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Abstract

Microbiomes are critical to the health and functioning of humans and ecosystems. Defining ‘healthy
microbiomes’, however, remains elusive. More advanced knowledge exists on health associations for the
compounds used or produced by microbes. Because microbes, their feedstocks and micro-environments
interact synchronously, using functional genes to facilitate chemical transformations, this presents an
intriguing opportunity to examine microbiomes through their potential to process compounds associated
with human health. There is also growing interest in environmental microbiota that might be efficient at
processing health-associated compounds because these microbes may readily transfer to humans and
environmental interventions could modulate our exposure to them. Here we propose a bioenergetic
mapping approach to microbiome assessments that examines the compound processing potential
imprinted in human gut and environmental soil metagenomes. From shotgun metagenomics functional
profiling, we derive quantitative measures of compound processing potential for human health-associated
compound classes (e.g., lipids, carbohydrates) and selected biomolecules of interest (e.g., vitamins,
short-chain fatty acids). We mapped microbial functions to compounds using the complexity-reducing van
Krevelen bioenergetic mapping framework, based on carbon-hydrogen-oxygen stoichiometry and
principal axes that explain variation in microbial distribution and chemical speciation. We found
differences in compound processing potential within gut metagenomes comparing health- and disease-
associated samples, including atherosclerotic cardiovascular disease, colorectal cancer, type 2 diabetes
and anxious-depressive behaviors. Patterns of compound processing potential in soil metagenomes were
linked with ecosystem maturity. Assessment of compound processing potential offers a new lens to
explore mechanisms of microbiome-mediated human health including connections to health-promoting

environmental microbiomes.

Significance Statement
Despite mounting evidence of their importance, the definition and measurement of ‘healthy microbiomes’
remain unclear. Knowledge gaps hinder development of microbiota-oriented approaches in human health,

including potential for environmental interventions. By integrating interdisciplinary knowledge frameworks
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including functional genomics and biochemistry, we derive summary measures of potential for human gut
and environmental soil metagenomes to process major compound classes and biomolecules linked to
human health. Measures of compound processing potential were linked with states of human health and
disease; and displayed seemingly predictable shifts along gradients of ecological disturbance in plant-soil
systems. Compound processing potential offers a simplifying approach for applying powerful and
otherwise complex metagenomics in ongoing efforts to understand and quantify the role of microbiota in

human- and environmental-health.
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Main Text

Introduction

Microbial communities (microbiota), their feedstocks (substrates, nutrients) and environmental conditions
(e.g., pH, redox potential, temperature, moisture, salinity) work in concert to drive microbially-mediated
reactions essential to fueling life on Earth (1). Microbiomes (i.e., microbiota, genetic material and
metabolites) are intimately linked to human health and disease (2-4), as well as the functioning of
ecosystems (5, 6). Microbial functional capacity supports the transformation and exchange of chemicals,
molecules, and energy, benefiting microbiota members, host organisms, and wider ecological networks
(1, 5, 7, 8). Many microbes are often highly specialized and efficient at performing a particular suite of
reactions. Accordingly, microbiota are shaped by the resources they utilize and the environments they

inhabit (3, 9).

Microbes typically operate as a community (10) where many taxa lack the functional capacity for
stand-alone survival (11). Complex cross-feeding and resource sharing in the extracellular space (7)
suggest that community-scale functional profiles (rather than specific microbial taxa) underpin the health-
supporting capacity of microbiota. However, community-scale complexity has hindered progress towards
clear definitions of a ‘healthy microbiome’ (12). Nevertheless, researchers want to better understand the
assembly and structure of health-promoting microbiomes to improve the course of microbiome-associated
diseases. Disease-associated microbiota are often characterized by a loss of diversity and dominance by
opportunistic pathogens (4, 13), but it may be unclear whether they represent facilitators or followers of
disease. In contrast to direct microbiota-health links, our knowledge of health associations for various
biomolecules and other chemical compounds (linked to microbiomes) is comparatively well advanced.
Because microbiota-mediated reactions fundamentally involve transformations between different
chemical compounds, this creates the intriguing possibility of examining microbiomes through their

potential to process (i.e., convert or produce) compounds associated with human health.
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Additionally, the involvement of environmental microbiomes in processing human health-
associated compounds is of interest. Transfer of environmental microbiota to humans may help
supplement important functional capacity, protective microbiota, and immune-signaling agents,
particularly in infants, but also in adults who have depleted microbiota due to antibiotic use, poor diet,
lifestyle or other health incidents (14, 15). If the functional composition of microbiota varies predictably
along environmental gradients, then through design, management, and behavior we should be able to
modulate our exposure to health-promoting versus disease-associated microbes. Soils, in particular, can
represent a rich source of microbial diversity with potential to support human health (16). Microbiota in
plant-soil systems are shaped by macro-scale factors including climate, soil characteristics, vegetation
composition, diversity, land use and management (9, 17). With the prospect of cost-effectively
encouraging health-promoting microbes, it is frequently asked, "What type of environment is best?” Yet,
the attributes of health-promoting environmental microbiomes, including potential functional overlaps with

human microbiomes, remain understudied.

Many microbiome-associated diseases are linked to bioenergetic mechanisms (7), with oxidation-
reduction (redox) potential recognized as a key factor shaping microbial communities. The healthy
anaerobic gut favours obligate anaerobes, whereas dysbiosis is often accompanied by increased
oxygenation of the colonic epithelium and expansion of oxygen-tolerant facultative anaerobic bacteria (18,
19). Oxygen is a highly electronegative element important in shaping electrochemical gradients,
biochemical reactions, and gene expression (20). Oxygen content varies in different types of organic
matter (i.e., microbial feedstocks). Yet, the interrelationship between bioenergetic drivers, compounds,
microbial environments and microbiota development receives little attention. In soils, redox potential
varies with weather, vegetation, land use, management, drainage, organic-content, vicinity to roots, soil
characteristics, and microbial activity (21, 22). At the molecular level, redox potential shapes what kind of
molecules can be made and how energy is stored. Therefore, a compound-oriented examination of
healthy microbiomes might capitalize on available knowledge linking compounds with human health,

while also considering deterministic influences of bioenergetic (or electrochemical) energy gradients.
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88 For example, in gut microbiome bioenergetics and chronic metabolic diseases, Daisley, et al. (7;

89 their Figs. 3-4) highlight key human health-associated biomolecules found within extracellular resources

90 shared by microbes. Short-chain fatty acids (SCFAs) acetate, propionate, and butyrate benefit host

91  metabolism, intestinal barrier function, systemic anti-inflammatory effects, and contribute up to 10% of

92  daily energy requirements (23). B group vitamins: riboflavin (B2), cobalamin (B12), pyridoxal 5’-phosphate

93  (B6), and folate (B9) are critical in electron transport and represent precursors to a variety of enzyme

94  cofactors essential to the tricarboxylic acid (TCA) cycle, fatty acid oxidation, and other metabolic

95  pathways (7). Menaquinone (Vitamin K2) is a critical electron carrier in bacteria and considered essential

96 in humans for calcium regulation (7). Other keystone health-linked biomolecules include glutamate and

97 pyruvate. Glutamate is the major excitatory neurotransmitter of the healthy mammalian brain, and an

98 abundant free amino acid important in multiple metabolic pathways, which requires regulation at optimal

99 levels in extracellular fluids (24). Glutamate is sensed luminally in the intestinal mucosa, triggering vagus
100 nerve (gut-brain axis) activity (25). Pyruvate is a critical intermediate involved in human energy

101  metabolism, where dysregulation is associated with cancer, heart failure, and neurodegeneration (26).

