

1 **From sequence to ecology: siderophore-receptor coevolution algorithm**

2 **predicts bacterial interactions in complex communities**

3 Shaohua Gu^{1,2,3}, Zhengying Shao³, Yuanzhe Shao², Shenyue Zhu³, Di Zhang¹, Richard Allen⁴,

4 Ruolin He¹, Jiqi Shao¹, Guanyue Xiong¹, Zeyang Qu¹, Alexandre Jousset³, Ville-Petri Friman⁵,

5 Zhong Wei^{3*}, Rolf Kümmerli^{4*}, Zhiyuan Li^{1,2*}

6 ¹ Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking

7 University, Beijing, 100871, China

8 ² Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies,

9 Peking University, Beijing, 100871, China

10 ³ Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key lab of organic-based

11 fertilizers of China, Nanjing Agricultural University, Nanjing, P R China

12 ⁴ University of Zurich, Department of Quantitative Biomedicine, Winterthurerstr. 190, 8057

13 Zurich, Switzerland

14 ⁵ University of Helsinki, Department of Microbiology, 00014, Helsinki, Finland

15

16 *Corresponding authors (email: weizhong@njau.edu.cn; rolf.kuemmerli@uzh.ch;

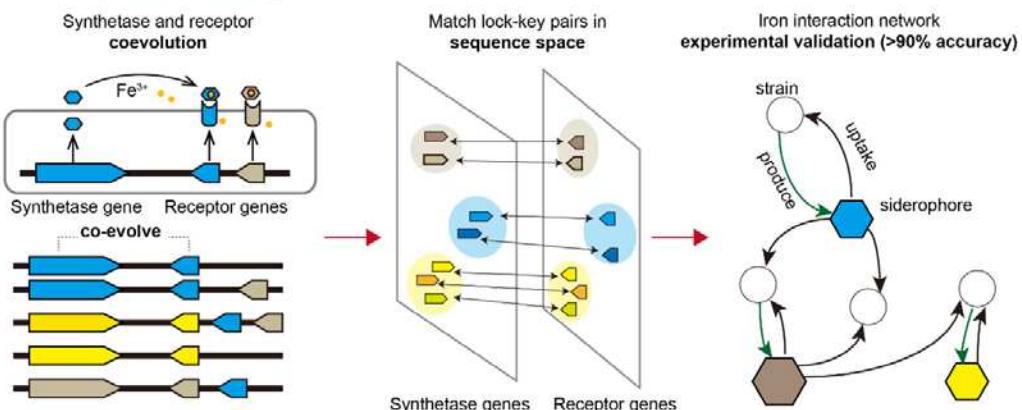
17 zhiyuanli@pku.edu.cn)

18

19 **Abstract**

20 Unlocking the secrets of microbial interactions through genomics is pivotal for advancing
21 microbial ecology. In most ecosystems, the scarcity of iron makes iron-mediated interactions a
22 central theme in shaping microbial communities. Bacteria have evolved diverse strategies,
23 including the production of siderophores—diverse secondary metabolites—to scavenge iron
24 from their surroundings. Here, we use bioinformatic tools to predict siderophore
25 iron-interaction networks among 1928 *Pseudomonas* strains from sequence data. Our
26 approach uses coevolution analysis to group siderophore synthetase clusters and receptors
27 used for uptake into key-lock pairs. Through a mix of computational analyses and
28 experimental validation, we reconstruct *Pseudomonas* iron-interaction networks across a
29 spectrum of habitats, from soil to water, plants, and human-related environments and reveal
30 substantial differences in network structure and connectivity across habitats. Altogether, our
31 sequence-to-interaction mapping tool empowers researchers to decode bacterial ecology in
32 complex microbiomes, setting the stage for novel interventions to engineer microbiome
33 functionality.

From sequence to ecology



35

36 **Introduction**

37 Microbial communities populate all ecosystems on earth from terrestrial to aquatic
38 environments, impacting human health, agriculture, and industry ¹⁻³. The dynamics and
39 functioning of these communities are shaped by complex interactions between
40 microorganisms ^{4,5}. As the number of sequenced microbial genomes continues to grow
41 exponentially ^{6,7}, there is a growing interest in predicting microbial interaction networks based
42 on the genomic data. Such efforts potentiate major advances, as many microorganisms
43 cannot be cultured in the laboratory ⁸, while their roles in natural communities can potentially
44 be inferred through sequence-to-interaction mapping. Currently, sequence-to-interaction
45 mapping approaches primarily focus on metabolic interactions, with Genome-scale Metabolic
46 Models (GEMs) serving as the primary tool for establishing the pan-reactome of microbial
47 communities ^{9,10}. These methods infer metabolic reactions from the genome annotation of
48 enzymes, and then reconstruct a flux model to understand how microorganisms take up
49 essential nutrients and release metabolic byproducts into the environment ¹¹⁻¹³.

50 Despite the significance of primary nutrients, like carbon and nitrogen, there is increasing
51 evidence that secondary metabolism also plays a major role in shaping microbial interactions
52 ^{14,15}. Nearly all microbes actively synthesize compounds to fulfill a diverse set of functions,
53 including resource scavenging, motility, attack of and defense against competitors, and
54 communication ^{16,17}. These compounds, referred to as "secondary metabolites," were
55 previously considered non-essential for microbial growth in a laboratory setting, but have since
56 been shown to be critical for competitiveness in natural environments ^{14,15,18,19}. However,

57 genome data-based sequence-to-interaction mapping have rarely been applied to secondary
58 metabolism, although this could provide fundamentally new insights into microbial community
59 assembly rules.

60 Here, we developed a secondary metabolite sequence-to-interaction approach focusing
61 on iron-scavenging siderophores, one of the most prevalent classes of microbial secondary
62 metabolites²⁰. Iron is a critical nutrient for microbial survival, as it is used as a catalytic group
63 in enzymes guiding key biological processes such as respiration and replication²¹.

64 However, the concentration of bioavailable iron is typically below the level required for
65 microbial survival in most habitats²¹⁻²³. In response to iron limitation, nearly all bacteria
66 produce siderophores, a chemically diverse class of low molecular weight compounds that
67 efficiently chelate iron from the environment^{24,25}. Siderophores are typically diffusible and able
68 to chelate iron over a broad physical range²⁶. Once iron is bound, the complex is recognized
69 and taken up by specific receptors in microbial cell membranes²⁵. Given their diffusible nature,
70 siderophores mediate a range of social interactions. For bacteria possessing receptors
71 capable of recognizing the iron-siderophore complex, siderophores act as a public good
72 promoting cooperation between individuals^{25,27}. When bacteria possess receptors for
73 siderophore uptake but do not produce siderophores themselves they can act as cheaters by
74 exploiting the public goods secreted by others^{24,25}. Finally, for bacteria unable to recognize
75 and uptake a specific siderophore, the iron-siderophore complex restricts access to iron and
76 intensifies iron competition^{25,28}. Consequently, siderophore-mediated interactions can have an
77 important impact on microbial community composition and dynamics²⁹⁻³², yet the prediction of
78 such interactions from sequence data is an unsolved challenge.

79 We have previously developed bioinformatic pipelines to predict the chemical structure of
80 siderophores and to identify receptors from sequence data. Here, we apply our data mining
81 approach to infer how receptor and siderophore had co-evolved and to find matching
82 siderophore-receptor pairs to predict interaction networks in bacterial communities. We focus
83 on *Pseudomonas* spp. (1928 strains) featuring 188 predicted variants of pyoverdine (their
84 main siderophore) and 94 groups of FpvA receptors (siderophore receptors for pyoverdines)³³.
85 We developed a Co-evolution Pairing Algorithm that revealed nearly 50 unique lock-key
86 groups, where groups of FpvA receptors emerge as specific “locks” that recognize
87 corresponding pyoverdines as the “key”. Validation experiments yielded prediction accuracies
88 of over 90%. Based on the predicted lock-key pairs, we reconstructed the iron-interaction
89 networks among the 1928 *Pseudomonas* strains. We noticed that network topologies differ
90 fundamentally between different ecological habitats (soil, plant, water, human). Taken together,
91 our work provides a robust sequence-to-interaction mapping tool to predict social interaction
92 networks mediated by secondary metabolites in complex microbial communities.

