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Abstract

Intratumor heterogeneity is intrinsic to cancer pathogenesis and evolution, although little is
known about how it relates to the differentiation trajectories of the tumor’s cell-of-origin.
Nodal B-cell non-Hodgkin lymphomas are a diverse set of cancers thought to originate from
distinct stages of B-cell maturation. Through a single-cell multi-omic and spatial atlas of
diffuse large B-cell, mantle cell, follicular, and marginal zone lymphomas along with reactive
lymph nodes (n=51), we found multiple B-cell maturation states coexist within the same
tumors. Intratumor maturation states emerged from the same cell-of-origin, revealing that
maturation remains plastic in malignancy. The maturation state composition varied across
entities and tumors, which included mixtures of cell-of-origin subtypes. Intratumor
maturation states inhabited unique spatial niches, which typically retained their
maturation-associated cellular interactions and regulatory networks. Intratumor maturation
states showed distinct expression patterns of genetic variants, suggesting that maturation and
genetic aberrations are intertwined. Our findings put forward a transformative model for
cancer pathogenesis, where differentiation continues in malignancy and is central to tumor

heterogeneity and evolution.
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Introduction

Intratumor heterogeneity poses significant implications for prognosis and treatment response
across cancers'. Intratumor heterogeneity can manifest at cellular, genetic, epigenetic, and
microenvironmental levels, contributing to complex tumor architecture and adaptive
resistance mechanisms®*. Importantly, greater intratumor heterogeneity has been associated
with a worse prognosis, due to the increased likelihood of therapy-resistant subclones*®.
Thus, a better understanding of what drives intratumor heterogeneity promises to improve our

understanding of cancer pathogenesis, evolution, and resistance mechanisms.

There is increasing evidence that the cell-of-origin, the primary cell type acquiring the first
genetic aberrations leading to cancer, influences tumor behavior and response to therapy’.
The molecular and functional features that are inherited by the tumor cells from their normal
counterpart have clinical relevance for many cancer types®. Nodal B-cell non-Hodgkin
lymphomas (B-NHL), a heterogeneous set of malignancies causing over 200,000 deaths
globally each year’, have been well studied in this regard. B-cell-mediated immunity is honed
in secondary lymphoid organs, such as lymph nodes, that are focal points in the B-cell
maturation process. Upon T-cell-dependent activation, B-cells migrate into the B-cell follicles
to initiate the germinal center (GC) reaction. Here, B-cells proliferate and undergo somatic
hypermutation as dark zone centroblasts (DZ), and are then selected for improved affinity of
the B-cell receptor (BCR) as light zone centrocytes (LZ) by antigen-presenting cells (APCs)
such as T-follicular helper (TFH) cells and follicular dendritic cells (FDC). Throughout this
iterative process, GC B-cells may be stimulated by APCs to differentiate into memory B-cells
(Mem) or plasma cells'®"". B-NHL entities include typically GC-origin diffuse large B-cell
lymphoma (DLBCL, GCB) and follicular lymphoma (FL), post-GC or activated B-cell
DLBCL (DLBCL, non-GCB/ABC), as well as mixed-origin mantle cell lymphoma (MCL)
and marginal zone lymphoma (MZL). They are thought to originate from B-cells at different
stages of the maturation process that predominantly reside in these specialized environments,
such as DZ or LZ states in GC-origin DLBCL and FL, and Mem (or Naive/Plasma) states in
non-GCB DLBCL, MCL, and MZL""",

These B-NHL entities have variable growth rates and clinical courses, ranging from the more
indolent FL and MZL to the more aggressive MCL and DLBCL'. In addition, there are

considerable biological and clinical variabilities between patients among patients with the
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same B-NHL entity'*'¢. This intertumor heterogeneity is linked to the maturation state of the
tumor’s normal counterpart. For example, activated DLBCL (ABC-type) from post-GC
B-cells and germinal center DLBCL (GCB-type) from GC B-cells are two major DLBCL
subtypes associated with different maturation states'’. Following standard treatment with
chemoimmunotherapy, ABC-DLBCL shows more frequent relapse compared to
GCB-DLBCL. This association between DLBCL tumor maturation state and clinical
outcomes has recently been extended beyond the ABC vs GCB dichotomy to across the
maturation spectrum'’. In parallel, intratumor subpopulations show differences in their

treatment sensitivities>'®!°.

While it has been well established that B-cell maturation significantly contributes to
inter-tumor heterogeneity across B-NHL entities, we hypothesize that maturation also drives
intratumor heterogeneity. This would shed new light on the role of differentiation trajectories

in cancer pathogenesis, variation, and evolution.

Here, we test this hypothesis in B-NHL. We first construct a single-cell reference map of
B-cell maturation states in reactive lymph nodes (rLN) using flow cytometry,
RNA-sequencing, and cellular indexing of transcriptomes and epitopes (CITE-Seq)*’. We
then leverage this to classify the B-cell maturation state of tumor cells and profile their
distribution across tumors and entities. We characterize the regulatory networks
distinguishing maturation states in malignancy and genetic variation between these states. As
the follicular architecture of the lymph node mediates the B-cell maturation process, we use
multiplexed tissue imaging with DNA-conjugated antibodies (CODEX)*' to study the spatial
context of tumor maturation states. Through a comprehensive single-cell exploration of
B-NHL, spanning transcriptional, proteomic, epigenetic, genetic, and spatial facets, we bring
to light a novel paradigm of tumor evolution, whereby the tumor’s differentiation state

remains plastic and a major axis of intratumor heterogeneity.
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Results

Sample overview

We obtained 51 lymph node (LN) samples from patients diagnosed with mantle cell
lymphoma (MCL, n = 8), follicular lymphoma (FL, n = 12), germinal center (GCB, n = 5) or
activated B-cell (non-GCB/ABC, n = 7) diffuse large B-cell lymphoma (DLBCL), marginal
zone lymphoma (MZL, n = 11), or non-malignant reactive lymph nodes (rLN, n = 8). Of the
malignant LN samples, 20 were collected at the time of initial diagnosis and 23 were from
patients who had previously undergone one or more lines of systemic treatment. Relapse
samples were collected at least 3 months after cessation of systemic treatment. We

summarized patient characteristics in Supplementary Table 1.

We characterized these samples with CITE-Seq®, a multi-modal method coupling single-cell
RNA sequencing with surface protein profiling with oligonucleotide-tagged antibodies (n =
70, Supplementary Table 2). We aligned transcripts to the hg38 reference genome. After
quality control, we obtained data for 154,282 B-cells with a median of 2,988 B-cells per
sample [140, 7,868] and a median of 6,887 transcript and 2,532 surface protein counts per

cell.

A single-cell B-cell maturation reference map in reactive lymph nodes

To characterize B-cell maturation states in the CITE-Seq data, we first sorted B-cells from
five rLN samples into different maturation state subsets using fluorescence-activated cell
sorting (FACS). The gating scheme is specified in Extended Data Fig. 1. We identified naive,
germinal dark zone centroblasts (DZ), light zone centrocytes (LZ), [gD+/IgM+ memory
(Mem IgM), class-switched memory of predominantly IgG class (Mem IgG), and plasma
maturation states. Each of these subsets was present in each sample. We then characterized
these six maturation states from each sample with bulk RNA sequencing (Extended Data Fig.
2a-c). We trained a logistic regression classifier on the resulting gene expression profiles to
predict maturation states (balanced accuracy in cross-validation = 94%), which we then
applied to the CITE-Seq data from all 8 rLN samples (16,625 cells) using the single-cell
transcriptomic profiles (Extended Data Fig. 2e-d).
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In parallel, we applied Louvain clustering to the transcriptomic data in this rLN dataset. We
obtained 16 clusters and annotated these to the six B-cell maturation states based on the
presence of established markers'®!"-'"222¢ (Supplementary Table 3, Fig. 1b-c). For each
cluster, the annotated maturation state corresponded with the most prevalent prediction for
the cluster’s constituent cells from the logistic regression classifier (Fig. 1d, Extended Data
Fig. 2e). We observed that the rLN samples were composed of 60% memory (split equally
between IgD+/IgM+ (Mem IgM), and class-switched (Mem Ig(G)), 30% naive, 6% light zone
centrocytes (LZ), 3% dark zone centroblasts (DZ), and 2% plasma cells.