102 Here, we examine the functional potential of gut and soil microbiota from a compound processing
103 potential (CPP) viewpoint, to assess patterns in human health and disease, and with gradients of

104 ecosystem maturity. Such an approach might discern health- versus disease-promoting microbiotas from
105 the types of biochemical compounds they are attuned to consuming or producing (reflecting microbial
106  feedstocks and metabolites respectively). Previous metabolome prediction frameworks (e.g., 27, 28-30)
107 rely variously on supplementary metabolome training datasets, microorganism-specific genome-scale
108  metabolic models, taxonomic abundance estimates, and modeled or assumed environmental conditions
109 (e.g., human gut). In this work, we wanted to exploit community-scale compound-oriented information that
110 might be embedded within metagenomes (regardless of taxa present). As functional potential profiling
111 from whole genome sequencing (or shotgun metagenomics) does not directly measure functions

112 performed, we characterized microbiota-linked CPP from DNA sequencing, without direct measurement

113  of compounds. We premised that the ease of transformation between health-associated compounds and
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114 other compounds that closely resemble them will depend on stoichiometric and energetic similarities,

115 microbiota functional diversity, and environmental conditions.

116 We utilized a framework that integrates information about compounds, bioenergetics, and

117 environmental conditions. The complexity-reducing van Krevelen (vK) coordinate space offers a simplified
118 and intuitive bioenergetic framework for approximate mapping of compounds based on their carbon (C),
119  oxygen (O) and hydrogen (H) content, while also reflecting energy density and principal axes that explain
120  microbial distribution and chemical speciation (Fig. 1; S| Appendix, Fig. S1) (31, 32). Compounds are

121 mapped into vK space using their O:C and H:C molar ratios (x- and y-axis respectively). We surmised this
122 framework could offer an exhaustive and intuitive mapping space to summarize the nature of microbiota-
123 mediated functional reactions in a way that reflects mean or dominant compound properties, reaction

124  stoichiometries, and potential overlaps between dietary or environmental substrates, and key health-

125 associated biomolecules.

126 Specifically, we combined SUPER-FOCUS functional profiling (33), the comprehensive

127 ModelSEED (34) functional-biochemistry database system and vK coordinate mapping to assign

128  functional potential relative abundances from human gut and soil sample metagenomes to overall mean
129 reaction-level vK coordinates. This approach effectively mapped every SUPER-FOCUS function (where
130 feasible via available corresponding database information) to an abundance-weighted mean proxy

131  chemical compound (or reaction-level ‘meta-compound’) represented in the two-dimensional vK space (SI
132 Appendix, Fig. S2). Limitations to this simplified representation of functional profiles are discussed below.
133 We aimed to: 1) investigate measures of microbiota CPP imprinted in human gut and soil metagenomes;
134  and 2) test for differences in human health and disease, and in disturbed, restored and natural

135 ecosystems. We hypothesized this bioenergetic mapping approach might identify CPP profiles, and

136 overlaps in human and environmental datasets, that could inform the definition and future shaping of

137 ‘healthy microbiomes’. We were also keen to explore whether CPP measures might enhance the

138 interpretability and accessibility of metagenomics data to aid hypothesis building and prioritizing future

139 research.
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140

141  Fig. 1. Van Krevelen (vK) coordinate space (adapted from 31), displaying major compound classes

142  (purple zones and text), key gradients (grey axes and text), focus biomolecules examined in this study
143  (large dots), and additional example health-associated biomolecules, dietary or environmental substrates
144  (legend). vK zones were adapted from (32) (see S| Appendix, Tables S1, S2). Key gradients include

145  oxidation-reduction (x-axis), hydrogenation-dehydrogenation (y-axis), hydration-condensation (top-right to
146 bottom-left), methylation-demethylation (top-left to bottom-right) and increasing energy content (towards

147  top-left).
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148  Results

149  We developed compound processing potential metrics to assess four human health and disease

150 datasets, comprising atherosclerotic cardiovascular disease (ACVD)(35), colorectal cancer (36), type 2
151  diabetes (T2D)(37) and problem (anxious-depressive) behaviors in children (38); and three environmental
152  soil datasets from ecological restoration and disturbed versus natural plant-soil systems (39-41) (Table 1).
153  Four CPP metrics were evaluated (Fig. 2; detailed in Methods): 1) CPPciass values summed functional
154  relative abundances mapping to major compound classes (Fig. 1); 2) CPPasaLr: noting high variability in
155 CPPuss values across case studies, we implemented a first-pass normalization aiming to account for

156  microbial activity levels, based on CPPcass abundances assigned to amino sugars (42), here termed

157  amino sugar adjusted log ratio (ASALR) data; 3) CPPuensity captured the density of functional relative

158 abundances in close radial proximity to focus biomolecules (Fig. 1); and 4) compound-associated vK

159 coordinates: these data underpin the above measures (i.e., aggregated within major classes, or within
160 close radii of biomolecules) but were also used to consolidate functions with shared vK coordinates for
161 supplementary analyses in selected case studies described below (i.e., differential abundance, correlation
162  networks, and calculating weighted mean vK coordinates within major compound classes). We

163  successfully mapped most SUPER-FOCUS functional relative abundances to vK coordinates (sample
164  ranges 52-84%, means 55-67%; Table 1; SI Appendix Table S3).

165

166  Human health and disease. In overview, gut metagenome CPPcpss (SI Appendix, Figs. S4, S7, S11,
167  S17, Table S3) and CPPuensity (S| Appendix, Figs. S5-S6, S8-S9, S12-S13, S18-S19, Table S4) data

168 produced strong associations in ACVD and colorectal cancer compared to normal subjects (detailed

169  below). Many patterns observed in CPPcass data were reinforced in the putative activity-normalized

170  CPPasaLr measures (Fig. 3; Sl Appendix Table S5), and this transformed data format showed stabilized
171  variance across case study datasets. Interestingly, across all CPPciass, CPPdensity, and CPPasaLr

172 measurements, when associations were found in both sexes they were always in the same direction (Sl
173  Appendix Tables S3-5). In the T2D (female only) and problem behavior case studies, we observed far

174  fewer relationships in the coarse CPPciass, CPPasaLr or biomolecule-focused CPPuensity data. Therefore,
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we pursued network analyses and differential abundance analyses respectively in these case studies, as
illustrative examples of more detailed supplementary analyses. Weighted mean vK-coordinate analyses

produced striking associations in ACVD (Fig. 4; SI Appendix, Tables S6-S7), but weaker effects in other

case studies (S| Appendix, Figs. S10, S14, S20, Tables S8-S12). The statistical test results described

below are detailed in the Sl Appendix Tables.

