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Abstract 
 
Identifying neuronal cell types and their biophysical properties based on their extracellular 
electrical features is a major challenge for experimental neuroscience and the development of 
high-resolution brain-machine interfaces. One example is identification of retinal ganglion cell 
(RGC) types and their visual response properties, which is fundamental for developing future 
electronic implants that can restore vision. The electrical image (EI) of a RGC, or the mean 
spatio-temporal voltage footprint of its recorded spikes on a high-density electrode array, 
contains substantial information about its anatomical, morphological, and functional properties. 
However, the analysis of these properties is complex because of the high-dimensional nature of 
the EI. We present a novel optimization-based algorithm to decompose electrical image into a 
low-dimensional, biophysically-based representation: the temporally-shifted superposition of 
three learned basis waveforms corresponding to spike waveforms produced in the somatic, 
dendritic and axonal cellular compartments. Large-scale multi-electrode recordings from the 
macaque retina were used to test the effectiveness of the decomposition. The decomposition 
accurately localized the somatic and dendritic compartments of the cell. The imputed dendritic 
fields of RGCs correctly predicted the location and shape of their visual receptive fields. The 
inferred waveform amplitudes and shapes accurately identified the four major primate RGC 
types (ON and OFF midget and parasol cells), a substantial advance. Together, these findings 
may contribute to more accurate inference of RGC types and their original light responses in the 
degenerated retina, with possible implications for other electrical imaging applications. 

 

Introduction 
 
The increasing scale and density of multi-electrode neural recordings opens up the possibility of 
using electrical imaging 3 spatiotemporal analysis of extracellularly recorded voltage waveforms 
produced by a cell 3 for diverse applications in neuroscience and neuroengineering. An 
important example is the development of epiretinal implants, which are designed to restore 
vision by evoking spikes in retinal ganglion cells (RGCs) in the degenerated retina, thereby 
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conveying artificial visual signals to the brain. Because the ~20 RGC types in the human and 
non-human primate retina have very different light response properties [Roska 2014], targeting 
the distinct RGC types independently is fundamental to accurately replicating the natural neural 
code of the retina. This requires an implant that can use electrical recordings in a blind retina to 
identify the distinct RGC types. The electrical image (EI) of a RGC 3 the mean spatio-temporal 
voltage footprint of its recorded on a high-density multi-electrode array (MEA) 3 contains 
substantial information about the morphology, location, and biophysical properties of the cell 
that could potentially be used to infer its cell type and receptive field. However, because EIs are 
high-dimensional and complex, using them to infer morphological and biophysical properties of 
cells has been difficult [Richard 2015, Zaidi 2023]. Thus, a low-dimensional and interpretable 
representation of the EI could be useful for probing cell type and function for future vision 
restoration efforts, and could also be valuable for electrical images recorded in various parts of 
the brain. 
 
Here, we present an optimization-based approach to decompose the EIs of RGCs into sums of 
temporally-shifted learned somatic, dendritic, and axonal basis waveforms. The decomposition 
is low-dimensional and interpretable, consisting of the learned cellular compartment basis 
waveform shapes and their respective amplitudes and time shifts for each recording electrode 
on the MEA. We first validate the algorithm by comparing the spatial arrangement of the EI 
decomposition with labeled confocal micrographs of the recorded cell to demonstrate 
correspondence with its geometric properties. We then show that RGC receptive field centers 
and shapes can be inferred from the dendritic component of the decomposition. Finally, we 
demonstrate that the fitted cellular compartment waveforms and amplitudes each systematically 
vary with RGC functional type, and that these properties alone can be used to accurately 
identify the four numerically-dominant primate RGC types. Together, these results demonstrate 
the use of the EI decomposition to systematically characterize the anatomy and physiology of 
RGCs, and thus could improve the functionality and fidelity of retinal implants for vision 
restoration and provide a framework for analysis of electrical images in other parts of the 
nervous system. 
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Figure 1. (a) Spatial component of the electrical image (EI) for an ON parasol cell. The diameters of the 
circles correspond to the amplitude of the signal recorded on each respective recording electrode of the 
MEA. (b) Extracellularly-recorded waveforms from the EI. The numerical labels correspond to the 
electrodes numbered in (a). Waveform 1 is a stereotypical somatic waveform, which is biphasic and 
consists of a strong fast negative peak followed by a slower positive peak. Waveform 2 is a stereotypical 
dendritic waveform, consisting of a strong fast positive peak followed by a slower negative peak. 
Waveforms 5 and 6 are stereotypical axonal waveforms, consisting of a strong negative peak and have 
overall triphasic shape, indicative of a traveling wave. Waveforms 3 and 4 are examples of 
superpositions, as their shapes do not match any of the stereotyped basis waveforms. (c) Signal model 
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for the EI decomposition algorithm. The recorded data waveform on each electrode is modeled as the 
non-negative superposition sum of temporally-shifted compartment basis waveforms. Distinct amplitudes 
and shifts are learned for each recording electrode, while the basis waveforms are shared across all 
electrodes for a given cell. (d) Iterative optimization procedure for fitting the EI decomposition. The 
algorithm alternates between an amplitude and shift fitting step, and a waveform shape optimization step. 
(e) Decomposition of the ON parasol cell from (a). Top: spatial representation of the learned amplitudes 
of the EI decomposition. The color of each circle corresponds to the compartments of the decomposition 
(red for soma, green for dendrite, blue for axon), and the diameters of the circles correspond to the fitted 
amplitudes. Bottom: fitted basis waveforms for the soma, dendrites, and axon, respectively. (f) Overlay of 
the waveforms reconstructed from the decomposition (orange) on top of the original data waveforms of 
the EI (gray). 

