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Abstract. Pangenomes are becoming a powerful frameworks to perform many bioinformatics
analyses taking into account the genetic variability of a population, thus reducing the bias
introduced by a single reference genome. With the wider diffusion of pangenomes, integrating
genetic variability with transcriptome diversity is becoming a natural extension that demands
specific methods for its exploration. In this work, we extend the notion of spliced pangenomes
to that of annotated spliced pangenomes; this allows us to introduce a formal definition of
Alternative Splicing (AS) events on a graph structure.
To investigate the usage of graph pangenomes for the quantification of AS events across condi-
tions, we developed pantas, the first pangenomic method for differential analysis of AS events. A
comparison with state-of-the-art linear reference-based approaches proves that pantas achieves
competitive accuracy, making spliced pangenomes effective for conducting AS events quantifica-
tion and opening future directions for the analysis of population-based transcriptomes. pantas
is open-source and freely available at github.com/algolab/pantas.
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1 Introduction

Pangenomics is emerging as a new powerful computational framework for analyzing the genetic vari-
ability of a population without being negatively affected by the reference bias introduced when con-
sidering a single genome as a reference. The recent release of the first draft human pangenome refer-
ence [23] demonstrated that this richer reference can be used to perform many bioinformatics analyses,
e.g., variant calling, with superior accuracy and precision, especially in structurally complex loci of
the genome. In particular, pangenomes have also been showed to improve transcriptomic data anal-
ysis [32], thanks to the extension of the notion of pangenomes to that of spliced pangenomes (or
pantranscriptomes). A spliced pangenome is obtained by enriching a pangenome, that is a graph
structure representing the genetic diversity of multiple individuals of a population, with transcript
variability coming from gene annotations. In [32], this complex but powerful graph structure is used
to perform hapolotype-aware transcript quantification. A comparison with reference-based approaches
proves that spliced pangenomes improve the accuracy of transcript quantification. Indeed, by incor-
porating both genetic variability and isoform diversity, spliced pangenomes allow to reduce the allelic
bias and increase the number of reads aligned over heterozygous variations [32]. Apart from this sem-
inal work, the usage of spliced pangenomes in the context of transcriptomic is fairly unexplored and
their full potential is still under investigation. Similarly to pangenomics, pantranscriptomics needs
suitable bioinformatics tools to fulfill its biological potential. Encouraged by the results in [32], we
explore the adoption of spliced pangenomes for performing a classical transcriptomic task, namely the
differential quantification of Alternative Splicing (AS) events across conditions.

Alternative splicing (AS) is a regulation mechanism which allows a single gene to code for multiple
isoforms and hence express multiple proteins. Such a mechanism is the main contributing factor
for the overwhelming complexity of transcriptomes in eukaryotes. AS is associated with different
diseases [8,34,9] and it is also now clear that it plays a key role in various biological processes, like
aging [7]. The advent of RNA-Sequencing technology (RNA-Seq) enabled the analysis of transcriptome
and alternative splicing at an unprecedented speed and precision. A typical RNA-Seq analysis consists
of comparing two conditions (e.g., control vs tumor) and checking for changes in terms of isoform
abundances [36,19]: a change in the relative abundances of the isoforms of a gene is usually a strong
evidence of differential splicing. An alternative approach consists in directly detecting and quantifying
alternative splicing events. Instead of focusing on entire isoforms quantification, several approaches
work at a finer-grained level and focus on exon-exon boundaries, also known as splice junctions, and
check for changes in their usage. By analyzing splice junctions, these approaches can directly detect and
quantify AS events providing more accurate results with respect to approaches based on transcript
quantification [17]. Several tools have been proposed in the literature to differentially quantify AS
events from RNA-Seq datasets [31,20,15,13,37,38,21,33].

