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Abstract

Intratumor heterogeneity is intrinsic to cancer pathogenesis and evolution, although little is

known about how it relates to the differentiation trajectories of the tumor’s cell-of-origin.

Nodal B-cell non-Hodgkin lymphomas are a diverse set of cancers thought to originate from

distinct stages of B-cell maturation. Through a single-cell multi-omic and spatial atlas of

diffuse large B-cell, mantle cell, follicular, and marginal zone lymphomas along with reactive

lymph nodes (n=51), we found multiple B-cell maturation states coexist within the same

tumors. Intratumor maturation states emerged from the same cell-of-origin, revealing that

maturation remains plastic in malignancy. The maturation state composition varied across

entities and tumors, which included mixtures of cell-of-origin subtypes. Intratumor

maturation states inhabited unique spatial niches, which typically retained their

maturation-associated cellular interactions and regulatory networks. Intratumor maturation

states showed distinct expression patterns of genetic variants, suggesting that maturation and

genetic aberrations are intertwined. Our findings put forward a transformative model for

cancer pathogenesis, where differentiation continues in malignancy and is central to tumor

heterogeneity and evolution.
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Introduction

Intratumor heterogeneity poses significant implications for prognosis and treatment response

across cancers1. Intratumor heterogeneity can manifest at cellular, genetic, epigenetic, and

microenvironmental levels, contributing to complex tumor architecture and adaptive

resistance mechanisms2,3. Importantly, greater intratumor heterogeneity has been associated

with a worse prognosis, due to the increased likelihood of therapy-resistant subclones4–6.

Thus, a better understanding of what drives intratumor heterogeneity promises to improve our

understanding of cancer pathogenesis, evolution, and resistance mechanisms.

There is increasing evidence that the cell-of-origin, the primary cell type acquiring the first

genetic aberrations leading to cancer, influences tumor behavior and response to therapy7.

The molecular and functional features that are inherited by the tumor cells from their normal

counterpart have clinical relevance for many cancer types8. Nodal B-cell non-Hodgkin

lymphomas (B-NHL), a heterogeneous set of malignancies causing over 200,000 deaths

globally each year9, have been well studied in this regard. B-cell-mediated immunity is honed

in secondary lymphoid organs, such as lymph nodes, that are focal points in the B-cell

maturation process. Upon T-cell-dependent activation, B-cells migrate into the B-cell follicles

to initiate the germinal center (GC) reaction. Here, B-cells proliferate and undergo somatic

hypermutation as dark zone centroblasts (DZ), and are then selected for improved affinity of

the B-cell receptor (BCR) as light zone centrocytes (LZ) by antigen-presenting cells (APCs)

such as T-follicular helper (TFH) cells and follicular dendritic cells (FDC). Throughout this

iterative process, GC B-cells may be stimulated by APCs to differentiate into memory B-cells

(Mem) or plasma cells10,11. B-NHL entities include typically GC-origin diffuse large B-cell

lymphoma (DLBCL, GCB) and follicular lymphoma (FL), post-GC or activated B-cell

DLBCL (DLBCL, non-GCB/ABC), as well as mixed-origin mantle cell lymphoma (MCL)

and marginal zone lymphoma (MZL). They are thought to originate from B-cells at different

stages of the maturation process that predominantly reside in these specialized environments,

such as DZ or LZ states in GC-origin DLBCL and FL, and Mem (or Naïve/Plasma) states in

non-GCB DLBCL, MCL, and MZL11–13.

These B-NHL entities have variable growth rates and clinical courses, ranging from the more

indolent FL and MZL to the more aggressive MCL and DLBCL14. In addition, there are

considerable biological and clinical variabilities between patients among patients with the
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same B-NHL entity15,16. This intertumor heterogeneity is linked to the maturation state of the

tumor’s normal counterpart. For example, activated DLBCL (ABC-type) from post-GC

B-cells and germinal center DLBCL (GCB-type) from GC B-cells are two major DLBCL

subtypes associated with different maturation states15. Following standard treatment with

chemoimmunotherapy, ABC-DLBCL shows more frequent relapse compared to

GCB-DLBCL. This association between DLBCL tumor maturation state and clinical

outcomes has recently been extended beyond the ABC vs GCB dichotomy to across the

maturation spectrum17. In parallel, intratumor subpopulations show differences in their

treatment sensitivities3,18,19.

While it has been well established that B-cell maturation significantly contributes to

inter-tumor heterogeneity across B-NHL entities, we hypothesize that maturation also drives

intratumor heterogeneity. This would shed new light on the role of differentiation trajectories

in cancer pathogenesis, variation, and evolution.

Here, we test this hypothesis in B-NHL. We first construct a single-cell reference map of

B-cell maturation states in reactive lymph nodes (rLN) using flow cytometry,

RNA-sequencing, and cellular indexing of transcriptomes and epitopes (CITE-Seq)20. We

then leverage this to classify the B-cell maturation state of tumor cells and profile their

distribution across tumors and entities. We characterize the regulatory networks

distinguishing maturation states in malignancy and genetic variation between these states. As

the follicular architecture of the lymph node mediates the B-cell maturation process, we use

multiplexed tissue imaging with DNA-conjugated antibodies (CODEX)21 to study the spatial

context of tumor maturation states. Through a comprehensive single-cell exploration of

B-NHL, spanning transcriptional, proteomic, epigenetic, genetic, and spatial facets, we bring

to light a novel paradigm of tumor evolution, whereby the tumor’s differentiation state

remains plastic and a major axis of intratumor heterogeneity.
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Results

Sample overview

We obtained 51 lymph node (LN) samples from patients diagnosed with mantle cell

lymphoma (MCL, n = 8), follicular lymphoma (FL, n = 12), germinal center (GCB, n = 5) or

activated B-cell (non-GCB/ABC, n = 7) diffuse large B-cell lymphoma (DLBCL), marginal

zone lymphoma (MZL, n = 11), or non-malignant reactive lymph nodes (rLN, n = 8). Of the

malignant LN samples, 20 were collected at the time of initial diagnosis and 23 were from

patients who had previously undergone one or more lines of systemic treatment. Relapse

samples were collected at least 3 months after cessation of systemic treatment. We

summarized patient characteristics in Supplementary Table 1.

We characterized these samples with CITE-Seq20, a multi-modal method coupling single-cell

RNA sequencing with surface protein profiling with oligonucleotide-tagged antibodies (n =

70, Supplementary Table 2). We aligned transcripts to the hg38 reference genome. After

quality control, we obtained data for 154,282 B-cells with a median of 2,988 B-cells per

sample [140, 7,868] and a median of 6,887 transcript and 2,532 surface protein counts per

cell.

A single-cell B-cell maturation reference map in reactive lymph nodes

To characterize B-cell maturation states in the CITE-Seq data, we first sorted B-cells from

five rLN samples into different maturation state subsets using fluorescence-activated cell

sorting (FACS). The gating scheme is specified in Extended Data Fig. 1. We identified naïve,

germinal dark zone centroblasts (DZ), light zone centrocytes (LZ), IgD+/IgM+ memory

(Mem IgM), class-switched memory of predominantly IgG class (Mem IgG), and plasma

maturation states. Each of these subsets was present in each sample. We then characterized

these six maturation states from each sample with bulk RNA sequencing (Extended Data Fig.

2a-c). We trained a logistic regression classifier on the resulting gene expression profiles to

predict maturation states (balanced accuracy in cross-validation = 94%), which we then

applied to the CITE-Seq data from all 8 rLN samples (16,625 cells) using the single-cell

transcriptomic profiles (Extended Data Fig. 2e-d).
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In parallel, we applied Louvain clustering to the transcriptomic data in this rLN dataset. We

obtained 16 clusters and annotated these to the six B-cell maturation states based on the

presence of established markers10,11,17,22–26 (Supplementary Table 3, Fig. 1b-c). For each

cluster, the annotated maturation state corresponded with the most prevalent prediction for

the cluster’s constituent cells from the logistic regression classifier (Fig. 1d, Extended Data

Fig. 2e). We observed that the rLN samples were composed of 60% memory (split equally

between IgD+/IgM+ (Mem IgM), and class-switched (Mem IgG)), 30% naïve, 6% light zone

centrocytes (LZ), 3% dark zone centroblasts (DZ), and 2% plasma cells.

