bioRxiv preprint doi: https://doi.org/10.1101/2023.11.05.565711; this version posted November 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1 From sequence to ecology: siderophore-receptor coevolution algorithm
2  predicts bacterial interactions in complex communities
3 Shaohua Gu™*?, Zhengying Shao®, Yuanzhe Shao?, Shenyue Zhu®, Di Zhang®, Richard Allen*,
4 Ruolin He', Jigi Shao®, Guanyue Xiong®, Zeyang Qu*, Alexandre Jousset®, Ville-Petri Friman®,
5  Zhong Wei*, Rolf Kimmerli*, Zhiyuan Li**"
6 ! Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking
7  University, Beijing, 100871, China
8  ? peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies,
9 Peking University, Beijing, 100871, China
10 *Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key lab of organic-based
11 fertilizers of China, Nanjing Agricultural University, Nanjing, P R China
12 4 University of Zurich, Department of Quantitative Biomedicine, Winterthurerstr. 190, 8057
13  Zurich, Switzerland
14 ®°University of Helsinki, Department of Microbiology, 00014, Helsinki, Finland
15
16 "Corresponding authors  (email:  weizhong@njau.edu.cn; rolf. kuemmerli@uzh.ch;
17  zhiyuanli@pku.edu.cn)

18


https://doi.org/10.1101/2023.11.05.565711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.05.565711; this version posted November 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

19 Abstract

20  Unlocking the secrets of microbial interactions through genomics is pivotal for advancing
21 microbial ecology. In most ecosystems, the scarcity of iron makes iron-mediated interactions a
22  central theme in shaping microbial communities. Bacteria have evolved diverse strategies,
23 including the production of siderophores—diverse secondary metabolites—to scavenge iron
24  from their surroundings. Here, we use bioinformatic tools to predict siderophore
25  iron-interaction networks among 1928 Pseudomonas strains from sequence data. Our
26  approach uses coevolution analysis to group siderophore synthetase clusters and receptors
27 used for uptake into key-lock pairs. Through a mix of computational analyses and
28 experimental validation, we reconstruct Pseudomonas iron-interaction networks across a
29  spectrum of habitats, from soil to water, plants, and human-related environments and reveal
30  substantial differences in network structure and connectivity across habitats. Altogether, our
31 sequence-to-interaction mapping tool empowers researchers to decode bacterial ecology in
32 complex microbiomes, setting the stage for novel interventions to engineer microbiome
33  functionality.

From sequence to ecology
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35

36 Introduction

37  Microbial communities populate all ecosystems on earth from terrestrial to aquatic
38  environments, impacting human health, agriculture, and industry 3 The dynamics and
39 functioning of these communities are shaped by complex interactions between
40  microorganisms *°. As the number of sequenced microbial genomes continues to grow
41 exponentially ®, there is a growing interest in predicting microbial interaction networks based
42 on the genomic data. Such efforts potentiate major advances, as many microorganisms
43  cannot be cultured in the laboratory ¢, while their roles in natural communities can potentially
44  be inferred through sequence-to-interaction mapping. Currently, sequence-to-interaction
45  mapping approaches primarily focus on metabolic interactions, with Genome-scale Metabolic
46  Models (GEMSs) serving as the primary tool for establishing the pan-reactome of microbial
47  communities **°. These methods infer metabolic reactions from the genome annotation of
48  enzymes, and then reconstruct a flux model to understand how microorganisms take up
49  essential nutrients and release metabolic byproducts into the environment ™2,

50 Despite the significance of primary nutrients, like carbon and nitrogen, there is increasing
51 evidence that secondary metabolism also plays a major role in shaping microbial interactions
52 15 Nearly all microbes actively synthesize compounds to fulfill a diverse set of functions,
53 including resource scavenging, motility, attack of and defense against competitors, and

16,17

54 communication . These compounds, referred to as "secondary metabolites," were

55  previously considered non-essential for microbial growth in a laboratory setting, but have since

14,15,18,19

56 been shown to be critical for competitiveness in natural environments . However,
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57 genome data-based sequence-to-interaction mapping have rarely been applied to secondary
58  metabolism, although this could provide fundamentally new insights into microbial community
59  assembly rules.

60 Here, we developed a secondary metabolite sequence-to-interaction approach focusing
61 on iron-scavenging siderophores, one of the most prevalent classes of microbial secondary
62 metabolites “°. Iron is a critical nutrient for microbial survival, as it is used as a catalytic group
63  in enzymes guiding key biological processes such as respiration and replication **.

64 However, the concentration of bioavailable iron is typically below the level required for

21-23

65  microbial survival in most habitats . In response to iron limitation, nearly all bacteria

66  produce siderophores, a chemically diverse class of low molecular weight compounds that

24,25

67 efficiently chelate iron from the environment . Siderophores are typically diffusible and able

68  to chelate iron over a broad physical range *°. Once iron is bound, the complex is recognized
69  and taken up by specific receptors in microbial cell membranes *°. Given their diffusible nature,
70  siderophores mediate a range of social interactions. For bacteria possessing receptors

71 capable of recognizing the iron-siderophore complex, siderophores act as a public good

25,27

72  promoting cooperation between individuals . When bacteria possess receptors for

73  siderophore uptake but do not produce siderophores themselves they can act as cheaters by

24,25

74  exploiting the public goods secreted by others . Finally, for bacteria unable to recognize

75  and uptake a specific siderophore, the iron-siderophore complex restricts access to iron and

