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Abstract

Identifying neuronal cell types and their biophysical properties based on their extracellular
electrical features is a major challenge for experimental neuroscience and the development of
high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell
(RGC) types and their visual response properties, which is fundamental for developing future
electronic implants that can restore vision. The electrical image (El) of a RGC, or the mean
spatio-temporal voltage footprint of its recorded spikes on a high-density electrode array,
contains substantial information about its anatomical, morphological, and functional properties.
However, the analysis of these properties is complex because of the high-dimensional nature of
the El. We present a novel optimization-based algorithm to decompose electrical image into a
low-dimensional, biophysically-based representation: the temporally-shifted superposition of
three learned basis waveforms corresponding to spike waveforms produced in the somatic,
dendritic and axonal cellular compartments. Large-scale multi-electrode recordings from the
macaque retina were used to test the effectiveness of the decomposition. The decomposition
accurately localized the somatic and dendritic compartments of the cell. The imputed dendritic
fields of RGCs correctly predicted the location and shape of their visual receptive fields. The
inferred waveform amplitudes and shapes accurately identified the four major primate RGC
types (ON and OFF midget and parasol cells), a substantial advance. Together, these findings
may contribute to more accurate inference of RGC types and their original light responses in the
degenerated retina, with possible implications for other electrical imaging applications.

Introduction

The increasing scale and density of multi-electrode neural recordings opens up the possibility of
using electrical imaging — spatiotemporal analysis of extracellularly recorded voltage waveforms
produced by a cell — for diverse applications in neuroscience and neuroengineering. An
important example is the development of epiretinal implants, which are designed to restore
vision by evoking spikes in retinal ganglion cells (RGCs) in the degenerated retina, thereby
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conveying artificial visual signals to the brain. Because the ~20 RGC types in the human and
non-human primate retina have very different light response properties [Roska 2014], targeting
the distinct RGC types independently is fundamental to accurately replicating the natural neural
code of the retina. This requires an implant that can use electrical recordings in a blind retina to
identify the distinct RGC types. The electrical image (El) of a RGC — the mean spatio-temporal
voltage footprint of its recorded on a high-density multi-electrode array (MEA) — contains
substantial information about the morphology, location, and biophysical properties of the cell
that could potentially be used to infer its cell type and receptive field. However, because Els are
high-dimensional and complex, using them to infer morphological and biophysical properties of
cells has been difficult [Richard 2015, Zaidi 2023]. Thus, a low-dimensional and interpretable
representation of the El could be useful for probing cell type and function for future vision
restoration efforts, and could also be valuable for electrical images recorded in various parts of
the brain.

Here, we present an optimization-based approach to decompose the Els of RGCs into sums of
temporally-shifted learned somatic, dendritic, and axonal basis waveforms. The decomposition
is low-dimensional and interpretable, consisting of the learned cellular compartment basis
waveform shapes and their respective amplitudes and time shifts for each recording electrode
on the MEA. We first validate the algorithm by comparing the spatial arrangement of the El
decomposition with labeled confocal micrographs of the recorded cell to demonstrate
correspondence with its geometric properties. We then show that RGC receptive field centers
and shapes can be inferred from the dendritic component of the decomposition. Finally, we
demonstrate that the fitted cellular compartment waveforms and amplitudes each systematically
vary with RGC functional type, and that these properties alone can be used to accurately
identify the four numerically-dominant primate RGC types. Together, these results demonstrate
the use of the El decomposition to systematically characterize the anatomy and physiology of
RGCs, and thus could improve the functionality and fidelity of retinal implants for vision
restoration and provide a framework for analysis of electrical images in other parts of the
nervous system.
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Figure 1. (a) Spatial component of the electrical image (El) for an ON parasol cell. The diameters of the
circles correspond to the amplitude of the signal recorded on each respective recording electrode of the
MEA. (b) Extracellularly-recorded waveforms from the El. The numerical labels correspond to the
electrodes numbered in (a). Waveform 1 is a stereotypical somatic waveform, which is biphasic and
consists of a strong fast negative peak followed by a slower positive peak. Waveform 2 is a stereotypical
dendritic waveform, consisting of a strong fast positive peak followed by a slower negative peak.
Waveforms 5 and 6 are stereotypical axonal waveforms, consisting of a strong negative peak and have
overall triphasic shape, indicative of a traveling wave. Waveforms 3 and 4 are examples of
superpositions, as their shapes do not match any of the stereotyped basis waveforms. (c) Signal model
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for the El decomposition algorithm. The recorded data waveform on each electrode is modeled as the
non-negative superposition sum of temporally-shifted compartment basis waveforms. Distinct amplitudes
and shifts are learned for each recording electrode, while the basis waveforms are shared across all
electrodes for a given cell. (d) Iterative optimization procedure for fitting the EI decomposition. The
algorithm alternates between an amplitude and shift fitting step, and a waveform shape optimization step.
(e) Decomposition of the ON parasol cell from (a). Top: spatial representation of the learned amplitudes
of the El decomposition. The color of each circle corresponds to the compartments of the decomposition
(red for soma, green for dendrite, blue for axon), and the diameters of the circles correspond to the fitted
amplitudes. Bottom: fitted basis waveforms for the soma, dendrites, and axon, respectively. (f) Overlay of
the waveforms reconstructed from the decomposition (orange) on top of the original data waveforms of
the EI (gray).