Compound Processing Potential (CPP)
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4
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| - | -
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Fig. 2. Flow chart of compound processing potential (CPP) analyses.
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Table 1. Description of case study metagenome datasets (further detail in SI Appendix, Supporting
Information).
Case study Main comparison variable or Metagenome functional profile Source data
focus diagnosis groups (and sample/subject | characteristics (sample mean * s.d.)? | reference;
numbers*) Country of
origin
Human gut
Atherosclerotic | ACVD (nf = 53, nm = 157) or normal Functions® n = 21,117 (9301 + 3523) (35, SRA
cardiovascular | healthy (nf 101, nu = 69). Functions' n = 10,829 (5051 + 1843) accession
disease Total n = 380. Total fxn rel abun' =63.2 + 3.5 % PRJEB21528);
(ACVD) vK coordinates n = 2535 (1509 + 502) China
Colorectal Colorectal cancer (nf = 24, ny = 29) or Functions® n = 12,896 (2809 + 1924) (36, SRA
cancer normal healthy (nr = 33, nm = 27). Functions! n = 6932 (1750 + 1117) accession
Total n =113. Total fxn rel abun' =66.7 + 2.7 % PRJEB6070);
vK coordinates n = 1954 (711 + 362) France
Type 2 T2D with no Metformin treatment (T2D Functions® n = 19,099 (9916 + 2393) (37, SRA
diabetes (T2D) | Met-, n = 33), T2D with Metformin (T2D Functions' n = 9916 (4490 + 874) accession
and impaired Met+, n = 20), IGT (n = 49), or normal Total fxn rel abun' =64.4 +2.2 % PRJEB1786);
glucose healthy (n = 43). Subjects are females vK coordinates n = 2393 (1431 + 202) Sweden
tolerance only. Total n = 145.
(IGT)
Problem First principal component (PC1) of Functions® n = 20,599 (10282 + 2481) (38, SRA
behaviors in anxious-depressive problem behaviors, Functions' n = 10,322 (5507 + 1224) accession
children examined as either numeric scores (nf = | Total fxn rel abun' =54.9 + 1.3 % PRJNA496479);
20, nm = 17); or high/low PC1 groups* vK coordinates n = 2459 (1645 + 281) United States
(high PC1 ng =10, ny = 8; Low PC1 ng =
10, ny = 9). Total n = 37.
Soils
People Cities Soil samples spanned young to old Functions® n = 36,324 (27,969 + 1011) | (39, Aotearoa
and Nature revegetation age, and remnant sites Functions' n = 18,197 (14,690 + 396) Genomic Data
(PCaN) forest | (treated as ordinal variables). Data were Total fxn rel abun' =61.7 £ 0.3 % Repository
ecosystem separated into pH-based groups: strongly | vK coordinates n = 3302 (2965 + 49) project
restoration acidic (pH < 4.5, 10-40 yr old, remnant, n AGDRO00045);
= 8); and acidic-neutral soils (4.5 < pH < Aotearoa New
7, 11-48 yr old, n = 10). Total n = 18. Zealand
Post-mining Soil samples spanned revegetation ages | Functions® n = 30,125 (20,328 + 767) (40, MG-RAST
forest of 6, 12, 22, 31 years, and unmined (UM) | Functions' n = 15,576 (11,051 + 334) project
ecosystem samples (treated as ordinal variables). Total fxn rel abun' =61.9+ 0.3 % mgp16379);
restoration Comprising five age-based groups, each | vK coordinates n = 3076 (2537 £ 54) United States
with three replicates. Total n = 15.
Australian Disturbed (n = 29) or natural (n = 55) Functions® n = 37,335 (22,959 + 1172) | (41, AMI Data
Microbiome soils, comprising temperate climate zone, | Functions' n = 18,551 (12,212 + 553) Portal [Data
Initiative (AMI) | surface (0-10cm) with 7.5-45% clay Total fxn rel abun' =60.8 + 1.0 % accessed Sep
disturbed content (i.e., avoiding very sandy and vK coordinates n = 3326 (2700 + 69) 2022))%;
versus natural | very clayey soils). Total n = 84. Australia

*F = females, M = males. TNumber of functions? from initial SUPER-FOCUS profiling, versus functions'

(fxn) with available compound information for mapping to vK coordinates. ¥PC1 of problem behaviors

were analyzed as numeric values for visualizing and assessing CPPciass and CPPaensity data; and high vs.

low PC1 groups for CPPasaLr data. High PC1 values represent more problematic behavior. SAMI Data

portal URL: https://data.bioplatforms.com/organization/australian-microbiome.
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193 Fig. 3. Amino sugar-adjusted log ratio compound processing potential (CPPasaLr), representing putative
194  microbiota activity-normalized values, in normal healthy and diseased female (F) and male (M) subjects
195 for atherosclerotic cardiovascular disease (ACVD), colorectal cancer, type 2 diabetes (T2D) with and
196  without Metformin treatment (met +/-), impaired glucose tolerance (IGT), and high and low first principal
197 component (PC1) problem behavior values. For visualization purposes outlying values are not shown.
198  However, statistical tests were based on all data (S| Appendix Table S5). Sample sizes are detailed in
199 Table 1. Tests for differences are performed within a single sex. In T2D data, groups not sharing a letter
200  are different.
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203  Fig. 4. Weighted mean vK coordinates within compound classes in ACVD and normal subjects in (a)
204  females (ACVD n = 53, normal n = 101), and (b) males (ACVD n = 157, normal n = 69). PERMANOVA
205 and beta-dispersion results are in S| Appendix Tables S6-7. Contour lines indicate the probability density

206  of data points (S| Appendix Supporting Information).
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207 ACVD associated with CPPqiass values, compared to normal subjects, in the form of increased
208  potential metabolism of lipids (in females — F, and in males — M), proteins (M), condensed aromatics (F,
209 M) lignin (F, M), tannins (M), other hydrated compounds (F, M), other demethylated compounds (M), and
210  near vitamin K2-vitamin B12 compounds (F); contrasting with decreased potential metabolism of

211 carbohydrates (F, M) and other condensed compounds (M). Despite all samples initially summing to

212 100% total functional relative abundances, there was less complete conversion to identifiable reactions
213  and total sum CPPcpass data in females only for ACVD compared to normal cases. Many of these patterns
214  were reinforced in the CPPasaLr data, with ACVD notably associated in both sexes with increased

215 potential metabolism of lipids, condensed aromatics, lignin, and other hydrated compounds; but

216 decreased potential metabolism of carbohydrates. For CPPgensity measures within 0.05 vK unit radii,

217  ACVD associated with increased potential metabolism of propionate (F), vitamin B12 (F), vitamin B6 (M),
218  vitamin B9 (F, M), vitamin K2 (F, M) and pyruvate (M); but decreased potential metabolism of acetate (M)
219  and glutamate (F, M).

