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Abstract

Species within nearly all extant animal lineages are capable of regenerating body parts.
However, it remains unclear whether the gene expression programme controlling
regeneration is evolutionarily conserved. Brittle stars are a species-rich class of echinoderms
with outstanding regenerative abilities, but investigations into the genetic bases of
regeneration in this group have been hindered by the limited genomic resources. Here, we
report a chromosome-scale genome assembly for the brittle star Amphiura filiformis. We
show that the brittle star genome is the most rearranged amongst echinoderms sequenced
to date, featuring a reorganised Hox cluster reminiscent of the rearrangements observed in
sea urchins. In addition, we performed an extensive profiling of gene expression during
brittle star adult arm regeneration and identified sequential waves of gene expression
governing wound healing, proliferation and differentiation. We conducted comparative
transcriptomic analyses with other invertebrate and vertebrate models for appendage
regeneration and uncovered hundreds of genes with conserved expression dynamics,
particularly during the proliferative phase of regeneration. Our findings emphasise the crucial
importance of echinoderms to detect long-range expression conservation between
vertebrates and classical invertebrate regeneration model systems.
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Introduction

Brittle stars are by far the most speciose class of echinoderms; over 2,600 extant species occupy
benthic marine habitats globally (Stohr et al. 2012; O’Hara et al. 2019). However, they remain
poorly-documented from a genomic standpoint, despite their broad interest to diverse fields
including marine (paleo)ecology, biodiversity monitoring, developmental biology and regenerative
biology (Vistisen and Vismann 1997; Vopel et al. 2003; Dupont and Thorndyke 2007; Mosher
and Watling 2009; Thuy et al. 2012; Delroisse et al. 2017; Dylus et al. 2018; O’'Hara et al. 2019).

The echinoderm phylum encompasses five classes with a well-resolved phylogeny (Figure 1A;
(Cannon et al. 2014; O’Hara et al. 2014; Telford et al. 2014; Mongiardino Koch et al. 2022)):
brittle stars (Ophiuroidea), sea stars (Asteroidea), sea urchins (Echinoidea), sea cucumbers
(Holothuroidea) and sea lilies/feather stars (Crinoidea). Genomics in this phylum began with the
pioneering effort to sequence the genome of the purple sea urchin (Strongylocentrotus
purpuratus) (Sea Urchin Genome Sequencing Consortium et al. 2006). Analysis of this genome
provided broad insights into the evolution of diverse traits and biological processes, including for
instance biomineralization, sensory capabilities and immune recognition (Livingston et al. 2006;
Raible et al. 2006; Rast et al. 2006). In recent years, the taxonomic sampling of echinoderm
genomes has steadily expanded (Hall et al. 2017; Zhang et al. 2017; Davidson et al. 2020;
Lawniczak et al. 2021; Davidson et al. 2022; Chen et al. 2023; Marlétaz et al. 2023). This
growing wealth of genomic resources in the context of the remarkable diversity of echinoderm
body plans, life histories and developmental strategies, provides a unique framework to
understand the evolution of novel traits. However, given the deep evolutionary divergence of the
five echinoderm classes (480-500 Mya), the lack of robust genomic resources for the brittle stars
represents a problematic knowledge gap.

Adult echinoderms share a characteristic pentameral symmetry, which represents the most
derived body plan amongst Bilateria (Smith 2008). Early analyses of sea urchin genomes
unveiled local reorganisations within the Hox cluster, prompting speculation that they were
associated with the evolution of this unique body plan (Lowe and Wray 1997; Cameron et al.
2006; Mooi and David 2008; David and Mooi 2014). However, the subsequent discovery of
an intact Hox cluster in the crown-of-thorns sea star revealed that these rearrangements
were not instrumental in the establishment of the pentameral symmetry (Baughman et al.
2014; Byrne et al. 2016). These observations showcase the need to examine a more
comprehensive sample of echinoderm whole genomes to accurately identify echinoderm-
specific chromosomal rearrangements and subsequently investigate their functional
significance.

Echinoderms exhibit extensive regenerative abilities. Species from each of the five classes are
capable of varying levels of regeneration, including (larval) whole-body regeneration, appendage
or organ regeneration (Medina-Feliciano and Garcia-Arraras 2021). Although species within
nearly all major animal groups exhibit some regenerative capacity, it is not clear whether this trait
is ancestral or independently acquired through convergent evolution (Bely and Nyberg 2010; Lai
and Aboobaker 2018; Srivastava 2021). A comparative analysis of whole-body regeneration
across a sea star larva, planarian worm and hydra has suggested that broadly-conserved
molecular pathways may mediate regeneration (Cary et al. 2019). However, given the diversity of
regenerative modes, additional comparative analyses of regenerating organisms are needed to
fully understand the evolution of this complex process (Lai and Aboobaker 2018; Srivastava
2021). In particular, gene expression dynamics during regeneration have not been explicitly


https://doi.org/10.1101/2023.10.30.564762
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564762; this version posted November 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

compared between invertebrates and vertebrates, partly because of the lack of gene expression

profiling across comparable regenerating structures and of difficulties in identifying orthologs
100 among distant model systems. Echinoderms are more closely related to vertebrates than other

classical invertebrate models of regeneration, hence providing a unique phylogenetic

perspective. Despite recent studies in sea stars and sea cucumbers (Fumagalli et al. 2018; Cary

et al. 2019; Quispe-Parra et al. 2021), echinoderms remain largely underrepresented in

transcriptomic assays of regeneration (Dupont and Thorndyke 2007; Goldman and Poss 2020;
105 Bideau et al. 2021).

One highly regenerative echinoderm species is the brittle star Amphiura filiformis, likely related to
their sediment dwelling lifestyle where extended arms are often severed by predators. In this
species, fully differentiated arms regrow in a few weeks following amputation and over 90% of

110 individuals sampled in the wild display signs of arm regeneration (Duineveld and Van Noort
1986; Skold and Rosenberg 1996). Consequently, A. filiformis is emerging as a powerful model
for animal appendage regeneration, with a well-established morphological staging system
(Dupont and Thorndyke 2006; Czarkwiani et al. 2013; Hu et al. 2014; Purushothaman et al.
2015; Czarkwiani et al. 2016; Piovani et al. 2021; Czarkwiani et al. 2022). Here, we report a

115 chromosome-scale genome assembly for the brittle star A. filiformis and leverage this unique
resource to investigate the complex history of karyotypes, Hox cluster and gene family evolution
across echinoderms. We find that A. filiformis displays the most rearranged echinoderm genome
sequenced to date. Moreover, we reveal that A. filiformis extensive regenerative capacities
correlate with significant expansions of genes involved in wound healing. Finally, we generate

120 extensive transcriptomic data from regenerating brittle star arms, which we analyse in a
comparative framework with previously generated datasets from the crustacean Parhyale
hawaiensis (Sinigaglia et al. 2022) and the axolotl Ambystoma mexicanum (Stewart et al. 2013),
to illuminate common genetic mechanisms of animal appendage regeneration.
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Results
125
The Amphiura filiformis chromosome-scale assembly is a key genomic resource
To address the lack of high-quality genome for the brittle stars (Supp. Note 1), we sequenced
and assembled the genome of the brittle star Amphiura filiformis using high-coverage long
nanopore reads assisted with proximity ligation data for scaffolding (Methods). The haploid
130 assembly spans 1.57 Gb and contains 20 chromosome-size scaffolds (>60 Mb) that account for
93.5% of the assembly length (Figure S1, N50: 68.8 Mb). This is consistent with cytogenetic
studies in two other brittle star species that identified 21-chromosome karyotypes (Colombera
and Venier 1976; Saotome and Komatsu 2002). We annotated a total of 30,267 protein-coding
genes (92.7% complete BUSCO score, Methods, Table S1, Table S2), which is in line with the
135 predicted gene complements of other echinoderms (Hall et al. 2017; Li et al. 2020; Davidson et
al. 2022; Chen et al. 2023; Marlétaz et al. 2023). In addition, we generated manually-curated lists
for A. filiformis genes associated with immunity, stemness and neuronal function as well as
transcription factors and genes involved in 19 major signalling pathways (Table S2, Methods).
These lists allow for genome-wide interrogation of A. filiformis genes as a complement to gene
140 ontology-based approaches. In summary, the A. filiformis genome represents the first high-
quality and chromosome-scale genome assembly for the brittle star class, and fills an important
knowledge gap in the echinoderm genomics landscape.

145 The brittle star exhibits the highest inter-chromosomal rearrangement rate amongst
sequenced echinoderms
Chromosome evolution in echinoderms has primarily been investigated through the lens of sea
urchin genomes, which have globally preserved the ancestral bilaterian chromosomes that were
previously reconstructed based on comparisons between chordates and molluscs (Simakov et al.

150 2020; Simakov et al. 2022; Marlétaz et al. 2023). However, sea urchins also underwent several
chromosomal fusions whose origin cannot be established without examining more echinoderm
genomes. To pinpoint the timing of these fusions within the context of echinoderm evolution, and
to evaluate the conservation of the ancestral chromosomal units across echinoderm lineages, we
took advantage of chromosome-scale genomes released for sea stars, sea cucumbers and sea

155 urchins (Lawniczak et al. 2021; Chen et al. 2023; Marlétaz et al. 2023). Using these genomes in
combination with the brittle star genome and selected outgroups, we reconstructed the linkage
groups present in their ancestor (Eleutherozoa linkage groups, or ELGs, Figure 1A).