Differently from state-of-the-art, where a single reference is considered and AS event quantification
is modeled without taking into account the genetic variability of the population of the species under
investigation, we propose to use a spliced pangenome and quantify AS events using this more pow-
erful structure that inherently represents multiple individuals and gene annotations. To this aim, we
introduce the notion of annotated spliced pangenome, we propose the first formalization of AS events
on this richer structure, and we provide the first method, pantas, to perform AS events differential
quantification on a spliced pangenome. Although the adoption of a graph structure is not new in
the computational transcriptomics, where splicing graphs are commonly used to model isoform vari-
ability [4,5,29,20,15,13], no approach takes also into account the genetic variability of the population
under investigation. It is indeed well known that genetic variations alter splicing pattern in many dis-
eases [24,22]. However, establishing their impact on alternative splicing is still challenging [11]. Even
though the adoption of spliced pangenomes may shed more light on the relationship between genetic
variations and splicing, the current lack of efficient tools for pangenomic-based analysis of RNA-Seq
data is hindering this kind of investigation. Our work here is a first step in closing this gap.

Experimental evaluation on simulated and real data from Drosophila and Human shows that spliced
pangenomes can be effectively adopted to perform AS events quantification. A comparison with state-
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of-the-art tools based on linear reference or splicing graph shows that AS event quantification from
spliced pangenome provides competitive results. Our preliminary investigation paves the way to the
adoption of spliced pangenomes for pantranscriptomic analysis, where genes are annotated w.r.t. a
pangenome and not a single reference genome [1].

2 Methods

In this section, we first introduce the notion of annotated spliced pangenome and then we describe the
approach based on this structure that we developed for detecting and quantifying AS events across
RNA-Seq conditions.

2.1 Annotated spliced pangenome graph

A variation graph, as defined in [2], is a directed graph whose vertices correspond to portions of
genomes and are labeled by nonempty strings, and edges represent consecutiveness between two such
portions of genomes. A spliced pangenome, introduced in [32], is a variation graph with some dis-
tinguished walks: the walk R corresponding to the reference genome, the walks {H1, H2, . . . , Hh}
representing the h input haplotypes, and the walks {T1, T2, . . . , Tt} representing t transcripts coming
from a gene annotation. The arcs that belong to some transcript walk Ti, but do not belong to R,
correspond to annotated splice junctions. These edges link two vertices of the graph that are not
consecutive in the reference walk (due to the presence of intronic regions between the exons). Notice
that, in a spliced pangenome, a vertex v that also belongs to at least a transcript walk Ti represents an
exonic region of the reference genome. All other vertices represent intronic regions, intergenic regions,
or alternative alleles. In this work, we will focus on a simpler version of this graph where no input
haplotype is explicitly stored as a distinguished walk (i.e., h = 0). Although this is a simplification
of the original notion of spliced pangenome, it is sufficient for AS events detection and quantifica-
tion since, as we will show in the following sections, AS events can be modeled using only transcript
information.

An annotated spliced pangenome is a spliced pangenome whose vertices and arcs are annotated
(or labeled) with some additional information that will be essential for formalizing and detecting AS
events. An example of annotated spliced pangenome is given in Fig. 1. More comprehensive examples
are given in Suppl. Fig. S1 and S2. More precisely, each vertex v of an annotated spliced pangenome
is annotated with two information: the set E(v) of its exons and the set T (v) of its transcripts. We
note that the a vertex can represent a single exonic region on the reference genome, but this exonic
region may belong to multiple exons coming from different transcripts, e.g., due to an alternative form
of an exon. For this reason, E(v) is a set of exons and not a single exon. To simplify the exposition,
whenever E(v) or T (v) are empty, we say that the vertex v has no annotation — this can happen, e.g.,
for a vertex in an intergenic region. Moreover, each edge e = ïu, vð of an annotated spliced pangenome
that represents a splice junction is annotated with the set T (e) of the transcripts it belongs to. As for
vertices, the same splice junction can be shared by many transcripts.

2.2 AS events quantification from annotated spliced pangenomes

Given an annotated spliced pangenome, the problem we want to tackle is detecting and quantifying
the AS events supported by an input RNA-Seq dataset, comprising two conditions with optional
replicates. To this aim, we consider as input of our problem the annotated spliced pangenome and the
spliced alignments of the input samples computed against it. The expected output is the set of AS
events (exon skipping, alternative acceptor, alternative donor, and intron retention) supported by the
alignments. To solve this problem, we designed and developed pantas.

pantas starts by weighting all edges of the input graph based on how many times they are used by
the input alignments of each replicate. This is necessary to compute the support of the AS events and
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T1