Fig. 1: A single-cell B-cell maturation reference map in reactive lymph nodes

a, Schematic of the B-cell maturation trajectory in the lymph node. The labeled populations represent the B-cell

maturation states characterized by FACS and CITE-Seq. Illustrations were created with BioRender.com27. b,

Transcriptomic UMAP of the rLN reference CITE-Seq dataset (8 samples) labeled by the B-cell maturation

states in a. Transcriptomic clusters were assigned to maturation states based on their expression of the

maturation markers in Supplementary Table 3. c, Heatmap showing the z-scored average expression of a subset

of markers for each maturation state annotated in the reference CITE-Seq dataset. d, Confusion matrix of cells’
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maturation state labels annotated by maturation marker profiling of transcriptomic clusters (y-axis) and

predicted by a logistic regression28 classifier trained on RNA-sequencing data from B-cell maturation states

sorted with FACS(x-axis)(Extended Data Fig. 1-2). The color scale shows probability estimates for each class.

Maturation state annotations: Naïve = Naïve B-cells, DZ = Centroblasts from the dark zone of the germinal

center, LZ = Centrocytes from the light zone of the germinal center, Mem IgM = IgD+ and IgM+ memory

B-cells, Mem IgG = class-switched (IgG+ or IgA+) memory B-cells, Plasma = plasma cells.

Divergence of B-cell maturation in tumors

Having characterized B-cell maturation states in non-malignant lymph nodes, we then sought

to profile these states in tumors using the 43 B-NHL samples in our CITE-Seq cohort (8

MCL, 12 FL, 5 GCB DLBCL, 7 non-GCB DLBCL, and 11 MZL). For each sample, we

identified the malignant cells based on light chain restriction29, whereby we considered

transcriptional clusters with a kappa or lambda light chain proportion >0.75 as malignant. We

verified this approach by applying B-cell receptor (BCR) profiling to 8 of the samples. We

found that each tumor sample contained a single expanded B-cell receptor clone, representing

the malignant cells, with a restricted immunoglobulin light chain. Non-malignant B-cells,

comprising mostly naïve B-cells, represented a median of 6% [0%, 94%] of all B-cells across

tumor samples (Extended Data Fig. 3).

To classify B-cell maturation states in the tumor samples, we leveraged a data integration

approach based on mutual nearest neighbors and canonical correlation analysis30 to map

maturation states from the rLN reference dataset in each tumor. The maturation states

classified in malignant cells corresponded with their maturation marker profiles. Furthermore,

using the 50 most differentially expressed genes for each maturation state in a published

tonsil dataset17, we calculated maturation state gene signature scores in our B-NHL dataset.

As with the maturation marker profiles, gene signature scores of maturation states in

malignant entities reflected scores in their respective states in the rLN dataset (Extended Data

Fig. 4a-b).

For subsequent analyses, we focused only on the malignant B-cells in tumor samples. We

expected to find a single B-cell maturation state per tumor, reflecting a fixed maturation state

inherited from the cell-of-origin. Instead, we detected a spectrum of maturation states within

individual tumors (Fig. 2a-b, Extended Data Fig. 5). As intratumor maturation states were of
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a single BCR clone, they diverged from a common cell-of-origin. These observations indicate

that B-cell maturation is not fixed in malignancy, but remains plastic and divergent.

Fig. 2: Tumors consist of multiple B-cell maturation states

a, Transcriptomic UMAPs for individual samples from each entity, labeled by B-cell maturation states assigned

by label transfer from the reactive lymph node reference (Fig. 1b). Only malignant cells are shown for tumor

samples. b, Maturation state composition of all samples (n=51) split by entity and ordered by days since

diagnosis. c, Box plot showing the proportion of each maturation state in each entity. Each data point is a

sample, grouped by entity. The Wilcoxon signed-rank test31 was performed for each maturation state’s

proportion between reactive lymph nodes and each entity: p<0.05 (*), p<0.01 (**), p<0.001 (***). rLN =

reactive lymph nodes, MCL = mantle cell lymphoma, FL = follicular lymphoma, DLBCL = diffuse large B-cell
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lymphoma (GCB = germinal center, non-GCB/ABC = activated B-cell), MZL = marginal zone lymphoma. See

Fig. 1 for maturation state annotations.

Maturation states are a source of intratumor and intertumor heterogeneity

We observed a characteristic spectrum of maturation states in each entity; the predominant

states reflected their associated cell-of-origin, such as GC states in DLBCL GCB and

memory states in MCL and MZL. However, we observed substantial variation in maturation

state proportions between samples of the same entity (Fig. 2b). Predicting the samples’ entity

by maturation state composition achieved a maximum accuracy of 63% (logistic regression,

nested cross-validation) (Extended Data Fig. 4c). This highlights B-cell maturation as a major

contributor to both intratumor and intertumor variation.

FL and non-GCB DLBCL tumors showed diverse mixtures of GC (DZ and LZ) and post-GC

(Mem and Plasma) states, suggesting that, like DLBCL, FL may also be capable of

transformation into post-GC phenotypes. Both DLBCL and FL showed significant

enrichment in the LZ state compared to rLN controls (p < 0.01, Wilcoxon signed rank test),

but FL tumors were not enriched for the DZ state (Fig. 2b), implying that DLBCL better

maintains a DZ phenotype. Continuation of somatic hypermutation and proliferation in the

DZ state may promote DLBCL’s characteristically more aggressive disease course32.

To study how the phenotypic diversity in B-NHL tumor cells could be explained by variation

in B-cell maturation states, we took an unsupervised approach to multimodal subpopulation

mapping on the full CITE-Seq B-cell dataset (51 samples, 154,282 cells). We created an

integrated dimensionality reduction and clustering from all B-cells’ transcriptomic and

surface protein features using latent factors from Multi-Omic Factor Analysis (MOFA)33

(Extended Data Fig. 6a). The 25 multimodal subpopulations identified were segregated

predominantly by the maturation state, supporting maturation as a major driver of tumor

variation (Extended Data Fig. 6b-e). In addition, multiple distinct subpopulations were

observed within each maturation state. The greatest heterogeneity was observed among

memory B-cell states, in which subpopulations were segregated by B-NHL entity.

Distinguishing features among these subpopulations pointed towards known pathogenic

mechanisms, such as CCND1 overexpression in MCL (Extended Data Fig. 6f-g).
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Cell-of-origin classification reveals multiple subtypes within each tumor

Next, we examined the implications of intratumor variation in maturation states for

established diagnostic cell-of-origin (COO) classifiers. The Lymph2Cx gene expression

classifier34 is used to classify DLBCL into germinal center (GCB) and activated B-cell (ABC)

subtypes based on a 20-gene panel associated with GC and post-GC maturation states. We

applied this classifier to the single-cell RNA-sequencing (scRNA-seq) data from the

malignant cells of each DLBCL tumor, where higher GCB and ABC gene expression

signature scores corresponded with GC (DZ and LZ) and post-GC (Mem and Plasma) states,

respectively (Fig. 3a). 20-30% of tumor cells did not display a dominant GCB or ABC score

and remained unclassified. Rather than a single GCB or ABC class per tumor, several tumors

consisted of multiple cell-of-origin subtypes (GCB, unclassified, and ABC), whereby the

dominant class largely reflected the GCB or non-GCB diagnosis. However, the presence of

multiple classes on the single-cell level indicates the pathology of DLBCL is more

complicated than previously thought, with a mixture rather than a single cell-of-origin

subtype for each tumor (Fig. 3b).

We confirmed this observation with the Tally DLBCL COO classifier, a simpler classifier

typically employed via immunohistochemistry analysis using the presence or absence of

proteins associated with GCB (CD10, GCET1, and LMO2) or non-GCB (MUM1 and

FOXP1) states to classify tumors into GCB or non-GCB subtypes35. This revealed a similar

pattern to that of applying the Lymph2Cx classifier to our scRNA-seq data. With both

classifiers, GCB DLBCL often contained populations of ABC-like cells, consistent with the

B-cell maturation process transforming a portion of tumor cells of GCB origin to an ABC

subtype (Fig. 3d-e).

