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Abstract 
In order to investigate the involvement of primary visual cortex (V1) in working memory (WM), parallel, 

multisite recordings of multiunit activity were obtained from monkey V1 while the animals performed 

a delayed match-to-sample (DMS) task. During the delay period, V1 population firing rate vectors 

maintained a lingering trace of the sample stimulus that could be reactivated by intervening impulse 

stimuli that enhanced neuronal firing. This fading trace of the sample did not require active 

engagement of the monkeys in the DMS task and likely reflects the intrinsic dynamics of recurrent 

cortical networks in lower visual areas. This renders an active, attention-dependent involvement of 

V1 in the maintenance of working memory contents unlikely. By contrast, population responses to the 

test stimulus depended on the probabilistic contingencies between sample and test stimuli. 

Responses to tests that matched expectations were reduced which agrees with concepts of predictive 

coding. 
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Introduction 
Working memory (WM) refers to the ability to maintain and manipulate information in the absence 

of input. WM has traditionally been attributed to higher-order cortical areas, in particular prefrontal 

cortex (Funahashi et al., 1989; Fuster and Alexander, 1971; Kubota and Niki, 1971) and more recently 

to cooperative processes across multiple brain areas (Brincat et al., 2021; de Vries et al., 2020; 

Reinhart and Nguyen, 2019). There is also evidence for a recruitment of primary sensory areas like V1 

in visual WM processes (D'Esposito, 2007; D'Esposito and Postle, 2015; Lara and Wallis, 2015; 

Pasternak and Greenlee, 2005; Scimeca et al., 2018; Serences, 2016; Sreenivasan et al., 2014; Supèr 

et al., 2001; van Kerkoerle et al., 2017). For example, information held in visual WM can be decoded 

from V1 activity (Christophel et al., 2018; Emrich et al., 2013; Ester et al., 2013; Ester et al., 2009; 

Harrison and Tong, 2009; Lawrence et al., 2018; Lorenc et al., 2018; Rademaker et al., 2019; Serences 

et al., 2009; Wolff et al., 2015; Wolff et al., 2017); the volume (Bergmann et al., 2016) and activity  

(Ester et al., 2013; Iamshchinina et al., 2021a, b) of V1 are positively correlated with behavioural 

performance in WM tasks. Early evidence suggests that WM is mediated by persistent firing during 

the delay period (Constantinidis et al., 2018; Funahashi et al., 1989; Fuster and Alexander, 1971; Haller 

et al., 2018; Kaminski et al., 2017; Kornblith et al., 2017; Kubota and Niki, 1971). However, this view 

has been contested (Lundqvist et al., 2018a) because WM contents were decodable only from short, 

temporally segregated bouts of activity (Lundqvist et al., 2018b; Lundqvist et al., 2016; Romo et al., 

1999). Other evidence suggests the existence of covert, activity-independent traces (Erickson et al., 

2010; Fiebig and Lansner, 2017; Mongillo et al., 2008; Rose et al., 2016; Stokes, 2015; Sugase-

Miyamoto et al., 2008; Trubutschek et al., 2019; Wolff et al., 2017) that can be activated by <pinging= 
the brain with unspecific stimuli (Wolff et al., 2015; Wolff et al., 2017) or transcranial magnetic 

stimulation (Rose et al., 2016). 

However, most of these studies used neuroimaging techniques in humans in order to retrieve the 

traces of WM contents, which limits the identification of the underlying neuronal signals. Thus, it is 

unclear whether the signals recorded from V1 that permit decoding of WM contents reflect 

reverberating activity ("fading memory") within the recurrent networks of lower visual areas 

(Buonomano and Maass, 2009; Nikolić et al., 2009), or result from top down projections that involve 

V1 in WM. Therefore, we set out to investigate at the neuronal level whether WM contents can be 

decoded from neuronal population activity in V1, whether pinging could revive WM traces, and 

whether persistent information about the stimulus could be attributed to fading memory in local 

circuits or showed the attention- and task-dependent properties of WM related activity. 

Another goal of the present study was to investigate whether V1 responses are shaped by priors 

stored in memory. Responses of V1 neurons to external stimuli depend on both stimulus features and 

internal priors (Aitchison and Lengyel, 2017; de Lange et al., 2018; Rao and Ballard, 1999; Singer, 2021). 

Stimuli matching priors of Gestalt principles modify the synchronization patterns (Gray et al., 1989; 

Gray and Singer, 1989), correlation structure (Bányai et al., 2019), sequential activation (Yiling et al., 

2023) and response amplitude (Kapadia et al., 1995) of neuronal responses. Spatial predictability 

derived from stimulus context reduces firing rate and/or enhances oscillatory synchronization among 

neurons in V1 (Gray et al., 1989; Gray and Singer, 1989; Peter et al., 2019; Uran et al., 2022; Vinck and 

Bosman, 2016; Vinje and Gallant, 2000) and temporal predictability of stimuli suppresses V1 activation 

in humans (Alink et al., 2010; Kok et al., 2012). These observations support the notion that the visual 

system learns the statistical regularities in sensory input to optimize its responses (de Lange et al., 

2018; Singer, 2021; Singer and Lazar, 2016). 

To pursue the above goals we performed parallel multisite electrophysiological recording in awake 

monkey V1 while the animal performed a delayed match-to-sample (DMS) task. To test the possibility 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.06.565858doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565858
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

that WM content could serve as prior, we introduced probabilistic associations between stimulus-

pairs in the DMS task in order to establish implicit predictions and investigated whether such priors 

modified V1 responses. We found that V1 population activity maintained an intrinsic, latent trace of 

the sample stimuli regardless of the need to actively engage WM. This trace could be reactivated and 

strengthened by an irrelevant, non-specific stimulus (Wolff et al., 2015; Wolff et al., 2017). Once 

probabilistic priors were established for sample-test pairs, V1 responses to predicted test stimuli were 

reduced. 