Fig. 1: A single-cell B-cell maturation reference map in reactive lymph nodes
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a, Schematic of the B-cell maturation trajectory in the lymph node. The labeled populations represent the B-cell
maturation states characterized by FACS and CITE-Seq. Illustrations were created with BioRender.com®. b,
Transcriptomic UMAP of the rLN reference CITE-Seq dataset (8 samples) labeled by the B-cell maturation
states in a. Transcriptomic clusters were assigned to maturation states based on their expression of the
maturation markers in Supplementary Table 3. ¢, Heatmap showing the z-scored average expression of a subset

of markers for each maturation state annotated in the reference CITE-Seq dataset. d, Confusion matrix of cells’
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maturation state labels annotated by maturation marker profiling of transcriptomic clusters (y-axis) and
predicted by a logistic regression”® classifier trained on RNA-sequencing data from B-cell maturation states
sorted with FACS(x-axis)(Extended Data Fig. 1-2). The color scale shows probability estimates for each class.
Maturation state annotations: Naive = Naive B-cells, DZ = Centroblasts from the dark zone of the germinal
center, LZ = Centrocytes from the light zone of the germinal center, Mem IgM = IgD+ and IgM+ memory
B-cells, Mem IgG = class-switched (IgG+ or IgA+) memory B-cells, Plasma = plasma cells.

Divergence of B-cell maturation in tumors

Having characterized B-cell maturation states in non-malignant lymph nodes, we then sought
to profile these states in tumors using the 43 B-NHL samples in our CITE-Seq cohort (8
MCL, 12 FL, 5 GCB DLBCL, 7 non-GCB DLBCL, and 11 MZL). For each sample, we
identified the malignant cells based on light chain restriction”, whereby we considered
transcriptional clusters with a kappa or lambda light chain proportion >0.75 as malignant. We
verified this approach by applying B-cell receptor (BCR) profiling to 8 of the samples. We
found that each tumor sample contained a single expanded B-cell receptor clone, representing
the malignant cells, with a restricted immunoglobulin light chain. Non-malignant B-cells,
comprising mostly naive B-cells, represented a median of 6% [0%, 94%] of all B-cells across

tumor samples (Extended Data Fig. 3).

To classify B-cell maturation states in the tumor samples, we leveraged a data integration
approach based on mutual nearest neighbors and canonical correlation analysis® to map
maturation states from the rLN reference dataset in each tumor. The maturation states
classified in malignant cells corresponded with their maturation marker profiles. Furthermore,
using the 50 most differentially expressed genes for each maturation state in a published
tonsil dataset'’, we calculated maturation state gene signature scores in our B-NHL dataset.
As with the maturation marker profiles, gene signature scores of maturation states in
malignant entities reflected scores in their respective states in the rLN dataset (Extended Data

Fig. 4a-b).

For subsequent analyses, we focused only on the malignant B-cells in tumor samples. We
expected to find a single B-cell maturation state per tumor, reflecting a fixed maturation state
inherited from the cell-of-origin. Instead, we detected a spectrum of maturation states within

individual tumors (Fig. 2a-b, Extended Data Fig. 5). As intratumor maturation states were of
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a single BCR clone, they diverged from a common cell-of-origin. These observations indicate

that B-cell maturation is not fixed in malignancy, but remains plastic and divergent.

Fig. 2: Tumors consist of multiple B-cell maturation states
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a, Transcriptomic UMAPs for individual samples from each entity, labeled by B-cell maturation states assigned
by label transfer from the reactive lymph node reference (Fig. 1b). Only malignant cells are shown for tumor
samples. b, Maturation state composition of all samples (n=51) split by entity and ordered by days since
diagnosis. ¢, Box plot showing the proportion of each maturation state in each entity. Each data point is a
sample, grouped by entity. The Wilcoxon signed-rank test’ was performed for each maturation state’s
proportion between reactive lymph nodes and each entity: p<0.05 (*), p<0.01 (**), p<0.001 (***). rLN =
reactive lymph nodes, MCL = mantle cell lymphoma, FL = follicular lymphoma, DLBCL = diffuse large B-cell
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lymphoma (GCB = germinal center, non-GCB/ABC = activated B-cell), MZL = marginal zone lymphoma. See

Fig. 1 for maturation state annotations.

Maturation states are a source of intratumor and intertumor heterogeneity

We observed a characteristic spectrum of maturation states in each entity; the predominant
states reflected their associated cell-of-origin, such as GC states in DLBCL GCB and
memory states in MCL and MZL. However, we observed substantial variation in maturation
state proportions between samples of the same entity (Fig. 2b). Predicting the samples’ entity
by maturation state composition achieved a maximum accuracy of 63% (logistic regression,
nested cross-validation) (Extended Data Fig. 4c). This highlights B-cell maturation as a major

contributor to both intratumor and intertumor variation.

FL and non-GCB DLBCL tumors showed diverse mixtures of GC (DZ and LZ) and post-GC
(Mem and Plasma) states, suggesting that, like DLBCL, FL may also be capable of
transformation into post-GC phenotypes. Both DLBCL and FL showed significant
enrichment in the LZ state compared to rLN controls (p < 0.01, Wilcoxon signed rank test),
but FL tumors were not enriched for the DZ state (Fig. 2b), implying that DLBCL better
maintains a DZ phenotype. Continuation of somatic hypermutation and proliferation in the

DZ state may promote DLBCL’s characteristically more aggressive disease course™.

To study how the phenotypic diversity in B-NHL tumor cells could be explained by variation
in B-cell maturation states, we took an unsupervised approach to multimodal subpopulation
mapping on the full CITE-Seq B-cell dataset (51 samples, 154,282 cells). We created an
integrated dimensionality reduction and clustering from all B-cells’ transcriptomic and
surface protein features using latent factors from Multi-Omic Factor Analysis (MOFA)?*?
(Extended Data Fig. 6a). The 25 multimodal subpopulations identified were segregated
predominantly by the maturation state, supporting maturation as a major driver of tumor
variation (Extended Data Fig. 6b-e). In addition, multiple distinct subpopulations were
observed within each maturation state. The greatest heterogeneity was observed among
memory B-cell states, in which subpopulations were segregated by B-NHL entity.
Distinguishing features among these subpopulations pointed towards known pathogenic

mechanisms, such as CCND] overexpression in MCL (Extended Data Fig. 6f-g).
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Cell-of-origin classification reveals multiple subtypes within each tumor

Next, we examined the implications of intratumor variation in maturation states for
established diagnostic cell-of-origin (COO) classifiers. The Lymph2Cx gene expression
classifier’® is used to classify DLBCL into germinal center (GCB) and activated B-cell (ABC)
subtypes based on a 20-gene panel associated with GC and post-GC maturation states. We
applied this classifier to the single-cell RNA-sequencing (scRNA-seq) data from the
malignant cells of each DLBCL tumor, where higher GCB and ABC gene expression
signature scores corresponded with GC (DZ and LZ) and post-GC (Mem and Plasma) states,
respectively (Fig. 3a). 20-30% of tumor cells did not display a dominant GCB or ABC score
and remained unclassified. Rather than a single GCB or ABC class per tumor, several tumors
consisted of multiple cell-of-origin subtypes (GCB, unclassified, and ABC), whereby the
dominant class largely reflected the GCB or non-GCB diagnosis. However, the presence of
multiple classes on the single-cell level indicates the pathology of DLBCL is more
complicated than previously thought, with a mixture rather than a single cell-of-origin

subtype for each tumor (Fig. 3b).

We confirmed this observation with the Tally DLBCL COO classifier, a simpler classifier
typically employed via immunohistochemistry analysis using the presence or absence of
proteins associated with GCB (CD10, GCET1, and LMO2) or non-GCB (MUMI1 and
FOXP1) states to classify tumors into GCB or non-GCB subtypes®’. This revealed a similar
pattern to that of applying the Lymph2Cx classifier to our scRNA-seq data. With both
classifiers, GCB DLBCL often contained populations of ABC-like cells, consistent with the
B-cell maturation process transforming a portion of tumor cells of GCB origin to an ABC

subtype (Fig. 3d-e).