FL showed both GC and post-GC states, although FL is not known to include an ABC

subtype like DLBCL. Thus, we examined whether both GCB and ABC subtypes could also

be detected at the single-cell level in FL tumors. The application of the Lymph2Cx and Tally

classifiers revealed the presence of both GCB and ABC classes in 10 out of 12 FL tumors

(Fig. 3c+f), revealing the emergence of an ABC-like subtype in FL tumors.
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Fig. 3: Cell-of-origin classification reveals multiple subtypes within each tumor

a, Normalized GCB and ABC scores for each DLBCL and FL tumor cell determined by the Lymph2Cx

cell-of-origin classifier, labeled by B-cell maturation state. The diagonal line divides cells by their classification

(above = ABC, below = GCB). Cells without ABC or GCB gene set average expression above the housekeeping

genes were unclassified (grey box). b-c, Lymph2Cx class proportions among the tumor cells of DLBCL samples

faceted by GCB or non-GCB diagnosis (b) and FL samples (c). d, Normalized GCB and ABC scores for each

DLBCL and FL tumor cell determined by the Lymph2Cx classifier, as shown in (a), labeled by Tally class. e-f,

Tally class proportions among the tumor cells of DLBCL samples faceted by GCB or non-GCB diagnosis (e)

and FL samples (f). FL = follicular lymphoma, DLBCL = diffuse large B-cell lymphoma (GCB = germinal

center, non-GCB = non-germinal center), COO = cell-of-origin. See Fig.1 for maturation state annotations.

Longitudinal patterns in tumor maturation state composition

Based on these findings, we hypothesized that intratumor heterogeneity introduced by B-cell

maturation may play a role in tumor evolution, whereby a shift in maturation state

composition may occur over time due to progression in maturation or selection by treatment.

This was supported by our observed increases in the class-switched memory (Mem IgG) and

plasma states in MZL samples and an increase in the ABC cell-of-origin subtype in FL

samples taken later from diagnosis (Fig. 2b). We explored this in longitudinal lymph node
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samples from 3 B-NHL patients (Supplementary Table 1). In an MZL tumor from a patient

who had a complete response to 6 cycles of obinutuzumab and bendamustine but relapsed 15

months later, we observed a decrease in plasma cells with an increase in the Mem IgG state

(Extended Data Fig. 7a). We also observed enrichment in plasma cells after 11 months in a

GCB DLBCL tumor from a patient who relapsed following CAR-T cell therapy

(axicabtagene ciloleucel) (Extended Data Fig. 7b). These results point to the possible

progression of the maturation process over time. However, this effect was probably largely

time-dependent, as we observed little change in maturation state composition after 2 months

in another DLBCL patient who relapsed to the same CAR-T cell therapy (Extended Data Fig.

7c).

Transcription factor signatures of maturation states maintain differential activity

in malignancy

Transcription factors (TFs) are key mediators of the B-cell maturation process, although

alteration of the epigenomic landscape has been described in the pathogenesis of

B-NHL12,22,36–38. We investigated whether differences in TF activities between maturation

states were maintained in malignancy, which could enable a tumor to diverge into multiple

maturation states despite epigenomic dysregulation. We inferred TF activities

computationally from the scRNA-seq data (51 samples) using the SCENIC workflow39. Here,

we identify coexpression modules between TFs and candidate target genes with an enriched

binding motif and score TF activity based on the modules’ expression in each cell. We

defined signature maturation TFs as those with differentially expressed target genes between

maturation states in the rLN reference dataset (BH-adjusted p-value < 10e-16, average log

fold-change > 0.4). We calculated the relative activity of these TFs between states for each

entity. TFs that were differentially active between maturation states in rLN also showed

similar activity patterns across states in malignant entities (Fig. 4a), suggesting that TF

maturation state signatures were predominantly conserved across malignancies. This pattern

was partially lost, however, in the LZ state in DLBCL (both GCB and non-GCB), where TFs

elevated in the rLN LZ (IRF8, NFKB1, HIVEP3, and REL) showed higher activity in the

memory state. Large variation was observed in the relative activity of memory signature TFs

across entities (eg. IRF7, STAT1, IRF9). However, this corresponds with the phenotypic

diversity of nodal memory B-cells, which have already completed the maturation process and

are therefore less likely to be dependent on maturation GRNs.
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Fig. 4: Maturation signature TFs maintain differential activity in malignancy

a, Scaled activity of transcription factors (TFs) across B-cell maturation states in each entity inferred using the

scenic python package39; only TFs significantly enriched (log2 fold-change >0.4, p < 10e-16 as determined with

the MAST R package40) for B cell maturation stages target genes in reactive lymph node samples are shown. TFs

(y-axis) are ordered by the maturation state in reactive lymph nodes in which they are enriched. Non-malignant

cells in tumor samples were excluded based on light-chain restriction. b, Density plots comparing the activity

distribution of a subset of distinguishing transcription factors in each tumor maturation state in malignant cells

aggregated from all tumor samples (n = 43). rLN = reactive lymph node, MCL = mantle cell lymphoma, FL =

follicular lymphoma, DLBCL = diffuse large B-cell lymphoma (GCB = germinal center, non-GCB =

non-germinal center), MZL = marginal zone lymphoma. See Fig. 1 for maturation state annotations.

TFs with the greatest differences in activity between maturation states in malignancy were

primarily those involved in B-cell development, activation, and differentiation. These

included KLF3 in naïve and memory B-cells, MAZ and HDAC2 in GC B-cells, TBL1XR1 in

memory, and XBP1 in plasma cells (Fig. 4b and Extended Data Fig. 8). These may play a

central role in driving or maintaining the diversity of intratumor maturation states.

Intratumor maturation states occupy distinct spatial microenvironments

The follicular architecture of lymph nodes, which is central to the B-cell maturation process,

is often disrupted in malignancy. Therefore, we sought to understand the spatial context of
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intratumor maturation states and whether spatial niches could still facilitate maturation in

malignancy. We characterized the spatial distribution of cell types with CODEX21 (52

features, Supplementary Table 2) for 19 samples (29 slides) in the CITE-Seq cohort.

Microenvironmental cell types were defined according to previously published nodal cell

type marker profiles41. Using logistic regression, we transferred B-cell maturation state labels

in the CITE-Seq dataset samplewise to B-cells in the CODEX dataset via the shared protein

features (n=28) between both datasets (Supplementary Table 2). Although we employed

random sampling for class balancing, we obtained a high correlation in maturation state

proportions between the CITE-Seq and CODEX datasets (median R=0.91, p = 0.011)

(Extended Data Fig. 9).

We observed substantial variation in tumor microenvironment composition and structure

among tumors and entities, typically with a loss of the normal follicular structure in MCL and

DLBCL (Extended Data Fig. 10a). Tumor cells of different maturation states still tended to

segregate spatially (Extended Data Fig. 10b). For example, FL1 consisted of expanded

follicles with DZ and LZ states in the GC and surrounded by memory and plasma states.

MCL1 consisted of spatially distinct LZ and memory states, albeit without a typical follicular

structure. ABC2 showed a spread of several maturation states with little spatial distinction,

consistent with DLBCL’s diffuse nature (Fig. 5a). These variations highlight the variable

degrees and patterns of spatial compartmentalization between entities.
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Fig. 5: Intratumor maturation states occupy distinct spatial microenvironments

a, UMAP of scRNA-seq data labeled by B-cell maturation states mapped from the reactive lymph node

reference with B-cell maturation state proportions (top), and spatial distribution of B-cell maturation states in a

reactive lymph node (rLN), follicular (FL), mantle cell (MCL), and non-germinal center diffuse large B-cell

lymphoma (DLBCL, non-GCB) sample from CODEX21 images (52 markers) on FFPE tissue sections (bottom).