25,28

76  intensifies iron competition . Consequently, siderophore-mediated interactions can have an

29-32

77 important impact on microbial community composition and dynamics , yet the prediction of

78  such interactions from sequence data is an unsolved challenge.
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79 We have previously developed bioinformatic pipelines to predict the chemical structure of
80  siderophores and to identify receptors from sequence data. Here, we apply our data mining
81 approach to infer how receptor and siderophore had co-evolved and to find matching
82  siderophore-receptor pairs to predict interaction networks in bacterial communities. We focus
83  on Pseudomonas spp. (1928 strains) featuring 188 predicted variants of pyoverdine (their
84  main siderophore) and 94 groups of FpvA receptors (siderophore receptors for pyoverdines)sa.
85  We developed a Co-evolution Pairing Algorithm that revealed nearly 50 unique lock-key
86  groups, where groups of FpvA receptors emerge as specific “locks” that recognize
87  corresponding pyoverdines as the “key”. Validation experiments yielded prediction accuracies
88  of over 90%. Based on the predicted lock-key pairs, we reconstructed the iron-interaction
89  networks among the 1928 Pseudomonas strains. We noticed that network topologies differ
90 fundamentally between different ecological habitats (soil, plant, water, human). Taken together,
9 our work provides a robust sequence-to-interaction mapping tool to predict social interaction
92  networks mediated by secondary metabolites in complex microbial communities.

93

94 Results

95

96  Section 1: Three classes of pyoverdine strategies in Pseudomonas and the lock-key

97  (receptor-synthetase) principle of co-evolution
98 In our recent work, we developed bioinformatic pipelines to predict pyoverdine molecule
99  structures and receptors based on the genome sequence data. Among 1928 nonredundant

100  Pseudomonas strains, we identified 188 chemically different pyoverdine types and 94 different
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101 receptor groups>. In this work, we seek to understand how different Pseudomonas strains
102 interact through these pyoverdines and receptors.

103 We first compared all the strains according to phylogeny, ecological habitat, and
104  pyoverdine function. At the phylogenetic level, our data set features a large diversity of
105  Pseudomonas species, whereby P. aeruginosa (28.7%), P. fluorescens (7.0%), P. syringae
106  (6.0%), and P. putida (2.2%) were the most abundant ones (Figure 1a). The strains originated
107  from a diverse set of habitats, including humans (21.2%), soils (13.6%), plants (12.1%), and
108  water (6.4%), although the origin of many strains (39.5%) is unknown (Figure 1a).

109 To assess diversity at the pyoverdine functional level, we checked for the absence or
110  presence of pyoverdine synthesis clusters and counted the number of FpvA receptors per
111 strain. We found three basic types of pyoverdine-utilization strategies (Figure 1b).
112  "Single-receptor producers" are the most common type (985 strains, 51.1%) and refer to
113  strains with one pyoverdine synthesis locus and one FpvA receptor gene. "Multi-receptor
114 producers"” are the second most common type (679 strains, 35.2%) and refer to strains with
115  one pyoverdine synthesis cluster and multiple receptor genes. "Non-producers"” are the least
116 common type (264 strains, 13.7%) and refer to strains that lack the pyoverdine synthesis
117  cluster but contain at least on receptor gene. While each strain possesses on average two to
118  three FpvA receptor genes, no strain carries more than one pyoverdine synthesis cluster. This
119  observation is in line with the expected high costs of pyoverdine synthetase, which is based on

120  aseries of gigantic modular enzymes known as NPRS (non-ribosomal peptide synthetases)*.

121
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123  Figure 1 Classification of Pseudomonas strains and elucidation of the co-evolution
124  between pyoverdine synthetase and receptors. a. Phylogenetic relationship among the 1928

125 Pseudomonas strain based on the concatenated alignment of 400 single-copy conserved genes. Starting
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126 from inside, colors in the first ring distinguish the five most prevalent species, with "Others" representing

127 the remaining less abundant species. Colors in the second ring distinguish the four most prevalent

128 sources of isolation. In the third ring, claret and blank regions cover strains with complete pyoverdine

129 synthetase clusters and strains without synthetase gene clusters, respectively. In the fourth blue ring, the

130 bar height indicates the number of FpvA receptors present in each strain. b. Strains can be classified into

131 three types by scoring the presence/absence of a synthetase cluster and counting the number receptors

132 in each genome: (i) single-receptor producers containing one pyoverdine synthetase cluster and one

133 FpVvA receptor gene; (ii) multi-receptor producers containing one pyoverdine synthetase cluster and

134 several FpvA receptor genes; and (iii) Non-producers lacking synthetase gene but containing at least one

135 receptor gene. c. Heatmap visualizing distances between feature sequences of the FpvA receptors and

136 the pyoverdine synthetase clusters and between FpvA features sequences and phylogenetic genes

137 among the 986 single-receptor producers. The hierarchical clustering of the strains is based on the FpvA

138 feature sequences for all three heatmaps. The black squares on the heatmaps denote the five major

139 FpvA groups. Three of these groups correspond to the receptors found among P. aeruginosa strains and

140 are labelled with black text. d. Scheme of our approach to predict lock-key interactions between

141 pyoverdines and receptors from sequence data. S-labels refer to the respective results section of our

142  work.