93

94 **Results**

95

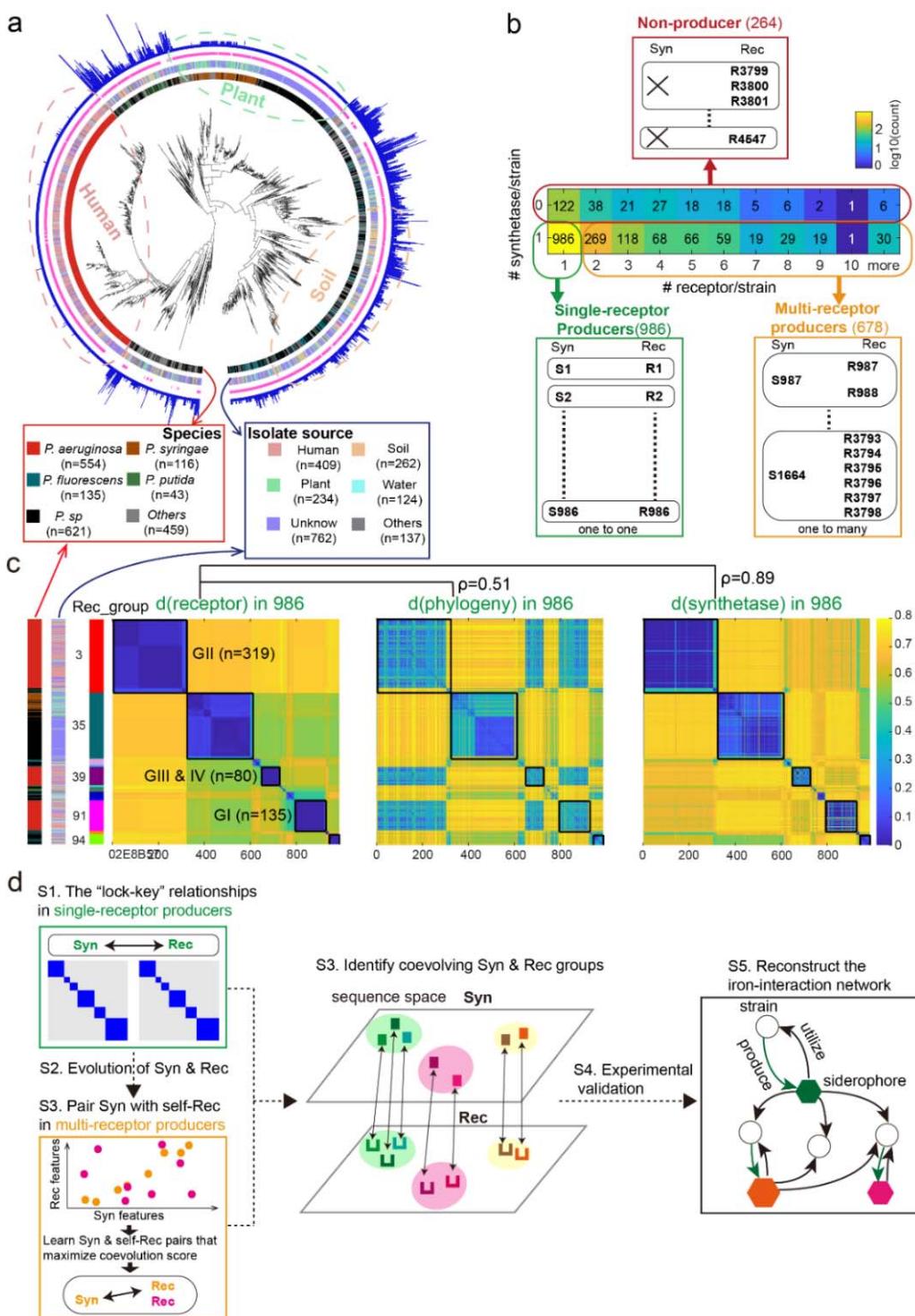
96 **Section 1: Three classes of pyoverdine strategies in *Pseudomonas* and the lock-key**
97 **(receptor-synthetase) principle of co-evolution**

98 In our recent work, we developed bioinformatic pipelines to predict pyoverdine molecule
99 structures and receptors based on the genome sequence data. Among 1928 nonredundant
100 *Pseudomonas* strains, we identified 188 chemically different pyoverdine types and 94 different

101 receptor groups³³. In this work, we seek to understand how different *Pseudomonas* strains
102 interact through these pyoverdines and receptors.

103 We first compared all the strains according to phylogeny, ecological habitat, and
104 pyoverdine function. At the phylogenetic level, our data set features a large diversity of
105 *Pseudomonas* species, whereby *P. aeruginosa* (28.7%), *P. fluorescens* (7.0%), *P. syringae*
106 (6.0%), and *P. putida* (2.2%) were the most abundant ones (Figure 1a). The strains originated
107 from a diverse set of habitats, including humans (21.2%), soils (13.6%), plants (12.1%), and
108 water (6.4%), although the origin of many strains (39.5%) is unknown (Figure 1a).

109 To assess diversity at the pyoverdine functional level, we checked for the absence or
110 presence of pyoverdine synthesis clusters and counted the number of FpvA receptors per
111 strain. We found three basic types of pyoverdine-utilization strategies (Figure 1b).
112 "Single-receptor producers" are the most common type (985 strains, 51.1%) and refer to
113 strains with one pyoverdine synthesis locus and one FpvA receptor gene. "Multi-receptor
114 producers" are the second most common type (679 strains, 35.2%) and refer to strains with
115 one pyoverdine synthesis cluster and multiple receptor genes. "Non-producers" are the least
116 common type (264 strains, 13.7%) and refer to strains that lack the pyoverdine synthesis
117 cluster but contain at least one receptor gene. While each strain possesses on average two to
118 three FpvA receptor genes, no strain carries more than one pyoverdine synthesis cluster. This
119 observation is in line with the expected high costs of pyoverdine synthetase, which is based on
120 a series of gigantic modular enzymes known as NPRS (non-ribosomal peptide synthetases)³⁴.
121



123 **Figure 1 Classification of *Pseudomonas* strains and elucidation of the co-evolution**
 124 **between pyoverdine synthetase and receptors. a.** Phylogenetic relationship among the 1928
 125 *Pseudomonas* strain based on the concatenated alignment of 400 single-copy conserved genes. Starting

126 from inside, colors in the first ring distinguish the five most prevalent species, with "Others" representing
127 the remaining less abundant species. Colors in the second ring distinguish the four most prevalent
128 sources of isolation. In the third ring, claret and blank regions cover strains with complete pyoverdine
129 synthetase clusters and strains without synthetase gene clusters, respectively. In the fourth blue ring, the
130 bar height indicates the number of FpvA receptors present in each strain. **b.** Strains can be classified into
131 three types by scoring the presence/absence of a synthetase cluster and counting the number receptors
132 in each genome: (i) single-receptor producers containing one pyoverdine synthetase cluster and one
133 FpvA receptor gene; (ii) multi-receptor producers containing one pyoverdine synthetase cluster and
134 several FpvA receptor genes; and (iii) Non-producers lacking synthetase gene but containing at least one
135 receptor gene. **c.** Heatmap visualizing distances between feature sequences of the FpvA receptors and
136 the pyoverdine synthetase clusters and between FpvA features sequences and phylogenetic genes
137 among the 986 single-receptor producers. The hierarchical clustering of the strains is based on the FpvA
138 feature sequences for all three heatmaps. The black squares on the heatmaps denote the five major
139 FpvA groups. Three of these groups correspond to the receptors found among *P. aeruginosa* strains and
140 are labelled with black text. **d.** Scheme of our approach to predict lock-key interactions between
141 pyoverdines and receptors from sequence data. S-labels refer to the respective results section of our
142 work.

143 Based on these findings, we hypothesize that in each single-receptor producer, the sole
144 receptor should recognize its self-produced pyoverdine. Consequently, when the synthetase
145 structure is altered, the receptor should correspondingly change sequences to preserve their
146 matching relationship. This implies that synthetase and receptor pairs engage in molecular
147 co-evolution. To test this hypothesis, we focused on the 986 single-receptor producers and

148 calculated the degree of covariation between sequence distances matrices of the receptor, the
149 synthesis cluster, and the 400 conserved phylogenetic genes. For the receptors (FpvA) and
150 the synthesis cluster, we used the feature sequences that are most predictive of receptor
151 specificity and pyoverdine molecular structure³³.

152 In support of the co-evolution hypothesis, we found a strong correlation between the
153 distance matrixes of the receptors and the synthesis clusters (Pearson's $r=0.89$), a correlation
154 that is much stronger than between the receptor and the phylogeny matrix (Pearson's $r=0.51$)
155 (Figure 1c). Notably, we observed strong clustering patterns in the sequence space of the
156 receptors, forming distinctive blocks that closely match the clustering patterns of their
157 corresponding synthesis clusters. Using our receptor clustering pipeline³³, we identified 17
158 receptor groups among the 986 single-receptor producers. Importantly, three out of the 17
159 receptor groups represent the FpvA receptors characteristic of the human pathogen *P.*
160 *aeruginosa* (text marked in Figure 1c left panel, as type I-IV FpvAs), and their associated
161 synthetase groups were known to produce pyoverdines that these receptors could selectively
162 uptake^{24,35}. These analyses support the hypothesis that cognate receptors and synthesis
163 genes have co-evolved in single-receptor producers, resulting in one-to-one "lock-key"
164 relationships: Each group of receptors, characterized by similar sequence features, acts as a
165 "lock" specifically recognizes pyoverdines (the "key") produced a corresponding group of
166 synthetases.

