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Abstract 1 

Microbiomes are critical to the health and functioning of humans and ecosystems. Defining 8healthy 2 

microbiomes9, however, remains elusive. More advanced knowledge exists on health associations for the 3 

compounds used or produced by microbes. Because microbes, their feedstocks and micro-environments 4 

interact synchronously, using functional genes to facilitate chemical transformations, this presents an 5 

intriguing opportunity to examine microbiomes through their potential to process compounds associated 6 

with human health. There is also growing interest in environmental microbiota that might be efficient at 7 

processing health-associated compounds because these microbes may readily transfer to humans and 8 

environmental interventions could modulate our exposure to them. Here we propose a bioenergetic 9 

mapping approach to microbiome assessments that examines the compound processing potential 10 

imprinted in human gut and environmental soil metagenomes. From shotgun metagenomics functional 11 

profiling, we derive quantitative measures of compound processing potential for human health-associated 12 

compound classes (e.g., lipids, carbohydrates) and selected biomolecules of interest (e.g., vitamins, 13 

short-chain fatty acids). We mapped microbial functions to compounds using the complexity-reducing van 14 

Krevelen bioenergetic mapping framework, based on carbon-hydrogen-oxygen stoichiometry and 15 

principal axes that explain variation in microbial distribution and chemical speciation. We found 16 

differences in compound processing potential within gut metagenomes comparing health- and disease-17 

associated samples, including atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes 18 

and anxious-depressive behaviors. Patterns of compound processing potential in soil metagenomes were 19 

linked with ecosystem maturity. Assessment of compound processing potential offers a new lens to 20 

explore mechanisms of microbiome-mediated human health including connections to health-promoting 21 

environmental microbiomes. 22 

 23 

Significance Statement 24 

Despite mounting evidence of their importance, the definition and measurement of 8healthy microbiomes9 25 

remain unclear. Knowledge gaps hinder development of microbiota-oriented approaches in human health, 26 

including potential for environmental interventions. By integrating interdisciplinary knowledge frameworks 27 
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including functional genomics and biochemistry, we derive summary measures of potential for human gut 28 

and environmental soil metagenomes to process major compound classes and biomolecules linked to 29 

human health. Measures of compound processing potential were linked with states of human health and 30 

disease; and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil 31 

systems. Compound processing potential offers a simplifying approach for applying powerful and 32 

otherwise complex metagenomics in ongoing efforts to understand and quantify the role of microbiota in 33 

human- and environmental-health. 34 

 35 

  36 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.05.565728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.05.565728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 

 

Main Text 37 

 38 

Introduction 39 

Microbial communities (microbiota), their feedstocks (substrates, nutrients) and environmental conditions 40 

(e.g., pH, redox potential, temperature, moisture, salinity) work in concert to drive microbially-mediated 41 

reactions essential to fueling life on Earth (1). Microbiomes (i.e., microbiota, genetic material and 42 

metabolites) are intimately linked to human health and disease (2-4), as well as the functioning of 43 

ecosystems (5, 6). Microbial functional capacity supports the transformation and exchange of chemicals, 44 

molecules, and energy, benefiting microbiota members, host organisms, and wider ecological networks 45 

(1, 5, 7, 8). Many microbes are often highly specialized and efficient at performing a particular suite of 46 

reactions. Accordingly, microbiota are shaped by the resources they utilize and the environments they 47 

inhabit (3, 9). 48 

 Microbes typically operate as a community (10) where many taxa lack the functional capacity for 49 

stand-alone survival (11). Complex cross-feeding and resource sharing in the extracellular space (7) 50 

suggest that community-scale functional profiles (rather than specific microbial taxa) underpin the health-51 

supporting capacity of microbiota. However, community-scale complexity has hindered progress towards 52 

clear definitions of a 8healthy microbiome9 (12). Nevertheless, researchers want to better understand the 53 

assembly and structure of health-promoting microbiomes to improve the course of microbiome-associated 54 

diseases. Disease-associated microbiota are often characterized by a loss of diversity and dominance by 55 

opportunistic pathogens (4, 13), but it may be unclear whether they represent facilitators or followers of 56 

disease. In contrast to direct microbiota-health links, our knowledge of health associations for various 57 

biomolecules and other chemical compounds (linked to microbiomes) is comparatively well advanced. 58 

Because microbiota-mediated reactions fundamentally involve transformations between different 59 

chemical compounds, this creates the intriguing possibility of examining microbiomes through their 60 

potential to process (i.e., convert or produce) compounds associated with human health. 61 
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Additionally, the involvement of environmental microbiomes in processing human health-62 

associated compounds is of interest. Transfer of environmental microbiota to humans may help 63 

supplement important functional capacity, protective microbiota, and immune-signaling agents, 64 

particularly in infants, but also in adults who have depleted microbiota due to antibiotic use, poor diet, 65 

lifestyle or other health incidents (14, 15). If the functional composition of microbiota varies predictably 66 

along environmental gradients, then through design, management, and behavior we should be able to 67 

modulate our exposure to health-promoting versus disease-associated microbes. Soils, in particular, can 68 

represent a rich source of microbial diversity with potential to support human health (16). Microbiota in 69 

plant-soil systems are shaped by macro-scale factors including climate, soil characteristics, vegetation 70 

composition, diversity, land use and management (9, 17). With the prospect of cost-effectively 71 

encouraging health-promoting microbes, it is frequently asked, "What type of environment is best?= Yet, 72 

the attributes of health-promoting environmental microbiomes, including potential functional overlaps with 73 

human microbiomes, remain understudied. 74 

Many microbiome-associated diseases are linked to bioenergetic mechanisms (7), with oxidation-75 

reduction (redox) potential recognized as a key factor shaping microbial communities. The healthy 76 

anaerobic gut favours obligate anaerobes, whereas dysbiosis is often accompanied by increased 77 

oxygenation of the colonic epithelium and expansion of oxygen-tolerant facultative anaerobic bacteria (18, 78 

19). Oxygen is a highly electronegative element important in shaping electrochemical gradients, 79 

biochemical reactions, and gene expression (20). Oxygen content varies in different types of organic 80 

matter (i.e., microbial feedstocks). Yet, the interrelationship between bioenergetic drivers, compounds, 81 

microbial environments and microbiota development receives little attention. In soils, redox potential 82 

varies with weather, vegetation, land use, management, drainage, organic-content, vicinity to roots, soil 83 

characteristics, and microbial activity (21, 22). At the molecular level, redox potential shapes what kind of 84 

molecules can be made and how energy is stored. Therefore, a compound-oriented examination of 85 

healthy microbiomes might capitalize on available knowledge linking compounds with human health, 86 

while also considering deterministic influences of bioenergetic (or electrochemical) energy gradients. 87 
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For example, in gut microbiome bioenergetics and chronic metabolic diseases, Daisley, et al. (7; 88 

their Figs. 3-4) highlight key human health-associated biomolecules found within extracellular resources 89 

shared by microbes. Short-chain fatty acids (SCFAs) acetate, propionate, and butyrate benefit host 90 

metabolism, intestinal barrier function, systemic anti-inflammatory effects, and contribute up to 10% of 91 

daily energy requirements (23). B group vitamins: riboflavin (B2), cobalamin (B12), pyridoxal 59-phosphate 92 

