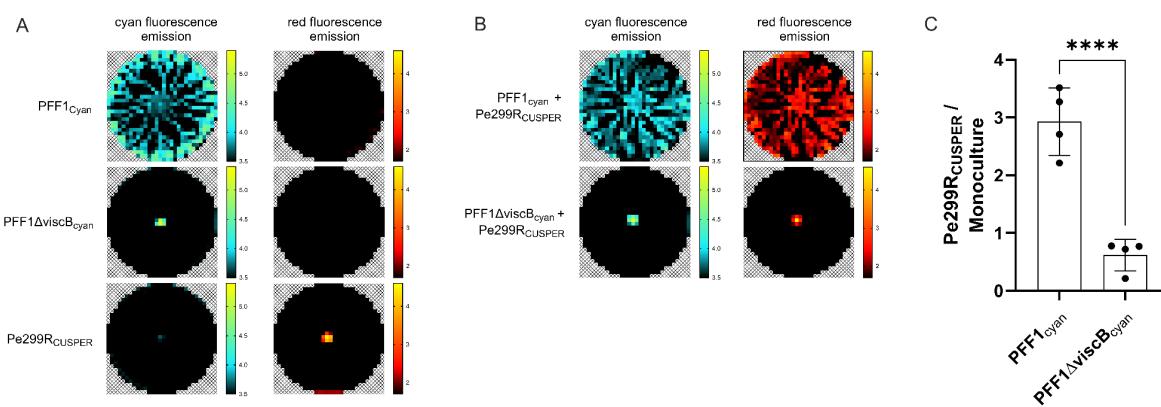

When inoculated onto soft KB agar media alone, the different strains showed various swarming patterns. *Pe299R_{CUSPER}* alone formed as a colony with entire edges that is slightly more slimy compared to growth on standard agar media and does not grow beyond the initial location of inoculation. *Pff1_{cyan}* grew in a flower-shaped colony that is indicative for swarming, far beyond the initial site of inoculation. By contrast, *Pff1ΔviscB_{cyan}* formed a colony similar to *Pe299R_{CUSPER}* and was not able to move far beyond the initial site of inoculation.

Figure 2 Colony morphology of A) *Pe299R_{CUSPER}* B) *Pff1_{cyan}* and C) *Pff1ΔviscB_{cyan}* on KB swarming agar. Pictures were taken in a darkfield illuminator after 24 hours of growth at 30 °C. Scale bar = 1 cm

To investigate bacterial behavior after co-inoculating *Pe299R_{CUSPER}* with the two different Pseudomonads, we used their respective constitutively expressed fluorescent proteins to track their biomass on a swarming agar (Figure 3). While monocultures behaved as expected (Figure 3 A), we found that co-inoculated bacteria affected each other in different fashions. In co-culture with the swarming *Pff1_{cyan}*, *Pe299R_{CUSPER}* had a much wider distribution on the agar surface (Figure 3 B). By contrast, in co-culture with the non-swarming *Pff1ΔviscB_{cyan}*, *Pe299R_{CUSPER}* was similarly restricted in its distribution as in a monoculture. By repeating the experiment four times, we were able to determine the total change in biomass during mono and co-cultures (Figure 3 C). As a result, the *Pe299R_{CUSPER}* biomass, as measured by red fluorescence, was significantly higher in co-inoculations with surfactant producing *Pff1_{cyan}* compared to *Pe299R_{CUSPER}* monocultures and co-inoculations with non-surfactant producing *Pff1ΔviscB_{cyan}* ($p = 0.0001$ and <0.0001 , respectively, one-way ANOVA Tukey's multiple comparison test). By contrast, albeit not significant, *Pe299R_{CUSPER}* biomass is slightly reduced during co-culture with *Pff1ΔviscB_{cyan}*.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