Synteny comparisons between the spiny sea star (Marthasterias glacialis) and the black sea
160 cucumber (Holothuria leucospilota) (Lawniczak et al. 2021; Chen et al. 2023) reveal that only one
inter-chromosomal macrosyntenic rearrangement occurred in the 500 million years (My) of
independent evolution between these two genomes (Figure 1B, Methods). In striking contrast,
the A. filiformis brittle star genome is extensively rearranged: only three chromosomes have a
direct one-to-one orthology relationship with spiny sea star chromosomes (Figure 1C, Fisher’s
165 exact test adjusted p-value<10®). We reconstructed the ancestral ELGs based on near-perfect
conservation of macrosynteny between the spiny sea star and black sea cucumber and using
amphioxus (Branchiostoma floridae) and sea scallop (Pecten maximus) as outgroups to
disentangle derived and ancestral chromosomal arrangements (Figure S2). We predicted that 23
ELGs were present in the Eleutherozoan ancestor (Figure 1D). The ELGs descend from the 24
170 bilaterian linkage groups (BLGs) (Simakov et al. 2022) through the fusion of the BLGs B2 and
C2. Among echinoderms, the black sea cucumber maintained the 23 ancestral ELGs, a single
chromosomal fusion took place in the spiny sea star lineage (corresponding to an inter-
chromosomal rearrangement rate of 0.002 event / My), five fusions occurred in the sea urchin
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Paracentrotus lividus (0.01 event / My) and 26 inter-chromosomal rearrangements shaped the

175 brittle star A. filiformis karyotype (0.052 event / My, the highest amongst sequenced
echinoderms; Figure S3). These results indicate that, among Eleutherozoa, sea cucumbers and
sea stars show the strongest conservation of ancestral bilaterian linkage groups, whereas the
brittle star genome is highly reshuffled relative to the Bilaterian ancestor. Examination of
additional sea stars and sea urchins genomes suggest that these trends might broadly extend to

180 species within their respective classes ((Davidson et al. 2023; Liu et al. 2023; Marlétaz et al.
2023); Figure S3), but, given the limited sampling, this should be re-examined as more
chromosome-scale genome assemblies become available.

One potential driver of genomic rearrangements is transposable elements and repetitive
185 sequences, which serve as substrates for non-allelic homologous recombination (George and
Alani 2012; Balachandran et al. 2022). Transposable elements have also been implicated in
driving changes in genome size (Canapa et al. 2015). Among the four echinoderm genomes
analysed, we find that repetitive elements coverage correlates as expected with genome size but
not with rates of rearrangements. Repeat coverage is highest in the highly-rearranged brittle star
190 genome (1.57 Gb, repeat coverage 59.3%) and slowly-evolving black sea cucumber H.
leucospilota (1.31 Gb, 56.0%) compared to the sea urchin P. lividus (927 Mb, 49.2%) and spiny
sea star M. glacialis (521 Mb, 47.6%). Analysis of sequence divergence reveals that repetitive
elements accumulated more gradually in the slowly-evolving sea star and sea cucumber
genomes, compared to both the sea urchin and the brittle star which display recent bursts of
195 repeat activity (Figure 1E). Specifically, the brittle star genome is marked by a burst of repeat
activity 10-15 Mya, consisting mostly of DNA transposons (peak of repeats with 2% divergence
to consensus, Methods). We thus speculate that the evolutionary history of A. filiformis includes
at least one period of genomic instability (Belyayev 2014). Together, these data highlight
contrasting trends of chromosome evolution across echinoderm classes, and indicate that A.
200 filiformis is the most rearranged echinoderm genome among those sequenced to date.
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Figure 1: Chromosome evolution in echinoderms. A. Phylogenetic relationships of the five
echinoderm classes (orange), with the position of the Eleutherozoa ancestor highlighted, and

205 hemichordates and chordates as outgroups. Classes with available chromosome-scale genome
assembly are shown in dark orange. Divergence times amongst echinoderms and with hemichordates
were extracted from (Mongiardino Koch et al. 2022), divergence with chordates from TimeTree
(Kumar et al. 2017). B. Synteny comparison between the 22 chromosomes of spiny sea star and the
23 chromosomes of the black sea cucumber. The single macrosyntenic rearrangement between the

210 two genomes is indicated with arrows. C. Synteny comparison between the 22 chromosomes of spiny
sea star and the 20 chromosomes of brittle star. The three brittle star chromosomes with a 1-to-1
relationship with sea star chromosomes are shown with a colour matching its orthologous counterpart
in spiny sea star. D. Chromosome evolution in Eleutherozoa. We named the ancestral Eleutherozoa
linkage groups (ELG) using established naming conventions proposed for the 24 bilaterian ancestral

215 linkage groups defined in (Simakov et al. 2022; Marlétaz et al. 2023). B2+C2 corresponds to a fusion
of bilaterian B2 and C2 present in the Eleutherozoa ancestor. E. Repeat landscapes for the brittle star
and the three selected echinoderm genomes, with the y-axis representing the genomic coverage and
x-axis CpG-corrected Kimura divergence to the repeat consensus. Species are presented in the same
order as in D. The dashed red line indicates the repeat burst in the brittle star.
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220 The brittle star Hox cluster is marked by small-scale genomic rearrangements
The organisation of the Hox and ParaHox gene clusters has been documented in each class of
echinoderms with the exception of brittle stars (Cameron et al. 2006; Annunziata et al. 2013;
Baughman et al. 2014; Zhang et al. 2017; Li et al. 2020). To further explore the enigmatic
evolution of these developmental homeobox gene clusters in echinoderms (Byrne et al. 2016),
225 we investigated the structure of the A. filiformis Hox and ParaHox clusters. Strikingly, the A.
filiformis Hox and ParaHox clusters both exhibit genomic rearrangements (Figure 2, Figure $4,
Methods): anterior Hox genes (Hox1, Hox2 and Hox3) are inverted within the 3’ end of the
cluster and a transposition/inversion event occurred that displaced Hox8 between Hox9/10 and
Hox11/13a. Five repeat families are significantly expanded within the brittle star Hox cluster, of
230 which one is significantly associated with breakpoint locations and may have contributed to the
Hox1-3 inversion through non-homologous repair (SINE/tRNA-Deu-L2, BH-corrected
permutation-based p-value <0.05, Figure 2B). Four out of five of expanded repeats have an
inferred divergence of 18-22% to their consensus, suggesting they were active approximately
100 Mya (Methods). While brittle star Hox reorganisation is convergent and distinct from the one
235 observed in sea urchins, in both cases the orientation of Hox7, Hox2 and Hox3 is reversed
relative to the other genes of the cluster, and, in both lineages, one of the breakpoints is located
near Hox4 (Figure 2C). Moreover, mirroring the evolution of the sea urchins ParaHox genes
(Figure 2D), the brittle star ParaHox cluster also underwent disruptions, such that Gsx was
tandemly duplicated to generate two paralogs (protein identity: 74%) located a long distance (>5
240 Mb) from Xlox-Cdx. Whereas Xlox-Cdx maintained close linkage in the brittle star, all three
members of the ParaHox cluster are dispersed over their chromosome in sea urchins
(Annunziata et al. 2013).

Hox expression throughout echinoderm embryogenesis, larval stages and metamorphosis
245 remain largely enigmatic, such that spatio-temporal expression does not follow classical Hox
collinearity rules (Arenas-Mena et al. 1998; Byrne et al. 2016). We investigated Hox and
ParaHox gene expression in the brittle star using previously published datasets throughout four
developmental time points (Delroisse et al. 2014; Delroisse et al. 2015; Dylus et al. 2016)
(Figure 2E, Table S1, Methods). As in sea urchins (Arenas-Mena et al. 1998), Hox7 and Hox3-
250 6 are expressed at very low levels in the brittle star embryos and pluteus larvae (normalised TPM
< 2), whereas Hox7, Hox11/13a and Hox11/13b are highly expressed. One notable difference
between the expression of Hox genes in the two lineages is seen in Hox2. In the brittle star,
Hox2 is expressed early in embryogenesis, with maximal expression at 9 hours post-fertilisation
(developmental stage). In contrast, sea urchins Hox2 is not expressed during early development
255 (Arenas-Mena et al. 1998; Tu et al. 2014). Furthermore, the brittle star ParaHox genes Xlox and
Cdx are each expressed during early development whereas the anterior Gsx7 and Gsx2 genes
are not (Figure 2E), matching the expression patterns observed in sea stars (Annunziata et al.
2013). In contrast, dispersion of the ParaHox cluster in sea urchins is associated with the distinct
temporal activation of Gsx, Xlox and Cdx during embryogenesis (Arnone et al. 2006).
260
These results highlight intriguing parallels in the reorganisation of developmental gene clusters
and their expression patterns between brittle stars and sea urchins. Limited data are available on
Hox gene expression in other echinoderm classes, but investigations in crinoids and sea
cucumbers suggest that, even in species with an intact Hox cluster, the anterior genes (Hox1-6)
265 exhibit low or no expression in early embryonic stages (Hara et al. 2006; Kikuchi et al. 2015; Li et
al. 2018), and that Hox7 and Hox11/13b may play an important role in embryogenesis
(Annunziata et al. 2014). We therefore speculate that the relaxation of expression constraints on
Hox genes during echinoderm embryogenesis may have allowed for the rearranged Hox cluster
architectures seen in the sea urchins and brittle star lineages.
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Figure 2: Hox and ParaHox clusters organisation across echinoderms. A. Phylogenetic
relationships between the five classes of echinoderms, with hemichordates as the outgroup. B.
Genomic organisation of the brittle star A. filiformis Hox cluster. Significantly expanded repeats at the
275 Hox cluster location are represented in their respective tracks below Hox genes, with the average
sequence divergence to consensus indicated (div., %). Divergence to consensus is a proxy for repeat
age, where higher divergence indicates older repeat insertions. Vertical grey rectangles indicate
breakpoint locations. C. Schematic representation of Hox cluster organisation across echinoderms
and outgroups, based on organisation reported in S. kowalevskii and P. flava (Freeman et al. 2012)
280 for Hemichordata, feather star A. japonica (Li et al. 2020) for Crinoidea, brittle star A. filiformis for
Ophiuroidea, crown-of-thorns sea star A. planci (Baughman et al. 2014; Hall et al. 2017) for
Asteroidea, Japanese sea cucumber A. japonicus (Kikuchi et al. 2015; Zhang et al. 2017) for
Holothuroidea and purple sea urchin S. purpuratus (Cameron et al. 2006) for Echinoidea. D. ParaHox
gene cluster organisation, based on the same genomes as in B. Double slashes indicate non-
285 consecutive genes, all separated by distances > 5 Mb on the same chromosome or scaffold. E.
Expression of Hox and ParaHox genes throughout 4 brittle star developmental time points and in the
adult arm (hpf: hours post-fertilisation). Expression data from (Delroisse et al. 2014; Delroisse et al.
2015; Dylus et al. 2016) was normalised across samples using the TMM method (Robinson et al.
2010) on the full set of brittle star genes, and shown as log,(TPM + 1).
290
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Tandem duplications of key genes contribute to brittle star larval skeleton and
bioluminescence
Tandem gene duplications and subsequent asymmetric divergence are widespread in the
evolution of animal genomes and have been linked to the evolution of species-specific traits
295 (Holland et al. 2017). In echinoderms, two specific gene families represent relevant examples of
lineage-specific evolution through tandem duplications: phb/pmar1 (larval skeleton) and
luciferases (bioluminescence) (Dylus et al. 2016; Delroisse et al. 2017; Marlétaz et al. 2023).
Pmar1 is the most upstream zygotic factor of the regulatory network controlling the specification
of skeletogenic cells in sea urchins (Oliveri et al. 2003; Oliveri et al. 2008). Among Eleutherozoa,
300 only sea urchins and brittle stars develop an elaborated larval skeleton. In sea urchins, the
pmar1 gene originated through repeated lineage-specific duplications of an ancient phb paired-
class homeobox gene. Duplications of the pmar1 gene have been pinpointed as important
drivers for the establishment of this sea urchin-specific regulatory programme, which culminates
in the formation of the larval skeleton (Dylus et al. 2016; Yamazaki et al. 2020; Marlétaz et al.
305 2023). In the brittle star A. filiformis, we identify a similar expansion of phb paralogs (totaling 13
phb genes). Phylogenetic analysis confirms that these phb paralogs are distant homologs of the
sea urchins pmar1, but indicates that they are distinct from the previously described brittle star
pplx gene (Dylus et al. 2016) (Figure S5A). Moreover, expression of the A. filiformis phb genes
occur largely during early development (Figure S5E), as described for the pmar1 sea urchin
310 gene. This suggests that the convergent evolution of brittle stars and sea urchins larval skeleton
may have been driven by independent duplications of phb genes.

