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Abstract 19 

Unlocking the secrets of microbial interactions through genomics is pivotal for advancing 20 

microbial ecology. In most ecosystems, the scarcity of iron makes iron-mediated interactions a 21 

central theme in shaping microbial communities. Bacteria have evolved diverse strategies, 22 

including the production of siderophores—diverse secondary metabolites—to scavenge iron 23 

from their surroundings. Here, we use bioinformatic tools to predict siderophore 24 

iron-interaction networks among 1928 Pseudomonas strains from sequence data. Our 25 

approach uses coevolution analysis to group siderophore synthetase clusters and receptors 26 

used for uptake into key-lock pairs. Through a mix of computational analyses and 27 

experimental validation, we reconstruct Pseudomonas iron-interaction networks across a 28 

spectrum of habitats, from soil to water, plants, and human-related environments and reveal 29 

substantial differences in network structure and connectivity across habitats. Altogether, our 30 

sequence-to-interaction mapping tool empowers researchers to decode bacterial ecology in 31 

complex microbiomes, setting the stage for novel interventions to engineer microbiome 32 

functionality. 33 

 34 
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 35 

Introduction 36 

Microbial communities populate all ecosystems on earth from terrestrial to aquatic 37 

environments, impacting human health, agriculture, and industry 1-3. The dynamics and 38 

functioning of these communities are shaped by complex interactions between 39 

microorganisms 4,5. As the number of sequenced microbial genomes continues to grow 40 

exponentially 6,7, there is a growing interest in predicting microbial interaction networks based 41 

on the genomic data. Such efforts potentiate major advances, as many microorganisms 42 

cannot be cultured in the laboratory 8, while their roles in natural communities can potentially 43 

be inferred through sequence-to-interaction mapping. Currently, sequence-to-interaction 44 

mapping approaches primarily focus on metabolic interactions, with Genome-scale Metabolic 45 

Models (GEMs) serving as the primary tool for establishing the pan-reactome of microbial 46 

communities 9,10. These methods infer metabolic reactions from the genome annotation of 47 

enzymes, and then reconstruct a flux model to understand how microorganisms take up 48 

essential nutrients and release metabolic byproducts into the environment 11-13.  49 

Despite the significance of primary nutrients, like carbon and nitrogen, there is increasing 50 

evidence that secondary metabolism also plays a major role in shaping microbial interactions 51 

14,15. Nearly all microbes actively synthesize compounds to fulfill a diverse set of functions, 52 

including resource scavenging, motility, attack of and defense against competitors, and 53 

communication 16,17. These compounds, referred to as "secondary metabolites," were 54 

previously considered non-essential for microbial growth in a laboratory setting, but have since 55 

been shown to be critical for competitiveness in natural environments 14,15,18,19. However, 56 
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genome data-based sequence-to-interaction mapping have rarely been applied to secondary 57 

metabolism, although this could provide fundamentally new insights into microbial community 58 

assembly rules. 59 

Here, we developed a secondary metabolite sequence-to-interaction approach focusing 60 

on iron-scavenging siderophores, one of the most prevalent classes of microbial secondary 61 

metabolites 20. Iron is a critical nutrient for microbial survival, as it is used as a catalytic group 62 

in enzymes guiding key biological processes such as respiration and replication 21. 63 

However, the concentration of bioavailable iron is typically below the level required for 64 

microbial survival in most habitats 21-23. In response to iron limitation, nearly all bacteria 65 

produce siderophores, a chemically diverse class of low molecular weight compounds that 66 

efficiently chelate iron from the environment 24,25. Siderophores are typically diffusible and able 67 

to chelate iron over a broad physical range 26. Once iron is bound, the complex is recognized 68 

and taken up by specific receptors in microbial cell membranes 25. Given their diffusible nature, 69 

siderophores mediate a range of social interactions. For bacteria possessing receptors 70 

capable of recognizing the iron-siderophore complex, siderophores act as a public good 71 

promoting cooperation between individuals 25,27. When bacteria possess receptors for 72 

siderophore uptake but do not produce siderophores themselves they can act as cheaters by 73 

exploiting the public goods secreted by others 24,25. Finally, for bacteria unable to recognize 74 

and uptake a specific siderophore, the iron-siderophore complex restricts access to iron and 75 

intensifies iron competition 25,28. Consequently, siderophore-mediated interactions can have an 76 

important impact on microbial community composition and dynamics 29-32, yet the prediction of 77 

such interactions from sequence data is an unsolved challenge. 78 
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We have previously developed bioinformatic pipelines to predict the chemical structure of 79 

siderophores and to identify receptors from sequence data. Here, we apply our data mining 80 

approach to infer how receptor and siderophore had co-evolved and to find matching 81 

siderophore-receptor pairs to predict interaction networks in bacterial communities. We focus 82 

on Pseudomonas spp. (1928 strains) featuring 188 predicted variants of pyoverdine (their 83 

main siderophore) and 94 groups of FpvA receptors (siderophore receptors for pyoverdines)33. 84 

We developed a Co-evolution Pairing Algorithm that revealed nearly 50 unique lock-key 85 

groups, where groups of FpvA receptors emerge as specific “locks” that recognize 86 

corresponding pyoverdines as the “key”. Validation experiments yielded prediction accuracies 87 

of over 90%. Based on the predicted lock-key pairs, we reconstructed the iron-interaction 88 

networks among the 1928 Pseudomonas strains. We noticed that network topologies differ 89 

fundamentally between different ecological habitats (soil, plant, water, human). Taken together, 90 

our work provides a robust sequence-to-interaction mapping tool to predict social interaction 91 

networks mediated by secondary metabolites in complex microbial communities.  92 

 93 

Results 94 

 95 

Section 1: Three classes of pyoverdine strategies in Pseudomonas and the lock-key 96 