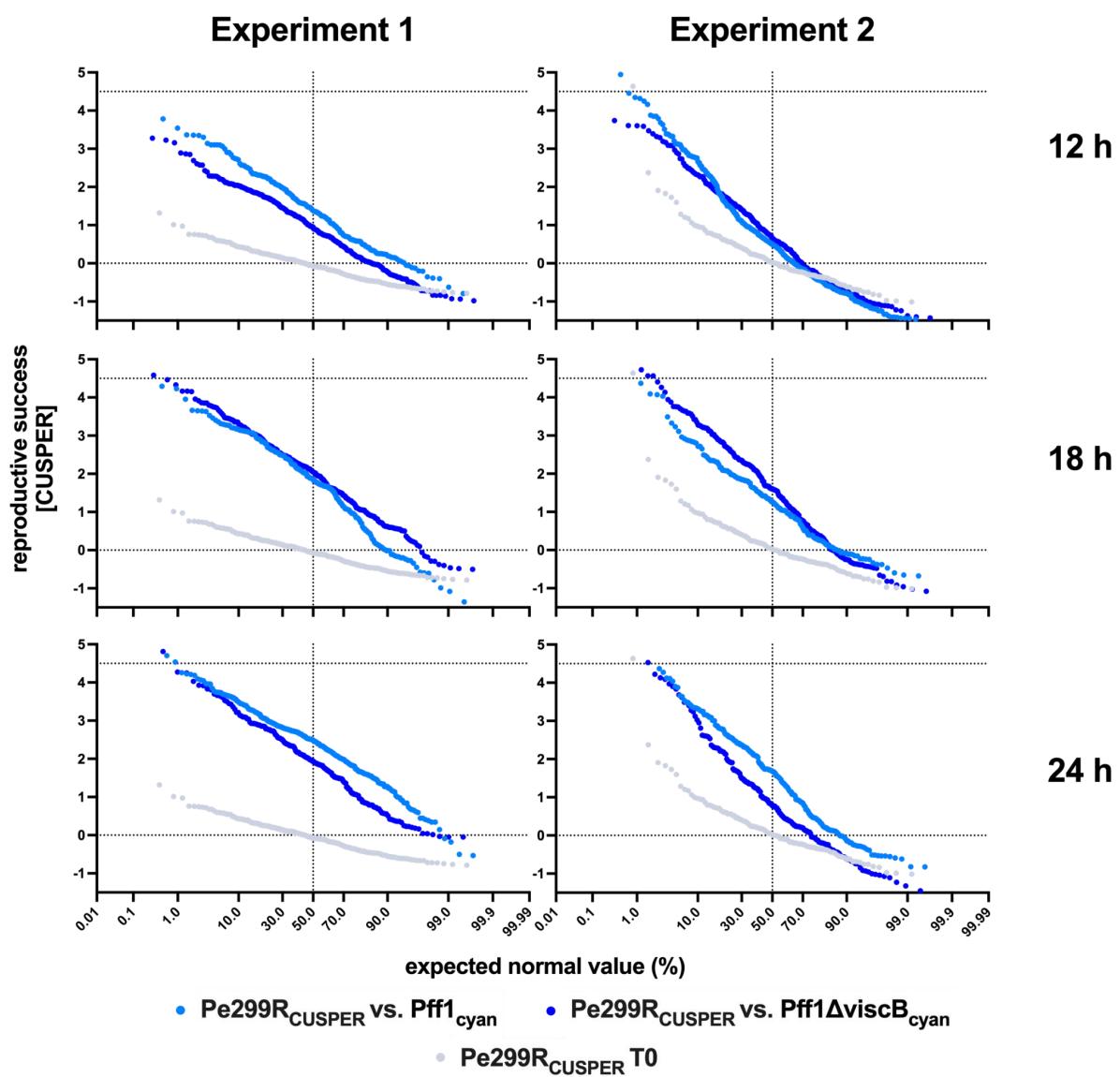


Figure 3 Spatially resolved analysis of bacterial growth and swarming behavior on LB soft agar plates after 16 hours. A) Monocultures of *Pe299R_{CUSPER}*, *Pff1_{cyan}* and *Pff1ΔviscA_{cyan}* or B) mixed cultures of *Pe299R*::red in combination with *Pff1_{cyan}* or *Pff1ΔviscA_{cyan}* on LB soft agar plates. Bacterial growth and biomass were tracked with a fluorescent microtiter plate reader. Growth of *Pe299R_{CUSPER}* was determined by measuring red fluorescence emission and growth of Pseudomonads was determined by measuring cyan fluorescence emission. Note that the color scales are presented as the decadic logarithm of arbitrary fluorescence units. Furthermore, the experiment was repeated four times on LB soft agar plates. C) The fluorescence of *Pe299R_{CUSPER}* was determined after 16 hours and the ratio of *Pe299_{CUSPER}* growing in mixtures over its monoculture was determined.

Co-inoculation *in planta* does not significantly affect *Pe299R_{CUSPER}* at the population scale but does affect reproductive success at the single cell resolution

To investigate the effect of a co-colonizer producing surfactant on *Pe299R_{CUSPER}* *in planta*, the strains were co-inoculated onto axenic *A. thaliana* plants. The two different co-colonizing Pseudomonads affected the population size of *Pe299R_{CUSPER}* similarly. Although we observed a trend that the populations were slightly higher after 24 hours in one of the experiments, this was not consistent between experiments (Supplemental figure 2). By contrast, at the single cell resolution, there are noteworthy differences in the population development during the co-colonization of leaves (Figure 4). Generally, a proportionally larger subpopulation of *Pe299R_{CUSPER}* experienced more cell divisions in presence of the surfactant producing *Pff1_{cyan}* compared to the non-producing *Pff1ΔviscB_{cyan}*. This effect is most apparent after 24 hours and was reproduced in three independent experiments (Figure 4 and Supplemental Figure 3). Furthermore, we observed that after 18h, the presence of the non-surfactant producing strain had a positive effect on *Pe299R_{CUSPER}* (Figure 4).