(B6), and folate (B9) are critical in electron transport and represent precursors to a variety of enzyme 93 

cofactors essential to the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and other metabolic 94 

pathways (7). Menaquinone (Vitamin K2) is a critical electron carrier in bacteria and considered essential 95 

in humans for calcium regulation (7). Other keystone health-linked biomolecules include glutamate and 96 

pyruvate. Glutamate is the major excitatory neurotransmitter of the healthy mammalian brain, and an 97 

abundant free amino acid important in multiple metabolic pathways, which requires regulation at optimal 98 

levels in extracellular fluids (24). Glutamate is sensed luminally in the intestinal mucosa, triggering vagus 99 

nerve (gut-brain axis) activity (25). Pyruvate is a critical intermediate involved in human energy 100 

metabolism, where dysregulation is associated with cancer, heart failure, and neurodegeneration (26). 101 

Here, we examine the functional potential of gut and soil microbiota from a compound processing 102 

potential (CPP) viewpoint, to assess patterns in human health and disease, and with gradients of 103 

ecosystem maturity. Such an approach might discern health- versus disease-promoting microbiotas from 104 

the types of biochemical compounds they are attuned to consuming or producing (reflecting microbial 105 

feedstocks and metabolites respectively). Previous metabolome prediction frameworks (e.g., 27, 28-30) 106 

rely variously on supplementary metabolome training datasets, microorganism-specific genome-scale 107 

metabolic models, taxonomic abundance estimates, and modeled or assumed environmental conditions 108 

(e.g., human gut). In this work, we wanted to exploit community-scale compound-oriented information that 109 

might be embedded within metagenomes (regardless of taxa present). As functional potential profiling 110 

from whole genome sequencing (or shotgun metagenomics) does not directly measure functions 111 

performed, we characterized microbiota-linked CPP from DNA sequencing, without direct measurement 112 

of compounds. We premised that the ease of transformation between health-associated compounds and 113 
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other compounds that closely resemble them will depend on stoichiometric and energetic similarities, 114 

microbiota functional diversity, and environmental conditions. 115 

We utilized a framework that integrates information about compounds, bioenergetics, and 116 

environmental conditions. The complexity-reducing van Krevelen (vK) coordinate space offers a simplified 117 

and intuitive bioenergetic framework for approximate mapping of compounds based on their carbon (C), 118 

oxygen (O) and hydrogen (H) content, while also reflecting energy density and principal axes that explain 119 

microbial distribution and chemical speciation (Fig. 1; SI Appendix, Fig. S1) (31, 32). Compounds are 120 

mapped into vK space using their O:C and H:C molar ratios (x- and y-axis respectively). We surmised this 121 

framework could offer an exhaustive and intuitive mapping space to summarize the nature of microbiota-122 

mediated functional reactions in a way that reflects mean or dominant compound properties, reaction 123 

stoichiometries, and potential overlaps between dietary or environmental substrates, and key health-124 

associated biomolecules. 125 

Specifically, we combined SUPER-FOCUS functional profiling (33), the comprehensive 126 

ModelSEED (34) functional-biochemistry database system and vK coordinate mapping to assign 127 

functional potential relative abundances from human gut and soil sample metagenomes to overall mean 128 

reaction-level vK coordinates. This approach effectively mapped every SUPER-FOCUS function (where 129 

feasible via available corresponding database information) to an abundance-weighted mean proxy 130 

chemical compound (or reaction-level 8meta-compound9) represented in the two-dimensional vK space (SI 131 

Appendix, Fig. S2). Limitations to this simplified representation of functional profiles are discussed below. 132 

We aimed to: 1) investigate measures of microbiota CPP imprinted in human gut and soil metagenomes; 133 

and 2) test for differences in human health and disease, and in disturbed, restored and natural 134 

ecosystems. We hypothesized this bioenergetic mapping approach might identify CPP profiles, and 135 

overlaps in human and environmental datasets, that could inform the definition and future shaping of 136 

8healthy microbiomes9. We were also keen to explore whether CPP measures might enhance the 137 

interpretability and accessibility of metagenomics data to aid hypothesis building and prioritizing future 138 

research.   139 
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 140 

Fig. 1. Van Krevelen (vK) coordinate space (adapted from 31), displaying major compound classes 141 

(purple zones and text), key gradients (grey axes and text), focus biomolecules examined in this study 142 

(large dots), and additional example health-associated biomolecules, dietary or environmental substrates 143 

(legend). vK zones were adapted from (32) (see SI Appendix, Tables S1, S2). Key gradients include 144 

oxidation-reduction (x-axis), hydrogenation-dehydrogenation (y-axis), hydration-condensation (top-right to 145 

bottom-left), methylation-demethylation (top-left to bottom-right) and increasing energy content (towards 146 

top-left).   147 
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Results 148 

We developed compound processing potential metrics to assess four human health and disease 149 

datasets, comprising atherosclerotic cardiovascular disease (ACVD)(35), colorectal cancer (36), type 2 150 

diabetes (T2D)(37) and problem (anxious-depressive) behaviors in children (38); and three environmental 151 

soil datasets from ecological restoration and disturbed versus natural plant-soil systems (39-41) (Table 1). 152 

Four CPP metrics were evaluated (Fig. 2; detailed in Methods): 1) CPPclass values summed functional 153 

relative abundances mapping to major compound classes (Fig. 1); 2) CPPASALR: noting high variability in 154 

CPPclass values across case studies, we implemented a first-pass normalization aiming to account for 155 

microbial activity levels, based on CPPclass abundances assigned to amino sugars (42), here termed 156 

amino sugar adjusted log ratio (ASALR) data; 3) CPPdensity captured the density of functional relative 157 

abundances in close radial proximity to focus biomolecules (Fig. 1); and 4) compound-associated vK 158 

coordinates: these data underpin the above measures (i.e., aggregated within major classes, or within 159 

close radii of biomolecules) but were also used to consolidate functions with shared vK coordinates for 160 

supplementary analyses in selected case studies described below (i.e., differential abundance, correlation 161 

networks, and calculating weighted mean vK coordinates within major compound classes). We 162 

successfully mapped most SUPER-FOCUS functional relative abundances to vK coordinates (sample 163 

ranges 52-84%, means 55-67%; Table 1; SI Appendix Table S3). 164 

 165 

Human health and disease. In overview, gut metagenome CPPclass (SI Appendix, Figs. S4, S7, S11, 166 

S17, Table S3) and CPPdensity (SI Appendix, Figs. S5-S6, S8-S9, S12-S13, S18-S19, Table S4) data 167 

produced strong associations in ACVD and colorectal cancer compared to normal subjects (detailed 168 

below). Many patterns observed in CPPclass data were reinforced in the putative activity-normalized 169 

CPPASALR measures (Fig. 3; SI Appendix Table S5), and this transformed data format showed stabilized 170 

variance across case study datasets. Interestingly, across all CPPclass, CPPdensity, and CPPASALR 171 

measurements, when associations were found in both sexes they were always in the same direction (SI 172 

Appendix Tables S3-5). In the T2D (female only) and problem behavior case studies, we observed far 173 

fewer relationships in the coarse CPPclass, CPPASALR or biomolecule-focused CPPdensity data. Therefore, 174 
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we pursued network analyses and differential abundance analyses respectively in these case studies, as 175 

illustrative examples of more detailed supplementary analyses. Weighted mean vK-coordinate analyses 176 

produced striking associations in ACVD (Fig. 4; SI Appendix, Tables S6-S7), but weaker effects in other 177 

case studies (SI Appendix, Figs. S10, S14, S20, Tables S8-S12). The statistical test results described 178 

below are detailed in the SI Appendix Tables. 179 

 180 

 181 

 182 

Fig. 2. Flow chart of compound processing potential (CPP) analyses. 183 

  184 
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Table 1. Description of case study metagenome datasets (further detail in SI Appendix, Supporting 185 

Information). 186 

Case study 
focus 

Main comparison variable or 
diagnosis groups (and sample/subject 
numbers*) 

Metagenome functional profile 

characteristics (sample mean ± s.d.)  