 

Results  
 
Decomposition of electrical images into somatic, dendritic and axonal component 
 
We exploited the features of electrical images (EIs) of primate retinal ganglion cells (RGCs) 
recorded on a multi-electrode array (MEA) to reveal biophysical properties of neurons, by 
developing a decomposition based on cellular compartments. The voltage waveforms recorded 
extracellularly arise from time-varying charge sources and sinks in extracellular medium induced 
by trans-membrane currents during action potential propagation. The EI, or average 
spatiotemporal voltage recorded during a spike, provides a view of the spatial and temporal 
structure of these aggregated biophysical quantities (Fig. 1A-B). The shapes of somatic, 
dendritic, and axonal waveforms in the EI are stereotyped [Petrusca 2007], with somatic 
waveforms having biphasic shape with a strong early negative peak (waveform 1 in Fig. 1B), 
dendritic waveform having biphasic shape with a strong early positive peak (waveform 2 in Fig. 
1b), and the axonal waveform having a strong negative peak and overall triphasic shape 
indicative of a traveling wave (waveforms 5 and 6 in Fig. 1B) [Henze 2000, Gold 2006, Gold 
2009]. However, many of the voltage waveforms comprising the EI consist of superpositions of 
signals from multiple parts of the cell (waveforms 3 and 4 in Fig. 1B), due to the morphology of 
RGCs, the spatial blurring inherent in extracellularly-recorded signals, and the spatiotemporally 
propagating nature of action potentials.  This creates a large diversity of waveform shapes and 
complicates analysis of spatiotemporal structure in the EI. 
 
To distinguish the underlying cellular compartments, the EI decomposition represents the 
recorded extracellular voltage waveform of a cell on each electrode as the shifted and scaled 
superposition sum of three learned basis waveforms, putatively corresponding to dendritic, 
somatic, and axonal compartments (Fig. 1C). These learned basis waveforms are shared 
among all recording electrodes,  but are fitted separately for every cell, allowing the 
decomposition to capture physiological differences between cells and cell types. 
 
The EI decomposition is fitted by minimizing the mean square error between the recorded EI 
waveforms and the waveforms reconstructed from the decomposition. The learned weights on 
the basis waveforms are forced to be non-negative, as they represent contributions of physical 
compartments of the cell to the recorded electrical signal. The overall problem is non-convex, 
and is solved approximately using a novel algorithm for shifted semi-nonnegative matrix 
factorization (see Methods), related to nonnegative matrix factorization [Lee 2000] and shifted 
nonnegative matrix factorization [Morup 2007]. Specifically, the decomposition algorithm 
iteratively alternates between two steps: (1) an amplitude and time shift fitting step, holding the 
basis waveforms fixed; and (2) a basis waveform fitting step, using the previously-inferred 
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amplitudes and time shifts. The decomposition fitting objective includes additional regularization 
terms to induce sparsity in the fitted amplitudes and to constrain the shapes of the learned basis 
waveforms. Details for the regularization and selection of associated hyperparameters are 
provided in the Methods. 
 
The decomposition accurately represented the diverse waveforms in the EI. The EI was 
decomposed  into a ball corresponding to cell soma, a region surrounding the soma 
representing the dendritic field, and a linearly propagating signal representing the axon (Fig. 1E, 
top). The shapes of the learned basis waveforms (Fig. 1E, bottom) approximately matched the 
waveform shapes expected for somatic, dendritic, and axonal compartments based on first 
principles [Petrusca 2007]. Finally, the data waveforms (gray lines in Fig. 1F) were accurately 
captured by shifted superpositions of the three compartment basis waveforms (orange lines in 
Fig. 1F), even though their shapes differed markedly from the individual basis waveforms, 
demonstrating the representational power of the decomposition. 
 
Decomposition components approximately match cellular morphology 
 
To evaluate whether the components of the fitted decomposition corresponded to the 
anatomical features of RGCs, the correspondence between the decomposition and fluorescently 
labeled cells was tested. The decomposition somatic component was validated by comparison 
with manually-labeled ON and OFF parasol cell bodies visualized in confocal micrographs (Fig. 
2A). Decomposition somatic centers were calculated as the signal-weighted position of the 
largest-amplitude somatic electrode and its six nearest neighbor electrode [Zaidi 2023], while 
ground truth cell body locations in the micrographs were identified by staining with HCN1, a dye 
labeling the soma [Li 2015]. An approximate geometric alignment between the coordinates of 
the recording electrodes of the MEA and micrograph coordinate space was estimated by 
aligning vasculature and other large identifiable features (see Methods). The decomposition 
algorithm effectively identified somatic centers from the EI, with median errors of 29.6 ¿m and 
28.0 ¿m for the ON parasol cells and OFF parasol cells respectively, comparable to the 30 ¿m 
spacing between recording electrodes (Fig. 2B). Note that this analysis did not substantially 
improve upon simpler ad hoc methods for identifying the soma center from the EI [Li 2015]; 
thus, this result serves as a validation rather than a novel finding. 
 