220 Colorectal cancer also associated prominently with CPPcass values, specifically increased

221 potential metabolism of lipids (M), amino sugars (F, M), condensed aromatics (M), lignin (M), other

222 condensed compounds (F, M) and near vitamin K2-vitamin B12 compounds (M); but decreased potential
223 metabolism of proteins (F, M) and tannins (F, M). Total sum CPPcass data were reduced in male colorectal
224  cancer cases compared to normal. CPPasaLr values in colorectal cancer subjects of both sexes were

225 associated with decreased potential metabolism of proteins, lignin, tannins, and other demethylated

226  compounds. For CPPa4ensity measures within 0.05 vK unit radii, colorectal cancer associated with increased
227 potential metabolism of vitamin B2 (M), vitamin B12 (F, M), vitamin B9 (F, M), and pyruvate (M). Weighted
228 mean vK-coordinates varied between colorectal cancer and normal subjects with different centroids in
229 condensed aromatics (F), lignin (M), and tannins (M); and different beta-dispersion or spread in proteins
230 (F, M) and condensed aromatics (F, M).

231 In the female-only T2D case study results, we found CPPciass values decreased for other

232 methylated compounds in IGT compared to normal subjects and decreased for near vitamin K2-vitamin

233 B12 compounds in IGT compared to normal, with a reduced total sum CPPgiass in normal compared to
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234  other subjects. No associations were found with CPPaqensity values. CPPasaLr values were decreased for
235 near vitamin K2-vitamin B12 compounds in IGT compared to normal and T2D Met+ subjects. From

236  analysis of weighted mean vK-coordinates among diagnosis groups, a difference in centroids was found
237 only in the compound class of proteins. With such weak results, further investigation was performed via
238 network analysis (S| Appendix Supporting Information) on 20 subjects in each diagnosis group based on
239 inferred correlations between functional relative abundances mapped to unique vK-coordinates. Network
240  analyses were based on commonly observed vK coordinates (present in at least 60% of samples and
241 minimum 2% sum functional relative abundance across samples). Network diagrams (Fig. 5) and

242 structure dendograms (S| Appendix, Fig. S15) display a transition in their complexity, number of nodes
243  and fraction of negative edges (interactions) from simplest in normal and IGT subjects to most complex in
244  T2D Met+ and T2D Met- subjects. Comparing network characteristics for the four groups (normal, IGT,
245  T2D Met-, T2D Met+; n = groups of 20) to a bootstrapped (B = 1000) density distribution of randomly
246  resampled networks (n = 20, drawn from the same pool of 80 subjects) (S| Appendix, Fig. S16, Table
247 S17) we found normal healthy subjects had the lowest fraction of negative edges and the highest degree
248 centralization. Untreated disease, T2D Met-, had the lowest closeness centralization (graph-level inverse
249  of average geodesic distance between nodes); and borderline significant results for the highest fraction of
250 negative edges (negative correlations between vK-coordinates), lowest betweenness centralization

251 (graph-level centrality based on broker positions connecting others), and lowest mean distance (average
252 path length between nodes). In short, normal subjects appear to have far less correlations between vK-
253  coordinates (fewer nodes / vertices), and for the nodes and links that are present they are largely

254 positively correlated and highly interlinked. Whereas T2D Met- (untreated disease) is characterized by a
255  much larger number of negatively correlated vK-coordinate nodes, which on average have shorter links,

256 and are less well connected-up across the whole network.
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259 Fig. 5. Network diagrams based on commonly observed vK coordinates for female subjects (n = groups
260  of 20) with diagnoses: (a) normal, (b) impaired glucose tolerance (IGT), (c) type 2 diabetes without
261 Metformin (T2D Met-), and (d) type 2 diabetes with Metformin (T2D Met+). Nodes are located according
262  to unique compound-associated vK coordinates, with size reflecting node degree (number of linked
263  significant correlations). Links between nodes display positive (aqua color) and negative (red color)
264  correlations (p < 0.05).
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265 Problem behaviors displayed few significant associations in CPPcss values: increasing PC1 of
266 problem behaviors associated with increased potential metabolism of lipids (M), amino sugars (F), other
267  demethylated compounds (M), and near vitamin K2-vitamin B12 compounds (F); but decreased potential
268 metabolism of carbohydrates (M). For CPPuensity values, patterns were found in males only: increasing
269 PC1 of problem behaviors associated with increased potential metabolism of vitamin B6 (M) and vitamin
270 B9 (M); but decreased potential metabolism of acetate (M), vitamin B12 (M) and glutamate (M). For

271 CPPasaLr values, the comparison was made between groups of high PC1 versus low PC1 of problem
272 behaviors (for consistent display with other case studies in Fig. 3). High PC1 values associated with

273 increased potential metabolism of other methylated compounds (F); and decreased potential metabolism
274  of carbohydrates (M). Weighted mean vK-coordinates between high PC1 and low PC1 of problem

275 behaviors showed a difference in beta-dispersion within condensed aromatics for females only. To

276 explore this dataset in more detail, we identified differentially abundant functions and vK-coordinates (i.e.,
277 aggregated functional relative abundances via bioenergetic mapping) in high PC1 versus low PC1

278 subjects, separately within each sex. In females, 22 differentially abundant functions, compared to only 2-
279  vK coordinates (with 3 corresponding functions), were identified (S| Appendix, Figs. S21, S23, Table S18,
280  S20). In males, 6 functions compared to 2 vK-coordinates (with 8 corresponding functions) were identified
281 (Sl Appendix, Figs. S22, S24, Table S19, S21). Not all functions could be mapped into vK coordinate

282 space. Interestingly, there was no overlap in functions identified directly versus indirectly (from

283  aggregation into vK-coordinates). This means that differential abundance analysis using vK-coordinates
284  can provide entirely different foci for investigation compared to the standard function-level analysis. From
285  the vK-coordinate level analysis, high PC1 (compared to low PC1) females exhibited increased potential
286 metabolism of Uridine phosphorylase (EC 2.4.2.3) (fxn_14491) involved in pyrimidine conversions; and
287 decreased aldehyde lyases dihydroneopterin phosphate phosphatase and dihydroneopterin aldolase (EC
288  4.1.2.25) (fxn_12938; fxn_12942). High PC1 males exhibited increased phosphoenolpyruvate

289  carboxykinase (GTP) (EC 4.1.1.32) (fxn_2926) associated with pyruvate metabolism; and also increases
290 in multiple functions (fxn_821; fxn_2958; fxn_2973; fxn_12703; fxn_12705; fxn_12786; fxn_12788) all

291  involving alcohol dehydrogenase (EC 1.1.1.1) and acetaldehyde dehydrogenase (EC 1.2.1.10), with or
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292  without pyruvate-formate-lyase deactivase — involved in degradation of aromatic compounds, biphenyl,
293  tryptophan, and pyruvate metabolism. Results and visualizations for the standard function-level analysis
294 are included for comparison but are not discussed further.

