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Abstract 

The role of non-coding rare variation in common phenotypes is largely unknown, due to a 

lack of whole-genome sequence data, and the difficulty of categorising non-coding variants 

into biologically meaningful regulatory units. To begin addressing these challenges, we 

performed a cis association analysis using whole-genome sequence data, consisting of 391 

million variants and 1,450 circulating protein levels in ~20,000 UK Biobank participants. We 

identified 777 independent rare non-coding single variants associated with circulating protein 

levels (P<1x10-9), after conditioning on protein-coding and common associated variants. 

Rare non-coding aggregate testing identified 108 conditionally independent regulatory 

regions. Unlike protein-coding variation, rare non-coding genetic variation was almost as 

likely to increase as decrease protein levels. The regions we identified overlapped predicted 

tissue-specific enhancers more than promoters, suggesting they represent tissue-specific 

regulatory regions. Our results have important implications for the identification, and role, of 

rare non-coding variation associated with common human phenotypes. 
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Introduction 

Rare genetic variants in non-coding regions of the human genome can cause severe rare 

disease1,2, but their role in common, complex traits is still largely unknown. Array-based 

genome-wide association studies (GWAS), which use imputed genotype measures, have 

identified tens of thousands of common variant associations with human disease3, the 

majority of which are located outside of coding regions4. However, efforts to identify rare 

variants associated with common phenotypes have been largely limited to the coding regions, 

using exome sequencing data. This limited progress is due to the lack of whole-genome 

sequence data in large studies and the difficulty of defining biologically meaningful non-

coding regulatory genomic units. 

 

The analysis of whole-genome sequencing (WGS) data could provide important insight into 

relevant genes and their regulation that complements the knowledge gained from exome 

sequencing and array-based studies. WGS allows us to examine the role of intronic, proximal 

and distal regulatory elements, and covers the entire allele frequency spectrum in a 

population, including a very large proportion of variants that are observed only once or twice 

even in a very large sample. 

 

The identification of non-coding regulatory elements could provide important insight into the 

tissue-specific roles on the regulation of nearby genes. There is considerable evidence that the 

non-coding genome is functionally important. For example, based on population genetic 

metrics such as constraint, the amount of non-coding DNA that is functional could be 4-5x 

greater than the amount of coding sequence5, and 10% and 6% of promoters and enhancers 

respectively are under as much mutational constraint as coding regions6. Enhancers have also 

been shown to be more tissue-specific than promoters7.   

 

There are very few studies of WGS data in the context of common phenotypes. Recent 

examples from TOPMed8 have considered lipid-levels9,10 (N = 66,000) and blood pressure11 

(N = 51,456) but found few novel signals, possibly because of the complexity of the 

phenotypes and relatively small sample sizes for the detection of novel disease-associated 

rare variants. 
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The UK Biobank’s (UKB) release of circulating protein data, in combination with WGS, 

provides an unprecedented opportunity to test the impact of rare non-coding genetic variation 

on common, biologically proximal, and well-measured human phenotypes. Three recently 

published studies12–14 described the 2023 release of this data on up to 2,923 circulating 

proteins in 54,306 individuals. These studies focused on conventional array-based GWAS 

approaches or exome sequencing, analysing between 0.5 million and 58 million variants, but 

did not attempt to use the full range of allelic variation consisting of >700 million variants 

available in the WGS data. These studies identified a large number of pQTLs (protein 

Quantitative Trait Loci) including with rarer single variants and coding variants. Firstly, 

Eldjarn et. al (2023)12 identified 30,062 pQTLs in a single-variant analysis of genetic data 

imputed from the UKB 150,119 whole-genome sequences with 2,931 measured protein levels 

and compared results with proteomics derived from an Icelandic cohort with whole-genome 

sequences. Secondly, Dhindsa et al. (2023)13 identified 5,433 pQTLs in an exome-sequencing 

analysis, and performed aggregate testing within the coding regions, identifying 1,962 gene-

protein associations. Finally, Sun et al (2023)14 identified 14,287 pQTL single-variants using 

a conventional GWAS of array-based imputed data.  