143 Based on these findings, we hypothesize that in each single-receptor producer, the sole

144  receptor should recognize its self-produced pyoverdine. Consequently, when the synthetase

145  structure is altered, the receptor should correspondingly change sequences to preserve their

146  matching relationship. This implies that synthetase and receptor pairs engage in molecular

147  co-evolution. To test this hypothesis, we focused on the 986 single-receptor producers and
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148  calculated the degree of covariation between sequence distances matrices of the receptor, the
149  synthesis cluster, and the 400 conserved phylogenetic genes. For the receptors (FpvA) and
150 the synthesis cluster, we used the feature sequences that are most predictive of receptor
151 specificity and pyoverdine molecular structure®.

152 In support of the co-evolution hypothesis, we found a strong correlation between the
1563  distance matrixes of the receptors and the synthesis clusters (Pearson's r=0.89), a correlation
154  that is much stronger than between the receptor and the phylogeny matrix (Pearson's r=0.51)
155  (Figure 1c). Notably, we observed strong clustering patterns in the sequence space of the
156 receptors, forming distinctive blocks that closely match the clustering patterns of their
157  corresponding synthesis clusters. Using our receptor clustering pipeline®, we identified 17
158  receptor groups among the 986 single-receptor producers. Importantly, three out of the 17
159  receptor groups represent the FpvA receptors characteristic of the human pathogen P.
160  aeruginosa (text marked in Figure 1c left panel, as type I-IV FpvAs), and their associated
161 synthetase groups were known to produce pyoverdines that these receptors could selectively
162  uptake®*®. These analyses support the hypothesis that cognate receptors and synthesis
163 genes have co-evolved in single-receptor producers, resulting in one-to-one ‘“lock-key”
164  relationships: Each group of receptors, characterized by similar sequence features, acts as a
165  "lock" specifically recognizes pyoverdines (the "key") produced a corresponding group of
166  synthetases.

167 To be able to reconstruct the iron interaction network in Pseudomonas communities, we
168 now need to uncover the lock-key groups in multi-receptor producers and to match the

169  receptors of any strain to the synthetase groups of all producers in a community. To achieve
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170  this, we followed a five-step approach, which is summarized in Figure 1d. In section 2, we
171 systematically studied the evolution and diversification of the pyoverdine synthesis clusters
172  and receptors in 1928 Pseudomonas strains. In section 3, we used this knowledge to develop
173  an unsupervised algorithm based on coevolutionary principles, in order to allocate synthesis
174  clusters and receptors into lock-key groups. This analysis yields a complete prediction map
175  regarding the groups of pyoverdines each strain is capable of producing and utilizing. In
176  section 4, we use two experimental systems to validate the predicted siderophore-mediated
177 interactions in model Pseudomonas communities. In section 5, we finally construct the
178  predicted pyoverdine-mediated interaction networks for soil, plant, water, and
179  human-associated Pseudomonas communities.

180

181 Section 2: Concurrent diversification patterns of pyoverdine synthetases and receptors

182  reveal multi-receptor producers as evolutionary hubs.

183  We observed that the structural diversity of pyoverdines was much higher when strains carried
184 multiple receptors (108 unique structures among 678 strains) compared to when they carried a
185  single receptor (47 unique structures among 986 strains). Only 33 structures were predicted to
186  be produced by both receptor type strains. This indicates that pyoverdine diversity is tightly
187 linked with the apparently different iron-acquisition strategies of multi-receptor and
188  single-receptor producers. Here, we explore this diversity in detail and ask how do pyoverdine
189 NRPSs evolve. The 188 pyoverdine structures varied in their length, chirality, and substrate
190  composition, agreeing with the notion that recombination dominates NRPS evolution *. We
191 developed the "NRPS tracer" algorithm, which calculates the minimal number of editing events

192  required to transform one pyoverdine product into another. Our algorithm builds on the double
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193 cut and join (DCJ)-indel model from Bohnenkampers et al. .
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195 Figure 2 Diversifications of pyoverdine synthetases and receptors reveal

196  multi-receptor producers as evolutionary hubs. a. Network of all the 188 known pyoverdine
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197 structures connected by one-step evolutionary events. Stripes of colored squares show the amino-acid

198 sequence of pyoverdines with black-framed boxes representing D-type amino acids. Colored circles

199 (nodes) indicate the different FpvA receptor groups found among single-receptor producers. Empty

200 nodes depict pyoverdines exclusively found among multi-receptor producers. The bold orange line shows

201 a representative path of pyoverdine diversification. The positioning of pyoverdine stripes and nodes has

202 no specific meaning. The lower right panel show the scheme of six different recombination events in the

203 evolution of pyoverdine NRPS clusters. Grey and colored boxes indicate conserved and recombination

204 events, respectively. Black-framed boxes indicate recombination involving E domain alterations (e.g.

