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Coordinated movement requires the nervous system to continuously compensate for

changes in mechanical load across di�erent contexts. For voluntary movements like

reaching, the motor cortex is a critical hub that generates commands to move the

limbs and counteract loads. How does cortex contribute to load compensation when

rhythmic movements are clocked by a spinal pattern generator? Here, we address

this question by manipulating the mass of the forelimb in unrestrained mice during

locomotion.While load produces changes inmotor output that are robust to inactivation

ofmotor cortex, it also induces a profound shi� in cortical dynamics, which isminimally

a�ected by cerebellar perturbation and signi�cantly larger than the response in the

spinal motoneuron population. This latent representation may enable motor cortex to

generate appropriate commands when a voluntary movement must be integrated with

an ongoing, spinally-generated rhythm.
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1. Introduction

The ability to perform the same movement repeatedly in a changing environment is a

hallmark of skilled motor control. Inertial load is a key environmental variable which

changes with the distribution of mass across the body and must be countered with

appropriately-scaled motor commands. For example, raising a co�ee cup to the lips

when the cup is empty and full requires di�erent patterns of muscle activity. Similarly,

the motor output generated during walking in bare feet must be adjusted when heavy

boots and a backpack are worn. Such adjustments pose a demanding challenge for

neural control, which is distributed across multiple interacting systems, including the

motor cortex, cerebellum, brainstem, spinal cord, and muscle receptors (Fig. 1A).

In the context of voluntary movement, studies in nonhuman primates have demon-

strated that themotor cortex drives the generation of forces to move the upper limb and

to compensate for loads1,2. Ablation of the pyramidal tract causes de�cits in manual

dexterity3 and the time course of force development4, and cortical �ring rates are

strongly modulated by force magnitude and direction during upper limb movements5-7

and isometric contractions8. In reaching, cortical neurons are sensitive to the direction

and magnitude of loads during posture and movement5, and their responses can shi�

substantially between these two contexts9. Furthermore, several observations suggest

that load-related responses in motor cortex might be driven, in part, by ascending cere-

bellar input. Cooling of the cerebellar dentate nucleus attenuates long-latency motor

cortical responses to impulse torques during voluntary elbowmovement10,11, though

activity during holding against a load is minimally a�ected by this manipulation12, and

disruption of cerebellar output with high-frequency electrical stimulation can partially

suppress cortical activity in an isometric wrist task13.

The complexity and heterogeneity of themotor cortical population pose a signi�cant

challenge to understanding its role in control14,15. For example, a neuron’s response to

load during reaching cannot be accurately predicted from its load sensitivity during

posture9, and directional tuning can change substantially between movement prepara-

tion and execution16 and throughout a reach14. A powerful emerging approach to this

complexity focuses less on the information represented by individual neurons andmore

on the coordinated dynamics across the cortical population, how these dynamics are

related to features of the task, and how they are generated by interactions across brain

areas17–20. This approach has helped explain several perplexing features of cortical

activity, such as the observation that large changes in �ring rate can occur during motor
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preparation without evoking movement. As a movement is planned, cortical activity

changes in directions, termed output-null dimensions, along which the net e�ect of

cortical output on muscle activity is constant21,22. These changes enable the cortical

population state to be set to the appropriate initial condition from which dynamics can

evolve during movement execution.

Given the central role of motor cortical dynamics in voluntary limb movements,

howmight these dynamics contribute to load compensation in rhythmic movements

which are coordinated by an intrinsic spinal network? In mammalian overground

locomotion, a spinal central pattern generator (CPG) governs the basic pattern of �exor-

extensor and le�-right limb alternation, can operate independently of the brain and

sensory feedback23–25, and is controlled by networks in the midbrain and brainstem

that determine locomotor initiation and speed26–28. Motor cortex is not necessary for

locomotion over a �at surface, but is required when precision demands are increased

during steps over obstacles or across a horizontal ladder29–33. Some adjustments for

mechanical load are implemented by subcortical structures: in walking premammilary

cats, for instance, loading of an ankle extensor tendon increases the activation of the

corresponding muscle during stance, and can suppress the CPG when large forces are

applied34. Nonetheless, the rhythmic, step-entrained activity of some cortical cells,

including pyramidal tract neurons projecting to the spinal cord and brainstem, can be

modulated by speed and by loading of the limb35,36, suggesting that descending cortical

signals may be important for the regulation of force during locomotion.

The present study aims to address three central questions. First, does motor cortex

drive compensation for changes in inertial load imposed on the limbs during locomo-

tion, as it does in voluntary movement, or is this compensation instead implemented

by subcortical structures? Second, how are such loads represented in motor cortical

population activity, and does the representation depend on cerebellar input? Finally,

how are cortical dynamics related to the output of the nervous system at the level

of the spinal motoneuron population? We address these questions in unrestrained,

chronically-instrumented mice performing an adaptive locomotion task in which they

must adjust motor output to compensate for a weight on the wrist. Our approach com-

bines three-dimensional kinematic pose estimation, recordings from forelimbmuscles,

the motor cortex, and spinally-innervated motor units, optogenetic perturbations, and

computational approaches for modeling neural population data. We �nd that, although

inactivation of motor cortex does not attenuate load compensation, the dominant com-

ponent of cortical population activity is a tonic shi� imposed by the load, and is robust
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to optogenetic perturbation of the cerebellum. Furthermore, the geometric properties

of cortical population activity in the task contrast strongly with those of the spinal

motoneuron population. While cortical activity is signi�cantly modulated by load, cere-

bellar perturbation, and animal speed, with cortical trajectories that maintain relatively

low tangling across experimental conditions, consistent with noise-robust dynamics,

the spinal motoneuron population is instead dominated by condition-invariant signals

related to �exor-extensor alternation, and also exhibits higher trajectory tangling. We

conclude that load-related dynamics in motor cortex do not directly drive motor com-

pensation during locomotion, but instead constitute a latent representation of changes

to the limb mechanics, which may modulate cortical commands during voluntary gait

modi�cation or alter the gain of spinal re�exes to correct for unexpected perturbations.

2. Results

2.1. Adaptation of locomotor output to changes in inertial load

Unrestrained mice were trained to trot at approximately 20 cm/s on a motorized tread-

mill as theirmovements were capturedwith four synchronized high-speed cameras (Fig.

1B). Three-dimensional limb kinematics were measured from video using an automatic

pose estimation pipeline37,38, enabling extraction of �ngertip position and velocity (Fig.