 
The correspondence of the somatic and dendritic components of the decomposition was further 
evaluated using projection targeting with phototagging. This approach enables physiological 
identification of a cell using optogenetically-derived responses and provides an extraordinarily 
detailed view of the cell's morphological features using fluorescence imaging simultaneously 
with recording, enabling precise geometric alignment between the photomicrographs and the 
recorded electrical signals. Using this technique, a single rat RGC was imaged, and the cell 
body, dendritic tree, and axons were traced and overlaid onto the fitted EI decomposition (Fig. 
2C). Comparison of the decomposition with the traced cellular compartments revealed a general 
correspondence between the decomposition and the anatomical layout of the cell. Notably, 
however, the spatial extents of the decomposition-estimated components for each compartment 
were substantially larger than the traced cell geometries, suggestive of spatial blurring of the 
voltage signal captured by extracellular recording. 
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Figure 2 Alignment of the decomposition somatic and dendritic components with labeled micrographs of 
the retina. (A) Alignment of decomposition-estimated soma centers with anatomically-labeled soma 
centers. Anatomically-labeled ON parasol cell soma centers are marked with red dots, and OFF parasol 
soma centers with blue dots for OFF parasol cells. The decomposition-inferred somatic centers are 
marked with red and blue crosses for ON and OFF parasol cells, respectively. (B) Histograms quantifying 
soma center localization error for ON and OFF parasol RGCs. The median localization error was 29.6 um 
for ON parasols and 28.0 um for OFF parasols, comparable to the 30 um recording pitch of the MEA. (C) 
EI decomposition of a single rat RGC, where the color of each circle corresponds to the compartments of 
the decomposition (red for soma, green for dendrite, blue for axon), and the diameters of the circles 
correspond to the respective amplitudes. The decomposition is overlaid with the traced cell body (red), 
dendritic tree (black), and axon (blue) characterized by staining and imaging the retina. 

 
Inferred dendritic fields strongly correlate with measured receptive fields 
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Precise knowledge of the receptive field location and shape for each RGC is needed for an 
epiretinal implant to effectively mimic the neural code [Shah 2020, Zaidi 2023]. Although these 
properties can be easily characterized using light stimulation in a healthy retina, they must be 
inferred from electrically-recorded signals in a retina lacking light responses. Previous work 
performed this inference using the somatic signal alone. However, because RGCs receive 
visual input through their dendrites, and dendritic fields are not necessarily symmetric about the 
cell soma, inclusion of the recorded dendritic signals could improve estimates of location and 
shape of RGC receptive fields. Due to the challenge of estimating the dendritic contributions to 
EIs, however, this possibility has been difficult to evaluate. The decomposition algorithm solves 
precisely this problem. 
 
Inclusion of the dendritic centers significantly improved the accuracy of inferred receptive field 
locations. This was demonstrated in 29 preparations by comparing the fit quality of affine 
transformations mapping somatic centers to receptive field centers with that of affine 
transformations that additionally included the decomposition-estimated dendritic field centers. 
The dendritic field centers were estimated as the weighted centers-of-mass of the 
decomposition dendritic amplitudes, while the somatic centers were estimated as the weighted 
centers-of-mass of the decomposition somatic amplitudes over the largest amplitude somatic 
electrode and its nearest neighbor electrodes [Zaidi 2023]. Receptive field centers were 
computed from the stimulus spike-triggered average obtained with white noise visual stimulation 
(see Methods). Distinct mappings were fitted for each cell type, because the relationships 
between the somatic, dendritic, and receptive field centers could differ by cell type due to 
biological differences or tissue distortions. For nearly every experimental preparation, inclusion 
of the decomposition-estimated dendritic center reduced the estimation error for receptive field 
centers (Fig. 3), with median error reduction across preparations of 0.0737, 0.0864, 0.315, and 
0.181 receptive field diameters for the ON parasol cells, OFF parasol cells, ON midget cells, 
and OFF midget cells, respectively. Comparisons of the error relative to receptive field size 
revealed that the inferred receptive field centers were more accurate for parasol RGCs than for 
midget RGCs, and that inclusion of the dendritic center reduced the error more for midget RGCs 
than for parasol RGCs, aligning with previous observations that the dendritic fields of midget 
RGCs can be more offset from the soma than those of parasol RGCs [Watanabe 1989].  
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Figure 3 Comparison of inferred receptive field center using the location of the somatic center alone, 
and using both the somatic and dendritic field centers, for the four major cell types of the primate retina. 
Each point in the scatterplots corresponds to one experimental preparation. The y-axis describes the 
prediction error using both the somatic and dendritic field center, and the x-axis describes the 
prediction error using the somatic center alone, the previous best approach. The magnitudes of the 
errors are expressed in terms of the mean receptive field diameter to facilitate comparison between 
preparations and cell types. 

 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.06.565889doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565889
http://creativecommons.org/licenses/by/4.0/


Figure 4 Dendritic field mosaics in OFF smooth monostratified and putative broad thorny ganglion cells, 
in two experimental preparations. (A) and (C) overlays of the dendritic field contours (solid lines) and the 
receptive field contours (shaded regions). The straight edges in the dendritic field contours are due to the 
boundaries of the MEA. (B) and (D): Uniformity index (UI) characterizing the degree of dendritic field 
coordination, corresponding to the preparations in (A) and (C), respectively. The histograms show the null 
distribution of the UI (N=250), and the dotted lines mark the value of the data UI. P-values for mosaic 
tiling and coordination were < 1·10-10 and 0.008 for the OFF smooth monostratified cells and putative 
broad thorny cells respectively for the preparation in (a), and < 1·10-10 and 0.004 for the same respective 
cell types for the preparation in (b). 

 
To test whether the shapes of estimated RGC dendritic fields were informative about receptive 
field shape, the shapes of maximum-tiling dendritic field contours were compared with their 
measured receptive field counterparts. This comparison was performed using two large, lower-
density RGC types, the OFF smooth monostratified cells [Rhoades 2019] and the putative broad 
thorny cells [Kling 2023], chosen because complete populations could be recorded, and 
because their large dendritic fields could easily be probed using a MEA with 60 ¿m recording 
electrode pitch. Maximum-tiling dendritic field contours were computed by blurring the 
decomposition dendritic fields for each cell into smooth 2D surfaces (see Methods), and then 
thresholding to maximize the total area covered by exactly one cell [Gauthier 2009]. The 
maximum-tiling dendritic field contours were then mapped from recording electrode coordinate 
space into stimulus space (see Methods), and overlaid on top of the maximum-tiling receptive 
field contours [Gauthier 2009] for comparison (Fig. 4A and 4C). Despite their irregular shapes, 
the dendritic and receptive field contours showed a striking degree of shape concordance, 
demonstrating a tight association between the structure of the RGC receptive field and the 
geometry of the dendritic field inferred by the decomposition. 
 