Using WGS data and circulating protein levels as exemplar traits, we tested two related 

hypotheses: 1) non-coding single variants, not currently detectable by GWAS array or exome 

sequencing, contribute to common human phenotypes with similar effects to coding variants, 

and 2) we can identify aggregates (groups) of rare non-coding genetic variation in regulatory 

regions of the genome associated with human phenotypes, akin to gene-level collapsing 

analyses in exome sequences. Importantly, and in contrast to the previous three papers on the 

UKB proteomic data, we used the full range of DNA sequence variation detected with short 

read WGS, providing information on ~400 million variants, but limited the search for each 

phenotype to cis regions around the protein-coding gene from which the protein derived.  

Methods Summary 

We performed primary discovery association analyses for 1,450 measured circulating protein 

levels using annotated WGS data on 20,038 individuals of inferred European genetic ancestry 

from the UKB, a population cohort from the United Kingdom. The vast majority (95.6%) of 

samples were of genetically-inferred European genetic ancestry. Thirteen proteins that were 

either fusion proteins or did not directly match to an HGNC gene symbol were excluded 

(ST1). For each measured protein, we performed both single variant (minor allele count 
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(MAC) ≥ 5) and genomic aggregate association tests (minor allele frequency (MAF) < 0.1%) 

in a cis-window around the gene coding for the protein, extending 1Mb from the 5’ and 3’ 

untranslated regions (UTRs), based on the most extreme 5’ and 3’ ends of any transcript of 

the gene. We used 1Mbp as the approximate distance recently identified as the boundary 

between when a pQTL is more likely to be a cis rather than trans association15. Circulating 

protein level measurements were rank-inverse normalised at runtime, and age, age squared, 

sex, recruitment centre, 40 genetic principal components and Olink batch ID were included as 

covariates (Methods). In total, we tested 52,925,315 single (including single nucleotide 

variants and small insertions/deletions) and structural variant-protein associations. We 

identified independent variant associations by a combination of joint-modelling and forward-

stepwise selection (Methods). 

We annotated all genetic variants using Ensembl’s Variant Effect Predictor (VEP)16 

(Methods) and used the output to categorise variants as gene-centric (e.g., coding, predicted 

intronic splicing, proximal-regulatory) and intergenic-regulatory (e.g., Ensembl regulatory 

regions, non-coding RNA) for aggregate-based association testing. Additionally, we 

performed aggregate testing on all non-coding (excluding proximal regions, to minimise 

overlap) variants in overlapping (1kbp overlap) 2kbp sliding windows. We additionally sub-

categorised variants within a subset of aggregate units by measures of constraint (JARVIS17), 

conservation (GERP18) and/or predicted deleteriousness (CADD19). To identity independent 

rare non-coding genomic aggregate associations, we adjusted non-coding aggregate tests for 

common lead variants (MAF > 0.01), and all variants annotated as coding within the gene 

coding for the protein itself, which we henceforth refer to as the cognate gene, regardless of 

variant frequency. In total, we included 390,822,449 variants within our aggregate test 

analysis, with a mean of 179,319 per cis locus (approximately one variant per 10bp).  

Results 

We identified 1,425 rare variants associated with 1,450 circulating protein levels, with 

consistent effect estimates across multiple genetic ancestries  

We identified 5,997 cis pQTL associations (MAC ≥ 5), 117 of which were structural variants 

(Figs. 1&2; ST2). We identified at least one cis association for 1,126 proteins, with a median 

of four independent pQTLs per circulating protein. One hundred and seventy circulating 

proteins were associated with >10 independent pQTLs, including a maximum of 38 for lair2. 
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The mean variance (within sample) explained jointly by all independent cis pQTLs for a 

given protein was 7.22%, with a median of 2.07%, similar to the estimates previously 

reported by Sun et al14. Of the 5,997 variant associations identified, 937 (15.9%) were in the 

rare frequency range (0.1% ≤ MAF < 1%), and 488 (8.3%) were very rare (MAF ≤ 0.1%). 

We refer to the 1,425 lead variants in both frequency bins as rare pQTL variants forthwith.  

We additionally performed single variant testing for 430 and 451 individuals of genetically-

inferred South Asian and African genetic ancestry respectively with both WGS and Olink 

proteomic data. Across the three genetically inferred genetic ancestries considered 

(European: EUR, South Asian: SAS and African: AFR), we observed a strong correlation of 

effect sizes for pQTLs in the EUR analysis between EUR and SAS individuals (r = 0.902), 

and weaker correlation between EUR and AFR individuals (0.646) and AFR and SAS 

individuals (0.645). Despite the much smaller sample sizes available for the SAS and AFR 

analyses each identified 100 independent pQTL variants (ST3), although power was limited 

to identify the full spectrum of pQTL variants across each cis locus. 