1C, lower: magenta and green traces) and segmentation of the session into swing and

stance epochs (Fig. 1C, lower: green boxes). Electromyograms (EMG) were recorded

from forelimb �exor (biceps brachii) and extensor (triceps brachii) muscles, recti�ed,

and smoothed (Fig. 1C, lower: gray traces). At the beginning of each session, animals ran

freely for 5-20 minutes. We then imposed an inertial load on one forelimb by attaching

a 0.5 g weight to the wrist, increasing the moment of inertia of the radius-ulna about

the elbow, and the animals ran for a second epoch of 5-10 minutes. This load, which

increased the total mass of the forelimb by approximately 50%, induced a compensatory

increase in elbow �exor muscle activity during swing and a corresponding suppression

of extensor activity during stance (Fig. 1D). The compensation was consistent across

step cycles (Fig. 1E) and sessions (Fig. 1F; signed rank test, p = 8.4e-6 for biceps, p = 7.1e-3

for triceps). Finger velocity was, on average, slightly higher in the loaded condition

(Fig. 1F; p = 5.7e-4), consistent with modest overcompensation for the load. Further-

more, in contrast with adaptation to a split-belt treadmill, which unfolds over many

successive steps and requires cerebellum39,40, this adaptation appeared to occur almost

instantaneously a�er the load was applied (Fig. 1G).
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FIGURE 1. An adaptive locomotion task in freely-moving mice. (A) Block diagram illustrating key circuits involved in adaptation to
mechanical loads. (B) Experimental rig. Mice were trained to trot on a motorized treadmill at 20 cm/s. Behavior was captured with four
synchronized cameras, and electromyograms (EMG) recorded in the biceps brachii and triceps brachii muscles. (C) Kinematics and EMG
during locomotion without a load. Upper: 3D pose estimates, with swing onset indicated in green rectangles. Lower: upward position
(magenta) and forward velocity (green) of �ngertip, and raw and smoothed biceps and triceps EMG (gray). (D) Kinematics and EMG during
locomotion with a 0.5 g load attached to the wrist. (E) Smoothed, step-aligned biceps EMG, triceps EMG, and forward �nger velocity over
one experimental session. (F) Median biceps activity, triceps activity, and forward �nger velocity for all sessions, load-on vs. load-o� (n = 34
sessions, n = 7 mice). Lines indicate bootstrapped 95% con�dence intervals. (G) Time course of EMG amplitude changes. Upper: biceps and
triceps amplitudes across a single session. Points correspond to individual steps, and lines indicate a loess estimate of the trend. Lower: loess
estimates for all sessions. To enable comparison across sessions, each curve was z-scored and stretched to unit duration.
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2.2. Load compensation is robust to perturbation of motor cortex and cerebellum.

Adjustment ofmotor output in di�erent tasks requires distinct contributions frommotor

cortex3,36, cerebellum41, and cerebellar inputs to cortex11. To determine whether the

observed compensation for inertial load requiresmotor cortex and cerebellum, we used

an optogenetic approach to transiently inactivate each brain area during the task. Motor

cortical perturbation experiments were performed in VGAT-ChR2-EYFPmice, which ex-

press the light-gated ion channel ChR2 selectively in inhibitory interneurons, enabling

robust suppression of cortical output following illumination of the brain surface with

blue light20,42. An optical �ber was implanted over the forelimb motor cortex (Fig. 2A,

le�), and animals performed treadmill locomotion with and without a 0.5 g weight on

the contralateral forelimb as laser stimulation was delivered intermittently to suppress

motor cortical activity (473 nm, 40 Hz, 1 s stimulus duration, randomized 1-5 s delay

between stimuli). While the load induced an increase in elbow �exor muscle activity

during swing and a decrease in extensor activity during stance, cortical perturbation did

not attenuate this compensation (Fig. 2A, center and right). We next tested the e�ects

of cerebellar perturbation on motor output by implanting a �ber over the forelimb

area of the pars intermedia ipsilateral to the loaded forelimb in L7Cre-2 x Ai32 mice

(Fig. 2B, le�), which express ChR2 selectively in Purkinje cells and allow suppression

of cerebellar output during laser stimulation43. Cerebellar perturbation did not erase

the adaptation of motor output to the load; on the contrary, it produced a modest �exor

muscle enhancement and extensor attenuation (Fig. 2B, center and right; Supplemen-

tary Fig. 1C-D). To quantify the e�ects of load, optogenetic perturbation, and speed on

motor output, we �t a linear model for each experimental session and examined the

distribution of the resulting coe�cients (Fig. 2C; Supplemental Fig. 1C-D; see Methods).

Load had a signi�cant positive e�ect on elbow �exor EMG and a negative e�ect on

extensor EMG (sign rank test, q < .05), and step frequency had positive e�ects on both

�exor and extensor EMG. The interaction terms between load and both optogenetic

perturbations were centered at zero, indicating that these perturbations failed to erase

the adaptation of motor output to changes in load. Overall, these results show that load

compensation in the task does not require normal motor cortical or cerebellar output.
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2.3. Load and cerebellar perturbationmodulate motor cortical activity.

The �nding that muscle activity was una�ected by cortical inactivation suggested that

the cortical dynamics in the load compensation task were output-null. The possibility

remained, however, that motor cortex could still detect changes in inertial load. To

measure the e�ects of load during locomotion on motor cortical dynamics, and to

assess the dependence of these e�ects on cerebellar inputs, we chronically implanted

high-density silicon probes in the motor cortex of L7Cre-2 x Ai32 mice, along with

an optical �ber over the contralateral forelimb area of the cerebellar pars intermedia

(Fig. 3A). Mice then performed the adaptive locomotion task as we recorded limb

kinematics and cortical spiking (n = 710 neurons, n = 2 mice) while intermittently

perturbing the cerebellum by stimulating Purkinje cells (473 nm, 40 Hz, 1 s stimulus

duration, randomized 1-5 s delay between stimuli). Most neurons were synchronized

with the locomotor rhythm (n = 618/710, 87.0%, q < .05, Rayleigh test with Benjamini-

Hochberg correction for multiple comparisons), consistent with studies in cats29,36 and

primates44,45. The e�ects of load and cerebellar perturbation were highly diverse across

neurons. Firing rates for some cells were modulated by load (neurons 1-3, Fig. 3B), by

Purkinje cell stimulation (neuron 5), or by both (neuron 6), while e�ects were relatively

modest for others (neuron 4). Overall, 47.7% of neurons exhibited changes related to

load, 24.1% to Purkinje cell stimulation, and 10.6% to both, while an interaction between

load and Purkinje cell stimulation occurred in only 2.7% of cells (multi-way ANOVA

for each neuron, q < .05). Among the load-sensitive neurons, 46.0% had higher �ring

rates in the load-on condition; among the neurons sensitive to Purkinje cell stimulation,

71.9% had a response of higher �ring rates (Fig. 3C-D).
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2.4. Cortical population dynamics in adaptive locomotion.