(receptor-synthetase) principle of co-evolution 97 

In our recent work, we developed bioinformatic pipelines to predict pyoverdine molecule 98 

structures and receptors based on the genome sequence data. Among 1928 nonredundant 99 

Pseudomonas strains, we identified 188 chemically different pyoverdine types and 94 different 100 
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receptor groups33. In this work, we seek to understand how different Pseudomonas strains 101 

interact through these pyoverdines and receptors.  102 

We first compared all the strains according to phylogeny, ecological habitat, and 103 

pyoverdine function. At the phylogenetic level, our data set features a large diversity of 104 

Pseudomonas species, whereby P. aeruginosa (28.7%), P. fluorescens (7.0%), P. syringae 105 

(6.0%), and P. putida (2.2%) were the most abundant ones (Figure 1a). The strains originated 106 

from a diverse set of habitats, including humans (21.2%), soils (13.6%), plants (12.1%), and 107 

water (6.4%), although the origin of many strains (39.5%) is unknown (Figure 1a).  108 

To assess diversity at the pyoverdine functional level, we checked for the absence or 109 

presence of pyoverdine synthesis clusters and counted the number of FpvA receptors per 110 

strain. We found three basic types of pyoverdine-utilization strategies (Figure 1b). 111 

"Single-receptor producers" are the most common type (985 strains, 51.1%) and refer to 112 

strains with one pyoverdine synthesis locus and one FpvA receptor gene. "Multi-receptor 113 

producers" are the second most common type (679 strains, 35.2%) and refer to strains with 114 

one pyoverdine synthesis cluster and multiple receptor genes. "Non-producers" are the least 115 

common type (264 strains, 13.7%) and refer to strains that lack the pyoverdine synthesis 116 

cluster but contain at least on receptor gene. While each strain possesses on average two to 117 

three FpvA receptor genes, no strain carries more than one pyoverdine synthesis cluster. This 118 

observation is in line with the expected high costs of pyoverdine synthetase, which is based on 119 

a series of gigantic modular enzymes known as NPRS (non-ribosomal peptide synthetases)34.  120 

  121 
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 122 

Figure 1 Classification of Pseudomonas strains and elucidation of the co-evolution 123 

between pyoverdine synthetase and receptors. a. Phylogenetic relationship among the 1928 124 

Pseudomonas strain based on the concatenated alignment of 400 single-copy conserved genes. Starting 125 
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from inside, colors in the first ring distinguish the five most prevalent species, with "Others" representing 126 

the remaining less abundant species. Colors in the second ring distinguish the four most prevalent 127 

sources of isolation. In the third ring, claret and blank regions cover strains with complete pyoverdine 128 

synthetase clusters and strains without synthetase gene clusters, respectively. In the fourth blue ring, the 129 

bar height indicates the number of FpvA receptors present in each strain. b. Strains can be classified into 130 

three types by scoring the presence/absence of a synthetase cluster and counting the number receptors 131 

in each genome: (i) single-receptor producers containing one pyoverdine synthetase cluster and one 132 

FpvA receptor gene; (ii) multi-receptor producers containing one pyoverdine synthetase cluster and 133 

several FpvA receptor genes; and (iii) Non-producers lacking synthetase gene but containing at least one 134 

receptor gene. c. Heatmap visualizing distances between feature sequences of the FpvA receptors and 135 

the pyoverdine synthetase clusters and between FpvA features sequences and phylogenetic genes 136 

among the 986 single-receptor producers. The hierarchical clustering of the strains is based on the FpvA 137 

feature sequences for all three heatmaps. The black squares on the heatmaps denote the five major 138 

FpvA groups. Three of these groups correspond to the receptors found among P. aeruginosa strains and 139 

are labelled with black text. d. Scheme of our approach to predict lock-key interactions between 140 

pyoverdines and receptors from sequence data. S-labels refer to the respective results section of our 141 

work. 142 

Based on these findings, we hypothesize that in each single-receptor producer, the sole 143 

receptor should recognize its self-produced pyoverdine. Consequently, when the synthetase 144 

structure is altered, the receptor should correspondingly change sequences to preserve their 145 

matching relationship. This implies that synthetase and receptor pairs engage in molecular 146 

co-evolution. To test this hypothesis, we focused on the 986 single-receptor producers and 147 
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calculated the degree of covariation between sequence distances matrices of the receptor, the 148 

synthesis cluster, and the 400 conserved phylogenetic genes. For the receptors (FpvA) and 149 

the synthesis cluster, we used the feature sequences that are most predictive of receptor 150 

specificity and pyoverdine molecular structure33.  151 

In support of the co-evolution hypothesis, we found a strong correlation between the 152 

distance matrixes of the receptors and the synthesis clusters (Pearson's r=0.89), a correlation 153 

that is much stronger than between the receptor and the phylogeny matrix (Pearson's r=0.51) 154 