See Extended Data Fig. 10 for the distribution of maturation states and cell types on all CODEX slides (n=29).

b, Log2 of the pairwise cell-cell observed over expected interaction ratios (IR) between B-cell maturation states

and all other cell types in each entity, with a pseudocount of 1. Spatial interactions were determined with

Delaunay triangulation. A higher ratio is associated with increased proximity. B Naïve = naïve B-cells, B DZ =

centroblasts from the dark zone of the germinal center, B LZ = centrocytes from the light zone of the germinal

center, B Mem IgM = IgD+ and IgM+ memory B-cells, B Mem IgG = class-switched (IgG+ or IgA+) memory

B-cells, B Plasma = plasma cells, CD4T_naive = naive CD4+ T-cells, CD8T_naive = naive CD8+ T-cells,

TH_memory = memory helper T-cells, TTOX_memory = memory cytotoxic T-cells, TTOX_exh = exhausted

cytotoxic T-cells, NKT = natural killer T-cells, TFH = follicular helper T-cells, TPR = proliferating T-cells,

TREG = regulatory T-cells, FDC = follicular dendritic cells, DC = dendritic cells, Macro = macrophages,

Stromal = stromal cells, NK = natural killer cells, MC = monocytes, Granulo = granulocytes.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.06.565756doi: bioRxiv preprint 

https://paperpile.com/c/6FocXA/VMWZr
https://doi.org/10.1101/2023.11.06.565756
http://creativecommons.org/licenses/by-nc/4.0/


We explored spatial niches in the CODEX data with K nearest neighbor (KNN) graph-based

cellular neighborhood (CN) analysis42. We identified 11 CNs using 20 KNNs and

characterized them based on the cell types enriched in each CN (Extended Data Fig. 11). We

observed that CNs common in rLNs were also present in tumor samples, including T-cell

zones (Th Mem zone and Mixed T zone) and a stromal zone bordering B-cells in tumors. The

majority of tumors’ malignant B-cells, however, were found in CNs different from the

follicular CN found in rLN samples. Each tumor maturation state was dominant in a different

CN, which often co-existed in the same sample. For example, FL1 consisted of DZ, LZ, and

plasma-enriched zones. We observed that intratumor maturation states had different cellular

microenvironments with unique immune compositions, such as enrichment of exhausted

cytotoxic T-cells (TTOX_exh) and macrophages (Macro) in plasma tumor zones (Extended

Data Fig. 11). Tumor infiltration of immune cells such as cytotoxic T-cells is central to the

success of cellular immunotherapies. Compared to other maturation states, plasma tumor

cells were more frequently neighboring memory cytotoxic T-cells (TTOX_memory).

Heterogeneous microenvironments may promote divergence of maturation states by enabling

or blocking different cellular interactions crucial to stages of the maturation process. FDCs

and TFH were enriched in GC (DZ and LZ) predominant tumor CNs, potentially explaining

how the differentiation of malignant GC cells into post-GC memory or plasma cells occurred

(Extended Data Fig. 11b). To quantify the extent to which cell-cell interactions were

maintained in each entity, we computed the pairwise cell-cell observed over expected

interaction ratios (IR) between B-cell maturation states and other cell types in each entity42.

We found that GC B-cell interactions with FDC and TFH were partially maintained in

tumors, therefore enabling the GC reaction to continue in malignancy (Fig. 5b). Although this

was to a lesser extent in the more diffuse DLBCL and generally post-GC MZL, which could

explain their lower diversity of maturation states compared to FL (Fig. 2b).

Genetic variants among intratumor maturation states

Several characteristic features of B-cell maturation states are known to be commonly

aberrated in B-NHL (eg. BCL6, IRF4, and PRDM1)10,43. We considered whether different

intratumor maturation states may be associated with subclonal genetic variation. We profiled

genetic variants, including single-nucleotide variants (SNVs), insertions and deletions, and

copy number variants (CNVs) from targeted DNA-sequencing data in bulk tumor samples.
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We then inferred CNVs on the single-cell level from gene expression data using the copykat

method44.

We observed distinct CNVs among cells in individual tumors, showing that a tumor’s CNVs

could be confined to a portion of the tumor cells. Some CNVs arose between different B-cell

maturation states. For example, in FL7, most GC tumor cells showed aneuploidy compared to

the predominantly diploid non-GC tumor cells (Fig. 6a-d). This tumor showed copy number

gain in the 6p22.2 region (Supplementary DNA Sequencing Report), which is associated with

the disease progression of FL45. 6p22.2 copy number gain was restricted to the DZ tumor

cells (Fig. 6c), implying that 6p22 gain may either lock cells in the DZ stage of maturation, or

DZ cells may be more likely to acquire this copy number variant.

Fig. 6: Genetic variants among intratumor maturation states

a-c, Reference-based UMAP of malignant cells from FL7 labeled by (a) B-cell maturation state, (b) diploid or

aneuploid status, and (c) copy number variation (CNV) in chromosomal position 6-26329011 (cytogenetic band

6p22.2) among tumor cells. CNV was inferred from gene expression with the copykat R package44. Copy

number loss was also detected in this chromosomal region with targeted DNA sequencing (Supplementary

DNA-Sequencing Report). d, Frequencies of the aneuploid and diploid variants in each intratumor maturation

state in FL7. e, The average expression (z-scaled) and percentage of cells expressing genes with non-silent

mutations detected with targeted DNA sequencing (Supplementary DNA Sequencing Report) in samples from

mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and

marginal zone lymphoma (MZL). See Fig. 1 for maturation state annotations.
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We also observed that genes harboring non-silent mutations differed in their expressions

between intratumor maturation states. Examples included an MCL tumor with multi-hit

mutated ATM (commonly inactivated in MCL46,47) showing restored expression in post-GC

states, an FL tumor with multi-hit mutated HIST1H1E and DTX1 (associated with

transformed FL48) showing reduced expression only in post-DZ states, a DLBCL tumor with

multi-hit mutated PIM1 (proto-oncogene associated with ibrutinib resistance49) showing

reduced expression only the memory state, and an MZL tumor with nonsense mutated

TNFAIP3 (NF-kB inhibitor frequently mutated in MZL50) showing reduced expression in

post-GC states. All of these examples indicated that the mutation was acquired only in a

portion of tumor cells that were either arrested or subsequently continued in maturation (Fig.

6e).

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.06.565756doi: bioRxiv preprint 

https://paperpile.com/c/6FocXA/X3zAv+q3hES
https://paperpile.com/c/6FocXA/B7p4c
https://paperpile.com/c/6FocXA/lyWPq
https://paperpile.com/c/6FocXA/K1ikC
https://doi.org/10.1101/2023.11.06.565756
http://creativecommons.org/licenses/by-nc/4.0/


Discussion

In this study, we investigated in B-NHL how differentiation trajectories influence tumor

variation and evolution. The current paradigm for B-NHL pathogenesis is that the maturation

state of the tumor’s cell-of-origin is a fixed determinant of its entity11,12,43. In contrast, we find

that differentiation remains plastic in malignancy and that the differentiation trajectories

guiding the nodal B-cell maturation process also drive intratumor heterogeneity.

We find that maturation states within a tumor do not always correspond with the

cell-of-origin associated with its entity, revealing that intratumor heterogeneity in B-cell

maturation transcends the known B-NHL entity boundaries. This deviation in maturation is

bidirectional; post-GC states are observed in GC tumors (eg., FL), and, conversely, GC states

are observed in post-GC tumors (eg., DLBCL non-GCB and MZL). This raises two potential

roles of maturation in B-NHL pathogenesis; it may either enable additional tumor maturation

states to evolve from the entity-determining cell-of-origin or drive the emergence of the

predominant entity-associated tumor maturation state from a cell-of-origin earlier in the

maturation process. Although it is formally possible that the B-cell maturation process

acquires additional plasticity to enable shifting to earlier stages in maturation (e.g., memory

or plasma to GC states) in malignancy, we consider this unlikely because many steps of the

maturation process (eg., class-switching and functional differentiation) are inherently

unidirectional10. In any case, as different B-NHL entities14 and entity subtypes associated with

different maturation states (e.g. GCB vs ABC in DLBCL)17,51 have distinct clinical outcomes,

this raises the question of whether the variation in maturation state composition among

tumors is responsible for the variable disease course among patients. This is especially

plausible given that the Lymph2Cx and Tally DLBCL cell-of-origin subtype classifiers,

which distinguish GCB and ABC DLBCL subtypes with distinct prognoses, reveal the

presence of both GCB and ABC classes within individual tumors, even in FL where a

post-GC subtype has not yet been described. Thus, intratumor heterogeneity in maturation

may require redefining known B-NHL entity classes to account for the various and

changeable maturation states within tumors. Follow-up studies using larger cohorts will be

needed to address this question. We anticipate an exciting field of research to emerge in

determining its consequences and opportunities for B-NHL management.
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The plasticity we observed in B-cell maturation in malignancy would enable intratumor

maturation states to diverge and shift over time, thus promoting tumor evolution and

expanding the selection pool for treatment resistance. Future research on the relationship

between intratumor maturation states and treatment resistance could help identify resistance

mechanisms and treatment stratification strategies that account for this intratumor

heterogeneity and evolutionary potential. The B-cell maturation process itself may provide

therapeutic opportunities, such as targeting vulnerabilities in certain maturation states or

blocking tumor cells from differentiating to a resistant state. Signaling pathways and gene

regulatory networks that we have shown to distinguish maturation states in tumors may serve

as suitable targets, some of which already have known ligands (e.g., XBP1) or even approved

drugs (e.g., HDAC2)52. However, such strategies should be weighed carefully against their

potential for immunosuppression.