 
To further validate the relationship between RGC dendritic and receptive fields, the degree of 
coordination between dendritic fields of RGCs of the same type was evaluated to determine 
whether they shared the tiling and coordination properties characteristic of receptive fields 
[Gauthier 2009]. This was quantified using the uniformity index (UI), defined as the fraction of 
total MEA area contained within the dendritic contour of exactly one cell. The statistical 
significance of dendritic field coordination was evaluated by comparing the UI with a null 
distribution constructed by randomly rotating the dendritic fields of each RGC (see Methods). In 
each case, the degree of mosaic tiling and coordination in the observed data was highly 
significant (Fig. 4B and Fig. 4D), with p-values < 1·10-10 and 0.008 for the OFF smooth 
monostratified and putative broad thorny cells respectively from Fig. 4A, and p-values < 1·10-10 
and 0.004 for the OFF smooth monostratified and putative broad thorny cells respectively from 
Fig. 4C. This is consistent with anatomical results demonstrating coordination of RGC dendritic 
fields [Wässle 1981, Dacey 1993]. However, the same analysis largely failed to recover 
statistically significant coordination in the inferred dendritic fields of ON and OFF parasol cells 
when recording at either 60 um electrode pitch or 30 um electrode pitch. This negative finding 
could be a consequence of the fact that adjacent parasol cell dendritic fields overlap significantly 
[Dacey and Brace 1992]. However, given that parasol receptive fields do exhibit interdigitation 
[Gauthier 2009], it is also potentially indicative of limitations in the spatial resolution of the 
decomposition algorithm and MEA recordings of RGC dendritic fields.  
 
Decomposition components distinguish different RGC types 
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Because the primate and human retina contains upwards of 20 functional cell types, each with 
distinct light response properties [Roska 2014], identification of the cell type of each RGC in a 
degenerated retina without direct characterization of light responses may be important for the 
calibration of an epiretinal implant [Shah 2020]. To evaluate whether the decomposition can 
help to accomplish this identification, the separability of RGC functional types using the 
decomposition-fitted basis waveforms and amplitudes was tested. 
 
The relationship between spike waveform shape and functional cell type was first characterized 
by applying principal components analysis (PCA) to the fitted basis waveforms of functionally-
identified OFF parasol cells, OFF midget cells, OFF smooth monostratified cells [Rhoades 
2019], and putative broad thorny cells [Kling 2023]. Cells from three experimental preparations 
from different animals were pooled together. To account for timing differences between 
preparations due to variability between animals and experimental conditions, the basis 
waveforms from different recordings were stretched in time to equalize their time scales across 
recordings and then temporally aligned (see Methods). PCA was performed separately for each 
compartment, and the waveforms were then projected onto the top two PCs (Fig. 5A). Across 
preparations, for each of the basis waveforms, cells of the same type tended to have similar 
waveforms, and cells of different types tended to have different waveforms. Thus, RGCs of 
different functional types can exhibit systematically different waveform shapes. 
 
A similar PCA analysis failed to reveal systematic differences in waveform shape between ON 
and OFF RGCs across preparations (not shown). Separability between ON and OFF RGCs by 
waveform shape was thus evaluated by training binary linear logistic regression classifiers for 
each preparation. Classifiers for each basis waveform were fitted separately, and for parasol 
cells and midget cells. Separability between ON and OFF cells over the training set was 
quantified by computing the area under the receiver operator curve (AUROC), a metric for 
binary classifier performance (Fig. 5B). Across 29 preparations, the median training AUROC 
obtained using somatic waveforms was 0.836 for parasol cells and 0.907 for midget cells, 0.909 
and 0.922 for parasol cell and midget cell dendritic waveforms respectively, and 0.764 and 
0.747 for parasol cell and midget cell axonal waveforms respectively. The clear separability 
reveals that the shapes of the fitted basis waveforms were informative of differences between 
ON and OFF RGCs.  
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Figure 5: Decomposition reveals systematic differences across cell types. (a) Projection of the learned 
basis waveforms for cells from three preparations onto the first two principal components. Waveform 
shapes for cells of the same functional type tended to cluster together, suggesting that the learned basis 
waveforms capture systematic variability between different functional cell types across preparations. (b) 
AUROC histograms over 29 preparations for waveform shape-based ON vs. OFF classification, 
quantifying separability using logistic regression. Median AUROC was 0.836 and 0.907 for parasol and 
midget cells respectively with the somatic waveform, 0.909 and 0.922 with the dendritic waveform, and 
0.764 and 0.747 with the axonal waveform. AUROC substantially exceeded 0.5 in each case, 
demonstrating that each waveform shape was informative of whether the cell was an ON cell or OFF cell. 
(c) AUROC histograms over 29 preparations for separability of RGC cell types by somatic and dendritic 
amplitude L2 norms. Left: Separability of parasol cells and midget cells, assuming that parasol cells have 
larger norms than midget cells. Median AUROC for somatic norms was 0.896, and 0.948 for dendritic 
norms. Middle: Separability of ON and OFF parasol cells, assuming that ON cells have larger norms than 
OFF cells. Median AUROC for somatic norms was 0.711, and 0.787 for dendritic norms. Right: 
Separability of ON and OFF midget cells assuming that ON cells have larger norms than OFF cells. 
Median AUROC for somatic norms was 0.549, and 0.655 for dendritic norms. 

