

1 **An intronic copy number variation in *Syntaxin 17* determines speed of greying and**
2 **melanoma incidence in Grey horses**

3
4
5
6 Carl-Johan Rubin^{1,11}, McKaela Hodge^{2,*}, Rakan Naboulsi^{3,10,*}, Madeleine Beckman⁴,
7 Rebecca R. Bellone^{5,6}, Angelica Kallenberg⁵, Stephanie J'Usrey⁵, Hajime Ohmura⁷, Kazuhiro
8 Seki⁸, Aoi Ohnuma⁹, Brian W. Davis², Teruaki Tozaki⁹, Gabriella Lindgren³, Leif
9 Andersson^{1,2}

10
11 ¹Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala
12 University, Uppsala, Sweden.

13 ²Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and
14 Biomedical Sciences, Texas A&M University, College Station, Texas, USA.

15 ³Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences,
16 Uppsala, Sweden.

17 ⁴Swedish Connemara Pony Breeders' Society, Falkenberg, Sweden.

18 ⁵Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California-
19 Davis, Davis, California, USA

20 ⁶Population Health and Reproduction and Veterinary Genetics Laboratory, School of
21 Veterinary Medicine, University of California, Davis, CA, USA

22 ⁷Racehorse hospital, Miho Training Center, Japan Racing Association, Ibaraki, Japan

23 ⁸Hidaka Training and Research Center, Japan Racing Association, Hokkaido, Japan

24 ⁹Genetic Analysis Department, Laboratory of Racing Chemistry, Tochigi, Japan

25 ¹⁰Present address: Childhood Cancer Research Unit, Department of Women's and Children's
26 Health, Karolinska Institute, Tomtebodavägen 18A, 17177 Stockholm, Sweden

27 ¹¹Institute of Marine Research, Bergen, Norway

28
29 *Equal contribution

30
31 Corresponding author, leif.andersson@imbim.uu.se

32
33
34
35
36
37
38
39

40 **Abstract**
41 The Greying with age phenotype involves loss of hair pigmentation whereas skin
42 pigmentation is not reduced and a predisposition to melanoma. The causal mutation was
43 initially reported as a duplication of a 4.6 kb intronic sequence in *Syntaxin 17*. The speed of
44 greying varies considerably among Grey horses. Here we demonstrate the presence of two
45 different *Grey* alleles, *G2* carrying two tandem copies of the duplicated sequence and *G3*
46 carrying three. The latter is by far the most common allele, probably due to strong selection
47 for the striking white phenotype. Our results reveal a remarkable dosage effect where the *G3*
48 allele is associated with fast greying and high incidence of melanoma whereas *G2* is
49 associated with slow greying and low incidence of melanoma. Epigenetic analysis, based on
50 nanopore sequencing of genomic DNA, reveals a drastic reduction in DNA methylation in
51 part of the duplicated sequence harboring *MITF* binding sites. The copy number expansion
52 transforms a weak enhancer to a strong melanocyte-specific enhancer that underlies hair
53 greying (*G2* and *G3*) and a drastically elevated risk of melanoma (*G3* only).

54
55

56 **Introduction**
57 Greying with age in horses shows dominant inheritance and is one of the most iconic mutant
58 phenotypes in animals¹. These horses are born fully pigmented and usually start greying
59 during their first year of life and most eventually become completely white. The beauty of
60 these white horses has had a major impact on human culture, white horses occur abundantly
61 in art, sagas, and fiction, and have most certainly been an inspiration for the myths regarding
62 Pegasus and the Unicorn. An important reason for the popularity of this phenotype is that the
63 causal mutation only affects hair pigmentation while skin and eye pigmentation are
64 unaffected. Additionally, there are no noticeable negative effects on vision or hearing as is
65 the case for many other pigmentation mutations in vertebrates with pleiotropic effects. For
66 instance, mutations in the microphthalmia-associated transcription factor gene (*MITF*) are
67 associated with deafness in dogs², Waardenburg syndrome type 2 in humans³, and reduced
68 eye size and early-onset deafness in mice⁴. Grey horses are believed to be as fit as any other
69 horse, with the exception of the melanoma prevalence described below, and are as fast as
70 other horses as illustrated by the fact that they successfully compete in horse races with
71 horses of other colors. The mutation is widespread and is particularly common in some
72 breeds, for instance Lipizzaner and Arabian horses. One negative side effect, though, is that
73 in grey horses there is a high incidence of melanomas that occur in glabrous skin with
74 increasing incidence by age¹ (**Extended Data Fig. 1**). The causal mutation for Grey was
75 originally identified as a 4.6 kb duplication in intron 6 of *Syntaxin 17* (*STX17*)¹. However, a
76 recent study⁵, based on digital PCR, indicated that the *Grey* haplotype carries three copies of
77 the duplicated fragment. Horses homozygous for the *Grey* mutation (*G/G*) are reported to
78 have significantly higher melanoma incidence than heterozygotes (*G/g*)¹. The grey melanoma
79 is usually benign, but can grow to sizes that affect quality of life and can lead to metastasis
80 with fatal outcomes⁶⁻⁸.

81 The *Grey* mutation causes upregulated expression of both *STX17* and the neighboring
82 gene *NR4A3*, encoding an orphan nuclear receptor¹. Previous studies using both transfection
83 experiments in a pigment cell line and transgenic zebrafish demonstrated that the duplicated
84 region contains a melanocyte-specific enhancer⁹. The enhancer is evolutionarily conserved
85 and contains two binding sites for microphthalmia transcription factor (*MITF*), a master
86 regulator of gene expression in pigment cells⁴. *MITF* knock-down silenced pigment cell-
87 specific expression from a reporter construct with the horse copy number variation in
88 transgenic zebrafish⁹. It is still an open question whether upregulation of *STX17* or *NR4A3* or
89 their combined effect is critical for the phenotypic effects of the *Grey* mutation. No other

90 study has revealed a direct link between these genes and pigment biology but both have links
91 to cancer. The STX17 protein has a key role in autophagy¹⁰, a pathway currently explored
92 target for melanoma therapy in humans¹¹. The function of NR4A3 as a regulator of
93 transcription is only partially understood, but data indicate that this orphan nuclear receptor
94 has a role in maintaining cellular homeostasis and in pathophysiology including tumor
95 development¹².

96 It is well known that the speed of greying varies considerably among Grey horses.
97 One important factor is the *Grey* genotype as *Grey* homozygotes grey faster than *Grey*
98 heterozygotes¹. However, the variation in the speed of greying is pronounced in certain
99 breeds such as Connemara ponies. In this breed two distinct types of greying are noted, fast
100 greying and slow greying (**Fig. 1**). Fast greying horses are usually completely white at about
101 10 years of age whereas the slow greying horses never become completely white but show a
102 beautiful dappled grey color at older ages. The aim of the present study was to explore the
103 genetic basis for this striking phenotypic difference. Here we report that this variation is
104 controlled by the *Grey* locus itself rather than by other genes. The causal difference is the
105 copy number of the duplicated sequence, fast greying horses carry at least one allele with
106 three copies of the 4.6 kb sequence while slow greying horses carry an allele with only two
107 copies. Thus, the *Grey* locus harbors an allelic series with at least three alleles: *G1* - one
108 copy, wild type; *G2* – two copies, slow greying; *G3* – three copies, fast greying (**Fig. 2**).
109

110 Results

112 Speed of greying maps to the *Grey* locus

113 We identified a family of Connemara ponies apparently segregating for fast and slow greying
114 (**Extended Data Fig. 2**). We took advantage of this pedigree in an attempt to identify the
115 genetic basis for the difference in speed of greying. The key individual was a fast greying sire
116 Hagens D'Arcy (stud book number RC 101) in generation 5 whose mother was fast greying
117 and whose father greyed slowly. Among the 16 progeny from matings to non-grey (*G1/G1*)
118 dams, 10 were classified as slow greying while 6 were fast greying. This suggests that the
119 speed of greying in this family may show a Mendelian inheritance and the observed
120 proportion of the two types did not differ from an expected 1:1 ratio if the sire is
121 heterozygous for alleles associated with fast and slow greying ($X^2=1.0$, d.f. =1; $P>0.05$). We
122 also had access to a small family of Thoroughbred horses from Japan comprising two horses
123 classified as fast greying and three as slow greying (**Extended Data Fig. 3**).