Brittle stars stand out by their ability to emit light (Mallefet 2009). In A. filiformis, bioluminescence
is mediated by a specific type of luciferase which is homologous to the well-characterised

315 luciferase of the soft coral Renilla reniformis (Delroisse et al. 2017). Within the A. filiformis
genome, we identified nine luciferase-like gene copies: seven are organised in two clusters of
tandem duplicates, two are isolated copies. This corroborates and extends the previously-
inferred repertoire (Delroisse et al. 2017). We find that luciferase-like genes have duplicated not
only in the brittle star but also in all echinoderm lineages with the exception of sea stars (Figure

320 85). These results confirm previous propositions that echinoderms harbour multiple copies of
luciferase-like genes, which likely encode diverse functions across bioluminescent and non-
bioluminescent species (Delroisse et al. 2017).

325 Expanded gene families in echinoderms are enriched in regeneration-related
processes
To comprehensively assess the functional significance of gene complement evolution, we
inferred gene family expansion and contraction events within echinoderms (Figure 3A,
Methods). In contrast with other deuterostome lineages, which exhibit either extensive gene
330 losses (Seo et al. 2001) or duplications (Putnam et al. 2008), we found that echinoderms harbour
relatively stable gene complements, with only ~7.6% of gene families showing significant
expansions or contractions in their ancestral lineage and throughout their evolution (790 of
10,367 tested families). Within the brittle star, genes in these families are enriched in GO terms
that are also found in the expanded and contracted families of other echinoderm classes (Figure
335 3B, Table S3, Methods). This includes several enriched GO terms linked to immune-related
processes (e.g. “response to other organisms”, “leukocyte migration”, “cell recognition”), which
encompass genes known to display elevated gene birth and death rates in other animal lineages,
such as Toll-Like Receptors (Nei et al. 1997; Leulier and Lemaitre 2008; Saco et al. 2023). Some
GO term enrichments may reflect specific aspects of echinoderm biology. For instance, recurrent
340 duplications of “regeneration-related” genes may underlie the remarkable regenerative capacity
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of many echinoderm species. Notably, in A. filiformis, members of these expanded gene families
(Figure 3C) are expressed during arm regeneration (Figure $6). Additionally, genes within four
expanded families (plasminogen, carboxypeptidase B, coagulation factor and ficolin) directly
regulate coagulation and/or clotting in vertebrates (Pryzdial et al. 2022), but may play a broader
345 role in immune defence in echinoderms (Hanington and Zhang 2011; Loof et al. 2011).
Moreover, the ficolin gene has also been implicated in the early stages of A. filiformis arm
regeneration (Ferrario et al. 2018; Arenas Gomez et al. 2020). Duplications within the brittle star
may thus have contributed to the evolution of a rapid and efficient wound closure process that is
prerequisite to regeneration (Suarez-Alvarez et al. 2016; Ferrario et al. 2018). Finally, genes
350 involved in keratan sulfate metabolism are over-represented in both expanded and contracted
gene families in the brittle star (Figure 3B). Increased sulfated glycosaminoglycans production is
required for proper arm regeneration in A. filiformis (Ramachandra et al. 2017). The numerous
duplications and losses of these genes suggest that the evolution of brittle star efficient
regeneration may have been accompanied by a specialisation of the glycosaminoglycan
355 metabolism.
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360 Figure 3: Gene family evolution in echinoderms. A. Number of significantly expanded (red) and
contracted (blue) gene families throughout echinoderm evolution, from a total of 10,367 tested gene
families (Methods). B. Gene ontology functional enrichment tests (Biological Process) for expanded
and contracted families in the different echinoderm classes. We selected the top 15 representative
GO terms enriched in the expanded brittle star gene families and 10 in contracted families (Methods).

365 In the heatmap, colours indicated GO terms significantly enriched in expanded or contracted families
in other echinoderm classes (FDR < 0.05). C. Gene copy number variation across echinoderms for
regeneration gene families with significant expansion in A. filiformis (>1 brittle star gene in the family
annotated with the GO term ‘regeneration’). Gene families were named according to the S.
purpuratus gene name. Red and blue colours denote significantly expanded and contracted families,

370 respectively.
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Gene expression during brittle star arm regeneration recapitulates major regeneration
375 phases
To gain insight into the transcriptional programmes that underlie brittle star arm regeneration, we
profiled gene expression in seven representative regeneration stages following amputation and
one non-regenerating control (Methods). Using soft-clustering, we classified genes into nine
major temporal clusters (A1-A9; Figure 4A, Figure S6, Methods). Functional enrichment
380 analysis of genes within the co-expression clusters revealed three distinct phases of arm
regeneration: (1) wound healing, (2) proliferation and (3) tissue differentiation. These are
consistent with morphological timelines of regeneration in the brittle star and other animal
systems (Czarkwiani et al. 2016; Bideau et al. 2021; Srivastava 2021).

385 Early regeneration is marked by the expression of genes involved in wound response, including
immunity/wound healing (clusters A1-A2), and cell migration/tissue protection (clusters A3-A4),
which are enriched in immune and kinase genes, respectively (Figure 4B, 4C). Notably, the
regions surrounding transcription start sites (TSS) of genes within cluster A2 are enriched for
transcription factor (TF) binding motifs of NF-kB, a broadly conserved regulator of immune

390 response (Figure 4D).

Wound healing is followed by cell proliferation (clusters A9 and A5, A6, A7), as indicated by the
overrepresentation of stemness genes and genes involved in cell proliferation, cell division and
enhanced translational activity. Accordingly, binding motifs associated with several proliferation-
395 related TF are enriched around the TSS of genes from clusters A5 and A6. This includes NRF1
and p53, which have been implicated in vertebrates in regulating (stem) cell survival and
proliferation (Cui et al. 2021; Ayaz et al. 2022), PRDM14 and YY1, which regulate pluripotency
(Kawaguchi et al. 2019; Dong et al. 2022), and RORa, which controls inflammation by down-
regulating targets of NF-kB (Oh et al. 2019) and may thus play a role in the transition from wound
400 response to proliferation (Figure 4C, 4D). We also find enrichment of binding motifs
corresponding to zinc-finger transcription factors that are involved in cell proliferation and
pluripotency (Villot et al. 2021; Han et al. 2023). Cluster A9 encompasses genes expressed as
early as 48 hours post-amputation (hpa) and active throughout regeneration, including
translational regulators, cell division and vesicle transport genes (Figure 4B), as well as genes
405 involved in signalling pathways that promote cell proliferation (VEGF, Akt, Insulin-like and Jak-
STAT pathways, Figure 4C, Figure S6) (Xu et al. 2012; Huat et al. 2014; Apte et al. 2019;
Herrera and Bach 2019). These data suggest that the signalling cascades that initiate cell
proliferation are induced very early during brittle star regeneration (cluster A9); they are activated
during the wound response phase and exhibit amplified expression during the peak of cell
410 proliferation (Stage 5; Figure 4A). The early onset of proliferation (around 48 hpa) is consistent
with previous observations of cell proliferation and expression quantification of selected marker
genes (Czarkwiani et al. 2016; Czarkwiani et al. 2022).