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

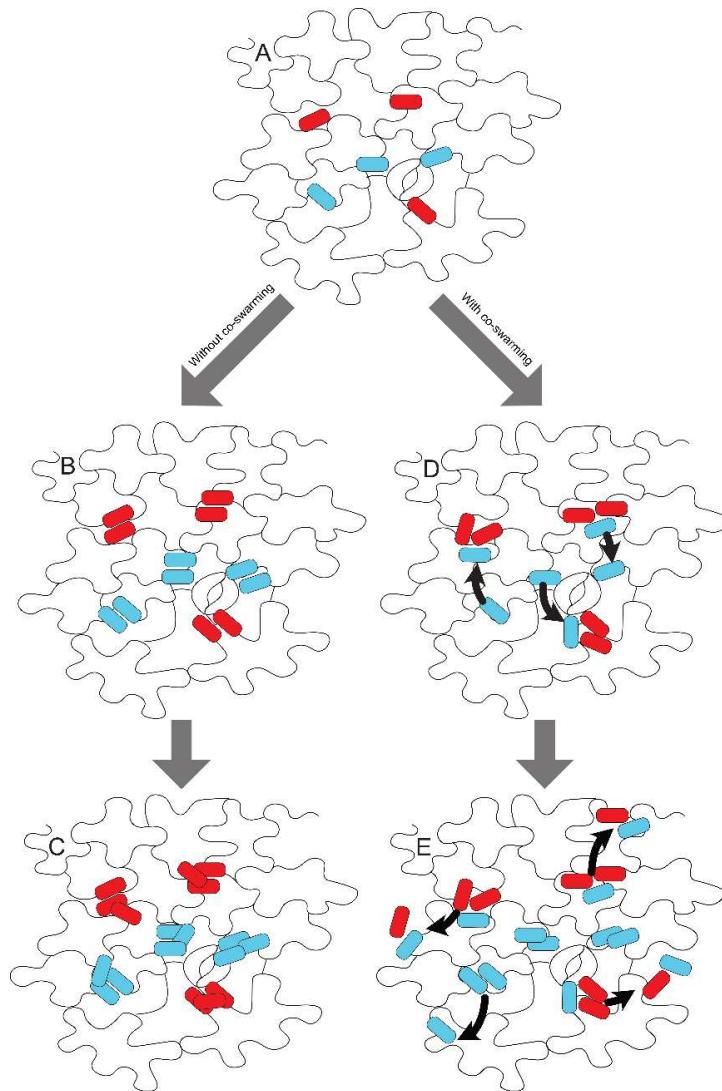
Figure 4 Reproductive success of individual $\text{Pe299R}_{\text{CUSPER}}$ cells during co-colonization of leaves with $\text{Pff1}_{\text{cyan}}$ or $\text{Pff1}\Delta\text{viscB}_{\text{cyan}}$. In gray, the respective T0 fluorescence intensity of the $\text{Pe299R}_{\text{CUSPER}}$ population is depicted. Every increase in reproductive success depicts a cell division relative to the T0 population. Every sample is pooled from the bacteria recovered from four plants.

Discussion

The potential roles of biosurfactants in plant-microbe interactions have been investigated from many different angles: their hygroscopic nature enhances the survival of Pseudomonads (Burch et al. 2014) and increases water availability on leaves (Hernandez and Lindow 2019), they are suspected to increase diffusion of nutrients through the hydrophobic leaf cuticle (Schreiber et al. 2005), and they have been shown to increase

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

alkane degradation by leaf colonizing bacteria (S. Oso et al. 2021). Generally, the abundance of biosurfactant producing bacteria on leaves is proportionally high (Schreiber et al. 2005; Burch et al. 2016; Simisola Oso et al. 2019), indicating a potential ecological importance during life on leaves. Here, we show that surfactant producing bacteria may facilitate the growth of co-colonizers on leaves in a surfactant production and surface colonization dependent manner.