124 The putative locus controlling speed of greying may be due to sequence variation at
125 the *STX17/Grey* locus itself, a linked locus, or an unlinked locus. To distinguish these
126 possibilities, we carried out whole genome sequencing of a total of 13 slow greying and 7 fast
127 greying horses, including the Connemara pony sire Hagens D'Arcy. A genome-wide
128 association analysis using individual SNPs revealed a single consistent signal of association
129 on chromosome 25 harboring the *STX17/Grey* locus (**Fig. 3a**). Further characterization of the
130 signal of association revealed that it was centered around the *STX17/Grey* locus (**Fig. 3b**).

131 We next hypothesized that the causal difference between fast and slow greying could
132 be caused by a copy number difference of the 4.6 kb duplicated sequence in *STX17*. We
133 determined the copy number both by sequence coverage in the whole genome sequencing
134 data and by droplet digital PCR of the duplicated sequence first using samples from the
135 Connemara pony family (**Supplementary Table 1**). This analysis showed that the fast
136 greying sire Hagens D'Arcy carried 5 copies of the duplicated sequence (deduced to be 3+2
137 copies on the two chromosomes), the fast greying progeny carried 4 copies (3+1 because
138 their dams are wild-type and transmit an allele with a single copy), and the slow greying
139 progeny carried 3 copies (2+1) **Fig. 3c**. The analysis of the sequence coverage obtained for

140 the five Japanese Thoroughbred horses also confirmed the same pattern. The perfect match
141 between copy number of the duplicated sequence and the fast/slow greying phenotype
142 including both Connemara ponies from Sweden and Thoroughbreds from Japan is highly
143 significant (Fisher's exact test; $P<0.0001$).

144 The great majority of, if not all, Grey horses previously studied and determined to be
145 fast greying appear to carry *Grey* haplotypes that share a 350 kb region that is identical-by-
146 descent (IBD)^{1,13}. This implies that the initial mutation can be traced back to a single
147 mutational event that happened subsequent to horse domestication. An important question is
148 therefore whether the two-copy *Grey* haplotype shares the same IBD region as the three-copy
149 haplotype. The sequence data from all Grey horses included in this study were consistent
150 with the presence of this IBD region in haplotypes both with 2 and 3 copies of the duplicated
151 sequence strongly suggesting that the two alleles have a common origin and that copy
152 number variation has evolved after the initial duplication (**Fig. 3d**). This is illustrated by the
153 fact that Hagens D'Arcy, which is heterozygous for the two haplotypes, shows essentially no
154 sequence variation at the 350 kb IBD region. Interestingly also three *G1/G2* and three *G1/G3*
155 heterozygotes show a similar pattern indicating that a very similar haplotype occurs among
156 wild-type haplotypes carrying a single copy of the 4.6 kb sequence. An interesting possibility
157 is that these may have originated by back mutations in which 2-copy or 3-copy haplotypes
158 have lost the duplication or triplication by unequal crossing-over.

159 Based on these results we propose a new nomenclature for the *Grey* locus: *G1* - one
160 copy, wild type, previously reported as N by most genetic testing laboratories; *G2* – two
161 copies, slow greying; *G3* – three copies, fast greying (**Fig. 2**).

162
163 **Targeted long read sequencing supports the causal nature of the copy number variation**
164 Nanopore (ONT) Cas9-targeted sequencing (nCATS) makes it possible to sequence
165 chromosome fragments of tens of kb without amplification and thereby establishing structure
166 and methylation status of individual haplotypes, including the sequence orientation of
167 duplicated fragments¹⁴. We used this approach to characterize the two grey haplotypes of
168 Hagens D'Arcy from the Connemara pony family; the genotype of this sire is *G2/G3*. ONT
169 sequencing of DNA fragments spanning the duplicated region including about 2 kb of
170 flanking sequences on each side demonstrated that the sire is heterozygous *G2/G3* based on
171 the detection of two dominant fragment sizes: a 13 kb sequence comprising 2 copies of the
172 duplicated sequence and a 17 kb sequence comprising 3 copies (**Fig. 4a**). After generating
173 separate consensus sequences of reads corresponding to the *G2* and *G3* alleles, alignment of
174 these sequences to the horse reference genome assembly (EquCab3) shows that the
175 duplicated copies both in *G2* and in *G3* are located in tandem and are oriented head-to-tail
176 (**Fig. 4b**). ONT sequencing makes it possible to also analyze the DNA methylation pattern of
177 the sequence. Interestingly, these data revealed that the evolutionary conserved region
178 harboring MITF binding sites⁹ shows a clear reduction in DNA methylation using genomic
179 DNA isolated from blood (**Fig. 4c**), a result supporting our previous interpretation that this
180 region acts as an enhancer and that its copy number variation is causal for the phenotypic
181 effects⁹.

182 Pedigree analysis identified an individual as a putative *G2/G2* homozygote. The
183 genotype was confirmed by ONT adaptive sampling sequencing. The sequence analysis of
184 the entire chromosome 25 revealed that this horse showed runs of homozygosity over a 16
185 Mb region including the *Grey* locus (chr25:2-18Mb) suggesting that both *G2* haplotypes trace
186 back to a relatively recent common ancestor. The phenotype of this single horse was
187 classified at the age of 11 years as intermediate between a slow greying (*G1/G2*) and a fast
188 greying horse (*G1/G3*) (**Extended Data Fig. 4**) and it had no visible melanoma.

189

190 **Genotype distribution across breeds**

191 There is an interest from horse owners and breeders to determine the genotype at the *Grey*
192 locus in horses. During the last six years the Veterinary Genetics Laboratory (UC Davis) has
193 utilized a droplet digital PCR assay to test for *Grey* genotype. Including data from those
194 samples whose owner or registry consented to be included in research allowed us to evaluate
195 1,400 horses representing 78 breeds/populations. These data enabled the determination of the
196 grey copy number distribution across breeds. The majority of samples tested had four copies
197 (n=831). It is not possible to know from this assay alone if these animals are homozygous for
198 the *G2* allele or are *G1/G3* heterozygotes. However, despite non-random sampling, in those
199 breeds where we did not identify a single *G1/G2* heterozygote it is extremely unlikely that all
200 individuals with four copies are homozygous *G2/G2*. Under this assumption, the *G3* allele
201 was identified in 62 different populations (**Supplementary Table 2**). Whereas the *G2* allele
202 was only definitively detected in 8 of these 62 populations (3 and/or 5 copies detected in that
203 population screened, Table 1). Under the assumption that the genotype distribution at this
204 locus does not show an extreme deviation from Hardy-Weinberg equilibrium, the *G2* allele
205 was always much rarer than *G3* in the population where evidence of both alleles occurred,
206 because horses with 4 copies were always more abundant than those with three copies in the
207 ddPCR screens. We did not find evidence for the presence of an allele with 4 or more copies
208 which would be evident if a horse has 7 or more copies in total. Our data indicate that if such
209 alleles exist, they must be very rare.

210

211 **The slow greying phenotype is not associated with a high incidence of melanoma**

212 Our observation that the *G2* allele has a much milder effect on the greying process than the
213 *G3* allele begs the question whether it is also associated with a lower incidence of melanoma.
214 We identified 25 late grey (*G1/G2*) Connemara horses, 15 years of age or older (range 15-35
215 years) and searched for the presence of the classical grey melanomas present on glabrous skin
216 (lips, eye lids, under the tail) but detected none among these horses (**Supplementary Table**
217 **3**). Previous studies have documented that from 50 - 80% of all Grey horses of this age carry
218 melanoma⁶⁻⁸. This dramatic difference in incidence 80% vs. 0% in 25 slow-greying horses is
219 highly significant ($X^2=25.0$, d.f. =1; $P=6\times 10^{-7}$).

220

221

222 **Discussion**

223

224 This study provides conclusive evidence for the presence of two variant alleles at the *Grey*
225 locus in horses in addition to the *G1* wild-type allele. The most common allele, *G3*, carries
226 three tandem copies of the 4.6 kb sequence and is associated with fast greying that eventually
227 results in a white coat color and the allele is associated with a high incidence of melanoma. In
228 contrast, the *G2* allele carries a tandem duplication and *G1/G2* heterozygotes grey slowly,
229 never become pure white and have a significantly lower incidence of melanoma compared
230 with *G1/G3* heterozygotes, possibly as low as *G1/G1* homozygotes. The fact that *G2* and *G3*
231 share a 350 kb IBD region strongly suggests that the two alleles originate from the same
232 ancestral mutation. It is unknown if the ancestral allele carried two or three copies of the 4.6
233 kb sequence, but it is likely that these alleles can be generated from each other by unequal
234 crossing-over or slippage during DNA replication. As evidenced in our across breed analysis,
235 *G3* is much more common than *G2* and this is likely caused by strong selection for the
236 splendid white phenotype associated with this allele. Our results now solve the mystery why
237 some grey horses never become pure white. Although this study explains a considerable
238 portion of the heterogeneity in speed of greying, it is likely that additional genetic variation
239 elsewhere in the genome contributes to variation in the speed of greying and these additional

240 loci may also contribute to melanoma risk. It has been shown that in addition to the large
241 effect of the *STX17* mutation, polygenic inheritance contributes to the speed of greying and
242 incidence of melanoma in Lipizzaner horses¹⁵.