T2

T1.e1, T2.e1
T1.e1 > T1.e2

T2.e1 > T2.e2

T1.e2 > T1.e3

T1.e2 T1.e3, T2.e2T1.e1, T2.e1 T1.e1, T2.e1 T1.e3, T2.e2

T1.e3, T2.e2

a. Genome with variations

b. Transcripts

c. Spliced Pangenome

d. Annotated Spliced Pangenome

Fig. 1: Annotated spliced pangenome example. (a) Reference genome with a purple box representing
a gene locus and white diamonds representing alternate alleles of variations. (b) The gene has two
transcripts, namely T1 and T2, expressing an exon skipping event. (c) Spliced pangenome built from
the reference genome, gene annation, and a set of variations. Colored vertices and edges belongs to
the transcript walks and they represent portions of exons and splice junctions. White vertices are
alternative alleles and introns portion that do not belong to the transcript walks. (d) Annotated
spliced pangenome where each colored vertex (exon portion) is annotated by the transcripts and
exons it belongs to and each colored edge (junction) is annotated with the junction information.

successively quantify them. Moreover, pantas augments the original graph with novel splice junctions
(i.e., new edges) supported by the alignments and not originally present in the annotated spliced
pangenome. Since a novel splice junction can start or end inside a vertex (e.g., due to an alternative
5’ event), we need to precisely locate the novel AS events corresponding to that junction and store
such locations — an alternative way to view this novel splice junction is to split a vertex into two.
Then, by analyzing the annotated spliced pangenomes that has been augmented with read alignment
information, pantas proceeds to detect the AS events.

From a high level point of view, AS events can be identified by locally comparing the splice
junctions of two transcripts represented in the annotated spliced pangenome. An AS event is said to
be annotated if the splice junctions of the two transcripts involved in the event are already annotated,
i.e., the edges representing the junctions are already present and annotated in the input graph. On
the other hand, an event is said to be novel if the splice junctions of only one of the two transcripts is
already annotated and the other junction is supported by read alignments only. We refer the reader
to Section 2.3 for the formal description of how AS events can be detected from an annotated spliced
pangenome.

After detecting the AS events from each replicate, pantas quantifies the events by combining
the results obtained from each replicate. pantas represents each AS event as a pair of sets of edges,
representing the two junctions sets (the first one from the constitutive isoform and the second one
from the alternative isoform) involved in the event. By analyzing the support of the junctions in each
replicate, pantas computes the Percent Spliced-In (ψ) of the event by computing the ratio between
the support of the constitutive isoform and the alternative isoform [30]. Once each replicate has been
analyzed, pantas performs differential quantification of the events supported by both conditions by
computing the ∆ψ of each event as the difference between the absolute value of the ψ means in the
two conditions.

Additionally, to simplify the downstream analysis of its results, pantas also surjects the positions
of the edges involved in the events back to the reference genome. This is simply done by mapping the
positions of the vertices linked by each edge from the graph space to the reference genome. We note
that novel AS events need more care, since novel AS events usually involve novel splice sites and the
novel splice junctions induced by the alignment cut a vertex of the graph in two parts. However, thanks
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to the information stored when augmenting the annotated spliced pangenome graph with alignment
information, this boils down to simply moving the splice site of some bases, depending on where the
vertex was cut.

2.3 AS events detection

In this section we will provide the formal description of how AS events can be detected from an
annotated spliced pangenome. We will first focus on annotated AS events and then we will formalize
novel AS events. Differently from other approaches that model AS events as coordinates over a linear
reference genome, we model the AS events directly on a graph structure and we provide a formal
definition of each event in terms of graph elements (i.e., vertices and edges). The annotation introduced
as distinctive property of annotated spliced pangenomes helps in this formalization.

Annotated AS events criteria To detect annotated alternative splicing events we consider every
annotated junction independently as a potential event for which we check whether the following
conditions apply. The definitions below are all referred to a splice junction ïa, bð between two exons of
a transcript T1 ∈ T (a)∩T (b), and the junction ïa, bð is covered by at least a user-specified number of
reads (i.e., it is supported in the sample). In the following, given a vertex v, we denote with next(v)
and prev(v) the set of successors and predecessors of v, respectively.