167 To be able to reconstruct the iron interaction network in *Pseudomonas* communities, we
168 now need to uncover the lock-key groups in multi-receptor producers and to match the
169 receptors of any strain to the synthetase groups of all producers in a community. To achieve

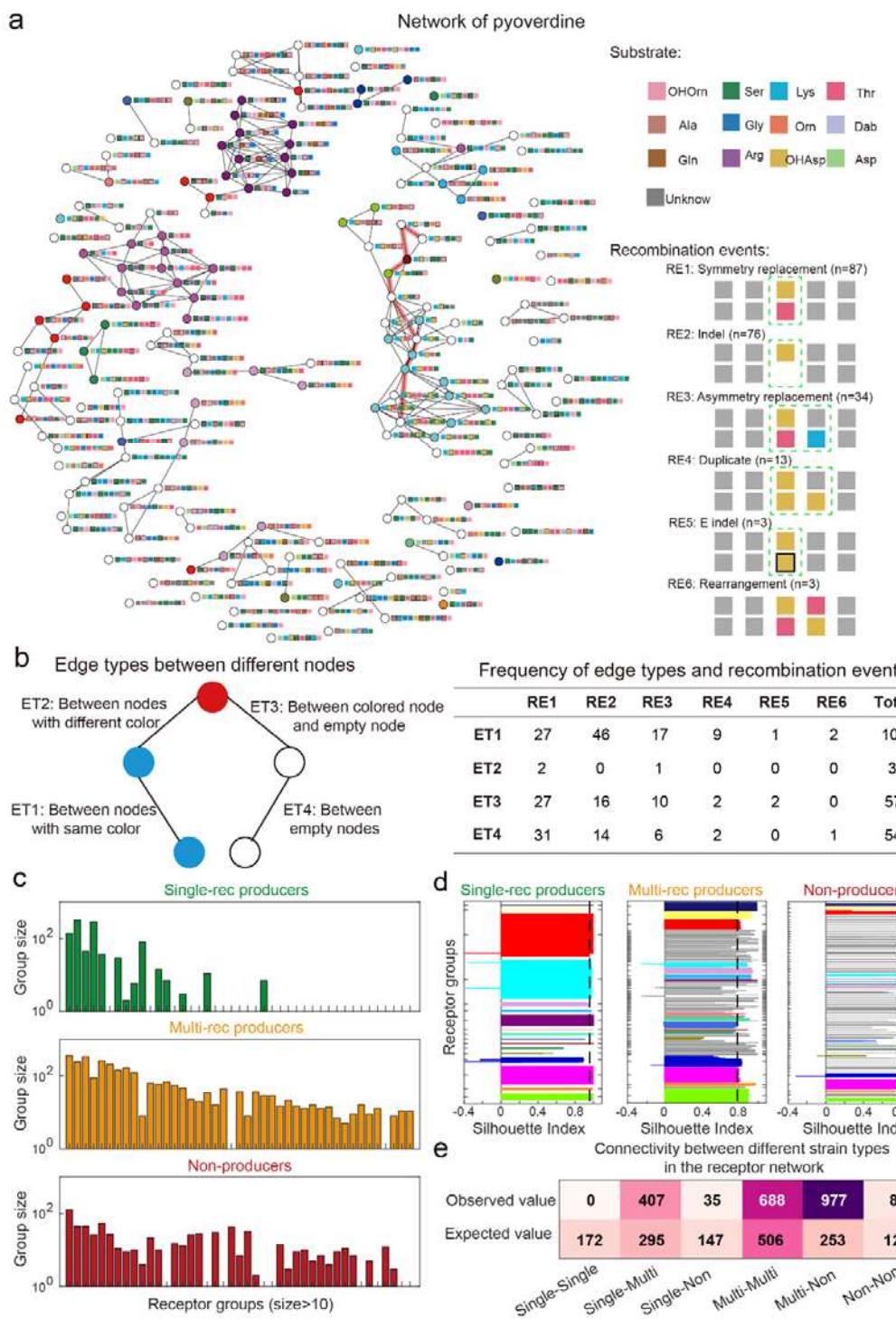
170 this, we followed a five-step approach, which is summarized in Figure 1d. In section 2, we
171 systematically studied the evolution and diversification of the pyoverdine synthesis clusters
172 and receptors in 1928 *Pseudomonas* strains. In section 3, we used this knowledge to develop
173 an unsupervised algorithm based on coevolutionary principles, in order to allocate synthesis
174 clusters and receptors into lock-key groups. This analysis yields a complete prediction map
175 regarding the groups of pyoverdines each strain is capable of producing and utilizing. In
176 section 4, we use two experimental systems to validate the predicted siderophore-mediated
177 interactions in model *Pseudomonas* communities. In section 5, we finally construct the
178 predicted pyoverdine-mediated interaction networks for soil, plant, water, and
179 human-associated *Pseudomonas* communities.

180

181 **Section 2: Concurrent diversification patterns of pyoverdine synthetases and receptors**
182 **reveal multi-receptor producers as evolutionary hubs.**

183 We observed that the structural diversity of pyoverdines was much higher when strains carried
184 multiple receptors (108 unique structures among 678 strains) compared to when they carried a
185 single receptor (47 unique structures among 986 strains). Only 33 structures were predicted to
186 be produced by both receptor type strains. This indicates that pyoverdine diversity is tightly
187 linked with the apparently different iron-acquisition strategies of multi-receptor and
188 single-receptor producers. Here, we explore this diversity in detail and ask how do pyoverdine
189 NRPSs evolve. The 188 pyoverdine structures varied in their length, chirality, and substrate
190 composition, agreeing with the notion that recombination dominates NRPS evolution³⁶. We
191 developed the "NRPS tracer" algorithm, which calculates the minimal number of editing events
192 required to transform one pyoverdine product into another. Our algorithm builds on the double

193 cut and join (DCJ)-indel model from Bohnenkampers et al. ³⁷.



194

195 **Figure 2 Diversifications of pyoverdine synthetases and receptors reveal**

196 **multi-receptor producers as evolutionary hubs.** a. Network of all the 188 known pyoverdine

197 structures connected by one-step evolutionary events. Stripes of colored squares show the amino-acid
198 sequence of pyoverdines with black-framed boxes representing D-type amino acids. Colored circles
199 (nodes) indicate the different FpvA receptor groups found among single-receptor producers. Empty
200 nodes depict pyoverdines exclusively found among multi-receptor producers. The bold orange line shows
201 a representative path of pyoverdine diversification. The positioning of pyoverdine stripes and nodes has
202 no specific meaning. The lower right panel show the scheme of six different recombination events in the
203 evolution of pyoverdine NRPS clusters. Grey and colored boxes indicate conserved and recombination
204 events, respectively. Black-framed boxes indicate recombination involving E domain alterations (e.g.
205 affecting L- vs. D-conformation). **b.** Frequency of edge types and recombination events in the network
206 (right panel). There are four edge types (left panel): ET1 – edges connecting pyoverdine structures from
207 single-receptor producers sharing the same receptor group, ET2 – edges connecting pyoverdine
208 structures from single-receptor producers featuring different receptor groups, ET3 – edges connecting
209 pyoverdine structures that only appeared in multi-receptor producers and these appeared at least one
210 time in single-receptor producers, ET4 – edges connecting pyoverdine structures exclusively occurring in
211 multi-receptor producers. **c.** The 43 largest FpvA receptor groups with more than 10 members (sorted by
212 group size) and their frequency among single-receptor producers, multi-receptor producers, and
213 non-producers. **d.** Silhouette index analysis on the compactness of all receptor groups in single-receptor
214 producers (left panel), multi-receptor producers (middle panel) and non-producers (right panel). Colors
215 represent all the 17 receptor groups found among single-receptor producers. All other receptor groups
216 are shown in black. The dashed vertical lines represent the average of the Silhouette index across all the
217 receptor groups within each strain class. **e.** The observed and expected connectivity value between
218 different strains types in the sequence similarity network of all 4547 FpvAs receptors (Figure S4).

220 To keep analysis tractable, we focused on pairs of pyoverdine structures that can
221 transform from one to the other by a single recombination event and for which the number of
222 NRPS modules involved in the transformation is ≤ 3 (corresponding to the maximum number
223 of amino acids a NRPS enzyme can incorporate into the pyoverdine backbone). We identified
224 216 such single-event transformations. They connect 148 of the 188 pyoverdine structures into
225 multiple sub-networks (Figure 2a). While many sub-networks are small the five largest connect
226 70 out of 188 structures and 1016 out of 1664 strains (Figure S1). The most frequent genetic
227 recombination events were domain and subdomain symmetry replacement (40%), insertions
228 and deletions (indel, 35%) and asymmetry replacement (16%), while duplication events,
229 E-domain indels and rearrangements (total 9%) were much rarer (Figure 2a, the lower right
230 panel).

231 We then asked whether pyoverdine structures from the same sub-network tend to share
232 similar receptors. To address this question, we allocated nodes to each structure and filled
233 them with the colors of the corresponding receptor groups found in single-receptor producers
234 (17 receptor groups, Figure 1c). Thus, we had 80 colored nodes for the 47 structures
235 exclusively found in single-receptor producers and the 33 structures occurring in both producer
236 types. The 108 nodes of structures that only occurred in multi-receptor producers were left
237 empty (Figure 2a). We then counted the number of cases in which two nodes were connected
238 by the same vs. different colored receptors (Figure 2b, split according to recombination type).
239 We found that the great majority of edges connecting nodes of single-receptor producers were
240 of the same color (97%), while different-color connections were rare (3%). This result strongly
241 supports the molecular co-evolution hypothesis. By contrast, structures that only occur in

242 multi-receptor producers (empty node) were as often connected to colored nodes (57 events)
243 than to other empty nodes (54 events). This indicates that multi-receptor producers can
244 connect sub-networks of different structures from single-receptor producers (Figure 2a, bold
245 orange line and Figure S2). Altogether, our analysis reveals that multi-receptor producers
246 follow different iron-uptake strategies and have undertaken different evolutionary trajectories in
247 terms of pyoverdine diversification (Figure 2). The latter implies that multi-receptor producers
248 (and probably also non-producers) should also differ in the FpvA receptors they possess, a
249 question we address in the subsequent section.

250 The previously identified 4547 FpvAs genes cluster into 94 distinct groups based on their
251 feature sequences. For our analysis, we focus on the 43 largest groups comprising more than
252 10 members (Figure 2c). We found that FpvA receptors of the three strain types were
253 unequally distributed across the 43 groups (Figure 2c). Receptors of single-receptor producers
254 were restricted to 14 out of the 43 groups (32.6%). Conversely, receptors of multi-receptor
255 producers occurred in almost all groups (95.3%). Similarly, receptors from non-producers were
256 also found in many groups (83.7%) with two distinct groups containing exclusively
257 non-producer receptors. This simple frequency analysis shows that lock-key relationships from
258 single-receptor producers are not sufficient to recover the whole iron interaction network
259 because multi-receptor producers and non-producers possess a much more diverse FpvA
260 receptor repertoire than single-receptor producers.