243 There is a remarkably strong dose sensitivity at the *Grey* locus. The *G1/G1* genotype
244 shows no greying and low incidence of melanoma, *G1/G2* shows slow greying and low
245 incidence of melanoma, *G1/G3* shows fast greying and high incidence of melanoma, and
246 *G3/G3* homozygotes grey very fast and show a very high incidence of melanoma¹. There are
247 too few observations to make firm predictions of the phenotype of *G2/G3* heterozygotes and
248 *G2/G2* homozygotes. However, it is likely that *G2/G3* horses are intermediate compared with
249 the *G1/G3* and *G3/G3* genotypes with regard to hair greying and melanoma incidence. The
250 single *G2/G2* individual confirmed by sequence capture and Nanopore sequencing showed a
251 grey phenotype and no melanoma at the age of 11 years whereas a *G1/G3* heterozygote is
252 expected to have developed white color and is likely to have some melanoma at the same age.
253 This suggests that having a triplication on one chromosome gives a stronger transcriptional
254 activation than having a duplication on both chromosomes. The present study has important
255 practical implications for horse breeding because it suggests that it is possible to have a horse
256 showing the beauty of the grey coat color (**Fig. 1**) most likely with no elevated risk to
257 develop melanoma. It also illustrates the need for additional testing methodologies to
258 determine zygosity of this tandem repeat in those horses with four copies (*G2/G2* or *G1/G3*).
259 Current testing methodologies, which do not routinely use long read sequencing for many
260 reasons, are therefore not yet able to resolve this issue.

261 Our results provide strong support for the causality of the copy number variation on
262 the Grey phenotype, because of the remarkable correlation between the copy number of the
263 4.6 kb sequence and phenotype. It also supports the interpretation that the triplication
264 underlies both loss of hair pigmentation through its effect on hair follicle melanocytes and
265 melanoma incidence through its effect on dermal and/or epidermal melanocytes. The higher
266 copy number enhances the effect on both speed of greying and melanoma risk. Furthermore,
267 *G2* alleles from two different breeds (Connemara Pony and Thoroughbreds) share a 350 kb
268 IBD region with *G3* alleles from many different breeds making the copy number of the
269 duplicated sequence the distinctive difference between alleles. The 4.6 kb sequence showing
270 copy number variation contains two binding sites for MITF, a master regulator for
271 transcription in pigment cells⁴. A previous study based on both cellular transfection
272 experiments and transgenic zebrafish indicated that this copy number expansion transforms a
273 weak enhancer to a strong melanocyte-specific enhancer⁹. The drastic drop in DNA
274 methylation precisely at the region where the MITF binding sites are located (Fig. 4c) despite
275 the fact that we used genomic DNA from blood cells for nanopore sequencing is consistent
276 with the notion that the 4.6 kb sequence contains an element affecting gene regulation. It is
277 likely that the *STX17* copy number variation is a direct driver of melanoma development
278 because we noted further copy number expansion in melanoma cells in horses, up to nine
279 copies in tumor tissue¹³. A classical feature of tandem duplications is expansions and
280 contractions of the copy number in the germ line due to non-allelic homologous
281 recombination¹⁶. Thus, since we observe haplotypes with both two and three copies it is
282 expected that haplotypes with four or more germ-line copies may occur. Genotyping 1,400
283 horses representing 78 populations has not revealed further expansion of this tandem repeat
284 beyond three copies in the germ line. This observation together with our finding of low DNA
285 methylation of the enhancer region also in blood cells and the strong dosage effect suggest
286 that four or more tandem copies of the duplicated sequence may be deleterious and thus exist
287 at low frequency, if at all.

288
289

290 **Methods**

291

292 **Pedigree data**

293 The Connemara pedigree from Sweden consisted of the sire Hagens D'Arcy and 16 of his
294 offspring from matings to non-grey mares. Five fast greying horses (three Arabians, one
295 Swedish warmblood (SWB), and one Dutch warmblood (KWPN) and five non-Grey horses
296 (three Swedish warmblood, one Dutch warmblood (KWPN), and one Icelandic horse) from
297 other horse breeds were used as controls (see **Supplementary Table 1**). Blood sample
298 collection was approved by the ethics committee for animal experiments in Uppsala, Sweden
299 (number: 5.8.18-15453/2017 and 5.8.18-01654/2020). Genomic DNA from all horses were
300 extracted on the Qiasymphony instrument with the Qiasymphony DSP DNA mini or midi kit
301 (Qiagen, Hilden, Germany).

302

303 **Grey phenotyping**

304 All Grey horses, fast or slow greying, are born with a primary fully pigmented coat, but the
305 onset and progress of greying differ markedly between slow and fast greying horses. A fast
306 greying foal will normally display a few grey hairs on the eyelids during the first week after
307 birth (**Extended Data Fig. 5a**). During the first month more grey hairs appear as grey
308 "circles" around the eyes (**Extended Data Fig. 5b**), grey eyelashes and grey hairs on the tail
309 root develop too. In contrast, a slow greying foal has no visible grey hairs on the eyelids at
310 birth and does not develop grey "eye circles" or any grey hairs elsewhere during its first
311 month of life. If a slow greying foal has face markings (like a star or blaze) the white parts
312 are not well-defined and the white hairs will spread out in time (**Extended Data Fig. 5c**). The
313 first signs of greying in a slow greying horse will normally not appear until 5 to 7 years of
314 age, with grey hairs often expanding from white head markings (**Extended Data Fig. 5d**).
315 Grey eyelashes can appear when the head is still dark colored with no grey hairs on the
316 eyelids. Grey hairs may appear partly on the neck. The next phase of greying will include
317 head, neck, distal parts of the leg and the tail. When a slow greying horse has reached an age
318 of about 15 years the coat color may turn into a dappled steel or bluish grey shade. Although
319 there is individual variation in the speed of greying also among slow greying horses, they will
320 never become a visually white horse (**Fig. 1**); **Extended Data Fig. 5e, f and g** show the slow
321 greying process of the same horse at different ages, but without head markings. The breeder
322 of the slow greying *G2/G2* homozygote from the Connemara Pony in our study stated that the
323 horse had developed the slow greying color like a normal slow Grey Connemara Pony, but
324 that it had turned grey earlier than expected, but not at all as early as a fast greying
325 heterozygote (*G1/G3*). In contrast to heterozygous slow greying horses (*G1/G2*), it started
326 with greying of the head much like a fast greying horse. As a three-year-old, it began to have
327 grey hair on its head and it lacked white eyelashes. At 8 years old, it had a light head but the
328 body was still dark. Only when it was 11 years old the grey color developed on the body and
329 the characteristic dappled colored pattern began to appear on the front of the horse (**Extended**
330 **Data Fig. 4**). The head is still lighter but overall, the horse differs markedly from a fast
331 greying horse of the same age.

332

333 **Whole genome sequencing**

334 A Covaris E220 system was used to fragment 1 µg of genomic DNA to a target insert size of
335 350-400bp. Sequencing libraries of individual DNA samples were prepared using the
336 Illumina TruSeq DNA PCR-free LP kit (Illumina, San Diego, California, United States) in
337 combination with the IDT for Illumina TruSeq DNA UD indexes kit (Illumina). Preparation
338 of the libraries was performed according to the manufacturer's protocol. A TapeStation with
339 the D1000 ScreenTape (Agilent Technologies, Santa Clara, California, USA) was used to

340 assess the quality of the libraries. qPCR was performed using the Library quantification kit
341 for Illumina (KAPA Biosystems, Basel, Switzerland) on a CFX384 Touch instrument (Bio-
342 Rad, Hercules, California, USA) to quantify the adapter-ligated fragments prior to cluster
343 generation and sequencing. Indexed samples were sequenced on a NovaSeq S4 flow cell and
344 the resulting demultiplexed sequences were aligned to the horse genome (EquCab3) using
345 bwa-mem2¹⁷. Read duplicates were marked using MarkDuplicates¹⁸ and resulting bam-files
346 were used for variant calling by UnifiedGenotyper¹⁸. Depth of coverage was determined by
347 means of the GATK module DepthOfCoverage and the resulting per-base coverage files were
348 used to calculate mean depths of coverage across samples for windows of varying sizes. In
349 order to estimate DNA copy numbers in windows, depths of coverage in individual windows
350 were normalized to the genome average depth.