Exon skipping We call an annotated exon skipping for the annotated splice junction j = ïa, bð when
there is a transcript T2 (of the same gene) with an exon between the two vertices a and b— notice that
T1 ̸= T2 since the transcript T1 uses the junction ïa, bð, therefore it cannot have any exon between a
and b. Formally, there exists a transcript T2 ∈ T (a)∩T (b) \ T (j) with two exons ea ∈ E(a), eb ∈ E(b)
that are not consecutive in t. Fig. 2.a shows an example in which a = n1, b = n4 and T1.e2 is the
skipped exon for the transcript T2.

Alternative 5’ splicing site We call an annotated alternative 5’ splicing site for the annotated junction
j = ïa, bð when there is another transcript (of the same gene) for which the first exon extends further
towards the 3’, but does not incorporate the second exon of the junction j. Formally, there exists a
vertex v ∈ next(a) and an exon e ∈ E(a) ∩ E(v) \ E(b) (i.e., the exon e covers both the vertex a and
one of its successors v, but does not cover b) such that T (e)∩ T (b) ̸= ∅. By construction, this implies
that there is a transcript T2 ∈ T (e), T1 ̸= T2, that does not cover the junction j, but cover both exons
joined by j. Fig. 2.b shows an example in which a = n1, b = n3 and there are vertices (n1, ..., n2]
would be extending exonic vertices of T1.e1 but not of T2.e1.

Alternative 3’ splicing site The definition of an annotated alternative 3’ splicing site is symmetrical to
that of 5’ splicing sites. It suffices to identify a precedecessor v ∈ prev(b) and an exon e ∈ E(b)∩E(v)\
E(a) such that T (e) ∩ T (b) ̸= ∅. Fig. 2.c shows an example in which a = n1, b = n3 and [n2, ..., n3)
would be extending exonic vertices of T1.e2 but not of T2.e2.

Intron retention We call an annotated intron retention for the annotated junction j = ïa, bð when
there is another transcript (of the same gene) for which a, b are in the same exon, i.e., there is a third
exon spanning both exon a and b and including the intron in between them. Formally, there exist two
edges ïa, uð and ïv, bð such that E(a)∩E(b)∩E(u)∩E(v) ̸= ∅. Notice that u and v are not necessarily
distinct. Fig. 2.d shows an example in which a = n1, b = n4 which are part of exons e1 and e2 for
transcript T1 and of e1 for T2.

Novel AS events criteria To detect novel alternative splicing events, we need to consider both
annotated and novel splice junction edges (depending on the event type) since in this setting an AS
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Fig. 2: All the annotated events expressed within the annotated spliced pangenome showing the differ-
ent tags used, weights are omitted for readability; blue squares represent exons with their tags, green
and purple edges are the annotated junctions with their tags, grey vertices are exonic and white are
intronic. Exons are labeled with the transcript walks that are represented in the figure.

event occurs between the annotated junctions of a transcript and the novel junctions of another tran-
script. Therefore, for each AS event, we have to take into account two different scenarios, depending on
which junctions are annotated and which are novel. For instance, if we have a novel exon skipping, it
means that the novel exon junction is skipping an exon and the two junctions supporting the inclusion
of the exon are already annotated. On the other hand, if the two inclusion junctions are novel (and
the skipping junction is annotated), we have a cassette exon event. Therefore, we have to consider 8
different scenarios (2 per event). For ease of exposition, we decided to leave the formal definition of
novel events as supplementary material (Suppl. Section S1 and Suppl. Fig. S3).

3 Experimental Evaluation

To evaluate pantas efficacy and correctness in quantifying AS events across conditions, we performed
3 experimental evaluations on simulated and real data. In the first experiment, we used simulated
data to evaluate the correctness of pantas in detecting both annotated and novel AS events. In the
second experimental evaluation, we considered a real RNA-Seq dataset from Drosophila Melanogaster
and we evaluated the accuracy of pantas in differential quantifying annotated AS events. Finally, we
evaluated the accuracy of pantas in quantifying RT-PCR validated AS events from a real human
RNA-Seq dataset.