Results 
We trained two monkeys to perform a DMS task that required stimulus encoding, retention of 

stimulus identity in working memory (WM) and a manual forced choice response. During the task, the 

monkey fixated a spot at the centre of the screen. Two stimulus images (<sample= and <test=) were 
presented sequentially for 500 ms each, separated by a delay period of 1500 ms (Figure 1a). The 

animal had to report whether the two stimuli were the same (<match=) or different (<nonmatch=), by 
pushing a mechanical lever forward or backward, respectively. The numbers of match and nonmatch 

trials were balanced in order not to bias the animal’s behavioural response. Stimuli were standardized 

images (Brodeur et al., 2010; Brodeur et al., 2014) of simple objects displayed on a grey screen (Figure 

1b). A set of three images were used in each session (counterbalanced for sample and test positions), 

and the set of images varied between sessions. The position and size of the stimuli were tailored for 

each monkey to cover the ensemble of the receptive fields (RF) of the respective recording sites. For 

Monkey 1 (Figure 1b), stimuli subtended 4.4° of visual angle, and their centre was 2.36° lateral to the 

vertical meridian and 1.34° below the horizontal meridian. For Monkey 2, stimuli subtended 7.84° of 

visual angle, and their centre was 4.05° lateral to the vertical meridian and 2.70° below the horizontal 

meridian. On average, Monkey 1 performed 78.1 ± 1.7 % (s.e.m., n = 6 sessions) correct responses 

(Supplementary figure 1). The average reaction time for correct responses was 632.0 ± 174.7 ms (s.d., 

median 586.4 ms. Supplementary figure 1). The RF positions and the behavioural performance for 
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Monkey 2 are shown in Supplementary figure 2. Throughout the paper analyses were always 

performed separately for each animal. 

 

Figure 1 Robust trace of stimulus-specific information during the delay period. (a) Task structure and trial time course. (b) 

Positions of the stimulus, fixation point (white dot) and receptive fields (blue dots). (c) Raster plot of multi-unit activity in a 

single trial, overlaid with average population multi-unit firing rates for the three demo stimuli in match trials. Shades denote 

95% confidence interval (barely visible due to large number of trials). (d) Time-resolved accuracy of decoding sample stimulus 

identity based on firing rate vectors. Grey traces: results from individual sessions; blue shades: 95% confidence interval around 

session average (n=6). (e) Comparison of decoding accuracies between late delay period (2000 – 2500ms) and pre-stimulus 

baseline (0 – 500ms). Error bars: 95% confidence intervals. Error numbers in legends denote standard error of the mean. 

Fading trace of sample stimulus 

Multiunit activity (MUA) was recorded from visual area V1 (left hemisphere) with a chronically 

implanted 32-channel microdrive system (Gray Matter Research, Bozeman, Montana, USA) while the 

animal performed the DMS task.  The increased firing of neurons evoked by the sample stimulus 

rapidly decayed during the WM delay period to the pre-stimulus baseline level or even below (Figure 
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1c). To compare the activity levels between the delay and baseline periods, we measured the spike 

counts (window size = 300 ms) for each channel and stimulus (pooled across sessions) at four time 

intervals in the delay period, and compared the spike counts with those in the baseline period 

preceding the sample stimulus (Supplementary figure 3 for Monkey 1, Supplementary figure 4 for 

Monkey 2). Spiking activity dropped below baseline level after the offset of the sample stimulus (1300 

– 1600 ms: t = 13.91, p < 0.01; 1600 – 1900 ms: t = 15.64, p < 0.01; 1900 – 2200 ms: t = 7.51, p < 0.01. 

Paired t-test, Monkey 1. Statistics for Monkey 2 in Supplementary figure 4), but recovered to a level 

slightly above baseline towards the end of the delay period (2200 – 2500 ms: t = –3.24, p = 0.00014). 

There was no clear indication for a sustained elevation of discharge rates during the delay period. 

To examine the amount of stimulus-specific information in the population vector of responses to the 

sample stimulus, we trained decoders (linear discriminant analysis, LDA) at successive time points to 

predict the sample stimulus identity from the population firing rate vector (window size 100 ms, step 

size 50 ms). The decoding accuracy (Figure 1d and Supplementary figure 4b) was highest during 

stimulus presentation (500 – 1000 ms), decayed after stimulus offset but remained above chance level 

(33.3%, 3 stimuli per session) throughout the delay period. The average decoding accuracy (36.29 ± 

0.43 %, s.e.m., n = 6 sessions) for the sample stimulus in the last 500 ms of the delay period (from 

2000 to 2500 ms) was still significantly above chance level (t = 6.26, p = 0.00153, t-test, two-sided 

unless noted otherwise), and higher than the baseline level (33.13 ± 0.45 %, s.e.m., t = –3.68, p = 

0.0142, paired t-test) which did not differ from chance (t = –0.42, p = 0.691). Similar results were 

obtained from three other sets of experiments which used different numbers of stimuli 

(Supplementary figure 5a), and also from Monkey 2 (Supplementary figure 4b-c). To test further the 

robustness of the findings against the variation of stimuli, in a separate set of experiments we used 

gratings as stimuli in the same DMS task. Here, the animal was required to discriminate the 

orientations of the sample vs. test gratings (spatial frequency 3 cycles per degree; 4 non-cardinal 

orientations per session; 6 sessions in total). Interestingly, in this set of experiments, the trailing 

sample stimulus information decayed rapidly to the baseline level (Supplementary figure 5b). 