Because the e�ects of load and cerebellar perturbation were heterogeneous across the

sample of cortical cells, we next aimed to identify the coordinated, low-dimensional

dynamics across the population. To extract a low-dimensional representation of cortical

population dynamics in interpretable, task-relevant coordinates, we used demixed

principal component analysis (dPCA; see Methods), which decomposes neural activity

into dimensions related to speci�c experimental parameterswhile capturingmost of the

variance in the original �ring rates46. For each cortical neuron, the average step-aligned

�ring rate was measured in twenty conditions: load on / o� (two levels) x Purkinje cell

stimulation on / o� (two levels) x animal speed (�ve levels). Next, we used dPCA to �nd

a decoder matrix that mapped the �ring rates for all neurons onto a 20-dimensional

latent variable space. This model explained 92.9% of the total �ring rate variance and

yielded scores parameterized by step phase for each dimension and condition (Fig.

4A-C), and an encoder matrix that reconstructs the measured �ring rates from these

scores. We observed condition-invariant signals that were modulated by step phase, but

did not di�er strongly across experimental parameters (Fig. 4A, X-Y axes; Fig. 4B, �rst

column). The �rst condition-invariant dimension was roughly sinusoidal, with a period

of one stride and a peak near the swing-stance transition. The second was qualitatively

similar except for a phase shi�, with a peak in mid swing, while the third was smaller in

amplitude and had a period of one half stride. Taken together, the condition-invariant

components accounted for 28.8% of the explained variance in cortical �ring rates.

Animal speed had a moderate e�ect on cortical dynamics (18.9% of the variance), but

thiswas distributed broadly acrossmultiple dimensions (Fig. 4B, fourth column; Fig, 4C).

The largest speed component consisted of tonic shi�s in activity, with little dependence

on step phase (Fig 4B, fourth column). Dynamics in this dimension and the top two

condition-invariant dimensions therefore yielded stacked elliptical trajectories that

translated continuously with movement speed (Fig. 4A, right), reminiscent of motor

cortical dynamics in primates performing a rhythmic cycling task47. Additional speed

components exhibited more complex patterns, including phase and amplitude shi�s in

the second component.

The largest single component of cortical activity, however, was related almost purely

to inertial load (Fig. 4A, le�; Fig. 4B, second column, �rst row), accounting for 22.6% of

explained variance in �ring rate. This component depended only weakly on step phase,

and consisted of a tonic shi� in activity between the load-on and load-o� conditions,

consistent with patterns observed in individual neurons (c.f. cells 1, 3, and 6 in Fig. 3B).
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Because inactivation ofmotor cortex had no e�ect on load compensation, this dominant,

load-related signal was output-null. In addition, two smaller load-related dimensions

were identi�ed, and both were modulated by step phase, though these could potentially

result from small shi�s in spike alignment46. Because prior work has shown cortical

compensation for load during voluntary upper limb movements can be in�uenced

by ascending cerebellar drive10,11, we next tested whether the load signals observed

during locomotion were cerebellum-dependent by examining several consequences of

cerebellar perturbation. First, the e�ect of Purkinje cell stimulation was concentrated

primarily in a single dimension (11.8% of the variance; Fig. 4C) and, like the load e�ect,

consisted of a tonic shi� in activity (Fig. 4A, center; Fig. 4B, third column). Second,

the principal axes with the largest e�ects of load and cerebellar perturbation were

not closely aligned (inner product -0.45; Fig. 4C, upper triangular matrix), though we

failed to reject the null hypothesis that their relative orientations were random (p =

0.31, exact test based on beta distribution; Fig. 4C, lower triangular matrix). Third, the

interaction between load and cerebellar perturbation was small, accounting for only

1.0% of �ring rate variance (Fig. 4B, ��h column, third row; Fig. 4C). Fourth, activity in

the top load-related dimension was not partitioned by cerebellar perturbation; instead,

trajectorieswere tightly groupedwithin each load condition (Fig. 4A, le�; Fig. 4B, second

column, �rst row). Finally, projection of �ring rates aligned to the onset of cerebellar

perturbation onto the top load dimension revealed a minimal response (Fig. 4D, upper),

while projection onto the �rst Purkinje cell stimulation dimension produced a large

signal that was sustained throughout the stimulus train (Fig. 4D, lower). Taken together,

these observations support the hypothesis that the cortical representation of load in

the adaptive locomotion task is independent of cerebellar input.
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2.5. E�ects of load and cerebellar perturbation on spinal motoneuron dynamics.

Howare the dynamics observed inmotor cortex related to the �nal output of the nervous

system at the level of spinal motoneurons? In healthy motor units, muscle �ber action

potentials are tightly locked to action potentials in the correspondingmotoneuron. Thus,

to address this question, we implanted �exible, high-density electrode arrays48 and �ne

wire electrodes in the forelimb muscles (see Methods), enabling us to record motor

output at the resolution of individual spinally-innervated motor units in the adaptive

locomotion task (Fig. 5A; n = 108 motor units, n = 27 sessions, n = 6 L7Cre-2 x Ai32 mice).

Inertial load and cerebellar perturbation were applied as in the cortical recording

experiments. Motor units were more strongly entrained to the locomotor rhythm (n =

108/108, q < .05, Rayleigh test) in comparison to cortical units, with �exor motor units

activated during swing, and extensormotor units during stance (Fig. 5B). The �ring rates

of 50.9% of motor units were signi�cantly modulated by load (n = 55/108; q < .05, multi-

wayANOVA; Fig. 5C-D), 28.7%byPurkinje cell stimulation (n = 31/108), 20.4%by both load

and stimulation (n = 22/108), and 7.4% by the interaction between load and stimulation

(n = 8/108). Among the load-sensitive neurons, 38.2% had �ring rate increases, while

increases occurred in 71.0% of Purkinje cell stimulation-sensitive neurons. To identify

coordinated activity patterns at the motoneuron population level, we performed dPCA

as for the cortical population, and projected �ring rates onto twenty dPCA decoder

dimensions, which explained 94.2% of the total �ring rate variance. The dominant

patterns revealed by dPCA consisted of robust, condition-invariant oscillations (Fig. 6A,

X-Y axes; Fig. 6B, �rst column), and overall, the condition-invariant signals accounted

for 70.6% of explained �ring rate variance (Fig. 6C). The �rst two condition-invariant

dimensions showed approximately sinusoidal oscillations with a period of one stride,

while the third had a period of one-half stride (Fig. 6B, �rst column). Inertial load

and Purkinje cell stimulation had modest e�ects, accounting for 7.4% and 4.6% of the

variance, respectively (Fig. 6A, le� and center; Fig. 6B, second and third columns; Fig.