205 affecting L- vs. D-conformation). b. Frequency of edge types and recombination events in the network

206 (right panel). There are four edge types (left panel): ET1 — edges connecting pyoverdine structures from

207 single-receptor producers sharing the same receptor group, ET2 — edges connecting pyoverdine

208 structures from single-receptor producers featuring different receptor groups, ET3 — edges connecting

209 pyoverdine structures that only appeared in multi-receptor producers and these appeared at least one

210 time in single-receptor producers, ET4 — edges connecting pyoverdine structures exclusively occurring in

211 multi-receptor producers. c. The 43 largest FpvA receptor groups with more than 10 members (sorted by

212 group size) and their frequency among single-receptor producers, multi-receptor producers, and

213 non-producers. d. Silhouette index analysis on the compactness of all receptor groups in single-receptor

214 producers (left panel), multi-receptor producers (middle panel) and non-producers (right panel). Colors

215 represent all the 17 receptor groups found among single-receptor producers. All other receptor groups

216 are shown in black. The dashed vertical lines represent the average of the Silhouette index across all the

217 receptor groups within each strain class. e. The observed and expected connectivity value between

218 different strains types in the sequence similarity network of all 4547 FpvAs receptors (Figure S4).
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220 To keep analysis tractable, we focused on pairs of pyoverdine structures that can

221 transform from one to the other by a single recombination event and for which the number of

222 NRPS modules involved in the transformation is < 3 (corresponding to the maximum number

223  of amino acids a NRPS enzyme can incorporate into the pyoverdine backbone). We identified

224 216 such single-event transformations. They connect 148 of the 188 pyoverdine structures into

225  multiple sub-networks (Figure 2a). While many sub-networks are small the five largest connect

226 70 out of 188 structures and 1016 out of 1664 strains (Figure S1). The most frequent genetic

227  recombination events were domain and subdomain symmetry replacement (40%), insertions

228 and deletions (indel, 35%) and asymmetry replacement (16%), while duplication events,

229  E-domain indels and rearrangements (total 9%) were much rarer (Figure 2a, the lower right

230  panel).

231 We then asked whether pyoverdine structures from the same sub-network tend to share

232  similar receptors. To address this question, we allocated nodes to each structure and filled

233  them with the colors of the corresponding receptor groups found in single-receptor producers

234 (17 receptor groups, Figure 1c). Thus, we had 80 colored nodes for the 47 structures

235  exclusively found in single-receptor producers and the 33 structures occurring in both producer

236  types. The 108 nodes of structures that only occurred in multi-receptor producers were left

237  empty (Figure 2a). We then counted the number of cases in which two nodes were connected

238 by the same vs. different colored receptors (Figure 2b, split according to recombination type).

239  We found that the great majority of edges connecting nodes of single-receptor producers were

240  of the same color (97%), while different-color connections were rare (3%). This result strongly

241 supports the molecular co-evolution hypothesis. By contrast, structures that only occur in
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242  multi-receptor producers (empty node) were as often connected to colored nodes (57 events)

243  than to other empty nodes (54 events). This indicates that multi-receptor producers can

244  connect sub-networks of different structures from single-receptor producers (Figure 2a, bold

245  orange line and Figure S2). Altogether, our analysis reveals that multi-receptor producers

246  follow different iron-uptake strategies and have undertaken different evolutionary trajectories in

247  terms of pyoverdine diversification (Figure 2). The latter implies that multi-receptor producers

248  (and probably also non-producers) should also differ in the FpvA receptors they possess, a

249  question we address in the subsequent section.

250 The previously identified 4547 FpvAs genes cluster into 94 distinct groups based on their

251 feature sequences. For our analysis, we focus on the 43 largest groups comprising more than

252 10 members (Figure 2c). We found that FpvA receptors of the three strain types were

253  unequally distributed across the 43 groups (Figure 2c). Receptors of single-receptor producers

254  were restricted to 14 out of the 43 groups (32.6%). Conversely, receptors of multi-receptor

255  producers occurred in almost all groups (95.3%). Similarly, receptors from non-producers were

256 also found in many groups (83.7%) with two distinct groups containing exclusively

257  non-producer receptors. This simple frequency analysis shows that lock-key relationships from

258  single-receptor producers are not sufficient to recover the whole iron interaction network

259  because multi-receptor producers and non-producers possess a much more diverse FpvA

260  receptor repertoire than single-receptor producers.

261 This notion receives further support when comparing the compactness of receptor groups

262 across the three strain types (Figure 2d). We observed that receptors from single-receptor

263  producers tend to connect more compactly (mean silhouette index = 0.96+0.16), while
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264  receptors from multi-receptor producers (mean silhouette index = 0.78+0.19) and

265  non-producers (mean silhouette index = 0.79+0.20) were more dispersed in the sequence

266  space (Figure S3). This observation indicates that receptors from single-receptor producers

267  are more conserved, whereas receptors from multi-receptor producers harbor greater variation.

268  The distinct and conserved nature of receptors from single-receptor producers also emerges

269  when conducting a network analysis with all 4547 FpvAs using their feature sequences (Figure

270  S4). When focusing on the shortest distances between receptor groups, we noticed that none

271 of the 17 receptor groups from single-receptor producers are connected (Figure 2e). In

272  contrast, connections are disproportionately enriched among receptor groups of multi-receptor

273  producers and non-producers, covering 94% and 50% of all the detected 2195 shortest

274  between-group distances, respectively (Figure 2e). These results indicate that evolutionary

275  trajectories of receptors differ between the three strain types. While single-receptor producers

276  harbor conserved and evolutionarily distinct receptors, receptors of multi-receptor producers

277  and non-producers are much more diverse and evolutionarily connected.

278 Taken together, our results suggest that multi-receptor producers are the main reservoir

279  for siderophore and receptor diversification. These strain types should thus be able to take up

280  several pyoverdine types and are thus expected to form denser interaction networks at the

281 ecological level.

282

283  Section 3: Matching synthetases and receptors in sequence space results in 47

284  lock-key groups.