Being both copiotrophic generalists that exhibit a wide range of nutrient utilization, it was expected that $\text{Pe299R}_{\text{CUSPER}}$ and both Pseudomonads affected each other strongly in liquid culture. Indeed, it was mostly $\text{Pe299R}_{\text{CUSPER}}$ that was negatively affected in minimal media and less so in complex LB medium. In turn, the Pseudomonads were almost not affected at all by the presence of $\text{Pe299R}_{\text{CUSPER}}$ in minimal media and to a smaller degree in LB medium. These results are in stark contrast to our observations on a spatially structured soft agar surface. Here, the non-surfactant producing $\text{Pff1}\Delta\text{viscB}_{\text{cyan}}$ negatively affected $\text{Pe299R}_{\text{CUSPER}}$, but not $\text{Pff1}_{\text{cyan}}$ which instead increased the amount of $\text{Pe299R}_{\text{CUSPER}}$ fluorescence as a proxy for biomass by a factor of three and thereby increased its fitness dramatically. As this increase in correlates to a larger spread of the $\text{Pe299R}_{\text{CUSPER}}$, it is likely that this increase can be accredited to a mobilization of $\text{Pe299R}_{\text{CUSPER}}$ by $\text{Pff1}_{\text{cyan}}$, similar co-swarming phenomena have previously been observed in *Paenibacillus vortex* and other *Paenibacillus* strains (Finkelshtein et al. 2015), as well as *Pseudomonas aeruginosa* and *Burkholderia cenocepacia* (Venturi et al. 2010; Morin et al. 2022). Generally, it has been shown that the swarming conferring strain gains a benefit from the co-swarmer by for instance taking advantage of antibiotic resistances provided by the immobile strain (Finkelshtein et al. 2015), or by recovering mobility in case one strain loses mobility factors (Venturi et al. 2010; Morin et al. 2022). In our study, there is no apparent benefit for the strains that mobilize $\text{Pe299R}_{\text{CUSPER}}$. Instead, it is $\text{Pe299R}_{\text{CUSPER}}$ that seems to be able to take advantage of the swarming strains and increases its fitness as compared to homogeneous shaken liquid cultures where swarming does not confer any fitness advantages. This observation led us to test if this effect also pertains to colonization of leaf surfaces, which is the origin of isolation of all strains used in this study.

To test this, we tracked the changes of $\text{Pe299R}_{\text{CUSPER}}$ populations on *A. thaliana* and the ability of $\text{Pe299R}_{\text{CUSPER}}$ individual cells to divide on leaves, exploiting the reproductive success bioreporter CUSPER. At the population scale, the effect of co-colonization was minimal, although a trend of higher $\text{Pe299R}_{\text{CUSPER}}$ populations during co-colonization with $\text{Pff1}_{\text{cyan}}$ as compared to co-colonization with $\text{Pff1}\Delta\text{viscB}_{\text{cyan}}$ could be observed (Supplemental Figure 2). This is in contrast to single cell observations, where we could detect an increased number of cells that experienced a notably higher number of divisions in presence of $\text{Pff1}_{\text{cyan}}$ as compared to the presence of $\text{Pff1}\Delta\text{viscB}_{\text{cyan}}$ (Figure 4) after 24 hours. Curiously, this effect

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

was not visible after 18 hours where $\text{Pe299R}_{\text{CUSPER}}$ seemed to have a minimal growth advantage in presence of $\text{Pff1}\Delta\text{viscB}_{\text{cyan}}$. To explain this, we hypothesize the following model of interactions: During inoculation, it is more probable for individual strains to arrive on the leaf without a competitor in their local environment (Figure 5 A). In a scenario without swarming (Figure 5 B and C), the chance of bacterial strains interacting with each other is low as the minimal interaction distance between bacteria on leaves is about 10 μm (Esser et al. 2015; Remus-Emsermann et al. 2014). As a consequence, bacteria can initially grow rather unimpeded by competition. By contrast, in a scenario with swarming (Figure 5 D and E), the swarming strain will have higher chances to meet the non-swarming $\text{Pe299R}_{\text{CUSPER}}$, which leads to high local competition and locally reduced populations of $\text{Pe299R}_{\text{CUSPER}}$ (compare Figure 3, where the local biomass of $\text{Pe299R}_{\text{CUSPER}}$ is reduced during competition). However, as co-swarming leads to mobilization of $\text{Pe299R}_{\text{CUSPER}}$ and allows the exploration of new microenvironments, this should lead to an increased reproductive success of the strain despite the local competition (Figure 5 E). This is directly analogous to the scenario observed on the spatially structured agar surface (Figure 3).

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Figure 5 Model explaining behavior of *Pe299_{CUSPER}* after co-inoculation with *Pff1ΔviscB_{cyan}* (B, C) or *Pff1_{cyan}* (D, E). A) depicts the initial distribution of non-motile, red-colored *Pe299_{CUSPER}* cells and co-inoculated cyan-colored *Pff1ΔviscB_{cyan}* or *Pff1_{cyan}* cells. In the left scenario, cyan cells do not produce any surfactants and do not swarm. As a result red and cyan populations remain localized and rely on the locally available nutrients. In the right scenario, cyan cells produce surfactants and swarm. This leads to a higher probability of cyan cells to encounter red cells, which leads to a temporally high competition for nutrients and a reduction of red cell divisions (D). However, if red cells are mobilized by co-swarming as a result of close spatial proximity to cyan cells, this leads to the exploration of new sites and an increase of growth.