Source data 
reference; 
Country of 
origin 

Human gut 

Atherosclerotic 
cardiovascular 
disease 
(ACVD) 

ACVD (nF = 53, nM = 157) or normal 
healthy (nF 101, nM = 69). 
Total n = 380. 
 

Functions0 n = 21,117 (9301 ± 3523) 
Functions1 n = 10,829 (5051 ± 1843) 
Total fxn rel abun1 = 63.2 ± 3.5 % 
vK coordinates n = 2535 (1509 ± 502) 

(35, SRA 
accession 
PRJEB21528); 
China 

Colorectal 
cancer 

Colorectal cancer (nF = 24, nM = 29) or 
normal healthy (nF = 33, nM = 27). 
Total n = 113. 

Functions0 n = 12,896 (2809 ± 1924) 
Functions1 n = 6932 (1750 ± 1117) 
Total fxn rel abun1 = 66.7 ± 2.7 % 
vK coordinates n = 1954 (711 ± 362) 

(36, SRA 
accession 
PRJEB6070); 
France 

Type 2 
diabetes (T2D) 
and impaired 
glucose 
tolerance 
(IGT) 

T2D with no Metformin treatment (T2D 
Met-, n = 33), T2D with Metformin (T2D 
Met+, n = 20), IGT (n = 49), or normal 
healthy (n = 43). Subjects are females 
only. Total n = 145. 

Functions0 n = 19,099 (9916 ± 2393) 
Functions1 n = 9916 (4490 ± 874) 
Total fxn rel abun1 = 64.4 ± 2.2 % 
vK coordinates n = 2393 (1431 ± 202) 

(37, SRA 
accession 
PRJEB1786); 
Sweden 

Problem 
behaviors in 
children 

First principal component (PC1) of 
anxious-depressive problem behaviors, 
examined as either numeric scores (nF = 
20, nM = 17); or high/low PC1 groups! 
(high PC1 nF = 10, nM = 8; Low PC1 nF = 
10, nM = 9). Total n = 37. 

Functions0 n = 20,599 (10282 ± 2481) 
Functions1 n = 10,322 (5507 ± 1224) 
Total fxn rel abun1 = 54.9 ± 1.3 % 
vK coordinates n = 2459 (1645 ± 281) 

(38, SRA 
accession 
PRJNA496479); 
United States 

Soils 

People Cities 
and Nature 
(PCaN) forest 
ecosystem 
restoration 

Soil samples spanned young to old 
revegetation age, and remnant sites 
(treated as ordinal variables). Data were 
separated into pH-based groups: strongly 

acidic (pH  < 4.5, 10-40 yr old, remnant, n 

= 8); and acidic-neutral soils (4.5 < pH  < 
7, 11-48 yr old, n = 10). Total n = 18. 

Functions0 n = 36,324 (27,969 ± 1011) 
Functions1 n = 18,197 (14,690 ± 396) 
Total fxn rel abun1 = 61.7 ± 0.3 % 
vK coordinates n = 3302 (2965 ± 49) 

(39, Aotearoa 
Genomic Data 
Repository 
project 
AGDR00045); 
Aotearoa New 
Zealand 

Post-mining 
forest 
ecosystem 
restoration 

Soil samples spanned revegetation ages 
of 6, 12, 22, 31 years, and unmined (UM) 
samples (treated as ordinal variables). 
Comprising five age-based groups, each 
with three replicates. Total n = 15. 

Functions0 n = 30,125 (20,328 ± 767) 
Functions1 n = 15,576 (11,051 ± 334) 
Total fxn rel abun1 = 61.9 ± 0.3 % 
vK coordinates n = 3076 (2537 ± 54) 

(40, MG-RAST 
project 
mgp16379); 
United States 

Australian 
Microbiome 
Initiative (AMI) 
disturbed 
versus natural 

Disturbed (n = 29) or natural (n = 55) 
soils, comprising temperate climate zone, 
surface (0-10cm) with 7.5345% clay 
content (i.e., avoiding very sandy and 
very clayey soils). Total n = 84. 

Functions0 n = 37,335 (22,959 ± 1172) 
Functions1 n = 18,551 (12,212 ± 553) 
Total fxn rel abun1 = 60.8 ± 1.0 % 
vK coordinates n = 3326 (2700 ± 69) 

(41, AMI Data 
Portal [Data 
accessed Sep 

2022])§; 
Australia 

*F = females, M = males.  Number of functions0 from initial SUPER-FOCUS profiling, versus functions1 187 

(fxn) with available compound information for mapping to vK coordinates. !PC1 of problem behaviors 188 

were analyzed as numeric values for visualizing and assessing CPPclass and CPPdensity data; and high vs. 189 

low PC1 groups for CPPASALR data. High PC1 values represent more problematic behavior. §AMI Data 190 

portal URL: https://data.bioplatforms.com/organization/australian-microbiome.   191 
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 192 

Fig. 3. Amino sugar-adjusted log ratio compound processing potential (CPPASALR), representing putative 193 

microbiota activity-normalized values, in normal healthy and diseased female (F) and male (M) subjects 194 

for atherosclerotic cardiovascular disease (ACVD), colorectal cancer, type 2 diabetes (T2D) with and 195 

without Metformin treatment (met +/-), impaired glucose tolerance (IGT), and high and low first principal 196 

component (PC1) problem behavior values. For visualization purposes outlying values are not shown. 197 

However, statistical tests were based on all data (SI Appendix Table S5). Sample sizes are detailed in 198 

Table 1. Tests for differences are performed within a single sex. In T2D data, groups not sharing a letter 199 

are different. 200 
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 201 

 202 

Fig. 4. Weighted mean vK coordinates within compound classes in ACVD and normal subjects in (a) 203 

females (ACVD n = 53, normal n = 101), and (b) males (ACVD n = 157, normal n = 69). PERMANOVA 204 

and beta-dispersion results are in SI Appendix Tables S6-7. Contour lines indicate the probability density 205 

of data points (SI Appendix Supporting Information).   206 
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ACVD associated with CPPclass values, compared to normal subjects, in the form of increased 207 

potential metabolism of lipids (in females 3 F, and in males 3 M), proteins (M), condensed aromatics (F, 208 