285  Next, we aim is to establish a lock-key receptor-pyoverdine interaction map across all three

286  strain types. A first task in this process is to identify receptors in multi-receptor producers that
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287  are used to take up the self-produced pyoverdine. The first intuitive solution is to check for

288  receptors proximate to the pyoverdine synthetase. We can refer to single-receptor producers

289  for the proximity threshold, where 95.6% (943 of 986) of FpvA receptors locate within 20 kb

290 distance from the pyoverdine synthetase cluster. When applying this proximity threshold to

291 multi-receptor producers we can identify putative self-receptors in 87.1% (591 out of 678) of

292  the strains (Solution 1). An alternative approach is to use the lock-key pairs identified for

293  single-receptor producers and check whether similar pairs occur in multi-receptor strains

294  (Solution 2). However, as shown in Figure 2c, this approach only works for the 17 receptor

295  groups found in single-receptor producers and could be applied to 68.7% (466 of 678)

296  multi-receptor strains. Even when combining the Solutions 1 and 2, more than half of the

297  receptor groups could not be paired to any pyoverdine synthetase.

298 We thus developed an unsupervised learning algorithm, termed Co-evolution Pairing

299  Algorithm (Solution 3), which matches the feature sequence of the synthetase cluster in each

300 strain with its receptors by searching for the set of synthetase-receptor combinations that

301 maximizes co-evolutionary association. Among all multi-receptor producers, there are 678

302  synthetases and 2812 receptors in total. First, considering that NRPS pathways mainly evolve

303 by large genetic rearrangement like recombination, we used the synthetase feature sequences

304  (concatenated Amotif4-5 regions with consideration of recombination, See Method for details)

305 to build the 678x678 synthetase distance matrix (Figure 3a). We then picked a random

306 receptor as putative self-receptor for each multi-receptor producer and used the receptor

307 features sequences (168 Pro to 295 Ala) to calculate the corresponding 678x678 receptor

308 distance matrix. Subsequently, we calculated co-evolution coefficient cr, defined as the
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309  Pearson's correlation coefficient between the two matrices (see Method for details). The initial
310 random self-receptor assignment resulted in poor co-evolution coefficients. We thus
311 introduced an iterative optimization process, during which putative self-receptors were shuffled
312  within each multi-receptor producer. We discarded iterations that decreased cr values and
313  continued with those that increased cr values until an optimization plateau was reached
314 (Figure 3b, cr = 0.84). We predicted the self-receptor of all multi-receptor producers based on
315  the final assignment.
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318  multi-receptor producers and establishing the lock-key pairs of synthetase and

319  receptor subgroups. a. The flowchart of the Co-evolution Pairing Algorithm (Solution 3) that

320 matches the synthetase in each strain to its "self-receptor”, by an unsupervised learning scheme that

321 optimizes co-evolutionary strength between the sequence distance matrices of pyoverdine synthetase

322 and matched receptors. The mean correlation coefficients (r) between the two matrices before and after

323 the optimization were shown. b. The correlation coefficient (r) and stability of the algorithm were

324  examined by multiple rounds of learning (exp 1 to 50, with final r recorded in the brackets). c. The

325 consistency of self-receptors identified by different solutions. The consistency is calculated by comparing

326 the self-receptor found by the multi-receptor producer based on the two supervised solutions (Solution 1

327 and 2) and one unsupervised algorithm (Solution 3). d. Lock-key pairs connecting the sequence spaces

328 of synthases with their self-receptors in both single-receptor producers and multi-receptor producers. The

329 colored (use the same color code as Figure 2a) and black lines represent groups with single-receptor

330  producer and without single-receptor producer, respectively.

331 We then checked for consistency in self-receptor identification across the three solutions

332  (Figure 3c). Solution 1 and Solution 2 can be classified as supervised machine learning, and

333  they yield high levels of consistency (99.5% across 433 strains). The unsupervised Solution 3

334  also shares high consistency with Solution 1 (93.7%, for 591 strains) and Solution 2 (94.4%,

335  for 466 strain). These high degrees of consistency legitimate all three solutions, with Solution 3

336  having the advantage of being applicable to all strains.

337 With the help of our co-evolution pairing algorithm, we could predict and allocate a

338  self-receptor to each of the 1664 pyoverdine-producing strains, segregating into 47 distinct

339 lock-key groups (Figure 3d and Figure S5). All single-receptor producers and 84.4%
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340  multi-receptor producers belong to 17 receptor groups, while the remaining 15.6%
341 self-receptors found among multi-receptor producers segregate into 30 additional receptor
342  groups (Figure S5). This leaves us with 2883 FpvA receptors among multi-receptor producers
343  and non-producers that are not self-receptors and could be used to uptake pyoverdines
344  produced by other strains, representing cheating. Indeed, when mapping these 2883
345  non-self-receptors to the co-evolution matrix, we found that 2703 receptors associated with
346 one of the 47 lock-key groups, suggesting that they can take up the corresponding
347  non-self-produced pyoverdine. There were only 180 FpvA receptors (4.0%) that could not be
348 linked to any of the 47 lock-key groups. They belong to rare receptor groups (Figure S5) that
349  are either erroneously identified as FpvA receptors or match rare pyoverdine structures not
350 covered by the 1664 producers in our dataset. Taken together, we can now predict
351 iron-interactions between strains based on the siderophores they produce and the receptors
352  they possess for siderophore utilization.

353

354  Section 4: The receptor-synthetase lock-key pairs successfully predict

355  pyoverdine-mediated interactions in experiments.