(Figure 1c). Notably, we observed strong clustering patterns in the sequence space of the 155 

receptors, forming distinctive blocks that closely match the clustering patterns of their 156 

corresponding synthesis clusters. Using our receptor clustering pipeline33, we identified 17 157 

receptor groups among the 986 single-receptor producers. Importantly, three out of the 17 158 

receptor groups represent the FpvA receptors characteristic of the human pathogen P. 159 

aeruginosa (text marked in Figure 1c left panel, as type I-IV FpvAs), and their associated 160 

synthetase groups were known to produce pyoverdines that these receptors could selectively 161 

uptake24,35. These analyses support the hypothesis that cognate receptors and synthesis 162 

genes have co-evolved in single-receptor producers, resulting in one-to-one “lock-key” 163 

relationships: Each group of receptors, characterized by similar sequence features, acts as a 164 

"lock" specifically recognizes pyoverdines (the "key") produced a corresponding group of 165 

synthetases. 166 

To be able to reconstruct the iron interaction network in Pseudomonas communities, we 167 

now need to uncover the lock-key groups in multi-receptor producers and to match the 168 

receptors of any strain to the synthetase groups of all producers in a community. To achieve 169 
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this, we followed a five-step approach, which is summarized in Figure 1d. In section 2, we 170 

systematically studied the evolution and diversification of the pyoverdine synthesis clusters 171 

and receptors in 1928 Pseudomonas strains. In section 3, we used this knowledge to develop 172 

an unsupervised algorithm based on coevolutionary principles, in order to allocate synthesis 173 

clusters and receptors into lock-key groups. This analysis yields a complete prediction map 174 

regarding the groups of pyoverdines each strain is capable of producing and utilizing. In 175 

section 4, we use two experimental systems to validate the predicted siderophore-mediated 176 

interactions in model Pseudomonas communities. In section 5, we finally construct the 177 

predicted pyoverdine-mediated interaction networks for soil, plant, water, and 178 

human-associated Pseudomonas communities.  179 

 180 

Section 2: Concurrent diversification patterns of pyoverdine synthetases and receptors 181 

reveal multi-receptor producers as evolutionary hubs. 182 

We observed that the structural diversity of pyoverdines was much higher when strains carried 183 

multiple receptors (108 unique structures among 678 strains) compared to when they carried a 184 

single receptor (47 unique structures among 986 strains). Only 33 structures were predicted to 185 

be produced by both receptor type strains. This indicates that pyoverdine diversity is tightly 186 

linked with the apparently different iron-acquisition strategies of multi-receptor and 187 

single-receptor producers. Here, we explore this diversity in detail and ask how do pyoverdine 188 

NRPSs evolve. The 188 pyoverdine structures varied in their length, chirality, and substrate 189 

composition, agreeing with the notion that recombination dominates NRPS evolution 36. We 190 

developed the "NRPS tracer" algorithm, which calculates the minimal number of editing events 191 

required to transform one pyoverdine product into another. Our algorithm builds on the double 192 
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cut and join (DCJ)-indel model from Bohnenkampers et al. 37.  193 

 194 

Figure 2 Diversifications of pyoverdine synthetases and receptors reveal 195 

multi-receptor producers as evolutionary hubs. a. Network of all the 188 known pyoverdine 196 
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structures connected by one-step evolutionary events. Stripes of colored squares show the amino-acid 197 

sequence of pyoverdines with black-framed boxes representing D-type amino acids. Colored circles 198 

(nodes) indicate the different FpvA receptor groups found among single-receptor producers. Empty 199 

nodes depict pyoverdines exclusively found among multi-receptor producers. The bold orange line shows 200 

a representative path of pyoverdine diversification. The positioning of pyoverdine stripes and nodes has 201 

no specific meaning. The lower right panel show the scheme of six different recombination events in the 202 

evolution of pyoverdine NRPS clusters. Grey and colored boxes indicate conserved and recombination 203 

events, respectively. Black-framed boxes indicate recombination involving E domain alterations (e.g. 204 

affecting L- vs. D-conformation). b. Frequency of edge types and recombination events in the network 205 

(right panel). There are four edge types (left panel): ET1 – edges connecting pyoverdine structures from 206 

single-receptor producers sharing the same receptor group, ET2 – edges connecting pyoverdine 207 

structures from single-receptor producers featuring different receptor groups, ET3 – edges connecting 208 

pyoverdine structures that only appeared in multi-receptor producers and these appeared at least one 209 

time in single-receptor producers, ET4 – edges connecting pyoverdine structures exclusively occurring in 210 

multi-receptor producers. c. The 43 largest FpvA receptor groups with more than 10 members (sorted by 211 

group size) and their frequency among single-receptor producers, multi-receptor producers, and 212 

non-producers. d. Silhouette index analysis on the compactness of all receptor groups in single-receptor 213 

producers (left panel), multi-receptor producers (middle panel) and non-producers (right panel). Colors 214 

represent all the 17 receptor groups found among single-receptor producers. All other receptor groups 215 

are shown in black. The dashed vertical lines represent the average of the Silhouette index across all the 216 

receptor groups within each strain class. e. The observed and expected connectivity value between 217 

different strains types in the sequence similarity network of all 4547 FpvAs receptors (Figure S4). 218 
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To keep analysis tractable, we focused on pairs of pyoverdine structures that can 220 

transform from one to the other by a single recombination event and for which the number of 221 

NRPS modules involved in the transformation is ≤ 3 (corresponding to the maximum number 222 

of amino acids a NRPS enzyme can incorporate into the pyoverdine backbone). We identified 223 

216 such single-event transformations. They connect 148 of the 188 pyoverdine structures into 224 

multiple sub-networks (Figure 2a). While many sub-networks are small the five largest connect 225 