261 This notion receives further support when comparing the compactness of receptor groups
262 across the three strain types (Figure 2d). We observed that receptors from single-receptor
263 producers tend to connect more compactly (mean silhouette index = 0.96±0.16), while

264 receptors from multi-receptor producers (mean silhouette index = 0.78±0.19) and
265 non-producers (mean silhouette index = 0.79±0.20) were more dispersed in the sequence
266 space (Figure S3). This observation indicates that receptors from single-receptor producers
267 are more conserved, whereas receptors from multi-receptor producers harbor greater variation.
268 The distinct and conserved nature of receptors from single-receptor producers also emerges
269 when conducting a network analysis with all 4547 FpvAs using their feature sequences (Figure
270 S4). When focusing on the shortest distances between receptor groups, we noticed that none
271 of the 17 receptor groups from single-receptor producers are connected (Figure 2e). In
272 contrast, connections are disproportionately enriched among receptor groups of multi-receptor
273 producers and non-producers, covering 94% and 50% of all the detected 2195 shortest
274 between-group distances, respectively (Figure 2e). These results indicate that evolutionary
275 trajectories of receptors differ between the three strain types. While single-receptor producers
276 harbor conserved and evolutionarily distinct receptors, receptors of multi-receptor producers
277 and non-producers are much more diverse and evolutionarily connected.

278 Taken together, our results suggest that multi-receptor producers are the main reservoir
279 for siderophore and receptor diversification. These strain types should thus be able to take up
280 several pyoverdine types and are thus expected to form denser interaction networks at the
281 ecological level.

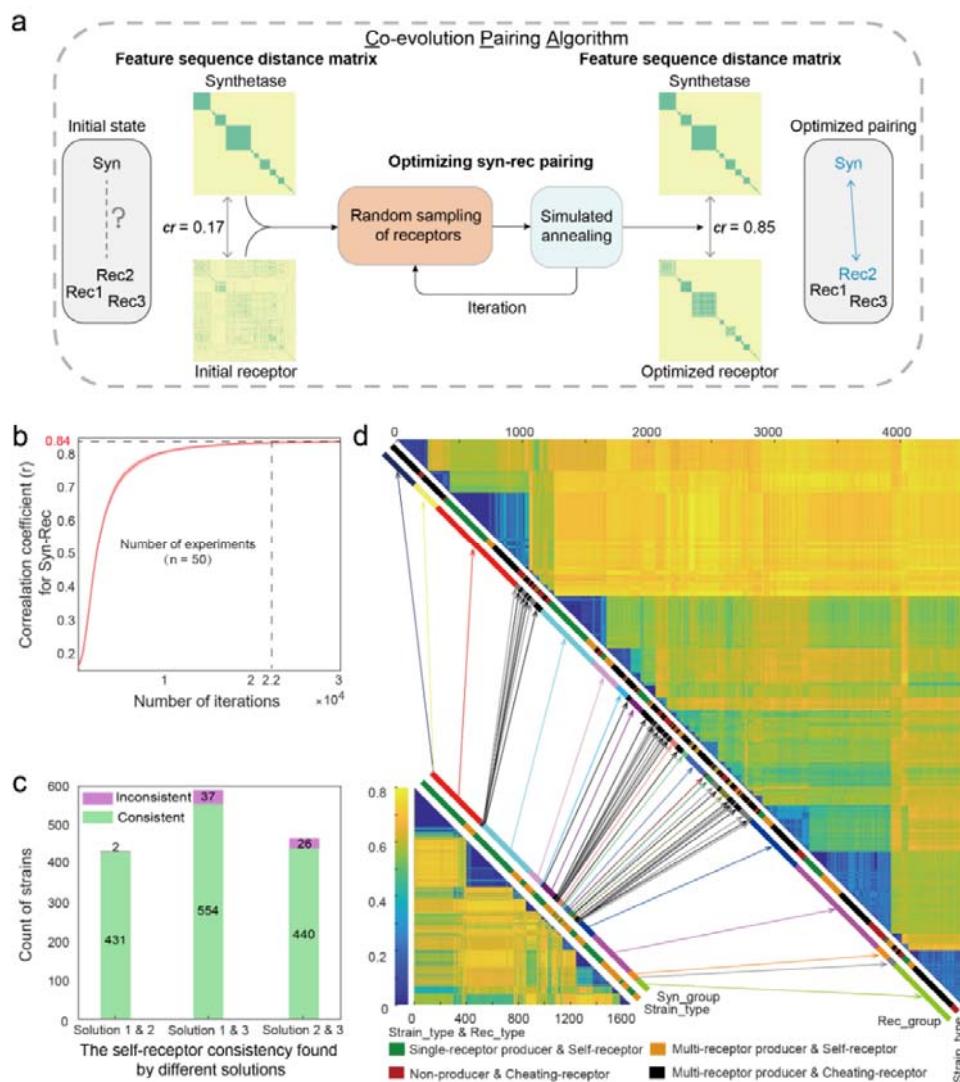
282
283 **Section 3: Matching synthetases and receptors in sequence space results in 47**
284 **lock-key groups.**

285 Next, we aim is to establish a lock-key receptor-pyoverdine interaction map across all three
286 strain types. A first task in this process is to identify receptors in multi-receptor producers that

287 are used to take up the self-produced pyoverdine. The first intuitive solution is to check for
288 receptors proximate to the pyoverdine synthetase. We can refer to single-receptor producers
289 for the proximity threshold, where 95.6% (943 of 986) of FpvA receptors locate within 20 kb
290 distance from the pyoverdine synthetase cluster. When applying this proximity threshold to
291 multi-receptor producers we can identify putative self-receptors in 87.1% (591 out of 678) of
292 the strains (Solution 1). An alternative approach is to use the lock-key pairs identified for
293 single-receptor producers and check whether similar pairs occur in multi-receptor strains
294 (Solution 2). However, as shown in Figure 2c, this approach only works for the 17 receptor
295 groups found in single-receptor producers and could be applied to 68.7% (466 of 678)
296 multi-receptor strains. Even when combining the Solutions 1 and 2, more than half of the
297 receptor groups could not be paired to any pyoverdine synthetase.

298 We thus developed an unsupervised learning algorithm, termed Co-evolution Pairing
299 Algorithm (Solution 3), which matches the feature sequence of the synthetase cluster in each
300 strain with its receptors by searching for the set of synthetase-receptor combinations that
301 maximizes co-evolutionary association. Among all multi-receptor producers, there are 678
302 synthetases and 2812 receptors in total. First, considering that NRPS pathways mainly evolve
303 by large genetic rearrangement like recombination, we used the synthetase feature sequences
304 (concatenated Amotif4-5 regions with consideration of recombination, See Method for details)
305 to build the 678x678 synthetase distance matrix (Figure 3a). We then picked a random
306 receptor as putative self-receptor for each multi-receptor producer and used the receptor
307 features sequences (168 Pro to 295 Ala) to calculate the corresponding 678x678 receptor
308 distance matrix. Subsequently, we calculated co-evolution coefficient cr , defined as the

309 Pearson's correlation coefficient between the two matrices (see Method for details). The initial
310 random self-receptor assignment resulted in poor co-evolution coefficients. We thus
311 introduced an iterative optimization process, during which putative self-receptors were shuffled
312 within each multi-receptor producer. We discarded iterations that decreased *cr* values and
313 continued with those that increased *cr* values until an optimization plateau was reached
314 (Figure 3b, *cr* = 0.84). We predicted the self-receptor of all multi-receptor producers based on
315 the final assignment.



316
317 **Figure 3 Developing an unsupervised algorithm to identify self-receptor in**

318 **multi-receptor producers and establishing the lock-key pairs of synthetase and**
319 **receptor subgroups.** **a.** The flowchart of the Co-evolution Pairing Algorithm (Solution 3) that
320 matches the synthetase in each strain to its "self-receptor", by an unsupervised learning scheme that
321 optimizes co-evolutionary strength between the sequence distance matrices of pyoverdine synthetase
322 and matched receptors. The mean correlation coefficients (r) between the two matrices before and after
323 the optimization were shown. **b.** The correlation coefficient (r) and stability of the algorithm were
324 examined by multiple rounds of learning (exp 1 to 50, with final r recorded in the brackets). **c.** The
325 consistency of self-receptors identified by different solutions. The consistency is calculated by comparing
326 the self-receptor found by the multi-receptor producer based on the two supervised solutions (Solution 1
327 and 2) and one unsupervised algorithm (Solution 3). **d.** Lock-key pairs connecting the sequence spaces
328 of synthases with their self-receptors in both single-receptor producers and multi-receptor producers. The
329 colored (use the same color code as Figure 2a) and black lines represent groups with single-receptor
330 producer and without single-receptor producer, respectively.

331 We then checked for consistency in self-receptor identification across the three solutions
332 (Figure 3c). Solution 1 and Solution 2 can be classified as supervised machine learning, and
333 they yield high levels of consistency (99.5% across 433 strains). The unsupervised Solution 3
334 also shares high consistency with Solution 1 (93.7%, for 591 strains) and Solution 2 (94.4%,
335 for 466 strain). These high degrees of consistency legitimate all three solutions, with Solution 3
336 having the advantage of being applicable to all strains.