351

352 **Genome Wide Association (GWAS) analysis**

353 Genotype data in vcf format was loaded into the Python API for GWAS analysis vcf2gwas¹⁹,
354 which uses algorithms from GEMMA²⁰ for association tests. GWAS was performed using a
355 univariate linear mixed model with phenotypes of 13 fast greying individuals encoded as “5”
356 and phenotypes of 8 slow greying individuals encoded as “10”. Resulting P values were
357 imported into R²¹ and were plotted along the genome using the package qqman²². Genotypes
358 of three SNPs on chromosome 25 were perfectly associated with the trait and their P-values
359 for association were more than a hundred orders of magnitude lower than those of associated
360 SNPs with a non-perfect association. For the purpose of easy interpretation of Manhattan
361 plots, -log(10P) values of these three positions were changed to a value of 14 before plotting
362 in qqman. The three perfectly associated positions were chr25:5747798, chr25:5743983 and
363 chr25:5868699.

364

365 **Nanopore Cas9-targeted sequencing**

366 High molecular weight DNA was isolated from blood of one *G2/G3* individual. We used a
367 Cas9 sequence capture protocol (Ligation sequencing gDNA - Cas9 enrichment; SQK-
368 CS9109) to construct a sequencing library where DNA molecules spanning the 4.6 kb
369 duplication/triplication were much more likely than other fragments to ligate with the
370 sequencing adapter. Sequencing was performed on a R9.4.1 flow cell using a MinION
371 instrument. The Cas9 Sequencing Kit (SQK-CS9109) was purchased from Oxford Nanopore
372 Technologies. We designed four guideRNAs (**Supplementary Table 3**) and purchased these
373 as *S. pyogenes* Cas9 Alt-R™ crRNAs (Integrated DNA Technologies). Alt-R™ *S. pyogenes*
374 Cas9 tracrRNA (Integrated DNA Technologies) and Alt-R *S. pyogenes* HiFi Cas9 nuclease
375 V3 (Integrated DNA Technologies) were used to cut DNA. Base calling was performed using
376 Guppy Version 6.5.7 (Oxford Nanopore Technologies) using the super accuracy setting.
377 Reads corresponding to the *G2* and *G3* alleles, carrying two or three copies of the
378 duplication, were separately binned and consensus sequences were determined for each of
379 these. Individual *G2* and *G3* reads were then aligned to their matching consensus sequence
380 using minimap²³ and the resulting bam files and read fast5 files were used to call CpG
381 methylation in nanoplasm²⁴.

382

383 **Nanopore sequencing by adaptive sampling**

384 High molecular weight DNA was isolated from blood of one *G2/G2* individual. This DNA
385 was fragmented to 20 kb using a g-TUBE (Covaris) and molecules below approximately 10
386 kb in size were then depleted using the SRE XS kit (Pacific Biosciences of California). For
387 sequencing library construction, the kit SQK-LSK114 was used and 40 fmol of the finished
388 library was loaded onto a PromethION flow cell (Oxford Nanopore Technologies) for
389 sequencing. The run was started from within MinKNOW on a P2 instrument with adaptive

390 sampling enabled to achieve high coverage on chr25. Adaptive sampling used the horse
391 reference genome fasta file (EquCab3) and a bed-file specifying chromosomes 1-24 and
392 chromosomes 26-27 (88% of the genome) as off-target coordinates.
393

394 **Digital PCR and copy number analysis**

395 Horses from the Swedish Connemara pony pedigree and controls were genotyped using two
396 TaqMan assays designed to specifically target the *STX17* copy number variation (ECA25:
397 6625371-6625493 (NC_009168.3), Bio-Rad Assay dCNS718018816; and ECA25: 6629062-
398 6629184 (NC_009168.3), Bio-Rad Assay dCNS933010968) and a third control assay to
399 target a neighboring region free of known CNVs (ECA25: 6624137-6624259
400 (NC_009168.3), Bio-Rad Assay dCNS851288843. A fourth assay targeting *myostatin*
401 (*MSTN*)²⁵ was used as a reference in the ddPCR experiment. The assays were designed using
402 EquCab3 as a reference genome. The ddPCR experiment was performed using the Bio-Rad
403 QX200 Droplet Reader platform. Briefly, droplets were generated using the Bio-Rad
404 Automated Droplet Generator instrument before placing the ddPCR mix in a thermal cycler
405 where the PCR reaction was performed. Finally, the results were generated using Bio-Rad
406 QX200 Droplet Reader platform. The ddPCR mix contained 11 µL of 2X ddPCR supermix
407 for probes, 1.1 µL of target 20X TaqMan assays, 1.1 µL of reference 20X TaqMan assays, 1
408 µL of 20 ng/µL genomic DNA, 2 µL fast digest EcoRI, and water up to 22 µL. The mix was
409 loaded into a droplet generator cartridge. Droplets were generated following the
410 manufacturer's protocol. The PCR plate containing the droplets was foil sealed before the
411 PCR reaction. The PCR setup was 95°C for 10 min, 40 cycles of 30 s at 94°C and 60 s at
412 60°C. Then finally, 10 min at 98°C. The PCR plate was transferred to the droplet reader for
413 analysis. Cluster classification was manually adjusted in non-clear events. Additionally copy
414 number was evaluated for 1400 horses across 78 breeds based on genotyping services
415 provided by the UC Davis Veterinary Genetics Laboratory.
416

417 **Incidence of melanoma in slow greying horses**

418 All 16 horses that were sampled in the study (10 slow gray (*G1/G2*) and 6 fast gray (*G1/G3*)
419 offspring descending from the stallion Hagens D'Arcy with non-grey mothers) were
420 examined clinically by a veterinarian regarding the presence of melanoma. Two of the fast
421 greying offspring (11 and 13 years old, respectively) were found to be affected by melanoma
422 on the underside of the tail, while the rest of the offspring were negative. As the sampled
423 horses were relatively young (half were between 0-7 years old) and the total number low, it
424 was not possible to draw any conclusions regarding the melanoma incidence for fast grays
425 and slow grays respectively in the Connemara pony based on this material.

426 To estimate the incidence of melanoma in slow greying Connemara ponies, we did
427 a study of 25 slow greying horses between 15 and 35 years old (**Supplementary Table 3**).
428 Four of the horses were included in the mapping study as offspring of Hagens D'Arcy and
429 were examined by a veterinarian for melanoma at the time of blood sampling. The
430 examination of the other 21 horses was carried out as an interview where a veterinarian asked
431 neutral questions to owners or breeders of the horses if they had observed visible melanomas
432 in the horses from the age of 15 onwards. Those who answered the questions were
433 experienced breeders or horse keepers who were judged to have good knowledge of the
434 symptoms of melanoma in horses. None of the respondents stated that they had observed
435 melanoma in the horses in question.

436

437

438 **Author contributions.** LA and GL conceived the study. C-JR was responsible for nCATS,
439 nanopore adaptive sampling and bioinformatic analyses. MH, BWD and C-JR designed and

440 MH, BWD evaluated the nCATS experiment. RN performed ddPCR analysis and prepared
441 sequencing libraries for the Connemara pony family. MB collected family material and
442 phenotype data from Connemara ponies. RB, AK, and SJU were responsible for *Grey*
443 genotyping across breeds. HO, KS, AO, and TT were responsible for collection of the
444 Japanese Thoroughbred family. LA wrote the manuscript with input from other authors. All
445 authors approved the manuscript before submission.

446 **Data availability statement.** The sequence data generated in this study have been submitted
447 to NCBI (<http://www.ncbi.nlm.nih.gov/PRJNA1035120>).

448 **Code availability statement.** The analyses of data have been carried out with publicly
449 available software and all are cited in the Methods section. Code associated with
450 bioinformatic analyses will be available at: <https://github.com/LeifAnderssonLab/>

451 **Competing interest statement.** R.R. Bellone, A. Kallenberg, and S. J'Usrey are affiliated
452 with the UC Davis Veterinary Genetics Laboratory, which provides genetic diagnostic tests
453 in horses and other species. The other authors declare no competing interest.