6C). In contrast with cortical activity patterns, the �rst load and Purkinje cell stimulation

dimensions for themotoneuron population exhibited a clear dependence on step phase,

with maximal separation between conditions in mid-stance. Animal speed accounted

for 12.8% of the �ring rate variance, with continuous, tonic shi�s in the �rst speed

dimensions, and more complex, step-phase-dependent e�ects in the second (Fig. 6B,

fourth column). While these patterns yielded stacked, elliptical trajectories in the

�rst two condition-invariant dimensions and the �rst speed dimension (Fig. 6A, right),

roughly resembling the corresponding cortical dynamics (c.f. Fig. 4A, right), these spinal
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trajectories were less clearly separated across speed conditions in comparison to cortex.

Finally, projection of motoneuron �ring rates aligned to Purkinje cell stimulation onto

the dPCA axes revealed no e�ect on load dimensions, but a small, tonic modulation in

the �rst two stimulation dimensions (Fig. 6D), though these were small in comparison

to the corresponding cortical signal (c.f. Fig. 4D).
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2.6. Distinct dynamics in cortical and spinal motoneuron populations.

Although neural dynamics in the cortical and spinal populations had several qualitative

similarities, including the shape of trajectories in the leading condition-invariant and

speed dimensions, several key di�erences were apparent. First, the condition-invariant

dimensions had similar time-varying trajectories (Fig 4B and 6B, �rst column), but the

amount of �ring rate variance explained was 2.4-fold larger in the spinal motoneuron

population (70.6% and 28.8% in spinal and motor cortex, respectively). In this sense,

the spinal population response primarily re�ected the locomotor rhythm, while load,

speed, and Purkinje cell stimulation imposed smaller modulations on this rhythm. In

motor cortex, however, the dominant signal was related to load, and components for

both Purkinje cell stimulation and speed were also prominent. This larger balance

of condition-invariant activity for spinal motor output in comparison with cortex in

locomotingmice contrasts with �ndings in primates reaching tomultiple targets, which

showed a much larger condition-invariant component in cortex49, and in primates

walking over obstacles45. Second, load and Purkinje cell stimulation e�ects for motor

cortex consisted primarily of tonic shi�s, whereas the corresponding e�ects on spinal

motoneurons were modulated by step phase. Third, neural trajectories were more

clearly separated at di�erent speeds for the cortical than for the spinal population.

To determine how these di�erences in�uenced the geometry of neural trajectories

in the two populations, we next modeled the e�ects of each experimental variable by

estimating maps from trajectories in one set of conditions to trajectories in a second

set of conditions. In particular, for each neural population (motor cortex and spinal

motoneurons) and variable (load, Purkinje cell stimulation, and speed), we used Pro-

crustes analysis to identify the rotation, translation, and rescaling required to map

trajectories in baseline conditions (load-o�, stimulation-o�, and lowest speed) to the

corresponding trajectories in the complementary conditions (load-on, stimulation-on,

and highest speed; see Methods). This produced a concise description of how each ex-

perimental manipulation altered neural trajectory geometry. Inertial load and Purkinje

cell stimulation induced large vertical translation in the cortical trajectories (Fig. 7A,

le� and center), but produced largely rotational e�ects for spinal trajectories (Fig. 7B,

le� and center; Fig. 7C, le� and center), resulting from the modulation by step phase in

the latter case. For speed, both populations displayed a combination of rotation and

translation, along with a slight increase in scale (Fig. 7A-C, right). We also observed that,

while cortical trajectories were clearly separated across experimental conditions, spinal

trajectories had greater overlap across conditions and time points. To quantify this
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�nding, we computed a trajectory tangling index50 (see Methods), which measures the

extent to which nearby neural states have distinct derivatives.We found that trajectories

in motor cortex consistently exhibited lower tangling in comparison with the spinal

motoneuron population (Fig. 7D). Highly tangled trajectories imply dynamics that are

driven by external input, while low tangling may suggest more autonomous dynamics

that are robust to noise. However,motor cortexmaintains relatively low tangling despite

the presence of strong signals about the state of the limbs and throughout experimental

manipulation of cerebellar inputs. Thus, low tangling might constitute a mark of noise

robustness even in systems that depend strongly on inputs.
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3. Discussion

In this study, we have identi�ed a robust signature of limb inertial load in the mouse

motor cortex during adaptive locomotion, which comprised the largest component of

cortical activity in the task. Because muscle activity during load compensation was

unchanged by cortical inactivation, we conclude this load-related signal is not a motor

command underlying the compensation, but is instead a latent, output-null represen-

tation. Our �nding that activity along the load dimension is minimally in�uenced by

cerebellar perturbation further suggests it is not driven primarily by cerebellar projec-

tions through the ventrolateral thalamus, but may re�ect sensory signals ascending

from the dorsal column nuclei via somatosensory cortex51 or a more abstract contex-

tual signal from other cortical regions. This output-null representation of load may

support the generation of appropriately-scaled commands when a voluntary, cortically-

dependent gait modi�cation must be integrated with the spinally-generated locomotor

program. For example, during locomotion over obstacles, which requires motor cortex

in cats29–31 and mice33, an animal must generate larger �exor torques at higher loads,

and a latent change in activity along load-related dimensions might increase the ampli-

tude of a cortical command for voluntary adaptation of gait. In addition, the load-related

signals we observe in cortex might modulate spinal re�ex gains to adjust the motor

response to unexpected perturbations, as has been found for rhythmic, voluntary upper

limb movements52 and during split-belt locomotor adaptation in humans53.

The motor cortical dynamics we observed share several key similarities with those

reported in primates performing a voluntary cycling task47,50,54. Neural trajectories

in primary and dorsal premotor cortex during cycling are periodic and elliptical in

the dominant dimensions, and translate continuously along an axis approximately

orthogonal to the plane of rotation with changing speed. These dynamics are consistent

with a cortical rhythm generator that determines movement speed and phase while

driving smaller, more complex, muscle-like output commands that control movement

via corticospinal projections. In locomotion, by contrast, the rhythm is generated by

an intrinsic spinal circuit, and oscillatory activity in the cortical condition-invariant

dimensions likely re�ects sensory feedback or an e�erence copy from the CPG. Thus, al-

though the condition-invariant activity in mouse spinal motoneurons closely resembles

these cortical dynamics, it is unlikely they are driven by cortical commands. Indeed,

we observed that inactivation of motor cortex had little e�ect on either the rhythmic

�exor-extensor alternation or on the additional forelimb EMG changes imposed by load.
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Another feature of primate cortical dynamics during cycling is the maintenance of sig-

ni�cantly lower trajectory tangling in comparison with muscle activity. That is, nearby

neural states have similar derivatives, so cortical trajectories tend to avoid crossing

one another across di�erent time points and conditions. Because higher tangling is a

signature of external forcing, low tangling is consistent with strong internal dynamics in

the primate cortical network during the task. In locomotingmice, we also observe lower

levels of tangling in motor cortex in comparison to the spinal motoneuron population,

which must be driven by external inputs. This di�erence, however, is smaller than in

the primate cycling task, consistent with a spinal rather than cortical locus of pattern

generation, and with a greater role for inputs in driving cortical dynamics. In addition,

cycling studies used both forward and backward rotations, which tended to increase

tangling in muscle trajectories, while we tested locomotion in the forward direction

only.