Results
Decomposition of electrical images into somatic, dendritic and axonal component

We exploited the features of electrical images (Els) of primate retinal ganglion cells (RGCs)
recorded on a multi-electrode array (MEA) to reveal biophysical properties of neurons, by
developing a decomposition based on cellular compartments. The voltage waveforms recorded
extracellularly arise from time-varying charge sources and sinks in extracellular medium induced
by trans-membrane currents during action potential propagation. The El, or average
spatiotemporal voltage recorded during a spike, provides a view of the spatial and temporal
structure of these aggregated biophysical quantities (Fig. 1A-B). The shapes of somatic,
dendritic, and axonal waveforms in the El are stereotyped [Petrusca 2007], with somatic
waveforms having biphasic shape with a strong early negative peak (waveform 1 in Fig. 1B),
dendritic waveform having biphasic shape with a strong early positive peak (waveform 2 in Fig.
1b), and the axonal waveform having a strong negative peak and overall triphasic shape
indicative of a traveling wave (waveforms 5 and 6 in Fig. 1B) [Henze 2000, Gold 2006, Gold
2009]. However, many of the voltage waveforms comprising the El consist of superpositions of
signals from multiple parts of the cell (waveforms 3 and 4 in Fig. 1B), due to the morphology of
RGCs, the spatial blurring inherent in extracellularly-recorded signals, and the spatiotemporally
propagating nature of action potentials. This creates a large diversity of waveform shapes and
complicates analysis of spatiotemporal structure in the EI.

To distinguish the underlying cellular compartments, the EI decomposition represents the
recorded extracellular voltage waveform of a cell on each electrode as the shifted and scaled
superposition sum of three learned basis waveforms, putatively corresponding to dendritic,
somatic, and axonal compartments (Fig. 1C). These learned basis waveforms are shared
among all recording electrodes, but are fitted separately for every cell, allowing the
decomposition to capture physiological differences between cells and cell types.

The El decomposition is fitted by minimizing the mean square error between the recorded El
waveforms and the waveforms reconstructed from the decomposition. The learned weights on
the basis waveforms are forced to be non-negative, as they represent contributions of physical
compartments of the cell to the recorded electrical signal. The overall problem is non-convex,
and is solved approximately using a novel algorithm for shifted semi-nonnegative matrix
factorization (see Methods), related to nonnegative matrix factorization [Lee 2000] and shifted
nonnegative matrix factorization [Morup 2007]. Specifically, the decomposition algorithm
iteratively alternates between two steps: (1) an amplitude and time shift fitting step, holding the
basis waveforms fixed; and (2) a basis waveform fitting step, using the previously-inferred
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amplitudes and time shifts. The decomposition fitting objective includes additional regularization
terms to induce sparsity in the fitted amplitudes and to constrain the shapes of the learned basis
waveforms. Details for the regularization and selection of associated hyperparameters are
provided in the Methods.

The decomposition accurately represented the diverse waveforms in the El. The El was
decomposed into a ball corresponding to cell soma, a region surrounding the soma
representing the dendritic field, and a linearly propagating signal representing the axon (Fig. 1E,
top). The shapes of the learned basis waveforms (Fig. 1E, bottom) approximately matched the
waveform shapes expected for somatic, dendritic, and axonal compartments based on first
principles [Petrusca 2007]. Finally, the data waveforms (gray lines in Fig. 1F) were accurately
captured by shifted superpositions of the three compartment basis waveforms (orange lines in
Fig. 1F), even though their shapes differed markedly from the individual basis waveforms,
demonstrating the representational power of the decomposition.

Decomposition components approximately match cellular morphology

To evaluate whether the components of the fitted decomposition corresponded to the
anatomical features of RGCs, the correspondence between the decomposition and fluorescently
labeled cells was tested. The decomposition somatic component was validated by comparison
with manually-labeled ON and OFF parasol cell bodies visualized in confocal micrographs (Fig.
2A). Decomposition somatic centers were calculated as the signal-weighted position of the
largest-amplitude somatic electrode and its six nearest neighbor electrode [Zaidi 2023], while
ground truth cell body locations in the micrographs were identified by staining with HCN1, a dye
labeling the soma [Li 2015]. An approximate geometric alignment between the coordinates of
the recording electrodes of the MEA and micrograph coordinate space was estimated by
aligning vasculature and other large identifiable features (see Methods). The decomposition
algorithm effectively identified somatic centers from the El, with median errors of 29.6 ym and
28.0 ym for the ON parasol cells and OFF parasol cells respectively, comparable to the 30 um
spacing between recording electrodes (Fig. 2B). Note that this analysis did not substantially
improve upon simpler ad hoc methods for identifying the soma center from the EI [Li 2015];
thus, this result serves as a validation rather than a novel finding.

The correspondence of the somatic and dendritic components of the decomposition was further
evaluated using projection targeting with phototagging. This approach enables physiological
identification of a cell using optogenetically-derived responses and provides an extraordinarily
detailed view of the cell's morphological features using fluorescence imaging simultaneously
with recording, enabling precise geometric alignment between the photomicrographs and the
recorded electrical signals. Using this technique, a single rat RGC was imaged, and the cell
body, dendritic tree, and axons were traced and overlaid onto the fitted El decomposition (Fig.
2C). Comparison of the decomposition with the traced cellular compartments revealed a general
correspondence between the decomposition and the anatomical layout of the cell. Notably,
however, the spatial extents of the decomposition-estimated components for each compartment
were substantially larger than the traced cell geometries, suggestive of spatial blurring of the
voltage signal captured by extracellular recording.
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Figure 2 Alignment of the decomposition somatic and dendritic components with labeled micrographs of
the retina. (A) Alignment of decomposition-estimated soma centers with anatomically-labeled soma
centers. Anatomically-labeled ON parasol cell soma centers are marked with red dots, and OFF parasol
soma centers with blue dots for OFF parasol cells. The decomposition-inferred somatic centers are
marked with red and blue crosses for ON and OFF parasol cells, respectively. (B) Histograms quantifying
soma center localization error for ON and OFF parasol RGCs. The median localization error was 29.6 um
for ON parasols and 28.0 um for OFF parasols, comparable to the 30 um recording pitch of the MEA. (C)
El decomposition of a single rat RGC, where the color of each circle corresponds to the compartments of
the decomposition (red for soma, green for dendrite, blue for axon), and the diameters of the circles
correspond to the respective amplitudes. The decomposition is overlaid with the traced cell body (red),
dendritic tree (black), and axon (blue) characterized by staining and imaging the retina.