 
The separability of cell types by decomposition amplitudes was explored by computing L2 norms 
for the amplitudes of each compartment of each cell, and inferring cell types using decision 
rules derived from anatomy. These rules were: (1) parasol RGCs have larger dendritic and 
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somatic norms than midget RGCs, because parasol RGC dendritic trees span larger areas than 
those of midget RGCs [Dacey 1992, Watanabe 1989], and because parasol RGC soma 
diameters are larger than those of midget RGCs [Watanabe 1989]; and (2) ON cells have larger 
dendritic and somatic norms than OFF cells of the complementary type, because ON cells 
generally have have larger dendritic trees [Dacey 1992, Dacey 1993] (but see Watanabe 1989]) 
and larger soma diameters [Watanabe 1989] than their OFF counterparts. Though the L2 norm 
confounds the geometric size with the density and total number of ion channels, these decision 
rules were found to be effective in distinguishing RGCs by type. 
 
Separability of RGC types by amplitude norms was quantified with AUROC (Fig. 5C). Though 
AUROC is typically reported between 0.5 and 1, ranging from random guessing to perfect 
discrimination, AUROC was reported between 0 and 1, as the anatomically-derived decision 
rules could produce worse-than-random performance. Across 29 preparations, parasol cells and 
midget cells were easily separated by both somatic and dendritic amplitude norms (Fig. 5C, left) 
(median AUROC 0.896 and 0.948 for somatic and dendritic norms, respectively), in 
concordance with anatomy [Dacey 1992, Watanabe 1989] and prior analyses of EIs [Richard 
2015]. ON and OFF parasol cells could also be separated by their somatic and dendritic norms 
(median AUROC 0.711 and 0.787 for somatic and dendritic norms, respectively) (Fig. 5c, 
middle), in agreement with anatomical studies [Dacey 1992] and prior analyses of EIs [Zaidi 
2023]. However, there did not appear to be systematic differences in somatic or dendritic norms 
between ON and OFF midget cells (median AUROC 0.549 for somatic norms, and 0.655 for 
dendritic norms 3 approaching random performance) (Fig. 5C, right). Furthermore, the OFF 
midget cells in some preparations in fact had larger somatic and dendritic amplitudes than their 
ON counterparts. Thus the decomposition compartment amplitude norms were informative of 
the functional cell type of RGCs. 
 
Decomposition efficiently identifies RGC types in a novel retina 
 
Finally, to demonstrate the utility of the decomposition for identifying cell types in a novel 
(unseen) retina, which is required for calibrating an epiretinal prosthesis, neural networks were 
trained to use the decomposition representation alone to classify cells of the four major types 
across experimental preparations. The inputs to the neural networks consisted of the learned 
basis waveforms for each cell, and the compartment amplitude L2 norms z-scored within each 
preparation. Basis waveforms were aligned in time, but no temporal scaling was performed. 
Leave-one-out training and evaluation was used, wherein each instance of the neural network 
was trained on 28 preparations and evaluated on a single remaining heldout preparation, 
mimicking cell type classification in a novel retina.  
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Figure 6 Performance of neural network cell type classifiers on unseen retina. 29 classifiers were trained 
and evaluated, one for each unseen preparation in the leave-one-out training paradigm. The median in 
each histogram is marked with a dotted line. (a) Four-way classification performance. The median four-
way accuracy was 0.850 (mean 0.825), and the median weighted one-vs-rest AUROC was 0.978 (mean 
0.957). (b) Parasol vs. midget cell classification performance. Median classification accuracy was 0.977 
(mean 0.966), and median AUROC was 0.994 (mean 0.991). (c) Classification metrics for ON vs. OFF 
parasol cell. Median classification accuracy was 0.867 (mean 0.855), and median AUROC was 0.959 
(mean 0.932). (d) Classification metrics for ON vs. OFF midget cell. Median classification accuracy was 
0.879 (mean 0.845), and median AUROC was 0.971 (mean 0.917). 

 
Classifier performance was evaluated by computing classification accuracy and AUROC for 
each instance of the neural network. Metrics were computed for overall four-way classification 
performance, as well as for binary classification sub-problems parasol vs. midget cell, ON vs. 
OFF parasol cell, and ON vs. OFF midget cell. For the four-way classification problem, the 
classifiers achieved a median overall accuracy of 0.850 (mean 0.824) and median weighted 
one-vs.-rest AUROC of 0.978 (mean 0.957) (Fig. 6A), demonstrating strong overall 
performance. The decomposition featurization was sufficient for identification of parasol cells 
and midget cells without considering ON vs. OFF types (Fig. 6B), with 0.977 median accuracy 
(mean 0.966) and 0.994 median AUROC (mean 0.991). The decomposition featurization was 
also sufficient for determining the ON vs. OFF cell type of corresponding RGC types. The 
median binary ON vs. OFF parasol cell classification accuracy was 0.867 (mean 0.855), and the 
median binary AUROC was 0.959 (mean 0.932) (Fig. 6C), substantially exceeding the 
performance of previous EI-only approaches to this task [Richard 2015, Zaidi 2023]. The 
median binary ON vs. OFF midget cell classification accuracy was 0.879 (mean 0.845) and 
median binary AUROC was 0.971 (mean 0.917) (Fig. 6D), demonstrating the first high-
performance EI-only method to identify ON and OFF midget RGCs. Thus, the decomposition 
representation of the EI, with no additional information, makes it possible to effectively classify 
and identify the major RGC types of the primate retina from electrical signals alone. 
 

Discussion  
 
We have presented the EI decomposition, a method for inferring the physiological properties of 
neurons from recorded voltage waveforms by decomposing their EIs into superpositions of 
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contributions from somatic, dendritic, and axonal compartments. We applied this technique to 
analyze RGCs recorded from the primate retina, demonstrating strong correlations between 
decomposition-fitted features and the functional, morphological, and anatomical properties of 
RGCs. The learned amplitudes and waveform shapes revealed systematic differences between 
RGCs of different functional types, enabling efficient identification of the four major RGC types 
in the primate retina across preparations, a substantial advance for vision restoration efforts with 
bi-directional implants. These findings demonstrate that electrical imaging, analyzed with 
suitable tools, can be a powerful tool for inference of cellular biophysics and for 
neuroengineering. 
 