M) lignin (F, M), tannins (M), other hydrated compounds (F, M), other demethylated compounds (M), and 209 

near vitamin K2-vitamin B12 compounds (F); contrasting with decreased potential metabolism of 210 

carbohydrates (F, M) and other condensed compounds (M). Despite all samples initially summing to 211 

100% total functional relative abundances, there was less complete conversion to identifiable reactions 212 

and total sum CPPclass data in females only for ACVD compared to normal cases. Many of these patterns 213 

were reinforced in the CPPASALR data, with ACVD notably associated in both sexes with increased 214 

potential metabolism of lipids, condensed aromatics, lignin, and other hydrated compounds; but 215 

decreased potential metabolism of carbohydrates. For CPPdensity measures within 0.05 vK unit radii, 216 

ACVD associated with increased potential metabolism of propionate (F), vitamin B12 (F), vitamin B6 (M), 217 

vitamin B9 (F, M), vitamin K2 (F, M) and pyruvate (M); but decreased potential metabolism of acetate (M) 218 

and glutamate (F, M). 219 

Colorectal cancer also associated prominently with CPPclass values, specifically increased 220 

potential metabolism of lipids (M), amino sugars (F, M), condensed aromatics (M), lignin (M), other 221 

condensed compounds (F, M) and near vitamin K2-vitamin B12 compounds (M); but decreased potential 222 

metabolism of proteins (F, M) and tannins (F, M). Total sum CPPclass data were reduced in male colorectal 223 

cancer cases compared to normal. CPPASALR values in colorectal cancer subjects of both sexes were 224 

associated with decreased potential metabolism of proteins, lignin, tannins, and other demethylated 225 

compounds. For CPPdensity measures within 0.05 vK unit radii, colorectal cancer associated with increased 226 

potential metabolism of vitamin B2 (M), vitamin B12 (F, M), vitamin B9 (F, M), and pyruvate (M). Weighted 227 

mean vK-coordinates varied between colorectal cancer and normal subjects with different centroids in 228 

condensed aromatics (F), lignin (M), and tannins (M); and different beta-dispersion or spread in proteins 229 

(F, M) and condensed aromatics (F, M). 230 

In the female-only T2D case study results, we found CPPclass values decreased for other 231 

methylated compounds in IGT compared to normal subjects and decreased for near vitamin K2-vitamin 232 

B12 compounds in IGT compared to normal, with a reduced total sum CPPclass in normal compared to 233 
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other subjects. No associations were found with CPPdensity values. CPPASALR values were decreased for 234 

near vitamin K2-vitamin B12 compounds in IGT compared to normal and T2D Met+ subjects. From 235 

analysis of weighted mean vK-coordinates among diagnosis groups, a difference in centroids was found 236 

only in the compound class of proteins. With such weak results, further investigation was performed via 237 

network analysis (SI Appendix Supporting Information) on 20 subjects in each diagnosis group based on 238 

inferred correlations between functional relative abundances mapped to unique vK-coordinates. Network 239 

analyses were based on commonly observed vK coordinates (present in at least 60% of samples and 240 

minimum 2% sum functional relative abundance across samples). Network diagrams (Fig. 5) and 241 

structure dendograms (SI Appendix, Fig. S15) display a transition in their complexity, number of nodes 242 

and fraction of negative edges (interactions) from simplest in normal and IGT subjects to most complex in 243 

T2D Met+ and T2D Met- subjects. Comparing network characteristics for the four groups (normal, IGT, 244 

T2D Met-, T2D Met+; n = groups of 20) to a bootstrapped (B = 1000) density distribution of randomly 245 

resampled networks (n = 20, drawn from the same pool of 80 subjects) (SI Appendix, Fig. S16, Table 246 

S17) we found normal healthy subjects had the lowest fraction of negative edges and the highest degree 247 

centralization. Untreated disease, T2D Met-, had the lowest closeness centralization (graph-level inverse 248 

of average geodesic distance between nodes); and borderline significant results for the highest fraction of 249 

negative edges (negative correlations between vK-coordinates), lowest betweenness centralization 250 

(graph-level centrality based on broker positions connecting others), and lowest mean distance (average 251 

path length between nodes). In short, normal subjects appear to have far less correlations between vK-252 

coordinates (fewer nodes / vertices), and for the nodes and links that are present they are largely 253 

positively correlated and highly interlinked. Whereas T2D Met- (untreated disease) is characterized by a 254 

much larger number of negatively correlated vK-coordinate nodes, which on average have shorter links, 255 

and are less well connected-up across the whole network.   256 
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 257 

 258 

Fig. 5. Network diagrams based on commonly observed vK coordinates for female subjects (n = groups 259 

of 20) with diagnoses: (a) normal, (b) impaired glucose tolerance (IGT), (c) type 2 diabetes without 260 

Metformin (T2D Met-), and (d) type 2 diabetes with Metformin (T2D Met+). Nodes are located according 261 

to unique compound-associated vK coordinates, with size reflecting node degree (number of linked 262 

significant correlations). Links between nodes display positive (aqua color) and negative (red color) 263 

correlations (p f 0.05).   264 
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Problem behaviors displayed few significant associations in CPPclass values: increasing PC1 of 265 

problem behaviors associated with increased potential metabolism of lipids (M), amino sugars (F), other 266 

demethylated compounds (M), and near vitamin K2-vitamin B12 compounds (F); but decreased potential 267 

metabolism of carbohydrates (M). For CPPdensity values, patterns were found in males only: increasing 268 

PC1 of problem behaviors associated with increased potential metabolism of vitamin B6 (M) and vitamin 269 

B9 (M); but decreased potential metabolism of acetate (M), vitamin B12 (M) and glutamate (M). For 270 

CPPASALR values, the comparison was made between groups of high PC1 versus low PC1 of problem 271 

behaviors (for consistent display with other case studies in Fig. 3). High PC1 values associated with 272 

increased potential metabolism of other methylated compounds (F); and decreased potential metabolism 273 

of carbohydrates (M). Weighted mean vK-coordinates between high PC1 and low PC1 of problem 274 

behaviors showed a difference in beta-dispersion within condensed aromatics for females only. To 275 

explore this dataset in more detail, we identified differentially abundant functions and vK-coordinates (i.e., 276 

aggregated functional relative abundances via bioenergetic mapping) in high PC1 versus low PC1 277 

subjects, separately within each sex. In females, 22 differentially abundant functions, compared to only 2-278 

vK coordinates (with 3 corresponding functions), were identified (SI Appendix, Figs. S21, S23, Table S18, 279 

S20). In males, 6 functions compared to 2 vK-coordinates (with 8 corresponding functions) were identified 280 

(SI Appendix, Figs. S22, S24, Table S19, S21). Not all functions could be mapped into vK coordinate 281 

space. Interestingly, there was no overlap in functions identified directly versus indirectly (from 282 

aggregation into vK-coordinates). This means that differential abundance analysis using vK-coordinates 283 

can provide entirely different foci for investigation compared to the standard function-level analysis. From 284 

the vK-coordinate level analysis, high PC1 (compared to low PC1) females exhibited increased potential 285 

metabolism of Uridine phosphorylase (EC 2.4.2.3) (fxn_14491) involved in pyrimidine conversions; and 286 

decreased aldehyde lyases dihydroneopterin phosphate phosphatase and dihydroneopterin aldolase (EC 287 