Inferred dendritic fields strongly correlate with measured receptive fields
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Precise knowledge of the receptive field location and shape for each RGC is needed for an
epiretinal implant to effectively mimic the neural code [Shah 2020, Zaidi 2023]. Although these
properties can be easily characterized using light stimulation in a healthy retina, they must be
inferred from electrically-recorded signals in a retina lacking light responses. Previous work
performed this inference using the somatic signal alone. However, because RGCs receive
visual input through their dendrites, and dendritic fields are not necessarily symmetric about the
cell soma, inclusion of the recorded dendritic signals could improve estimates of location and
shape of RGC receptive fields. Due to the challenge of estimating the dendritic contributions to
Els, however, this possibility has been difficult to evaluate. The decomposition algorithm solves
precisely this problem.

Inclusion of the dendritic centers significantly improved the accuracy of inferred receptive field
locations. This was demonstrated in 29 preparations by comparing the fit quality of affine
transformations mapping somatic centers to receptive field centers with that of affine
transformations that additionally included the decomposition-estimated dendritic field centers.
The dendritic field centers were estimated as the weighted centers-of-mass of the
decomposition dendritic amplitudes, while the somatic centers were estimated as the weighted
centers-of-mass of the decomposition somatic amplitudes over the largest amplitude somatic
electrode and its nearest neighbor electrodes [Zaidi 2023]. Receptive field centers were
computed from the stimulus spike-triggered average obtained with white noise visual stimulation
(see Methods). Distinct mappings were fitted for each cell type, because the relationships
between the somatic, dendritic, and receptive field centers could differ by cell type due to
biological differences or tissue distortions. For nearly every experimental preparation, inclusion
of the decomposition-estimated dendritic center reduced the estimation error for receptive field
centers (Fig. 3), with median error reduction across preparations of 0.0737, 0.0864, 0.315, and
0.181 receptive field diameters for the ON parasol cells, OFF parasol cells, ON midget cells,
and OFF midget cells, respectively. Comparisons of the error relative to receptive field size
revealed that the inferred receptive field centers were more accurate for parasol RGCs than for
midget RGCs, and that inclusion of the dendritic center reduced the error more for midget RGCs
than for parasol RGCs, aligning with previous observations that the dendritic fields of midget
RGCs can be more offset from the soma than those of parasol RGCs [Watanabe 1989].


https://doi.org/10.1101/2023.11.06.565889
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565889; this version posted November 8, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

ON parasol OFF parasol
1.0

e
(6]
.

o= » *
E o
o -.G_,)‘ 00 T T 1 T T 1
Q£
TS

©
o ON midget OFF midget
=24
& .
E 8
» =05

0.0

0.0 0.5 1.00.0 0.5 1.0
Soma-only error
[frac. RF diameter]

Figure 3 Comparison of inferred receptive field center using the location of the somatic center alone,
and using both the somatic and dendritic field centers, for the four major cell types of the primate retina.
Each point in the scatterplots corresponds to one experimental preparation. The y-axis describes the
prediction error using both the somatic and dendritic field center, and the x-axis describes the
prediction error using the somatic center alone, the previous best approach. The magnitudes of the
errors are expressed in terms of the mean receptive field diameter to facilitate comparison between
preparations and cell types.
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Figure 4 Dendritic field mosaics in OFF smooth monostratified and putative broad thorny ganglion cells,
in two experimental preparations. (A) and (C) overlays of the dendritic field contours (solid lines) and the
receptive field contours (shaded regions). The straight edges in the dendritic field contours are due to the
boundaries of the MEA. (B) and (D): Uniformity index (Ul) characterizing the degree of dendritic field
coordination, corresponding to the preparations in (A) and (C), respectively. The histograms show the null
distribution of the Ul (N=250), and the dotted lines mark the value of the data Ul. P-values for mosaic
tiling and coordination were < 1-10+ and 0.008 for the OFF smooth monostratified cells and putative
broad thorny cells respectively for the preparation in (a), and < 1-10+ and 0.004 for the same respective
cell types for the preparation in (b).

To test whether the shapes of estimated RGC dendritic fields were informative about receptive
field shape, the shapes of maximum-tiling dendritic field contours were compared with their
measured receptive field counterparts. This comparison was performed using two large, lower-
density RGC types, the OFF smooth monostratified cells [Rhoades 2019] and the putative broad
thorny cells [Kling 2023], chosen because complete populations could be recorded, and
because their large dendritic fields could easily be probed using a MEA with 60 um recording
electrode pitch. Maximum-tiling dendritic field contours were computed by blurring the
decomposition dendritic fields for each cell into smooth 2D surfaces (see Methods), and then
thresholding to maximize the total area covered by exactly one cell [Gauthier 2009]. The
maximum-tiling dendritic field contours were then mapped from recording electrode coordinate
space into stimulus space (see Methods), and overlaid on top of the maximum-tiling receptive
field contours [Gauthier 2009] for comparison (Fig. 4A and 4C). Despite their irregular shapes,
the dendritic and receptive field contours showed a striking degree of shape concordance,
demonstrating a tight association between the structure of the RGC receptive field and the
geometry of the dendritic field inferred by the decomposition.