However, in this DMS task with grating stimuli, the animal’s performance (65.6 ± 1.5 %, n = 6) was 

worse (t = 5.54, p < 0.01) than in the standard DMS task (78.1 ± 1.7%, n = 6), although still above 

chance level (t = 10.48, p < 0.001). As the simple grating stimuli could give rise to retinal afterimages, 

these results suggest that the trailing traces of the natural sample stimuli were not due to retinal 

adaptation. Thus, despite the low firing rates that did not differ much from baseline towards the end 

of the delay period, the population activity retained a low but robust trace of sample stimulus-specific 

information in the experiments where natural objects were used as stimuli. 

To test whether the trailing stimulus-specific information was actually related to the WM task, we 

performed control experiments with passive viewing on an animal naive to the DMS task. Here, the 

two stimuli were shown at the same time points as in the DMS task, but the monkey was only required 

to attend to the fixation spot and was rewarded for detecting and responding to a colour change of 

the fixation spot (Methods). The monkey had to push the lever forward or backward, if the fixation 

point colour changed to green or blue, respectively. Nevertheless, stimulus-specific information about 

the irrelevant <sample= stimulus persisted throughout the delay interval (Supplementary figure 6), 

suggesting that the trailing stimulus information was not caused by the requirement to memorize the 

sample stimulus. 

Reactivation of latent memory by impulse stimulus 

Modelling (Mongillo et al., 2008) and neuroimaging (Wolff et al., 2017) studies reported that a global, 

unspecific activation of neuronal networks can reveal latent or covert traces of information held in 

memory. To examine whether such a manipulation could enhance sample-specific information during 
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the delay interval, we modified the DMS task and inserted a full-screen impulse stimulus (100 ms 

duration, 100% intensity) in the delay interval (Figure 2a). To indicate to the monkey that this 

intervening stimulus was irrelevant for the task we presented different types of impulse stimuli: linear 

gratings (2 sessions with 0° orientation, 2 sessions with 90° orientation), a concentric grating (1 

session), or a blank white stimulus (1 session). We also applied these stimuli in the passive viewing 

tasks, presenting one of the four stimuli in four different sessions. These stimuli were applied at either 

500 ms or 1000 ms after the offset of the sample stimulus (i.e., 1500 ms or 2000 ms in a trial. Figure 

2b). We then performed the same time-resolved decoding analysis as described above, pooling the 

results across all the different sessions (n = 10). As shown in Figure 2b (Supplementary figure 7 for 

Monkey 2), decoding accuracy increased about 100 ms after these impulse stimuli and remained 

enhanced for 100 – 200 ms (at 1700 ms: accuracy with impulse 43.11 ± 1.02 % s.e.m., accuracy without 

impulse 35.38 ± 1.01 %, t = 4.16, p = 0.0024; at 2200 ms: accuracy with impulse 39.63 ± 0.52 %, 

accuracy without impulse 34.25 ± 0.82 %, t = 4.79, p = 0.00099, n = 10 sessions). The increase in 

decodability resembled closely in time the transient firing rate increase evoked by the impulse (Figure 

2b). 

To investigate the time course of these impulse effects at higher temporal resolution, we 

systematically varied the timing of the impulse, increased the delay interval from 1500 ms to 1800 ms, 

reduced the duration of the sample stimulus from 500 to 400 ms and used only full screen white 

flashes of 100 ms duration (Figure 2c). This allowed us to assess the impulse effects with a temporal 

resolution of 200 ms across a total of eight experimental sessions. Again, the impulse stimuli led to a 

transient enhancement of decodability of the sample stimulus, and this enhancement of decodability 

was closely related in time with the transient increase in firing rate (Figure 2c). This impulse-related 

increase in decoding performance was also observed in the passive viewing experiments 

(Supplementary figure 7). These results suggest that the trailing trace of sample stimulus-specific 

information can be transiently enhanced as the V1 neurons are driven to fire by an unspecific impulse 

stimulus. 

Enhanced stimulus trace with increased neuronal firing could simply be due to the fact that 

decodability of population vectors increases with discharge rate (Nikolić et al., 2009). However, this 

relationship does not always hold. In the DMS task (Supplementary figure 8) as well as its passive 

viewing version (Supplementary figure 9), stimuli evoked higher population firing rates when they 

were presented as sample rather than test. This difference was significant only in the last sustained 

response phase (300 – 350 ms after stimulus onset: t = 5.67, p = 0.00238, n = 6 sessions. t-test) but 

not during the response onset transient (e.g., 50 – 100 ms: t = 1.15, p = 0.303). However, the accuracy 

of decoding stimulus identity was higher for responses to the test than the sample stimulus, during 

both transient and sustained response phases (Supplementary figure 8 and Supplementary figure 9). 

Reduced firing rate and better decodability to the test stimulus also held when we performed the 

same analyses on nonmatch trials only (Supplementary figure 10), to rule out potential effects of 

repeated exposure to the same stimuli as is the case in the match trials. Thus, better decodability must 

have been due to other reasons than enhanced discharge rate. 
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Figure 2 Visual impulse stimulus enhances latent memory trace. (a) Modified DMS trial structure. A full screen impulse 

stimulus (100 ms) is inserted in the delay period. (b) The accuracy of decoding the sample stimuli for two impulse conditions 

(blue: impulse at 1500 ms; green: impulse at 2000 ms). Shaded areas indicate 95% confidence intervals. Vertical blue and 

green bars mark the positions of the impulse stimuli at 1500 ms and 2000 ms, respectively. Dashed lines (color-coded) indicate 

average population firing rates. Vertical black lines flank the sample (500 – 1000 ms) and test (2500 – 3000 ms) stimulus 

intervals. Horizontal black line marks chance level decoding accuracy. (c) Decoding accuracy of the sample stimuli. Similar to 

(b) but impulse stimuli were applied at systematically varied delays (coloured bars). The colours of the traces correspond to 

the different flashes and highlight the changes in decoding accuracy induced by the flashes. Color-coded dashed lines indicate 

average population firing rates. 