Our �ndings highlight a disassociation between the dominant patterns of motor

cortical activity in a given task and the necessity of these patterns for generating motor

output. Because many distinct descending and spinal pathways ultimately converge

onto the samemotoneurons, the problemof inferring the e�ects of cortical dynamics on

muscle activity from simultaneous measurements of both is necessarily ill-posed. Fur-

thermore, changes in cortical activity with experimental conditions or behavioral epoch

may e�ectively cancel out at the motoneuronal level, enabling cortical computations to

occur without in�uencing movement21,22. An emerging body of evidence suggests the

contribution ofmotor cortex to forelimbmovements can depend strongly on behavioral

task and context. In the mouse, silencing motor cortex has negligible e�ects on normal

locomotion32,33, moderately impairs skilled gait modi�cation33, and severely disrupts

precise reach-to-grasp movements20,55,56. Correlations between cortical neurons and

the mapping between neural and muscle activity can change substantially between

tasks32,57, though work in the cat suggests this mapping is preserved between voluntary

gait modi�cation and reaching58. In rats, lesions to motor cortex impair learning of an

interval timing task, but do not a�ect performance if delivered a�er the task has been

learned59, and the necessity of motor cortex for a task can depend on the preceding

training regimen60. Meanwhile, studies of neural population dynamics in reaching

primates have emphasized the signi�cance of cortical dimensions that are decoupled

frommovement and contribute to internal computations duringmotor preparation21,22,

initiation49,61, and learning62,63. Our results build upon these �ndings by identifying a

robust, latent representation of limb mechanics in motor cortical population activity
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during the adaptation of a rhythmic movement governed by a spinal CPG.

4. Methods

4.1. Experimental animals and behavioral task.

All experiments and procedures were approved by the Institutional Animal Care and

Use Committee at Case Western Reserve University, and in accordance with NIH guide-

lines. At the time of surgical implantation, mice were 16-23 weeks old and weighed

approximately 24-33 g. Mice with higher body mass were selected for experiments,

as they were better able to carry the implant payload on the head. A total of 12 adult

mice were used for experiments, including four (male) VGAT-ChR2-EYFP line-8 strain

mice (Jackson Laboratory) and eight (six male and two female) L7Cre-2 x Ai32 strain

mice (Jackson Laboratory). Animals were healthy, individually housed under a 12-hour

light-dark cycle, and had no prior treatment, drug or altered diet exposure. A�er surgery,

animals were cared for and studied for up to three months.

4.2. General surgical procedures.

Allmicewere implantedwith optical �bers for optogenetic perturbation, andwith either

(1) �ne wire electrodes in forelimb muscles for electromyographic (EMG) recording,

(2) Myomatrix arrays48 for high-resolution recording frommotor units, or (3) silicon

probes in motor cortex for neural ensemble recording. The initial surgical procedures

preceding implantation of EMG or neural electrodes was similar across surgeries. Anes-

thesia was induced with iso�urane (1-5%, Kent Scienti�c), eye lubricant was applied,

fur on top of the head and posterior neck was shaved, and the mouse was positioned in

a stereotaxic apparatus (model 1900, KOPF instruments) on top of a heating pad.

Under sterile technique, the top of the head was cleansed with alternating swabs

of 70% ethanol and iodine surgical scrub, lidocaine (10 mg/kg) was injected under

the skin on the top of the skull, the skin was removed, the periosteum on top of the

skull removed, and a custom designed 3D-printed head post was attached with UV-

cured dental cement (3M RelyX Unicem 2). Then, optical �bers and chronic recording

electrodes were surgically implanted (see below). Post-surgery, the minimum recovery

period was 48 hours, Meloxicam (5 mg/kg) was administered for pain management

once per day, and the investigators monitored animal behavior, body mass, food and

water intake on a daily basis. The recovery period was extended an additional 24-48
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hours for some animals as necessary.

4.3. Adaptive locomotion task.

A�er at least two days of recovery from surgery, mice were placed on a custom-built

motor-driven treadmill (46 cm long by 8 cm wide) that was controlled at �xed speeds

between 10-30 cm/s (Fig. 1B). The treadmill apparatus was enclosed in transparent

acrylic, and belt speed monitored by a rotary encoder. Locomotion was motivated

through negative reinforcement with airpu�s triggered by an infrared brake beam

at the back of the treadmill belt. Mice were acclimated to the apparatus for up to

three sessions, until they ran continuously without prompting. For the condition of

unrestrained, load adaptive locomotion, one investigator brie�y scru�ed the mouse

while another positioned a small weight (0.5 g) on the wrist, and at the conclusion of the

load-on condition the wrist weight was removed. The wrist weight was fabricated by

gluing a steel ball bearing to a small zip-tie. For each animal, recording sessions were

performed up to twice a day. Per session, mice ran between 5-20 min within the load-o�

and 5-10 min within the load-on conditions. Sessions started with the mouse running in

the load-o� condition that was followed by load-on, in a subset of sessions (n = 8) there

was a �nal load-o� condition that was performed. Each session was concluded based

on mouse performance having at least 5 min of continuous locomotion per condition,

or was ended due to mouse stress or reaching the 30 min time mark.

4.4. Videography.

Four synchronized high speed cameras (Black�y, model BFS-U3-16S2C-CS, Teledyne

FLIR; Vari-Focal IP/CCTV lens, model 12VM412ASIR, Tamron) were positioned around

the treadmill, with two cameras recording fromeach side of the treadmill belt, acquiring

approximately sagittal views of the locomoting mouse. Under infrared illumination of

the �eld, each camera was positioned to record the complete length of the treadmill belt

at a frame rate of 150 Hz and a region of interest of 1440 x 210 pixels, and was triggered

by an external pulse generator using custom LabVIEW code (National Instruments).

Images were acquired with the SpinView GUI (Spinnaker SDK so�ware, Teledyne FLIR).