To further validate the relationship between RGC dendritic and receptive fields, the degree of
coordination between dendritic fields of RGCs of the same type was evaluated to determine
whether they shared the tiling and coordination properties characteristic of receptive fields
[Gauthier 2009]. This was quantified using the uniformity index (Ul), defined as the fraction of
total MEA area contained within the dendritic contour of exactly one cell. The statistical
significance of dendritic field coordination was evaluated by comparing the Ul with a null
distribution constructed by randomly rotating the dendritic fields of each RGC (see Methods). In
each case, the degree of mosaic tiling and coordination in the observed data was highly
significant (Fig. 4B and Fig. 4D), with p-values < 1-10+~ and 0.008 for the OFF smooth
monostratified and putative broad thorny cells respectively from Fig. 4A, and p-values < 1-10+
and 0.004 for the OFF smooth monostratified and putative broad thorny cells respectively from
Fig. 4C. This is consistent with anatomical results demonstrating coordination of RGC dendritic
fields [Wassle 1981, Dacey 1993]. However, the same analysis largely failed to recover
statistically significant coordination in the inferred dendritic fields of ON and OFF parasol cells
when recording at either 60 um electrode pitch or 30 um electrode pitch. This negative finding
could be a consequence of the fact that adjacent parasol cell dendritic fields overlap significantly
[Dacey and Brace 1992]. However, given that parasol receptive fields do exhibit interdigitation
[Gauthier 2009], it is also potentially indicative of limitations in the spatial resolution of the
decomposition algorithm and MEA recordings of RGC dendritic fields.

Decomposition components distinguish different RGC types
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Because the primate and human retina contains upwards of 20 functional cell types, each with
distinct light response properties [Roska 2014], identification of the cell type of each RGC in a
degenerated retina without direct characterization of light responses may be important for the
calibration of an epiretinal implant [Shah 2020]. To evaluate whether the decomposition can
help to accomplish this identification, the separability of RGC functional types using the
decomposition-fitted basis waveforms and amplitudes was tested.

The relationship between spike waveform shape and functional cell type was first characterized
by applying principal components analysis (PCA) to the fitted basis waveforms of functionally-
identified OFF parasol cells, OFF midget cells, OFF smooth monostratified cells [Rhoades
2019], and putative broad thorny cells [Kling 2023]. Cells from three experimental preparations
from different animals were pooled together. To account for timing differences between
preparations due to variability between animals and experimental conditions, the basis
waveforms from different recordings were stretched in time to equalize their time scales across
recordings and then temporally aligned (see Methods). PCA was performed separately for each
compartment, and the waveforms were then projected onto the top two PCs (Fig. 5A). Across
preparations, for each of the basis waveforms, cells of the same type tended to have similar
waveforms, and cells of different types tended to have different waveforms. Thus, RGCs of
different functional types can exhibit systematically different waveform shapes.

A similar PCA analysis failed to reveal systematic differences in waveform shape between ON
and OFF RGCs across preparations (not shown). Separability between ON and OFF RGCs by
waveform shape was thus evaluated by training binary linear logistic regression classifiers for
each preparation. Classifiers for each basis waveform were fitted separately, and for parasol
cells and midget cells. Separability between ON and OFF cells over the training set was
quantified by computing the area under the receiver operator curve (AUROC), a metric for
binary classifier performance (Fig. 5B). Across 29 preparations, the median training AUROC
obtained using somatic waveforms was 0.836 for parasol cells and 0.907 for midget cells, 0.909
and 0.922 for parasol cell and midget cell dendritic waveforms respectively, and 0.764 and
0.747 for parasol cell and midget cell axonal waveforms respectively. The clear separability
reveals that the shapes of the fitted basis waveforms were informative of differences between
ON and OFF RGCs.
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Figure 5: Decomposition reveals systematic differences across cell types. (a) Projection of the learned
basis waveforms for cells from three preparations onto the first two principal components. Waveform
shapes for cells of the same functional type tended to cluster together, suggesting that the learned basis
waveforms capture systematic variability between different functional cell types across preparations. (b)
AUROC histograms over 29 preparations for waveform shape-based ON vs. OFF classification,
quantifying separability using logistic regression. Median AUROC was 0.836 and 0.907 for parasol and
midget cells respectively with the somatic waveform, 0.909 and 0.922 with the dendritic waveform, and
0.764 and 0.747 with the axonal waveform. AUROC substantially exceeded 0.5 in each case,
demonstrating that each waveform shape was informative of whether the cell was an ON cell or OFF cell.
(c) AUROC histograms over 29 preparations for separability of RGC cell types by somatic and dendritic
amplitude L. norms. Left: Separability of parasol cells and midget cells, assuming that parasol cells have
larger norms than midget cells. Median AUROC for somatic norms was 0.896, and 0.948 for dendritic
norms. Middle: Separability of ON and OFF parasol cells, assuming that ON cells have larger norms than
OFF cells. Median AUROC for somatic norms was 0.711, and 0.787 for dendritic norms. Right:
Separability of ON and OFF midget cells assuming that ON cells have larger norms than OFF cells.
Median AUROC for somatic norms was 0.549, and 0.655 for dendritic norms.