FL showed both GC and post-GC states, although FL is not known to include an ABC
subtype like DLBCL. Thus, we examined whether both GCB and ABC subtypes could also
be detected at the single-cell level in FL tumors. The application of the Lymph2Cx and Tally
classifiers revealed the presence of both GCB and ABC classes in 10 out of 12 FL tumors
(Fig. 3c+f), revealing the emergence of an ABC-like subtype in FL tumors.
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Fig. 3: Cell-of-origin classification reveals multiple subtypes within each tumor
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a, Normalized GCB and ABC scores for each DLBCL and FL tumor cell determined by the Lymph2Cx
cell-of-origin classifier, labeled by B-cell maturation state. The diagonal line divides cells by their classification
(above = ABC, below = GCB). Cells without ABC or GCB gene set average expression above the housekeeping
genes were unclassified (grey box). b-¢, Lymph2Cx class proportions among the tumor cells of DLBCL samples
faceted by GCB or non-GCB diagnosis (b) and FL samples (c). d, Normalized GCB and ABC scores for each
DLBCL and FL tumor cell determined by the Lymph2Cx classifier, as shown in (a), labeled by Tally class. e-f,
Tally class proportions among the tumor cells of DLBCL samples faceted by GCB or non-GCB diagnosis ()
and FL samples (f). FL = follicular lymphoma, DLBCL = diffuse large B-cell lymphoma (GCB = germinal

center, non-GCB = non-germinal center), COO = cell-of-origin. See Fig.1 for maturation state annotations.

Longitudinal patterns in tumor maturation state composition

Based on these findings, we hypothesized that intratumor heterogeneity introduced by B-cell
maturation may play a role in tumor evolution, whereby a shift in maturation state
composition may occur over time due to progression in maturation or selection by treatment.
This was supported by our observed increases in the class-switched memory (Mem IgG) and
plasma states in MZL samples and an increase in the ABC cell-of-origin subtype in FL.

samples taken later from diagnosis (Fig. 2b). We explored this in longitudinal lymph node
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samples from 3 B-NHL patients (Supplementary Table 1). In an MZL tumor from a patient
who had a complete response to 6 cycles of obinutuzumab and bendamustine but relapsed 15
months later, we observed a decrease in plasma cells with an increase in the Mem IgG state
(Extended Data Fig. 7a). We also observed enrichment in plasma cells after 11 months in a
GCB DLBCL tumor from a patient who relapsed following CAR-T cell therapy
(axicabtagene ciloleucel) (Extended Data Fig. 7b). These results point to the possible
progression of the maturation process over time. However, this effect was probably largely
time-dependent, as we observed little change in maturation state composition after 2 months
in another DLBCL patient who relapsed to the same CAR-T cell therapy (Extended Data Fig.
7c).

Transcription factor signatures of maturation states maintain differential activity

in malignancy

Transcription factors (TFs) are key mediators of the B-cell maturation process, although
alteration of the epigenomic landscape has been described in the pathogenesis of
B-NHL'>**3 We investigated whether differences in TF activities between maturation
states were maintained in malignancy, which could enable a tumor to diverge into multiple
maturation states despite epigenomic dysregulation. We inferred TF activities
computationally from the scRNA-seq data (51 samples) using the SCENIC workflow*’. Here,
we identify coexpression modules between TFs and candidate target genes with an enriched
binding motif and score TF activity based on the modules’ expression in each cell. We
defined signature maturation TFs as those with differentially expressed target genes between
maturation states in the rLN reference dataset (BH-adjusted p-value < 10e-16, average log
fold-change > 0.4). We calculated the relative activity of these TFs between states for each
entity. TFs that were differentially active between maturation states in rLN also showed
similar activity patterns across states in malignant entities (Fig. 4a), suggesting that TF
maturation state signatures were predominantly conserved across malignancies. This pattern
was partially lost, however, in the LZ state in DLBCL (both GCB and non-GCB), where TFs
elevated in the /LN LZ (IRF8, NFKBI, HIVEP3, and REL) showed higher activity in the
memory state. Large variation was observed in the relative activity of memory signature TFs
across entities (eg. IRF'7, STAT1, IRF9). However, this corresponds with the phenotypic
diversity of nodal memory B-cells, which have already completed the maturation process and

are therefore less likely to be dependent on maturation GRNS.
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Fig. 4: Maturation signature TFs maintain differential activity in malignancy
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a, Scaled activity of transcription factors (TFs) across B-cell maturation states in each entity inferred using the
scenic python package®; only TFs significantly enriched (log2 fold-change >0.4, p < 10e-16 as determined with
the MAST R package®) for B cell maturation stages target genes in reactive lymph node samples are shown. TFs
(y-axis) are ordered by the maturation state in reactive lymph nodes in which they are enriched. Non-malignant
cells in tumor samples were excluded based on light-chain restriction. b, Density plots comparing the activity
distribution of a subset of distinguishing transcription factors in each tumor maturation state in malignant cells
aggregated from all tumor samples (n = 43). rLN = reactive lymph node, MCL = mantle cell lymphoma, FL =
follicular lymphoma, DLBCL = diffuse large B-cell lymphoma (GCB = germinal center, non-GCB =

non-germinal center), MZL = marginal zone lymphoma. See Fig. 1 for maturation state annotations.

TFs with the greatest differences in activity between maturation states in malignancy were
primarily those involved in B-cell development, activation, and differentiation. These
included KLF3 in naive and memory B-cells, MAZ and HDAC?2 in GC B-cells, TBLIXRI in
memory, and XBP! in plasma cells (Fig. 4b and Extended Data Fig. 8). These may play a

central role in driving or maintaining the diversity of intratumor maturation states.

Intratumor maturation states occupy distinct spatial microenvironments

The follicular architecture of lymph nodes, which is central to the B-cell maturation process,

is often disrupted in malignancy. Therefore, we sought to understand the spatial context of
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intratumor maturation states and whether spatial niches could still facilitate maturation in
malignancy. We characterized the spatial distribution of cell types with CODEX?' (52
features, Supplementary Table 2) for 19 samples (29 slides) in the CITE-Seq cohort.
Microenvironmental cell types were defined according to previously published nodal cell
type marker profiles*'. Using logistic regression, we transferred B-cell maturation state labels
in the CITE-Seq dataset samplewise to B-cells in the CODEX dataset via the shared protein
features (n=28) between both datasets (Supplementary Table 2). Although we employed
random sampling for class balancing, we obtained a high correlation in maturation state
proportions between the CITE-Seq and CODEX datasets (median R=0.91, p=0.011)
(Extended Data Fig. 9).

We observed substantial variation in tumor microenvironment composition and structure
among tumors and entities, typically with a loss of the normal follicular structure in MCL and
DLBCL (Extended Data Fig. 10a). Tumor cells of different maturation states still tended to
segregate spatially (Extended Data Fig. 10b). For example, FL, consisted of expanded
follicles with DZ and LZ states in the GC and surrounded by memory and plasma states.
MCL, consisted of spatially distinct LZ and memory states, albeit without a typical follicular
structure. ABC2 showed a spread of several maturation states with little spatial distinction,
consistent with DLBCL’s diffuse nature (Fig. 5a). These variations highlight the variable

degrees and patterns of spatial compartmentalization between entities.
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Fig. 5: Intratumor maturation states occupy distinct spatial microenvironments
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a, UMAP of scRNA-seq data labeled by B-cell maturation states mapped from the reactive lymph node
reference with B-cell maturation state proportions (top), and spatial distribution of B-cell maturation states in a
reactive lymph node (rLN), follicular (FL), mantle cell (MCL), and non-germinal center diffuse large B-cell
lymphoma (DLBCL, non-GCB) sample from CODEX?*' images (52 markers) on FFPE tissue sections (bottom).
See Extended Data Fig. 10 for the distribution of maturation states and cell types on all CODEX slides (n=29).
b, Log, of the pairwise cell-cell observed over expected interaction ratios (IR) between B-cell maturation states
and all other cell types in each entity, with a pseudocount of 1. Spatial interactions were determined with
Delaunay triangulation. A higher ratio is associated with increased proximity. B Naive = naive B-cells, B DZ =
centroblasts from the dark zone of the germinal center, B LZ = centrocytes from the light zone of the germinal
center, B Mem IgM = IgD+ and IgM+ memory B-cells, B Mem IgG = class-switched (IgG+ or IgA+) memory
B-cells, B Plasma = plasma cells, CD4T naive = naive CD4+ T-cells, CD8T naive = naive CD8+ T-cells,
TH_memory = memory helper T-cells, TTOX memory = memory cytotoxic T-cells, TTOX exh = exhausted
cytotoxic T-cells, NKT = natural killer T-cells, TFH = follicular helper T-cells, TPR = proliferating T-cells,
TREG = regulatory T-cells, FDC = follicular dendritic cells, DC = dendritic cells, Macro = macrophages,