356  We conducted two validation experiments to show that our bioinformatic lock-key approach
357  reliably predicts pyoverdine-mediated interactions with accuracy > 90%. The first validation
358  was conducted with a Pseudomonas community from the Nanjing (China) collection originally
359 isolated from the tomato rhizosphere *'. We chose the genomes of 24 independent strains and
360  subjected them to our previously developed bioinformatic pipelines to predict pyoverdine
361 molecular structures and to identify all FpvA receptors®. These 24 strains included 4

362  single-receptor producers, 16 multi-receptor producers and 4 non-producers (Figure S6). We
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363  applied our Co-evolution Pairing Algorithm to identify the self-receptors of all 20 producers
364  (Solution 3) and verified that all the predicted self-receptors were within the 20 KB genome
365  proximity threshold to the synthetase genes (Solution 1). Subsequently, we assigned the
366  self-receptors to the previously identified 47 lock-key paring groups in our full database, and
367  found that 13 pairing groups occur among the 20 producer strains (Figure S7). Combining this
368 information with the knowledge on non-self-receptors occurring in each strain, we predicted

369 the pyoverdine-mediated interactions between the 24 strains in our community (Figure 4a).
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371 Figure 4 The receptor-synthetase lock-key pairings inferred from sequence data reliably
372  predict experimentally observed pyoverdine-mediated iron interactions. a. Predicted vs.
373 observed iron-interaction network among the 24 experimental strains. Each circular node represents an

374 experimental strain. Green, yellow, and red circular nodes represent single-receptor producers,
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375 multi-receptor producers and non-producers, respectively. Hexagons represent the predicted 13 lock-key
376 receptor-pyoverdine groups. Edges from strain nodes to lock-key nodes represent pyoverdine production,
377 while edges from lock-key nodes to strain nodes represent utilization. Green (pyoverdine non-usable)
378 and pink (pyoverdine usable) edges depict cases in which experimental observations match
379 bioinformatically predicted interactions. Blue edges depict incorrectly predicted pyoverdine interactions.
380 The pyoverdine groups that appeared at least once in single-receptor producers are shown as colored
381 hexagones with the color of the respective receptor group, whereas the pyoverdine groups exclusively
382  secreted by the multi-receptor producer are represented by grey hexagons. b-c. Predicted vs. observed
383  iron-interaction networks based on data from a previous study carried out in Zurich lab. The predicted
384 interactions were inferred by the algorithms presented in this study, while the experimental data is taken
385  from Table S2 of Figueiredo et al. (DOI: 10.1111/ele.13912).

386 For the experimentally validation, we first confirmed that the 20 producers can indeed
387  produce pyoverdine under iron-limited conditions, while the 4 non-producers cannot (Figure
388  S6). We then followed a modified version of our previously established protocols to calculate
389  the net effect pyoverdine has on the growth of other strains (GEgy,), while controlling for the
390 effects of other metabolites in the supernatant *'. In principle, GEpy, > 0 indicates
391 pyoverdine-mediated facilitation. However, because there is substantial experimental variation
392  between experimental replicates, we increased a threshold value of GEp,, > 0.05 and
393 classified values above this threshold as positive interactions, where the receiving strain can
394  use the respective pyoverdine for iron acquisition (interaction type 1). Conversely, GEpy, <
395  0.05 values were classified as neutral or negative interactions, where the receiving strain

396  cannot use the respective pyoverdine for iron acquisition (interaction type 0). This approach
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397  allowed us to infer an experimental pyoverdine-mediated interaction network (Figure 4a and
398  Figure S8), in which 90% of the observed interactions matched (based on the sign) the
399  predicted interactions from sequence data.

400 The second experimental validation involved strains from the Zurich (Switzerland)

401  collection, isolated from soil and freshwater habitats *

. In this case, we used published
402  experimental data from the literature **. The focus of this earlier study was to test whether the
403  opportunistic human pathogen P. aeruginosa PAOl can invade natural soil and pond
404  communities based on its ability to use pyoverdine from the natural isolates. We used data
405  from all the strains for which genome sequences were available (PAO1 and 33 natural
406 isolates), to establish pyoverdine-mediated interaction networks (Figure 4b-c). We then
407  applied our bioinformatic pipelines as explained for the Nanjing collection and found a high
408 level of consistency (94%) between the predicted and observed pyoverdine-mediated
409 interaction in pairwise cultures (Figure 4b-c).

410 The high consistency between observed and predicted interactions among both the
411 Nanjing and the Zurich strain collection demonstrates that siderophore-mediated microbial
412  interactions can be predicted based on genome-sequence analysis alone using the lock-key

413  relationship between receptor and synthetase genes.

414

415  Section 5: Pyoverdine interaction networks differ across habitats
416  We then applied the lock-key pairing approach to our full data set to reconstruct the
417 pyoverdine-interaction network among all the 1928 Pseudomonas strains (Figure S9). To keep

418 traceability in such an enormous network, we allocated strains into behavioral groups sharing
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419 the same “pyoverdine-interaction behavior”. Specifically, strains that produce the same

420  pyoverdine type and can utilize the same repertoire of pyoverdines are allocated to the same

421 behavior group and represented as (circular) nodes in the network. There were 407 such

422  behavioral nodes. We included a second type of (hexagonal) nodes in the network and they

423  represent the 47 different receptor-pyoverdine groups identified based on the lock-key

424  algorithm (Figure 3). Edges from behavior nodes to lock-key nodes represent pyoverdine