454 **Acknowledgements.** We thank all horse owners, in particular the owners of Hagens D'Arcy
455 and his offspring that have allowed us to sample their horses and consented to research. We
456 also thank Dr. Robert Grahn, Thea Ward, Shayne Hughes, Elizabeth Esdaile, and Tytti
457 Vanhala for their technical assistance. The project was financially supported by
458 Vetenskapsrådet (2017-02907; to LA), Knut and Alice Wallenberg Foundation (KAW
459 2016.0361; to LA). The National Genomics Infrastructure (NGI)/Uppsala Genome Center
460 provided service in massive parallel sequencing and the computational infrastructure was
461 provided by the Swedish National Infrastructure for Computing (SNIC) at UPPMAX
462 partially funded by the Swedish Research Council (2018-05973).

463 **Author information.** Correspondence and requests for materials should be addressed to L.A.
464 (leif.andersson@imbim.uu.se).

465

466 **References**

- 467 1. Rosengren Pielberg, G. *et al.* A cis-acting regulatory mutation causes premature hair
468 greying and susceptibility to melanoma in the horse. *Nat Genet* **40**, 1004-1009
469 (2008).
- 470 2. Karlsson, E.K. *et al.* Efficient mapping of mendelian traits in dogs through genome-
471 wide association. *Nat Genet* **39**, 1321-1328 (2007).
- 472 3. Tassabehji, M., Newton, V.E. & Read, A.P. Waardenburg syndrome type 2 caused by
473 mutations in the human microphthalmia (MITF) gene. *Nat Genet* **8**, 251-5 (1994).
- 474 4. Steingrimsson, E., Copeland, N.G. & Jenkins, N.A. Melanocytes and the
475 microphthalmia transcription factor network. *Annu. Rev. Genet.* **38**, 365-411 (2004).
- 476 5. Nowacka-Woszuk, J., Mackowski, M., Stefaniuk-Szmukier, M. & Cieslak, J. The equine
477 graying with age mutation of the *STX17* gene: A copy number study using droplet
478 digital PCR reveals a new pattern. *Anim Genet* **52**, 223-227 (2021).
- 479 6. Seltenhammer, M.H. *et al.* Equine melanoma in a population of 296 grey Lipizzaner
480 horses. *Equine Veterinary Journal* **35**, 153-157 (2003).
- 481 7. Valentine, B.A. Equine melanocytic tumors: A retrospective study of 53 horses (1988
482 to 1991). *J Vet Internal Med* **9**, 291-297 (1995).
- 483 8. Jeglum, K.A. Melanomas. in *Current Therapy in Equine Medicine*, 4th edn. (ed.
484 Robinson, N.E.) 399-400 (W.B. Saunders Company, Pennsylvania, USA, 1999).
- 485 9. Sundström, E. *et al.* Identification of a melanocyte-specific, MITF-dependent
486 regulatory element in the intronic duplication causing hair greying and melanoma in
487 horses. *Pigment Cell and Melanoma Research* **25**, 28-36 (2012).

488 10. Viret, C. & Faure, M. Regulation of Syntaxin 17 during Autophagosome Maturation.
489 *Trends in Cell Biology* **29**, 1-3 (2019).

490 11. Pangilinan, C., Xu, X., Herlyn, M. & Liang, C. Autophagy paradox: strategizing
491 treatment modality in melanoma. *Curr Treat Options Oncol* **24**, 130-145 (2023).

492 12. Safe, S. & Karki, K. The paradoxical roles of orphan nuclear receptor 4A (NR4A) in
493 cancer. *Molecular Cancer Research* **19**, 180-191 (2021).

494 13. Sundström, E. *et al.* Copy number expansion of the STX17 duplication in melanoma
495 tissue from Grey horses. *BMC Genomics* **13**, 365 (2012).

496 14. Gilpatrick, T. *et al.* Targeted nanopore sequencing with Cas9-guided adapter ligation.
497 *Nature Biotechnology* **38**, 433-438 (2020).

498 15. Curik, I. *et al.* Complex inheritance of melanoma and pigmentation of coat and skin
499 in Grey horses. *PLOS Genetics* **9**, e1003248 (2013).

500 16. Beckmann, J.S., Estivill, X. & Antonarakis, S.E. Copy number variants and genetic
501 traits: closer to the resolution of phenotypic to genotypic variability. *Nature Reviews
502 Genetics* **8**, 639-646 (2007).

503 17. Md, V., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-
504 MEM for multicore systems. in *IEEE Parallel and Distributed Processing Symposium
505 (IPDPS)* (2019).

506 18. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for
507 analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297-1303 (2010).

508 19. Vogt, F., Shirsekar, G. & Weigel, D. vcf2gwas: Python API for comprehensive GWAS
509 analysis using GEMMA. *Bioinformatics* **38**, 839-840 (2021).

510 20. Zhou, X. & Stephens, M. Genome-wide efficient mixed-model analysis for association
511 studies. *Nature Genetics* **44**, 821-824 (2012).

512 21. Team, R.C. R: A language and environment for statistical computing. R Foundation
513 for Statistical Computing, Vienna, Austria. (2020).

514 22. Turner, S.D. qqman: an R package for visualizing GWAS results using Q-Q and
515 manhattan plots. *J Open Source Software* **3**, 731 (2018).

516 23. Li, H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**,
517 3094-3100 (2018).

518 24. Simpson, J.T. *et al.* Detecting DNA cytosine methylation using nanopore sequencing.
519 *Nat Methods* **14**, 407-410 (2017).

520 25. Rafati, N. *et al.* Large deletions at the *SHOX* locus in the pseudoautosomal region are
521 associated with skeletal atavism in Shetland ponies. *G3 (Bethesda)* **6**, 2213-23
522 (2016).

523

524

525 **Table 1. Copy number variation for the 4.6 duplicated sequence in *STX17* intron 6 in**
526 **which the *G2* and *G3* alleles were detected. Data based on genotyping services at the UC**
527 **Davis Veterinary Genetics Laboratory.**

Breed	Copy number (deduced genotype)						<u>Allele frequency</u> ¹	
	2 (<i>G1/G1</i>)	3 (<i>G1/G2</i>)	4 (<i>G1/G3</i> or <i>G2/G2</i>)	5 (<i>G2/G3</i>)	6 (<i>G3/G3</i>)	n	<i>G2</i>	<i>G3</i>
Andalusian	25	8	40	1	9	83	0.05	0.36
Connemara Pony	23	6	49	3	9	90	0.05	0.39
Miniature Horse	25	1	15	0	0	41	0.01	0.18
Mangalarga Marchador	0	1	8	0	0	9	0.06	0.44
Mustang	3	2	8	0	0	13	0.08	0.31
Quarter Horse	141	0	284	1	13	439	0.00	0.35
Tennessee Walking Horse	16	2	23	0	4	45	0.02	0.34
Welsh Pony	7	1	25	0	3	36	0.01	0.43

529 ¹Allele frequency calculated under the assumption that no *G2/G2* homozygote is present among these
530 samples due to the low expected frequency determined by the number of *G1/G2* and/or *G2/G3*. These are
531 biased estimates of allele frequencies in these breeds but give an indication of the relative frequency of the
532 *G2* and *G3* alleles.

533
534

535 **Figure legends**

536

537 **Fig. 1. Illustration of fast and slow greying in Connemara Ponies.** Two individual horses,
538 one fast greying (upper timeline) and one slow greying (lower timeline), were used for the
539 illustration. Photo, from left to right: Fast Grey 1,2 Madeleine Beckman, 3 Maria Johansson,
540 4,5 Beckman Archive. Slow Grey 1-4 Maria Johansson, 5-6 Marlen Näslin.

541

542 **Fig. 2. Schematic illustration of the nature and significance of the *Grey* mutation.** The
543 causal mutation for the Grey phenotype is a copy number variation of a 4.6 kb sequence
544 located in *STX17* intron 6. The duplicated sequence harbors two binding sites for MITF and
545 the presence of copy number expansion upregulates the expression of both *NR4A3* and *STX17*
546 in *cis*⁵. *G1* is the wild-type allele with a single copy of the 4.6 kb sequence, *G2* carries two
547 copies and causes slow greying, and *G3* carries three copies and causes fast greying⁵.