70 out of 188 structures and 1016 out of 1664 strains (Figure S1). The most frequent genetic 226 

recombination events were domain and subdomain symmetry replacement (40%), insertions 227 

and deletions (indel, 35%) and asymmetry replacement (16%), while duplication events, 228 

E-domain indels and rearrangements (total 9%) were much rarer (Figure 2a, the lower right 229 

panel). 230 

We then asked whether pyoverdine structures from the same sub-network tend to share 231 

similar receptors. To address this question, we allocated nodes to each structure and filled 232 

them with the colors of the corresponding receptor groups found in single-receptor producers 233 

(17 receptor groups, Figure 1c). Thus, we had 80 colored nodes for the 47 structures 234 

exclusively found in single-receptor producers and the 33 structures occurring in both producer 235 

types. The 108 nodes of structures that only occurred in multi-receptor producers were left 236 

empty (Figure 2a). We then counted the number of cases in which two nodes were connected 237 

by the same vs. different colored receptors (Figure 2b, split according to recombination type). 238 

We found that the great majority of edges connecting nodes of single-receptor producers were 239 

of the same color (97%), while different-color connections were rare (3%). This result strongly 240 

supports the molecular co-evolution hypothesis. By contrast, structures that only occur in 241 
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multi-receptor producers (empty node) were as often connected to colored nodes (57 events) 242 

than to other empty nodes (54 events). This indicates that multi-receptor producers can 243 

connect sub-networks of different structures from single-receptor producers (Figure 2a, bold 244 

orange line and Figure S2). Altogether, our analysis reveals that multi-receptor producers 245 

follow different iron-uptake strategies and have undertaken different evolutionary trajectories in 246 

terms of pyoverdine diversification (Figure 2). The latter implies that multi-receptor producers 247 

(and probably also non-producers) should also differ in the FpvA receptors they possess, a 248 

question we address in the subsequent section.  249 

The previously identified 4547 FpvAs genes cluster into 94 distinct groups based on their 250 

feature sequences. For our analysis, we focus on the 43 largest groups comprising more than 251 

10 members (Figure 2c). We found that FpvA receptors of the three strain types were 252 

unequally distributed across the 43 groups (Figure 2c). Receptors of single-receptor producers 253 

were restricted to 14 out of the 43 groups (32.6%). Conversely, receptors of multi-receptor 254 

producers occurred in almost all groups (95.3%). Similarly, receptors from non-producers were 255 

also found in many groups (83.7%) with two distinct groups containing exclusively 256 

non-producer receptors. This simple frequency analysis shows that lock-key relationships from 257 

single-receptor producers are not sufficient to recover the whole iron interaction network 258 

because multi-receptor producers and non-producers possess a much more diverse FpvA 259 

receptor repertoire than single-receptor producers. 260 

This notion receives further support when comparing the compactness of receptor groups 261 

across the three strain types (Figure 2d). We observed that receptors from single-receptor 262 

producers tend to connect more compactly (mean silhouette index = 0.96±0.16), while 263 
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receptors from multi-receptor producers (mean silhouette index = 0.78±0.19) and 264 

non-producers (mean silhouette index = 0.79±0.20) were more dispersed in the sequence 265 

space (Figure S3). This observation indicates that receptors from single-receptor producers 266 

are more conserved, whereas receptors from multi-receptor producers harbor greater variation. 267 

The distinct and conserved nature of receptors from single-receptor producers also emerges 268 

when conducting a network analysis with all 4547 FpvAs using their feature sequences (Figure 269 

S4). When focusing on the shortest distances between receptor groups, we noticed that none 270 

of the 17 receptor groups from single-receptor producers are connected (Figure 2e). In 271 

contrast, connections are disproportionately enriched among receptor groups of multi-receptor 272 

producers and non-producers, covering 94% and 50% of all the detected 2195 shortest 273 

between-group distances, respectively (Figure 2e). These results indicate that evolutionary 274 

trajectories of receptors differ between the three strain types. While single-receptor producers 275 

harbor conserved and evolutionarily distinct receptors, receptors of multi-receptor producers 276 

and non-producers are much more diverse and evolutionarily connected. 277 

Taken together, our results suggest that multi-receptor producers are the main reservoir 278 

for siderophore and receptor diversification. These strain types should thus be able to take up 279 

several pyoverdine types and are thus expected to form denser interaction networks at the 280 

ecological level. 281 

 282 

Section 3: Matching synthetases and receptors in sequence space results in 47 283 

lock-key groups. 284 

Next, we aim is to establish a lock-key receptor-pyoverdine interaction map across all three 285 

strain types. A first task in this process is to identify receptors in multi-receptor producers that 286 
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are used to take up the self-produced pyoverdine. The first intuitive solution is to check for 287 

receptors proximate to the pyoverdine synthetase. We can refer to single-receptor producers 288 

for the proximity threshold, where 95.6% (943 of 986) of FpvA receptors locate within 20 kb 289 

distance from the pyoverdine synthetase cluster. When applying this proximity threshold to 290 

multi-receptor producers we can identify putative self-receptors in 87.1% (591 out of 678) of 291 

the strains (Solution 1). An alternative approach is to use the lock-key pairs identified for 292 

single-receptor producers and check whether similar pairs occur in multi-receptor strains 293 