425  production, while edges from lock-key nodes to behavior nodes represent utilization. Overall,

426  the network featured 307 production edges and 1788 utilization edges. This network analysis

427  does not only reveal that certain lock-key nodes are much more densely connected to

428  behavior nodes than others, it also reveals a high connectivity between behavior groups and

429  the widespread ability of strains to use non-self-produced pyoverdines, indicative of potential

430  cheating.
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Figure 5 Pseudomonas iron-interaction networks vary across habitats. The predicted

iron-interaction networks mediated by pyoverdines among Pseudomonas isolates from soil (a), plant (b),

water (c) and human (d) habitats. The interaction networks were built using the Cytoscape's yFiles

circular layout. Circular nodes represent behavioral groups (i.e., strains that produce the same

pyoverdine type and utilize the same repertoire of pyoverdines) with node size being proportional to the

number of strains that exhibit this behavior. Green, yellow, and red circular nodes represent

single-receptor producers, multi-receptor producers and non-producers, respectively. Hexagonal nodes

represent the lock-key receptor-pyoverdine groups with node size being proportional to the number of

strains utilizing this siderophore. The pyoverdine groups once appeared in single-receptor producers

were highlighted with the receptors’ group colors (colored hexagons) and the pyoverdine groups only


https://doi.org/10.1101/2023.11.05.565711
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.05.565711; this version posted November 6, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

442 secreted by the multi-receptor producer in the database represented by grey hexagons. Edges from

443 behavior nodes to lock-key nodes represent pyoverdine production, while edges from lock-key nodes to

444 behavior nodes represent utilization, with the same color of the pyoverdine node.

445

446 One biological limitation of the above analysis is that most of the strains would never meet

447  in nature as they were isolated from different environments. That is why we created separate

448  networks for strains isolated from soil (262 strains), plant (234), water (124), and

449  human-derived (409) habitats. We found that strain type frequencies varied fundamentally

450 between the four habitats (Figure 5). For example, in the soil-derived strains, there were 56.9%

451 multi-receptor producers, 27.5% single-receptor producers and 15.7% non-producers (Table

452  S1). In contrast, there were only 10.0% multi-receptor producers and 4.0% non-producers, but

453  86.1% single-receptor producers among human-derived strains. These differences in strategy

454  frequencies affected network topology and connectivity. Particularly, the number of behavior

455  groups was higher for soil (130, 0.50 = scaled relative to number of strains), plant (97, 0.41),

456  and water (70, 0.56) habitats than for human-related habitats (41, 0.10). Similarly, the

457  distribution of the 47 pyoverdine lock-key groups differed across habitats, with more groups

458  occurring in sail (29, 0.11 = scaled relative to number of strains), plant (25, 0.11), and water (25,

459  0.20) habitats compared human-derived habitats (18, 0.04). These differences affected the

460 number of utilization edges, which is higher in soil (446, 0.25= scaled relative to 1788

461 utilization edges), plant (274, 0.15) and water (237, 0.13) habitats than in human-derived

462  habitats (88, 0.05). Important to note is also that many behavior groups are unique in each

463  habitat: soil (80, 19.7%), plant (56, 13.0%), water (43, 10.6%), and human (26, 6.4%), and that
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464  only 8 behavior groups (Figure S10a) and 11 lock-key groups are shared by all four habitats

465  (Figure S10b). This latter finding suggests divergent evolution of pyoverdine-interaction

466  networks across habitats. Taken together, these results show that our algorithms can predict

467  pyoverdine-interaction networks in natural communities and reveal key differences between

468 habitats.

469

470 Discussion

471 Predicting interactions between microbes from sequence data offers exciting opportunities for

472  understanding the ecology and evolution of microbiomes. While sequence-to-interaction

473  mapping has predominantly been carried out for primary metabolism involving resource

474  consumption, conversion, and cross-feeding, there are few approaches to reconstruct

475  microbial interactions based on secondary metabolites (antibiotics, toxins, siderophores,

476  surfactants) **

. In our paper, we offer such an approach by developing a bioinformatic
477  approach to infer iron-interaction networks mediated by pyoverdines (a class of siderophores)
478  within communities of Pseudomonas bacteria. To achieve our goal, we analyzed patterns of
479  pyoverdine and pyoverdine-receptor evolution and their co-evolution from sequence data for
480 1928 strains and reconstructed strain interaction networks for soil, plant, water, and
481 human-derived habitats. Our experimentally validated approach provides a roadmap on how
482  to perform sequence-to-interaction mapping for secondary metabolism, and to obtain new
483 insights on the effects of these compounds on community assembly and dynamics.

484 Our approach underscores several challenges associated with secondary metabolites, to

485  which we offer solutions. The first challenge is that secondary metabolites are often built
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486  through complicated synthesis machineries like NRPS and PKS, such that the chemical
487  structure of the metabolite can hardly be directly inferred from sequencing data. We solved this
488  challenge in our first paper33, in which we developed an approach based on feature sequences
489  that allowed us to infer the chemical structure of 188 pyoverdines produced by the strains in
490  our data set. The second challenge is to identify pyoverdine receptor genes among the many
491 different types of siderophore receptor genes each strain possesses. We also solved this
492  challenge in our first paper®®, by again using feature sequences to identify 4547 pyoverdine
493  receptor genes belonging to 94 groups. The third challenge is to pair pyoverdines to matching
494  receptors within and across strains. For this purpose, we developed an unsupervised learning
495  algorithm (called Co-evolution Paring Algorithm), which yielded 47 synthetase-receptor
496  lock-key pairs and allowed us to reconstruct iron-interaction networks.