548

549 **Fig. 3. Whole genome sequencing reveals copy number difference at the *STX17/Grey***
550 **locus between fast and slow greying horses.** (a) GWAS contrasting fast and slow greying
551 horses belonging to the Connemara Pony breed and Japanese Thoroughbred horses. (b)
552 GWAS zoom in on chromosome 25. The location of *STX17* is marked with an arrow. (c)
553 Estimated copy number of the *STX17* copy number variation in slow greying and fast greying
554 progeny of the sire Hagens D'Arcy (*G/G*) mated to non-grey (*g/g*) mares. (d) Nucleotide
555 diversity in windows of 100 kb in the region flanking the *STX17* gene. Deduced *Grey*
556 genotypes are indicated to the left. The sire Hagen's D'Arcy is row 1 and he shows
557 homozygosity for the 350 kb IBD region shared by *Grey* haplotypes.

558

559 **Fig. 4. Copy number variation and DNA methylation patterns revealed by sequence**
560 **capture and Nanopore sequencing.** (a) Molecular size distribution of the *STX17* region
561 from a *G2/G3* heterozygote (Hagens D'Arcy) inferred from a Cas9 capture Nanopore
562 sequencing experiment. (b) The duplicated sequences are present in tandem both on the **G2**
563 and **G3** alleles. (c) DNA methylation pattern associated with the *G2* (red) and *G3* (blue)
564 alleles. The drastic reduction of DNA methylation at precisely the region harboring MITF
565 binding sites are high-lighted.

566

567

568 **Supplementary material**

569

570 **Extended Data Fig. 1. Melanoma in grey Connemara Ponies.** The most common locations
571 of visual melanoma in Grey horses are under the tail and in the jaw angle (parotis area). **(a)**
572 Prominent melanoma under the tail of a 12 years old Connemara mare. The father is Hagens
573 D'Arcy and the mother is a random fast greying horse. **(b)** Melanoma in the jaw angle
574 accumulated around the lymphatic tissue (most likely metastasis) of a 15 years old
575 Connemara mare. The father is Hagens D'Arcy and the mother is a random fast greying
576 mare. **(c)** A zoomed in view of Extended Data Fig. 1b where the lymphatic tissue-associated
577 melanoma visually bulges under the skin. The two melanoma displaying mares were not part
578 of the mapping pedigree since their mothers were fast greying horses. Photo: Elisabeth
579 Ljungstorp.

580

581 **Extended Data Fig. 2. Five generation pedigree of Connemara Ponies segregating for**
582 **slow and fast greying.** The sire in generation 5 (**Hagens D'Arcy**) was postulated to be
583 heterozygous for slow/fast greying because his parents were fast greying (mother) and slow
584 greying (father) and in matings with non-grey dams he had progeny that were either classified
585 as slow or fast greying. The inferred genotypes of all horses in the pedigree are based on
586 information listed in **Supplementary Table 5**. Photo: 1 Elisabeth Ljungstorp, 2 Marlen
587 Näslin, 3 Madeleine Beckman, 4 Anneli Dahlskog, 5-8 Madeleine Beckman, 9 Beckman
588 Archive, 10 Madeleine Beckman.

589

590 **Extended Data Fig. 3. Three generation pedigree of Japanese Thoroughbred horses**
591 **segregating for fast and slow greying.** The dam in the first generation was fast greying
592 according to the Japanese Thoroughbred Stud Book. She produced one slow greying and two
593 fast greying progenies in matings with non-grey sires (second generation). Three slow
594 greying horses from the third generation were offspring of the slow greying dam (generation
595 two) in matings with non-grey sires. Photos (two 3-years-old horses in third generation) were
596 provided by the Japan Racing Association.

597

598 **Extended Data Fig. 4.** Phenotype of a *G2/G2* homozygote from the Connemara pony breed
599 at the age of 11 years. Photo: Madeleine Beckman.

600

601 **Extended Data Fig. 5. Comparison of the coat color phenotype of fast and slow greying**
602 **Connemara ponies from younger age and onwards.** **(a)** Fast greying foal 2 weeks old.
603 Grey hairs visible on the eyelids. **(b)** Fast greying foal about 1 month old. Circles of grey
604 hairs around the eyes. **(c, d)** Slow greying mare at 5 and 11 years, showing a white blaze with
605 shattering edges, slowly spreading out. **(e, f, g)** Slow greying mare at 2, 12, and 13 years.
606 Pure bay with no visible grey hairs at 2 years of age. Eyelashes turning grey between 12 and
607 13 years of age. Photo: Elisabeth Ljungstorp (a, b, e, f, g) and Madeleine Beckman (c, d).

608

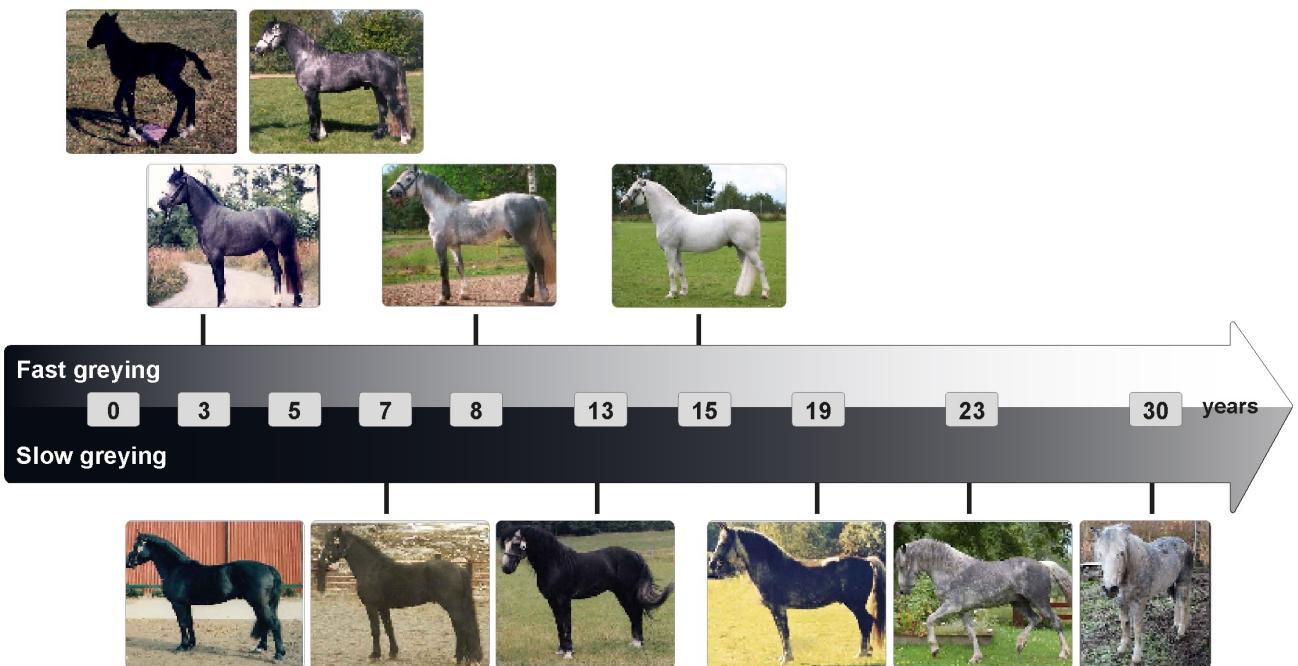
609 **Supplementary Table 1. Results of a ddPCR experiment** performed with two TaqMan
610 assays targeting the *STX17* copy number variation (CNV) (Assays A and B) and a control
611 assay (Assay C) targeting an *STX17* region that is free of known CNV. Copy number for
612 these samples were also validated and confirmed using the UC Davis VGL assay.