Stromal = stromal cells, NK = natural killer cells, MC = monocytes, Granulo = granulocytes.
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We explored spatial niches in the CODEX data with K nearest neighbor (KNN) graph-based
cellular neighborhood (CN) analysis*. We identified 11 CNs using 20 KNNs and
characterized them based on the cell types enriched in each CN (Extended Data Fig. 11). We
observed that CNs common in rLNs were also present in tumor samples, including T-cell
zones (Th Mem zone and Mixed T zone) and a stromal zone bordering B-cells in tumors. The
majority of tumors’ malignant B-cells, however, were found in CNs different from the
follicular CN found in rLN samples. Each tumor maturation state was dominant in a different
CN, which often co-existed in the same sample. For example, FL, consisted of DZ, LZ, and
plasma-enriched zones. We observed that intratumor maturation states had different cellular
microenvironments with unique immune compositions, such as enrichment of exhausted
cytotoxic T-cells (TTOX exh) and macrophages (Macro) in plasma tumor zones (Extended
Data Fig. 11). Tumor infiltration of immune cells such as cytotoxic T-cells is central to the
success of cellular immunotherapies. Compared to other maturation states, plasma tumor

cells were more frequently neighboring memory cytotoxic T-cells (TTOX memory).

Heterogeneous microenvironments may promote divergence of maturation states by enabling
or blocking different cellular interactions crucial to stages of the maturation process. FDCs
and TFH were enriched in GC (DZ and LZ) predominant tumor CNs, potentially explaining
how the differentiation of malignant GC cells into post-GC memory or plasma cells occurred
(Extended Data Fig. 11b). To quantify the extent to which cell-cell interactions were
maintained in each entity, we computed the pairwise cell-cell observed over expected
interaction ratios (IR) between B-cell maturation states and other cell types in each entity*.
We found that GC B-cell interactions with FDC and TFH were partially maintained in
tumors, therefore enabling the GC reaction to continue in malignancy (Fig. 5b). Although this
was to a lesser extent in the more diffuse DLBCL and generally post-GC MZL, which could

explain their lower diversity of maturation states compared to FL (Fig. 2b).

Genetic variants among intratumor maturation states

Several characteristic features of B-cell maturation states are known to be commonly
aberrated in B-NHL (eg. BCL6, IRF4, and PRDM1)"*. We considered whether different
intratumor maturation states may be associated with subclonal genetic variation. We profiled
genetic variants, including single-nucleotide variants (SN'Vs), insertions and deletions, and

copy number variants (CNVs) from targeted DNA-sequencing data in bulk tumor samples.
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We then inferred CN'Vs on the single-cell level from gene expression data using the copykat

method**.

We observed distinct CNVs among cells in individual tumors, showing that a tumor’s CNVs
could be confined to a portion of the tumor cells. Some CNVs arose between different B-cell
maturation states. For example, in FL,, most GC tumor cells showed aneuploidy compared to
the predominantly diploid non-GC tumor cells (Fig. 6a-d). This tumor showed copy number
gain in the 6p22.2 region (Supplementary DNA Sequencing Report), which is associated with
the disease progression of FL*. 6p22.2 copy number gain was restricted to the DZ tumor
cells (Fig. 6¢), implying that 6p22 gain may either lock cells in the DZ stage of maturation, or

DZ cells may be more likely to acquire this copy number variant.

Fig. 6: Genetic variants among intratumor maturation states
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a-c, Reference-based UMAP of malignant cells from FL, labeled by (a) B-cell maturation state, (b) diploid or
aneuploid status, and (c) copy number variation (CNV) in chromosomal position 6-26329011 (cytogenetic band
6p22.2) among tumor cells. CNV was inferred from gene expression with the copykat R package*. Copy
number loss was also detected in this chromosomal region with targeted DNA sequencing (Supplementary
DNA-Sequencing Report). d, Frequencies of the aneuploid and diploid variants in each intratumor maturation
state in FL7. e, The average expression (z-scaled) and percentage of cells expressing genes with non-silent
mutations detected with targeted DNA sequencing (Supplementary DNA Sequencing Report) in samples from
mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and

marginal zone lymphoma (MZL). See Fig. 1 for maturation state annotations.
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We also observed that genes harboring non-silent mutations differed in their expressions
between intratumor maturation states. Examples included an MCL tumor with multi-hit
mutated ATM (commonly inactivated in MCL***") showing restored expression in post-GC
states, an FL tumor with multi-hit mutated HIST/HIE and DTX]I (associated with
transformed FL*) showing reduced expression only in post-DZ states, a DLBCL tumor with
multi-hit mutated PIM1 (proto-oncogene associated with ibrutinib resistance®) showing
reduced expression only the memory state, and an MZL tumor with nonsense mutated
TNFAIP3 (NF-kB inhibitor frequently mutated in MZL*) showing reduced expression in
post-GC states. All of these examples indicated that the mutation was acquired only in a
portion of tumor cells that were either arrested or subsequently continued in maturation (Fig.

6¢).
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Discussion

In this study, we investigated in B-NHL how differentiation trajectories influence tumor
variation and evolution. The current paradigm for B-NHL pathogenesis is that the maturation
state of the tumor’s cell-of-origin is a fixed determinant of its entity'"'>**. In contrast, we find
that differentiation remains plastic in malignancy and that the differentiation trajectories

guiding the nodal B-cell maturation process also drive intratumor heterogeneity.

We find that maturation states within a tumor do not always correspond with the
cell-of-origin associated with its entity, revealing that intratumor heterogeneity in B-cell
maturation transcends the known B-NHL entity boundaries. This deviation in maturation is
bidirectional; post-GC states are observed in GC tumors (eg., FL), and, conversely, GC states
are observed in post-GC tumors (eg., DLBCL non-GCB and MZL). This raises two potential
roles of maturation in B-NHL pathogenesis; it may either enable additional tumor maturation
states to evolve from the entity-determining cell-of-origin or drive the emergence of the
predominant entity-associated tumor maturation state from a cell-of-origin earlier in the
maturation process. Although it is formally possible that the B-cell maturation process
acquires additional plasticity to enable shifting to earlier stages in maturation (e.g., memory
or plasma to GC states) in malignancy, we consider this unlikely because many steps of the
maturation process (eg., class-switching and functional differentiation) are inherently
unidirectional'’. In any case, as different B-NHL entities'* and entity subtypes associated with
different maturation states (e.g. GCB vs ABC in DLBCL)""*! have distinct clinical outcomes,
this raises the question of whether the variation in maturation state composition among
tumors is responsible for the variable disease course among patients. This is especially
plausible given that the Lymph2Cx and Tally DLBCL cell-of-origin subtype classifiers,
which distinguish GCB and ABC DLBCL subtypes with distinct prognoses, reveal the
presence of both GCB and ABC classes within individual tumors, even in FL where a
post-GC subtype has not yet been described. Thus, intratumor heterogeneity in maturation
may require redefining known B-NHL entity classes to account for the various and
changeable maturation states within tumors. Follow-up studies using larger cohorts will be
needed to address this question. We anticipate an exciting field of research to emerge in

determining its consequences and opportunities for B-NHL management.
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The plasticity we observed in B-cell maturation in malignancy would enable intratumor
maturation states to diverge and shift over time, thus promoting tumor evolution and
expanding the selection pool for treatment resistance. Future research on the relationship
between intratumor maturation states and treatment resistance could help identify resistance
mechanisms and treatment stratification strategies that account for this intratumor
heterogeneity and evolutionary potential. The B-cell maturation process itself may provide
therapeutic opportunities, such as targeting vulnerabilities in certain maturation states or
blocking tumor cells from differentiating to a resistant state. Signaling pathways and gene
regulatory networks that we have shown to distinguish maturation states in tumors may serve
as suitable targets, some of which already have known ligands (e.g., XBPI) or even approved
drugs (e.g., HDAC2)>. However, such strategies should be weighed carefully against their

potential for immunosuppression.