Effect of other surfactant-producing Pseudomonads on *Pe299R_{CUSPER}*

Interestingly, in a previous study we have observed a similar effect of increased reproductive success of *Pe299R_{CUSPER}* when co-colonizing plant leaves with surfactant-producing

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

P. koreensis P19E3 and *P. syringae* B728a despite high overlap in resource utilization abilities (R. O. Schlechter et al. 2023). This effect can now likely be accredited to the production of surfactants and co-swarming. To further test if co-swarming of Pe299R_{CUSPER} with Pseudomonads can be generalized and accredited to surfactant production, we have tested the growth Pe299R_{CUSPER} and three additional Pseudomonads and their respective surfactant knockout mutants on soft agar. Indeed, we could observe that the Pseudomonas strains Pff2 and Pff4, but not their respective surfactant knockout mutants to co-swarming of Pe299R_{CUSPER} (Supplemental Figure 4). Intriguingly, Pff3 was not able to mobilize Pe299R_{CUSPER}. Pff3 also exhibited a different style of swarming on soft agar plates which seemed to consist of a very thin layer of biomass (Supplemental Figure 5), which might explain this difference in co-swarming. Exploring the reasons for those differences are beyond the scope of this study and might be growth medium dependent as well as strain dependent as bacteria have been shown to be diverse in their swarming behavior (Morris et al. 2011; Wang et al. 2004).

Conclusion

While Pseudomonads act as strong competitors in homogeneous environments, in spatially structured environments they affect co-colonising *P. eucalypti* 299R positively. While this effect cannot be observed on a population scale during leaf colonization, we provide evidence that *P. eucalypti* 299R takes advantage of the presence of surfactant producing Pseudomonads during leaf colonization. This stresses the importance of surfactants produced by pseudomonads as public goods during leaf colonization and implies that cheating of *P. eucalypti* 299R and possibly other taxa may be the rule rather than the exception. Our study highlights another pivotal role of surfactants in the phyllosphere and the implications of surfactant production in this environment. Particularly in the context of preparing microbial inocula for the application on plants our findings provide additional traits, i.e. surfactant production and the ability for co-swarming, which should be considered during the formulation of products.

Acknowledgements

The authors like to thank Sandra Hirsch for providing technical assistance.

Contributions

MK, RS and MRE conceived the work. MK performed the experimental work. MK and MRE analyzed the data. RS and MRE supervised the work. LS provided material. MK and MRE wrote the initial draft of the manuscript with major input from all authors.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Conflict of interest

Authors have no conflict of interest to declare.

References

Bai, Yang, Daniel B. Müller, Girish Srinivas, Ruben Garrido-Oter, Eva Potthoff, Matthias Rott, Nina Dombrowski, et al. 2015. "Functional Overlap of the *Arabidopsis* Leaf and Root Microbiota." *Nature* 528 (7582): 364–69.

Beattie, Gwyn A. 2011. "Water Relations in the Interaction of Foliar Bacterial Pathogens with Plants." *Annual Review of Phytopathology* 49: 533–55.

Bodenhausen, Natacha, Miriam Bortfeld-Miller, Martin Ackermann, and Julia A. Vorholt. 2014. "A Synthetic Community Approach Reveals Plant Genotypes Affecting the Phyllosphere Microbiota." *PLoS Genetics* 10 (4): e1004283.

Burch, Adrien Y., Paulina T. Do, Adrian Sbodio, Trevor V. Suslow, and Steven E. Lindow. 2016. "High-Level Culturability of Epiphytic Bacteria and Frequency of Biosurfactant Producers on Leaves." *Applied and Environmental Microbiology* 82 (19): 5997–6009.

Burch, Adrien Y., Viktoria Zeisler, Kenji Yokota, Lukas Schreiber, and Steven E. Lindow. 2014. "The Hygroscopic Biosurfactant Syringafactin Produced by *Pseudomonas Syringae* Enhances Fitness on Leaf Surfaces during Fluctuating Humidity." *Environmental Microbiology* 16 (7): 2086–98.

Carlström, Charlotte I., Christopher M. Field, Miriam Bortfeld-Miller, Barbara Müller, Shinichi Sunagawa, and Julia A. Vorholt. 2019. "Synthetic Microbiota Reveal Priority Effects and Keystone Strains in the *Arabidopsis* Phyllosphere." *Nature Ecology & Evolution* 3 (10): 1445–54.