The tumor microenvironment plays an overarching role in the pathogenesis, evolution, and

response of B-NHL, largely by influencing survival and growth signalings and immune

infiltration or blockade53. The spatial organization of B-cell follicles, with germinal centers

and surrounding mantle zones, is central to the normal B-cell maturation process10,11. We

show that different intratumor maturation states occupy distinct spatial niches with unique

microenvironments. Disruption of the lymph node follicular structures has long been

recognized in B-NHL54. However, the segregation of maturation states in unique spatial

niches within tumors, such as FDC and TFH co-localizing with germinal center tumor states,

may explain how multiple maturation states can differentiate within a tumor. We observe a

greater diversity of maturation states in FL than GCB DLBCL, which implies that retention

of follicular structures better preserves the B-cell maturation process in tumors. T-cell

immunotherapies, such as CAR-T cells and bi-specific T-cell engagers (BiTEs), have been

gaining importance in B-NHL due to their success in relapsed or refractory DLBCL55,56.

Varying patterns of T-cell infiltration have been observed across B-cell lymphomas41. We

observe that immune cell infiltration patterns also vary between intratumor maturation states,

including enrichment of cytotoxic T-cells among plasma tumor cells. This poses the question

of whether immunotherapy may need to account for the maturation state composition of a

tumor, potentially requiring combination immunotherapy to account for multiple intratumor

spatial niches. The diverse microenvironments around these tumor maturation states may also

encourage research on expanding the immunotherapy repertoire: leveraging not only different

T-cell subtypes but also infiltrating myeloid cells and non-malignant B-cells.
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The association of genetic variants with intra-tumor maturation states suggests that oncogenic

mechanisms and the maturation process are intertwined, whereby certain aberrations may be

more likely to lead to malignancy at different stages of the maturation process. Although

inferred from single-cell transcriptomic data, the distinct gene expression patterns between

maturation states associated with genetic variants detected with bulk DNA sequencing

support this hypothesis. This may explain why oncogenic mechanisms have different

frequencies across B-cell lymphoma entities43. By extending this concept to the topic of

intratumor heterogeneity, one can consider that ongoing differentiation trajectories such as

B-cell maturation may promote different tumor survival and proliferation mechanisms within

cells of the same tumor. We expect exciting research to emerge on characterizing the

association between genetic aberrations and intratumor maturation states on the single-cell

level across space and time.

Similar to how sources of variation between organisms drive the evolution of species57,

sources of intratumor heterogeneity drive tumor evolution. We show that the B-cell

differentiation trajectory in lymph nodes, the B-cell maturation process, is a major source of

this variation in B-NHL. Intratumor heterogeneity of maturation states blurs known entity

boundaries, whereby individual DLBCL and FL tumors can contain multiple previously

distinct clinical subtypes. Gene regulatory networks and cellular interactions central to the

B-cell maturation process are predominantly retained in malignancy, while intratumor

maturation states occupy unique spatial microenvironments and may be subject to genetic

variation. Seeing differentiation as a source of variation in cancer not only helps us to

understand how intratumor heterogeneity arises, but also sheds light on tumor evolution

trajectories and sets the stage for treatment strategies against the emergence of resistant

phenotypes.
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Methods

Lymph node sample processing

The University of Heidelberg's Ethics Committee approved our study (S-254/2016), and we

secured informed consent from every patient beforehand. We processed and froze patient

lymph node (LN) samples for later analysis, following previously described methods41,58. To

mitigate the influence of treatment-associated effects on tumor cells and their surroundings,

we excluded samples from patients who had undergone allogeneic stem cell transplantation,

CAR T-cell, or bispecific antibody therapy from the CITE-Seq cohort. Furthermore, we

ensured all samples were collected at least three months post the termination of the most

recent treatment to maintain the same control. We provide an overview of the sample

composition in Supplementary Table 1.

Single-cell 3’ RNA-seq and epitope expression profiling (CITE-Seq)

The cells were thawed, promptly washed to eliminate DMSO, and processed in groups of

four to five that comprised a minimum of three distinct entities to avert entity-driven batch

effects. A dead cell removal kit from Miltenyi Biotec was employed after thawing, aiming for

cell viability of between 85% to 90%. Samples with less than 85% viability were not

included. We then stained 5 x 10^5 live cells with a cocktail of oligonucleotide-linked

antibodies (Supplementary Table 2) and left them to incubate at 4°C for 30 minutes. The cells

were washed thrice with chilled washing buffer and centrifuged for five minutes at 4°C each

time. Following this, cell count and viability were re-evaluated; samples falling below 85%

viability were discarded. Subsequently, we prepared the bead-cell suspensions and carried out

the synthesis of complementary DNA, single-cell gene expression, and the production of

antibody-derived tag (ADT) libraries. For these steps, we used a Chromium single-cell v3.1

3’ kit from 10x Genomics and followed the manufacturer's guidelines (Supplementary Table

1).

Single-cell 5’ RNA-seq and B-cell receptor repertoire profiling

Apart from epitope staining, sample processing was identical to 3’ scRNA-seq. The

preparation of the bead-cell suspensions, synthesis of complementary DNA and single-cell

gene expression, and BCR libraries were performed using a Chromium single-cell v2 5’ and
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human BCR amplification kit (both 10x Genomics) according to the manufacturer’s

instructions. An overview of sample libraries is provided in Supplementary Table 1.

Single-cell library sequencing and data processing

We pooled the 3’ gene expression and ADT libraries in a 3:1 ratio, targeting 40,000 reads

(gene expression) and 15,000 reads per cell (ADT) respectively, and sequenced them on a

NextSeq 500 (Illumina). 5’ gene expression libraries were sequenced on a NextSeq 2000

(Illumina), aiming for 50,000 reads per cell. BCR libraries, sequenced on a NextSeq 500

(Illumina), were aimed at achieving a minimum of 5,000 reads per cell.

Post sequencing, we utilized the Cell Ranger software’s (10x Genomics, v6.1.1) cellranger

mkfastq function for demultiplexing and aligning raw base-call files to the reference genome

(hg38). For 3’ gene and epitope expression libraries, we used the cellranger count command

on the resulting FASTQ files, while we used cellranger multi for 5’ gene expression and BCR

libraries. For the BCR libraries, we used the VDJ Ensembl reference (hg38, v5.0.0) as a

reference. Unless specifically stated otherwise, we adhered to default settings for all

functions.

CITE-Seq data analysis

The Seurat R package (v4.1.0) was used to perform data quality control, filtering, and

normalization (log-based normalization for RNA and centered log-ratio transformation for

ADT data). Gene counts per cell, ADT counts per cell, and percentages of mitochondrial

reads were computed using the built-in functions. Principal component analysis59, Louvain

clustering60, and UMAP61 were performed for the transcriptome (RNA) and epitope (ADT)

data independently. After mapping the CD3 and CD19 epitope expression, non-B-cell

transcriptomic clusters and doublets were removed. We used the IntegrateData function of

the Seurat package for data integration across the different preparation batches. For

multimodal clustering, multi-omic factor analysis was performed with the MOFA2 R

package33,62 (v1.8) based on the combined transcriptome and epitope data, and the resulting

latent factors (n=30) were used as principal components.

5’ single-cell RNA-seq data and B-cell receptor profile analysis
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Transcriptomic analysis was performed using the R package Seurat (v4.1.0) as described in

the CITE-Seq data analysis section above. B-cell receptor (BCR) clonotypes were added to

the metadata from the cellranger multi output.