Finally, late regeneration is characterised by the expression of genes involved in differentiation,
415 patterning and appendage morphogenesis, with a significant over-representation of transcription
factors (cluster A8, Figure 4B, 4C). This cluster includes two T-box TFs that are important for
axis specification in echinoderms (tbx3-1 and tbx3-2) and two TFs with key roles in neurogenesis
(ngn1-like and hey1-like) (Gross et al. 2003; Slota and McClay 2018; Slota et al. 2019).

420 Overall, these data provide a genome-wide picture of the molecular pathways at play throughout
brittle star arm regeneration and highlight three waves of gene expression that successively
mobilise genes involved in wound response, cell proliferation and tissue differentiation. These
general phases have been described in many regenerating animals. Consequently, this dataset
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can be leveraged to assess the conservation of regeneration gene expression dynamics across
species.
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Figure 4: Gene expression during brittle star arm regeneration. A. Soft-clustering of gene
expression profiles throughout regeneration time points, yielding 9 main temporal co-expression
clusters (A1-A9, Methods, see also Figure S6). Co-expression clusters are temporally ordered (from
top to bottom) on the basis of their first expression time point. Barplots on the right indicate the
number of genes assigned to each cluster. The RNA-sampling procedure for each stage is illustrated
below. Early stages are sampled at 48 and 72 hpa (hours post-amputation). Subsequent stages are
defined by morphological landmarks: Stage 3 corresponds to the presence of the radial nerve (~6
days post-amputation, dpa), Stage 4 is the appearance of the first regenerated metameric units (~8
dpa), Stage 5 corresponds to advanced arm extension and differentiation onset (~9 dpa), 50% stages
correspond to when 50% of the regenerated arm has differentiated (~2-3 weeks post-amputation)
sampled at the distal (D, less differentiated) and proximal (P, more differentiated) ends (Dupont and
Thorndyke 2006; Czarkwiani et al. 2016). B. Gene ontology enrichment for each co-expression cluster
(Methods, see Figure S7 and Table S4 for exhaustive GO results). C. Curated gene lists enrichment
for each co-expression cluster (hypergeometric test, Benjamini-Hochberg adjusted p-values <0.05,
Methods, Table S2). D. TF binding motifs enriched around the TSS (5kb upstream to 1kb
downstream) of genes from co-expression clusters (hypergeometric test adjusted p-value <0.05,
Methods).
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Animal appendage regeneration is characterised by conserved gene expression

during the cell proliferation phase

Several key genes and pathways have been repeatedly implicated in regeneration across animal
450 lineages (Bideau et al. 2021; Srivastava 2021), However, direct comparisons of temporal

expression gene profiles throughout regeneration remain limited. Here, we investigate the

conservation of the animal appendage regeneration programmes through the lens of the brittle

star A. filiformis.

455 Using a genomic phylostratigraphy approach (Barrera-Redondo et al. 2023), we found that,
overall, brittle star arm regeneration is mediated by ancient genes (i.e. metazoan or older; Figure
5A, Methods). The exception is the initial wound-healing phase, which is enriched in genes that
are specific to the brittle star lineage (Figure 5A). The observation that brittle star regeneration is
mostly driven by ancient genes prompted us to investigate whether these genes are similarly

460 involved in appendage regeneration across animals, and whether they are deployed in the same
temporal order. As an invertebrate deuterostome, brittle stars enable phylogenetic comparisons
among vertebrate and ecdysozoa appendage regeneration models. We thus compared gene
expression dynamics during appendage regeneration in A. filiformis with comparable datasets
from the axolotl (Ambystoma mexicanum) (Stewart et al. 2013) and the crustacean Parhyale

465 (Parhyale hawaiensis) (Sinigaglia et al. 2022). For this analysis, we defined nine major co-
expression clusters during axolotl limb regeneration (Ax1-Ax9, Figure S8, Table S5) that
effectively recapitulate the three regeneration phases (wound healing, proliferation and
differentiation), and used existing Parhyale clustering (Sinigaglia et al. 2022).

470 Pairwise comparisons and permutation tests reveal that many of the co-expression clusters
employ homologous genes during appendage regeneration across the three species (Figure 5B,
Methods). Among the nine co-expression clusters that mediate brittle star regeneration, five
consist of genes that are also co-expressed during axolotl regeneration (926 genes), six clusters
overlap with Parhyale (913 genes), and four clusters are consistent across the three species

475 (154 genes) (Figure 5B, 5C, Table S6). Expression comparisons between the more
phylogenetically distant axolotl and Parhyale identify only two conserved co-expressed gene
clusters (370 axolotl genes); this direct comparison is thus considerably less informative than
comparisons that include the brittle star. Most genes with conserved expression patterns in the
brittle star/axolotl comparison lack identifiable homologs in Parhyale, whereas genes with a

480 conserved expression in the brittle star/Parhyale comparison exhibit a different expression
pattern in the axolotl (Figure 5C). This underscores the relevance of using the brittle star to
bridge comparisons across established regeneration models.

The broadly-conserved co-expression clusters largely consist of genes expressed during the
485 proliferative phase, and, to a lesser extent, the initial wound healing phase. In contrast, the genes
that comprise clusters corresponding to tissue differentiation are distinct in each species, which
is consistent with the fact that the regenerating appendages are not homologous across species.
Strikingly, the conserved co-expression clusters are deployed in a consistent temporal sequence
in each species (Figure 5C). Specifically, the only identified heterochrony concerns the matching
490 of the axolotl cluster Ax3 (peak at 0-3 hpa) with brittle star cluster A5 (peak at 6 dpa, Figure 5C,
Figure 4A, Figure S8). Previous work suggested that similar co-expression gene modules are
deployed during regeneration and development, but are activated according to distinct temporal
sequences (Sinigaglia et al. 2022). To investigate if this extends across species, we compared
gene expression profiles during regeneration and development from the brittle star and Parhyale,
495 notwithstanding the fact that the indirect development of brittle stars does not allow a direct
comparison (Figure $9). Results indicate that the order in which co-expressed gene modules are
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activated is as expected more conserved within regeneration and within developmental datasets
across species than between regeneration and development in individual species (Figure S9).
Together, these results broaden previous observations of distinct expression dynamics during

500 development and regeneration, and document conserved gene expression modules recruited for
animal appendage regeneration (Table S6).

We further investigated the functions of brittle star genes with similar temporal expression
profiles during regeneration in Parhyale and/or axolotl. Using a carefully selected background
505 that accounts for homology-detection and functional biases of different clusters (Methods), we
found that, within the set of genes that exhibit conserved expression in regeneration, there is a
significant over-representation of kinase and stemness genes and an under-representation of
immune genes (Gene lists enrichment tests, Figure 4D, Figure S9). Moreover, these genes are
enriched in general biological processes related to cell proliferation, such as translation,
510 chromosome segregation, DNA replication and intracellular transport (Gene Ontology enrichment
tests, Figure 4E). The temporal expression patterns of genes that encode transcription factors
are neither significantly more nor less conserved across species than is expected at random.
Among the conservative set of 154 genes with conserved expression profiles across the three
species, only two transcription factors emerge (Table S6): /d2-like, which activates regeneration-
515 induced proliferation in mice (Kiyokawa et al. 2021) and Wdhd1-like, which regulates DNA
replication (Zhou and Chen 2021). We thus propose that /d2 and Wdhd1 may play a conserved
role during animal regeneration. In addition, while several TF binding motifs found in the vicinity
of brittle star co-expressed genes are also over-represented near Parhyale and axolotl co-
expressed genes, only YY1 and NRF1 are present in corresponding co-expression clusters (Ax7-
520 AG6, Figure S8), suggesting a possible conserved role for these transcription factors in regulating
cell proliferation during regeneration in these distantly related organisms.

Finally, we find that two temporally-matched gene expression clusters in brittle star and Parhyale
regeneration include key genes involved in repressing transposable elements (i.e. Risc-like [A2 -

525 P1] and Ago2-like [A9 - P7]; Table S6). It has been proposed that transposon repression is
important for proceeding from the immune response phase to regeneration (Angileri et al. 2022),
by preserving genome integrity for cell proliferation and differentiation. In line with this
hypothesis, we found a higher transcriptional activity of brittle star repetitive elements in the initial
wound-response regeneration phase compared to the proliferative phase (Figure $11,

530 Methods). Repetitive sequence divergence analysis indicates that these repetitive elements are
significantly younger and are more frequently present in intergenic regions than those expressed
during cell proliferation, suggesting a higher potential to effectively be active transposable
elements.

535
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Figure 5: Gene expression throughout appendage regeneration across animals. A. Gene age
enrichments for brittle star arm regeneration clusters (hypergeometric test, Benjamini-Hochberg
adjusted p-values <0.05). Clusters are ordered by the time of expression onset. B. Comparison of co-
expressed gene clusters deployed during appendage regeneration in axolotl, brittle star and Parhyale
545 (left to right: axolotl vs brittle star, brittle star vs Parhyale, Parhyale vs axolotl). Clusters in Parhyale
(clusters P1 to P8) correspond to the clustering reported in (Sinigaglia et al. 2022), but clusters were
renamed to follow temporal activation and homogenise with respect to brittle star and axolotl clusters
(Methods). Co-expression clusters in each species are shown in order of their temporal expression
(from top to bottom), with the exception of brittle star cluster A9 and Parhyale clusters P6-P7-P8 that
550 are expressed throughout several regeneration time points and shown at the bottom. Clusters are
represented by vertical rectangles whose sizes are proportional to the number of homologous genes
in the cluster, and coloured according to enriched GO terms (Methods, Figure 4, Figure S8, see A
for legend). Links between clusters of the two compared species indicate cluster membership of
homologous genes, with coloured links indicating significant overlaps (permutation-based p-values
555 with Benjamini-Hochberg correction <0.05, Methods). C. The majority of genes identified as co-
expressed in the brittle star - Parhyale and brittle star - axolotl comparisons are not recovered in the
direct Parhyale - axolotl comparison. The majority of genes co-expressed in the axolotl and brittle star
have no identified homologs in Parhyale (54%, left pie chart). Genes co-expressed in Parhyale and
the brittle star have a divergent expression in the axolotl, i.e. they are not found in matched co-
560 expression clusters (55%, right pie chart). D. Gene lists enrichment and depletion tests performed for
the set of brittle star genes with conserved temporal expression during animal regeneration
(Methods). E. Gene ontology enrichment tests, as in D.
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Explant experiments reveal expression differences between non-regenerative and
565 regenerative responses in the brittle star
To define what differentiates regeneration from non-regenerative wound healing at the molecular
level, we performed explant experiments in which the arm is first amputated from the body
(proximal cut) and subsequently amputated a second time at the distal end (Figure 6A). As in
whole animals, explanted brittle star arms regenerate from the distal tip, whereas the proximal
570 end undergoes a non-regenerative wound healing response. To identify genes specifically
involved in regeneration, we sampled distal, medial and proximal explant segments for RNA-seq
experiments at 3 and 5 days post-amputation (dpa) when morphological differences start to
become apparent (3 to 4 replicates each, for a total of 20 samples, Figure 6A, Table S1).