Delmotte, Nathanaël, Claudia Knief, Samuel Chaffron, Gerd Innerebner, Bernd Roschitzki, Ralph Schlapbach, Christian von Mering, and Julia A. Vorholt. 2009. "Community Proteogenomics Reveals Insights into the Physiology of Phyllosphere Bacteria." *Proceedings of the National Academy of Sciences of the United States of America* 106 (38): 16428–33.

Esser, Daniel S., Johan H. J. Leveau, Katrin M. Meyer, and Kerstin Wiegand. 2015. "Spatial Scales of Interactions among Bacteria and between Bacteria and the Leaf Surface." *FEMS Microbiology Ecology* 91 (3). <https://doi.org/10.1093/femsec/fiu034>.

Finkelstein, Alin, Dalit Roth, Eshel Ben Jacob, and Colin J. Ingham. 2015. "Bacterial Swarms Recruit Cargo Bacteria to Pave the Way in Toxic Environments." *mBio* 6 (3): e00074–15.

Ha, Dae-Gon, Sherry L. Kuchma, and George A. O'Toole. 2014. "Plate-Based Assay for Swimming Motility in *Pseudomonas Aeruginosa*." *Methods in Molecular Biology* 1149: 59–65.

Haefele, D. M., and S. E. Lindow. 1987. "Flagellar Motility Confers Epiphytic Fitness Advantages upon *Pseudomonas Syringae*." *Applied and Environmental Microbiology* 53 (10): 2528–33.

Hernandez, Monica N., and Steven E. Lindow. 2019. "Pseudomonas Syringae Increases Water Availability in Leaf Microenvironments via Production of Hygroscopic Syringafactin." *Applied and Environmental Microbiology* 85 (18): e01014–19.

Howe, Adina, Nejc Stopnisek, Shane K. Dooley, Fan Yang, Keara L. Grady, and Ashley Shade. 2023. "Seasonal Activities of the Phyllosphere Microbiome of Perennial Crops." *Nature Communications* 14 (1): 1039.

Kearns, Daniel B. 2010. "A Field Guide to Bacterial Swarming Motility." *Nature Reviews. Microbiology* 8 (9): 634–44.

Lajoie, Geneviève, and Steven W. Kembel. 2021. "Plant-Bacteria Associations Are Phylogenetically Structured in the Phyllosphere." *Molecular Ecology* 30 (21): 5572–87.

Martínez, A., S. Torello, and R. Kolter. 1999. "Sliding Motility in Mycobacteria." *Journal of Bacteriology* 181 (23): 7331–38.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

McBride, M. J. 2001. "Bacterial Gliding Motility: Multiple Mechanisms for Cell Movement over Surfaces." *Annual Review of Microbiology* 55: 49–75.

Mercier, J., and S. E. Lindow. 2000. "Role of Leaf Surface Sugars in Colonization of Plants by Bacterial Epiphytes." *Applied and Environmental Microbiology* 66 (1): 369–74.

Merz, A. J., M. So, and M. P. Sheetz. 2000. "Pilus Retraction Powers Bacterial Twitching Motility." *Nature* 407 (6800): 98–102.

Miebach, Moritz, Rudolf O. Schlechter, John Clemens, Paula E. Jameson, and Mitja N. P. Remus-Emsermann. 2020. "Litterbox-A Gnotobiotic Zeolite-Clay System to Investigate *Arabidopsis*-Microbe Interactions." *Microorganisms* 8 (4): 464.

Monier, J-M, and S. E. Lindow. 2005. "Spatial Organization of Dual-Species Bacterial Aggregates on Leaf Surfaces." *Applied and Environmental Microbiology* 71 (9): 5484–93.

Morin, Charles, May Landry, Marie-Christine Groleau, and Eric Déziel. 2022. "Surface Motility Favors Codependent Interaction between *Pseudomonas aeruginosa* and *Burkholderia cenocepacia*." *mSphere* 7 (4): e0015322.

Morris, Joshua D., Jessica L. Hewitt, Lawrence G. Wolfe, Nachiket G. Kamatkar, Sarah M. Chapman, Justin M. Diener, Andrew J. Courtney, W. Matthew Leevy, and Joshua D. Shrout. 2011. "Imaging and Analysis of *Pseudomonas aeruginosa* Swarming and Rhamnolipid Production." *Applied and Environmental Microbiology* 77 (23): 8310–17.

Oso, S., F. Fuchs, C. Übermuth, L. Zander, S. Daunaraviciute, D. M. Remus, I. Stötzel, M. Wüst, L. Schreiber, and M. N. P. Remus-Emsermann. 2021. "Biosurfactants Produced by Phyllosphere-Colonizing *Pseudomonads* Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic *Arabidopsis thaliana*." *Applied and Environmental Microbiology* 87 (9). <https://doi.org/10.1128/AEM.00091-21>.