We compared our single variant pQTL results with those of Eldjarn et al (2023)12, who 

analysed genomic data imputed from 150,119 UKB whole genome sequences in the 54,306 

individuals with proteomic data. We found 2,586 of our 5,997 cis-pQTLs (42.8%) were in 

strong linkage-disequilibrium (r2  
≥ 0.8) with at least one of their signals for the same 

circulating protein. The overlap was larger (723 out of 1425; 50.7%) when considering only 

rare variants (MAF < 1%). There were 57 (3.93%) circulating proteins for which we 

identified more cis-pQTL variants than Eldjarn et al, and 1,057 (72.9%) proteins where they 

identified more variants. These differences may be partly driven by the sample size 

difference, and by differences in methods for conditional analysis: their analysis used forward 

stepwise conditional analysis to define conditionally independent pQTLs, while we 

performed both forward- and backward-conditional analysis steps implemented in GCTA 

CoJo20. It is likely that these differences in methodology have led to the differences in 

associated pQTLs between the two studies, highlighting the difficulties of interpreting 

multiple independent associated variants at the same locus. 

Fig 1. Manhattan plots showing associations between cis variants and regions with 

circulating protein levels, after adjusting for associated common variants and all coding 

variants of the cognate gene. The x-axis represents genomic position, and the y-axis shows –

log10(p) for our cis results across all proteins, split into a) single variants, b) coding 
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aggregates, c) gene-centric regulatory (proximal) aggregates, d) intergenic regulatory 

aggregates and e) sliding window aggregates. Red lines represent Bonferroni significance 

thresholds.  
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The majority of rare coding pQTLs are associated with reduced circulating protein levels 

As an additional validation step, we tested whether coding variants within the cognate gene 

were associated with circulating levels of the protein. As expected, and consistent with the 

recent exome sequencing study13, 98.6% of pQTLs annotated as high-confidence loss-of-

function as defined by LOFTEE21 were associated with reduced circulating protein levels 

(ST2). The average effect of loss-of-function variants was -0.94 SD, equating to a reduction 

of raw circulating protein levels to approximately half (53.2%), with some notable exceptions 

(Extended Table 1). Consistent with variants in the last exon escaping nonsense mediated 

decay22, the estimated effects of loss-of-function variants were weaker towards the 3’ ends of 

the gene (SF1). Missense variants were associated with a much weaker effect, reducing 

circulating protein levels by 15.7% on average (SF1) and, as a negative control, the average 

effect of synonymous variants was close to zero.  

Relative to the background proportion, defined as the full set of coding variants tested, we 

observed an enrichment for rare pQTL variants annotated as loss-of-function (OR = 5.22 

[4.24, 6.41], difference in proportion for rare pQTLs (ΔP) = 10.82%, Fisher’s exact 

P=1.16x10-96) and missense variants (OR = 2.19 [1.84, 2.60], ΔP = 17.6%, P=4.71x10-77). 

We additionally observed a depletion of splice-region (OR = 0.431 [0.294, 0.612], ΔP = -

7.60%, P=9.23x10-36) and synonymous (OR = 0.0958 [0.0616, 0.14], ΔP = -20.80%, 

P=8.39x10-179) variants.  
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Fig 2. Effect size distributions of rare pQTL variants. Effect sizes for rare pQTL variants 

versus minor-allele-frequency for a) coding and b) non-coding pQTLs, and stratified by 

predicted consequence for c) coding variants in the cognate gene, d) cognate (variants 

annotated as regulatory for the protein-coding gene) non-cognate non-coding pQTLs.  

 

 

We also performed aggregate-based association tests of variants within protein-coding genes. 

Aggregate based testing of rare coding variants identified 523 genes associated with 
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circulating protein levels after adjusting for common (>0.1%) pQTLs from our single variant 

analysis (ST4). These genes were identified from 746 gene-protein associations, the majority 

based on including high-confidence loss-of-function variants alone (245; 32.8%), or all 

missense variants (291; 39%). Thirty-eight of these genes were not identified by the exome 

sequencing analyses performed by Dhindsa et al (2023) (ST5), potentially due to differences 

in sequencing coverage. 