575 We tested for differential expression of genes at the distal and proximal end compared to control
medial segments (Methods, Figure 6A). As expected, up-regulated distal genes correspond to
genes expressed during the proliferative phase of the brittle star arm regeneration time-series,
whereas up-regulated genes in proximal segments correspond to early response/wound closure
genes (Figure 6B). We identified more differentially expressed genes (DEGs) in the distal

580 regenerating samples than in proximal non-regenerating samples (distal: 595 and 828 up-
regulated genes at 3 and 5 dpa respectively, 238 and 562 down; proximal: 148 and 373 up, 27
and 97 down; Figure 6C). Most genes differentially expressed in proximal segments are also
differentially expressed in distal segments (61% of the proximal DEGs are shared with distal),
whereas distal genes are largely distal-specific (82% of the distal DEGs are not shared with

585 proximal) (Figure 6C). This is consistent with the expected expression patterns, as wound
closure is an integral part of regeneration. Altogether, we identify hundreds of differentially
expressed candidate genes, which document the genetic commonalities and differences
between non-regenerative wound closure and regeneration (Table S2).

590 Strikingly, five genes display drastically opposite expression patterns in the wound healing and
regenerating segments (Figure 6C) and thus are likely to contribute to distinct post-wounding
outcomes. Agrin-like-1 and AFI33635 are significantly down-regulated during wound healing but
up-regulated in regeneration (Figure 6C). Agrin proteins are critical for neuromuscular junction
development in vertebrate embryogenesis (Hoch 1999). AFI33635 is an uncharacterized brittle

595 star gene with thyroglobulin and methyltransferase domains, putatively involved in regulating
protease activity (Novinec et al. 2006). Conversely, the three genes AW-SPI, AFI18858 and
Gdf8 are significantly up-regulated during wound healing but down-regulated in regeneration
(Figure 6C). AW-SPI is an antistasin/WAP-like serine protease inhibitor, with a possible role in
immune defence (Yan et al. 2016). AF/18858 is a brittle star gene with a zf-Bbox domain, and is

600 a member of the expanded TRIM-like gene family, broadly involved in immune responses
(Figure 3C). Interestingly, the myostatin gene Gdf8 is a member of the TGF-beta signalling
pathway that inhibits skeletal muscle growth and regeneration in mice (McCroskery et al. 2005;
Elkasrawy and Hamrick 2010). Our findings suggest that repression of Gdf8 may similarly enable
muscle regeneration in brittle stars. In summary, these five candidate genes might be tightly

605 linked with the transition from wound healing to regeneration-induced cell proliferation, and some
may have a conserved function in the brittle star and vertebrates (Agrin and Gdf8).
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Figure 6: Comparison of gene expression during wound closure and regeneration in brittle
star explant experiments. A. Experimental setup. Brittle star arms are amputated at the proximal
(cut 1) and distal (cut 2) ends. Proximal, distal and medial (control) segments are sampled for RNA-
seq at 3 and 5 days post-amputation (dpa). We identify differentially expressed genes (DEGS) in

615 proximal (wound closure only, not followed by regeneration) segments and distal (regenerative)
segments, compared to control medial segments. B. Comparison of DEGs from explant experiments
with brittle star arm regeneration time-course clusters (see Figure 4, hypergeometric enrichment test,
BH-corrected p-values <0.05). C. Overlap between DEGs genes in distal and proximal segments.
Bars in the UpSet are coloured to highlight (i) segment-specific DEGs, for DEGs unique to distal or

620 proximal segments, (ii) shared prox. and distal segments, for DEGs shared between proximal and
distal, and (iii) opposite prox. and distal segments, for DEGs up-regulated in proximal and down-
regulated in distal (or vice-versa).
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Discussion
625
The chromosome-scale genome of the brittle star Amphiura filiformis represents a critical
resource for the fields of evolutionary genomics, marine ecology and regenerative biology. We
leveraged this novel genome to gain fundamental insights into echinoderm chromosome
evolution, Hox cluster organisation and regenerative processes across animals. Analyses of
630 chromosome evolution have been key to understanding the basic principles of genome evolution,
particularly those linked to the emergence of metazoan and bilaterian clades (Simakov et al.
2020; Simakov et al. 2022). Whereas previous studies of chromosome evolution in echinoderms
were limited to sea urchins (Simakov et al. 2020; Marlétaz et al. 2023), our analyses revealed
that the genomes of sea cucumbers and sea stars display even fewer rearrangements of the
635 Dbilaterian ancestral chromosomal units than sea urchins. Interestingly, sea cucumbers have the
lowest rate of inter-chromosomal rearrangements, yet the most derived echinoderm body plan
(Rahman et al. 2019), which highlights the uncoupling of global genomic rearrangements from
morphological evolution. We showed that the ‘Eleutherozoa Linkage Groups’ descend from a
single fusion of ancestral bilaterian linkages (B2+C2). Chromosome-scale crinoid and
640 hemichordate genomes will reveal whether this fusion is ancestral to Ambulacraria (the clade
encompassing echinoderms and hemichordates). Critically, the fusion has not been observed in
the genome of Xenoturbella bocki, a member of the Xenacoelomorpha lineage whose
phylogenetic position is controversial, and thus cannot be used to support their proposed
grouping with Ambulacraria (Philippe et al. 2019; Schiffer et al. 2022). In contrast with its sea star
645 sister-group, the A. filiformis genome is highly rearranged: our analyses identified 26 inter-
chromosomal rearrangements since the Eleutherozoa ancestor. A more comprehensive
sampling of brittle star genomes will provide additional context toward establishing the precise
timeline of chromosomal rearrangements and investigate the relative contributions of repeat
expansion, chromatin architecture and population genetics dynamics to the rapid karyotype
650 evolution in this group.

On a more local scale, we identified convergent rearrangements in the Hox clusters of sea
urchins and the brittle star, which could be hallmarks of relaxed regulatory constraints within
echinoderms, perhaps resulting from the temporal decoupling of embryo and adult patterning.

655 Specifically, Hox genes, and in particular anterior Hox, show limited expression during
echinoderm embryogenesis and are mostly expressed in adults, suggesting that they are mostly
used to pattern adult structures (Arenas-Mena et al. 1998; Arenas-Mena et al. 2000; Hara et al.
2006; Kikuchi et al. 2015; Li et al. 2018). In this context, we speculate that anterior and
central/posterior Hox genes may belong to distinct chromatin compartments in echinoderms.

660 Small-scale rearrangements may have occurred through elevated physical contacts at
compartments boundaries (i.e. around Hox4), and eventually become fixed due to relaxed
selection constraints on Hox expression. Further study of chromatin conformation and regulatory
footprint in rearranged and non-rearranged echinoderms will make it possible to test this
hypothesis. In addition, we revealed significant expansions of transposable elements in the brittle

665 star Hox cluster ~100 Mya. In the event that Hox cluster rearrangements co-occurred with the
activation of repeats, distantly related brittle star species (O’Hara et al. 2014) may exhibit distinct
Hox organisations.

The brittle star genome furthermore enables genetic characterization of the animal appendage
670 regeneration process, and remarkably allows the detection of long-range conservation of the
gene expression programme that regulates regeneration. In particular, incorporating the brittle
star within a comparative transcriptomics framework extensively increased our ability to detect
conserved co-expression modules between vertebrates (e.g. axolotl) and arthropods (e.g.
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Parhyale). We revealed that the proliferative phase of regeneration displays the highest
675 expression conservation across these animals, suggesting that regeneration deploys an ancient,
evolutionarily conserved proliferation machinery. This observation ties in with the proposition that
animal regeneration may recruit a homologous proliferating cell type (Lai and Aboobaker 2018;
Srivastava 2021), a hypothesis that should be further explored with single-cell sequencing
techniques and additional comparative analyses. The stronger conservation of gene expression
680 during proliferation as opposed to the initial wound healing response is moreover consistent with
the elevated turnover of immunity-related genes, broadly reported across animal lineages (Nei et
al. 1997; Leulier and Lemaitre 2008; Saco et al. 2023) and which we also demonstrate here in
echinoderms. Our results however contrast with the only previous study to have explicitly
interrogated the conservation of animal regeneration gene expression programmes, which
685 revealed a higher conservation of early response genes as opposed to the genes expressed
during proliferation (Cary et al. 2019). These discrepancies might be due to asynchronous
temporal sampling across species in the comparisons of (Cary et al. 2019), which is alleviated in
our study through more comprehensive samplings of regeneration time points and explicit
comparisons of temporal expression profiles. Alternatively, they could reflect genuine biological
690 differences of (larval) whole body regeneration studied in (Cary et al. 2019) and the adult
appendage regeneration we investigate here.