In all the considered scenarios, we constructed the annotated spliced pangenomes using a custom
procedure based on the vg toolkit [18] and we computed the spliced alignments using the mpmap

aligner [32]. This aligner was specifically introduced to align RNA-Seq to spliced pangenomes and to
this aim it can align over novel splice junctions, that are edges not present in the input graph. This
feature is essential for inferring novel AS events. More details on the input preparation can be found
in Suppl. Section S2.

To put our results in perspective, we compared pantas with three state-of-the-art approaches,
namely rMATS [31], SUPPA2 [37], and whippet [33]. The former quantifies AS events by analyzing
spliced alignments to a reference genome (e.g., computed with STAR [16]), the second by analyzing
transcript quantification computed with salmon [28], and the latter by analyzing alignments to a
custom graph, called Contiguous Splice Graph, which represents all non-overlapping exons coming
from the gene annotation.
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3.1 pantas event detection is correct and accurate

The goal of the first experimental evaluation was to assess the accuracy of pantas in detecting
annotated and novel AS events. To do so, we simulated a RNA-Seq datasets using asimulator [26],
a tool that simulates RNA-Seq datasets while introducing AS events. We considered the Drosophila
Melanogaster reference and gene annotation (FlyBase r6.51 [35]) and the Drosophila Genetic Reference
Panel (v2) [25]. To simulate a real-case scenario, where the sequenced sample is typically not present
in the reference panel, we randomly selected a sample from the panel, we simulated reads from it,
and then removed the considered sample from the reference panel. We used this reduced panel while
preparing the input for pantas. We evaluated the accuracy of the 4 tools (pantas, rMATS, SUPPA2, and
whippet) in terms of Precision, Recall, and F1-Measure computed by comparing the events reported
by asimulator with the events reported by the tools. More details on the simulation settings can
be found in Suppl. Section S3. Table 1 reports the results of this analysis. In the annotated event
setting, pantas and rMATS resulted the most accurate tools for detecting AS events. Surprisingly,
they achieved the same accuracy on exon skipping, rMATS resulted slightly more accurate on intron
retention whereas pantas achieved very good results on alternative splice site events. On the other
hand, whippet resulted the most accurate tool for detecting intron retention events. Both whippet

and SUPPA2 accuracy was hampered by their low precision. We notice that in this analysis we were
interested in evaluating the capability of each tool in detecting AS events and not in quantifying
them. A post-filtering of the events, e.g., based on the statistical significance reported by the tools,
would have improved the precision of the tools while lowering their recall. In the novel event scenario,
instead, we could not include SUPPA2 and whippet. Indeed, SUPPA2 can detect only annotated events.
On the other hand, whippet allows for augmenting the Contiguous Splice Graph with novel splice
sites supported by read alignments, but we did not manage to run this augmentation successfully
(it was able to detect only exon skipping events). In this setting, pantas achieved the highest recall
for all event types and resulted the most accurate approach for detecting novel intron retetion and
alternative splice site events. On exon skipping events, rMATS achieved a slightly higher precision.
Surprisingly, pantas has been able to outperform rMATS on novel intron retentions, which are the
hardest AS events to detect correctly [10]. Overall, the good accuracy achieved by pantas prove its
correctness and the efficacy of its precise formalization of AS events on annotated spliced pangenomes.

3.2 pantas quantification shows good correlation with state-of-the-art

In the second part of our experiments, we evaluated the quality of pantas differential quantification
of AS events from real RNA-Seq data. To this aim, we considered a recent study [3] that performed a
genome wide transcriptome analysis of the ageing process in Drosophila Melanogaster (SRA BioProject
ID: PRJNA718442). We considered the FlyBase (r6.51) genome and gene annotation and the Drosophila
Genetic Reference Panel (v2). In this analysis, we considered only non-overlapping genes to allow
for a more precise comparison. Indeed, overlapping genes increase the noise in the output of each
tool and add further complexity in the AS quantification step since an AS event on a gene may be
supported by reads not directly coming from that gene. Moreover, we performed a subsampling of
the input RNA-Seq dataset and we randomly extracted 1/3 of the reads (approximately 8 750 000)
from each replicate using seqtk. Indeed, we have not been able to consider the entire samples since,
unexpectedly, vg mpmap was requiring more than 3 days to align a single replicate (using 32 threads)
and this time requirement was making any analysis unfeasible. Unfortunately, vg mpmap is currently
the only approach available to perform spliced alignment against a spliced pangenome but this does
not restrict pantas usability, which has been devised and developed as a general approach that can
potentially analyze the spliced alignments to a spliced pangenome computed by any spliced aligner.
Overall, pantas (without taking into account the input preparation step) complete its differential
analysis in less than 2 hours and required 16GB of RAM, making it a practical solution.