497 Although co-evolution analyses are a widely used computational tool, employed in diverse
498  areas ranging from ab initio protein structure to host-pathogen interaction predictions 2 we

4345 The reason is that

499  could not use existing algorithms, such as DCA, SCA, and Evoformer
500 these classical site-based co-evolution methods depend on paired sequences between which
501 the degree of covariation is quantified. We faced two levels of complexity in this context. First,
502 the existence of multi-receptor producer strains impeded direct assignments of
503  synthetase-receptor pairs, and a major part of our algorithm is therefore devoted to the
504 identification of the correct receptor for the self-produced pyoverdine of a strain. Second, due
505 to the variation in the number of pyoverdine synthetase modules, site-based covariation

506  quantification is not applicable, and whole-sequence alignment also performs poorly in

507  characterizing co-evolution due the complexity of pyoverdine synthesis. Therefore, we had to
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508 define reasonable distance metrics that capture the signatures of co-evolution and then apply
509 the Co-evolution Pairing Algorithm to maximize coevolutionary strength between synthetases
510  and receptors. Our new pipeline has the potential to be applied to many other microbial traits.

511  For example, microbial membrane receptors co-evolve with phages*®*’

, and pairing phages
512  with the receptor they utilize for infection could provide insights into host-pathogen
513  co-evolution.

514 While our work provides a novel framework for efficient sequence-based prediction of
515  siderophore-mediated microbial interactions, there are a number of limitations that require
516  careful consideration. First, our approach assumes that sequence similarity indicates
517  functional similarity, i.e., similar gene sequences can be put into “behavioral groups” that
518  produce and uptake the same pyoverdine. In our first paper, we show that this is a reasonable
519  assumption when feature (but not when full) sequences are used. Second, we assume
520  discrete lock-key relationships between paired groups of pyoverdine synthetases and
521 receptors. While it is certainly true that self-receptors have high affinity for the pyoverdine the
522  strain produces, it is also known that receptors can be promiscuous and take up other
523  pyoverdine types although at lower efficiencies®. Receptor promiscuity is not covered by our
524  approach. Third, we assume that each producer strain must have at least one self-receptor
525  that recognizes its own pyoverdine. This assumption is reasonable and empirically well
526  documented™®. Fourth, our approach focusses entirely on the presence/absence of pyoverdine
527  synthetases and receptors, and does not consider regulation. This comes with two

528  shortcomings that affect our prediction accuracy: (i) there are strains that have an intact

529  pyoverdine synthetase machinery but are functionally non-producers®. These non-producers
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530 are not detected by our approach, which can lead to errors in interaction predictions. (ii)

531 Strains can vary considerably in the amount of pyoverdine they produce with production levels

532 influencing the strength of interactions, a parameter that cannot be measured with our

533  approach. However, despite these limitations our empirical verification experiments reveal an

534  accuracy of 90% and 94% of correctly predicted interactions.

535 While the primary goal of our work was to establish methods for sequence-to-interaction

536  mapping, our results already yielded several new biological insights on iron-interaction

537 networks in pseudomonads. First, we identified three different iron-acquisition strategies

538  (single-receptor producers, multi-receptor producers, non-producers) that can co-exist and

539 appear to follow different evolutionary trajectories. Specifically, single-receptor producers

540  showed relatively low structural diversity in pyoverdines and their receptor groups, suggesting

541 relatively conserved iron-uptake strategies. In contrast, pyoverdine and receptor diversity is

542 much higher among multi-receptor producers, identifying them as the evolutionary hub for both

543  pyoverdine and receptor diversification. Second, we found that the above findings have direct

544  consequences for iron-network topologies because multi-strain producers (featuring high

545  pyoverdine and receptor diversity) can connect sub-networks into larger interaction networks.

546  Indeed, soil-, plant-, and water-associated habitats, dominated by multi-receptor producers,

547  featured highly connected iron-interaction networks. Conversely, iron-interaction networks

548  were small and fragmented in human-derived habitats dominated by single-receptor producers.

549  This latter finding potentially stems from a (relatively recent) ecological expansion of P.

550  aeruginosa from environmental habitats to humans and other hosts. This ecological expansion

551 could have facilitated diversification, as evidenced by the diverse array of P. aeruginosa strains
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552  in our data set. However, it appears that pyoverdine synthetase and receptors were little
553  affected by the diversification and remained conserved.

554 In conclusion, we succeeded to develop a sequence-to-interaction mapping approach for
555  siderophores that has high potential to deliver new insights into species and strain interaction
556 networks in bacterial communities. Given that iron is a key trace element that is limited in most
557  environments, siderophore-mediated interactions are an ideal entry point for secondary
558  metabolite analysis from sequence data. While we focused on Pseudomonas strains, we know
559 that siderophore-mediated interactions occur across the species boundaries. For example. P.
560  aeruginosa possesses receptors to take up enterobactin produced by Enterobacteriaceae spp.
561 and schizokinen produced by. Ralstonia solanacearum *°. Thus, the next step would be to
562  apply our concepts to more diverse bacterial communities to derive microbiome-level
563  iron-interaction maps. Moreover, pyoverdines represent a particularly complex group of
564 secondary metabolites, such that our evolution-guided approach should be easily
565  customizable to simpler groups of secondary metabolites.
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