Reduced firing to stimuli matching priors. 

After the animal had learned the DMS task, we investigated whether the animal could learn implicit 

probabilistic associations between sample and test stimuli and use this information in the DMS task 

to predict the nature of the test stimulus given a particular sample. Predicted stimuli evoke smaller 

responses than unexpected stimuli (Alink et al., 2010; Peter et al., 2019; Uran et al., 2022). Therefore, 

we examined whether the same holds for test stimuli that were predicted with high or low probability 

by the sample stimuli. To this end, we modified the DMS task by introducing probabilistic pairing 

between sample and test stimuli in the nonmatch condition, such that the sample stimulus would 

predict with variable probability the upcoming test stimulus. Specifically, as shown in Figure 3a, in 

nonmatch trials (50% of all trials) the sample stimulus was followed by one of the two test stimuli with 

either high (40%, e.g., onion to kiwi, apple to paprika) or low (10%, e.g., onion to paprika, apple to 

kiwi) probability. The occurrence of sample-test pairs in the two probability conditions was 

counterbalanced. The other 50% of trials were match trials: each sample stimulus was followed by 

itself. In each session, we used two stimuli as sample and another two stimuli as test. The same set of 

four stimuli was used for the experimental sessions performed within a week to permit enough 
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repetitions for the learning of the probabilistic association but different sets of stimuli were used for 

sessions in different weeks. 

To test whether neuronal responses to the test stimulus differed in high vs. low probability conditions, 

we computed test-evoked population firing rates (z-scored to pre-sample baseline per channel, 

summed across channels and normalized for pooling of trials from different sessions). We found no 

difference between high and low probability conditions (Figure 3b. Average firing rate within 50 – 150 

ms after test onset: 71.31 ± 0.24 (s.e.m.) for high probability, 70.62 ± 0.47 for low probability; t = 1.28, 

p = 0.20). One reason for the lack of differences could be that subtle effects might have been 

overridden by the sharp initial transient responses caused by sudden stimulus onset. To examine this 

possibility, we slowly ramped up the intensity of the test stimulus (Figure 3a), expecting that such 

gradual visual input would dampen the abrupt increase in firing rate. The duration of the ramp was 

kept fixed for each session, but we varied this parameter across sessions (Monkey 1: 500 ms, 8 sessions; 

2000 ms, 4 sessions; 3000 ms, 8 sessions. Monkey 2: 2000 ms, 14 sessions). Interestingly, in the 

experiments with ramping stimuli, for Monkey 1 the firing rate responses were weaker (t = –4.84, p = 

1.34 × 10-6, all ramp durations combined, n = 20) to the test stimuli associated with high (20.15 ± 0.10 

s.e.m., averaged within 200 – 300 ms after test onset) than low (21.33 ± 0.20) probability (Figure 3c). 

This difference was already evident in the early response phase (Figure 3c). As sanity check we 

compared the firing rates evoked by the same stimuli when they were in the sample position. There 

were no differences in high and low probability conditions (Supplementary figure 11a). To examine 

whether this probability-dependent difference in firing rate to the test stimulus was related to learning, 

we stratified the data into early (first experience with each set of stimuli and their associations) and 

late (last experience with the same sets of stimuli) sessions (200 trials in each of the early and late 

sessions, respectively, to equalize sample size), and found that the reduction of responses to high-

probability test stimuli was only present in the late sessions (Supplementary figure 11c-d, 22.43 ± 0.33 

for high probability, 24.078 ± 0.64 for low probability, t = –2.08, p = 0.038) and not in the early sessions 

(19.93 ± 0.43 for high probability, 21.31 ± 0.87 for low probability, t = –1.31, p = 0.19). The probability-

dependent response difference in late rather than early sessions suggest the possibility that this effect 

was due to learning. However, we were unable to reproduce this result in Monkey 2 (Supplementary 

figure 12a). 

To test whether probabilistic association between sample and test stimuli had an effect on the 

animal’s behaviour, we analysed the animal’s reaction (lever pressing) time after test stimulus 

appearance. For Monkey 1, when the test was presented with step onset, the reaction time was 

shorter for high (592.33 ± 98.97 ms, s.d.) than low (604.53 ± 96.15 ms) probability test stimuli (Figure 

3d, t = –2.60, p = 9.29 × 10-3, t-test on log-transformed reaction time to ensure normality). However, 

when the test stimulus was presented with ramp onset, there was no difference in reaction time in 

the two probability conditions (Figure 3e, high probability 767.03 ± 178.87 ms, low probability 766.93 

± 165.30 ms; t = –0.51, p = 0.61, t-test). The same results held for the stratification in early (high 

probability 941.05 ± 266.52, low probability 936.35 ± 239.92; t = –0.028, p = 0.98) and late (high 

probability 775.56 ± 149.75, low probability 744.28 ± 105.91; t = 1.61, p = 0.11) sessions 

(Supplementary figure 11e-f). Between early and late sessions, the animal’s response accuracy 
(Supplementary figure 11b) increased from 72.0 ± 2.8 % (s.e.m.) to 94.8 ± 2.2 %, and reaction time 

decreased from 913.5 ± 269.7 ms (s.d.) to 713.8 ± 167.6 ms. For Monkey 2, we only used ramped test 

onset, and found that reaction times were slightly shorter for high (487.44 ± 121.04 ms) than low 

(495.51 ± 132.75 ms) probability tests (Supplementary figure 12b), but the difference was not 

statistically significant (t = –1.73, p = 0.084, t-test). However, if we first calculated the average reaction 

time per session for high and low probability conditions, respectively, and then performed pair-wise 

statistics across sessions, Monkey 2 also seemed to respond faster to high (488.31 ± 36.67 ms) than 
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low (496.50 ± 37.93 ms) probability tests (Supplementary figure 12d, t = –2.72, p = 0.0176, paired t-

test). This pairwise comparison revealed that the average reaction time per session was systematically 

shorter for the high probability test, although pooling data from all sessions did not uncover any 

statistically significant differences. Therefore, it seems that the animals may have learned and took 

advantage of the pairing between sample and test stimuli, and responded faster to high-probability 

test stimuli. 