Since in this scenario we used real data without any wet-lab validation, we could not compare the
results of the tools with a ground-truth but we performed an all-vs-all comparison of the ∆ψ provided

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2023. ; https://doi.org/10.1101/2023.11.06.565751doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.06.565751
http://creativecommons.org/licenses/by/4.0/


AS events on spliced pangenome graphs 7

Annotated Events

Tool Type Prec. Rec. F1

pantas

ES 0.971 0.988 0.979

IR 0.964 0.936 0.950
A3 1.000 1.000 1.000

A5 1.000 1.000 1.000

rMATS

ES 0.971 0.988 0.979

IR 0.929 0.989 0.958
A3 0.928 0.988 0.957
A5 0.949 0.974 0.961

whippet

ES 0.416 0.976 0.583
IR 0.982 0.947 0.964

A3 0.333 0.488 0.396
A5 0.297 0.428 0.350

SUPPA2

ES 0.752 1.000 0.859
IR 0.713 1.000 0.832
A3 0.705 1.000 0.827
A5 0.652 1.000 0.790

Novel Events

Tool Type Prec. Rec. F1

pantas

ES 0.941 0.958 0.950
IR 0.624 0.895 0.736

A3 0.757 0.771 0.764

A5 0.844 0.750 0.794

rMATS

ES 0.964 0.958 0.961

IR 0.127 0.094 0.108
A3 0.801 0.712 0.754
A5 0.746 0.678 0.710

Table 1: Results on simulated data from Drosophila Melanogaster. Precision, recall, and F1-scores are
computed by comparing asimulator truth with the output of each tool. Results are broken down by
tool and by event type (ES: Exon Skipping, IR: Intron Retention, A3: Alternative 3’, A5: Alternative
5’).

by the 4 tools (pantas, rMATS, whippet, and SUPPA2). We considered only annotated events (in
order to include all tools) and we removed all events without a strong evidence of differential change
between the two conditions, i.e., events with |∆ψ| ̸∈ [0.05, 0.95]. Moreover, since most approaches
compute the significance of differential splicing by performing tests on read counts supporting the
event junctions, we also filtered out from the resulting set of events all those events reported as non
statistically significant by the tool. We considered all events reported by rMATS and SUPPA2 with a
p-value strictly lower than 0.05 and all events reported by whippet with a probability greater or
equal to 0.9. Since pantas does not provide the statistical significance of an event yet, we used the
read counts as a proxy and we considered only those events reported with a coverage of at least 5
alignments on any junction involved in the event. As shown in Fig. 3b, the resulting set of events
considered in our analysis consists in 1022 events for pantas, 932 events for rMATS, 4317 events for
whippet, and 523 events for SUPPA2 (Suppl. Table S1 reports these numbers broken down by event
type). Out of these events, 147 are shared among the 4 tools. When comparing the quantification
(∆ψ) reported by the tools on this subset of events, we noticed a strong correlation (Fig. 3a). pantas
achieved very high correlation with rMATS (Pearson correlation: 0.94) and whippet (0.926) while lower
correlation with SUPPA2 (0.833). Remarkably, pantas, rMATS, and whippet achieved higher correlation
when compared among them but lower correlation when compared with SUPPA2. This was somehow
expected since SUPPA2 quantifies AS events starting from transcript quantification (based on k-mer
analysis) and not from read alignment. As expected, considering all events reported by the tools, i.e.,
without any post-filtering on the statistical significance, leads to an increase in the number of events
(Suppl. Fig. S5b and Suppl.Table S2) and a strong loss of correlation (Suppl. Fig. S5a). However,
also in this scenario, pantas and rMATS have been able to achieve the best correlation (0.811). The
good correlation achieved by pantas with other approaches based on read alignment proves that read
alignment to spliced pangenome is effective and can be confidently used for AS event differential
quantification, with the even larger advantage of not being negatively affected by allelic bias.
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(a) (b)

Fig. 3: Results on real data from Drosophila Melanogaster (significant events). (a) Venn diagram
showing the number of significant AS events reported by each tool. (b) All-vs-all correlation plots
of the ∆ψ reported by the considered tools for the 147 significant events shared among the tools.
Detailed version where each point is color coded based on the event type is available at Suppl. Fig. S4.