The majority of rare non-coding pQTL variants are upstream of the cognate gene and are 

almost as likely to increase as decrease circulating protein levels  

We identified 777 independent rare non-coding single variant-protein associations with one 

of 354 proteins (Figs. 1&2; ST6). We stratified rare non-coding pQTLs into cognate and 

non-cognate groups based on annotation and most severe annotated consequence23, with 

priority given to annotations relative to the cognate gene. Of the 777, 551 (70.9%) were 

annotated as regulatory for either the cognate or another gene (Figs. 2d and e), and 226 

(29.1%) were not assigned to a gene-centric or non-gene-centric annotation category (Fig. 2e 

“Unannotated”).  

 These non-coding variants had an average absolute effect of 1.19SD (median 0.975SD), 

equating to 64.1% and 85.1% of the average absolute effect of rare loss of function and 

missense pQTLs on circulating protein levels respectively.  

Rare non-coding pQTLs were distributed across the cis loci, with maximum distance from the 

cognate gene of 999 kb, and 247 of them (31.8%) were annotated as within a proximal or 

regulatory sequence of a neighbouring (non-cognate) gene but not the cognate gene itself 

(SF2). The single most strongly associated non-coding rare pQTL was located closest to, or 

in, the cognate gene 44.1% of the time.  

Rare non-coding pQTLs were more evenly distributed between circulating protein increasing 

and decreasing effects (mean = -0.224, P sign = 8.08x10-6; Fig 2d and e), where ‘P sign’ is 

the p-value for a sign test, with effect sizes more balanced in the 551 annotated non-coding 

variants (mean = -0.162, P sign = 2.83x10-3; Fig 2d and e), compared to rare coding pQTLs 

(mean = -1.05SD, P sign = 8.77 x10-75).  

Non-coding rare pQTLs annotated as regulatory for the cognate gene (252; 32.4%) were 

more likely to occur in the upstream region of the gene than the downstream region. We 
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observed that 120 (47.6% of 252) associations were annotated as upstream, 35 in the 5’UTR 

(13.9%), 6 (2.43%) predicted intronic splice acceptor/donor sites, 19 (7.69%) in the 3’ UTRs, 

58 (23.0%) downstream and 14 (5.6%) in non-coding exons. The remaining 67.6% of signals 

were non-coding variants that were closer to, or resided within the intron of, a gene other than 

the cognate gene (ST2). 

We then tested for enrichment withing different annotation categories for variants annotated 

as regulatory for the cognate gene (252/777). Based on the most severe predicted 

consequence for each individual variant tested in any cis-window, with consequences related 

to the cognate gene prioritised over consequences on other genes, we observed an enrichment 

for lead variants annotated in the 5’UTRs (difference in abundance between background and 

lead variants, ΔP = 11.9%, Fisher’s exact P=5.89x10-19), and intron splice sites (ΔP = 2.38%, 

P=1.53x10-11). We additionally observed a depletion of downstream proximal variants (ΔP = 

-15.3%, P=3.40x10-7) (Fig. 3a). We did not observe any evidence for enrichment for 3’UTR 

variants (P = 0.710), cumulatively suggesting that regulation of translation initiation is more 

important to protein levels than regulation of transcription termination or mRNA stability. 

We did not observe any significant enrichment when considering rare non-coding pQTLs that 

were annotated as regulatory for another gene (the non-cognate gene; 247/777) in the cis 

window, suggesting the majority of these pQTLs were unlikely to be operating through a 

separate gene, and are distal regulatory elements for the cognate gene (Fig. 3b).  

Given the challenges of grouping, analysing, and interpreting non-coding variants, we were 

interested in comparing the utility of several different computational metrics for variant 

prioritisation. Comparing the distribution of three widely-used measures of deleteriousness 

(CADD19), inter-species conservation (GERP18) and human variation constraint (JARVIS17) 

between non-coding pQTLs and all variants tested, we observed enrichment for 

deleteriousness (ΔCADD = 2.25%, P = 7.06x10-10), and constraint (ΔJARVIS = 8.89%, P  = 

2.96x10-5), but not conservation (SF3). The observed enrichment was strengthened when 

considering only pQTLs annotated as regulatory for the cognate gene (ΔCADD = 4.97%, P = 