 

Figure 3 Neural and behavioural results for learning implicit probablistic associations. (a) Task structure. (b) Traces: 

normalized firing rate responses to high- and low-probability test stimuli in step onset condition. Bar plots: average firing 

rates (measurement interval marked in grey). Width of the traces and error bars represent 95% confidence interval. Black line 

marks statistically significant differences between high- and low- probability conditions. Note: the spurious difference at 550-

600 ms is caused by the fact that trials are cut off at behavioural response time and that response time is shorter for high-

probability condition. (c) Same convention as (b) but for ramp onset condition. (d) Left: cumulative density functions of 

reaction times in step onset condition. Vertical lines mark average reaction time. Right: quantile-quantile plot between 

reaction times for low (abscissa) and high (ordinate) probability conditions. Diagonal dashed line marks identity. (e) Same 

convention as (d) but for ramp onset condition. 

Discussion 
In this study, we trained monkeys to perform a working memory task and investigated the effect of 

both task-related and task-irrelevant factors on V1 neural activity. We found that V1 neurons did not 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.06.565858doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565858
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

show persistent spiking activity during the memory retention interval. However, decoding analysis 

revealed that the population vector of spiking activity contained a robust trace of the information 

about the sample stimulus despite the low firing rate. This trailing memory trace was apparently not 

caused by the specific demands of the WM task because it was also present in the passive viewing 

tasks. The trace of the preceding sample stimulus could be reactivated by an impulse stimulus that 

was unrelated to the sample but enhanced firing rates. Moreover, we found in the second series of 

experiments, that the amplitude of responses to the test stimulus depended on its expected 

probability and was reduced when the test matched prior expectation. 

Before discussing these findings a few methodological considerations are warranted. To examine the 

role of V1 in working memory, we as well as other investigators relied on decoding methods to extract 

working memory content from V1 activity. However, decodability of WM content from V1 activity 

does per se not imply an involvement of V1 in WM. A better strategy would be to examine whether 

decoders could differentiate between the items that are required to be retained in WM (e.g., <test=) 
and those that are cued to be ignored (<distractor=). Such a distractor design is common in human 

psychophysics but challenging for non-human primates. But even then, improved decodability for WM 

items could reflect top-down effects related to predictive coding or feature-specific attention rather 

than an involvement in the maintenance of WM contents. These problems could in principle be 

overcome with loss of function experiments, i.e. transient inactivation of V1 during the retention 

interval (Rademaker et al., 2017). Another problem is that we were not able to determine whether 

the lingering memory traces in the DMS task and the passive viewing control had the same format or 

structure. This question could be resolved by performing transfer decoding to examine whether 

decoders trained on the DMS task could generalize to the passive viewing task and vice versa. 

Unfortunately, this was not possible because we used different sets of stimuli across sessions and the 

recorded signals likely drifted over days. Furthermore, the response modifications associated with test 

probability were not replicable in the second animal. Possible reasons are fewer sessions and less 

ramp variations for Monkey 2 than Monkey 1, different eccentricity of recording sites (RFs) and 

sampling bias. However, the results from Monkey 1 were robust and the stratification test provided 

unequivocal evidence for a learning-dependent process. Finally, our failure to retrieve WM-related 

information from V1 spiking activity may have been due to limitations of the decoder. We used a linear 

decoder which may have missed information contained in higher-order correlations (Bányai et al., 

2019) or the temporal order of responses (Yiling et al., 2023). 

Despite the low activity during the delay interval, the population firing rate vector contained 

information specific for the sample stimulus. The fact that this information was present in both DMS 

and passive viewing tasks makes it unlikely that it is related to an intentional effort to remember the 

sample. It is also unlikely that the lingering stimulus trace reflects a retinal afterimage, because 

stimulus contrast was low. Moreover, grating stimuli, which are typically used to induce afterimages, 

did not produce such lingering stimulus traces. The fact that the weaker traces after gratings were 

associated with worse behavioural performance compared to conditions with natural stimuli might be 

taken as evidence that lingering V1 activity is actually involved in the maintenance of WM. However, 

the results of the passive viewing task obtained in a naive animal do not support this assumption. 

Therefore, we favour the interpretation that the lingering trace reflects a form of fading memory that 

is maintained by the intrinsic dynamics of recurrent cortical networks (Buonomano and Maass, 2009; 

Nikolić et al., 2009). If so, this raises the question why information about complex natural stimuli 

persists longer than information about the orientation of gratings. Our results let it appear unlikely 

that this is simply due to a prolongation of reverberating responses to natural stimuli. Another 

possibility is that natural scene stimuli engage a larger network of recurrently coupled visual areas 

than gratings because they also match priors stored in the functional architecture of higher cortical 
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areas (Bányai et al., 2019). This would imply that cooperation among multiple visual areas can enhance 

the persistence of stimulus-specific correlation structures in V1 activity. This interpretation is 

supported by the recent observation that stimulus-specific information persists longer in population 

responses recorded from areas V1 and V4 if responses are evoked by natural scene stimuli rather than 

by manipulated stimuli in which certain statistical regularities of natural stimuli were removed (Yiling 

et al., 2023). Also in these experiments there was no simple relation between discharge rates and 

decodability. Taken together, this suggests that fading memory is not a simple consequence of 

prolonged reverberation, a possibility worth further examination. 