3.3 pantas is effective in quantifying RT-PCR AS events

In the last part of our experimental evaluation, we considered a real human RNA-Seq dataset and
we assessed the performance of pantas in detecting and quantifying RT-PCR validated AS events.
Similarly to recent studies [37,15,33], we analyzed the RNA-Seq dataset provided by [6] (SRA BioPro-
ject ID: PRJNA255099) and we evaluated pantas accuracy in quantifying RT-PCR validated events.
The RNA-Seq dataset consists of three replicates for two conditions (control condition versus double
knockdown of the TRA2 splicing regulatory proteins, TRA2A and TRA2B). We considered the human
genome and protein coding genes from Ensembl [27] (release 109) and the 1000 Human Project phase
3 VCF files [12].

Since the construction and indexing of the annotated spliced pangenome required more than one
day and 240GB of RAM and aligning the 6 replicates required 1 week (using 32 threads), we designed
an alternative procedure to build an annotated spliced pangenome restricted to a set of genes of
interest and then align only a subset of the input RNA-Seq dataset. This procedure, detailed in
Suppl. Section S4, is especially effective when the user is interested in analyzing a panel of genes,
that is a common scenario in transcriptomics [14]. Using this alternative approach, we managed to
reduce the times of the entire pipeline to less than 6 hours and the RAM requirements to less than
16GB, without degrading the AS events detection accuracy. We note that the most expensive steps of
the entire pipeline are graph construction and indexing (1 hour and 20 minutes, 14GB of RAM) and
read alignments (40 minutes per sample on average using 32 threads). All other tools (rMATS, SUPPA2,
whippet) have been run on the original inputs, without any preprocessing.

We evaluated each tool accuracy in terms of correctly detected events w.r.t. the RT-PCR validated
events and then we compared the predicted ∆ψ with the experimental ∆ψ provided by RT-PCR vali-
dation. Our evaluation focused on 77 RT-PCR validated exon skipping events (details on preprocessing
of the truthset can be found in Suppl. Section S5). Fig. 4 reports the results of our analysis when
considering only events reported as statistically significant by the tools (using the same criteria ap-
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plied in Section 3.2) and with an absolute magnitude of change greater than 0.05 between the two
conditions, i.e., events with |∆ψ| ∈ [0.05, 0.95]. Fig. S6 reports the same results obtained without any
filtering. Regarding the number of events detected by each tool, pantas reported the highest number
of significant events (64 out of 77) followed by rMATS (61), SUPPA2 (44), and whippet (40). We note
that SUPPA2 and whippet reported less events since 14 out of the 77 RT-PCR events are novel events
and, as previously shown, they cannot correctly detect novel events. Remarkably, only 25 events were
reported as significant by all 4 tools, 3 events were only reported by pantas whereas 4 events were
missed by our approach. The reason behind these results needs to be sought in the different way
each tool computes the significance of an event. Indeed, as shown in Fig. S6, when considering all
events (i.e., not only those reported as significant), each tool reported a higher number of events (as
expected) and the number of events reported by all 4 tools increased to 46. When removing whippet

from this analysis, the number of events reported by pantas, rMATS, and SUPPA2 increased even more
(64), showing good agreement among the three tools. Moreover, in this setting no event was reported
by pantas only. However, 7 events remained undetected by pantas. By manually investigating both
STAR and vg mpmap alignments over the loci of these events, we noticed that the two aligners show
good agreement: the skipping junction of all events shows no support in the control replicates and very
small support (1 or 2 alignments) in the knockdown replicates. A more polished statistical analysis
of pantas results will allow to recover these events. Surprisingly, when considering significant events
reported by the tools, 8 RT-PCR events were not reported by any tool. On the other hand, when con-
sidering all events reported by the tools, all RT-PCR events where detected, proving the complexity
of correctly computing (and analyzing) the significance of differentially quantified AS events.