The separability of cell types by decomposition amplitudes was explored by computing L> norms
for the amplitudes of each compartment of each cell, and inferring cell types using decision
rules derived from anatomy. These rules were: (1) parasol RGCs have larger dendritic and
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somatic norms than midget RGCs, because parasol RGC dendritic trees span larger areas than
those of midget RGCs [Dacey 1992, Watanabe 1989], and because parasol RGC soma
diameters are larger than those of midget RGCs [Watanabe 1989]; and (2) ON cells have larger
dendritic and somatic norms than OFF cells of the complementary type, because ON cells
generally have have larger dendritic trees [Dacey 1992, Dacey 1993] (but see Watanabe 1989])
and larger soma diameters [Watanabe 1989] than their OFF counterparts. Though the L, norm
confounds the geometric size with the density and total number of ion channels, these decision
rules were found to be effective in distinguishing RGCs by type.

Separability of RGC types by amplitude norms was quantified with AUROC (Fig. 5C). Though
AUROC is typically reported between 0.5 and 1, ranging from random guessing to perfect
discrimination, AUROC was reported between 0 and 1, as the anatomically-derived decision
rules could produce worse-than-random performance. Across 29 preparations, parasol cells and
midget cells were easily separated by both somatic and dendritic amplitude norms (Fig. 5C, left)
(median AUROC 0.896 and 0.948 for somatic and dendritic norms, respectively), in
concordance with anatomy [Dacey 1992, Watanabe 1989] and prior analyses of Els [Richard
2015]. ON and OFF parasol cells could also be separated by their somatic and dendritic norms
(median AUROC 0.711 and 0.787 for somatic and dendritic norms, respectively) (Fig. 5c,
middle), in agreement with anatomical studies [Dacey 1992] and prior analyses of Els [Zaidi
2023]. However, there did not appear to be systematic differences in somatic or dendritic norms
between ON and OFF midget cells (median AUROC 0.549 for somatic norms, and 0.655 for
dendritic norms — approaching random performance) (Fig. 5C, right). Furthermore, the OFF
midget cells in some preparations in fact had larger somatic and dendritic amplitudes than their
ON counterparts. Thus the decomposition compartment amplitude norms were informative of
the functional cell type of RGCs.

Decomposition efficiently identifies RGC types in a novel retina

Finally, to demonstrate the utility of the decomposition for identifying cell types in a novel
(unseen) retina, which is required for calibrating an epiretinal prosthesis, neural networks were
trained to use the decomposition representation alone to classify cells of the four major types
across experimental preparations. The inputs to the neural networks consisted of the learned
basis waveforms for each cell, and the compartment amplitude L. norms z-scored within each
preparation. Basis waveforms were aligned in time, but no temporal scaling was performed.
Leave-one-out training and evaluation was used, wherein each instance of the neural network
was trained on 28 preparations and evaluated on a single remaining heldout preparation,
mimicking cell type classification in a novel retina.
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Figure 6 Performance of neural network cell type classifiers on unseen retina. 29 classifiers were trained
and evaluated, one for each unseen preparation in the leave-one-out training paradigm. The median in
each histogram is marked with a dotted line. (a) Four-way classification performance. The median four-
way accuracy was 0.850 (mean 0.825), and the median weighted one-vs-rest AUROC was 0.978 (mean
0.957). (b) Parasol vs. midget cell classification performance. Median classification accuracy was 0.977
(mean 0.966), and median AUROC was 0.994 (mean 0.991). (c) Classification metrics for ON vs. OFF
parasol cell. Median classification accuracy was 0.867 (mean 0.855), and median AUROC was 0.959
(mean 0.932). (d) Classification metrics for ON vs. OFF midget cell. Median classification accuracy was
0.879 (mean 0.845), and median AUROC was 0.971 (mean 0.917).

Classifier performance was evaluated by computing classification accuracy and AUROC for
each instance of the neural network. Metrics were computed for overall four-way classification
performance, as well as for binary classification sub-problems parasol vs. midget cell, ON vs.
OFF parasol cell, and ON vs. OFF midget cell. For the four-way classification problem, the
classifiers achieved a median overall accuracy of 0.850 (mean 0.824) and median weighted
one-vs.-rest AUROC of 0.978 (mean 0.957) (Fig. 6A), demonstrating strong overall
performance. The decomposition featurization was sufficient for identification of parasol cells
and midget cells without considering ON vs. OFF types (Fig. 6B), with 0.977 median accuracy
(mean 0.966) and 0.994 median AUROC (mean 0.991). The decomposition featurization was
also sufficient for determining the ON vs. OFF cell type of corresponding RGC types. The
median binary ON vs. OFF parasol cell classification accuracy was 0.867 (mean 0.855), and the
median binary AUROC was 0.959 (mean 0.932) (Fig. 6C), substantially exceeding the
performance of previous El-only approaches to this task [Richard 2015, Zaidi 2023]. The
median binary ON vs. OFF midget cell classification accuracy was 0.879 (mean 0.845) and
median binary AUROC was 0.971 (mean 0.917) (Fig. 6D), demonstrating the first high-
performance El-only method to identify ON and OFF midget RGCs. Thus, the decomposition
representation of the El, with no additional information, makes it possible to effectively classify
and identify the major RGC types of the primate retina from electrical signals alone.

Discussion

We have presented the EI decomposition, a method for inferring the physiological properties of
neurons from recorded voltage waveforms by decomposing their Els into superpositions of
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contributions from somatic, dendritic, and axonal compartments. We applied this technique to
analyze RGCs recorded from the primate retina, demonstrating strong correlations between
decomposition-fitted features and the functional, morphological, and anatomical properties of
RGCs. The learned amplitudes and waveform shapes revealed systematic differences between
RGCs of different functional types, enabling efficient identification of the four major RGC types
in the primate retina across preparations, a substantial advance for vision restoration efforts with
bi-directional implants. These findings demonstrate that electrical imaging, analyzed with
suitable tools, can be a powerful tool for inference of cellular biophysics and for
neuroengineering.