The tumor microenvironment plays an overarching role in the pathogenesis, evolution, and
response of B-NHL, largely by influencing survival and growth signalings and immune
infiltration or blockade™. The spatial organization of B-cell follicles, with germinal centers
and surrounding mantle zones, is central to the normal B-cell maturation process'®!'". We
show that different intratumor maturation states occupy distinct spatial niches with unique
microenvironments. Disruption of the lymph node follicular structures has long been
recognized in B-NHL**. However, the segregation of maturation states in unique spatial
niches within tumors, such as FDC and TFH co-localizing with germinal center tumor states,
may explain how multiple maturation states can differentiate within a tumor. We observe a
greater diversity of maturation states in FL than GCB DLBCL, which implies that retention
of follicular structures better preserves the B-cell maturation process in tumors. T-cell
immunotherapies, such as CAR-T cells and bi-specific T-cell engagers (BiTEs), have been
gaining importance in B-NHL due to their success in relapsed or refractory DLBCL*°
Varying patterns of T-cell infiltration have been observed across B-cell lymphomas*'. We
observe that immune cell infiltration patterns also vary between intratumor maturation states,
including enrichment of cytotoxic T-cells among plasma tumor cells. This poses the question
of whether immunotherapy may need to account for the maturation state composition of a
tumor, potentially requiring combination immunotherapy to account for multiple intratumor
spatial niches. The diverse microenvironments around these tumor maturation states may also
encourage research on expanding the immunotherapy repertoire: leveraging not only different

T-cell subtypes but also infiltrating myeloid cells and non-malignant B-cells.
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The association of genetic variants with intra-tumor maturation states suggests that oncogenic
mechanisms and the maturation process are intertwined, whereby certain aberrations may be
more likely to lead to malignancy at different stages of the maturation process. Although
inferred from single-cell transcriptomic data, the distinct gene expression patterns between
maturation states associated with genetic variants detected with bulk DNA sequencing
support this hypothesis. This may explain why oncogenic mechanisms have different
frequencies across B-cell lymphoma entities®. By extending this concept to the topic of
intratumor heterogeneity, one can consider that ongoing differentiation trajectories such as
B-cell maturation may promote different tumor survival and proliferation mechanisms within
cells of the same tumor. We expect exciting research to emerge on characterizing the
association between genetic aberrations and intratumor maturation states on the single-cell

level across space and time.

Similar to how sources of variation between organisms drive the evolution of species”’,
sources of intratumor heterogeneity drive tumor evolution. We show that the B-cell
differentiation trajectory in lymph nodes, the B-cell maturation process, is a major source of
this variation in B-NHL. Intratumor heterogeneity of maturation states blurs known entity
boundaries, whereby individual DLBCL and FL tumors can contain multiple previously
distinct clinical subtypes. Gene regulatory networks and cellular interactions central to the
B-cell maturation process are predominantly retained in malignancy, while intratumor
maturation states occupy unique spatial microenvironments and may be subject to genetic
variation. Seeing differentiation as a source of variation in cancer not only helps us to
understand how intratumor heterogeneity arises, but also sheds light on tumor evolution
trajectories and sets the stage for treatment strategies against the emergence of resistant

phenotypes.
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Methods

Lymph node sample processing

The University of Heidelberg's Ethics Committee approved our study (S-254/2016), and we
secured informed consent from every patient beforehand. We processed and froze patient
lymph node (LN) samples for later analysis, following previously described methods*'**. To
mitigate the influence of treatment-associated effects on tumor cells and their surroundings,
we excluded samples from patients who had undergone allogeneic stem cell transplantation,
CAR T-cell, or bispecific antibody therapy from the CITE-Seq cohort. Furthermore, we
ensured all samples were collected at least three months post the termination of the most
recent treatment to maintain the same control. We provide an overview of the sample

composition in Supplementary Table 1.

Single-cell 3> RNA-seq and epitope expression profiling (CITE-Seq)

The cells were thawed, promptly washed to eliminate DMSO, and processed in groups of
four to five that comprised a minimum of three distinct entities to avert entity-driven batch
effects. A dead cell removal kit from Miltenyi Biotec was employed after thawing, aiming for
cell viability of between 85% to 90%. Samples with less than 85% viability were not
included. We then stained 5 x 10”5 live cells with a cocktail of oligonucleotide-linked
antibodies (Supplementary Table 2) and left them to incubate at 4°C for 30 minutes. The cells
were washed thrice with chilled washing buffer and centrifuged for five minutes at 4°C each
time. Following this, cell count and viability were re-evaluated; samples falling below 85%
viability were discarded. Subsequently, we prepared the bead-cell suspensions and carried out
the synthesis of complementary DNA, single-cell gene expression, and the production of
antibody-derived tag (ADT) libraries. For these steps, we used a Chromium single-cell v3.1

3’ kit from 10x Genomics and followed the manufacturer's guidelines (Supplementary Table

1.

Single-cell 5° RNA-seq and B-cell receptor repertoire profiling

Apart from epitope staining, sample processing was identical to 3’ scRNA-seq. The
preparation of the bead-cell suspensions, synthesis of complementary DNA and single-cell

gene expression, and BCR libraries were performed using a Chromium single-cell v2 5° and
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human BCR amplification kit (both 10x Genomics) according to the manufacturer’s

instructions. An overview of sample libraries is provided in Supplementary Table 1.

Single-cell library sequencing and data processing

We pooled the 3’ gene expression and ADT libraries in a 3:1 ratio, targeting 40,000 reads
(gene expression) and 15,000 reads per cell (ADT) respectively, and sequenced them on a
NextSeq 500 (Illumina). 5’ gene expression libraries were sequenced on a NextSeq 2000
(ITlumina), aiming for 50,000 reads per cell. BCR libraries, sequenced on a NextSeq 500

(Illumina), were aimed at achieving a minimum of 5,000 reads per cell.

Post sequencing, we utilized the Cell Ranger software’s (10x Genomics, v6.1.1) cellranger
mkfastq function for demultiplexing and aligning raw base-call files to the reference genome
(hg38). For 3’ gene and epitope expression libraries, we used the cellranger count command
on the resulting FASTQ files, while we used cellranger multi for 5° gene expression and BCR
libraries. For the BCR libraries, we used the VDJ Ensembl reference (hg38, v5.0.0) as a
reference. Unless specifically stated otherwise, we adhered to default settings for all

functions.

CITE-Seq data analysis

The Seurat R package (v4.1.0) was used to perform data quality control, filtering, and
normalization (log-based normalization for RNA and centered log-ratio transformation for
ADT data). Gene counts per cell, ADT counts per cell, and percentages of mitochondrial
reads were computed using the built-in functions. Principal component analysis®, Louvain
clustering®, and UMAP®' were performed for the transcriptome (RNA) and epitope (ADT)
data independently. After mapping the CD3 and CD19 epitope expression, non-B-cell
transcriptomic clusters and doublets were removed. We used the IntegrateData function of
the Seurat package for data integration across the different preparation batches. For
multimodal clustering, multi-omic factor analysis was performed with the MOFA2 R
package®*? (v1.8) based on the combined transcriptome and epitope data, and the resulting

latent factors (n=30) were used as principal components.

5’ single-cell RNA-seq data and B-cell receptor profile analysis
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Transcriptomic analysis was performed using the R package Seurat (v4.1.0) as described in
the CITE-Seq data analysis section above. B-cell receptor (BCR) clonotypes were added to

the metadata from the cellranger multi output.

Sorting of B-cell maturation states in reactive lymph nodes

B-cell maturation states from 5 reactive lymph nodes and 2 tonsils were identified and sorted
with the below marker panels and the FACS gating strategy outlined in Extended Data Fig. 1.