We then evaluated the correctness of the quantification provided by each tool by comparing the∆ψ
predicted by each tool with the experimental ∆ψ provided by the RT-PCR validation. As shown in
Fig. 4, whippet quantification showed the best correlation with the RT-PCR expected quantification
(Pearson correlation: 0.767) followed by pantas (0.692). However, whippet reported less events than
pantas (40 against 64). Remarkably, although the distributions of the differences between the RT-
PCR ∆ψ and the quantification provided by pantas and rMATS are very similar (with a 0.006 median
difference in favor of rMATS and 0.005 average difference in favor of pantas), rMATS showed lower
correlation than pantas. However, as previously reported [37], all tools struggle in achieving a good
correlation with the RT-PCR quantification. The same trend can be observed when considering all
events reported by the tools (Fig. S6). Remarkably, the correlation between pantas quantification and
RT-PCR quantification increased and reached the correlation achieved by whippet. This indicates that
most of the events that have not been considered as significant by pantas are actually well quantified,
proving once more the need of improving the statistical significance analysis of pantas results. This
will be the focus of future efforts.

Finally, as done in [37], we evaluated the false positive rate of each tool using 44 RT-PCR negative
exon skipping events that did not show any significant change between the two conditions. SUPPA2 and
pantas reported the fewest false positives (28 and 31, respectively, out of 44 events) whereas whippet
reported 32 false events and rMATS reported 37. When considering only events reported as significant
by each tool, pantas reported 9 false significant events followed by rMATS (10 events). SUPPA2 and
whippet reported the lowest number of false significant events (2 and 4, respectively).

In conclusion, although pantas statistical validation is still not fully polished, the differential quan-
tification computed from alignments to an annotated spliced pangenome is robust: pantas is able to
retrieve more significant AS events without introducing more false calls. Overall, the results described
in this section suggest a strong agreement between the different approaches for the differential quan-
tification of AS events with no method clearly outperforming the others.

4 Conclusion

The recent adoption of a reference pangenome for analyzing genetic variability in humans opens the
perspective of building a pantrascriptome that provides a complete picture of gene annotation in
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Fig. 4: (a) Venn diagram showing the number of significant AS events reported by each tool. The
legend reports the total number of events reported by the tool. (b) Boxplot showing the distribution
of the difference between the ∆ψ predicted by each tool and the ∆ψ provided by RT-PCR. The x
axis labels report the tool name and the Pearson correlation (r) between the predicted ∆ψ and the
RT-PCR ∆ψ.

.

human population. However, moving from a reference-based gene annotation to a pangenome-based
(or haplotype-aware) gene annotation, where genes are annotated w.r.t. multiple genomes as recently
proposed in [1], requires to rethink tools for transcriptomic analysis, similarly as it has been done in
computational graph pangenomics for analyzing genomic variants in a population.

In this paper, we advanced the investigation started in [32] of spliced pangenomes by proposing
pantas, the first pangenomic approach for detecting and quantifying AS events across RNA-Seq
conditions. Our approach is based on the novel notion of annotated spliced pangenome, introduced
here as an enhanced version of a spliced pangenome, and on the precise formalization of AS events on
this structure. Extensive experimental evaluation shows that pantas achieves comparable results with
state-of-the-art methods based on a linear reference, while being able to potentially take into account
the genetic variability of the population under investigation. In the experiments carried out in this
paper we used a reference-based gene annotation (that is the one currently available), but pantas can
also work with haplotype-aware gene annotations.

Future work will be devoted to enhance the statistical validation of pantas quantification. More-
over, we also planned to closely collaborate with the pangenomic community in order to reduce the
high computational requirements for building and indexing a spliced pangenome as well as for mapping
RNA-Seq reads to it. These are the inputs of pantas as well as of any future tool for the analysis of a
pantranscriptome. Making these indispensable steps as efficient as possible will boost the effectiveness
of spliced pangenomes and widen their applicability to more areas of transcriptomic.
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