The EI decomposition substantially advances the ability to infer the functional types of RGCs
without direct characterization of their visual response properties, an important unsolved
challenge in the development of bidirectional retinal implants to restore sight. Existing methods
for identifying cell type without light responses [Richard 2015, Zaidi 2023] rely heavily on
properties of spike timing statistics that may not be preserved during retinal degeneration
because of changes in retinal circuitry or synaptic inputs [Sekirnjak 2007, Trenholm 2015, Jones
2016], and have made very limited progress in distinguishing ON-midget from OFF-midget
RGCs, the two most numerous RGC types in humans and macaques. This work demonstrates
that the amplitudes and waveform shapes learned by the decomposition are each informative of
the functional type of RGCs, and uses these features to train cell-type classification models that
far exceed the accuracy of previously published El-only methods [Richard 2015, Zaidi

2023], achieving the first accurate polarity determination for ON and OFF midget RGCs. In
addition, the approach may translate to the degenerated retina more effectively than spike
timing analysis, because RGC Els depend primarily on intrinsic properties of the cell such as the
location and density of ion channels and thus are likely to change little with degeneration (but
see [Chen 2005, Chen 2013]). Furthermore, as the decomposition-based classification models
used neither axon conduction velocity [Li 2012, Zaidi 2013] nor spike train statistics [Richard
2015, Zaidi 2023], features that dominated performance in past methods, it is complementary to
and can be combined with those features for better overall performance.

The exploration of the relationship between waveform shape and functional cell type in the
present work is a substantial advance over previous work using somatic spike waveform shapes
to segregate cortical neurons into different categories, including coarse separation into narrow-
and broad-spiking categories [Hussar 2009, Onorato 2020] and clustering for identification of
potential functional types [Trainito 2019, Sun 2021, Lee 2021]. By enabling principled
identification of each of the characteristic compartment waveforms and accounting for
complexities in their superpositions in extracellular recordings, the decomposition extends the
analysis of the relationship between waveform shape and functional cell type to the dendritic
and axonal compartments, and can be used in conjunction with clustering tools to identify and
characterize novel RGC types in the retina.

The EI decomposition enables more accurate inference of the spatial light response properties
of RGCs without direct characterization, another fundamental computational challenge in the
operation of epiretinal prosthetic devices. Decomposition-computed dendritic fields
systematically reduced error in RF center estimation relative to using the inferred soma location
alone, and the shapes of the decomposition dendritic fields correlated strongly with the shapes
of the receptive fields. These findings could improve the accuracy of inferred RGC light
response models used to determine stimulation patterns in epiretinal implants [Shah 2020, Zaidi
2023], and thus improve the ability of epiretinal implants to mimic the retinal code.
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Though this work demonstrates correspondence between the El and the morphology, functional
type, and visual response properties of RGCs, precise biological interpretations for the
decomposition remain uncertain. The shifted superposition signal model used here assumes
that each compartment basis waveform appears at most once per recording electrode, limiting
the applicability in cases where cells have complicated morphologies (e.g. crossing axons in
amacrine cells [Greschner 2014]) or patterns of spiking (cells that produce several distinct spike
shapes, e.g. [Rhoades 2019]). Generalizations of the model will be needed to handle these
cases. Furthermore, because of the difficulty of cross-validating the decomposition model and
fitting hyperparameters, the amplitudes and basis waveforms learned by the decomposition
cannot yet be interpreted as precise descriptions of the morphology or biophysical properties of
an RGC. Additional studies combining MEA electrophysiology with higher-resolution imaging will
be needed to further validate the decomposition algorithm and better understand the biophysical
and morphological origins of the recorded extracellular signal. Such advances could potentially
broaden the impact of electrical imaging analysis in other systems.

Materials and Methods
Experiments, spike sorting and El computation

Retinas were obtained from macaque monkeys terminally anesthetized by other laboratories in
the course of their experiments, in accordance with Institutional Animal Care and Use
Committee requirements. Extracellular recording was performed using custom multielectrode
arrays (MEASs) [Litke 2004], with either 512 recording electrodes with 60 um spacing and
covering a 1x2mm rectangular area, or with 519 recording electrodes with 30 um spacing and
covering a 1x1mm hexagonal area. Kilosort 2 was used for spike sorting [Pachitariu 2023]. RGC
light response properties, including receptive fields, were characterized with reverse correlation
using a white noise checkerboard stimulus [Chichilnisky 2001]. Ground truth cell type
classification was performed manually by clustering over features computed from the light
response properties and spiking auto-correlation functions, according to previously described
procedures [Field 2007, Rhoades 2019]. Electrical images (Els) for each cell were computed by
cropping windows of the raw recorded voltage traces on all electrodes spanning from 3 ms (60
samples) before to 6 ms (120 samples) after each identified spike time, and then computing the
mean over all windows.