613

614 **Supplementary Table 2. Copy number variation for the 4.6 sequence in *STX17* intron 6**
615 **in 1400 horses across 78 populations. Data based on genotyping services provided at the**
616 **UC Davis Veterinary Genetics Laboratory. (Excel file)**

617

618 **Supplementary Table 3. Age distribution of 25 slow greying (G1/G2) Connemara ponies**
619 **examined for the incidence of melanoma. None was diagnosed with melanoma.**


620

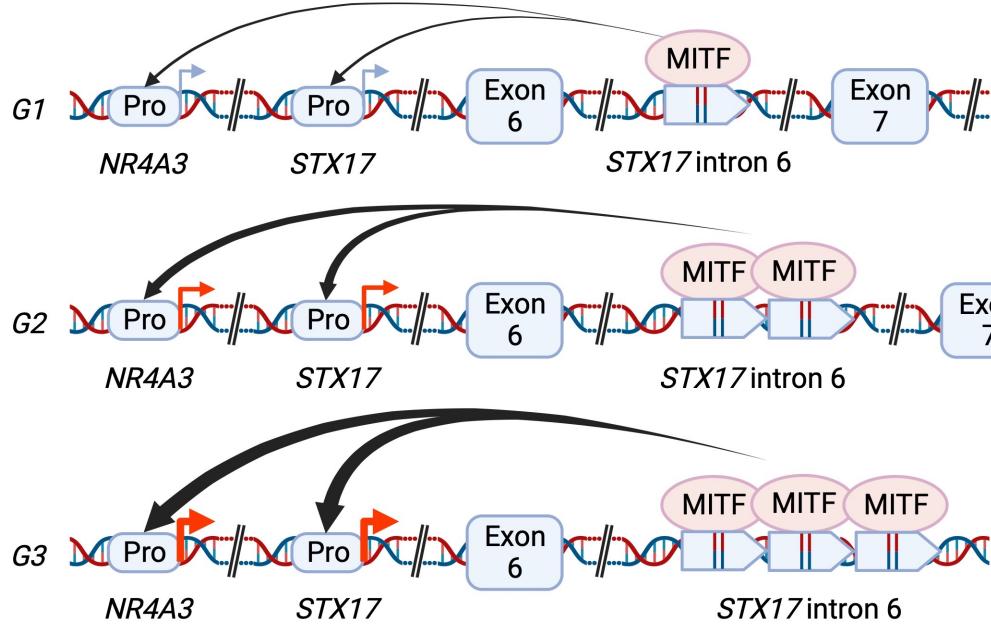
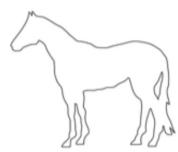
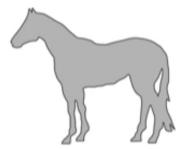
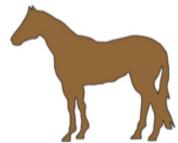
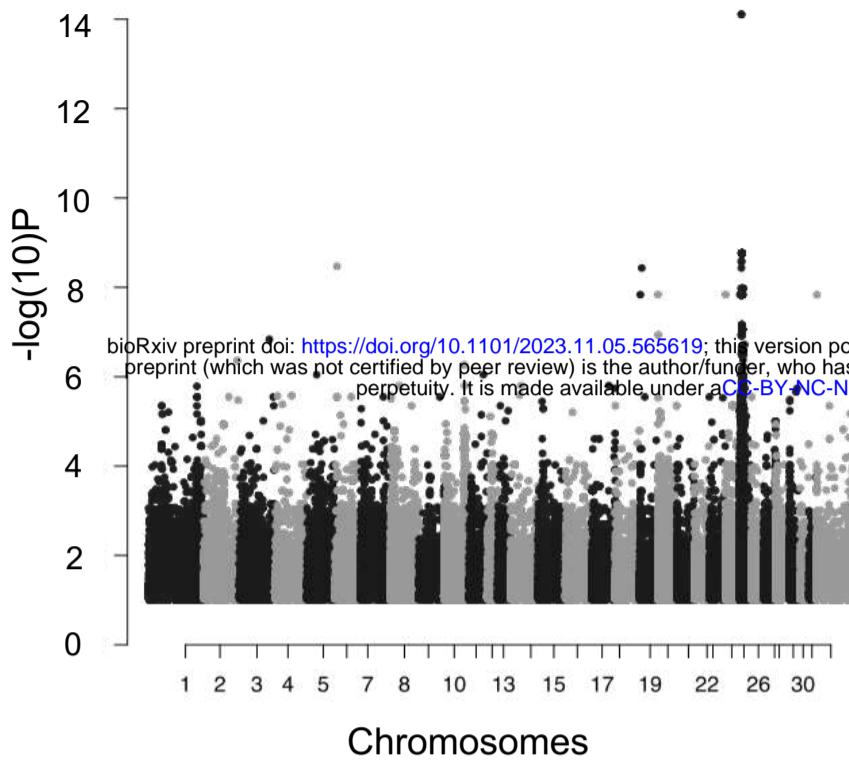
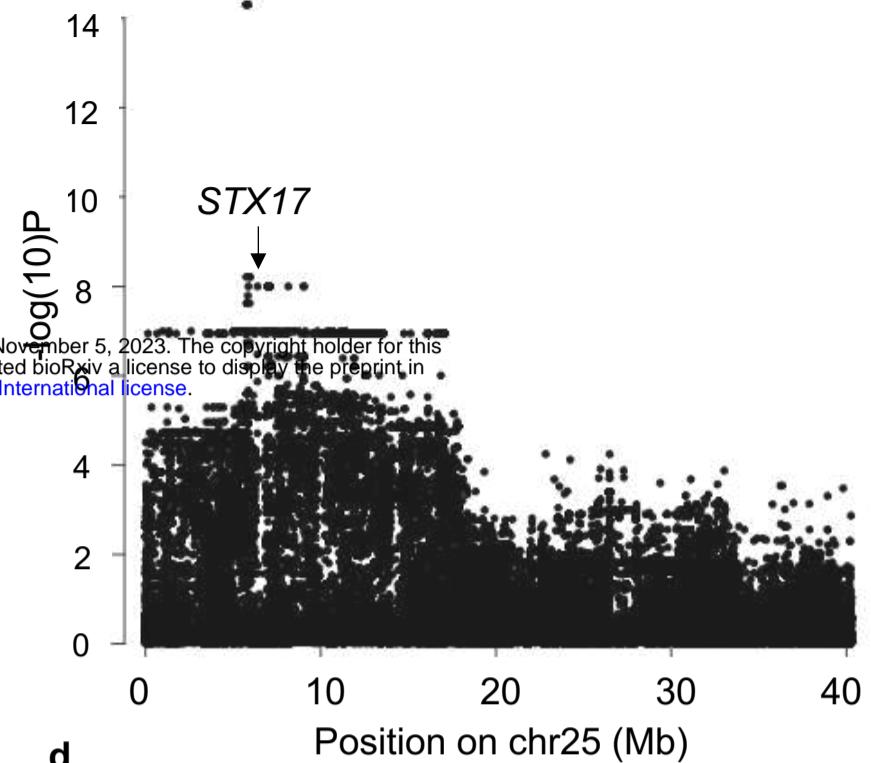
621 **Supplementary Table 4. Guide RNAs used for Cas9 sequence capture of the *STX17***
622 **duplicated region.**

623

624 **Supplementary Table 5. Inferred *Grey* genotypes for the horses included in Extended**
625 **Data Fig. 2.**

626

Fig. 1

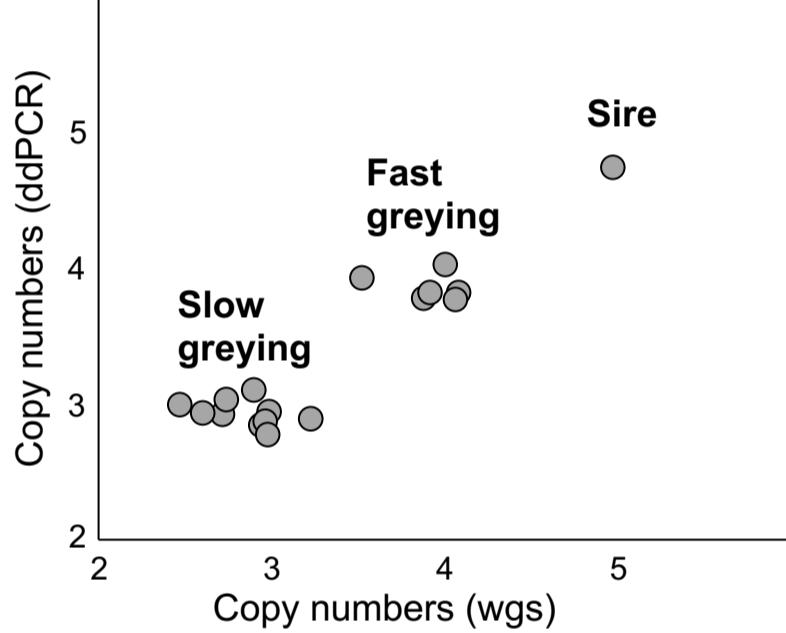
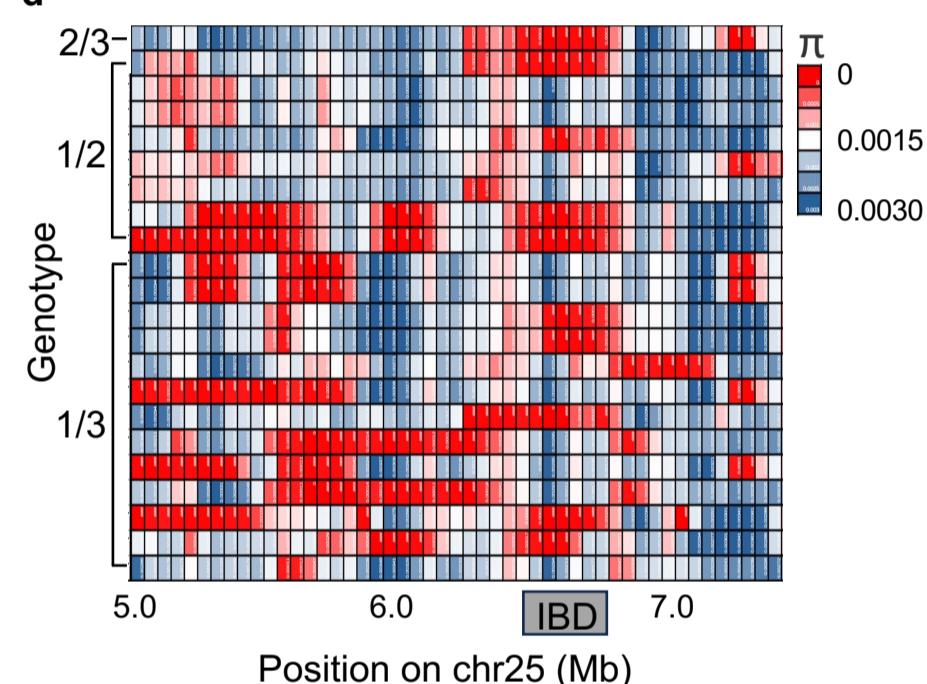