Maturation states and their marker panels were adapted from previous studies which defined

63,64 63,64

naive®*, germinal center®, memory®*, and plasma® states with flow cytometry.
Naive B-cells (Naive): CD19+, CD20+, CD38 low, CD27-, IgD high

Germinal center dark zone B-cells (DZ): CD19+, CD20+, CD38+, CD184+, CD83-
Germinal center light zone B-cells (LZ): CD19+, CD20+, CD38+, CD184-, CD83+
IgM memory B-cells (Mem IgM): CD19+, CD20+, CD38 low, CD27+, IgM+

IgG memory B-cells (Mem IgG): CD19+, CD20+, CD38 low, CD27+, IgG+

Plasmablasts/plasma cells (Plasma): CD19+, CD20 low, CD38 high, CD27 high, IgD low

RNA-seq of sorted maturation states

RNA was isolated by the RNeasy Micro Kit (Qiagen, Hilden, Germany) and quantified with
Bioanalyzer RNA 6000 pico assay (Agilent, Santa Clara, US). The libraries were generated
with NuGENSs Trio RNA-Seq System (NuGEN, Redwood City, California) for whole RNA
and sequenced on an Illumina NextSeq2000 (Illumina, San Diego, US). Reads were trimmed
with TrimGalore v0.6° and aligned with hisat2 v2.2.1%. The DESeq2 R package® (v1.38.3)
was used for differential gene expression analysis between maturation states. Default
parameters were used unless otherwise specified. Gene symbols, as per the scRNA-seq

datasets, were obtained from Ensembl’” HGNC symbols.

Characterization of B-cell maturation states in the reactive lymph node reference
Clustering and differential expression analysis of the sScCRNA-seq data from B-cells in the
integrated reactive lymph node samples (8 samples, 16625 cells) were performed as
described in the Seurat Guided Clustering Tutorial ', with the clustering resolution
parameter set to 1. Clusters were assigned to known B-cell maturation states based on their
differential expression (in RNA and ADT features) of established markers of B-cell

maturation states from several sources in the literature'™!"'**2¢ (Supplementary Table 3).
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Classification of reactive lymph node maturation states in single-cell RNA-seq data

The RNA-seq data from the sorted maturation states was filtered by the 2000 most variable
RNA features in the reactive lymph node scRNA dataset (8 samples combined) and scaled.
The resulting matrix was used as input for training a logistic regression model with nested
cross-validation for the classification of maturation states using the nestedcv package™ . The
resulting best-fit model was used to predict maturation states in the log-normalized and
scaled scRNA-seq data from reactive lymph nodes. Predicted states were used to validate

marker-based maturation state annotations in the CITE-Seq rLN reference dataset.

Mapping of maturation states in all lymph node samples

B-cell maturation states defined in the reactive lymph node reference were mapped to each
tumor sample in the CITE-Seq and 5’ scRNA-seq datasets using an anchor-based single-cell
integration approach outlined in the Seurat multimodal reference mapping tutorial**’¢,
Log-normalized counts (without batch-effect correction to prevent bias introduced by sample
integration) were used to find transfer anchors and project samples on the reference

reductions - PCA (50 dimensions) and UMAP (2 dimensions).

Isolation of malignant B-cells

Malignant B-cells in tumor samples were identified based on immunoglobulin light chain
restriction, whereby malignant (monoclonal) populations of cells are restricted to either the
kappa or lambda immunoglobulin light chain and non-malignant B-cell populations
(polyclonal) show mixed kappa and lambda light chain positivity”. As a minority of ADT
counts may be present from ambient unbound antibodies during CITE-Seq library
preparation, the proportion of total light chain counts of the kappa subtype (Kappa
counts/(Kappa + Lambda counts)) per cell was used as a surrogate for binary positivity.
Transcriptional B-cell clusters with an average kappa light chain proportion of >80% or
<20% across all cells were considered malignant. Non-malignant B-cells represented a

median of 6% [0%, 94%] of all B-cells in tumor samples.

Maturation state gene expression signature scoring

Maturation state gene expression signature scores were calculated by averaging the
log-normalized counts for the 50 most differentially expressed genes (by fold-change) for

each B-cell maturation state annotated in a published tonsil scRNA-seq dataset’.
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Inference of transcription factor activity from single-cell RNA-sequencing data

The pySCENIC* workflow was executed through a custom Snakemake pipeline. To infer the
Gene Regulatory Network (GRN), we used the GRNBoost2 algorithm from the Arboreto”’
package with 10 perturbations. The analysis was performed on the raw scRNA-seq data.
Transcription factor (TF) regulons were predicted using the human v9 motif collection from
cisTarget (hg38 refseq-r80 10kb up and down_tss.mc9nr.feather and

hg38 refseq-r80 500bp up and 100bp down tss.mc9nr.feather databases). AUC scores
per cell and GRNs were obtained for visualization and downstream analysis. For the final
GRN reconstruction, only target genes occurring in more than 95% of the runs were
considered. Differential expression (DE) analysis between B cell maturation stages was
conducted using Seurat's FindMarkers™ function on the RNA assay, utilizing the MAST*
method for DE analysis from single-cell data. DE genes between conditions in all cell
populations were identified (p.adj < 10e-16 & log2FC > 0.4), and p-values were adjusted for
multiple comparisons using the Benjamini-Hochberg” correction method. To determine
differentially active TFs, we utilized the output of the SCENIC GRN, which provided TF
activity at a single-cell level. Differentially active TFs were detected using Fisher's exact test
to assess the enrichment of maturation stage-specific DE genes among all the TF target genes

extracted from the SCENIC GRN (p.adj < 0.05).

CODEX imaging and processing

Representative tumor or tumor-free lymph node areas were selected from archival FFPE
tissue blocks belonging to 19 patients. This selection was made by the certified pathologists
at the National Center for Tumor Diseases' Tissue Bank and the University Hospital
Heidelberg's Institute of Pathology as previously described*'. Two 4.5 mm cores per patient
were incorporated into Tissue Microarrays (TMAs). TMA sections (4 um) were affixed to
Vectabond-precoated 25 x 25 mm coverslips, coated with paraffin, and stored for future

staining.

Antibody conjugation, validation, and titration

We used the co-detection by indexing (CODEX) approach for multicolor
immunofluorescence®'. Antibodies utilized for CODEX experiments are summarized in
Supplementary Table 2. We reduced purified, carrier-free antibodies with

Tris(2-carboxyethyl)phosphine (TCEP) and conjugated them with maleimide-modified
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CODEX DNA oligonucleotides, procured from TriLink Biotechnologies. A board-certified
pathologist supervised the evaluation of the conjugated antibodies in singleplex stains on
tonsil and/or lymphoma tissue, comparing with online databases, immunohistochemical
reference stains, and published literature. We validated staining patterns in multiplex
experiments with positive and negative control antibodies and titrated the appropriate dilution

of each antibody starting from 1:100 to optimize the signal-to-noise ratio.

Multiplex tissue staining and fixation

We deparaffinized, and rehydrated coverslips, and subjected them to heat-induced epitope
retrieval at pH9 and 97°C for 10 minutes in a Lab Vision PT module. After blocking
non-specific binding with CODEX FFPE blocking solution, we stained the coverslips
overnight with the full antibody panel at the dilutions shown in Supplementary Table 2.
Following staining, coverslips were fixed with 1.6% paraformaldehyde, methanol, and BS3

fixative, then stored in CODEX buffer S4 until imaging.

Multicycle imaging

We attached stained coverslips to custom acrylic plates and inserted them into a Keyence
BZ-X710 inverted fluorescence microscope. We selected 7x7 fields of view and an
appropriate number of z-planes (10-14) to capture the best focal plane across the imaging
area. Multicycle imaging was performed using a CODEX microfluidics device. Post
completion of multicycle imaging, coverslips were stained with hematoxylin/eosin, and the

same areas were imaged in brightfield mode.

Image processing

We processed raw TIFF images using the RAPID pipeline® in Matlab with the default
settings. Post-processing, images were concatenated to hyperstacks. Each tissue core was

visually inspected for staining quality using ImagelJ/Fiji.

Cell segmentation and cell type annotation

We segmented individual nuclei based on the Hoechst stain and quantified cellular marker
expression levels using a modified version of the Mask R-CNN-based CellSeg software. A
threshold based on the intensity of the nuclear markers Hoechst and DRAQS was used to

exclude non-cellular events. Cells were then submitted to Leiden-based clustering using the
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scanpy Python package, and cluster annotations were assigned according to previously

identified cell type marker profiles*’.