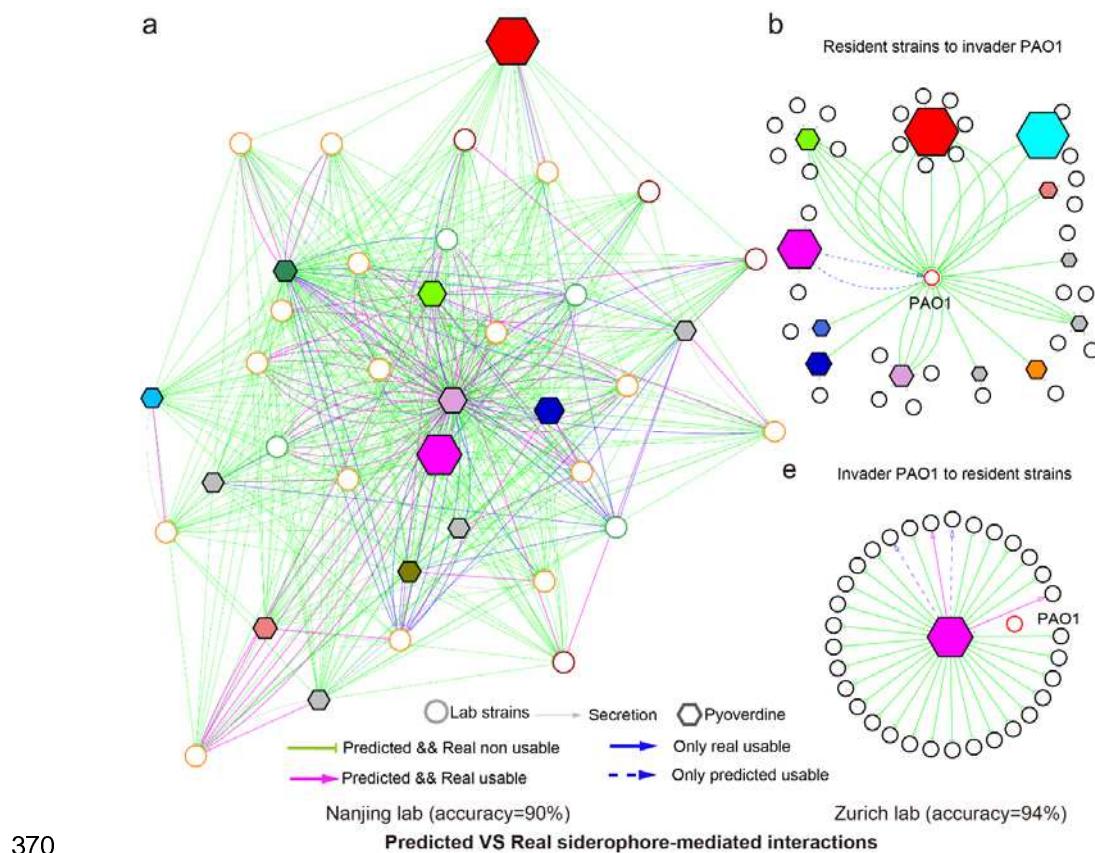
337 With the help of our co-evolution pairing algorithm, we could predict and allocate a
338 self-receptor to each of the 1664 pyoverdine-producing strains, segregating into 47 distinct
339 lock-key groups (Figure 3d and Figure S5). All single-receptor producers and 84.4%

340 multi-receptor producers belong to 17 receptor groups, while the remaining 15.6%
341 self-receptors found among multi-receptor producers segregate into 30 additional receptor
342 groups (Figure S5). This leaves us with 2883 FpvA receptors among multi-receptor producers
343 and non-producers that are not self-receptors and could be used to uptake pyoverdines
344 produced by other strains, representing cheating. Indeed, when mapping these 2883
345 non-self-receptors to the co-evolution matrix, we found that 2703 receptors associated with
346 one of the 47 lock-key groups, suggesting that they can take up the corresponding
347 non-self-produced pyoverdine. There were only 180 FpvA receptors (4.0%) that could not be
348 linked to any of the 47 lock-key groups. They belong to rare receptor groups (Figure S5) that
349 are either erroneously identified as FpvA receptors or match rare pyoverdine structures not
350 covered by the 1664 producers in our dataset. Taken together, we can now predict
351 iron-interactions between strains based on the siderophores they produce and the receptors
352 they possess for siderophore utilization.

353
354 **Section 4: The receptor-synthetase lock-key pairs successfully predict**
355 **pyoverdine-mediated interactions in experiments.**

356 We conducted two validation experiments to show that our bioinformatic lock-key approach
357 reliably predicts pyoverdine-mediated interactions with accuracy > 90%. The first validation
358 was conducted with a *Pseudomonas* community from the Nanjing (China) collection originally
359 isolated from the tomato rhizosphere³¹. We chose the genomes of 24 independent strains and
360 subjected them to our previously developed bioinformatic pipelines to predict pyoverdine
361 molecular structures and to identify all FpvA receptors³³. These 24 strains included 4
362 single-receptor producers, 16 multi-receptor producers and 4 non-producers (Figure S6). We

363 applied our Co-evolution Pairing Algorithm to identify the self-receptors of all 20 producers
364 (Solution 3) and verified that all the predicted self-receptors were within the 20 KB genome
365 proximity threshold to the synthetase genes (Solution 1). Subsequently, we assigned the
366 self-receptors to the previously identified 47 lock-key paring groups in our full database, and
367 found that 13 pairing groups occur among the 20 producer strains (Figure S7). Combining this
368 information with the knowledge on non-self-receptors occurring in each strain, we predicted
369 the pyoverdine-mediated interactions between the 24 strains in our community (Figure 4a).



371 **Figure 4 The receptor-synthetase lock-key pairings inferred from sequence data reliably**
372 **predict experimentally observed pyoverdine-mediated iron interactions. a.** Predicted vs.
373 observed iron-interaction network among the 24 experimental strains. Each circular node represents an
374 experimental strain. Green, yellow, and red circular nodes represent single-receptor producers,

375 multi-receptor producers and non-producers, respectively. Hexagons represent the predicted 13 lock-key
376 receptor-pyoverdine groups. Edges from strain nodes to lock-key nodes represent pyoverdine production,
377 while edges from lock-key nodes to strain nodes represent utilization. Green (pyoverdine non-usable)
378 and pink (pyoverdine usable) edges depict cases in which experimental observations match
379 bioinformatically predicted interactions. Blue edges depict incorrectly predicted pyoverdine interactions.
380 The pyoverdine groups that appeared at least once in single-receptor producers are shown as colored
381 hexagons with the color of the respective receptor group, whereas the pyoverdine groups exclusively
382 secreted by the multi-receptor producer are represented by grey hexagons. **b-c.** Predicted vs. observed
383 iron-interaction networks based on data from a previous study carried out in Zurich lab. The predicted
384 interactions were inferred by the algorithms presented in this study, while the experimental data is taken
385 from Table S2 of Figueiredo et al. (DOI: 10.1111/ele.13912).

386 For the experimentally validation, we first confirmed that the 20 producers can indeed
387 produce pyoverdine under iron-limited conditions, while the 4 non-producers cannot (Figure
388 S6). We then followed a modified version of our previously established protocols to calculate
389 the net effect pyoverdine has on the growth of other strains (GE_{Pyo}), while controlling for the
390 effects of other metabolites in the supernatant ³¹. In principle, $GE_{Pyo} > 0$ indicates
391 pyoverdine-mediated facilitation. However, because there is substantial experimental variation
392 between experimental replicates, we increased a threshold value of $GE_{Pyo} > 0.05$ and
393 classified values above this threshold as positive interactions, where the receiving strain can
394 use the respective pyoverdine for iron acquisition (interaction type 1). Conversely, $GE_{Pyo} \leq$
395 0.05 values were classified as neutral or negative interactions, where the receiving strain
396 cannot use the respective pyoverdine for iron acquisition (interaction type 0). This approach

397 allowed us to infer an experimental pyoverdine-mediated interaction network (Figure 4a and
398 Figure S8), in which 90% of the observed interactions matched (based on the sign) the
399 predicted interactions from sequence data.

400 The second experimental validation involved strains from the Zurich (Switzerland)
401 collection, isolated from soil and freshwater habitats ²⁵. In this case, we used published
402 experimental data from the literature ³⁸. The focus of this earlier study was to test whether the
403 opportunistic human pathogen *P. aeruginosa* PAO1 can invade natural soil and pond
404 communities based on its ability to use pyoverdine from the natural isolates. We used data
405 from all the strains for which genome sequences were available (PAO1 and 33 natural
406 isolates), to establish pyoverdine-mediated interaction networks (Figure 4b-c). We then
407 applied our bioinformatic pipelines as explained for the Nanjing collection and found a high
408 level of consistency (94%) between the predicted and observed pyoverdine-mediated
409 interaction in pairwise cultures (Figure 4b-c).