Finally, in the brittle star A. filiformis, we uncover significant expansions of gene families linked to
regeneration-related processes and in particular of homologs of vertebrate coagulation regulator
695 genes, suggesting them as relevant candidates for follow-up in-depth functional
characterizations. We also propose a conserved role for Gdf8 during regeneration, as it is
repressed during regenerative proliferation in both brittle stars and mice (McCroskery et al. 2005;
Elkasrawy and Hamrick 2010). Our findings emphasise the importance of echinoderms as a
powerful model for regeneration owing to their unique regenerative capabilities and experimental
700 amenability, but also to their phylogenetic position crucial for comparative analyses. The
extensive genomic and transcriptomic resources we generated for the brittle star Amphiura
filiformis thus represent a cornerstone to understand the evolutionary, molecular and genetic
underpinnings of animal appendage regeneration, emergence of pentameral symmetry and
remarkable diversity of morphologies and developmental strategies seen across echinoderm
705 lineages.
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Data and code availability
Genome sequence and RNA-seq data have been deposited in NCBI SRA (Bioproject
PRJNA1029566) and will be made publicly available upon publication. The code for the
annotation workflow is publicly available on GitHub
710  (https://github.com/eparey/AnnotateSnakeMake). Supplemental datasets to reproduce the
results have been deposited in Zenodo (https://zenodo.org/doi/10.5281/zenodo.10036671,
see Supplemental Material). These include the genome, gene and repeat annotations,
processed gene expression tables and source data for the figures.
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Methods
760
Animal sampling
Adult A. filiformis were collected at 25-40 m depth from sediment in the Gullmarsfjord in the
vicinity of Kristineberg Marine Station, Sweden, using a Petersen mud grab. Individuals were
separated from the sediment by rinsing them with seawater and then maintained in natural
765 flowing seawater at 14°C. Sperm was collected from a single-individual by dissecting the gonads
from the bursae.

DNA extraction and sequencing

770 Sperm cells were concentrated by centrifugation, washed repeatedly, and subsequently
embedded in 2% low melting agarose. Sperm cells were lysed in a solution of 1% SDS, 10mM
Tris (pH 8) and 100mM EDTA and then resuspended in a solution of 0.2% N-laurylsarcosine,
2mM Tris (pH 9) and 0.13 mM EDTA. High molecular weight (HMW) DNA was released from the
agarose blocks using B-agarase (NEB).

775
Long-read sequencing was performed on six Nanopore Promethlon flowcells (vR9.4.1). Several
libraries were constructed using the Ligation Sequencing Kit (Nanopore LSK109) using DNA
sheared to different size using a megaRuptor (Diagenode) to optimise yield and contiguity.
Bases were called from raw signal with Guppy (model “dna_r9.4.1_450bps_hac_prom”, version

780 2.3.5). A total of 160.56 Gb nanopore reads was acquired (~100x coverage). A library of 10x
linked-reads was generated using the Chromium system (10x genomics) and sequencing on a
Novaseq6000 SP lane in a 2 x 150 bp layout for a total of 246M reads (86 Gb). Genome size
was estimated to 1.33 Gb with a heterozygosity of 3.22% by counting k-mer (k=31) in the short
read data using jellyfish2 (Margais and Kingsford 2011) and fitted through a four-peak model

785 using Genomescope?2 (Ranallo-Benavidez et al. 2020).

Genome Assembly
We assembled Nanopore reads using flye (v2.9-b1768) (Kolmogorov et al. 2019) assuming a
790 coverage of 30x and a genome size of 3 Gb to account for the high level of heterozygosity. We
obtained a diploid assembly of 2.86 Gb (N50: ~2.78 Mb) which was subsequently polished using
Racon (v1.5.0) (Vaser et al. 2017) for two iterative rounds using the nanopore reads and then for
another two rounds using the short-read illumina reads that were aligned to the assembly using
minimap2 (v2.24-r1122) (Li 2018). Haplotypes were then removed from the assembly using
795 purge_dups (v1.2.5) (Guan et al. 2020) with cutoffs visually adjusted from the coverage
distribution on contigs. The resulting assembly had a total length of 1.57 Gb, with N50 and L50 of
3.2 Mb and 154 respectively, and 96.1% complete BUSCO score.

To scaffold this assembly, we built a Hi-C library using the Omni-C kit (Dovetail) from gonadal
800 tissue. Chromatin was fixed using PFA and digested using a sequence-independent nuclease
after re-ligation and biotinylation. A sequencing library was built from purified DNA and 225M
reads sequenced on a Novaseq X (~45x coverage). Hi-C reads were mapped to the polished
haplopurged assembly using bwa mem (0.7.17-r1198-dirty) with options -5SP -T0 and alignment
were further sanitised, sorted and duplications removed using pairtools (v1.0.2) (Open2C et al.
805 2023) with options “--walks-policy 5unique’, “--max-inter-align-gap 30" an a minimum MAPQ of
40. We used YAHS (v1.1a-r3) (Zhou et al. 2023) to scaffold the genomic contigs using the Hi-C
read alignment as input. We obtained 20 main chromosome-scale scaffolds totalling 1.47 Gb
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corresponding to 93.5% of the total assembly length (Figure S1). The GC level of the final
genomic sequence is 36.67 % and the N50 is 68.86 Mb.
810

Repeat annotation
We used RepeatModeler 2.0.2 to build a de novo repeat library for the brittle star genome and
then ran RepeatMasker 4.1.2-p using this library as input to soft-mask the genome and extract
815 repeat location (Flynn et al. 2020). We used DeepTE (Yan et al. 2020) to classify repeats that
could not be classified with the homology-based repeat classification implemented in
RepeatModeler. We re-trained a DeepTE model to classify metazoan repeats into 5 classes,
using a balanced dataset of 12,500 distinct repeats (2,500 repeats for each of the 5 classes)
from different sources including repbase (Bao et al. 2015), Dfam (Hubley et al. 2016) and
820 homology-based classifications of repeats from 17 echinoderms and 2 hemichordates genomes
(Validation accuracy=0.98 at the class probability threshold p>=0.55, Figure S1 B). On a test set
of 827 brittle star repeat families that were not included in the training set and where
RepeatModeler homology-based predictions serve as ground truth, this re-trained DeepTE model
has higher accuracy than the default metazoa model available in DeepTE (accuracy=0.81 vs
825 0.67, Figure S1 C). Divergence to consensus (kimura %) were computed and repeat landscapes
plotted using the ‘calcDivergence.p’ and ‘createRepeatLansdscape.pl’ scripts from
RepeatMasker. The same methodology was applied to build repeat landscapes for P. lividus, H.
leucospilota and M. glacialis. Repeat annotations are provided in Dataset S1. Repeat ages were
estimated from divergence to consensus using a neutral substitution rate of 1.885 x 10° per base
830 pair per year for A. filiformis, which was estimated with phyloFit from an alignment of 66,818 4-
fold degenerate sites containing 17 echinoderm and 2 hemichordate genomes.

RNA isolation, extraction and sequencing
Arm regeneration RNA-seq in brittle star (time course in whole animals)

835 A. filiformis individuals were obtained in the fjord close to the Kristineberg Center for Marine
Research and Innovation, Sweden, at depths of 20-60 metres. Samples of different regenerating
stages were obtained as previously described in (Czarkwiani et al. 2016) for early regeneration
stages (48 hpa, 72 hpa, Stages 3, 4 and 5) and in (Dupont and Thorndyke 2006) for 50%
differentiation index stages (50% P and 50% D). 30 regenerates from different individuals were

840 used per stage. Dissection for RNA-sampling was performed as follows (Figure 4A): (i) for the
non-regenerating control, we dissected one mature arm segment, (ii) for 48 and 72 hpa samples,
we dissected the last segment at the amputation site, (iii) for stages 3 to 5 we dissected the
regenerative tissues, and finally (iv), for 50% regenerates, we sampled several segments of
proximal and distal tissues, excluding the differentiated distal cap structure. The collected

845 regenerates were lysed in 10 volumes of RLT (Qiagen), and total RNA extracted using RNAeasy
micro RNA kit (Qiagen). RNA concentration and integrity was measured using Bioanalyzer
(Agilent). Library preparation and paired-end sequencing was conducted by Novogene.

Arm regeneration RNA-seq in brittle star severed arm experiments (explant)

850 We collected around 3,500 brittle stars with a 5-7 mm disc diameter. While animals were sedated
in 3.5% w/w MgCl; in artificial seawater, two arms from each organism were amputated by
pressing a scalpel blade into the intervertebral autotomy plane. We first sectioned the arms 0.5
cm from the disc (amputation 1, Figure 6A) and then sectioned them again at the distal end
(amputation 2, Figure 6A). We thus produce explants (i.e. severed brittle star arms) of 1cm in

855 length with wound sites at the proximal and distal ends. 43 groups of 150-200 explants were
cultured in flow through aquaria at 16°C. Explants were sampled at 3 and 5 days post-
amputation (dpa), sedated in 3.5% w/w MgCl, in artificial seawater for 15 minutes and then

24


https://doi.org/10.1101/2023.10.30.564762
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564762; this version posted November 8, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

dissected into three sections: proximal, medial and distal (Figure 6A). Each explant section was
flash frozen in liquid nitrogen and collected in batches of 150-200 pieces. Each batch was
860 individually homogenised with glass pistils and RNA was extracted with the RiboPure kit (Applied
Biosystems), following manufacturer's protocol. RNA concentrations were measured using a
QuBit 2.0 RNA fluorometric assay (Thermo Fisher Scientific, Waltham, MA, USA) and RNA
integrity was checked using 0.5% (w/v) agarose-MOPS-formaldehyde de-naturating gel
electrophoresis.
865
Complementary DNA (cDNA) libraries were prepared using the lllumina TruSeq v2 mRNA
sample prep kit (lllumina, San Diego, CA, USA), following a standard protocol. Briefly, mRNA
was isolated with poly-A selection, followed by cDNA synthesis, Illlumina standard index adapter
ligation and a brief PCR reaction. Concentrations of the cDNA libraries were measured using a
870 QuBit DNA High-sensitivity assay (Thermo Fisher Scientific, Waltham, MA, USA) and fragment
length distributions were assessed using an Agilent TapeStation with a D1000 tape (Agilent,
Santa Clara, CA, USA). cDNA libraries were multiplexed by equimolar pooling (5 or 6
samples/pool), and were then sent to the Swedish National Genomics Infrastructure’s SNP &
SEQ platform in Uppsala for llumina HiSeq 2500 sequencing (8 lanes; 126 bp Paired-End
875 sequencing; lllumina, San Diego, CA, USA).