(Solution 2). However, as shown in Figure 2c, this approach only works for the 17 receptor 294 

groups found in single-receptor producers and could be applied to 68.7% (466 of 678) 295 

multi-receptor strains. Even when combining the Solutions 1 and 2, more than half of the 296 

receptor groups could not be paired to any pyoverdine synthetase. 297 

We thus developed an unsupervised learning algorithm, termed Co-evolution Pairing 298 

Algorithm (Solution 3), which matches the feature sequence of the synthetase cluster in each 299 

strain with its receptors by searching for the set of synthetase-receptor combinations that 300 

maximizes co-evolutionary association. Among all multi-receptor producers, there are 678 301 

synthetases and 2812 receptors in total. First, considering that NRPS pathways mainly evolve 302 

by large genetic rearrangement like recombination, we used the synthetase feature sequences 303 

(concatenated Amotif4-5 regions with consideration of recombination, See Method for details) 304 

to build the 678x678 synthetase distance matrix (Figure 3a). We then picked a random 305 

receptor as putative self-receptor for each multi-receptor producer and used the receptor 306 

features sequences (168 Pro to 295 Ala) to calculate the corresponding 678x678 receptor 307 

distance matrix. Subsequently, we calculated co-evolution coefficient cr, defined as the 308 
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Pearson's correlation coefficient between the two matrices (see Method for details). The initial 309 

random self-receptor assignment resulted in poor co-evolution coefficients. We thus 310 

introduced an iterative optimization process, during which putative self-receptors were shuffled 311 

within each multi-receptor producer. We discarded iterations that decreased cr values and 312 

continued with those that increased cr values until an optimization plateau was reached 313 

(Figure 3b, cr = 0.84). We predicted the self-receptor of all multi-receptor producers based on 314 

the final assignment. 315 

 316 

Figure 3 Developing an unsupervised algorithm to identify self-receptor in 317 
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multi-receptor producers and establishing the lock-key pairs of synthetase and 318 

receptor subgroups.  a. The flowchart of the Co-evolution Pairing Algorithm (Solution 3) that 319 

matches the synthetase in each strain to its "self-receptor", by an unsupervised learning scheme that 320 

optimizes co-evolutionary strength between the sequence distance matrices of pyoverdine synthetase 321 

and matched receptors. The mean correlation coefficients (r) between the two matrices before and after 322 

the optimization were shown. b. The correlation coefficient (r) and stability of the algorithm were 323 

examined by multiple rounds of learning (exp 1 to 50, with final r recorded in the brackets).  c. The 324 

consistency of self-receptors identified by different solutions. The consistency is calculated by comparing 325 

the self-receptor found by the multi-receptor producer based on the two supervised solutions (Solution 1 326 

and 2) and one unsupervised algorithm (Solution 3). d. Lock-key pairs connecting the sequence spaces 327 

of synthases with their self-receptors in both single-receptor producers and multi-receptor producers. The 328 

colored (use the same color code as Figure 2a) and black lines represent groups with single-receptor 329 

producer and without single-receptor producer, respectively. 330 

We then checked for consistency in self-receptor identification across the three solutions 331 

(Figure 3c). Solution 1 and Solution 2 can be classified as supervised machine learning, and 332 

they yield high levels of consistency (99.5% across 433 strains). The unsupervised Solution 3 333 

also shares high consistency with Solution 1 (93.7%, for 591 strains) and Solution 2 (94.4%, 334 

for 466 strain). These high degrees of consistency legitimate all three solutions, with Solution 3 335 

having the advantage of being applicable to all strains.  336 

With the help of our co-evolution pairing algorithm, we could predict and allocate a 337 

self-receptor to each of the 1664 pyoverdine-producing strains, segregating into 47 distinct 338 

lock-key groups (Figure 3d and Figure S5). All single-receptor producers and 84.4% 339 
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multi-receptor producers belong to 17 receptor groups, while the remaining 15.6% 340 

self-receptors found among multi-receptor producers segregate into 30 additional receptor 341 

groups (Figure S5). This leaves us with 2883 FpvA receptors among multi-receptor producers 342 

and non-producers that are not self-receptors and could be used to uptake pyoverdines 343 

produced by other strains, representing cheating. Indeed, when mapping these 2883 344 

non-self-receptors to the co-evolution matrix, we found that 2703 receptors associated with 345 

one of the 47 lock-key groups, suggesting that they can take up the corresponding 346 

non-self-produced pyoverdine. There were only 180 FpvA receptors (4.0%) that could not be 347 

linked to any of the 47 lock-key groups. They belong to rare receptor groups (Figure S5) that 348 

are either erroneously identified as FpvA receptors or match rare pyoverdine structures not 349 

covered by the 1664 producers in our dataset. Taken together, we can now predict 350 

iron-interactions between strains based on the siderophores they produce and the receptors 351 

they possess for siderophore utilization.  352 

 353 

Section 4: The receptor-synthetase lock-key pairs successfully predict 354 

pyoverdine-mediated interactions in experiments. 355 

We conducted two validation experiments to show that our bioinformatic lock-key approach 356 

reliably predicts pyoverdine-mediated interactions with accuracy > 90%. The first validation 357 

was conducted with a Pseudomonas community from the Nanjing (China) collection originally 358 

isolated from the tomato rhizosphere 31. We chose the genomes of 24 independent strains and 359 

subjected them to our previously developed bioinformatic pipelines to predict pyoverdine 360 

molecular structures and to identify all FpvA receptors33. These 24 strains included 4 361 

single-receptor producers, 16 multi-receptor producers and 4 non-producers (Figure S6). We 362 
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applied our Co-evolution Pairing Algorithm to identify the self-receptors of all 20 producers 363 