295

296 Plant-soil systems. We found remarkable consistency in many observed patterns across the

297 environmental soil case studies. Results reported here are for relative trends with increasing ecosystem
298  maturity (i.e., older revegetation and natural samples) in CPPgiass (S| Appendix, Figs. S25, S29, S32,

299  Table S3), CPPuensity (S| Appendix, Figs. S26-S27, S30-S31, S33-34, Table S4), and CPPasaLr (Fig. 6; Sl

300 Appendix Table S5). Below, we highlight trends found in at least two of three case studies.

301 In CPPuass data we observed: increased potential metabolism of lipids (post-mining, AMI) and
302 condensed aromatics (post-mining, AMI); but decreased potential metabolism of proteins (post-mining,
303  AMI), carbohydrates (post-mining, AMI, with marginal indications in both PCaN soil groups), lignin (post-
304 mining, AMI), other methylated compounds (post-mining, AMI), and other hydrated compounds (AMI,
305  PCaN acidic-neutral soils). Mixed or isolated results included potential metabolism: either decreased

306  (AMI) orincreased (PCaN strongly acidic soils) for tannins; decreased for other demethylated compounds
307  (AMI); increased for other condensed compounds (AMI); and decreased (post-mining, PCaN acidic-

308 neutral soils) or increased (PCaN strongly acidic soils) for near vitamin K2-vitamin B12 compounds. Total
309 CPPcass compounds appeared to be less well characterized and mapped to functional reactions in AMI
310 natural compared to disturbed samples, but more well characterized in older revegetation (compared to
311  younger revegetation) within the PCaN strongly acidic soils.

312 CPPasaLr results reinforced many patterns observed in the CPPqass data: we observed increased
313 potential metabolism of lipids (post-mining, AMI, marginal in PCaN strongly acidic soils) and condensed
314  aromatics (post-mining, AMI); but decreased potential metabolism of proteins (AMI, marginal in post-

315  mining), carbohydrates (post-mining, AMI, PCaN acidic-neutral soils), and other methylated compounds
316  (post-mining, AMI). Isolated results included, potential metabolism: increased for other condensed

317 compounds (AMI); but decreased for lignin (AMI), tannins (AMI), other hydrated compounds (AMI), and
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318  other demethylated compounds (AMI). Differing from CPPgiass results, for CPPasaLr potential metabolism
319 of near vitamin K2-vitamin B12 compounds increased (post-mining).

320 CPPuensity results were also quite consistent across case studies: we observed increased potential
321 metabolism of vitamin B9 (AMI, marginal in post-mining and PCaN strongly acidic soils) and vitamin K2
322 (post-mining, AMI, marginal in PCaN strongly acidic); but decreased potential metabolism of acetate

323 (post-mining, AMI, PCaN acidic-neutral soils), propionate (AMI), vitamin B2 (post-mining, marginal in
324 PCaN strongly acidic soils), vitamin B12 (post-mining, AMI, PCaN strongly acidic soils), vitamin B6 (post-
325 mining, AMI), glutamate (post-mining, AMI, PCaN acidic-neutral soils), and pyruvate (AMI). While butyrate
326  CPPuensity values were low and indistinguishable across all samples using 0.05 vK unit radial buffers, for
327 an example comparison we tested near butyrate CPPuensity using a larger 0.1 vK unit buffer in the AMI
328  soils and found increased levels in natural compared to disturbed soils (S| Appendix, Fig. S35).

329 Post-mining and AMI samples displayed significant and mostly consistent directional shifts in
330 weighted mean vK-coordinate centroids across all compound classes (VK mapping zones) considered,
331  while PCaN acidic to neutral soils also displayed shifts within carbohydrates and condensed aromatics
332 (Fig. 7; Sl Appendix, Fig. S28, Tables S13-S16). Ecosystem maturity explained 60-92% of the variation
333 in weighted mean vK-coordinates in post-mining soils (Fig. 7a, SI Appendix Table S15). The following
334  general patterns emerged with increasing ecosystem maturity: lipids became more reduced (lower

335  oxygen content), proteins became more hydrated, amino sugars became more dehydrogenated or

336  condensed, carbohydrates became more condensed (post-mining, PCaN acidic-neutral) or reduced

337 (AMI), condensed aromatics became more condensed, lignin showed mixed trends (dehydrogenation in
338 post-mining, reduction in AMI), and tannins became more demethylated. Except for carbohydrates and
339 amino sugars, these trends largely represented an outward extension of sample profile mapping into vK
340 coordinate space with older ecosystems.

341

342
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344  Fig. 6. Amino sugar-adjusted log ratio compound processing potential (CPPasaLr), representing putative
345 microbiota activity-normalized values, from People Cities and Nature (PCaN), post-mining restoration

346  soils, and Australian Microbiome Initiative (AMI) disturbed versus natural soils. Linear trends were used
347  for visualization purposes. However, Kendall's tau correlation tests (suited to ordinal data) were applied.

348  Sample sizes are detailed in Table 1.
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351  Fig. 7. Weighted-mean van Krevelen coordinates within select compound classes display significant
352  shifts with maturity of plant-soil ecosystems. Patterns are from (a) post-mining forest ecosystem
353  restoration soil samples (n = age-based groups of 3), and (b) AMI disturbed (n = 29) vs natural (n = 55)
354  soil samples (b). PERMANOVA and beta-dispersion results are in S| Appendix, Table S15-S16.
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356 Consistency in bioenergetic ‘topography’ mapping. CPPuensity plots visualizing local polynomial

357  regression fitting (‘loess’) smoothed vK mapping profiles for increasing radii buffer areas displayed striking
358 consistency of form within each compound class, with alternative expressions in either gut (SI Appendix,
359  Figs. S5, S8, S12, S18) or soils (S| Appendix, Figs. S26, S30, S33).