Gene annotation
We annotated the brittle star genome using a custom pipeline leveraging three types of evidence:
(i) assembled transcriptomes from 18 brittle star developmental and arm regeneration RNA-seq
880 (including both publicly available (Delroisse et al. 2014; Purushothaman et al. 2015; Dylus et al.
2016) and newly generated datasets, Table S1), (ii) similarity to proteins from 27 selected
metazoa and (iii) ab initio predictions. We first assembled a consensus transcriptome from all
RNA-seq samples with mikado (Venturini et al. 2018), combining an alignment-free transcriptome
assembled with Trinity (Grabherr et al. 2011) and mapped to the genome with gmap (Wu and
885 Watanabe 2005) with an alignment-based transcriptome mapped to the genome with STAR
(Dobin et al. 2013), assembled with Stringtie (Pertea et al. 2015) and merged with taco (Niknafs
et al. 2017). Second, we selected best-scoring mikado transcripts (i.e. transcripts with identified
start and stop codons by TransDecoder, at least 2 exons, over 50% of the predicted coding
sequence covered by a swissprot (Boutet et al. 2007) blast hit and no overlap of the coding
890 sequence with an annotated repeat) to train a gene prediction model with AUGUSTUS (Stanke
and Waack 2003). Third, we obtained similarity-based gene predictions with Metaeuk, based on
proteomes from a total of 27 metazoa, including 8 echinoderms and 2 hemichordates. Fourth, we
performed ab initio gene prediction with AUGUSTUS (Stanke and Waack 2003), using the
previously trained model and providing as hints the predicted exons by mikado and Metaeuk, and
895 curated splice junctions defined by portcullis (Mapleson et al. 2018) on the STAR transcriptome.
Fifth, we filtered out all predicted gene models with over 40% of exons overlapping annotated
repeats and then ran PASA (Haas et al. 2003) on retained genes to finalise models and annotate
UTRs. Finally, we further filtered out 3,465 poorly supported gene models (no PFAM domain, no
swissprot blast hit and maximal expression < 2 TPM), to retain 30,267 annotated gene models in
900 the final annotation (Table S2). The quality and completeness of the annotation is demonstrated
by a score of 92.7% complete BUSCO (C:92.7 [S:86.2%, D:6.5%], F:5.0%, M:2.3%, n:954)
(Siméao et al. 2015) and a total of 4,974 unique PFAM domains (Finn et al. 2014), with 76% of
genes (23,047) containing a PFAM domain. Genes were named by BLAST search against the
swissprot database. The names of genes specifically investigated in this study (hox, phb,
905 Iuciferase) were further manually curated to reflect their evolutionary history. This genome
annotation pipeline is implemented as a Snakemake workflow (Kdster and Rahmann 2012) and
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is publicly available on Github (https://github.com/eparey/AnnotateSnakeMake). Annotation files
are provided in Dataset S1.

910 Synteny comparisons and reconstruction of Eleutherozoa ancestral linkage groups
For the sea urchin P. lividus and the black sea cucumber H. leucospilota, we used previously
reported gene annotations (Chen et al. 2023; Marlétaz et al. 2023). We generated a draft
homology-based annotation for the spiny sea star M. glacialis (Lawniczak et al. 2021) with
MetaEuk (Levy Karin et al. 2020) using proteins of the sea urchin S. purpuratus (Spur_5.0,

915 available in Ensembl Metazoa v56, (Sea Urchin Genome Sequencing Consortium et al. 2006)),
the crown-of-thorns sea star A. planci (OKI_Apl_1.0, available in Ensembl Metazoa v56
(Baughman et al. 2014)) and the octopus sea star P. borealis (Lee et al. 2022). One-to-one
orthologous genes were identified by reciprocal best blast hit between pairs of compared
genomes, using diamond (Buchfink et al. 2021). We used Circos version 0.69.8 and circos-tools

920 0.23 (Krzywinski et al. 2009) to plot synteny comparisons, with the bundlelinks tool to group
together neighbouring genes (with a maximum gap of 50 genes) and filter out bundles with fewer
than 3 links. We then used the orderchr tool to order chromosomes so as to minimise link
crossings. The ancestral Eleutherozoa linkage groups were reconstructed on the basis of
synteny comparisons between the spiny sea star M. glacialis and the black sea cucumber H.

925 leucospilota, and with the amphioxus B. floridae and the scallop P. maximus genomes as well as
previously defined bilaterian linkage groups (BLGs) to untangle derived from ancestral
chromosomal arrangements (Figure S2). Specifically, only one macro-syntenic rearrangement
occurred between the spiny sea star and the black sea cucumber: (a) spiny sea star chr5 maps
to both sea cucumber chr12 and chr23. Comparisons with outgroups and ancestral BLGs

930 revealed that (a) corresponds to a derived fusion in the spiny sea star and that the black sea
cucumber retained the ancestral state. Using this reconstruction, we annotated genes from
matched orthologous chromosomes between sea stars and sea cucumbers with respect to their
ancestral ELGs of origins and propagated annotations to orthologous genes in P. lividus, A.
filiformis and other available chromosome-scale echinoderm genomes. Karyotypes were drawn

935 with Rldeograms (Hao et al. 2020): we painted genes on extant chromosomes using the
ancestral chromosome colour when a significant number of genes were inferred to descend from
an ancestral chromosome (p<10°, Fisher exact tests corrected for multiple testing with the
Benjamini-Hochberg procedure). Oxford grid plots of ELGs distribution in P. lividus, A. filiformis
and other sequenced echinoderms (Figure S3) were plotted using the same statistical

940 thresholds. ELG-related data files are provided in Dataset S2.

Hox and ParaHox genes identification
We first compiled a dataset of curated full length HOX protein sequences from S. purpuratus and
HOX homeodomains from B. floridae and S. kowaleskii to search for homologous Hox genes in
945 the brittle star. A comprehensive list of candidate Hox genes in brittle star was then constructed
using two approaches: (i) a diamond blastp (Buchfink et al. 2021) of the curated Hox dataset
against brittle star predicted proteins (ii) a miniprot (Li 2023) alignment of S. purpuratus HOX
protein sequence against the brittle star genome sequence, to recover Hox genes potentially
missed by the automatic annotation process. The same approach was used to identify Hox
950 genes in M. glacialis. Finally, we built a molecular phylogenetic tree (Figure S84) with RAXML-NG
(Kozlov et al. 2019) using the LG+G4+F model and 5 distinct starting parsimony trees, to
reconstruct the evolutionary history of Hox genes from S. purpuratus, B. floridae, S. kowaleskii,
A. filiformis, M. glacialis and three additional echinoderms with curated Hox genes in Echinobase
(Arshinoff et al. 2022) (L. variegatus, P. miniata and A. planci). We extracted ParaHox
955 sequences and location in A. japonica from Ensembl Metazoa v56 (Yates et al. 2022), in S.
purpuratus from Echinobase, A. planci from Ensembl Metazoa and similar approaches as for the
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Hox to identify ParaHox genes in A. filiformis and M. glacialis. Hox and ParaHox data files are
provided in Dataset S3.

960
Gene families expansion and contraction
We used broccoli (Derelle et al. 2020) to group proteins of 28 selected Metazoa, 10 of which
were Ambulacraria, into gene families. Gene families were predicted to have originated in the last
common ancestor of the species with a gene in the family. Out of the complete set of broccoli
965 gene families, 10,367 originated before the last common ancestor of Ambulacraria (echinoderms
and hemichordates outgroups). We used CAFE5 (Mendes et al. 2020) on the set of 10,367
families to identify significantly expanded and contracted gene families on each branch of the
Ambulacraria phylogeny. Briefly, CAFE fits a birth-death model on a dated phylogeny from the
gene count data, and tests for significant expansions/contractions on specific branches. To
970 obtain a dated Ambulacraria phylogeny, we: (i) extracted 192 1-to-1 orthologs in Ambulacraria
from broccoli gene families, (ii) built multiple sequence alignments for each orthologous group
using MAFFT v7.475, (iii) concatenated alignments across orthology groups and reconstructed a
Maximum Likelihood phylogeny with RAXML-NG v.1.1 (LG+G4+F model with 10 parsimony
starting trees), (iv) filtered out columns of the alignment with over 15% gaps (47,520 retained
975 sites) and (v) ran PhyloBayes v4.1b (Lartillot et al. 2009) to obtain a time-calibrated tree, with the
RAXML reconstructed tree as constrained topology and selected fossil calibrations extracted from
the literature ((Benton et al. 2009; Mongiardino Koch et al. 2022). The chain was run for 4,166
samples and 3,500 were retained after burn-in to estimate the posterior distributions for node
ages. We next ran CAFE in 2 steps: we estimated the lambda and alpha parameters of the 2-
980 categories CAFE GAMMA model excluding the 128 gene families with the largest copy number
differential and then ran CAFE on all families with these parameters fixed to test for significant
contractions and expansions (p-values <0.05). Fossil calibrations, dated species tree, gene
families and CAFE output files are provided in Dataset S4.