(Solution 3) and verified that all the predicted self-receptors were within the 20 KB genome 364 

proximity threshold to the synthetase genes (Solution 1). Subsequently, we assigned the 365 

self-receptors to the previously identified 47 lock-key paring groups in our full database, and 366 

found that 13 pairing groups occur among the 20 producer strains (Figure S7). Combining this 367 

information with the knowledge on non-self-receptors occurring in each strain, we predicted 368 

the pyoverdine-mediated interactions between the 24 strains in our community (Figure 4a). 369 

 370 

Figure 4 The receptor-synthetase lock-key pairings inferred from sequence data reliably 371 

predict experimentally observed pyoverdine-mediated iron interactions. a. Predicted vs. 372 

observed iron-interaction network among the 24 experimental strains. Each circular node represents an 373 

experimental strain. Green, yellow, and red circular nodes represent single-receptor producers, 374 
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multi-receptor producers and non-producers, respectively. Hexagons represent the predicted 13 lock-key 375 

receptor-pyoverdine groups. Edges from strain nodes to lock-key nodes represent pyoverdine production, 376 

while edges from lock-key nodes to strain nodes represent utilization. Green (pyoverdine non-usable) 377 

and pink (pyoverdine usable) edges depict cases in which experimental observations match 378 

bioinformatically predicted interactions. Blue edges depict incorrectly predicted pyoverdine interactions. 379 

The pyoverdine groups that appeared at least once in single-receptor producers are shown as colored 380 

hexagones with the color of the respective receptor group, whereas the pyoverdine groups exclusively 381 

secreted by the multi-receptor producer are represented by grey hexagons. b-c. Predicted vs. observed 382 

iron-interaction networks based on data from a previous study carried out in Zurich lab. The predicted 383 

interactions were inferred by the algorithms presented in this study, while the experimental data is taken 384 

from Table S2 of Figueiredo et al. (DOI: 10.1111/ele.13912).  385 

For the experimentally validation, we first confirmed that the 20 producers can indeed 386 

produce pyoverdine under iron-limited conditions, while the 4 non-producers cannot (Figure 387 

S6). We then followed a modified version of our previously established protocols to calculate 388 

the net effect pyoverdine has on the growth of other strains (GEPyo), while controlling for the 389 

effects of other metabolites in the supernatant 31. In principle, GEPyo > 0 indicates 390 

pyoverdine-mediated facilitation. However, because there is substantial experimental variation 391 

between experimental replicates, we increased a threshold value of GEPyo > 0.05 and 392 

classified values above this threshold as positive interactions, where the receiving strain can 393 

use the respective pyoverdine for iron acquisition (interaction type 1). Conversely, GEPyo ≤ 394 

0.05 values were classified as neutral or negative interactions, where the receiving strain 395 

cannot use the respective pyoverdine for iron acquisition (interaction type 0). This approach 396 
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allowed us to infer an experimental pyoverdine-mediated interaction network (Figure 4a and 397 

Figure S8), in which 90% of the observed interactions matched (based on the sign) the 398 

predicted interactions from sequence data.  399 

The second experimental validation involved strains from the Zurich (Switzerland) 400 

collection, isolated from soil and freshwater habitats 25. In this case, we used published 401 

experimental data from the literature 38. The focus of this earlier study was to test whether the 402 

opportunistic human pathogen P. aeruginosa PAO1 can invade natural soil and pond 403 

communities based on its ability to use pyoverdine from the natural isolates. We used data 404 

from all the strains for which genome sequences were available (PAO1 and 33 natural 405 

isolates), to establish pyoverdine-mediated interaction networks (Figure 4b-c). We then 406 

applied our bioinformatic pipelines as explained for the Nanjing collection and found a high 407 

level of consistency (94%) between the predicted and observed pyoverdine-mediated 408 

interaction in pairwise cultures (Figure 4b-c).  409 

The high consistency between observed and predicted interactions among both the 410 

Nanjing and the Zurich strain collection demonstrates that siderophore-mediated microbial 411 

interactions can be predicted based on genome-sequence analysis alone using the lock-key 412 

relationship between receptor and synthetase genes.  413 

 414 

Section 5: Pyoverdine interaction networks differ across habitats 415 

We then applied the lock-key pairing approach to our full data set to reconstruct the 416 

pyoverdine-interaction network among all the 1928 Pseudomonas strains (Figure S9). To keep 417 

traceability in such an enormous network, we allocated strains into behavioral groups sharing 418 
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the same “pyoverdine-interaction behavior”. Specifically, strains that produce the same 419 

pyoverdine type and can utilize the same repertoire of pyoverdines are allocated to the same 420 

behavior group and represented as (circular) nodes in the network. There were 407 such 421 

behavioral nodes. We included a second type of (hexagonal) nodes in the network and they 422 

represent the 47 different receptor-pyoverdine groups identified based on the lock-key 423 

algorithm (Figure 3). Edges from behavior nodes to lock-key nodes represent pyoverdine 424 

production, while edges from lock-key nodes to behavior nodes represent utilization. Overall, 425 

the network featured 307 production edges and 1788 utilization edges. This network analysis 426 

does not only reveal that certain lock-key nodes are much more densely connected to 427 

behavior nodes than others, it also reveals a high connectivity between behavior groups and 428 