CITE-Seq to CODEX B-cell maturation state label transfer

B-cell maturation states in the CODEX data were classified sample-wise from annotations in
the CITE-Seq data using shared features (n = 28) in the CITE-Seq and CODEX antibody
panels (Supplementary Table 2). After selecting the shared features, CITE-Seq ADT counts
and CODEX fluorescence intensities were subject to the same preprocessing steps of
log-ratio normalization and scaling (z-scored) with Seurat v4. For each sample, a logistic
regression classifier (glmnet package, 10-fold nested cross-validation)™” was trained on the
annotated CITE-seq data to classify B-cell maturation states. To prevent prediction bias
toward majority classes, random sampling was performed to balance class distribution within
the splits. For each sample, the resulting best-fit model (with the highest balanced accuracy
on the outer folds) was used to predict B-cell maturation states in the sample’s corresponding
CODEX B-cell data. The median Pearson correlation coefficient between the samples’
CITE-Seq and CODEX maturation state proportions was 0.91 (p = 0.011) (Extended Data
Fig.8).

Cellular neighborhood analysis

We modified a previously described approach for neighborhood analysis**. For each cell, the
20 nearest neighbors were determined based on their Euclidean distance of the X and Y
coordinates, thereby creating one 'window' of cells per individual cell. Next, we grouped
these windows using k-means clustering according to the proportions of cell types within
each window. We selected K=11 for the number of neighborhoods as we observed that higher
values of k did not result in an improved biologically interpretable number of neighborhoods.
Neighborhoods were annotated based on their biological function in normal lymph nodes or

their enriched cell type(s)/state(s).

Cellular interaction likelihood analysis

Spatial graph representations of immediately neighboring cells were constructed based on
Delaunay triangulation between centroid coordinates using the scipy.spatial Python
package®'. To compute pairwise association strengths between clusters, relative frequencies

were computed using the following metric:
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Nij x Nt
Nix Nj

in which Nij is equal to the total number of edges between clusters i1 and j, Nt the total
number of edges in the sample, and Ni and Nj the total degrees of clusters i and j
respectively*?. Computed association strengths were calculated separately for each disease

entity, between B-cell states and other cell types.

DNA sequencing

DNA was fragmented (Covaris sonication) to 250 bp and further purified using Agentcourt
AMPure XP beads (Beckman Coulter). Size-selected DNA was then ligated to adaptors
during library preparation. Each library was quantified using qPCR and analyzed for quality
after fragmentation and library preparation based on library yield and size on an Agilent
Bioanalyzer. The sample MZL, failed at the library preparation stage. Finally, libraries were
enriched for genes using the Sure Select XT Target Enrichment System for Illumina
Paired-End Multiplexed Sequencing and each capture pool was sequenced at 300-400x. A list
of captured regions is included in Supplementary Table 4.

Pooled samples were demultiplexed using a custom demultiplexing tool. Read pairs were
aligned to the hg19 reference sequence using the Burrows-Wheeler Aligner®, and data were
sorted and duplicate-marked using Picard tools (version 2.23.3)*. All steps were performed

within the bebio-nextgen toolkit (version 1.2.9)%.

The minimum quality criterion was 80% of target bases having > 30x sequencing coverage.
Cases with 60-79% of target bases with > 30x sequencing coverage were also included if
target bases not covered were < 1%. Cases with target bases covered 30x < 60% or cases with
target bases covered 30x between 60-80% and target bases not covered > 1% were excluded.
This was achieved for all sequenced samples (DNA-Sequencing Report, Fig. 1). Metrics were
collected using Picard tools (version 2.23.3)®. For detailed QC metrics see Supplementary

Table 5.
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Variant Analysis

Mutation analysis for single nucleotide variants (SNV) and Insertions and Deletions (InDels)
was performed using MuTect2® (GATK v4.1.9.0)* and annotated by Funcotator®’ (GATK
v4.1.9.0). A panel-of-normals (PON) filter was generated using samples annotated as rLN

tSS

and a panel of normal from the 1000 Genomes Project™. Variants were included in the PON

if present in two or more normal samples.

Non-silent variants (Missense Mutation, Nonsense Mutation, Nonstop Mutation,

Splice Site, Translation Start Site) resulting from BestEffect Funcotator annotation
(dataSources.v1.6) at a variant allele frequency of > 10% are kept for further investigations.
Germline polymorphisms and sequencing artifacts were excluded by comparison with the
panel-of-normals and with the gnomAD database®”. Known germline polymorphisms from
the Exome Sequencing Project” and dbSNP?! databases were excluded. An overview of the

somatic variants identified is depicted in the Supplementary DNA-Sequencing Report.

Genome-wide copy number aberrations (CNAs) were called using CNVkit (v0.9.9)*.
Notably, this tool takes advantage of both on- and off-target sequencing reads and estimates
the copy number using a pooled normal reference to compare binned read depths. Log2
change from a pool of normal control of 0.2 was used as an indication of chromosomal gain

or loss. Chromosomes X and Y are excluded from the analysis.

Inference of copy number variation from single-cell RNA-sequencing data

Copy number variants (CNVs) and ploidy were inferred from single-cell RNA-sequencing
count data in each sample using the copykat R package as per the package vignette™. A cell
filtering threshold of 5 genes per chromosome and a minimal segmentation window size of
25 genes was used. Copy number variation (Euclidean distance) was determined at a
resolution of SMB chromosomal segments, which was added as a new assay to CITE-Seq
Seurat objects for each sample for visualization of copy number variants across intratumor

maturation states.

Interactive data browsing

All single-cell data and tissue cores imaged in this study including the marker stainings will

be available for interactive browsing on publication.
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Data availability

All single-cell sequencing data will be available in the European Genome-Phenome Archive
(https://ega-archive.org/) database upon publication. Highly multiplexed immunofluorescence

images will be available in the BioStudies database (https://www.ebi.ac.uk/biostudies/) upon

publication.

Code availability

Code scripts used for all analyses and figure generation will be made available on github.com

on publication.
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Extended Data Fig. 1: Gating strategy of B-cell maturation states from reactive lymph

nodes
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B-cell maturation state gating strategy for flow-activated cell sorting (FACS) employed on B-cells isolated from
human rLN (n=5) and tonsils (n=2) using the following marker panels: Naive B-cells (CD19+, CD20+,
CD38low, CD27-, IgD high), [gM memory B-cells (CD19+, CD20+, CD38 low, CD27+, IgM+), IgG memory
B-cells (CD19+, CD20+, CD38 low, CD27+, IgG+), germinal center dark zone B-cells (CD19+, CD20+,
CD38+, CD184+, CD83-), germinal center light zone B-cells (CD19+, CD20+, CD38+, CD184-, CD83+) and
plasmablasts/plasma cells (CD19+, CD20 low, CD38 high, CD27 high, IgD low). Maturation states and their

63,64 63,64

marker panels were adapted from previous studies which defined naive®®, germinal center®, memory®**, and

plasma®® states with flow cytometry.
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Extended Data Fig. 2: Classification from sorted B-cell maturation states
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The first two principal components of RNA-seq data from FACS-sorted B-cell maturation states from rLN (n =

5) and tonsils (n = 2) colored by a, tissue source, b, the sample of origin, and ¢, maturation state. d,

Transcriptomic UMAP of the integrated CITE-Seq B-cells data from 8 rLN labeled by maturation state

predicted with logistic regression from the sorted states’ RNA-seq data. e Z-scaled gene expression of a subset

of B-cell maturation markers across predicted maturation states in the rLN reference. See Fig. 1 for maturation

state annotations.