2.60x10-14, ΔJARVIS = 17.4%, P = 3.92x10-7). Although we did not test the performance of 

other algorithms that aim to predict variant deleteriousness, most metrics - particularly of 

conservation - are primarily trained on the coding region, and better methods for variant 

prioritisation in the non-coding genome are urgently needed. 
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Fig 3. Distribution of annotations of lead pQTL non-coding variants compared to all 

variants tested. Proportion of variants in sets of lead variants (dark blue) compared to all 

variants tested (light blue), stratified by whether a variant was annotated to the cognate gene 

(a) or not (b). p-values are derived from Fischer’s exact test, only nominally significant 

(P<0.05) p-values are shown. 

A downstream variant produced the largest effect size observed for an annotated rare 

pQTL, and another single intronic ASGR1 variant was associated with 281 measured 

protein levels 

Of the 777 rare non-coding variant-protein associations, 136 (17.5%) and 245 (31.5%) had 

absolute effect sizes larger than the average rare annotated pQTLs annotated as loss of 

function (mean absolute beta = 1.87SD) and missense (mean absolute beta = 1.41SD) 

respectively. The rare pQTL with the largest effect size was un-annotated and non-coding: 

1:203482673:C:T, an intronic variant of PRELP, increased measured circulating levels of 

PRELP (beta = 3.89SD [4.47, 3.31SD], MAF = 2.85x10-4, P = 2.09x10-46). Further, the rare 

annotated pQTL with the largest effect size was also a non-coding variant: 

19:51129025:IG:C:CTT, a downstream of SIGLEC9, which results in reduced measured 

levels of SIGLEC9 (beta = -3.75SD [-4.27, -3.23SD], MAF = 2.85x10-4, P = 2.09x10-46). In 

contrast, the largest observed coding effect was -3.44SD.  
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The 5’UTR variant with the largest change in protein levels was 18:597095:G:C, which 

increased circulating CLUL1 levels (beta = 2.55SD [2.22, 2.88SD], MAF=8.36x10-4, P = 

5.29x10-72). This conserved position (GERP = 0.953 - Methods) impacts the 5’UTR of 

CLUL1 (c.-48G>C, ENST00000400606.6 Clusterin-like protein 1), potentially creating a 

non-canonical (ACG) start site leading to a novel upstream open reading frame.  

The 3’UTR variant with the largest effect size was 22:17110069:A:C, which increased 

circulating levels of IL7RA (beta = 3.51SD [2.60, 4.43SD], MAF = 1.30x10-4, P = 1.24 x10-

14) by impacting a conserved position (GERP = 5.06) in the 3’UTR of IL7RA 

(ENST00000319363.11:c.*249A>C).  

Previous studies have shown that some cis pQTLs can have trans effects on multiple 

proteins. We therefore tested the association of each rare non-coding pQTL with each of the 

1,450 measured protein levels. Based on the 1,424 identified rare single variants, we 

identified 677 additional trans variant-protein associations (ST7). One rare small non-coding 

deletion, 17:7176936:CCCCCAGCCCCAG:C (MAF=0.8%), was associated in cis with 

circulating levels of two protein levels at the same locus (CLECL10A and TNFSR10B), and 

with 279 proteins in trans. This variant overlaps an Ensembl Candidate Cis-Regulatory 

Element (EH38E1844080) and lies within a third gene in the cis locus, in intron 4 of ASGR1, 

but showed no evidence of association with ASGR1 protein levels (P = 0.79). For all 281 (cis 

and trans) associations, the deletion was associated with increased circulating protein levels. 

Of the 281 proteins associated with this deletion, 275 (98%) were glycoproteins, representing 

a significant enrichment (binomial P < 2.2x10-16), in line with previous functional analysis24.  