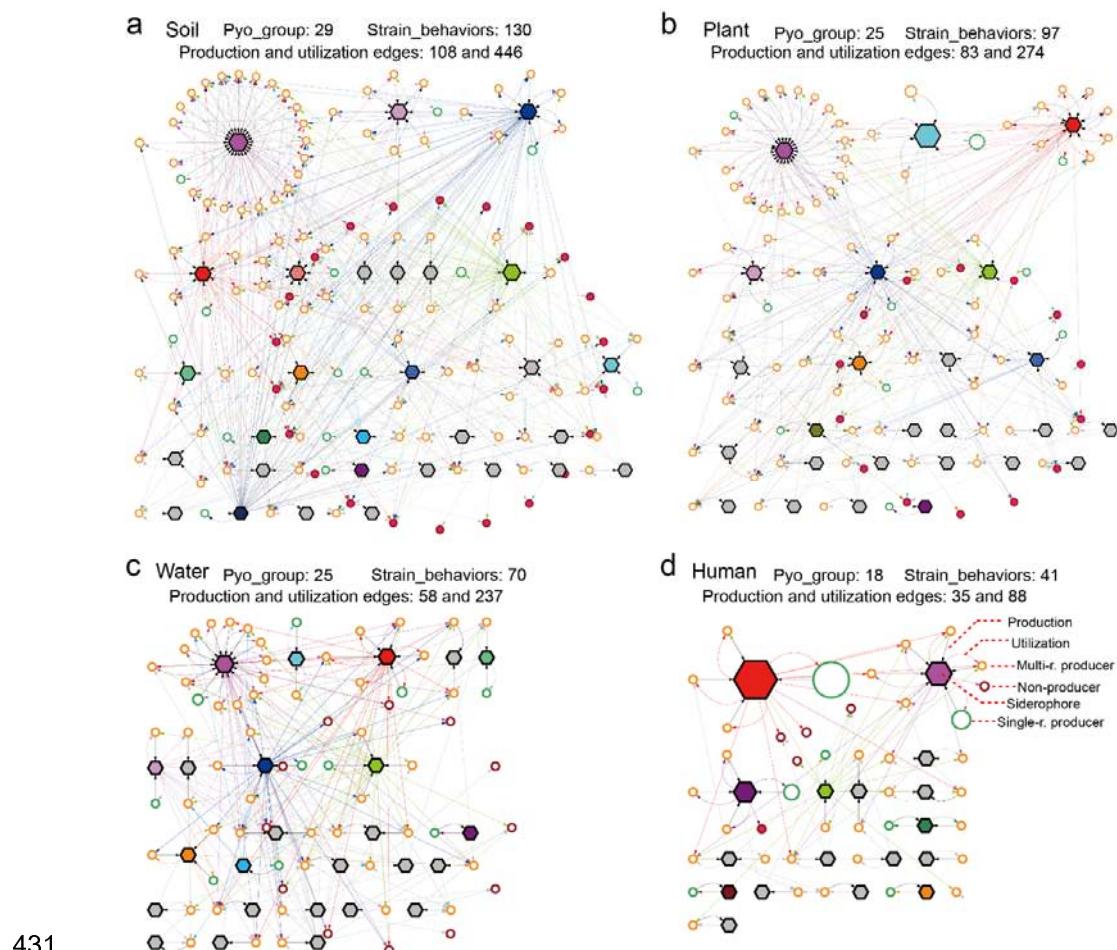
410 The high consistency between observed and predicted interactions among both the
411 Nanjing and the Zurich strain collection demonstrates that siderophore-mediated microbial
412 interactions can be predicted based on genome-sequence analysis alone using the lock-key
413 relationship between receptor and synthetase genes.

414

415 **Section 5: Pyoverdine interaction networks differ across habitats**

416 We then applied the lock-key pairing approach to our full data set to reconstruct the
417 pyoverdine-interaction network among all the 1928 *Pseudomonas* strains (Figure S9). To keep
418 traceability in such an enormous network, we allocated strains into behavioral groups sharing

419 the same “pyoverdine-interaction behavior”. Specifically, strains that produce the same
420 pyoverdine type and can utilize the same repertoire of pyoverdines are allocated to the same
421 behavior group and represented as (circular) nodes in the network. There were 407 such
422 behavioral nodes. We included a second type of (hexagonal) nodes in the network and they
423 represent the 47 different receptor-pyoverdine groups identified based on the lock-key
424 algorithm (Figure 3). Edges from behavior nodes to lock-key nodes represent pyoverdine
425 production, while edges from lock-key nodes to behavior nodes represent utilization. Overall,
426 the network featured 307 production edges and 1788 utilization edges. This network analysis
427 does not only reveal that certain lock-key nodes are much more densely connected to
428 behavior nodes than others, it also reveals a high connectivity between behavior groups and
429 the widespread ability of strains to use non-self-produced pyoverdines, indicative of potential
430 cheating.



432 **Figure 5 Pseudomonas iron-interaction networks vary across habitats.** The predicted
433 iron-interaction networks mediated by pyoverdines among *Pseudomonas* isolates from soil (a), plant (b),
434 water (c) and human (d) habitats. The interaction networks were built using the Cytoscape's yFiles
435 circular layout. Circular nodes represent behavioral groups (i.e., strains that produce the same
436 pyoverdine type and utilize the same repertoire of pyoverdines) with node size being proportional to the
437 number of strains that exhibit this behavior. Green, yellow, and red circular nodes represent
438 single-receptor producers, multi-receptor producers and non-producers, respectively. Hexagonal nodes
439 represent the lock-key receptor-pyoverdine groups with node size being proportional to the number of
440 strains utilizing this siderophore. The pyoverdine groups once appeared in single-receptor producers
441 were highlighted with the receptors' group colors (colored hexagons) and the pyoverdine groups only

442 secreted by the multi-receptor producer in the database represented by grey hexagons. Edges from
443 behavior nodes to lock-key nodes represent pyoverdine production, while edges from lock-key nodes to
444 behavior nodes represent utilization, with the same color of the pyoverdine node.

445

446 One biological limitation of the above analysis is that most of the strains would never meet
447 in nature as they were isolated from different environments. That is why we created separate
448 networks for strains isolated from soil (262 strains), plant (234), water (124), and
449 human-derived (409) habitats. We found that strain type frequencies varied fundamentally
450 between the four habitats (Figure 5). For example, in the soil-derived strains, there were 56.9%
451 multi-receptor producers, 27.5% single-receptor producers and 15.7% non-producers (Table
452 S1). In contrast, there were only 10.0% multi-receptor producers and 4.0% non-producers, but
453 86.1% single-receptor producers among human-derived strains. These differences in strategy
454 frequencies affected network topology and connectivity. Particularly, the number of behavior
455 groups was higher for soil (130, 0.50 = scaled relative to number of strains), plant (97, 0.41),
456 and water (70, 0.56) habitats than for human-related habitats (41, 0.10). Similarly, the
457 distribution of the 47 pyoverdine lock-key groups differed across habitats, with more groups
458 occurring in soil (29, 0.11 = scaled relative to number of strains), plant (25, 0.11), and water (25,
459 0.20) habitats compared human-derived habitats (18, 0.04). These differences affected the
460 number of utilization edges, which is higher in soil (446, 0.25= scaled relative to 1788
461 utilization edges), plant (274, 0.15) and water (237, 0.13) habitats than in human-derived
462 habitats (88, 0.05). Important to note is also that many behavior groups are unique in each
463 habitat: soil (80, 19.7%), plant (56, 13.0%), water (43, 10.6%), and human (26, 6.4%), and that

464 only 8 behavior groups (Figure S10a) and 11 lock-key groups are shared by all four habitats
465 (Figure S10b). This latter finding suggests divergent evolution of pyoverdine-interaction
466 networks across habitats. Taken together, these results show that our algorithms can predict
467 pyoverdine-interaction networks in natural communities and reveal key differences between
468 habitats.

469

470 **Discussion**

471 Predicting interactions between microbes from sequence data offers exciting opportunities for
472 understanding the ecology and evolution of microbiomes. While sequence-to-interaction
473 mapping has predominantly been carried out for primary metabolism involving resource
474 consumption, conversion, and cross-feeding, there are few approaches to reconstruct
475 microbial interactions based on secondary metabolites (antibiotics, toxins, siderophores,
476 surfactants) ³⁹⁻⁴¹. In our paper, we offer such an approach by developing a bioinformatic
477 approach to infer iron-interaction networks mediated by pyoverdines (a class of siderophores)
478 within communities of *Pseudomonas* bacteria. To achieve our goal, we analyzed patterns of
479 pyoverdine and pyoverdine-receptor evolution and their co-evolution from sequence data for
480 1928 strains and reconstructed strain interaction networks for soil, plant, water, and
481 human-derived habitats. Our experimentally validated approach provides a roadmap on how
482 to perform sequence-to-interaction mapping for secondary metabolism, and to obtain new
483 insights on the effects of these compounds on community assembly and dynamics.

484 Our approach underscores several challenges associated with secondary metabolites, to
485 which we offer solutions. The first challenge is that secondary metabolites are often built

486 through complicated synthesis machineries like NRPS and PKS, such that the chemical
487 structure of the metabolite can hardly be directly inferred from sequencing data. We solved this
488 challenge in our first paper³³, in which we developed an approach based on feature sequences
489 that allowed us to infer the chemical structure of 188 pyoverdines produced by the strains in
490 our data set. The second challenge is to identify pyoverdine receptor genes among the many
491 different types of siderophore receptor genes each strain possesses. We also solved this
492 challenge in our first paper³³, by again using feature sequences to identify 4547 pyoverdine
493 receptor genes belonging to 94 groups. The third challenge is to pair pyoverdines to matching
494 receptors within and across strains. For this purpose, we developed an unsupervised learning
495 algorithm (called Co-evolution Paring Algorithm), which yielded 47 synthetase-receptor
496 lock-key pairs and allowed us to reconstruct iron-interaction networks.