4.5. Pose estimation during locomotion.

For tracking mouse pose (i.e., anatomical landmarks) across cameras during locomo-

tion, DeepLabCut37 was used. The position of 22 landmarks was tracked, including the
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nose, eye, �ngertip, wrist, elbow, shoulder, toe, foot, ankle, knee, hip, and tail on each

side of the body. Separate tracking models were developed for EMG and cortical elec-

trodes due to di�erences in animal appearance between the implant types. In total, 1850

and 2002 labeled frames were used for training the EMG and cortical implantmodels, re-

spectively. Next, Anipose38 was used to triangulate 3D pose from the 2D estimates in the

four cameras. Brie�y, the four cameras were calibrated using simultaneously-acquired

images of a ChArUco board, and the 3D pose estimated by minimizing an objective that

enforced small reprojection errors, temporal smoothness, and so� constraints on the

length of rigid body segments.

The pose estimates obtained from Anipose were then transformed into a natural

coordinate frame: (1) forward on treadmill, (2) right on treadmill, and (3) upward

against gravity. Next, the forward coordinate was unrolled by adding the cumulative

displacement of the treadmill computed from the rotary encoder. This resulted in a

treadmill-belt-centered coordinate frame, as though the mouse was progressing along

an in�nitely-long track: (1) forward on treadmill, relative to the unrolled position of the

back of the belt at the start of the experiment, (2) right on treadmill, and (3) upward

against gravity. Sessionswere then segmented into swing and stance epochs by detecting

threshold crossings of the forward �nger velocity and upward �nger position. The

identi�ed swing and stance time points were used for alignment of electrophysiological

recordings. For each mouse and session, the quality of the pose estimates was assessed

using Anipose quality metrics, visual inspection of trajectories, and comparison of

estimated pose with the raw videos.

4.6. Optogenetic perturbations.

Optical �bers (catalog number FT200UMT, �ber core diameter 200 µm, ThorLabs) were

glued inside ceramic ferrules (catalog number CFLC230-10, ThorLabs) and positioned

onto the skull over a thin layer of transparent dental cement (Optibond, Kerr), which

enabled optical access to the brain43,64. Ferrules were placed bilaterally above the

forelimb motor cortex (bregma +0.5 mm, lateral 1.7 mm) of VGAT-ChR2-EYFP mice to

stimulate inhibitory interneurons20,32,65. Separately, ferrules were placed bilaterally

above the pars intermedia of cerebellar lobule V (bregma -6.75 mm, lateral 1.7 mm) of

L7Cre-2 x Ai32 mice to stimulate Purkinje cells66,67.

Optogenetic perturbation with a 473 nm wavelength laser was delivered with sinu-

soidal waves at 40 Hz (Opto Engine LLC). The laser was triggered by an external signal

generator controlled with custom labVIEW so�ware. Power levels used during locomo-
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tion were based on average ranges from prior investigations20,32,42,66,67. In L7-Cre-2 x

Ai32 mice, optogenetic perturbation of the cerebellum at higher power levels stopped

mouse locomotion, and the forelimb musculature was unable to support the mouse

during stance. We therefore adjusted the power level for each animal based on the

e�ects of stimulation in the home cage.

Home cage sessions (Supplemental Fig. 1A) involved stepwise power level adjust-

ments of the optogenetic perturbation and measurement of EMG. In L7-Cre-2 x Ai32

mice, we found that Purkinje cell stimulation (0.125-4 mW) induced suppression of fore-

limb �exor and extensor EMG, followed by a rebound response a�er the termination of

the stimulus. We therefore adjusted the laser power for behavioral sessions to a level

that produced minimal rebound, and did not halt locomotion (0.25-2 mW). Likewise,

stepwise power level adjustments were made to con�rm quiescent muscle activity in

VGAT-ChR2-EYFP mice (1-12 mW), and power levels at the high end of this range (8-12

mW) were then used for behavioral experiments. For home cage sessions, the stimulus

was a 40 Hz sine wave with a duration of 0.25, 0.5 or 1 s, and interstimulus intervals were

randomized and between 3-10 seconds.

4.7. Electromyogram recordings.

Electromyogram (EMG) recordings of gross muscle activity from the elbow �exors

and extensors was made using �ne-wire32,68,69 electrodes, and recordings from single

motor units were performedwith both �ne-wire electrodes and high-densityMyomatrix

arrays48,70,71. For each mouse, we implanted a total of four muscle locations, targeting

an elbow �exor and extensor muscle on each side. Fine-wire electrodes weremade with

four pairs of wires in a bipolar EMG con�guration, following an established protocol68.

Each bipolar �ne-wire electrode comprised two 0.001 inch diameter, seven-stranded

braided steel wires (catalog number: 793200, A-M Systems) that were crimped into a

27 gauge needle, twisted and knotted together. For recording contacts, ∼0.5-1 mm of

insulation was removed per wire between the knot and needle, made closer to the

knot, and staggered with an inter-contact distance of ∼2 mm. The open ends of the

wire on the other side of the knot were soldered onto a 32-pin connector (Omnetics

Nano, A79025, 36 pins, 4 guideposts), along with a gold pin cap for attachment to the

ground (Mcmaster-Carr). Myomatrix electrodes48 were used to only record EMG with

single motor unit resolution, these electrodes had gold contacts that were plated with

conductive polymer PEDOT to reduce the impedance to the measured range of 3-23

kΩ. Fine-wire electrodes were grounded with a gold pin soldered to a stainless steel
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wire placed through the skull and into the brain by performing a craniotomy with a

dental drill ∼4 mm rostral to the forelimb area of motor cortex area. The dura was le�

intact, Kwik-sil (World Precision Instruments) was applied, and the pin was secured to

the skull with dental cement. Myomatrix electrodes were grounded onto the skull and

secured with dental cement.

For surgical implantation, the fur on the posterior neck, posterior shoulders and

both forelimbs above the elbow joint of the mouse was removed using depilatory cream

prior to positioning within the stereotaxic apparatus. Electrodes were implanted only

a�er the headpost, optical �bers and ground were secured. For each forelimb, lidocaine

was injected under the skin, and a 2-3 cm incision of the skin was made between the

elbow and shoulder joint, along themidline axis of the lateral head of the triceps brachii

muscle, and was subsequently kept moist with saline. Each electrode was led under the

skin from the posterior neck to be separately implanted in the long head of the biceps

brachii or triceps brachii muscles. For targeting the biceps brachii muscle the forelimb

was abducted, elbow extended and the paw supinated, whereas for targeting the triceps

brachii muscle, the elbow was �exed and paw pronated. The skin was adjusted using

forceps to provide an opening over the targeted muscle, and electrodes were inserted

into the muscle belly from proximal to distal. The �ne-wire electrodes were inserted

with the attached crimped needle, a�er insertion, the needle and excess distal wire

was cut and a distal knot was made. For Myomatrix electrodes, a suture knot was tied

onto the distal polyimide hole of each thread, then, following the suture needle, was

carefully pulled into the targeted muscle belly. One Myomatrix thread was inserted

per muscle. For both the �ne-wire and Myomatrix electrode implants, the incised skin

was then �ushed with saline and sutured. The connector was then secured to the head

post with dental cement and the inferior skin relative to the head post was hermetically

sealed with skin adhesive (3M Vetbond).