Sorting of B-cell maturation states in reactive lymph nodes

B-cell maturation states from 5 reactive lymph nodes and 2 tonsils were identified and sorted

with the below marker panels and the FACS gating strategy outlined in Extended Data Fig. 1.

Maturation states and their marker panels were adapted from previous studies which defined

naïve63,64, germinal center65, memory63,64, and plasma66 states with flow cytometry.

Naïve B-cells (Naïve): CD19+, CD20+, CD38 low, CD27-, IgD high

Germinal center dark zone B-cells (DZ): CD19+, CD20+, CD38+, CD184+, CD83-

Germinal center light zone B-cells (LZ): CD19+, CD20+, CD38+, CD184-, CD83+

IgM memory B-cells (Mem IgM): CD19+, CD20+, CD38 low, CD27+, IgM+

IgG memory B-cells (Mem IgG): CD19+, CD20+, CD38 low, CD27+, IgG+

Plasmablasts/plasma cells (Plasma): CD19+, CD20 low, CD38 high, CD27 high, IgD low

RNA-seq of sorted maturation states

RNA was isolated by the RNeasy Micro Kit (Qiagen, Hilden, Germany) and quantified with

Bioanalyzer RNA 6000 pico assay (Agilent, Santa Clara, US). The libraries were generated

with NuGENs Trio RNA-Seq System (NuGEN, Redwood City, California) for whole RNA

and sequenced on an Illumina NextSeq2000 (Illumina, San Diego, US). Reads were trimmed

with TrimGalore v0.667 and aligned with hisat2 v2.2.168. The DESeq2 R package69 (v1.38.3)

was used for differential gene expression analysis between maturation states. Default

parameters were used unless otherwise specified. Gene symbols, as per the scRNA-seq

datasets, were obtained from Ensembl70 HGNC symbols.

Characterization of B-cell maturation states in the reactive lymph node reference

Clustering and differential expression analysis of the scRNA-seq data from B-cells in the

integrated reactive lymph node samples (8 samples, 16625 cells) were performed as

described in the Seurat Guided Clustering Tutorial 71, with the clustering resolution

parameter set to 1. Clusters were assigned to known B-cell maturation states based on their

differential expression (in RNA and ADT features) of established markers of B-cell

maturation states from several sources in the literature10,11,17,22–26 (Supplementary Table 3).
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Classification of reactive lymph node maturation states in single-cell RNA-seq data

The RNA-seq data from the sorted maturation states was filtered by the 2000 most variable

RNA features in the reactive lymph node scRNA dataset (8 samples combined) and scaled.

The resulting matrix was used as input for training a logistic regression model with nested

cross-validation for the classification of maturation states using the nestedcv package72–75. The

resulting best-fit model was used to predict maturation states in the log-normalized and

scaled scRNA-seq data from reactive lymph nodes. Predicted states were used to validate

marker-based maturation state annotations in the CITE-Seq rLN reference dataset.

Mapping of maturation states in all lymph node samples

B-cell maturation states defined in the reactive lymph node reference were mapped to each

tumor sample in the CITE-Seq and 5’ scRNA-seq datasets using an anchor-based single-cell

integration approach outlined in the Seurat multimodal reference mapping tutorial30,76.

Log-normalized counts (without batch-effect correction to prevent bias introduced by sample

integration) were used to find transfer anchors and project samples on the reference

reductions - PCA (50 dimensions) and UMAP (2 dimensions).

Isolation of malignant B-cells

Malignant B-cells in tumor samples were identified based on immunoglobulin light chain

restriction, whereby malignant (monoclonal) populations of cells are restricted to either the

kappa or lambda immunoglobulin light chain and non-malignant B-cell populations

(polyclonal) show mixed kappa and lambda light chain positivity29. As a minority of ADT

counts may be present from ambient unbound antibodies during CITE-Seq library

preparation, the proportion of total light chain counts of the kappa subtype (Kappa

counts/(Kappa + Lambda counts)) per cell was used as a surrogate for binary positivity.

Transcriptional B-cell clusters with an average kappa light chain proportion of >80% or

<20% across all cells were considered malignant. Non-malignant B-cells represented a

median of 6% [0%, 94%] of all B-cells in tumor samples.

Maturation state gene expression signature scoring

Maturation state gene expression signature scores were calculated by averaging the

log-normalized counts for the 50 most differentially expressed genes (by fold-change) for

each B-cell maturation state annotated in a published tonsil scRNA-seq dataset17.
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Inference of transcription factor activity from single-cell RNA-sequencing data

The pySCENIC39 workflow was executed through a custom Snakemake pipeline. To infer the

Gene Regulatory Network (GRN), we used the GRNBoost2 algorithm from the Arboreto77

package with 10 perturbations. The analysis was performed on the raw scRNA-seq data.

Transcription factor (TF) regulons were predicted using the human v9 motif collection from

cisTarget (hg38__refseq-r80__10kb_up_and_down_tss.mc9nr.feather and

hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.feather databases). AUC scores

per cell and GRNs were obtained for visualization and downstream analysis. For the final

GRN reconstruction, only target genes occurring in more than 95% of the runs were

considered. Differential expression (DE) analysis between B cell maturation stages was

conducted using Seurat's FindMarkers78 function on the RNA assay, utilizing the MAST40

method for DE analysis from single-cell data. DE genes between conditions in all cell

populations were identified (p.adj < 10e-16 & log2FC > 0.4), and p-values were adjusted for

multiple comparisons using the Benjamini-Hochberg79 correction method. To determine

differentially active TFs, we utilized the output of the SCENIC GRN, which provided TF

activity at a single-cell level. Differentially active TFs were detected using Fisher's exact test

to assess the enrichment of maturation stage-specific DE genes among all the TF target genes

extracted from the SCENIC GRN (p.adj < 0.05).

CODEX imaging and processing

Representative tumor or tumor-free lymph node areas were selected from archival FFPE

tissue blocks belonging to 19 patients. This selection was made by the certified pathologists

at the National Center for Tumor Diseases' Tissue Bank and the University Hospital

Heidelberg's Institute of Pathology as previously described41. Two 4.5 mm cores per patient

were incorporated into Tissue Microarrays (TMAs). TMA sections (4 μm) were affixed to

Vectabond-precoated 25 x 25 mm coverslips, coated with paraffin, and stored for future

staining.

Antibody conjugation, validation, and titration

We used the co-detection by indexing (CODEX) approach for multicolor

immunofluorescence21. Antibodies utilized for CODEX experiments are summarized in

Supplementary Table 2. We reduced purified, carrier-free antibodies with

Tris(2-carboxyethyl)phosphine (TCEP) and conjugated them with maleimide-modified
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CODEX DNA oligonucleotides, procured from TriLink Biotechnologies. A board-certified

pathologist supervised the evaluation of the conjugated antibodies in singleplex stains on

tonsil and/or lymphoma tissue, comparing with online databases, immunohistochemical

reference stains, and published literature. We validated staining patterns in multiplex

experiments with positive and negative control antibodies and titrated the appropriate dilution

of each antibody starting from 1:100 to optimize the signal-to-noise ratio.

Multiplex tissue staining and fixation

We deparaffinized, and rehydrated coverslips, and subjected them to heat-induced epitope

retrieval at pH9 and 97°C for 10 minutes in a Lab Vision PT module. After blocking

non-specific binding with CODEX FFPE blocking solution, we stained the coverslips

overnight with the full antibody panel at the dilutions shown in Supplementary Table 2.

Following staining, coverslips were fixed with 1.6% paraformaldehyde, methanol, and BS3

fixative, then stored in CODEX buffer S4 until imaging.

Multicycle imaging

We attached stained coverslips to custom acrylic plates and inserted them into a Keyence

BZ-X710 inverted fluorescence microscope. We selected 7x7 fields of view and an

appropriate number of z-planes (10-14) to capture the best focal plane across the imaging

area. Multicycle imaging was performed using a CODEX microfluidics device. Post

completion of multicycle imaging, coverslips were stained with hematoxylin/eosin, and the

same areas were imaged in brightfield mode.

Image processing

We processed raw TIFF images using the RAPID pipeline80 in Matlab with the default

settings. Post-processing, images were concatenated to hyperstacks. Each tissue core was

visually inspected for staining quality using ImageJ/Fiji.