Fig. 2

Fig. 3**a**

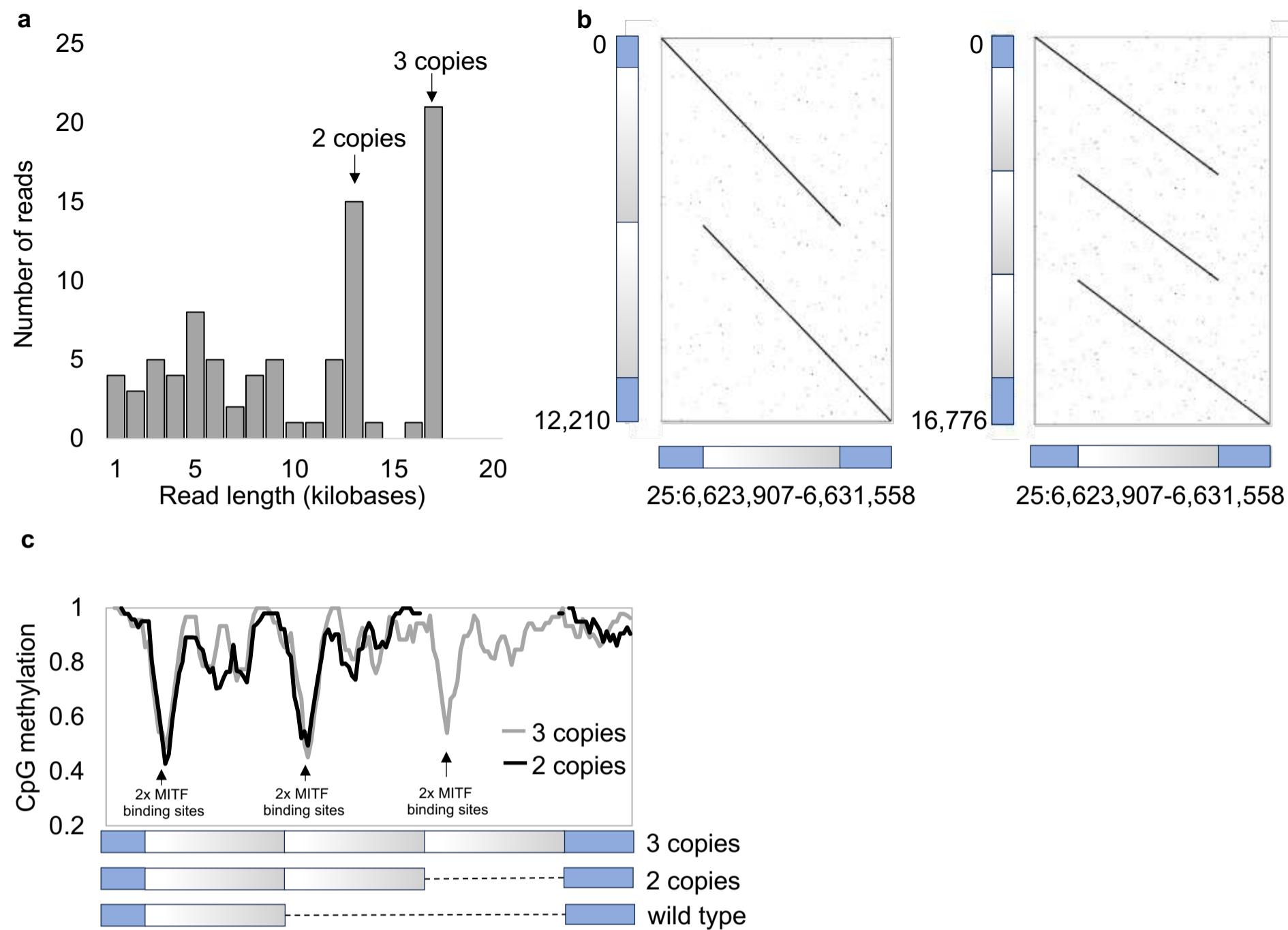
Chromosomes

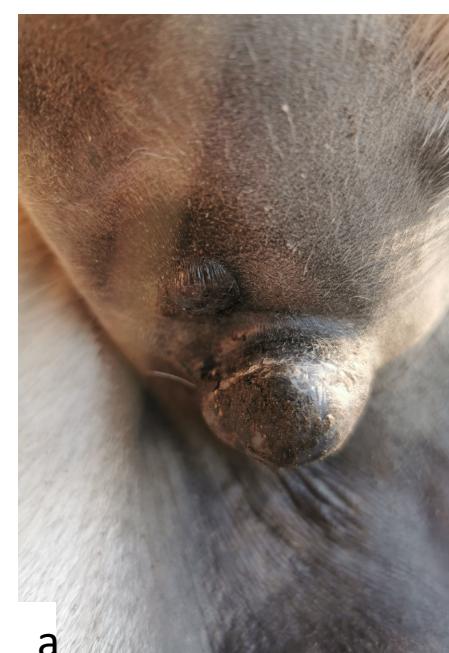
b


Position on chr25 (Mb)

c

Sire


Fast
greyingSlow
greying


Copy numbers (wgs)

d

Position on chr25 (Mb)

Fig. 4

a

b

c

Extended Data Fig. 1

Generation 1

Inferred genotype

1 : G2 / G3	2 : G1 / G2
3 : G3 / G3	4 : G1 / G3
5 : G1 / G2	6 : G3 / G3
7 : G3 / Unk.	8 : G2 / G3
9 : G3 / G3	10 : G1 / G2

Unk. = Unknown, unable to infer

Generation 2

Generation 3

Generation 4

Generation 5

Second generation

Slow greying

12-years-old

Fast greying

10-years-old

8-years-old

Third generation

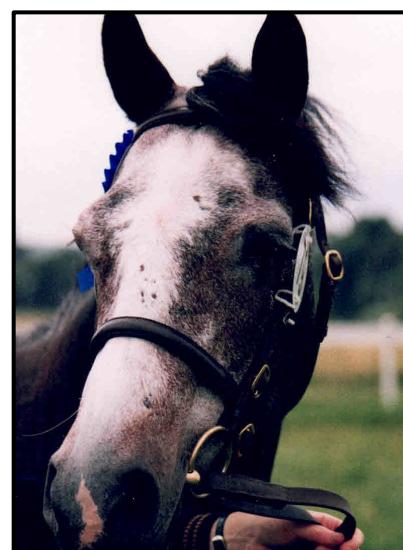
Slow greying

4-years-old

Extended Data Fig. 3

Extended Data Fig. 4

Extended Data Fig. 5


a) Fast grey, 2 week old

b) Fast grey, 1 month old

c) Slow grey, 5 years old

d) Slow grey, 11 years old

e) Slow grey, 2 years old

f) Slow grey, 12 years old

g) Slow grey, 13 years old