Despite targeting muscle long heads during implantations, we did not systematically

di�erentiate EMG between the long and short head of the biceps brachii muscle, and

likely EMG during locomotor swing comprised the synergist contribution from other

elbow �exor muscles including the brachialis and coracobrachialis. Likewise, we did

not di�erentiate EMG between the heads of the triceps brachii muscle, and it remains

possible that EMG during stance may have had minor synergist contribution from the

dorso-epitrochlearis brachii and anconeus muscles72.

We implanted EMG electrodes in forelimb muscles bilaterally, because throughout

the course of experiments the signal-to-noise would degrade and in some instances
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electrodes would be damaged, and these sessions were excluded. Therefore, the fore-

limb with better EMG signal-to-noise and minimal crosstalk from other muscles was

used for experiments, determining on which side the wrist weight and optogenetic

perturbations were applied. In VGAT-ChR2-EYFPmice, optogenetic silencing of the fore-

limb area of motor cortex was linked to contralateral forelimb EMG and contralateral

load. In L7-Cre-2 x Ai32 mice, optogenetic silencing of deep cerebellar nuclei through

the activation Purkinje cells was linked to ipsilateral forelimb EMG, ipsilateral load,

and contralateral cortical neuron recordings. Three (one female) L7-Cre-2 x Ai32 and

four VGAT-ChR2-EYFP mice were implanted with �ne-wire electrodes and three (one

female) L7-Cre-2 x Ai32 mice were implanted with Myomatrix electrodes. Recordings

were ampli�ed and bandpass �ltered (0.01-10 kHz) using a di�erential ampli�er and

digitized (Intan RHD2216, 16-bit, 16 channel bipolar input recording headstage), and

acquired at 30 kHz (Open Ephys acquisition board and so�ware). At the conclusion of

experiments on each mouse, the targeted muscles were veri�ed post-euthanasia by

dissection.

For subsequent analysis of step-alignedmuscle activity, the gross EMGwas high-pass

�ltered (200-250 Hz cuto�), recti�ed, and convolved with a Gaussian kernel (Ã = 10 ms).

To normalize the smoothed EMG signal, we �rst detected all peak events exceeding the

90th percentile of the full time series. Then, the smoothed signal was divided by the

median amplitude of these peaks.

4.8. Motor unit spike sorting.

On many EMG recordings from �ne-wire electrodes, single motor units were identi�ed

(e.g., the triceps unit in Fig. 1C-D). For these �ne-wire recordings, the EMGwas high-pass

�ltered on each channel (cuto� set between 200 and 1000 Hz, 2nd order Butterworth).

Motor unit spike times were identi�ed by voltage threshold and waveform template

matching (Spike2 so�ware, version 7, Cambridge Electronics Design). In the �ne-wire

electrodes implanted in the biceps brachii muscle, single motor units were sometimes

recorded during the stance phase, possibly due to the small relative volume of elbow

�exor to extensor muscle and that the cut-end of the electrode was closer to the distal

aspect of the lateral triceps brachii.

For Myomatrix electrodes, each thread comprised four bipolar recording channels

that were implanted into the samemuscle that enabled correlated voltage andwaveform

analysis across channels. The EMG was high pass �ltered (400-500 Hz cuto�, Parks-

Mclellan method), and motor unit waveforms and spike times were extracted using
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an existing method73. Then, clusters were manually cut using peak-to-trough features

from all channels on each thread, and unit quality assessed by inspection of waveforms,

autocorrelations, cross correlations betweenunits recorded on the same thread, and raw

signals with unit spike times superimposed. Overall, we recorded 54 ipsilateral extensor

units, 27 contralateral extensor units, 17 ipsilateral �exor units, and 10 contralateral

�exor units.

4.9. Motor cortical recordings.

Extracellular recordings in the forelimb area of the motor cortex20,74 were made using

chronically implanted high-density silicon probes (64 channel, 4-shank, 6 mm length

E1 probe, Cambridge NeuroTech) secured to a manual micromanipulator (CN-01 V1,

Cambridge NeuroTech). Probes were plated with the conductive polymer PEDOT to

reduce the impedance to the measured range of 30-50 kΩ, and the tips were sharpened

to ease insertion through the dura. The electrode was grounded with a gold pin soldered

to a stainless steel wire placed through the skull and into the visual cortex. Surgical

implantation of the probe occurred a�er the headpost, optical �bers and ground were

secured to the skull. A craniotomy (dimensions ∼1x2 mm) was performed with a dental

drill to access the forelimb area of motor cortex on the le� side (bregma +0.5 mm,

lateral 1.7 mm), care was taken to leave the dura intact, and cold saline was applied

continuously to reduce swelling. The probe tip was inserted to a starting depth between

400-540 µm, silicone gel was applied (catalog number 3-4680, Dowsil, Dow) and the

apparatus including the ampli�er was secured to the head post, skull and enclosed

custom chamber using dental cement.

Two L7-Cre-2 x Ai32 mice were implanted and recordings were ampli�ed and band-

pass �ltered (0.01-10 kHz) using a di�erential ampli�er and digitized (mini-amp-64,

Cambridge NeuroTech) and acquired at 30 kHz (Open Ephys GUI). Each session, the

electrophysiological signal-to-noise and spiking density across channels was assessed,

to record from new neurons and when signal quality degraded, the probe was moved

62.5-125 µm deeper every 1-3 days by adjusting the micromanipulator until the lowest

recording channel hit white matter (∼1-1.2 mm from the surface).

4.10. Motor cortex spike sorting.

Single units in the motor cortex were identi�ed using Kilosort 2.575–77

(https://github.com/MouseLand/Kilosort), and manually curated with the Phy GUI
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(https://github.com/cortex-lab/phy). Only well-isolated neurons were accepted based

on spike waveforms, the presence of an absolute refractory period greater than 1 ms,

the stability of spike amplitude over the session, and isolation of the cluster in feature

space. Spike time cross-correlation was used to remove duplicated neurons.