4.1.2.25) (fxn_12938; fxn_12942). High PC1 males exhibited increased phosphoenolpyruvate 288 

carboxykinase (GTP) (EC 4.1.1.32) (fxn_2926) associated with pyruvate metabolism; and also increases 289 

in multiple functions (fxn_821; fxn_2958; fxn_2973; fxn_12703; fxn_12705; fxn_12786; fxn_12788) all 290 

involving alcohol dehydrogenase (EC 1.1.1.1) and acetaldehyde dehydrogenase (EC 1.2.1.10), with or 291 
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without pyruvate-formate-lyase deactivase 3 involved in degradation of aromatic compounds, biphenyl, 292 

tryptophan, and pyruvate metabolism. Results and visualizations for the standard function-level analysis 293 

are included for comparison but are not discussed further. 294 

 295 

Plant-soil systems. We found remarkable consistency in many observed patterns across the 296 

environmental soil case studies. Results reported here are for relative trends with increasing ecosystem 297 

maturity (i.e., older revegetation and natural samples) in CPPclass (SI Appendix, Figs. S25, S29, S32, 298 

Table S3), CPPdensity (SI Appendix, Figs. S26-S27, S30-S31, S33-34, Table S4), and CPPASALR (Fig. 6; SI 299 

Appendix Table S5). Below, we highlight trends found in at least two of three case studies. 300 

In CPPclass data we observed: increased potential metabolism of lipids (post-mining, AMI) and 301 

condensed aromatics (post-mining, AMI); but decreased potential metabolism of proteins (post-mining, 302 

AMI), carbohydrates (post-mining, AMI, with marginal indications in both PCaN soil groups), lignin (post-303 

mining, AMI), other methylated compounds (post-mining, AMI), and other hydrated compounds (AMI, 304 

PCaN acidic-neutral soils). Mixed or isolated results included potential metabolism: either decreased 305 

(AMI) or increased (PCaN strongly acidic soils) for tannins; decreased for other demethylated compounds 306 

(AMI); increased for other condensed compounds (AMI); and decreased (post-mining, PCaN acidic-307 

neutral soils) or increased (PCaN strongly acidic soils) for near vitamin K2-vitamin B12 compounds. Total 308 

CPPclass compounds appeared to be less well characterized and mapped to functional reactions in AMI 309 

natural compared to disturbed samples, but more well characterized in older revegetation (compared to 310 

younger revegetation) within the PCaN strongly acidic soils. 311 

CPPASALR results reinforced many patterns observed in the CPPclass data: we observed increased 312 

potential metabolism of lipids (post-mining, AMI, marginal in PCaN strongly acidic soils) and condensed 313 

aromatics (post-mining, AMI); but decreased potential metabolism of proteins (AMI, marginal in post-314 

mining), carbohydrates (post-mining, AMI, PCaN acidic-neutral soils), and other methylated compounds 315 

(post-mining, AMI). Isolated results included, potential metabolism: increased for other condensed 316 

compounds (AMI); but decreased for lignin (AMI), tannins (AMI), other hydrated compounds (AMI), and 317 
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other demethylated compounds (AMI). Differing from CPPclass results, for CPPASALR potential metabolism 318 

of near vitamin K2-vitamin B12 compounds increased (post-mining). 319 

CPPdensity results were also quite consistent across case studies: we observed increased potential 320 

metabolism of vitamin B9 (AMI, marginal in post-mining and PCaN strongly acidic soils) and vitamin K2 321 

(post-mining, AMI, marginal in PCaN strongly acidic); but decreased potential metabolism of acetate 322 

(post-mining, AMI, PCaN acidic-neutral soils), propionate (AMI), vitamin B2 (post-mining, marginal in 323 

PCaN strongly acidic soils), vitamin B12 (post-mining, AMI, PCaN strongly acidic soils), vitamin B6 (post-324 

mining, AMI), glutamate (post-mining, AMI, PCaN acidic-neutral soils), and pyruvate (AMI). While butyrate 325 

CPPdensity values were low and indistinguishable across all samples using 0.05 vK unit radial buffers, for 326 

an example comparison we tested near butyrate CPPdensity using a larger 0.1 vK unit buffer in the AMI 327 

soils and found increased levels in natural compared to disturbed soils (SI Appendix, Fig. S35). 328 

Post-mining and AMI samples displayed significant and mostly consistent directional shifts in 329 

weighted mean vK-coordinate centroids across all compound classes (vK mapping zones) considered, 330 

while PCaN acidic to neutral soils also displayed shifts within carbohydrates and condensed aromatics 331 

(Fig. 7; SI Appendix, Fig. S28, Tables S13-S16). Ecosystem maturity explained 60392% of the variation 332 

in weighted mean vK-coordinates in post-mining soils (Fig. 7a, SI Appendix Table S15). The following 333 

general patterns emerged with increasing ecosystem maturity: lipids became more reduced (lower 334 

oxygen content), proteins became more hydrated, amino sugars became more dehydrogenated or 335 

condensed, carbohydrates became more condensed (post-mining, PCaN acidic-neutral) or reduced 336 

(AMI), condensed aromatics became more condensed, lignin showed mixed trends (dehydrogenation in 337 

post-mining, reduction in AMI), and tannins became more demethylated. Except for carbohydrates and 338 

amino sugars, these trends largely represented an outward extension of sample profile mapping into vK 339 

coordinate space with older ecosystems. 340 

 341 

  342 
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 343 

Fig. 6. Amino sugar-adjusted log ratio compound processing potential (CPPASALR), representing putative 344 

microbiota activity-normalized values, from People Cities and Nature (PCaN), post-mining restoration 345 

soils, and Australian Microbiome Initiative (AMI) disturbed versus natural soils. Linear trends were used 346 

for visualization purposes. However, Kendall9s tau correlation tests (suited to ordinal data) were applied. 347 

Sample sizes are detailed in Table 1.   348 
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 349 

 350 

Fig. 7. Weighted-mean van Krevelen coordinates within select compound classes display significant 351 

shifts with maturity of plant-soil ecosystems. Patterns are from (a) post-mining forest ecosystem 352 

restoration soil samples (n = age-based groups of 3), and (b) AMI disturbed (n = 29) vs natural (n = 55) 353 

soil samples (b). PERMANOVA and beta-dispersion results are in SI Appendix, Table S15-S16.  354 

  355 
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Consistency in bioenergetic 8topography9 mapping. CPPdensity plots visualizing local polynomial 356 

regression fitting (8loess9) smoothed vK mapping profiles for increasing radii buffer areas displayed striking 357 

consistency of form within each compound class, with alternative expressions in either gut (SI Appendix, 358 