https://doi.org/10.1101/2023.11.06.565756
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.06.565756; this version posted November 7, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Extended Data Fig. 3: Isolation of malignant B-cells based on light chain restriction
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a, Reference-based UMAP labeled by malignant clone as determined by BCR profiling (left) and
immunoglobulin light chain (right) for a MCL (top) and MZL (bottom) sample. b, Horizontal violin plot
depicting the proportion of kappa light chain gene expression (x-axis) in malignant and normal B-cells in the
samples shown in (a). Red = kappa-positive, blue = lambda-positive. ¢, Vertical violin plot showing the
proportion of kappa light chain surface epitope detected in malignant cells isolated from all tumor samples in the
CITE-Seq cohort (n = 43). Red = kappa-restricted, blue = lambda-restricted. Malignant B-cells were identified
as light chain-restricted transcriptional clusters (mean kappa proportion >0.75 or <0.25). A light-chain-restricted
tumor population was identified in all samples except ABCS and FL4, which showed light-chain depletion
instead. d, The proportion of B-cells that are malignant or non-malignant, based on light chain restriction, in
each sample, faceted by entity: reactive lymph nodes (rLN), mantle cell lymphoma (MCL), follicular lymphoma
(FL), germinal center and non-germinal center diffuse large B-cell lymphoma (DLBCL, GCB/non-GCB), and
marginal zone lymphoma (MZL).
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Extended Data Fig. 4: B-cell maturation marker expression and maturation gene

signature scores by entity
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a, Dot plots showing the relative gene expression and abundance of maturation markers for each predicted
maturation state in each entity. b, Heatmap of maturation state scores calculated from annotated maturation
states in a published tonsil germinal center scRNA-seq dataset'’. Each score shown is scaled across all scores in
the dataset (mean = 0, sd = 1). ¢, Confusion matrix (left) showing the predicted (x) vs true (y) classes when
predicting entity by maturation state proportions with random forest (nested cross-validation), with test statistics
(right) for classification of each entity (overall accuracy 63%). Entities: reactive lymph nodes (rLN), mantle cell
lymphoma (MCL), follicular lymphoma (FL), germinal center and non-germinal center diffuse large B-cell
lymphoma (DLBCL, GCB/non-GCB), and marginal zone lymphoma. See Fig. 1 for maturation state

annotations.
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Extended Data Fig. 5: Maturation state composition of tumors
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Reference-based UMAP labeled by B-cell maturation states for the CITE-Seq data from each sample (n=51).
Maturation states are assigned by label transfer from the reactive lymph node reference in Fig. 1 as outlined in
the Methods. Tumor cells were isolated from non-malignant B-cells based on light chain restriction of
transcriptional clusters (Extended Data Fig. 3). Maturation state annotations: Naive = Naive B-cells, DZ =
Centroblasts from the dark zone of the germinal center, LZ = Centrocytes from the light zone of the germinal
center, Mem IgM = IgD+ and IgM+ memory B-cells, Mem IgG = class-switched (IgG+ or IgA+) memory

B-cells, Plasma = plasma cells.
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Extended Data Fig. 6: Multimodal subpopulation mapping of nodal B-cell non-Hodgkin

lymphomas
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UMAP visualization of the full CITE-Seq B-cells dataset (n=51) constructed with the latent factors (n = 50)
from multi-omic factor analysis (MOFA)* based integration of the single-cell RNA and ADT (surface markers)
data layers as principle components, labeled by a, clustering on the multimodal latent factor space, b, maturation
states mapped from the reactive lymph node reference (Fig. 1b), ¢, entity, d, malignancy as determined by light

chain restriction (Extended Data Fig. 2¢), and e, samples taken at diagnosis or relapse. Z-scaled expression
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across multi-modal clusters of the 3 most differentially expressed genes (f) and proteins (g) by fold-change per

cluster.
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Extended Data Fig. 7: Longitudinal patterns of tumor maturation state composition

a MZL b DLBCL, GCB c DLBCL, GCB
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Maturation state composition of tumor cells in longitudinal samples from 3 patients: a, An MZL patient who
relapsed 15 months following complete response to 6 cycles of obinutuzumab-bendamustine
chemo-immunotherapy; b-¢, two GCB DLBCL patients who relapsed after 11months (b) and 2 months (¢)

following axicabtagene ciloleucel (CAR-T cell) therapy. See Fig. 1 for maturation state annotations.
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Extended Fig. 8: Differential transcription factor activity between tumor maturation
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a, Bar charts showing the log2 odds ratio for differentially active transcription factors (TFs) in the tumor cells of
each B-cell maturation state inferred with the SCENIC python package® from single-cell RNA-sequencing data
from the malignant cells of all tumor samples combined (n=43). Only TFs with differentially expressed target
genes (log2 fold-change >0.4, p < 10e-16 as determined with the MAST R package*’) are shown. Bars

highlighted in darker orange represent transcription factors with significant differential activity (FDR < 0.1
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threshold). b, UpSet plot showing the intersections between the differentially active transcription factors (FDR

<0.1) for each maturation state. See Fig. 1 for maturation state annotations.
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Extended Data Fig. 9: Maturation state correlations between CITE-Seq and CODEX by

sample
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Scatter plots showing the Pearson correlation between B-cell maturation state proportions in the CITE-Seq and
CODEX data for each a, reactive lymph node (rLN), b, mantle cell lymphoma (MCL), ¢, follicular lymphoma
(FL), d, diffuse large B-cell lymphoma (DLBCL) and e, marginal zone lymphoma (MZL) sample. The median
Pearson correlation coefficient across samples is shown (bottom-right). Maturation state labels were transferred
from the CITE-Seq to CODEX data for each sample using logistic regression on shared protein channel/ADT

features (n = 28). See Fig. 1 for maturation state annotations.
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Extended Data Fig. 10: Spatial distribution of tumor microenvironments and

maturation states
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Spatial distribution of a, all cell types (with B-cells in black) and b, B-cell subsets in reactive lymph nodes
(rLN), mantle cell lymphoma (MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL) and
marginal zone lymphoma (MZL) from CODEX images on FFPE sections. B-cell states were classified
samplewise using logistic regression from the CITE-Seq data using the shared features (n = 28). Marker-based
annotation of all other cell types was performed on clustering of the CODEX features (n = 52, see
Supplementary Table 5). B Naive = naive B-cells, B DZ = centroblasts from the dark zone of the germinal
center, B LZ = centrocytes from the light zone of the germinal center, B Mem IgM = IgD+ and IgM+ memory
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B-cells, B Mem IgG = class-switched (IgG+ or I[gA+) memory B-cells, B Plasma = plasma cells, CD4T naive =
naive CD4+ T-cells, CD8T _naive = naive CD8+ T-cells, TH_memory = memory helper T-cells, TTOX memory
= memory cytotoxic T-cells, TTOX exh = exhausted cytotoxic T-cells, NKT = natural killer T-cells, TFH =
follicular helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells, FDC = follicular dendritic
cells, DC = dendritic cells, Macro = macrophages, Stromal = stromal cells, NK = natural killer cells, MC =

monocytes, Granulo = granulocytes.
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Extended Data Fig. 11: Spatial distribution of cellular neighborhoods
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a, Spatial distribution of cellular neighborhoods (CNs) in reactive lymph nodes (rLN), mantle cell lymphoma
(MCL), follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), and marginal zone lymphoma
(MZL) from CODEX images on FFPE sections. CNs (n = 11, KNN = 20) were calculated using all CODEX
slides (n=29) and labeled based on their distinguishing features, ie. tumor cells’ predominant maturation state
(eg. DZ, Mem), B-cells’ location or function in reactive lymph nodes (eg. Follicular, Mantle zone), or enriched
cell type(s) (eg. Mixed T zone, T Mem zone). b, Relative abundance of each cell type across Cellular
Neighborhoods (CNs), scaled by cell type frequency. B Naive = naive B-cells, B DZ = centroblasts from the
dark zone of the germinal center, B LZ = centrocytes from the light zone of the germinal center, B Mem IgM =
IgD+ and IgM+ memory B-cells, B Mem IgG = class-switched (IgG+ or IgA+) memory B-cells, B Plasma =
plasma cells, CD4T naive = naive CD4+ T-cells, CD8T naive = naive CD8+ T-cells, TH_memory = memory
helper T-cells, TTOX memory = memory cytotoxic T-cells, TTOX exh = exhausted cytotoxic T-cells, NKT =
natural killer T-cells, TFH = follicular helper T-cells, TPR = proliferating T-cells, TREG = regulatory T-cells,
FDC = follicular dendritic cells, DC = dendritic cells, Macro = macrophages, Stromal = stromal cells, NK =

natural killer cells, MC = monocytes, Granulo = granulocytes.


https://doi.org/10.1101/2023.11.06.565756
http://creativecommons.org/licenses/by-nc/4.0/