497 Although co-evolution analyses are a widely used computational tool, employed in diverse
498 areas ranging from ab initio protein structure to host-pathogen interaction predictions⁴², we
499 could not use existing algorithms, such as DCA, SCA, and Evoformer⁴³⁻⁴⁵. The reason is that
500 these classical site-based co-evolution methods depend on paired sequences between which
501 the degree of covariation is quantified. We faced two levels of complexity in this context. First,
502 the existence of multi-receptor producer strains impeded direct assignments of
503 synthetase-receptor pairs, and a major part of our algorithm is therefore devoted to the
504 identification of the correct receptor for the self-produced pyoverdine of a strain. Second, due
505 to the variation in the number of pyoverdine synthetase modules, site-based covariation
506 quantification is not applicable, and whole-sequence alignment also performs poorly in
507 characterizing co-evolution due the complexity of pyoverdine synthesis. Therefore, we had to

508 define reasonable distance metrics that capture the signatures of co-evolution and then apply
509 the Co-evolution Pairing Algorithm to maximize coevolutionary strength between synthetases
510 and receptors. Our new pipeline has the potential to be applied to many other microbial traits.
511 For example, microbial membrane receptors co-evolve with phages^{46,47}, and pairing phages
512 with the receptor they utilize for infection could provide insights into host-pathogen
513 co-evolution.

514 While our work provides a novel framework for efficient sequence-based prediction of
515 siderophore-mediated microbial interactions, there are a number of limitations that require
516 careful consideration. First, our approach assumes that sequence similarity indicates
517 functional similarity, i.e., similar gene sequences can be put into “behavioral groups” that
518 produce and uptake the same pyoverdine. In our first paper, we show that this is a reasonable
519 assumption when feature (but not when full) sequences are used. Second, we assume
520 discrete lock-key relationships between paired groups of pyoverdine synthetases and
521 receptors. While it is certainly true that self-receptors have high affinity for the pyoverdine the
522 strain produces, it is also known that receptors can be promiscuous and take up other
523 pyoverdine types although at lower efficiencies³⁵. Receptor promiscuity is not covered by our
524 approach. Third, we assume that each producer strain must have at least one self-receptor
525 that recognizes its own pyoverdine. This assumption is reasonable and empirically well
526 documented⁴⁸. Fourth, our approach focusses entirely on the presence/absence of pyoverdine
527 synthetases and receptors, and does not consider regulation. This comes with two
528 shortcomings that affect our prediction accuracy: (i) there are strains that have an intact
529 pyoverdine synthetase machinery but are functionally non-producers²⁴. These non-producers

530 are not detected by our approach, which can lead to errors in interaction predictions. (ii)
531 Strains can vary considerably in the amount of pyoverdine they produce with production levels
532 influencing the strength of interactions, a parameter that cannot be measured with our
533 approach. However, despite these limitations our empirical verification experiments reveal an
534 accuracy of 90% and 94% of correctly predicted interactions.

535 While the primary goal of our work was to establish methods for sequence-to-interaction
536 mapping, our results already yielded several new biological insights on iron-interaction
537 networks in pseudomonads. First, we identified three different iron-acquisition strategies
538 (single-receptor producers, multi-receptor producers, non-producers) that can co-exist and
539 appear to follow different evolutionary trajectories. Specifically, single-receptor producers
540 showed relatively low structural diversity in pyoverdines and their receptor groups, suggesting
541 relatively conserved iron-uptake strategies. In contrast, pyoverdine and receptor diversity is
542 much higher among multi-receptor producers, identifying them as the evolutionary hub for both
543 pyoverdine and receptor diversification. Second, we found that the above findings have direct
544 consequences for iron-network topologies because multi-strain producers (featuring high
545 pyoverdine and receptor diversity) can connect sub-networks into larger interaction networks.
546 Indeed, soil-, plant-, and water-associated habitats, dominated by multi-receptor producers,
547 featured highly connected iron-interaction networks. Conversely, iron-interaction networks
548 were small and fragmented in human-derived habitats dominated by single-receptor producers.
549 This latter finding potentially stems from a (relatively recent) ecological expansion of *P.*
550 *aeruginosa* from environmental habitats to humans and other hosts. This ecological expansion
551 could have facilitated diversification, as evidenced by the diverse array of *P. aeruginosa* strains

552 in our data set. However, it appears that pyoverdine synthetase and receptors were little
553 affected by the diversification and remained conserved.

554 In conclusion, we succeeded to develop a sequence-to-interaction mapping approach for
555 siderophores that has high potential to deliver new insights into species and strain interaction
556 networks in bacterial communities. Given that iron is a key trace element that is limited in most
557 environments, siderophore-mediated interactions are an ideal entry point for secondary
558 metabolite analysis from sequence data. While we focused on *Pseudomonas* strains, we know
559 that siderophore-mediated interactions occur across the species boundaries. For example, *P.*
560 *aeruginosa* possesses receptors to take up enterobactin produced by *Enterobacteriaceae* spp.
561 and schizokinen produced by *Ralstonia solanacearum*⁴⁹. Thus, the next step would be to
562 apply our concepts to more diverse bacterial communities to derive microbiome-level
563 iron-interaction maps. Moreover, pyoverdines represent a particularly complex group of
564 secondary metabolites, such that our evolution-guided approach should be easily
565 customizable to simpler groups of secondary metabolites.

566 **Data Availability**

567 The source code and parameters used are available in the supplementary material.

568 **Acknowledgements**

569 We thank Xuedi Huang for the insight on pyoverdine receptor analysis.

570

571 **Funding**

572 This work was supported by the National Key Research and Development Program of China
573 (No. 2021YFF1200500, 2021YFA0910700), National Natural Science Foundation of China

574 (No. 42107140, No. 32071255, No.41922053), National Postdoctoral Program for Innovative
575 Talents (No. BX2021012). R.K. is supported jointly by a grant from the Swiss National Science
576 Foundation no. 310030_212266. V-P.F. is supported jointly by a grant from UKRI, Defra, and
577 the Scottish Government, under the Strategic Priorities Fund Plant Bacterial Diseases
578 program (BB/T010606/1), Research Council of Finland, and The Finnish Research Impact
579 Foundation.

580

581 **Author contributions**

582 Shaohua Gu performed the majority of computational analysis in this research and drafted the
583 manuscript. Zhengying Shao and Shenyue Zhu performed the experiment of testing
584 pyoverdine-mediated interaction between *Pseudomonas* strains. Yuanzhe Shao built the
585 NRPStracer pipeline to infer patterns of diversification in pyoverdine synthetase. Di Zhang
586 developed unsupervised co-evolution pairing algorithm for identifying self-receptor. Ruolin He,
587 Jiqi Shao, Guanyue Xiong, Zeyang Qu assisted in cleaning up the codes. Alexandre Jousset
588 and Ville-Petri Friman offered insightful comments and assisted in revising and writing of the
589 manuscript. Rolf Kümmerli and Zhong Wei oversaw the project, designed experiments and
590 revised the manuscript. Zhiyuan Li conceptualized, oversaw the project and revised the
591 manuscript.

592

593 **Competing interests**

594 The authors declare no competing interests.

595

596 **References**

597 1 Cavicchioli, R. *et al.* Scientists' warning to humanity: microorganisms and climate
598 change. *Nature Reviews Microbiology* **17**, 569-586, doi:10.1038/s41579-019-0222-5
599 (2019).

600 2 Rani, N., Sangwan, P., Joshi, M., Sagar, A. & Bala, K. in *Microbial Wastewater
601 Treatment* (eds Maulin P. Shah & Susana Rodriguez-Couto) 83-102 (Elsevier,
602 2019).

603 3 Wang, X. *et al.* Phage combination therapies for bacterial wilt disease in tomato.
604 *Nature Biotechnology* **37**, 1513-1520, doi:10.1038/s41587-019-0328-3 (2019).

605 4 Kuramitsu Howard, K., He, X., Lux, R., Anderson Maxwell, H. & Shi, W. Interspecies
606 Interactions within Oral Microbial Communities. *Microbiology and Molecular Biology
607 Reviews* **71**, 653-670, doi:10.1128/MMBR.00024-07 (2007).

608 5 Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities:
609 unraveling mechanisms to identify principles. *The ISME Journal* **9**, 1488-1495,
610 doi:10.1038/ismej.2014.251 (2015).

611 6 Handelsman, J. Metagenomics: Application of Genomics to Uncultured
612 Microorganisms. *Microbiology and Molecular Biology Reviews* **68**, 669-685,
613 doi:10.1128/MMBR.68.4.669-685.2004 (2004).

614 7 Almeida, A. *et al.* A new genomic blueprint of the human gut microbiota. *Nature* **568**,
615 499-504, doi:10.1038/s41586-019-0965-1 (2019).

616 8 Schloss, P. D. & Handelsman, J. Metagenomics for studying unculturable
617 microorganisms: cutting the Gordian knot. *Genome Biology* **6**, 229,

618 doi:10.1186/gb-2005-6-8-229 (2005).

619 9 Gu, C., Kim, G. B., Kim, W. J., Kim, H. U. & Lee, S. Y. Current status and applications
620 of genome-scale metabolic models. *Genome Biology* **20**, 121,
621 doi:10.1186/s13059-019-1730-3 (2019).

622 10 Colarusso, A. V., Goodchild-Michelman, I., Rayle, M. & Zomorodi, A. R.
623 Computational modeling of metabolism in microbial communities on a genome-scale.
624 *Current Opinion in Systems Biology* **26**, 46-57, doi:10.1016/j.coisb.2021.04.001
625 (2021).