360

361 Discussion

362  This work reveals a meaningful bioenergetic basis to the development and differentiation of community-
363 scale microbiomes. Our CPP metrics quantified putative shifts in a microbial community’s relative

364  proficiency to process different types of compounds across gradients of human- and environmental-

365 health. Across the case studies we found significant patterns of CPP association at varying resolutions:
366  within major classes of compounds, near focus biomolecules, and for unique vK coordinates. In the

367 environmental soil metagenomes, surprising consistency in CPP profiles suggests they may link to plant-
368 soil system conditions in coherent and predictable ways. Our findings align with the notion that microbiota
369  are shaped by the bioenergetic status of prevailing substrates and micro-environments, and this

370 information is simultaneously recorded in their metagenomes. From a methodological perspective, our
371 compound-focused bioenergetic mapping approach demonstrates new pathways for assessing and

372 interpreting microbial systems, capable of supporting ongoing efforts to define healthy microbiomes. For
373 example, aggregating functions via vK-coordinates can provide entirely different foci for investigation

374  compared to standard function-level analyses.

375

376 Patterns found in human health. We found strong links in both sexes between ACVD and increased
377 potential metabolism of lipids, condensed aromatics, lignin, other hydrated compounds, vitamin B9 and
378 vitamin K2; and decreased potential metabolism of carbohydrates and glutamate. Links between high-fat
379  diets and ACVD are well established (43). Gut microbiota can contribute to ACVD by metabolizing the
380 dietary lipid phosphatidylcholine, with subsequent production of harmful trimethylamine oxide (44).

381 Polycyclic aromatic hydrocarbons are known risk factors in ACVD (45, 46). Lignin (different to lignan) is a

382 complex and ubiquitous structural plant polymer, considered predominantly insoluble fiber, with content
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383  ranging from 1-2 g/100g in vegetables, fruits and cereals, up to 30-40 g/100g in nut shells and stone fruit
384  kernels (47). Lignin inhibits the enzymatic activity of a-glucosidase, delaying carbohydrate digestion and
385  absorption, with potential for low post-meal blood sugar levels (48). Acute hypoglycemia (low blood

386  sugar) can trigger cardiac events (49), with greater adverse risks in subjects with significant comorbidities
387 (e.g., T2D, ACVD). Our finding for decreased carbohydrates in ACVD might align with these impacts on
388 blood sugar. Alternatively, we speculate that result might be symptomatic of a more Westernized diet
389 (high in animal protein, sugar, starch, and fat — and lower in carbohydrate content than a plant-rich diet;
390  44). Excessive vitamin B9 (folate) is associated with ACVD risk via a non-linear u-shaped dose-response
391 relationship (50). Non-linear u-shaped dose-response relationships are common in biological systems
392  (i.e., hormesis, deficiency-sufficiency-toxicity) (51). Similarly, our results linking increased vitamin K2 with
393  ACVD appear contrary to recent opinion (52), although non-linear u-shaped dose-responses have also
394  been observed (53). Vitamin K2 is commonly found in fermented foods which are less common in

395  Western diets (54). Here, the ACVD case study was based on Chinese subjects whose diets potentially
396  contained higher quantities of fermented foods including vitamin K2. Possibly, these subjects were more
397  susceptible to adverse effects if excessive levels of vitamin K2 were reached. Our results linking reduced
398  glutamate with ACVD appear contrary to findings from large US cohort studies which found higher

399  glutamate levels, and lower glutamine:glutamate ratios, correlated with increased ACVD risk (55, 56).
400 Dietary proteins are a major source of glutamate (57). However, some ethnic populations may have

401 inadequate protein in their diets (58). Interestingly, in female adults from rural western China with

402 inadequate (and largely plant-derived) protein intake, increasing animal protein associated with reduced
403 risk of hypertension (58). Together, these observations suggest that a u-shaped dose-response may also
404 operate for animal-based proteins, glutamate, and ACVD risk.

405 In the colorectal cancer subjects (from France) we found consistent associations across CPP
406 metrics in both sexes with increased potential metabolism of amino sugars, vitamin B12 and B9; and
407  decreased potential metabolism of proteins and tannins. Colon cancer has been associated with low

408  dietary fiber, low fruit and vegetable consumption, and high red meat consumption (43). Our results were

409 consistent with reports for anticancer activity, including protective effects against colorectal cancer, from
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410 some tannins or polyphenols (e.g., components in green and black tea, resveratrol in red wine and

411  grapes) (59). Unfortunately, our data did not distinguish between animal- and plant-based protein.

412  However, red meat is widely consumed in France, with 41% of males and 24% of females consuming
413 above guideline levels (60). Amino sugars are sugar molecules with at least one hydroxyl group

414  substituted by an amino group. In biological systems, they are formed by catalytic activity acting on amino
415 acids (glutamate, glutamine — building blocks of protein) to transfer an amino functionality to a sugar

416  phosphate or sugar nucleotide (61). Therefore, both glucose (sugar) and amino acids contribute to amino
417 sugar formation. Meanwhile, metabolism of both glucose and amino acids plays a key role in colorectal
418 cancer development (62). Possibly, our finding of increased potential metabolism of amino sugars with
419 colorectal cancer may reflect dysregulated activity of glucose and amino acids with the product of their
420 interaction (amino sugars) recorded by the gut microbiome. Consistent with our findings, vitamin B9

421  (folate or folic acid) and vitamin B12 supplementation have been associated with increased risk of

422  colorectal cancer (63).

423 In the T2D case study, our lack of clear findings linked to major compound classes or focus

424 biomolecules seems consistent with reports that T2D is a complex, multifaceted, highly heterogeneous
425 polygenic disease with uncertain etiology (64). We found untreated (Met-) T2D exhibited an anomalous
426 and complex CPP network, including a high number of negative correlations (indicating negative

427  feedbacks) ranging widely across vK coordinate space (i.e., covering a spectrum of compounds and
428 bioenergetic status). Diagnosis of T2D is based on elevated blood glucose, primarily arising from insulin
429 resistance and inadequate insulin secretion (37). However, a clear diagnostic test for T2D is lacking,
430  except by exclusion of other causes (64). A range of factors including genetics, dietary habits, sedentary
431 lifestyle, and gut microbiota are involved in disease development (37). Possibly, with more detailed

432  examination, diagnostic relationships (e.g., correlations, ratios) might be uncovered in relative abundance
433 patterns of compound-associated vK-coordinates underpinning the anomalous T2D Met- network.