Oso, Simisola, Matthew Walters, Rudolf O. Schlechter, and Mitja N. P. Remus-Emsermann. 2019. "Utilisation of Hydrocarbons and Production of Surfactants by Bacteria Isolated from Plant Leaf Surfaces." *FEMS Microbiology Letters* 366 (6). <https://doi.org/10.1093/femsle/fnz061>.

Parkinson, John S. 2007. "A 'Bucket of Light' for Viewing Bacterial Colonies in Soft Agar." *Methods in Enzymology* 423: 432–35.

Raaijmakers, Jos M., Irene De Bruijn, Ole Nybroe, and Marc Ongena. 2010. "Natural Functions of Lipopeptides from *Bacillus* and *Pseudomonas*: More than Surfactants and Antibiotics." *FEMS Microbiology Reviews* 34 (6): 1037–62.

Ramette, Alban, Michele Frapolli, Marion Fischer-Le Saux, C. Gruffaz, Jean-Marie Meyer, Geneviève Défago, Laurent Sutra, and Yvan Moënne-Loccoz. 2011. "Pseudomonas Protegens Sp. Nov., Widespread Plant-Protecting Bacteria Producing the Biocontrol Compounds 2,4-Diacetylphloroglucinol and Pyoluteorin." *Systematic and Applied Microbiology* 34 (3): 180–88.

Rastogi, Gurdeep, Adrian Sbodio, Jan J. Tech, Trevor V. Suslow, Gitta L. Coaker, and Johan H. J. Leveau. 2012. "Leaf Microbiota in an Agroecosystem: Spatiotemporal Variation in Bacterial Community Composition on Field-Grown Lettuce." *The ISME Journal* 6 (10): 1812–22.

Remus-Emsermann, Mitja N. P., Eun Bae Kim, Maria L. Marco, Robin Tecon, and Johan H. J. Leveau. 2013. "Draft Genome Sequence of the Phyllosphere Model Bacterium *Pantoea agglomerans* 299R." *Genome Announcements* 1 (1). <https://doi.org/10.1128/genomeA.00036-13>.

Remus-Emsermann, Mitja N. P., and Johan H. J. Leveau. 2010. "Linking Environmental Heterogeneity and Reproductive Success at Single-Cell Resolution." *The ISME Journal* 4 (2): 215–22.

Remus-Emsermann, Mitja N. P., Sebastian Lücker, Daniel B. Müller, Eva Potthoff, Holger Daims, and Julia A. Vorholt. 2014. "Spatial Distribution Analyses of Natural Phyllosphere-Colonizing Bacteria on *Arabidopsis thaliana* Revealed by Fluorescence in Situ Hybridization." *Environmental Microbiology* 16 (7): 2329–40.

Remus-Emsermann, Mitja N. P., and Rudolf O. Schlechter. 2018. "Phyllosphere Microbiology: At the Interface between Microbial Individuals and the Plant Host." *The*

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

New Phytologist 218 (4): 1327–33.

Remus-Emsermann, Mitja N. P., Robin Tecon, George A. Kowalchuk, and Johan H. J. Leveau. 2012. “Variation in Local Carrying Capacity and the Individual Fate of Bacterial Colonizers in the Phyllosphere.” *The ISME Journal* 6 (4): 756–65.

Schäfer, Martin, Alan R. Pacheco, Rahel Künzler, Miriam Bortfeld-Miller, Christopher M. Field, Evangelia Vayena, Vassily Hatzimanikatis, and Julia A. Vorholt. 2023. “Metabolic Interaction Models Recapitulate Leaf Microbiota Ecology.” *Science* 381 (6653): eadf5121.

Schäfer, M., C. M. Vogel, and M. Bortfeld-Miller. 2022. “Mapping Phyllosphere Microbiota Interactions in *Planta* to Establish Genotype–phenotype Relationships.” *Nature*. <https://www.nature.com/articles/s41564-022-01132-w>.

Schindelin, Johannes, Ignacio Arganda-Carreras, Erwin Frise, Verena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, et al. 2012. “Fiji: An Open-Source Platform for Biological-Image Analysis.” *Nature Methods* 9 (7): 676–82.

Schlechter, Rudolf O., Hyunwoo Jun, Michał Bernach, Simisola Oso, Erica Boyd, Dian A. Muñoz-Lintz, Renwick C. J. Dobson, Daniela M. Remus, and Mitja N. P. Remus-Emsermann. 2018. “Chromatic Bacteria - A Broad Host-Range Plasmid and Chromosomal Insertion Toolbox for Fluorescent Protein Expression in Bacteria.” *Frontiers in Microbiology* 9 (December): 3052.