Figs. S5, S8, S12, S18) or soils (SI Appendix, Figs. S26, S30, S33).  359 

 360 

Discussion  361 

This work reveals a meaningful bioenergetic basis to the development and differentiation of community-362 

scale microbiomes. Our CPP metrics quantified putative shifts in a microbial community9s relative 363 

proficiency to process different types of compounds across gradients of human- and environmental-364 

health. Across the case studies we found significant patterns of CPP association at varying resolutions: 365 

within major classes of compounds, near focus biomolecules, and for unique vK coordinates. In the 366 

environmental soil metagenomes, surprising consistency in CPP profiles suggests they may link to plant-367 

soil system conditions in coherent and predictable ways. Our findings align with the notion that microbiota 368 

are shaped by the bioenergetic status of prevailing substrates and micro-environments, and this 369 

information is simultaneously recorded in their metagenomes. From a methodological perspective, our 370 

compound-focused bioenergetic mapping approach demonstrates new pathways for assessing and 371 

interpreting microbial systems, capable of supporting ongoing efforts to define healthy microbiomes. For 372 

example, aggregating functions via vK-coordinates can provide entirely different foci for investigation 373 

compared to standard function-level analyses. 374 

 375 

Patterns found in human health. We found strong links in both sexes between ACVD and increased 376 

potential metabolism of lipids, condensed aromatics, lignin, other hydrated compounds, vitamin B9 and 377 

vitamin K2; and decreased potential metabolism of carbohydrates and glutamate. Links between high-fat 378 

diets and ACVD are well established (43). Gut microbiota can contribute to ACVD by metabolizing the 379 

dietary lipid phosphatidylcholine, with subsequent production of harmful trimethylamine oxide (44). 380 

Polycyclic aromatic hydrocarbons are known risk factors in ACVD (45, 46). Lignin (different to lignan) is a 381 

complex and ubiquitous structural plant polymer, considered predominantly insoluble fiber, with content 382 
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ranging from 1-2 g/100g in vegetables, fruits and cereals, up to 30-40 g/100g in nut shells and stone fruit 383 

kernels (47). Lignin inhibits the enzymatic activity of ³-glucosidase, delaying carbohydrate digestion and 384 

absorption, with potential for low post-meal blood sugar levels (48). Acute hypoglycemia (low blood 385 

sugar) can trigger cardiac events (49), with greater adverse risks in subjects with significant comorbidities 386 

(e.g., T2D, ACVD). Our finding for decreased carbohydrates in ACVD might align with these impacts on 387 

blood sugar. Alternatively, we speculate that result might be symptomatic of a more Westernized diet 388 

(high in animal protein, sugar, starch, and fat 3 and lower in carbohydrate content than a plant-rich diet; 389 

44). Excessive vitamin B9 (folate) is associated with ACVD risk via a non-linear u-shaped dose-response 390 

relationship (50). Non-linear u-shaped dose-response relationships are common in biological systems 391 

(i.e., hormesis, deficiency-sufficiency-toxicity) (51). Similarly, our results linking increased vitamin K2 with 392 

ACVD appear contrary to recent opinion (52), although non-linear u-shaped dose-responses have also 393 

been observed (53). Vitamin K2 is commonly found in fermented foods which are less common in 394 

Western diets (54). Here, the ACVD case study was based on Chinese subjects whose diets potentially 395 

contained higher quantities of fermented foods including vitamin K2. Possibly, these subjects were more 396 

susceptible to adverse effects if excessive levels of vitamin K2 were reached. Our results linking reduced 397 

glutamate with ACVD appear contrary to findings from large US cohort studies which found higher 398 

glutamate levels, and lower glutamine:glutamate ratios, correlated with increased ACVD risk (55, 56). 399 

Dietary proteins are a major source of glutamate (57). However, some ethnic populations may have 400 

inadequate protein in their diets (58). Interestingly, in female adults from rural western China with 401 

inadequate (and largely plant-derived) protein intake, increasing animal protein associated with reduced 402 

risk of hypertension (58). Together, these observations suggest that a u-shaped dose-response may also 403 

operate for animal-based proteins, glutamate, and ACVD risk.  404 

In the colorectal cancer subjects (from France) we found consistent associations across CPP 405 

metrics in both sexes with increased potential metabolism of amino sugars, vitamin B12 and B9; and 406 

decreased potential metabolism of proteins and tannins. Colon cancer has been associated with low 407 

dietary fiber, low fruit and vegetable consumption, and high red meat consumption (43). Our results were 408 

consistent with reports for anticancer activity, including protective effects against colorectal cancer, from 409 
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some tannins or polyphenols (e.g., components in green and black tea, resveratrol in red wine and 410 

grapes) (59). Unfortunately, our data did not distinguish between animal- and plant-based protein. 411 

However, red meat is widely consumed in France, with 41% of males and 24% of females consuming 412 

above guideline levels (60). Amino sugars are sugar molecules with at least one hydroxyl group 413 

substituted by an amino group. In biological systems, they are formed by catalytic activity acting on amino 414 

acids (glutamate, glutamine 3 building blocks of protein) to transfer an amino functionality to a sugar 415 

phosphate or sugar nucleotide (61). Therefore, both glucose (sugar) and amino acids contribute to amino 416 

sugar formation. Meanwhile, metabolism of both glucose and amino acids plays a key role in colorectal 417 

cancer development (62). Possibly, our finding of increased potential metabolism of amino sugars with 418 

colorectal cancer may reflect dysregulated activity of glucose and amino acids with the product of their 419 

interaction (amino sugars) recorded by the gut microbiome. Consistent with our findings, vitamin B9 420 

(folate or folic acid) and vitamin B12 supplementation have been associated with increased risk of 421 

colorectal cancer (63). 422 

In the T2D case study, our lack of clear findings linked to major compound classes or focus 423 

biomolecules seems consistent with reports that T2D is a complex, multifaceted, highly heterogeneous 424 

polygenic disease with uncertain etiology (64). We found untreated (Met-) T2D exhibited an anomalous 425 

and complex CPP network, including a high number of negative correlations (indicating negative 426 

feedbacks) ranging widely across vK coordinate space (i.e., covering a spectrum of compounds and 427 

bioenergetic status). Diagnosis of T2D is based on elevated blood glucose, primarily arising from insulin 428 

resistance and inadequate insulin secretion (37). However, a clear diagnostic test for T2D is lacking, 429 

except by exclusion of other causes (64). A range of factors including genetics, dietary habits, sedentary 430 

lifestyle, and gut microbiota are involved in disease development (37). Possibly, with more detailed 431 

examination, diagnostic relationships (e.g., correlations, ratios) might be uncovered in relative abundance 432 

patterns of compound-associated vK-coordinates underpinning the anomalous T2D Met- network. 433 