El decomposition algorithm

The El decomposition models each data waveform in the El as the sum of shifted non-negative
superpositions of learned compartment basis waveforms. A distinct set of basis waveforms was
learned for each neuron, and that basis set is shared across every electrode of the El for that
neuron. The algorithm jointly estimated the waveforms B, nonnegative amplitudes A, and the
timeshifts r from the EI matrix X by approximating the solution to the constrained minimization
problem

N C
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1 . X . - ,
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where B denotes shifting of the waveforms of B in time by 7, samples, A., denotes column n of
the matrix A, X., denotes column n of matrix X, and B.. denotes row ¢ of matrix B. The first term,

N
N
1
§Z|B(T’")A;,n—X:,n|§ )‘LZT(AI,TL)
n=1 , iIs a least squares data fidelity term. The second term, i=1 ,
is an Lm group-sparsity- mducmg regularizer on the learned amplitudes A. The final term,
/\P T T T
2 (Bc,: - MC) Z]c (Bc,: - :uC)

i=1 , is @ Gaussian prior regularizer on the waveform shapes.
AL and Ap are hyperparameters controlling the strength of the respective regularizers, and yc and
5. are hyperparameters describing the means and covariances of the waveform shape priors.
The overall objective is non-convex, and thus fitting is performed iteratively, alternating between
solving for the amplitudes and shifts assuming fixed waveform shapes, and then using those
amplitudes and shifts to update the waveform shape.

The amplitudes and shifts optimization step jointly solved for the amplitudes A and time shifts
T while holding the waveform shapes B fixed, resulting in the minimization problem

N
argmin{ Z IBUA. , — X 03+ AL Z A.,)} such that A >0

=1

Solutions for each electrode are found independently with a coarse-to-fine search over possible
combinations of time shifts 7,, using constrained convex minimization to find the optimal
amplitudes A., for each possible 1,, and selecting the values of 7, and A., that minimize the
overall objective. The L, 1 group-sparsity penalty used groups {soma, dendrite} and {axon}. Each
constrained convex minimization problem is solved with FISTA [Beck 2009], using a modified
formulation for the L -regularized problem from [Liu 2009] that accounted for the non-negativity
constraint (proof provided in the Supplement).

The waveform shape optimization step fits the waveform shapes B while holding the amplitudes
and shifts fixed by minimizing a linear least squares objective in Fourier domain, regularized

with a Gaussian prior. Letting B denote the discrete Fourier transform (DFT) of the basis

waveforms, X the DFT of the El data matrix, P(T") the Fourier-domain circular time shift
matrix corresponding to the time shifts 7, found in the previous step, © Hadamard elementwise
matrix multiplication, and G a linear transformation constructed by stacking the real and
imaginary components of the DFT synthesis matrix, the waveform optimization problem is

arg mln{ Z I( B © Bl%) sno T n|2 + /\2P Z(GBZ*:: - GH(:)T(GZCG)_l(GBZ: - GMC)}

c=1

and is solved as a linear system of equations in the Fourier domain. A derivation of the
coefficients of the linear system is provided in the Supplement.

The Gaussian waveform shape prior ensures that the linear system remained full-rank even if a
cellular compartment is not observed. This prior term weakly constrains the basis waveform
shapes to resemble the stereotyped compartment waveforms, preserving interpretability of the
basis waveforms and reducing the total number of iterations required for high-quality fits.
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El decomposition hyperparameter selection

Because of challenges in cross-validating hyperparameters, a single set of hyperparameters
was selected using manual inspection of fits in one preparation. The waveform shape means .
were estimated by computing the mean waveforms for the respective compartments over all
RGCs in that preparation. The waveform shape covariance matrices 5, were chosen as radial
basis function kernels with length 250 ps. A, the weight placed on the sparsity regularizer, and
Ap, the weight placed on the waveform shape prior, were chosen by manual inspection of
decomposition fits for that single preparation. The same hyperparameters were used for every
remaining preparation, reducing the possibility of overfitting or biasing downstream analyses.

Imaging and alignment

The alignment of decomposition somatic centers with imaged cell body locations re-analyzed
the data from [Li 2014]. In brief, the location of the MEA was matched to the confocal images by
manually aligning the locations of tissue landmarks over stacks of stained and labeled
micrographs. An initial light-field micrograph of the retinal tissue on the MEA was taken to
determine the approximate location of the tissue in relation to the recording electrodes. After
recording, the retinal tissue was removed from the array, stained with BllI-tubulin to label the
RGCs, and then imaged using a confocal microscope. Alignment between the brightfield image
and the confocals was performed by matching tissue landmarks and computing nonlinear
transformations mapping between the coordinate spaces. Because imaging required removing
the retina from the MEA, this alignment could not be precisely determined due to possible
warping of the retina.

Projection targeting with phototagging

A Long-Evans rat (Charles River) received bilateral injections into the superior colliculus with
rAAVretro-CAG-ReaChR-GFP to fluorescently label RGCs on the MEA [Bohlen, 2020]. The
superior colliculus was targeted using stereotaxic coordinates and verified by post-mortem
histology. Six months post injection, the animal was deeply anesthetized by isoflurane and
injected with ketamine (100 mg/kg; IP) and xylazine (10 mg/kg; IP), and eyes were enucleated.
Next, the animal was transcardially perfused with a saline flush followed by 4%
paraformaldehyde solution for brain histology. Concurrently, the eyes were hemisected, the
vitreous was removed, and the posterior segment was dark adapted for at least 30 minutes at

32° C. A small sample of retina (~2 mm x 3 mm) was then isolated and placed on the MEA.
Checkerboard noise was used to elicit visual responses and measure receptive fields of RGCs
under photopic conditions (~10,000 Rh*/rod/s). A cocktail of drugs was then introduced to the
bath application of Ames media including L-AP4 (100 uM, Tocris 0103), CNQX (100 uM, Tocris
1090) and DL-AP5 (100 pM, Tocris 1015), to block photoreceptor-driven responses. A 565 nm
LED (Thorlabs, M565L3) was used to drive ReaChR-mediated spiking in transfected RGCs. The
El for ReaChR positive cells was used to match RGC responses pre- and post-photoreceptor
block. The El was then matched to the ReaChR-GFP-expressing RGC over the MEA, which
was straightforward because RGC labeling was sparse. Following physiology, each retina was
fixed using 4% PFA for 30-60 minutes and then immunolabeled for confocal imaging. The RGC
was imaged with a 60x objective, reconstructed using CorelDraw, and then registered to the
position of the cell on the MEA to align the cell with the EI.
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Receptive field center estimation

Receptive field centers were computed from the spike-triggered averages (STAs) characterized
with white noise reverse correlation [Chichilnisky 2001]. The time component of the STA was
estimated by computing a mean over statistically-significant pixels, and a 2D intensity map was
constructed by regressing the STA with that time component. Finally, the receptive field center
was computed as the center-of-mass over the significant pixels in the intensity map.