Schlechter, Rudolf O., Evan J. Kear, Michał Bernach, Daniela M. Remus, and Mitja N. P. Remus-Emsermann. 2023. “Metabolic Resource Overlap Impacts Competition among Phyllosphere Bacteria.” *The ISME Journal*, June. <https://doi.org/10.1038/s41396-023-01459-0>.

Schlechter, Rudolf O., Moritz Miebach, and Mitja N. P. Remus-Emsermann. 2019. “Driving Factors of Epiphytic Bacterial Communities: A Review.” *Journal of Advertising Research* 19 (September): 57–65.

Schlechter, Rudolf, and Mitja Remus-Emsermann. 2019. “Delivering ‘Chromatic Bacteria’ Fluorescent Protein Tags to Proteobacteria Using Conjugation.” *BIO-PROTOCOL* 9 (7). <https://doi.org/10.21769/BioProtoc.3199>.

Schreiber, Lukas, Ursula Krimm, Daniel Knoll, Mohamed Sayed, Georg Auling, and Reiner M. Kroppenstedt. 2005. “Plant-Microbe Interactions: Identification of Epiphytic Bacteria and Their Ability to Alter Leaf Surface Permeability.” *The New Phytologist* 166 (2): 589–94.

Su, Pin-Tzu, Chih-Tang Liao, Jiunn-Ren Roan, Shao-Hung Wang, Arthur Chiou, and Wan-Jr Syu. 2012. “Bacterial Colony from Two-Dimensional Division to Three-Dimensional Development.” *PLoS One* 7 (11): e48098.

Thoma, Sabrina, and Max Schobert. 2009. “An Improved *Escherichia coli* Donor Strain for Diparental Mating.” *FEMS Microbiology Letters* 294 (2): 127–32.

Van Stan, John T., II, Cindy E. Morris, Kyaw Aung, Yakov Kuzyakov, Donát Magyar, Eria A. Rebollar, Mitja Remus-Emsermann, Stéphane Uroz, and Philippe Vandenkoornhuyse. 2020. “Precipitation Partitioning—Hydrologic Highways Between Microbial Communities of the Plant Microbiome?” In *Precipitation Partitioning by Vegetation: A Global Synthesis*, edited by Van Stan, II, John T., Ethan Gutmann, and Jan Friesen, 229–52. Cham: Springer International Publishing.

Venturi, Vittorio, Iris Bertani, Adám Kerényi, Sergiu Netotea, and Sándor Pongor. 2010. “Co-Swarming and Local Collapse: Quorum Sensing Conveys Resilience to Bacterial Communities by Localizing Cheater Mutants in *Pseudomonas aeruginosa*.” *PLoS One* 5 (4): e9998.

Vorholt, Julia A. 2012. “Microbial Life in the Phyllosphere.” *Nature Reviews Microbiology* 10 (12): 828–40.

Vrancken, K., M. Holtappels, H. Schoofs, T. Deckers, and R. Valcke. 2013. “Pathogenicity and Infection Strategies of the Fire Blight Pathogen *Erwinia amylovora* in Rosaceae: State of the Art.” *Microbiology* 159 (Pt 5): 823–32.

Wadhwa, Navish, and Howard C. Berg. 2022. “Bacterial Motility: Machinery and Mechanisms.” *Nature Reviews Microbiology* 20 (3): 161–73.

Co-swarming increased reproductive success of *Pantoea eucalypti* 299R on leaves

Wal, Annemieke van der, Robin Tecon, Jan-Ulrich Kreft, Wolf M. Mooij, and Johan H. J. Leveau. 2013. "Explaining Bacterial Dispersion on Leaf Surfaces with an Individual-Based Model (PHYLLOSIM)." *PLoS One* 8 (10): e75633.

Wang, Qingfeng, Jonathan G. Frye, Michael McClelland, and Rasika M. Harshey. 2004. "Gene Expression Patterns during Swarming in *Salmonella Typhimurium*: Genes Specific to Surface Growth and Putative New Motility and Pathogenicity Genes." *Molecular Microbiology* 52 (1): 169–87.

Xin, Xiu-Fang, Brian Kvitko, and Sheng Yang He. 2018. "Pseudomonas Syringae: What It Takes to Be a Pathogen." *Nature Reviews Microbiology* 16 (5): 316–28.

Zengerer, Veronika, Michael Schmid, Marco Bieri, Denise C. Müller, Mitja N. P. Remus-Emsermann, Christian H. Ahrens, and Cosima Pelludat. 2018. "Pseudomonas Orientalis F9: A Potent Antagonist against Phytopathogens with Phytotoxic Effect in the Apple Flower." *Frontiers in Microbiology* 9 (February): 145.