The EI decomposition substantially advances the ability to infer the functional types of RGCs 
without direct characterization of their visual response properties, an important unsolved 
challenge in the development of bidirectional retinal implants to restore sight. Existing methods 
for identifying cell type without light responses [Richard 2015, Zaidi 2023] rely heavily on 
properties of spike timing statistics that may not be preserved during retinal degeneration 
because of changes in retinal circuitry or synaptic inputs [Sekirnjak 2007, Trenholm 2015, Jones 
2016], and have made very limited progress in distinguishing ON-midget from OFF-midget 
RGCs, the two most numerous RGC types in humans and macaques. This work demonstrates 
that the amplitudes and waveform shapes learned by the decomposition are each informative of 
the functional type of RGCs, and uses these features to train cell-type classification models that 
far exceed the accuracy of previously published EI-only methods [Richard 2015, Zaidi 
2023], achieving the first accurate polarity determination for ON and OFF midget RGCs. In 
addition, the approach may translate to the degenerated retina more effectively than spike 
timing analysis, because RGC EIs depend primarily on intrinsic properties of the cell such as the 
location and density of ion channels and thus are likely to change little with degeneration (but 
see [Chen 2005, Chen 2013]). Furthermore, as the decomposition-based classification models 
used neither axon conduction velocity [Li 2012, Zaidi 2013] nor spike train statistics [Richard 
2015, Zaidi 2023], features that dominated performance in past methods, it is complementary to 
and can be combined with those features for better overall performance. 
 
The exploration of the relationship between waveform shape and functional cell type in the 
present work is a substantial advance over previous work using somatic spike waveform shapes 
to segregate cortical neurons into different categories, including coarse separation into narrow- 
and broad-spiking categories [Hussar 2009, Onorato 2020] and clustering for identification of 
potential functional types [Trainito 2019, Sun 2021, Lee 2021]. By enabling principled 
identification of each of the characteristic compartment waveforms and accounting for 
complexities in their superpositions in extracellular recordings, the decomposition extends the 
analysis of the relationship between waveform shape and functional cell type to the dendritic 
and axonal compartments, and can be used in conjunction with clustering tools to identify and 
characterize novel RGC types in the retina. 
 

 
The EI decomposition enables more accurate inference of the spatial light response properties 
of RGCs without direct characterization, another fundamental computational challenge in the 
operation of epiretinal prosthetic devices. Decomposition-computed dendritic fields 
systematically reduced error in RF center estimation relative to using the inferred soma location 
alone, and the shapes of the decomposition dendritic fields correlated strongly with the shapes 
of the receptive fields. These findings could improve the accuracy of inferred RGC light 
response models used to determine stimulation patterns in epiretinal implants [Shah 2020, Zaidi 
2023], and thus improve the ability of epiretinal implants to mimic the retinal code.  
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Though this work demonstrates correspondence between the EI and the morphology, functional 
type, and visual response properties of RGCs, precise biological interpretations for the 
decomposition remain uncertain. The shifted superposition signal model used here assumes 
that each compartment basis waveform appears at most once per recording electrode, limiting 
the applicability in cases where cells have complicated morphologies (e.g. crossing axons in 
amacrine cells [Greschner 2014]) or patterns of spiking (cells that produce several distinct spike 
shapes, e.g. [Rhoades 2019]). Generalizations of the model will be needed to handle these 
cases. Furthermore, because of the difficulty of cross-validating the decomposition model and 
fitting hyperparameters, the amplitudes and basis waveforms learned by the decomposition 
cannot yet be interpreted as precise descriptions of the morphology or biophysical properties of 
an RGC. Additional studies combining MEA electrophysiology with higher-resolution imaging will 
be needed to further validate the decomposition algorithm and better understand the biophysical 
and morphological origins of the recorded extracellular signal. Such advances could potentially 
broaden the impact of electrical imaging analysis in other systems. 
 

Materials and Methods 
 
Experiments, spike sorting and EI computation 
 
Retinas were obtained from macaque monkeys terminally anesthetized by other laboratories in 
the course of their experiments, in accordance with Institutional Animal Care and Use 
Committee requirements. Extracellular recording was performed using custom multielectrode 
arrays (MEAs) [Litke 2004], with either 512 recording electrodes with 60 um spacing and 
covering a 1x2mm rectangular area, or with 519 recording electrodes with 30 um spacing and 
covering a 1x1mm hexagonal area. Kilosort 2 was used for spike sorting [Pachitariu 2023]. RGC 
light response properties, including receptive fields, were characterized with reverse correlation 
using a white noise checkerboard stimulus [Chichilnisky 2001]. Ground truth cell type 
classification was performed manually by clustering over features computed from the light 
response properties and spiking auto-correlation functions, according to previously described 
procedures [Field 2007, Rhoades 2019]. Electrical images (EIs) for each cell were computed by 
cropping windows of the raw recorded voltage traces on all electrodes spanning from 3 ms (60 
samples) before to 6 ms (120 samples) after each identified spike time, and then computing the 
mean over all windows. 
 