Cell segmentation and cell type annotation

We segmented individual nuclei based on the Hoechst stain and quantified cellular marker

expression levels using a modified version of the Mask R-CNN-based CellSeg software. A

threshold based on the intensity of the nuclear markers Hoechst and DRAQ5 was used to

exclude non-cellular events. Cells were then submitted to Leiden-based clustering using the
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scanpy Python package, and cluster annotations were assigned according to previously

identified cell type marker profiles41.

CITE-Seq to CODEX B-cell maturation state label transfer

B-cell maturation states in the CODEX data were classified sample-wise from annotations in

the CITE-Seq data using shared features (n = 28) in the CITE-Seq and CODEX antibody

panels (Supplementary Table 2). After selecting the shared features, CITE-Seq ADT counts

and CODEX fluorescence intensities were subject to the same preprocessing steps of

log-ratio normalization and scaling (z-scored) with Seurat v4. For each sample, a logistic

regression classifier (glmnet package, 10-fold nested cross-validation)74,75 was trained on the

annotated CITE-seq data to classify B-cell maturation states. To prevent prediction bias

toward majority classes, random sampling was performed to balance class distribution within

the splits. For each sample, the resulting best-fit model (with the highest balanced accuracy

on the outer folds) was used to predict B-cell maturation states in the sample’s corresponding

CODEX B-cell data. The median Pearson correlation coefficient between the samples’

CITE-Seq and CODEX maturation state proportions was 0.91 (p = 0.011) (Extended Data

Fig.8).

Cellular neighborhood analysis

We modified a previously described approach for neighborhood analysis42. For each cell, the

20 nearest neighbors were determined based on their Euclidean distance of the X and Y

coordinates, thereby creating one 'window' of cells per individual cell. Next, we grouped

these windows using k-means clustering according to the proportions of cell types within

each window. We selected K=11 for the number of neighborhoods as we observed that higher

values of k did not result in an improved biologically interpretable number of neighborhoods.

Neighborhoods were annotated based on their biological function in normal lymph nodes or

their enriched cell type(s)/state(s).

Cellular interaction likelihood analysis

Spatial graph representations of immediately neighboring cells were constructed based on

Delaunay triangulation between centroid coordinates using the scipy.spatial Python

package81. To compute pairwise association strengths between clusters, relative frequencies

were computed using the following metric:
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𝑁𝑖𝑗  × 𝑁𝑡

𝑁𝑖 × 𝑁𝑗

in which Nij is equal to the total number of edges between clusters i and j, Nt the total

number of edges in the sample, and Ni and Nj the total degrees of clusters i and j

respectively42. Computed association strengths were calculated separately for each disease

entity, between B-cell states and other cell types.

DNA sequencing

DNA was fragmented (Covaris sonication) to 250 bp and further purified using Agentcourt

AMPure XP beads (Beckman Coulter). Size-selected DNA was then ligated to adaptors

during library preparation. Each library was quantified using qPCR and analyzed for quality

after fragmentation and library preparation based on library yield and size on an Agilent

Bioanalyzer. The sample MZL2 failed at the library preparation stage. Finally, libraries were

enriched for genes using the Sure Select XT Target Enrichment System for Illumina

Paired-End Multiplexed Sequencing and each capture pool was sequenced at 300-400x. A list

of captured regions is included in Supplementary Table 4.

Pooled samples were demultiplexed using a custom demultiplexing tool. Read pairs were

aligned to the hg19 reference sequence using the Burrows-Wheeler Aligner82, and data were

sorted and duplicate-marked using Picard tools (version 2.23.3)83. All steps were performed

within the bcbio-nextgen toolkit (version 1.2.9)84.

The minimum quality criterion was 80% of target bases having > 30x sequencing coverage.

Cases with 60-79% of target bases with > 30x sequencing coverage were also included if

target bases not covered were < 1%. Cases with target bases covered 30x < 60% or cases with

target bases covered 30x between 60-80% and target bases not covered > 1% were excluded.

This was achieved for all sequenced samples (DNA-Sequencing Report, Fig. 1). Metrics were

collected using Picard tools (version 2.23.3)83. For detailed QC metrics see Supplementary

Table 5.
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Variant Analysis

Mutation analysis for single nucleotide variants (SNV) and Insertions and Deletions (InDels)

was performed using MuTect285 (GATK v4.1.9.0)86 and annotated by Funcotator87 (GATK

v4.1.9.0). A panel-of-normals (PON) filter was generated using samples annotated as rLN

and a panel of normal from the 1000 Genomes Project88. Variants were included in the PON

if present in two or more normal samples.

Non-silent variants (Missense_Mutation, Nonsense_Mutation, Nonstop_Mutation,

Splice_Site, Translation_Start_Site) resulting from BestEffect Funcotator annotation

(dataSources.v1.6) at a variant allele frequency of > 10% are kept for further investigations.

Germline polymorphisms and sequencing artifacts were excluded by comparison with the

panel-of-normals and with the gnomAD database89. Known germline polymorphisms from

the Exome Sequencing Project90 and dbSNP91 databases were excluded. An overview of the

somatic variants identified is depicted in the Supplementary DNA-Sequencing Report.

Genome-wide copy number aberrations (CNAs) were called using CNVkit (v0.9.9)92.

Notably, this tool takes advantage of both on- and off-target sequencing reads and estimates

the copy number using a pooled normal reference to compare binned read depths. Log2

change from a pool of normal control of ±0.2 was used as an indication of chromosomal gain

or loss. Chromosomes X and Y are excluded from the analysis.

Inference of copy number variation from single-cell RNA-sequencing data

Copy number variants (CNVs) and ploidy were inferred from single-cell RNA-sequencing

count data in each sample using the copykat R package as per the package vignette44. A cell

filtering threshold of 5 genes per chromosome and a minimal segmentation window size of

25 genes was used. Copy number variation (Euclidean distance) was determined at a

resolution of 5MB chromosomal segments, which was added as a new assay to CITE-Seq

Seurat objects for each sample for visualization of copy number variants across intratumor

maturation states.

Interactive data browsing

All single-cell data and tissue cores imaged in this study including the marker stainings will

be available for interactive browsing on publication.
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Data availability

All single-cell sequencing data will be available in the European Genome-Phenome Archive

(https://ega-archive.org/) database upon publication. Highly multiplexed immunofluorescence

images will be available in the BioStudies database (https://www.ebi.ac.uk/biostudies/) upon

publication.

Code availability

Code scripts used for all analyses and figure generation will be made available on github.com

on publication.
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Extended Data Fig. 1: Gating strategy of B-cell maturation states from reactive lymph

nodes

B-cell maturation state gating strategy for flow-activated cell sorting (FACS) employed on B-cells isolated from

human rLN (n=5) and tonsils (n=2) using the following marker panels: Naïve B-cells (CD19+, CD20+,

CD38low, CD27-, IgD high), IgM memory B-cells (CD19+, CD20+, CD38 low, CD27+, IgM+), IgG memory

B-cells (CD19+, CD20+, CD38 low, CD27+, IgG+), germinal center dark zone B-cells (CD19+, CD20+,

CD38+, CD184+, CD83-), germinal center light zone B-cells (CD19+, CD20+, CD38+, CD184-, CD83+) and

plasmablasts/plasma cells (CD19+, CD20 low, CD38 high, CD27 high, IgD low). Maturation states and their

marker panels were adapted from previous studies which defined naïve63,64, germinal center65, memory63,64, and

plasma66 states with flow cytometry.
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Extended Data Fig. 2: Classification from sorted B-cell maturation states

The first two principal components of RNA-seq data from FACS-sorted B-cell maturation states from rLN (n =

5) and tonsils (n = 2) colored by a, tissue source, b, the sample of origin, and c, maturation state. d,

Transcriptomic UMAP of the integrated CITE-Seq B-cells data from 8 rLN labeled by maturation state

predicted with logistic regression from the sorted states’ RNA-seq data. e Z-scaled gene expression of a subset

of B-cell maturation markers across predicted maturation states in the rLN reference. See Fig. 1 for maturation

state annotations.
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Extended Data Fig. 3: Isolation of malignant B-cells based on light chain restriction

a, Reference-based UMAP labeled by malignant clone as determined by BCR profiling (left) and

immunoglobulin light chain (right) for a MCL (top) and MZL (bottom) sample. b, Horizontal violin plot

depicting the proportion of kappa light chain gene expression (x-axis) in malignant and normal B-cells in the

samples shown in (a). Red = kappa-positive, blue = lambda-positive. c, Vertical violin plot showing the

proportion of kappa light chain surface epitope detected in malignant cells isolated from all tumor samples in the