In the problem behavior case study, different compound associations were observed in female 434 

and male children. Increased problem behavior (higher PC1) in females associated with increased 435 

potential metabolism of amino sugars, other methylated compounds, and near vitamin K2-vitamin B12 436 
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compounds. From differential abundance analysis, high PC1 females exhibited decreased 437 

dihydroneopterin aldolase4an enzyme involved in converting dihydroneopterin (a molecule involved in 438 

folate biosynthesis) into other compounds (65). Excessive serum levels of dihydroneopterin have been 439 

associated with major depression (66). Possibly, in case study subjects, reduced levels of 440 

dihydroneopterin-degrading enzyme have promoted accumulation of dihydroneopterin in association with 441 

problem behaviors. High PC1 females also exhibited increased uridine phosphorylase, an enzyme 442 

involved in pyrimidine metabolism that converts uridine to uracil (67), therefore possibly degrading uridine 443 

levels in those subjects. Uridine is linked to energy metabolism and glutamate-mediated excitatory 444 

neurotransmission in the brain, and supplemental uridine treatments have been used to reduce 445 

depressive symptoms in adolescents (68). In males, increased PC1 associated with increased potential 446 

metabolism of lipids, vitamins B6 and B9; and decreased potential metabolism of carbohydrates, acetate, 447 

vitamin B12, and glutamate. Vitamins B12 (cobalamin) and B9 (folate) are recognized precursors involved 448 

in forming key neurotransmitters dopamine, noradrenaline (norepinephrine), and serotonin (69). These 449 

three neurotransmitters occur in the vicinity of vitamin B12 and K2 in vK coordinate space. Vitamin B12 450 

deficiency has been associated with depressive disorders in older subjects (70). Glutamate9s role as a 451 

key neurotransmitter is described in earlier text. High PC1 males also exhibited increased 452 

phosphoenolpyruvate carboxykinase4an enzyme involved in cataplerosis, or removal of intermediate 4- 453 

and 5-carbon compounds from the TCA cycle (71, 72). These intermediates are removed because they 454 

cannot be fully oxidized for energy metabolism within the TCA cycle, but are converted elsewhere to 455 

glucose, fatty acids or amino acids (72). High PC1 males also exhibited increases in alcohol 456 

dehydrogenase, acetaldehyde dehydrogenase, and pyruvate-formate-lyase deactivase, variously 457 

involved in pyruvate metabolism, degradation of aromatics and biphenyl, and tryptophan catabolism. Key 458 

processes of energy metabolism involving glucose, lipids, protein and the TCA cycle (via keystone 459 

molecules pyruvate, acetyl-CoA, and glutamate) have been implicated in major depressive disorder, 460 

although precise pathways of pathogenesis are still unclear (73).  461 

 462 
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Patterns found in plant-soil systems. Our findings point to generalizable patterns with older 463 

ecosystems for increasing CPP associated with lipids, condensed aromatics, vitamin B9, and vitamin K2; 464 

and decreasing CPP associated with proteins, carbohydrates, lignin, other methylated compounds, other 465 

hydrated compounds, acetate, vitamin B12, vitamin B6, and glutamate. Drivers of shifting CPP in soils are 466 

expected to include changing: 1) composition of biota and biotic materials including plants, organic debris, 467 

and re-assembly of invertebrate and microbial communities, and 2) soil abiotic conditions due to plant-soil 468 

feedbacks (e.g., pH, nutrients, organic carbon content, temperature, moisture regime) (74, 75). This 469 

includes macro-environmental influences with development of vegetation structure and canopy cover 470 

(e.g., shading, rainfall interception, altered drainage). CPP values also likely reflect a dynamic balance 471 

between resource availability and use by microbiota. For example, we might expect greater accumulation 472 

of lignin in soils of older ecosystems due to plant inputs such as dead roots, bark, leaf litter, and other 473 

structural plant residues. However, we observed reduced CPP for lignin in these sample types. Fungi are 474 

major lignin degraders (76) and fungal communities vary with ecosystem disturbance and abiotic 475 

conditions (77). Interestingly, our results were counter to expectations for elevated fungal decomposition 476 

of lignin in older ecosystems. Reforestation with native mixed-species can produce higher levels of 477 

recalcitrant soil organic matter (78) (e.g., humic acid which is hard to decompose and maps to lignin in vK 478 

space). Our CPP metrics are relative and compositional (based on functional relative abundances 479 

summing to a maximum of 100%), so it may be that in relative terms, the metabolic foci of microbiota are 480 

shifted to processing other materials. Or possibly, structural plant materials may be more accessible for 481 

degradation in disturbed (e.g., agricultural) soil environments, depending on plant residue management, 482 

nutrient availability and other factors. 483 

We expect some CPP quantities are driven primarily by plant material inputs. For example, soils 484 

from more mature ecosystems in temperate climates, represented in samples from AMI and post-mining 485 

(in the Appalachian Plateau, southwestern Virginia USA; 40, 79), displayed a positive relationship with 486 

CPP for lipids and condensed aromatics. These two compound classes are represented in plant-based 487 

essential oils and volatile, aromatic organic compounds. Oils are found in high densities in much of the 488 

fire-adapted Australian flora (unlike New Zealand flora) (80). Increased CPP for lipids might also arise 489 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.05.565728doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.05.565728
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

27 

 

due to increased density of energy storage linked to primary production, or more active plant signaling in 490 

response to abiotic stress (81). High levels of lipids and condensed aromatics in mature ecosystem soils 491 

could also be a result of increasing plant investment into defensive mechanisms via antimicrobial 492 

essential oils (82), and volatile and aromatic secondary defense compounds induced by herbivory 493 

(typically by invertebrates) (83).  494 

Shifting weighted mean vK coordinates across many compound classes (in AMI and post-mining) 495 

suggests broad changes in the composition of microbial substrates with more mature ecosystems. The 496 

changing composition of the microbiota itself may contribute to this. Carbohydrates are of interest due to 497 

the potential contribution of plant-based material to human diet, and CPPclass values for carbohydrates 498 

were consistently assigned the largest sum of functional relative abundances in the human gut samples. 499 

With more mature ecosystems, CPP for carbohydrates decreased in relative terms, but weighted vK 500 

coordinates suggest carbohydrate CPP shifts towards favoring processing materials with reduced oxygen 501 

content per unit of carbon. There is likely to be global variation in environmental soil CPP driven by soil 502 

abiotic factors and changing biota (vegetation and animals), previously outlined. 503 

 504 

Potential environment-human health links. This work opens new avenues for investigating 505 

environment-human health connections because environments will vary in their production of human 506 

health-associated compounds. Moreover, varying environmental microbiota exposures may supply 507 

modulating CPP profiles for colonizing or transient impacts to human microbiomes (e.g., skin, airway, 508 

gut), which are intimately linked to our health. We show CPP patterns imprinted in environmental soil 509 

metagenomes are linked with the maturity of plant-soil systems and abiotic factors such as soil pH. We 510 

also show that CPP measures are significantly linked to human health and disease. However, we urge 511 

caution in attempting to directly translate CPP trends in plant-soil environments (e.g., vitamins B12, B6, 512 

B9, K2, glutamate) to infer possible implications for gut-associated human health. We stress that non-513 

linear, u-shaped dose-response relationships (51) are common and relevant in the context of 514 

environmental exposure-human health links. Also, the gut represents a more tightly controlled micro-515 

environment (redox, pH, etc.) unsuited to many environmental microbes. Example evidence for potential 516 
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environment-human transfer of microbial CPP comes from Endomicrobia species found in oral microbiota 517 

of indigenous peoples from central Australia (84). Endomicrobia species provide energetic advantage for 518 

cellulose digestion in the guts of termites and wood-eating insects4and transfer to humans has occurred 519 

likely through use of termites and termite mounds in traditional food and medicine (84). Speculatively, our 520 

results suggest that if broad supplementation of human microbiota CPP capacity is required (spanning a 521 

range of health-supporting biomolecules), this may require exposure to multiple types of environments. 522 

However, certain environment types may provide more targeted microbiota CPP supplementation. 523 