EI decomposition algorithm 
 
The EI decomposition models each data waveform in the EI as the sum of shifted non-negative 
superpositions of learned compartment basis waveforms. A distinct set of basis waveforms was 
learned for each neuron, and that basis set is shared across every electrode of the EI for that 
neuron. The algorithm jointly estimated the waveforms B, nonnegative amplitudes A, and the 
timeshifts Ç from the EI matrix X by approximating the solution to the constrained minimization 
problem 
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where B(�) denotes shifting of the waveforms of B in time by Çn samples, A:,n denotes column n of 
the matrix A, X:,n denotes column n of matrix X, and Bc,: denotes row c of matrix B. The first term, 

, is a least squares data fidelity term. The second term, , 
is an L2,1 group-sparsity-inducing regularizer on the learned amplitudes A. The final term, 

, is a Gaussian prior regularizer on the waveform shapes. 
»L and »P are hyperparameters controlling the strength of the respective regularizers, and ¼c and 
£c

-1  are hyperparameters describing the means and covariances of the waveform shape priors. 
The overall objective is non-convex, and thus fitting is performed iteratively, alternating between 
solving for the amplitudes and shifts assuming fixed waveform shapes, and then using those 
amplitudes and shifts to update the waveform shape. 
 
The amplitudes and shifts optimization step jointly solved for the amplitudes A and time shifts 
Ç while holding the waveform shapes B fixed, resulting in the minimization problem 
 

. 
 
Solutions for each electrode are found independently with a coarse-to-fine search over possible 
combinations of time shifts Çn, using constrained convex minimization to find the optimal 
amplitudes A:,n for each possible Çn, and selecting the values of Çn and A:,n that minimize the 
overall objective. The L2,1 group-sparsity penalty used groups {soma, dendrite} and {axon}. Each 
constrained convex minimization problem is solved with FISTA [Beck 2009], using a modified 
formulation for the L2,1-regularized problem from [Liu 2009] that accounted for the non-negativity 
constraint (proof provided in the Supplement). 
 
The waveform shape optimization step fits the waveform shapes B while holding the amplitudes 
and shifts fixed by minimizing a linear least squares objective in Fourier domain, regularized 

with a Gaussian prior. Letting  denote the discrete Fourier transform (DFT) of the basis 

waveforms,  the DFT of the EI data matrix,  the Fourier-domain circular time shift 

matrix corresponding to the time shifts �n found in the previous step,  Hadamard elementwise 
matrix multiplication, and G a linear transformation constructed by stacking the real and 
imaginary components of the DFT synthesis matrix, the waveform optimization problem is  
 

 
 
and is solved as a linear system of equations in the Fourier domain. A derivation of the 
coefficients of the linear system is provided in the Supplement. 
 
The Gaussian waveform shape prior ensures that the linear system remained full-rank even if a 
cellular compartment is not observed. This prior term weakly constrains the basis waveform 
shapes to resemble the stereotyped compartment waveforms, preserving interpretability of the 
basis waveforms and reducing the total number of iterations required for high-quality fits. 

1

2

NX

n=1

|B(τn)A:,n −X:,n|
2
2
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EI decomposition hyperparameter selection 
 
Because of challenges in cross-validating hyperparameters, a single set of hyperparameters 
was selected using manual inspection of fits in one preparation. The waveform shape means ¼c 
were estimated by computing the mean waveforms for the respective compartments over all 
RGCs in that preparation. The waveform shape covariance matrices £c

-1  were chosen as radial 
basis function kernels with length 250 ¿s. »L, the weight placed on the sparsity regularizer, and 
»P, the weight placed on the waveform shape prior, were chosen by manual inspection of 
decomposition fits for that single preparation. The same hyperparameters were used for every 
remaining preparation, reducing the possibility of overfitting or biasing downstream analyses. 
 
Imaging and alignment 
 
The alignment of decomposition somatic centers with imaged cell body locations re-analyzed 
the data from [Li 2014]. In brief, the location of the MEA was matched to the confocal images by 
manually aligning the locations of tissue landmarks over stacks of stained and labeled 
micrographs. An initial light-field micrograph of the retinal tissue on the MEA was taken to 
determine the approximate location of the tissue in relation to the recording electrodes. After 
recording, the retinal tissue was removed from the array, stained with ³III-tubulin to label the 
RGCs, and then imaged using a confocal microscope. Alignment between the brightfield image 
and the confocals was performed by matching tissue landmarks and computing nonlinear 
transformations mapping between the coordinate spaces. Because imaging required removing 
the retina from the MEA, this alignment could not be precisely determined due to possible 
warping of the retina. 
 
Projection targeting with phototagging 
 
A Long-Evans rat (Charles River) received bilateral injections into the superior colliculus with 
rAAVretro-CAG-ReaChR-GFP to fluorescently label RGCs on the MEA [Bohlen, 2020]. The 
superior colliculus was targeted using stereotaxic coordinates and verified by post-mortem 
histology. Six months post injection, the animal was deeply anesthetized by isoflurane and 

injected with ketamine (100 mg/kg; IP) and xylazine (10 mg/kg; IP), and eyes were enucleated. 
Next, the animal was transcardially perfused with a saline flush followed by 4% 
paraformaldehyde solution for brain histology. Concurrently, the eyes were hemisected, the 
vitreous was removed, and the posterior segment was dark adapted for at least 30 minutes at 

32° C. A small sample of retina (~2 mm x 3 mm) was then isolated and placed on the MEA. 

Checkerboard noise was used to elicit visual responses and measure receptive fields of RGCs 
under photopic conditions (~10,000 Rh*/rod/s). A cocktail of drugs was then introduced to the 
bath application of Ames media including L-AP4 (100 µM, Tocris 0103), CNQX (100 µM, Tocris 
1090) and DL-AP5 (100 µM, Tocris 1015), to block photoreceptor-driven responses. A 565 nm 
LED (Thorlabs, M565L3) was used to drive ReaChR-mediated spiking in transfected RGCs. The 
EI for ReaChR positive cells was used to match RGC responses pre- and post-photoreceptor 
block. The EI was then matched to the ReaChR-GFP-expressing RGC over the MEA, which 
was straightforward because RGC labeling was sparse. Following physiology, each retina was 
fixed using 4% PFA for 30-60 minutes and then immunolabeled for confocal imaging. The RGC 
was imaged with a 60x objective, reconstructed using CorelDraw, and then registered to the 
position of the cell on the MEA to align the cell with the EI. 
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Receptive field center estimation 
 
Receptive field centers were computed from the spike-triggered averages (STAs) characterized 
with white noise reverse correlation [Chichilnisky 2001]. The time component of the STA was 
estimated by computing a mean over statistically-significant pixels, and a 2D intensity map was 
constructed by regressing the STA with that time component. Finally, the receptive field center 
was computed as the center-of-mass over the significant pixels in the intensity map. 
 