Somatic and dendritic center estimation, and coordinate transforms

Somatic centers were estimated from the decomposition by computing an amplitude-weighted
center-of-mass over the recording electrode with the largest somatic amplitude, and its six
nearest neighbors in the MEA hexagonal grid [Zaidi 2023]. Dendritic field centers were
estimated by computing an amplitude-weighted center-of-mass over the recording electrodes
that exceeded a threshold.

The somatic and dendritic components of the El were expressed in terms of the MEA recording
electrode coordinates, whereas the locations of the RGC receptive fields were expressed in
terms of the coordinates of the visual stimulus. Affine mappings between electrode coordinate
space and stimulus coordinate space were computed using the RANSAC algorithm [Fischler
1981], chosen for its robustness to outliers caused by the boundaries of the MEA.

Dendritic mosaic contouring and significance testing

The spatial structure of the dendritic fields for parasol RGCs was estimated from the
decomposition-computed dendritic amplitudes. Because the OFF smooth monostratified and
putative broad thorny RGCs were oversplit by the spike-sorter into multiple units, each with
slightly different EI [Rhoades 2019], dendritic fields were estimated by computing the maximum
value of the dendritic amplitude on each recording electrode over the oversplits.

Prior to contouring, the dendritic field was first converted into a smooth 2D surface by
convolving with a 2D Gaussian filter with standard deviation 54 ym. The resulting dendritic field
surfaces were then normalized by their respective maximum values to equalize the amplitudes
between cells. Maximum-tiling dendritic field contours for each cell type were constructed by
finding the threshold that maximized the uniformity index (Ul), defined as the fraction of the MEA
recording area contained within exactly one dendritic contour, similar to the procedure in
[Gauthier 2009] for contouring RGC receptive fields.

Significance testing for dendritic spatial coordination was performed by comparing the Ul of real
dendritic mosaics with a null distribution constructed by randomly and independently rotating
each dendritic field about its geometric centroid and recontouring (N=250). P-values were
estimated as the fraction of the null distribution with a greater Ul than the observed data.

Waveform shape analysis

The waveform shape principal components analysis used three experimental preparations from
different animals, each containing nearly-complete populations of the OFF parasols, OFF
midgets, OFF smooth monostratified [Rhoades 2019], and putative broad thorny [Kling 2023]
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cells. Basis waveforms were pooled across preparations. Temporal rescaling of the waveforms
was performed by equalizing the full-width half-maximum of the negative phase of the mean
OFF parasol somatic waveform using b-spline interpolation and resampling. Temporal
alignment was performed by aligning the principal zero-crossings for the somatic and dendritic
waveforms, and by aligning the absolute minimum for the axonal waveforms. Each basis
waveform was analyzed separately. The top two principal components for each basis waveform
were used for visualization.

The degree to which basis waveform shapes were informative of RGC polarity was evaluated
with linear logistic regression. These classifiers took a single learned compartment basis
waveform as input, and predicted whether each RGC was an ON or OFF cell. Separate
classifiers were trained for parasol cells and for midget cells, and every cell of the relevant types
within each preparation was included in the training set for the classifiers, and the separability of
cell types by waveform shape was quantified by computing AUROC over the training set.

Decomposition-only cell type classifier training and evaluation

Four-layer neural networks were trained to identify RGC cell type from the decomposition. The
input features consisted of the learned basis waveforms for each RGC, and the L. norms of the
compartment amplitudes z-scored over all included RGCs within each preparation. Basis
waveforms were aligned in time without temporal rescaling. Each hidden layer contained 25
units with ReLU nonlinearities and batch normalization [loffe 2015]. The output layer had 4
units, with softmax activation to compute classification probabilities. Each network was trained
with cross-entropy loss, using mini-batch gradient descent for 30 epochs with batch size 32 and
the Adam optimizer [Kingma 2017].

Leave-one-out training and evaluation was used, using 28 of the 29 experimental preparations
for training, and the one remaining preparation for evaluation. This methodology mimicked the
process of classifying RGC cell type in a novel retina. Only cells belonging to the four major
types were included; cells of other types and unidentified spike-sorted units were ignored.

Classification accuracy and AUROC were computed for the overall four-way classification
problem, and for parasol vs. midget RGC, ON vs. OFF for parasol RGCs, and ON vs. OFF for
midget RGCs. Four-way AUROC was computed as the class-weighted sum of the one-vs-rest
AUROC for each cell type. For parasol vs. midget RGC classification, classification was deemed
to be correct if the cell was correctly identified as a parasol RGC or a midget RGC, regardless of
whether the cell was an ON or OFF cell. ON vs. OFF parasol cell classification performance
was evaluated by computing the conditional probability of a cell being either an ON or OFF
parasol cell given that the cell was known to be a parasol. Binary AUROC was computed by
sweeping a decision threshold over the conditional probability. ON vs. OFF midget cell
classification performance was characterized in a similar manner.
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