One possibility is that information is stored in stimulus-specific synaptic modifications that persist 

without requiring any sustained activity (Erickson et al., 2010; Mongillo et al., 2008). The finding that 

intervening impulse stimuli that transiently increased firing rates enhanced decodability would agree 

with this interpretation. In simulations, latent synaptic memory traces could be reactivated by 

unspecific network-wide stimulation (Mongillo et al., 2008). Likewise, in experiments with human 

subjects, transcranial magnetic stimulation (TMS) or strong visual stimulation revived latent contents 

of working memory (Rose et al., 2016; Wolff et al., 2017). In our study, this reactivation of stimulus-

specific response vectors was similar in the WM tasks and the passive viewing controls. This suggests 

that the mechanism responsible for the fading memory trace can be activated by passive exposure 

and does not involve attention. This is in line with results of experiments on fading memory performed 

under anaesthesia (Nikolić et al., 2009). However, this does not imply that the lingering trace cannot 

be exploited by WM when required, nor does it exclude an influence of WM content on V1 processes. 

The stimuli appearing in the test position evoked lower firing rates but were more decodable than in 

the sample position, in contrast to previous reports where higher firing rates improved decodability 

(Nikolić et al., 2009). The present results bear similarities with bottom-up mechanisms, such as 

adaptation and repetition suppression. However, several observations render classical repetition 

suppression unlikely. For briefly presented stimuli (400 to 500 ms) as used for our sample stimuli, 

adaptation acts mainly on the early transient response component, has only a weak or no influence 

on the late response phase (Liu et al., 2009; Muller et al., 1999; Patterson et al., 2013; Priebe et al., 

2002) and vanishes within a few hundred milliseconds (Cohen-Kashi Malina et al., 2013; Patterson et 

al., 2013; Priebe et al., 2002). By contrast, in our experiments, only the late response phase was 

attenuated. Moreover, the effects were the same in nonmatch trials where the test stimulus was 

preceded by a different, therefore non-adapting, sample stimulus. Repetition suppression can also be 

excluded because its manifestation requires repeated exposure over minutes or hours. Another 

reason for the attenuation of responses to the test stimulus could be the predictability of the time of 

appearance and/or the need to respond to it. Since the trial timing was fixed, the monkey could predict 

precisely when the test stimulus would appear. Expectation and predictability have been shown to 

reduce neuronal firing (Alink et al., 2010; Meyer and Olson, 2011; Parras et al., 2017; Schwiedrzik and 

Freiwald, 2017; Todorovic and de Lange, 2012; Wacongne et al., 2011), to improve stimulus encoding 

(Bell et al., 2016; Kok et al., 2012), and to enhance gamma synchronization (Engel et al., 2001; Lima et 

al., 2011; Vinck and Bosman, 2016) in sensory areas. Notably, Todorovic and de Lange (2012) showed 

that, in line with our results, expectation-dependent suppression influenced the late response 

component (100 – 200 ms) whereas repetition suppression acted on the early component (40 – 60 

ms). In sum, we favour the interpretation that the differences in sample- vs. test-evoked responses 

result from temporal expectation. 

The effect of expectation on V1 activity is also evident in the DMS task in which we varied the 

probability with which a sample stimulus predicted a particular test stimulus. The probabilistic 

association between sample-test pairs was designed to establish an internal prior which rendered the 
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sample stimulus predictive of the upcoming test stimulus. We found that test stimuli of high-

probability evoked reduced firing rates as compared to the low-probability stimuli. Because the same 

set of test stimuli was used in the two probability conditions and the stimulus set varied across 

sessions, test stimulus-specific differences in firing rate are unlikely to explain the effect. Moreover, 

the probability-dependent modification of firing rate emerged only in late but not in early sessions. As 

adaptation and repetition dependent effects are unlikely (see above), these observations suggest 

learnt predictability as a likely cause for the dependence of firing rate on the probability of the test 

stimulus. Although our data do not allow us to identify the site where the prior for the prediction is 

generated, the ramping paradigm revealed that the prior-associated effect kicked in already in the 

initial response phase, suggesting fast access to information about the nature of the expected stimulus. 

The reduction of responses to predictable stimuli is in agreement with reports of reduced activation 

of visual cortex by stimuli that comply with predictions (Alink et al., 2010; de Lange et al., 2018; Kok 

et al., 2012; Meyer and Olson, 2011; Peter et al., 2019; Schwiedrzik and Freiwald, 2017; Summerfield 

and de Lange, 2014; Uran et al., 2022). This suppression has been interpreted in the context of 

predictive coding as a mechanism to facilitate perceptual inference (Aitchison and Lengyel, 2017; Rao 

and Ballard, 1999; Singer, 2021; Singer and Lazar, 2016), to reduce redundant signals originating from 

compressible stimuli (Peter et al., 2019; Uran et al., 2022; Vinck and Bosman, 2016) and to improve 

stimulus representation (Bell et al., 2016; Kok et al., 2012).  