985 Gene lists curation
We generated lists of immune genes in A. filiformis (Table $2) using a combination of PFAM
domain annotation and lists of previously curated immune genes in the sea urchin
Strongylocentrotus purpuratus (Sea Urchin Genome Sequencing Consortium et al. 2006).
Specifically, we first selected A. filiformis genes based on their PFAM domains (e.g. TIR, IL17,
990 Mif) and completed this list by searching for homologs (using the set of broccoli gene families)
with the immune genes of the sea urchin Strongylocentrotus purpuratus. For the list of kinase
genes, we also identified through homologies with curated kinase genes from the sea urchin
genome (Sea Urchin Genome Sequencing Consortium et al. 2006). We generated a list of TFs
based on the presence of DNA-binding PFAM domains. For the stemness genes, we identified
995 putative homologues of the 180 “stemness-like” genes established by (Alié et al. 2015), that
is, genes that are shared between three stem cell populations: poriferan (Ephydatia
fluviatilis) archeocytes, Hydra vulgaris interstitial stem cells, and planarian (Schmidtea
mediterranea) neoblasts. Specifically, we used the human cognates of all those genes as
queries for BLAST searches (McGinnis and Madden 2004) against A. filiformis genes. We
1000 emphasise that, while these genes are expressed in stem cell populations, they may not all
be stemness regulators. For genes involved in neuronal function, we first compiled a list of
neurogenic and glial markers, TFs, cell signalling genes involved in embryonic, homeostatic, and
regenerative neurogenesis in vertebrates (rodents, humans, and Xenopus) and invertebrates
(Caenorhabditis elegans and Drosophila melanogaster). We identified putative homologues of
1005 “neuronal” genes in A. filiformis using a reciprocal blast approach. We generated gene lists for 19
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signalling pathways, in two steps: (i) manual curation of main members of selected pathways, (ii)
identification of their gene ID in the S. purpuratus genome via echinobase gene searches
(Arshinoff et al. 2022) and (iii) identification of S. purpuratus orthologs in A. filiformis using gene
trees built with Generax (Morel et al. 2020) for each of our broccoli (Derelle et al. 2020) gene

1010 family. Finally, the repertoire of luciferase-like genes was identified through reciprocal BLAST
searches using the reference Renilla luciferase (GenBank: AAA29804) as initial query (Delroisse
et al. 2017).

Gene ontology enrichment tests

1015 We used eggnog-mapper (Cantalapiedra et al. 2021) to automatically annotate A. filiformis and
P. lividus genes with Gene Ontology terms from the Biological Process domain. The GO
annotations were then transferred to the level of gene families. Specifically, for each family, we
propagated all GO annotations associated with any P. lividus or A. filiformis genes as the
complete set of GO annotations for this family. Hypergeometric tests for functional enrichments

1020 were then conducted with the enricher function from the ClusterProfiler R package (Wu et al.
2021), with custom foreground and background GO annotation sets. For functional enrichment
tests on expanded/contracted gene families (Figure 3), tests were conducted at the level of gene
families with expanded or contracted families as foreground and all gene families as background,
as described above. For functional enrichment tests on regeneration co-expression clusters

1025 (Figure 4), tests were conducted at the level of brittle star genes, using genes of a given cluster
as foreground and genes of all clusters as background. We used FDR < 0.05 as significance
threshold. Enrichment results were summarised with REVIGO (Supek et al. 2011), we selected
top ontology terms based on the REVIGO “dispensability” score to make a representative
overview of the diversity of enriched GO terms.

1030
Clustering of the arm regeneration expression series
Gene expression was quantified for all samples using the alignment-free method kallisto (Bray et
al. 2016). We normalised TPM values across samples using the TMM method as implemented in
edgeR (Robinson et al. 2010; Robinson and Oshlack 2010) and used MFuzz (Kumar and E

1035 Futschik 2007) to perform soft-clustering of genes on the basis of their standardised expression
profiles across samples. We used the minimum centroid distance method to select the optimal
number of clusters (n=19, Figure S6). In the main text, we filtered the obtained clusters to retain
clusters with > 1 enriched GO term and elevated expression in >1 regenerating sample (Figure
4, Figure S6). Normalised gene expression tables are provided in Dataset S5.

1040
Transcription factor binding motif enrichment tests
We used HOMER v4.11 (Heinz et al. 2010), to test for enriched transcription factor binding motifs
in the proximal regulatory domains (TSS + 5 kb upstream, +1 kb downstream) of genes of each
regeneration cluster. We ran the findMotifsGenome.pl script from the HOMER suite, with —h to

1045 perform hypergeometric tests, contrasting proximal regulatory domains of genes from one
expression cluster as foreground with proximal regulatory domains from genes of all clusters as
background.

Axolotl limb regeneration RNA-seq time course
1050 Raw RNA-seq data for 12 limb regeneration time points from (Stewart et al. 2013) were
downloaded from  https://www.axolomics.org/?g=node/2. ©We used Trim  Galore
(https://github.com/FelixKrueger/TrimGalore) with default parameters to trim and quality filter raw
sequencing reads via the Cutadapt tool (Martin 2011). Gene expression was quantified with
kallisto (Bray et al. 2016) using the set of annotated axolotl transcripts from the latest
1055 Ambystoma mexicanum assembly version (AmexG_v6.0-DD, available from https://www.axolotl-
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omics.org/assemblies, (Schloissnig et al. 2021)). Similarly as for the brittle star regeneration
series, we normalised TPM values across samples using the TMM method (Robinson et al.
2010; Robinson and Oshlack 2010) and used MFuzz (Kumar and E Futschik 2007) to cluster
genes according to their expression profile (Figure S7). Gene ontology and TFBS motifs

1060 enrichment were performed as described for the brittle star. Normalised gene expression tables
are provided in Dataset S5.

Parhyale limb regeneration RNA-seq time course

Parhyale leg regeneration expression data were previously processed and clustered into 8 co-
1065 expression gene groups using the same approach as we used for brittle star data (Sinigaglia et

al. 2022). As such, we directly used the clustering reported in (Sinigaglia et al. 2022), but

renamed the clusters so that numbering follow temporal activation (P1 is R4 in the notation of

Sinigaglia et al., P2 is R1, P3 is R8, P4 is R2, P5 is R6, P6 is R3, P7 is R5 and P8 is R7).

1070 Comparison of gene expression dynamics during appendage regeneration
We used broccoli (Derelle et al. 2020) to build homologous gene families encompassing genes of
the brittle star A. filiformis, the axolotl Ambystoma mexicanum and Parhyale hawaiensis, as well
as 8 echinoderms, 6 vertebrates, 7 ecdysozoans and 12 other animal genomes. We used these
gene families to identify homologous genes and compare their expression profile during
1075 appendage regeneration in a pairwise manner across the three species. For each pairwise
comparison, we retained all homologous gene families with > 1 gene and < 5 genes in each of
the two compared species, resulting in a total of 5,203 homologous groups retained for the
axolotl (8,810 homologous genes) - brittle star (6,813 homologous genes) comparison, 3,137 for
the brittle star (4,196) - Parhyale (3,617) comparison and 2,299 for the axolotl (3,903) - Parhyale
1080 (2,628) comparison (see Dataset S5). We next computed permutation-based p-values to test for
the overrepresentation of homologous genes across co-expression clusters of the two compared
species. Specifically, we generated, for each pairwise comparison, 10,000 randomizations of the
gene labels of species 2, keeping clusters and orthologous gene family size constant to build a
null distribution of the number of expected homologous genes shared by two clusters at random.
1085 Empirical p-values were computed from the null distribution and corrected for multiple testing
using the Benjamini-Hochberg procedure. To investigate functional annotation of genes
displaying co-expression across regeneration models as opposed to genes from the same
clusters that do not show co-expression across species, we conducted gene list and GO
enrichment tests as described previously but using carefully selected background: we used as
1090 background all brittle star genes with a homolog in either Parhyale or axolotl (i.e. whose
expression conservation could be tested) and in a cluster with identified co-expressed genes in
either Parhyale or axolotl (to test for the specificity of genes of a given cluster that show
conservation vs those of the same cluster that do not).

1095 Differential analysis of repeats transcriptional activity during brittle star arm
regeneration
We tested for differentially expressed repetitive elements in early regeneration (immune phase:
48 hpa and 72 hpa samples) versus middle regeneration (proliferation: Stage 3, Stage 4, Stage 5
samples), using our time course brittle star arm regeneration RNA-seq data. We used a

1100 conservative approach to first filter out highly duplicated genes which could have been captured
in the set of repetitive elements called by RepeatModeler/RepeatMasker. We used diamond
blastx (Buchfink et al. 2021) to search for homologies between repeat consensus and proteins in
the swissprot database (Boutet et al. 2007) and filtered out all ‘Unknown’ repeat families for
which the consensus sequence had a strict match in swissprot (e-value cut-off 10-'°) which did

1105 not correspond to transposon genes. We next use the SalmonTE pipeline (Jeong et al. 2018)
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with default parameters on the full set of filtered repeat consensus (n=4,695 repeat families),

followed by differential analysis with DESeq2 (Love et al. 2014) on the estimated count values, to

test for differential transcriptional activity of repeats in the immune versus proliferation

regeneration phases. We retained as differentially expressed the repetitive elements with an
1110 absolute log, fold change > 1, adjusted p-value < 0.001.

Differential gene expression in brittle star arm explants

Gene expression was quantified for all samples using the alignment-free method Kallisto (Bray et
1115 al. 2016). Differential expression analyses were conducted with DESeg2 (Love et al. 2014) on

count values, contrasting distal replicates against medial replicates and proximal replicates

against medial replicates for each time point. All genes with an adjusted p-value < 0.05 and

absolute log, fold change > 1 were retained as differentially expressed. Gene expression tables

are provided in Dataset S5.
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