the widespread ability of strains to use non-self-produced pyoverdines, indicative of potential 429 

cheating.  430 
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 431 

Figure 5 Pseudomonas iron-interaction networks vary across habitats. The predicted 432 

iron-interaction networks mediated by pyoverdines among Pseudomonas isolates from soil (a), plant (b), 433 

water (c) and human (d) habitats. The interaction networks were built using the Cytoscape's yFiles 434 

circular layout. Circular nodes represent behavioral groups (i.e., strains that produce the same 435 

pyoverdine type and utilize the same repertoire of pyoverdines) with node size being proportional to the 436 

number of strains that exhibit this behavior. Green, yellow, and red circular nodes represent 437 

single-receptor producers, multi-receptor producers and non-producers, respectively. Hexagonal nodes 438 

represent the lock-key receptor-pyoverdine groups with node size being proportional to the number of 439 

strains utilizing this siderophore. The pyoverdine groups once appeared in single-receptor producers 440 

were highlighted with the receptors’ group colors (colored hexagons) and the pyoverdine groups only 441 
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secreted by the multi-receptor producer in the database represented by grey hexagons. Edges from 442 

behavior nodes to lock-key nodes represent pyoverdine production, while edges from lock-key nodes to 443 

behavior nodes represent utilization, with the same color of the pyoverdine node.  444 

 445 

One biological limitation of the above analysis is that most of the strains would never meet 446 

in nature as they were isolated from different environments. That is why we created separate 447 

networks for strains isolated from soil (262 strains), plant (234), water (124), and 448 

human-derived (409) habitats. We found that strain type frequencies varied fundamentally 449 

between the four habitats (Figure 5). For example, in the soil-derived strains, there were 56.9% 450 

multi-receptor producers, 27.5% single-receptor producers and 15.7% non-producers (Table 451 

S1). In contrast, there were only 10.0% multi-receptor producers and 4.0% non-producers, but 452 

86.1% single-receptor producers among human-derived strains. These differences in strategy 453 

frequencies affected network topology and connectivity. Particularly, the number of behavior 454 

groups was higher for soil (130, 0.50 = scaled relative to number of strains), plant (97, 0.41), 455 

and water (70, 0.56) habitats than for human-related habitats (41, 0.10). Similarly, the 456 

distribution of the 47 pyoverdine lock-key groups differed across habitats, with more groups 457 

occurring in soil (29, 0.11 = scaled relative to number of strains), plant (25, 0.11), and water (25, 458 

0.20) habitats compared human-derived habitats (18, 0.04). These differences affected the 459 

number of utilization edges, which is higher in soil (446, 0.25= scaled relative to 1788 460 

utilization edges), plant (274, 0.15) and water (237, 0.13) habitats than in human-derived 461 

habitats (88, 0.05). Important to note is also that many behavior groups are unique in each 462 

habitat: soil (80, 19.7%), plant (56, 13.0%), water (43, 10.6%), and human (26, 6.4%), and that 463 
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only 8 behavior groups (Figure S10a) and 11 lock-key groups are shared by all four habitats 464 

(Figure S10b). This latter finding suggests divergent evolution of pyoverdine-interaction 465 

networks across habitats. Taken together, these results show that our algorithms can predict 466 

pyoverdine-interaction networks in natural communities and reveal key differences between 467 

habitats.  468 

 469 

Discussion 470 

Predicting interactions between microbes from sequence data offers exciting opportunities for 471 

understanding the ecology and evolution of microbiomes. While sequence-to-interaction 472 

mapping has predominantly been carried out for primary metabolism involving resource 473 

consumption, conversion, and cross-feeding, there are few approaches to reconstruct 474 

microbial interactions based on secondary metabolites (antibiotics, toxins, siderophores, 475 

surfactants) 39-41. In our paper, we offer such an approach by developing a bioinformatic 476 

approach to infer iron-interaction networks mediated by pyoverdines (a class of siderophores) 477 

within communities of Pseudomonas bacteria. To achieve our goal, we analyzed patterns of 478 

pyoverdine and pyoverdine-receptor evolution and their co-evolution from sequence data for 479 

1928 strains and reconstructed strain interaction networks for soil, plant, water, and 480 

human-derived habitats. Our experimentally validated approach provides a roadmap on how 481 

to perform sequence-to-interaction mapping for secondary metabolism, and to obtain new 482 

insights on the effects of these compounds on community assembly and dynamics.  483 

Our approach underscores several challenges associated with secondary metabolites, to 484 

which we offer solutions. The first challenge is that secondary metabolites are often built 485 
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through complicated synthesis machineries like NRPS and PKS, such that the chemical 486 

structure of the metabolite can hardly be directly inferred from sequencing data. We solved this 487 

challenge in our first paper33, in which we developed an approach based on feature sequences 488 

that allowed us to infer the chemical structure of 188 pyoverdines produced by the strains in 489 

our data set. The second challenge is to identify pyoverdine receptor genes among the many 490 

different types of siderophore receptor genes each strain possesses. We also solved this 491 

challenge in our first paper33, by again using feature sequences to identify 4547 pyoverdine 492 

receptor genes belonging to 94 groups. The third challenge is to pair pyoverdines to matching 493 

receptors within and across strains. For this purpose, we developed an unsupervised learning 494 

algorithm (called Co-evolution Paring Algorithm), which yielded 47 synthetase-receptor 495 