434 In the problem behavior case study, different compound associations were observed in female
435  and male children. Increased problem behavior (higher PC1) in females associated with increased

436 potential metabolism of amino sugars, other methylated compounds, and near vitamin K2-vitamin B12
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437 compounds. From differential abundance analysis, high PC1 females exhibited decreased

438 dihydroneopterin aldolase—an enzyme involved in converting dihydroneopterin (a molecule involved in
439  folate biosynthesis) into other compounds (65). Excessive serum levels of dihydroneopterin have been
440  associated with major depression (66). Possibly, in case study subjects, reduced levels of

441  dihydroneopterin-degrading enzyme have promoted accumulation of dihydroneopterin in association with
442 problem behaviors. High PC1 females also exhibited increased uridine phosphorylase, an enzyme

443 involved in pyrimidine metabolism that converts uridine to uracil (67), therefore possibly degrading uridine
444 levels in those subjects. Uridine is linked to energy metabolism and glutamate-mediated excitatory

445 neurotransmission in the brain, and supplemental uridine treatments have been used to reduce

446  depressive symptoms in adolescents (68). In males, increased PC1 associated with increased potential
447 metabolism of lipids, vitamins B6 and B9; and decreased potential metabolism of carbohydrates, acetate,
448  vitamin B12, and glutamate. Vitamins B12 (cobalamin) and B9 (folate) are recognized precursors involved
449 in forming key neurotransmitters dopamine, noradrenaline (norepinephrine), and serotonin (69). These
450  three neurotransmitters occur in the vicinity of vitamin B12 and K2 in vK coordinate space. Vitamin B12
451  deficiency has been associated with depressive disorders in older subjects (70). Glutamate’s role as a
452  key neurotransmitter is described in earlier text. High PC1 males also exhibited increased

453 phosphoenolpyruvate carboxykinase—an enzyme involved in cataplerosis, or removal of intermediate 4-
454  and 5-carbon compounds from the TCA cycle (71, 72). These intermediates are removed because they
455  cannot be fully oxidized for energy metabolism within the TCA cycle, but are converted elsewhere to

456  glucose, fatty acids or amino acids (72). High PC1 males also exhibited increases in alcohol

457  dehydrogenase, acetaldehyde dehydrogenase, and pyruvate-formate-lyase deactivase, variously

458 involved in pyruvate metabolism, degradation of aromatics and biphenyl, and tryptophan catabolism. Key
459 processes of energy metabolism involving glucose, lipids, protein and the TCA cycle (via keystone

460 molecules pyruvate, acetyl-CoA, and glutamate) have been implicated in major depressive disorder,

461  although precise pathways of pathogenesis are still unclear (73).

462
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Patterns found in plant-soil systems. Our findings point to generalizable patterns with older
ecosystems for increasing CPP associated with lipids, condensed aromatics, vitamin B9, and vitamin K2;
and decreasing CPP associated with proteins, carbohydrates, lignin, other methylated compounds, other
hydrated compounds, acetate, vitamin B12, vitamin B6, and glutamate. Drivers of shifting CPP in soils are
expected to include changing: 1) composition of biota and biotic materials including plants, organic debris,
and re-assembly of invertebrate and microbial communities, and 2) soil abiotic conditions due to plant-soil
feedbacks (e.g., pH, nutrients, organic carbon content, temperature, moisture regime) (74, 75). This
includes macro-environmental influences with development of vegetation structure and canopy cover
(e.g., shading, rainfall interception, altered drainage). CPP values also likely reflect a dynamic balance
between resource availability and use by microbiota. For example, we might expect greater accumulation
of lignin in soils of older ecosystems due to plant inputs such as dead roots, bark, leaf litter, and other
structural plant residues. However, we observed reduced CPP for lignin in these sample types. Fungi are
major lignin degraders (76) and fungal communities vary with ecosystem disturbance and abiotic
conditions (77). Interestingly, our results were counter to expectations for elevated fungal decomposition
of lignin in older ecosystems. Reforestation with native mixed-species can produce higher levels of
recalcitrant soil organic matter (78) (e.g., humic acid which is hard to decompose and maps to lignin in vk
space). Our CPP metrics are relative and compositional (based on functional relative abundances
summing to a maximum of 100%), so it may be that in relative terms, the metabolic foci of microbiota are
shifted to processing other materials. Or possibly, structural plant materials may be more accessible for
degradation in disturbed (e.g., agricultural) soil environments, depending on plant residue management,
nutrient availability and other factors.

We expect some CPP quantities are driven primarily by plant material inputs. For example, soils
from more mature ecosystems in temperate climates, represented in samples from AMI and post-mining
(in the Appalachian Plateau, southwestern Virginia USA; 40, 79), displayed a positive relationship with
CPP for lipids and condensed aromatics. These two compound classes are represented in plant-based
essential oils and volatile, aromatic organic compounds. Oils are found in high densities in much of the

fire-adapted Australian flora (unlike New Zealand flora) (80). Increased CPP for lipids might also arise
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490 due to increased density of energy storage linked to primary production, or more active plant signaling in
491 response to abiotic stress (81). High levels of lipids and condensed aromatics in mature ecosystem soils
492  could also be a result of increasing plant investment into defensive mechanisms via antimicrobial

493 essential oils (82), and volatile and aromatic secondary defense compounds induced by herbivory

494  (typically by invertebrates) (83).

495 Shifting weighted mean vK coordinates across many compound classes (in AMI and post-mining)
496  suggests broad changes in the composition of microbial substrates with more mature ecosystems. The
497 changing composition of the microbiota itself may contribute to this. Carbohydrates are of interest due to
498  the potential contribution of plant-based material to human diet, and CPPciass values for carbohydrates
499  were consistently assigned the largest sum of functional relative abundances in the human gut samples.
500  With more mature ecosystems, CPP for carbohydrates decreased in relative terms, but weighted vK
501 coordinates suggest carbohydrate CPP shifts towards favoring processing materials with reduced oxygen
502 content per unit of carbon. There is likely to be global variation in environmental soil CPP driven by soil
503 abiotic factors and changing biota (vegetation and animals), previously outlined.

504

505 Potential environment-human health links. This work opens new avenues for investigating

506 environment-human health connections because environments will vary in their production of human
507 health-associated compounds. Moreover, varying environmental microbiota exposures may supply

508 modulating CPP profiles for colonizing or transient impacts to human microbiomes (e.g., skin, airway,
509  gut), which are intimately linked to our health. We show CPP patterns imprinted in environmental soil
510 metagenomes are linked with the maturity of plant-soil systems and abiotic factors such as soil pH. We
511 also show that CPP measures are significantly linked to human health and disease. However, we urge
512 caution in attempting to directly translate CPP trends in plant-soil environments (e.g., vitamins B12, B6,
513 B9, K2, glutamate) to infer possible implications for gut-associated human health. We stress that non-
514 linear, u-shaped dose-response relationships (51) are common and relevant in the context of

515 environmental exposure-human health links. Also, the gut represents a more tightly controlled micro-

516  environment (redox, pH, etc.) unsuited to many environmental microbes. Example evidence for potential
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517 environment-human transfer of microbial CPP comes from Endomicrobia species found in oral microbiota
518 of indigenous peoples from central Australia (84). Endomicrobia species provide energetic advantage for
519  cellulose digestion in the guts of termites and wood-eating insects—and transfer to humans has occurred
520 likely through use of termites and termite mounds in traditional food and medicine (84). Speculatively, our
521 results suggest that if broad supplementation of human microbiota CPP capacity is required (spanning a
522 range of health-supporting biomolecules), this may require exposure to multiple types of environments.
523 However, certain environment types may provide more targeted microbiota CPP supplementation.