In summary, the intrinsic dynamics of early visual areas are capable of maintaining re-activatable 

traces of complex visual stimuli. We propose as the most likely mechanism the fading memory that is 

characteristic of recurrent networks. These lingering memory traces do not seem to depend on active, 

attention-dependent WM processes but could of course support WM if required. Ample evidence 

indicates that the responses of V1 neurons depend to a large extent on the match between sensory 

evidence and priors. Some of these priors have been acquired during evolution, are complemented 

by experience-dependent developmental pruning and perceptual learning and are stored in the 

functional architecture of the visual cortex (reviewed in Singer (2021)). Other priors are derived from 

the actual context in which stimuli are presented (Lazar et al., 2021; Peter et al., 2019; Uran et al., 

2022). Our results indicate that also predictions derived from learnt associations impact responses in 

V1. Although initial acquisition of these associations between temporally distant stimuli very likely 

involves WM, once established, these associations must be stored in long-term memory. As our results 

indicate, this covert knowledge about the likelihood of the appearance of a particular stimulus is 

available in primary visual cortex. We consider it unlikely that the association between sample and 

test is formed in V1 and therefore favour the interpretation that the priors set up dynamically by the 

sample stimulus are conveyed to V1 by top down projections. 

Methods 

Behavioural task 

Results presented here were obtained from two adult rhesus monkeys (Macacca mulatta. Monkey 1: 

male, 11 kg, 12 years old. Monkey 2: female, 9 kg, 17 years old). All experimental procedures were in 

compliance with the German and European regulations on laboratory animal protection and welfare, 

and were approved by the local authority (Regierungspräsidium Darmstadt). The monkey was seated 

60 cm in front of a screen (Samsung SyncMaster 2233RZ; 120 Hz refresh rate) inside a dark booth. The 

monkey initiated a trial by fixating at a white fixation dot displayed at the centre of the screen, and 

had to maintain fixation on the fixation dot until the trial ended. The eye position was monitored with 

the EyeLink tracker (SR Research, Ottawa, Ontario, Canada). 
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In the delayed match-to-sample (DMS) task, two stimuli were presented sequentially and the monkey 

had to report whether the two stimuli were the same (match) or different (nonmatch). A trial started 

with a fixation period of 500 ms, during which the screen was blank. Then the first stimulus (sample) 

was presented for 500 ms, followed by a delay period of 1500 ms after which the second stimulus 

(test) was presented. The test stimulus disappeared once the monkey responded and kept on for 

maximally 500 ms in case of delayed responses.  The monkey had to respond by moving a two-way 

mechanical lever; forward in match trials and backwards in nonmatch trials. Monkeys were not 

rewarded for responding swiftly. The number of match and nonmatch trials was pseudo-randomized 

to be equal. A correct response was rewarded with a drop of water or juice. If the monkey broke 

fixation (1.3° around fixation point), or moved the lever before test onset, the trial was aborted. 

The trial structure of the passive viewing control experiment mimicked that of the DMS task. In the 

passive viewing task, the monkey had to maintain fixation and respond to a colour change of the 

fixation spot in order to be rewarded. During fixation, the stimuli were presented as in the DMS task, 

but were irrelevant to the animal. The fixation dot changed its colour to either green or blue, requiring 

forward or backward moves of the lever, respectively. 

Stimulus design 

The stimuli were images of single isolated objects with transparent background. The visible region of 

the image was normalized to equal pixel intensity (0.5) and root-mean-square contrast (0.275), and 

covered the classical receptive fields of the recorded multi-units. The image size was 160 × 160 pixels 

(4.4° visual angle) for Monkey 1, and 250 × 250 pixels (6.9° visual angle) for Monkey 2. The images 

were shown at 50% transparency (alpha = 0.5) to reduce the potential influence of visual adaptation. 

The background colour of the display screen was 0.5 grey level throughout the experiment. In the 

standard DMS task, a set of three stimuli were used in each session. The set of images varied between 

sessions. Each image could appear in both the sample and test positions, at pseudo-randomized equal 

probability. 

In the probabilistic DMS task, a set of four stimuli were used in each session, and the pairing between 

sample and test stimuli was additionally manipulated. Only two of the four stimuli could appear as 

sample (and as test in match trials), and the other two stimuli only appeared as test stimuli (i.e., only 

appeared in nonmatch trials). In nonmatch trials (50% of all trials; the other 50% are match trials), the 

sample stimulus was followed by one of the two test stimuli with either high (40%) or low (10%) 

probability. The occurrence of sample-test pairs in the two probability conditions was 

counterbalanced, such that in nonmatch trials both test stimuli appeared at equal probability and only 

their probabilistic pairing with the proceeding sample stimulus was shuffled. 

Electrophysiology 

Both monkeys were chronically implanted in the left hemisphere over V1 with a microdrive system 

(Gray Matter Research, Bozeman, Montana, USA) which had 32 individually movable microelectrodes. 

Data acquisition was performed using the TDT system (Tucker-Davis Technologies, Alachua, Florida, 

USA). The signal was amplified and digitalized at 25 kHz (TDT PZ5 NeuroDigitizer). This raw signal was 

bandpass-filtered between 300 – 4000 Hz to extract multi-unit spiking activity  (MUA), and low pass-

filtered at 300 Hz and down-sampled with a decimation factor of 24 to about 1 kHz to retrieve the 

local field potential (LFP). MUA was isolated using the online detection algorithm in the OpenEx 

software (Tucker-Davis Technologies). Events crossing a threshold of 4 times the standard deviation 

of the filtered spiking band activity were considered as spikes and analysed further. 
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Data analysis 

All decoding analyses were based on linear discriminant analysis (LDA) classifiers. Firing rates across 

channels were treated as independent variables, i.e. predictors, with repeated measurements across 

trials. To test for stimulus-specificity, image identity was used as class label. For time-resolved 

decoding, independent classifiers were trained at successive time points. In most decoding analyses, 

firing rate was calculated by binning spikes in moving windows of 100 ms and steps of 50 ms. For finer 

timescale comparison of decoding sample- vs. test-evoked activity, we used smaller windows (50 ms) 

and step sizes (10 ms). Decoding accuracy for each session was measured by averaging the cross-

validated classification performance over 20 repeated stratified sampling of the dataset (20 folds). 