 524 

Limitations. There are important limitations in this study in addition to those already stated. CPP metrics 525 

do not measure actual compounds; rather, they quantify conceptual 8meta-compounds9 or assemblies of 526 

elements based on functional reaction-level summary weighted mean O:C and H:C ratios consistent with 527 

compounds of interest. Quantification occurred via mapping into vK space and aggregating functional 528 

relative abundances into major compound classes, near focus biomolecules, or at unique vK coordinates, 529 

to assess CPP structural profiles of metagenomes. Conceptually, mean reaction-level attributes (O:C and 530 

H:C ratios) represent a mid-point of chemical transformation mediated by microbiota (i.e., interpreted as 531 

8X% of functions were involved in processing compound/biomolecule type Y9). Stoichiometry rules 532 

determine that reaction inputs and products will have balanced O, H, and C atomic counts. However, 533 

different mean O:C and H:C ratios can arise due to uncounted O and H atoms in non-C containing 534 

species (O:C, H:C values become undefined). For future work, the CPP mapping algorithm could be 535 

readily adjusted to separately target reaction inputs, or products, or individual chemical species. Our 536 

coarse compound classes did not distinguish (for example) plant versus animal proteins or high-fiber 537 

versus low-fiber carbohydrates. Finer-resolution vK mapping zones would increase the precision of 538 

results. We could not discern CPP differences for butyrate between sample types using 0.05 vK radii. 539 

Butyrate is often present at low concentrations in the gut compared to other SCFAs, with rapid 540 

consumption by colonocytes (23). The volatility of butyrate (85) may make it susceptible to loss from soils. 541 

Our butyrate CPPdensity profiles spanning large to small vK radii may depict source-sink dynamics. 542 

Compound mapping using O, H, and C content enable exhaustive and compartmented mapping within vK 543 
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coordinate space, however this represents a simplified, imperfect approach. Multi-element compound 544 

mapping would offer increased precision (86) and may be developed to provide exhaustive and 545 

compartmented mapping across a range of compound types. Mapping of SUPER-FOCUS functions was 546 

incomplete (sample functional relative abundances ranged from 52-84%, with means 55-67%). This may 547 

be improved with future algorithm refinement. CPP measures used here were relative, not absolute. 548 

Further work is required to refine our first-pass ASALR normalization, examine CPP-disease links in wider 549 

ethnic populations, and explore other potential explanatory variables not considered in our analyses. Like 550 

many microbiome studies, our analyses do not permit causal insight to interpret whether increased or 551 

decreased CPP may facilitate or follow disease. For example, excessive CPP may produce metabolites at 552 

toxic levels, or degrade substrates leading to deficiency. Reduced CPP measures might correspond to 553 

dietary deficiencies or suppression of functional pathways due to dysregulated environmental conditions. 554 

Nonetheless, observed CPP trends may assist hypothesis-building and prioritizing mechanistic research. 555 

We suggest that future work might address these limitations.  556 

 557 

  558 
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Materials and Methods 559 

 560 

Case study datasets. Metagenomics samples used are summarized in Table 1 and further described in 561 

SI Appendix Supporting Information. 562 

 563 

CPP mapping approach. CPP values were derived via the following steps (Fig. 2; further details are in 564 

SI Appendix Supporting Information) 565 

1. Shotgun metagenomics raw sequences were accessed, and bioinformatic steps were run on Flinders 566 

University DeepThought high-performance computing facility (87). 567 

2. Raw sequence data were inspected using FastQC (v0.11.9; 88) and quality control trimming 568 

performed using Fastp (v0.23.2; 89). 569 

3. Functional potential profiles were derived from good quality read 1 sequences using SUPER-FOCUS 570 

(33) software, linked to the Diamond sequence aligner (v0.9.19; 90) and version 2 100% identity-571 

clustered reference database (100_v2; https://github.com/metageni/SUPER-FOCUS/issues/66). 572 

Where subjects/samples were represented by multiple sequence files, the combined SUPER-FOCUS 573 

outputs were normalized so that the total functional relative abundances summed to 100% in each 574 

subject/sample. 575 

4. Every SUPER-FOCUS function (output row) was translated to one or more corresponding chemical 576 

reaction(s) using a purpose-built R-script algorithm based on ModelSEED database lookup tables 577 

(from https://github.com/ModelSEED/ModelSEEDDatabase; accessed 10 Aug 2022). The algorithm 578 

sought matches based on either: full matching of functional hierarchies (using subsystem-class, -579 

subclass, -name and -role); detection of EC number; or matching of SUPER-FOCUS function name 580 

within ModelSEED lookup tables for reactions (reaction name or alias), subsystems (role), or 581 

reaction-pathways (external reaction name). 582 

5. Every chemical reaction was converted to reaction-level mean vK coordinates (O:C and H:C molar 583 

ratios), considering all C-containing reaction input and product compounds and weighted according to 584 
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reaction stoichiometry. Compounds not containing C were ignored due to undefined O:C and H:C 585 

ratios. Data for compounds were based on Hill system chemical formulae in protonated form. 586 

6. Overall mean vK coordinates were calculated for each functional output row of the SUPER-FOCUS 587 

functional relative abundance table via averaging one or more associated chemical reactions. From 588 

samples initially summing to 100% functional relative abundances, typically between 50380% of 589 

SUPER-FOCUS functions were identified and translated to weighted mean compound-associated vK 590 

coordinates. 591 

7. In vK coordinate space, we analyzed the spatial assignment of functional relative abundances to 592 

derive the following CPP data types: 593 

a. CPPclass: represented major compound classes based on pre-defined zones from (32) (see 594 

Fig. 1; SI Appendix, Tables S1). 595 

b. CPPASALR: to address large variation in CPPclass values (that impeded comparisons across 596 

study groups) we considered normalization for microbial activity may be needed. Amino 597 

sugars have previously been used as a biomarker of microbial residue turnover as they are 598 

major components of bacterial and fungal cell walls (peptidoglycan and chitin) (28). 599 

Therefore, we implemented preliminary putative 8activity-normalization9 by dividing CPPclass 600 

values for all other compound classes by the CPPclass value for amino sugars, followed by a 601 

variance-stabilising log10-transformation. These data were denoted amino sugar-adjusted log 602 

ratio (CPPASALR) values. 603 

c. CPPdensity: captured functional capacity within radial buffers of varying proximity (radii of 0.05, 604 

0.1, 0.15, 0.2, 0.25 vK units) to focus biomolecules (Fig. 1; SI Appendix, Tables S2). 605 

Functional relative abundances within radial buffers were summed then divided by the 606 

respective area in vK units2. 607 

d. Unique compound-associated vK coordinates: Each SUPER-FOCUS functional row was 608 

translated to corresponding vK coordinates (as used for the above spatial assignments). 609 

Further supplementary analyses were undertaken at the vK coordinate level, including 610 

network analyses (in the T2D case study), differential abundance analysis (in the problem 611 
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behavior case study), and weighted-mean vK coordinate analysis within major compound 612 

zones. 613 

 614 

Data visualization and statistical analyses. Further detail of visualization and statistical testing using 615 

standard approaches are provided in SI Appendix Supporting Information. 616 

  617 
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