lock-key pairs and allowed us to reconstruct iron-interaction networks.  496 

Although co-evolution analyses are a widely used computational tool, employed in diverse 497 

areas ranging from ab initio protein structure to host-pathogen interaction predictions 42, we 498 

could not use existing algorithms, such as DCA, SCA, and Evoformer 43-45. The reason is that 499 

these classical site-based co-evolution methods depend on paired sequences between which 500 

the degree of covariation is quantified. We faced two levels of complexity in this context. First, 501 

the existence of multi-receptor producer strains impeded direct assignments of 502 

synthetase-receptor pairs, and a major part of our algorithm is therefore devoted to the 503 

identification of the correct receptor for the self-produced pyoverdine of a strain. Second, due 504 

to the variation in the number of pyoverdine synthetase modules, site-based covariation 505 

quantification is not applicable, and whole-sequence alignment also performs poorly in 506 

characterizing co-evolution due the complexity of pyoverdine synthesis. Therefore, we had to 507 
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define reasonable distance metrics that capture the signatures of co-evolution and then apply 508 

the Co-evolution Pairing Algorithm to maximize coevolutionary strength between synthetases 509 

and receptors. Our new pipeline has the potential to be applied to many other microbial traits. 510 

For example, microbial membrane receptors co-evolve with phages46,47, and pairing phages 511 

with the receptor they utilize for infection could provide insights into host-pathogen 512 

co-evolution. 513 

While our work provides a novel framework for efficient sequence-based prediction of 514 

siderophore-mediated microbial interactions, there are a number of limitations that require 515 

careful consideration. First, our approach assumes that sequence similarity indicates 516 

functional similarity, i.e., similar gene sequences can be put into “behavioral groups” that 517 

produce and uptake the same pyoverdine. In our first paper, we show that this is a reasonable 518 

assumption when feature (but not when full) sequences are used. Second, we assume 519 

discrete lock-key relationships between paired groups of pyoverdine synthetases and 520 

receptors. While it is certainly true that self-receptors have high affinity for the pyoverdine the 521 

strain produces, it is also known that receptors can be promiscuous and take up other 522 

pyoverdine types although at lower efficiencies35. Receptor promiscuity is not covered by our 523 

approach. Third, we assume that each producer strain must have at least one self-receptor 524 

that recognizes its own pyoverdine. This assumption is reasonable and empirically well 525 

documented48. Fourth, our approach focusses entirely on the presence/absence of pyoverdine 526 

synthetases and receptors, and does not consider regulation. This comes with two 527 

shortcomings that affect our prediction accuracy: (i) there are strains that have an intact 528 

pyoverdine synthetase machinery but are functionally non-producers24. These non-producers 529 
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are not detected by our approach, which can lead to errors in interaction predictions. (ii) 530 

Strains can vary considerably in the amount of pyoverdine they produce with production levels 531 

influencing the strength of interactions, a parameter that cannot be measured with our 532 

approach. However, despite these limitations our empirical verification experiments reveal an 533 

accuracy of 90% and 94% of correctly predicted interactions.  534 

While the primary goal of our work was to establish methods for sequence-to-interaction 535 

mapping, our results already yielded several new biological insights on iron-interaction 536 

networks in pseudomonads. First, we identified three different iron-acquisition strategies 537 

(single-receptor producers, multi-receptor producers, non-producers) that can co-exist and 538 

appear to follow different evolutionary trajectories. Specifically, single-receptor producers 539 

showed relatively low structural diversity in pyoverdines and their receptor groups, suggesting 540 

relatively conserved iron-uptake strategies. In contrast, pyoverdine and receptor diversity is 541 

much higher among multi-receptor producers, identifying them as the evolutionary hub for both 542 

pyoverdine and receptor diversification. Second, we found that the above findings have direct 543 

consequences for iron-network topologies because multi-strain producers (featuring high 544 

pyoverdine and receptor diversity) can connect sub-networks into larger interaction networks. 545 

Indeed, soil-, plant-, and water-associated habitats, dominated by multi-receptor producers, 546 

featured highly connected iron-interaction networks. Conversely, iron-interaction networks 547 

were small and fragmented in human-derived habitats dominated by single-receptor producers. 548 

This latter finding potentially stems from a (relatively recent) ecological expansion of P. 549 

aeruginosa from environmental habitats to humans and other hosts. This ecological expansion 550 

could have facilitated diversification, as evidenced by the diverse array of P. aeruginosa strains 551 
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in our data set. However, it appears that pyoverdine synthetase and receptors were little 552 

affected by the diversification and remained conserved. 553 

In conclusion, we succeeded to develop a sequence-to-interaction mapping approach for 554 

siderophores that has high potential to deliver new insights into species and strain interaction 555 

networks in bacterial communities. Given that iron is a key trace element that is limited in most 556 

environments, siderophore-mediated interactions are an ideal entry point for secondary 557 

metabolite analysis from sequence data. While we focused on Pseudomonas strains, we know 558 

that siderophore-mediated interactions occur across the species boundaries. For example. P. 559 

aeruginosa possesses receptors to take up enterobactin produced by Enterobacteriaceae spp. 560 

and schizokinen produced by. Ralstonia solanacearum 49. Thus, the next step would be to 561 

apply our concepts to more diverse bacterial communities to derive microbiome-level 562 

iron-interaction maps. Moreover, pyoverdines represent a particularly complex group of 563 

secondary metabolites, such that our evolution-guided approach should be easily 564 

customizable to simpler groups of secondary metabolites.  565 
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