 
Somatic and dendritic center estimation, and coordinate transforms 
 
Somatic centers were estimated from the decomposition by computing an amplitude-weighted 
center-of-mass over the recording electrode with the largest somatic amplitude, and its six 
nearest neighbors in the MEA hexagonal grid [Zaidi 2023]. Dendritic field centers were 
estimated by computing an amplitude-weighted center-of-mass over the recording electrodes 
that exceeded a threshold. 
 
The somatic and dendritic components of the EI were expressed in terms of the MEA recording 
electrode coordinates, whereas the locations of the RGC receptive fields were expressed in 
terms of the coordinates of the visual stimulus. Affine mappings between electrode coordinate 
space and stimulus coordinate space were computed using the RANSAC algorithm [Fischler 
1981], chosen for its robustness to outliers caused by the boundaries of the MEA. 
 
Dendritic mosaic contouring and significance testing 
 
The spatial structure of the dendritic fields for parasol RGCs was estimated from the 
decomposition-computed dendritic amplitudes. Because the OFF smooth monostratified and 
putative broad thorny RGCs were oversplit by the spike-sorter into multiple units, each with 
slightly different EI [Rhoades 2019], dendritic fields were estimated by computing the maximum 
value of the dendritic amplitude on each recording electrode over the oversplits.  
 
Prior to contouring, the dendritic field was first converted into a smooth 2D surface by 
convolving with a 2D Gaussian filter with standard deviation 54 ¿m. The resulting dendritic field 
surfaces were then normalized by their respective maximum values to equalize the amplitudes 
between cells. Maximum-tiling dendritic field contours for each cell type were constructed by 
finding the threshold that maximized the uniformity index (UI), defined as the fraction of the MEA 
recording area contained within exactly one dendritic contour, similar to the procedure in 
[Gauthier 2009] for contouring RGC receptive fields. 
 
Significance testing for dendritic spatial coordination was performed by comparing the UI of real 
dendritic mosaics with a null distribution constructed by randomly and independently rotating 
each dendritic field about its geometric centroid and recontouring (N=250). P-values were 
estimated as the fraction of the null distribution with a greater UI than the observed data. 
 

 
Waveform shape analysis 
 
The waveform shape principal components analysis used three experimental preparations from 
different animals, each containing nearly-complete populations of the OFF parasols, OFF 
midgets, OFF smooth monostratified [Rhoades 2019], and putative broad thorny [Kling 2023] 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 8, 2023. ; https://doi.org/10.1101/2023.11.06.565889doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565889
http://creativecommons.org/licenses/by/4.0/


cells. Basis waveforms were pooled across preparations. Temporal rescaling of the waveforms 
was performed by equalizing the full-width half-maximum of the negative phase of the mean 
OFF parasol somatic waveform using b-spline interpolation and resampling. Temporal 
alignment was performed by aligning the principal zero-crossings for the somatic and dendritic 
waveforms, and by aligning the absolute minimum for the axonal waveforms. Each basis 
waveform was analyzed separately. The top two principal components for each basis waveform 
were used for visualization. 
 
The degree to which basis waveform shapes were informative of RGC polarity was evaluated 
with linear logistic regression. These classifiers took a single learned compartment basis 
waveform as input, and predicted whether each RGC was an ON or OFF cell. Separate 
classifiers were trained for parasol cells and for midget cells, and every cell of the relevant types 
within each preparation was included in the training set for the classifiers, and the separability of 
cell types by waveform shape was quantified by computing AUROC over the training set. 
 
Decomposition-only cell type classifier training and evaluation 
 
Four-layer neural networks were trained to identify RGC cell type from the decomposition. The 
input features consisted of the learned basis waveforms for each RGC, and the L2 norms of the 
compartment amplitudes z-scored over all included RGCs within each preparation. Basis 
waveforms were aligned in time without temporal rescaling. Each hidden layer contained 25 
units with ReLU nonlinearities and batch normalization [Ioffe 2015]. The output layer had 4 
units, with softmax activation to compute classification probabilities. Each network was trained 
with cross-entropy loss, using mini-batch gradient descent for 30 epochs with batch size 32 and 
the Adam optimizer [Kingma 2017].  
 
Leave-one-out training and evaluation was used, using 28 of the 29 experimental preparations 
for training, and the one remaining preparation for evaluation. This methodology mimicked the 
process of classifying RGC cell type in a novel retina. Only cells belonging to the four major 
types were included; cells of other types and unidentified spike-sorted units were ignored. 
 
Classification accuracy and AUROC were computed for the overall four-way classification 
problem, and for parasol vs. midget RGC, ON vs. OFF for parasol RGCs, and ON vs. OFF for 
midget RGCs. Four-way AUROC was computed as the class-weighted sum of the one-vs-rest 
AUROC for each cell type. For parasol vs. midget RGC classification, classification was deemed 
to be correct if the cell was correctly identified as a parasol RGC or a midget RGC, regardless of 
whether the cell was an ON or OFF cell. ON vs. OFF parasol cell classification performance 
was evaluated by computing the conditional probability of a cell being either an ON or OFF 
parasol cell given that the cell was known to be a parasol. Binary AUROC was computed by 
sweeping a decision threshold over the conditional probability. ON vs. OFF midget cell 
classification performance was characterized in a similar manner. 
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