4.11. EMG analysis.

To assess changes in behavior over individual experimental sessions, we �rst inter-

polated the smoothed biceps and triceps EMG and forward �nger velocity between

the start of swing and end of stance on each step cycle, and visualized the resulting

curves as heatmaps (Fig. 1E). For optogenetic perturbation experiments, we averaged

the step-aligned curves within each condition (load on / o�, optogenetic perturbation

on / o�), and visualized the means using polar plots (Fig. 2A-B). Next, to obtain a com-

pact representation of motor output on each step, we averaged the biceps (�exor) EMG

during the swing epoch, the triceps (extensor) EMG during the stance epoch, and veloc-

ity (�ngertip) over the entire step. Medians and bootstrapped con�dence intervals for

load-o� and load-on conditions were visualized as scatterplots (Fig. 1F), and a di�erence

between conditions (where each paired observation is a load-o� and load-on median in

one session) assessed with a two-sided sign rank test. The trend in step-averaged EMG

across each session was modeled using loess smoothing78 (second-order, smoothing

parameter ³ = .9; Fig. 1G). To estimate the e�ects of load, optogenetic perturbation, and

speed on EMG and velocity, we �t one linear model for each session using ordinary

least squares, where each observation corresponded to a single step. The dependent

variables were biceps EMG, triceps EMG, and forward velocity, and the independent

variables were step frequency (i.e., the inverse of the duration of each step), load, optoge-

netic perturbation, and interaction between the load and optogenetic perturbation. All

variables were Z-scored to facilitate comparison of e�ect sizes across variables and ses-

sions. Coe�cients and 95% con�dence intervals were visualized using scatterplots and

histograms (Fig. 2C; Supplementary Fig. 1C), and the sign of the coe�cients assessed

with a sign rank test with Benjamini-Hochberg correction (q < .05; Supplementary Fig.

1D). For coe�cients related to optogenetic perturbation and its interaction with load,

this test was applied separately to sessions using VGAT-ChR2-EYFP and L7Cre-2 x Ai32

mice.
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4.12. Analysis of cortical neurons and spinal motoneurons.

For each motor cortical neuron and spinally-innervated motor unit, �ring rates over

the full experimental session were computed using Gaussian smoothing (Ã = 25 ms).

Using the step cycle segmentation from kinematic data (described above), smoothed

�ring rate curves were extracted for each step using linear interpolation between the

start of swing and end of stance, then averaged within each experimental condition to

create peri-event time histograms (Fig. 3B; Fig. 5B). The e�ects of load and Purkinje cell

stimulation as a function of step phase were visualized by subtracting the Z-scored �ring

rates in the load-o�, stim-o� condition from the Z-scored �ring rates in the load-on,

stim-o� (Fig. 3C), and load-o�, stim-on conditions (Fig. 5C), respectively. Step-averaged

�ring rates were computed for each step by dividing the number of spikes by the step

duration. Means and 95% con�dence intervals for step-averaged rates were visualized

with scatterplots (Fig. 3D; Fig. 5D) and analyzed with a multi-way ANOVA for each

neuron. A Benjamini-Hochberg correction for multiple comparisons across neurons

was applied.

4.13. Demixed principal component analysis.

To identify the coordinated, low-dimensional dynamics in the motor cortical and spinal

motoneuron populations, we used demixed principal component analysis (dPCA)46,

which decomposes measured �ring rates into latent variables related to experimental

parameters of interest, using a published Matlab package

(https://github.com/machenslab/dPCA). Brie�y, the average step-aligned �ring rate for

each unit (n = 710 for cortical neurons, n = 108 for spinal motoneurons) was measured

in twenty di�erent conditions in a factorial design: load on / o� (two levels) x Purkinje

cell stimulation on / o� (two levels) x animal speed (�ve levels). Firing rate was sampled

at 100 evenly-spaced points across the step cycle, from the start of swing to the end

of stance. For the speed factor, the forward speed of the animal’s nose at swing onset

was partitioned into �ve bins with approximately 50% overlap using an equal count

algorithm78. This imposed the following marginalizations over parameters: (1) load, (2)

speed, (3) Purkinje cell stimulation, (4) condition-invariant, (5) load / speed interaction,

(6) load / Purkinje cell stimulation interaction, and (7) speed / Purkinje cell stimula-

tion interaction. Next, we estimated the decoder and encoder matrices with twenty

components and regularization parameter ¼ = 1e-5, and projected �ring rates onto the

decoder columns to obtain scores parameterized by step phase (Fig. 4A-B; Fig. 6A-B).
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The alignment between pairs of principal axes was assessed by computing the inner

product (Fig. 4C, upper triangular; Fig. 6C, upper triangular), and by applying an exact

test against the null hypothesis that the relative orientation of the axes is random with

an alternative hypothesis that the axes are orthogonal. Under the null hypothesis, (x-1)/2

follows a beta distribution with ³ = ´ = (d – 1)/2, where x is the inner product between

axes and d = 20 is the dimension of the latent variable space. The probability the inner

product x is within r of zero (i.e., that the axes are nearly orthogonal) under the null

hypothesis is given by P(|x| < r) = B( (1+r)2 , (d–1)2 , (d–1)2 ) – B( (1–r)2 , (d–1)2 , (d–1)2 ), where B is

the beta cumulative distribution function. Thus, setting r as the absolute value of the

measured inner product between two principal axes, we can calculate the probabilities

shown in Fig. 4C and 6C (lower triangular).

4.14. Comparison of cortical neuron and spinal motoneuron trajectories.

For each neural population (motor cortex and spinal motoneuron) and experimental

parameter (load, Purkinje cell stimulation, and speed), we extracted neural trajectories

in the leading component corresponding to that parameter and in the �rst two condition-

invariant dimensions across all twenty conditions. We then used Procrustes analysis

within each neural population and parameter to �nd the optimal transformations from

trajectories in one set of conditions to those in another set. These mappings could

include translation, rotation, and isotropic rescaling, but not re�ection. For the load

and Purkinje cell stimulation parameters, trajectories in load-o� and stimulation-o�

conditions were mapped to the corresponding trajectories in load-on and stimulation-

on conditions, respectively. For the speed parameter, trajectories in the lowest speed

condition were mapped to trajectories in the highest speed condition. The resulting

maps were visualized on a regular 3D grid by mapping each grid point to a second point

in the direction of its image under the Procrustes transformation, with a scaling of 0.2

for motor cortex and 0.4 for spinal motoneurons (Fig. 7A-B). The analysis of trajectory

tangling was performed as described in previous studies50. Brie�y, neural trajectories

in the full 20-dimensional latent variable space identi�ed by dPCA were numerically

di�erentiated along the time axis. Next, for each time point t* and condition c*, the

following quantity was computed: maxt,c
∥Z′(t∗,c∗)–Z′(t,c)∥
∥Z(t∗,c∗)–Z(t,c)∥+ϵ , where Z(t,c) is the neural

state in condition c at time t, and Z’(t,c) its derivative. The value of ϵ was set at 10%

of the mean of the sum of squares of Z(t,c), concatenated across all conditions. This

normalization was performed separately for the cortical and spinal populations.
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