524

525 Limitations. There are important limitations in this study in addition to those already stated. CPP metrics
526 do not measure actual compounds; rather, they quantify conceptual ‘meta-compounds’ or assemblies of
527 elements based on functional reaction-level summary weighted mean O:C and H:C ratios consistent with
528 compounds of interest. Quantification occurred via mapping into vK space and aggregating functional
529 relative abundances into major compound classes, near focus biomolecules, or at unique vK coordinates,
530 to assess CPP structural profiles of metagenomes. Conceptually, mean reaction-level attributes (O:C and
531 H:C ratios) represent a mid-point of chemical transformation mediated by microbiota (i.e., interpreted as
532 ‘X% of functions were involved in processing compound/biomolecule type Y’). Stoichiometry rules

533  determine that reaction inputs and products will have balanced O, H, and C atomic counts. However,

534  different mean O:C and H:C ratios can arise due to uncounted O and H atoms in non-C containing

535  species (O:C, H:C values become undefined). For future work, the CPP mapping algorithm could be

536 readily adjusted to separately target reaction inputs, or products, or individual chemical species. Our

537 coarse compound classes did not distinguish (for example) plant versus animal proteins or high-fiber

538 versus low-fiber carbohydrates. Finer-resolution vK mapping zones would increase the precision of

539 results. We could not discern CPP differences for butyrate between sample types using 0.05 vK radii.
540 Butyrate is often present at low concentrations in the gut compared to other SCFAs, with rapid

541  consumption by colonocytes (23). The volatility of butyrate (85) may make it susceptible to loss from soils.
542 Our butyrate CPPudensity profiles spanning large to small vK radii may depict source-sink dynamics.

543 Compound mapping using O, H, and C content enable exhaustive and compartmented mapping within vK
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544 coordinate space, however this represents a simplified, imperfect approach. Multi-element compound

545 mapping would offer increased precision (86) and may be developed to provide exhaustive and

546  compartmented mapping across a range of compound types. Mapping of SUPER-FOCUS functions was
547 incomplete (sample functional relative abundances ranged from 52-84%, with means 55-67%). This may
548  be improved with future algorithm refinement. CPP measures used here were relative, not absolute.

549 Further work is required to refine our first-pass ASALR normalization, examine CPP-disease links in wider
550 ethnic populations, and explore other potential explanatory variables not considered in our analyses. Like
551 many microbiome studies, our analyses do not permit causal insight to interpret whether increased or

552 decreased CPP may facilitate or follow disease. For example, excessive CPP may produce metabolites at
553  toxic levels, or degrade substrates leading to deficiency. Reduced CPP measures might correspond to
554  dietary deficiencies or suppression of functional pathways due to dysregulated environmental conditions.
555 Nonetheless, observed CPP trends may assist hypothesis-building and prioritizing mechanistic research.
556  We suggest that future work might address these limitations.

557

558
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Materials and Methods

Case study datasets. Metagenomics samples used are summarized in Table 1 and further described in

S| Appendix Supporting Information.

CPP mapping approach. CPP values were derived via the following steps (Fig. 2; further details are in

S| Appendix Supporting Information)

1. Shotgun metagenomics raw sequences were accessed, and bioinformatic steps were run on Flinders
University DeepThought high-performance computing facility (87).

2. Raw sequence data were inspected using FastQC (v0.11.9; 88) and quality control trimming
performed using Fastp (v0.23.2; 89).

3. Functional potential profiles were derived from good quality read 1 sequences using SUPER-FOCUS
(33) software, linked to the Diamond sequence aligner (v0.9.19; 90) and version 2 100% identity-
clustered reference database (100_v2; https://github.com/metageni/SUPER-FOCUS/issues/66).
Where subjects/samples were represented by multiple sequence files, the combined SUPER-FOCUS
outputs were normalized so that the total functional relative abundances summed to 100% in each
subject/sample.

4. Every SUPER-FOCUS function (output row) was translated to one or more corresponding chemical
reaction(s) using a purpose-built R-script algorithm based on ModelSEED database lookup tables
(from https://github.com/ModelSEED/ModelSEEDDatabase; accessed 10 Aug 2022). The algorithm
sought matches based on either: full matching of functional hierarchies (using subsystem-class, -
subclass, -name and -role); detection of EC number; or matching of SUPER-FOCUS function name
within ModelSEED lookup tables for reactions (reaction name or alias), subsystems (role), or
reaction-pathways (external reaction name).

5. Every chemical reaction was converted to reaction-level mean vK coordinates (O:C and H:C molar

ratios), considering all C-containing reaction input and product compounds and weighted according to
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reaction stoichiometry. Compounds not containing C were ignored due to undefined O:C and H:C
ratios. Data for compounds were based on Hill system chemical formulae in protonated form.

6. Overall mean vK coordinates were calculated for each functional output row of the SUPER-FOCUS
functional relative abundance table via averaging one or more associated chemical reactions. From
samples initially summing to 100% functional relative abundances, typically between 50-80% of
SUPER-FOCUS functions were identified and translated to weighted mean compound-associated vK
coordinates.

7. InvK coordinate space, we analyzed the spatial assignment of functional relative abundances to
derive the following CPP data types:

a. CPPuass: represented major compound classes based on pre-defined zones from (32) (see
Fig. 1; Sl Appendix, Tables S1).

b. CPPasaLr: to address large variation in CPPqpass values (that impeded comparisons across
study groups) we considered normalization for microbial activity may be needed. Amino
sugars have previously been used as a biomarker of microbial residue turnover as they are
major components of bacterial and fungal cell walls (peptidoglycan and chitin) (28).
Therefore, we implemented preliminary putative ‘activity-normalization’ by dividing CPPciass
values for all other compound classes by the CPPciass value for amino sugars, followed by a
variance-stabilising log10-transformation. These data were denoted amino sugar-adjusted log
ratio (CPPasaLr) values.

c. CPPuensity: captured functional capacity within radial buffers of varying proximity (radii of 0.05,
0.1, 0.15, 0.2, 0.25 vK units) to focus biomolecules (Fig. 1; SI Appendix, Tables S2).
Functional relative abundances within radial buffers were summed then divided by the
respective area in vK units?.

d. Unique compound-associated vK coordinates: Each SUPER-FOCUS functional row was
translated to corresponding vK coordinates (as used for the above spatial assignments).
Further supplementary analyses were undertaken at the vK coordinate level, including

network analyses (in the T2D case study), differential abundance analysis (in the problem
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612 behavior case study), and weighted-mean vK coordinate analysis within major compound
613 zones.
614

615 Data visualization and statistical analyses. Further detail of visualization and statistical testing using
616  standard approaches are provided in S| Appendix Supporting Information.

617
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