Decoding accuracy values were averaged over sessions. 

Supplementary Figures 

 

Supplementary figure 1 Behavioural performance in the DMS task (Monkey 1). (a) Response accuracy for all trials (grey), 

match trials (blue) and nonmatch trials (orange). Error bars denote 95% confidence intervals. Error numbers in the notations 

above the bar plots represent standard error of the mean. (b) Reaction time distribution for correct and incorrect trials. Error 

numbers in the legend denote standard deviation. (c) Reaction time distribution for match and nonmatch correct trials. Error 

numbers in the legend denote standard deviation. 
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Supplementary figure 2 Example stimulus, RF locations and behavioural performance of Monkey 2 in the DMS task. (a) 

Stimulus position on the screen and receptive fields (blue dots). Specifically, stimuli subtended 7.84° of visual angle (DVA). 

Their centre was 4.05° lateral to the vertical and 2.70° below the horizontal meridian. (b-d) Same convention as in 

Supplementary figure 1a-c. Behavioural performance was assessed from 10 sessions (n=10). 

 

 

Supplementary figure 3 Comparison of spike counts between delay period and pre-stimulus baseline. Spike counts measured 

in different stages of delay interval (y-axis; 300ms time windows, marked in the titles of panels) plotted against baseline 

spike counts (x-axis; equal time window). Dotted lines indicate equality. 
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Supplementary figure 4 Robust trace of sample stimulus information during the delay interval (results from Monkey 2). (a) 

Same convention as Supplementary figure 3. (b-c) Same conventions as Figure 1d-e of the main text. Baseline: t = 0.18, p = 

0.861. Delay: t = 4.88, p = 0.000872. Between: t = -3.82, p = 0.00408. 
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Supplementary figure 5 Robust trace of stimulus information during the delay period. Summary of results obtained from a 

few other independent DMS experiments (Monkey 1). (a) The accuracies of decoding sample stimulus identity for the baseline 

period (grey) and the last 500 ms of the delay interval (blue). The three panels represent three sets of experiments that used 

8 (left, n = 6 sessions), 2 (middle, n = 12 sessions), and 3 (right, n = 22 sessions) stimuli per session, respectively. Note that the 

stimuli varied for both different sessions and experiments. In all three experiments, the decoding accuracies for the sample 

stimuli in the late delay period were significantly above chance level and higher than baseline level. All error bars denote the 

95% confidence interval. (b) A fourth DMS experiment that used four grating stimuli per session (n = 6 sessions). The grating 

orientations varied between sessions. Left: Time resolved decoding accuracy for the sample stimuli. Right: Same arrangement 

as in (a). Note that in this experiment, the decoding accuracy for the sample stimuli in the late delay interval was not different 

from the chance level (25%, t = -1.00, p = 0.362) or the baseline level (t = -0.99, p = 0.366). 

 

 

Supplementary figure 6 Persistence of sample stimulus information during the delay period of the passive viewing control 

experiment. (c) Average decoding accuracy during the late delay interval was significantly above chance level (t = 3.17, p = 

0.0132, n = 9 sessions, t-Test) and above baseline level (t = -3.13, p = 0.141). The decoding accuracy during the baseline period 

was not significantly different from chance level (t = 0.06, p = 0.957). 
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Supplementary figure 7 Visual stimulation reactivates latent stimulus trace. (a) Results from the DMS experiment in Monkey 

2. (b) Results from passive viewing experiments (Monkey 1). Same conventions as for Figure 2 in the main text. 

 

 

Supplementary figure 8 Lower firing rate and higher decodability to test than sample stimuli. (a) Population firing rate 

(summed across all multi-units) evoked by stimuli in the sample and test position, respectively. (b) Difference in evoked spike 

count (sample – test, per multi-unit channel) during transient (50 – 100 ms) and late response phase (300 – 350 ms). See time 

windows marked in (a). (c) Accuracy of decoding sample and test stimulus identity. Shades denote 95% confidence intervals. 

Black bars mark regions of statistical difference. (d-f) Same convention as in (a-c) but for Monkey 2. Difference in the transient 

phase (50 – 100 ms): t = −1.65, p = 0.133, n = 10 sessions. Difference in the late phase (300 – 350 ms): t = 8.43, p = 1.45 × 10-

5. 
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Supplementary figure 9 Lower firing rate and higher decodability to <test= than <sample= stimuli. Results from the passive 

viewing control version of the DMS task. Same convention as in Supplementary figure 8. Firing rate difference in the 

transient phase (50 – 100 ms): t = −4.00, p = 3.94 × 10−3, n = 9 sessions. Difference in the late phase (300 – 350 ms): t = 5.13, 

p = 8.93 × 10−4. 

 

Supplementary figure 10 Lower firing rate and higher decodability to test than sample stimuli (nonmatch trials only). Same 

convention as in Supplementary figure 8. 
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Supplementary figure 11 Comparison between early and late sessions of learning associations between stimuli (Monkey 1). 

(a) Normalized firing rate responses to sample stimuli in low vs. high probability conditions. (b) Behavioural response accuracy 

between early and late sessions. (c) & (d) Same convention as Figure 3c but separated for early (c) and late (d) sessions. (e) & 

(f) Same convention as Figure 3e.  
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Supplementary figure 12 Neural and behavioural results for learning implicit probablistic association. Results from Monkey 2. 

(a) Same conventions as Figure 3c. (b) Same conventions as Figure 3e. (c) Reaction time in high and low probability conditions. 

Connected dots denote average reaction per session. Grey level marks the order of sessions (dark to light grey: early to late 

sessions). 
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