CITE-Seq cohort (n = 43). Red = kappa-restricted, blue = lambda-restricted. Malignant B-cells were identified

as light chain-restricted transcriptional clusters (mean kappa proportion >0.75 or <0.25). A light-chain-restricted

tumor population was identified in all samples except ABC5 and FL4, which showed light-chain depletion

instead. d, The proportion of B-cells that are malignant or non-malignant, based on light chain restriction, in

each sample, faceted by entity: reactive lymph nodes (rLN), mantle cell lymphoma (MCL), follicular lymphoma

(FL), germinal center and non-germinal center diffuse large B-cell lymphoma (DLBCL, GCB/non-GCB), and

marginal zone lymphoma (MZL).
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Extended Data Fig. 4: B-cell maturation marker expression and maturation gene

signature scores by entity

a, Dot plots showing the relative gene expression and abundance of maturation markers for each predicted

maturation state in each entity. b, Heatmap of maturation state scores calculated from annotated maturation

states in a published tonsil germinal center scRNA-seq dataset17. Each score shown is scaled across all scores in

the dataset (mean = 0, sd = 1). c, Confusion matrix (left) showing the predicted (x) vs true (y) classes when

predicting entity by maturation state proportions with random forest (nested cross-validation), with test statistics

(right) for classification of each entity (overall accuracy 63%). Entities: reactive lymph nodes (rLN), mantle cell

lymphoma (MCL), follicular lymphoma (FL), germinal center and non-germinal center diffuse large B-cell

lymphoma (DLBCL, GCB/non-GCB), and marginal zone lymphoma. See Fig. 1 for maturation state

annotations.
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Extended Data Fig. 5: Maturation state composition of tumors

Reference-based UMAP labeled by B-cell maturation states for the CITE-Seq data from each sample (n=51).

Maturation states are assigned by label transfer from the reactive lymph node reference in Fig. 1 as outlined in

the Methods. Tumor cells were isolated from non-malignant B-cells based on light chain restriction of

transcriptional clusters (Extended Data Fig. 3). Maturation state annotations: Naïve = Naïve B-cells, DZ =

Centroblasts from the dark zone of the germinal center, LZ = Centrocytes from the light zone of the germinal

center, Mem IgM = IgD+ and IgM+ memory B-cells, Mem IgG = class-switched (IgG+ or IgA+) memory

B-cells, Plasma = plasma cells.
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Extended Data Fig. 6: Multimodal subpopulation mapping of nodal B-cell non-Hodgkin

lymphomas

UMAP visualization of the full CITE-Seq B-cells dataset (n=51) constructed with the latent factors (n = 50)

from multi-omic factor analysis (MOFA)33 based integration of the single-cell RNA and ADT (surface markers)

data layers as principle components, labeled by a, clustering on the multimodal latent factor space, b, maturation

states mapped from the reactive lymph node reference (Fig. 1b), c, entity, d, malignancy as determined by light

chain restriction (Extended Data Fig. 2c), and e, samples taken at diagnosis or relapse. Z-scaled expression
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across multi-modal clusters of the 3 most differentially expressed genes (f) and proteins (g) by fold-change per

cluster.
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Extended Data Fig. 7: Longitudinal patterns of tumor maturation state composition

Maturation state composition of tumor cells in longitudinal samples from 3 patients: a, An MZL patient who

relapsed 15 months following complete response to 6 cycles of obinutuzumab-bendamustine

chemo-immunotherapy; b-c, two GCB DLBCL patients who relapsed after 11months (b) and 2 months (c)

following axicabtagene ciloleucel (CAR-T cell) therapy. See Fig. 1 for maturation state annotations.

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.06.565756doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565756
http://creativecommons.org/licenses/by-nc/4.0/


Extended Fig. 8: Differential transcription factor activity between tumor maturation

states

a, Bar charts showing the log2 odds ratio for differentially active transcription factors (TFs) in the tumor cells of

each B-cell maturation state inferred with the SCENIC python package39 from single-cell RNA-sequencing data

from the malignant cells of all tumor samples combined (n=43). Only TFs with differentially expressed target

genes (log2 fold-change >0.4, p < 10e-16 as determined with the MAST R package40) are shown. Bars

highlighted in darker orange represent transcription factors with significant differential activity (FDR < 0.1
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threshold). b, UpSet plot showing the intersections between the differentially active transcription factors (FDR

<0.1) for each maturation state. See Fig. 1 for maturation state annotations.
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Extended Data Fig. 9: Maturation state correlations between CITE-Seq and CODEX by

sample

Scatter plots showing the Pearson correlation between B-cell maturation state proportions in the CITE-Seq and

CODEX data for each a, reactive lymph node (rLN), b, mantle cell lymphoma (MCL), c, follicular lymphoma

(FL), d, diffuse large B-cell lymphoma (DLBCL) and e, marginal zone lymphoma (MZL) sample. The median

Pearson correlation coefficient across samples is shown (bottom-right). Maturation state labels were transferred

from the CITE-Seq to CODEX data for each sample using logistic regression on shared protein channel/ADT

features (n = 28). See Fig. 1 for maturation state annotations.
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Extended Data Fig. 10: Spatial distribution of tumor microenvironments and

maturation states

Spatial distribution of a, all cell types (with B-cells in black) and b, B-cell subsets in reactive lymph nodes

(rLN), mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and

marginal zone lymphoma (MZL) from CODEX images on FFPE sections. B-cell states were classified

samplewise using logistic regression from the CITE-Seq data using the shared features (n = 28). Marker-based

annotation of all other cell types was performed on clustering of the CODEX features (n = 52, see

Supplementary Table 5). B Naïve = naïve B-cells, B DZ = centroblasts from the dark zone of the germinal

center, B LZ = centrocytes from the light zone of the germinal center, B Mem IgM = IgD+ and IgM+ memory
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B-cells, B Mem IgG = class-switched (IgG+ or IgA+) memory B-cells, B Plasma = plasma cells, CD4T_naive =

naive CD4+ T-cells, CD8T_naive = naive CD8+ T-cells, TH_memory = memory helper T-cells, TTOX_memory

= memory cytotoxic T-cells, TTOX_exh = exhausted cytotoxic T-cells, NKT = natural killer T-cells, TFH =

follicular helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells, FDC = follicular dendritic

cells, DC = dendritic cells, Macro = macrophages, Stromal = stromal cells, NK = natural killer cells, MC =

monocytes, Granulo = granulocytes.
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Extended Data Fig. 11: Spatial distribution of cellular neighborhoods

a, Spatial distribution of cellular neighborhoods (CNs) in reactive lymph nodes (rLN), mantle cell lymphoma

(MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and marginal zone lymphoma

(MZL) from CODEX images on FFPE sections. CNs (n = 11, KNN = 20) were calculated using all CODEX

slides (n=29) and labeled based on their distinguishing features, ie. tumor cells’ predominant maturation state

(eg. DZ, Mem), B-cells’ location or function in reactive lymph nodes (eg. Follicular, Mantle zone), or enriched

cell type(s) (eg. Mixed T zone, T Mem zone). b, Relative abundance of each cell type across Cellular

Neighborhoods (CNs), scaled by cell type frequency. B Naïve = naïve B-cells, B DZ = centroblasts from the

dark zone of the germinal center, B LZ = centrocytes from the light zone of the germinal center, B Mem IgM =

IgD+ and IgM+ memory B-cells, B Mem IgG = class-switched (IgG+ or IgA+) memory B-cells, B Plasma =

plasma cells, CD4T_naive = naive CD4+ T-cells, CD8T_naive = naive CD8+ T-cells, TH_memory = memory

helper T-cells, TTOX_memory = memory cytotoxic T-cells, TTOX_exh = exhausted cytotoxic T-cells, NKT =

natural killer T-cells, TFH = follicular helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells,

FDC = follicular dendritic cells, DC = dendritic cells, Macro = macrophages, Stromal = stromal cells, NK =

natural killer cells, MC = monocytes, Granulo = granulocytes.
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