626 11 Pacheco, A. R., Moel, M. & Segrè, D. Costless metabolic secretions as drivers of
627 interspecies interactions in microbial ecosystems. *Nature Communications* **10**, 103,
628 doi:10.1038/s41467-018-07946-9 (2019).

629 12 Gude, S. & Taga, M. E. Multi-faceted approaches to discovering and predicting
630 microbial nutritional interactions. *Current Opinion in Biotechnology* **62**, 58-64,
631 doi:10.1016/j.copbio.2019.08.005 (2020).

632 13 Louca, S. & Doebeli, M. Calibration and analysis of genome-based models for
633 microbial ecology. *eLife* **4**, e08208, doi:10.7554/eLife.08208 (2015).

634 14 Penn, K. *et al.* Genomic islands link secondary metabolism to functional adaptation in
635 marine Actinobacteria. *The ISME Journal* **3**, 1193-1203, doi:10.1038/ismej.2009.58
636 (2009).

637 15 Scherlach, K. & Hertweck, C. Mediators of mutualistic microbe–microbe interactions.
638 *Natural Product Reports* **35**, 303-308, doi:10.1039/C7NP00035A (2018).

639 16 Netzker, T. *et al.* Microbial communication leading to the activation of silent fungal

640 secondary metabolite gene clusters. *Front Microbiol* **6**, 299,

641 doi:10.3389/fmicb.2015.00299 (2015).

642 17 Demain, A. L. & Fang, A. The natural functions of secondary metabolites. *Adv Biochem Eng Biotechnol* **69**, 1-39, doi:10.1007/3-540-44964-7_1 (2000).

643 18 Gao, H., Weitao, T. & He, Q. Coping with the environment: how microbes survive environmental challenges. *Int J Microbiol* **2011**, 379519, doi:10.1155/2011/379519 (2011).

644 19 Wolf, D. M., Vazirani, V. V. & Arkin, A. P. Diversity in times of adversity: probabilistic strategies in microbial survival games. *Journal of Theoretical Biology* **234**, 227-253, doi:10.1016/j.jtbi.2004.11.020 (2005).

645 20 He, R. *et al.* Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. *PLOS Computational Biology* **19**, e1011100, doi:10.1371/journal.pcbi.1011100 (2023).

646 21 Andrews, S. C., Robinson, A. K. & Rodríguez-Quiñones, F. Bacterial iron homeostasis. *FEMS Microbiology Reviews* **27**, 215–237, doi:10.1016/s0168-6445(03)00055-x (2003).

647 22 Boyd, P. W. & Ellwood, M. J. The biogeochemical cycle of iron in the ocean. *Nat. Geosci.* **3**, 675-682, doi:10.1038/ngeo964 (2010).

648 23 Emerson, D., Roden, E. & Twining, B. The microbial ferrous wheel: iron cycling in terrestrial, freshwater, and marine environments. *Frontiers in Microbiology* **3**, doi:10.3389/fmicb.2012.00383 (2012).

649 24 Butaitė, E., Baumgartner, M., Wyder, S. & Kümmerli, R. Siderophore cheating and

662 cheating resistance shape competition for iron in soil and freshwater *Pseudomonas*
663 communities. *Nature Communications* **8**, 414, doi:10.1038/s41467-017-00509-4
664 (2017).

665 25 Kramer, J., Özkaya, Ö. & Kümmerli, R. Bacterial siderophores in community and host
666 interactions. *Nature Reviews Microbiology* **18**, 152-163,
667 doi:10.1038/s41579-019-0284-4 (2020).

668 26 Leventhal, G. E., Ackermann, M. & Schiessl, K. T. Why microbes secrete molecules to
669 modify their environment: the case of iron-chelating siderophores. *Journal of The
670 Royal Society Interface* **16**, 20180674, doi:10.1098/rsif.2018.0674 (2019).

671 27 West, S. A., Diggle, S. P., Buckling, A., Gardner, A. & Griffin, A. S. The Social Lives of
672 Microbes. *Annual Review of Ecology, Evolution, and Systematics* **38**, 53-77,
673 doi:10.1146/annurev.ecolsys.38.091206.095740 (2007).

674 28 Miethke, M. & Marahiel Mohamed, A. Siderophore-Based Iron Acquisition and
675 Pathogen Control. *Microbiology and Molecular Biology Reviews* **71**, 413-451,
676 doi:10.1128/MMBR.00012-07 (2007).

677 29 Seyoum, Y., Baye, K. & Humblot, C. Iron homeostasis in host and gut bacteria – a
678 complex interrelationship. *Gut Microbes* **13**, 1874855,
679 doi:10.1080/19490976.2021.1874855 (2021).

680 30 Schaible, U. E. & Kaufmann, S. H. E. Iron and microbial infection. *Nature Reviews
681 Microbiology* **2**, 946-953, doi:10.1038/nrmicro1046 (2004).

682 31 Gu, S. *et al.* Competition for iron drives phytopathogen control by natural rhizosphere
683 microbiomes. *Nature Microbiology* **5**, 1002–1010, doi:10.1038/s41564-020-0719-8

684 (2020).

685 32 Gu, S. *et al.* Siderophore-Mediated Interactions Determine the Disease
686 Suppressiveness of Microbial Consortia. *mSystems* **5**, e00811-00819,
687 doi:10.1128/mSystems.00811-19 (2020).

688 33 Shaohua, G. *et al.* From sequence to molecules: Feature sequence-based genome
689 mining uncovers the hidden diversity of bacterial siderophore pathways. *bioRxiv*,
690 2023.2010.2030.564663, doi:10.1101/2023.10.30.564663 (2023).

691 34 Bozüyüük, K. A. J. *et al.* De novo design and engineering of non-ribosomal peptide
692 synthetases. *Nature Chemistry* **10**, 275-281, doi:10.1038/nchem.2890 (2018).

693 35 Meyer, J. M. *et al.* Use of siderophores to type pseudomonads: the three
694 *Pseudomonas aeruginosa* pyoverdine systems. *Microbiology (Reading)* **143** (Pt 1),
695 35-43, doi:10.1099/00221287-143-1-35 (1997).

696 36 Baunach, M., Chowdhury, S., Stallforth, P. & Dittmann, E. The Landscape of
697 Recombination Events That Create Nonribosomal Peptide Diversity. *Mol Biol Evol* **38**,
698 2116-2130, doi:10.1093/molbev/msab015 (2021).

699 37 Bohnenkämper, L., Braga, M. D. V., Doerr, D. & Stoye, J. Computing the
700 Rearrangement Distance of Natural Genomes. *Journal of Computational Biology* **28**,
701 410-431, doi:10.1089/cmb.2020.0434 (2020).

702 38 Figueiredo, A. R. T., Özkaya, Ö., Kümmeli, R. & Kramer, J. Siderophores drive
703 invasion dynamics in bacterial communities through their dual role as public good
704 versus public bad. *Ecology Letters* **25**, 138-150, doi:10.1111/ele.13912 (2022).

705 39 Tsilimigras, M. C. B. & Fodor, A. A. Compositional data analysis of the microbiome:

706 fundamentals, tools, and challenges. *Annals of Epidemiology* **26**, 330-335

707 doi:10.1016/j.annepidem.2016.03.002 (2016).

708 40 Weiss, S. *et al.* Correlation detection strategies in microbial data sets vary widely in

709 sensitivity and precision. *ISME J* **10**, 1669-1681, doi:10.1038/ismej.2015.235 (2016).

710 41 Faust, K. & Raes, J. Microbial interactions: from networks to models. *Nature Reviews*

711 *Microbiology* **10**, 538-550, doi:10.1038/nrmicro2832 (2012).

712 42 Chen, H. M., Guo, W., Shen, J., Wang, L. & Song, J. N. Structural Principles Analysis

713 of Host-Pathogen Protein-Protein Interactions: A Structural Bioinformatics Survey.

714 *IEEE Access* **6**, 11760-11771, doi:10.1109/Access.2018.2807881 (2018).

715 43 Greensmith, J., Feyereisl, J. & Aickelin, U. The DCA: SOMe comparison. *Evolutionary*

716 *Intelligence* **1**, 85-112, doi:10.1007/s12065-008-0008-6 (2008).

717 44 Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems.

718 *Knowledge-Based Systems* **96**, 120-133, doi:10.1016/j.knosys.2015.12.022 (2016).

719 45 Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature*

720 **596**, 583-589, doi:10.1038/s41586-021-03819-2 (2021).

721 46 Hampton, H. G., Watson, B. N. J. & Fineran, P. C. The arms race between bacteria

722 and their phage foes. *Nature* **577**, 327-336, doi:10.1038/s41586-019-1894-8 (2020).

723 47 Kortright, K. E., Chan, B. K., Koff, J. L. & Turner, P. E. Phage Therapy: A Renewed

724 Approach to Combat Antibiotic-Resistant Bacteria. *Cell Host & Microbe* **25**, 219-232,

725 doi:10.1016/j.chom.2019.01.014 (2019).

726 48 Bodilis, J. *et al.* Distribution and evolution of ferripyoverdine receptors in

727 *Pseudomonas aeruginosa*. *Environ Microbiol* **11**, 2123-2135,

728 doi:10.1111/j.1462-2920.2009.01932.x (2009).

729 49 Kümmeli, R. Iron acquisition strategies in pseudomonads: mechanisms, ecology, and

730 evolution. *Biometals* **36**, 777-797, doi:10.1007/s10534-022-00480-8 (2023).

731