This ASGR1 variant has also previously been associated with reduced risk of coronary artery 

disease, decreased LDL-C (LDL cholesterol), increased levels of alkaline phosphatase and 

vitamin B12
24, and as a chronic inflammation marker25. In the UKB, we replicated the 

associations with LDL-C, HDL-C, alkaline phosphatase, and triglycerides (ST8). In an 

attempt to determine the causal pathway driving the association between the non-coding 

variant and LDL-C we examined the effect of an aggregate of loss-of-function variants 

(which would be predicted to decrease circulating protein levels) in each of the 275 

associated glycoproteins on LDL-C. The strongest association of loss-of-function variants 

occurred with GAS6 (Growth Arrest Specific 6, beta = 0.496 [0.305, 0.688], P = 3.67x10-7), 

suggesting that the variant may act partially through impacting gas6 levels to reduce LDL 

levels. 
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Aggregate testing identified 108 conditionally independent regulatory regions associated 

with bi-directional effects on circulating protein levels, after adjusting for common pQTLs 

and coding variation 

Using aggregate variant tests, we identified 599 unique non-coding rare variant aggregates 

associated with one of 86 circulating proteins after adjusting for common single pQTLs and 

all protein-coding variants in the cognate gene (ST9). After a further forward stepwise 

conditional analysis (Methods), 108 conditionally independent rare-variant aggregate non-

coding regions remained (ST10). The conditionally independent non-coding aggregate-based 

tests used to identify these regions included 9 annotated to the 5’UTR (8.3%), 4 to the 3’UTR 

(3.7%), 31 annotated as gene-centric upstream (28.7%), 16 as gene-centric downstream 

(14.8%), 5 as predicted intronic splice acceptor/donor (4.6%), 6 as intergenic regulatory 

regions (5.6%), 8 as annotated to a non-coding RNA (7.41%) and 29 sliding windows 

agnostic to regional annotations (26.9%).  

The majority, 55 (51%), of the 108 conditionally independent non-coding aggregate 

associations contained no individual rare pQTLs, suggesting those regions would not have 

been identified through single variant analysis. Of the remainder, 50 (46%) contained exactly 

one rare pQTL, and 3 (2.8%) contained more than one.  

Five of the 108 (4.63%) conditionally independent non-coding aggregate associations were 

identified only when selecting highly conserved (GERP>2) variants, and 7 (6.5%) where 

identified when selecting highly constrained (JARVIS>0.99) variants. No aggregate 

associations were identified when selecting variants on predicted deleteriousness 

(CADD>25). 

Different aggregate-based tests, before conditional analysis, often located the same 

noncoding region, with some identified by different sets of variants included in the test (e.g. 

conserved vs all variants), and some identified by overlapping 2kb sliding windows as well as 

annotated regions. For example, aggregate based testing of rare variants identified 12 non-

contiguous regions across a 1.53Mb cis window associated with circulating levels of the 

interleukin receptor, IL17RB. Seven of these regions were each identified by pairs of 2kbp 

overlapping sliding windows. Two of these also contained regions annotated by Ensembl as 

regulatory which reached our association threshold (ST9). Conditional analysis collapsed 

these regions to two independent associations, one upstream of CHDH and RNA variants 

near IL17RB. In another example, aggregate based testing identified 20 non-contiguous 
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regions across a 1.18 Mb cis region associated with circulating levels of the prostaglandin D 

synthase gene. These regions included 5 identified by sliding windows alone, and 15 as 

proximal to a gene. Our results thus highlight the need to perform conditional analysis for 

aggregate association testing, not only for single variants. 

The vast majority of rare non-coding aggregate associations were identified by statistical tests 

that allow rare variants to be associated with both higher and lower trait values and that allow 

a large fraction of variants to be non-causal. Only three of the 108 (2.8%) rare non-coding 

conditionally independent aggregate regions were most strongly associated in a burden 

framework that assumes all rare variants result in effects in one direction. This is in strong 

contrast to coding-based aggregate tests, where 26.4% of unique aggregate tests were 

strongest in a burden framework. This difference suggests that rare variants in non-coding 

regions are likely to result in a mixture of trait increasing and trait decreasing effects, or that 

not all variants included in the aggregate test are causal, whereas a greater proportion of rare 

variants in coding regions are likely to be deleterious and causal.  

For example, we found that an aggregate of rare non-coding variants in the 5’UTR of CAPG 

which each resulted in an additional start-site (5’ uATG gained) decreased circulating levels 

of CAPG (beta = -1.23SD [-1.61, -0.851SD], P = 2.06x10-10). As a second example, rare non-

coding variants with a high (>0.7) SpliceAI score in the introns of LRPAP1 decreased 

circulating LRPAP1 levels (beta = -1.39SD [-1.80, -0.983SD], P = 2.70 x10-11). 

When selecting only burden aggregates to identify aggregate associations (before performing 

conditional analysis within cis aggregates) (ST11), we identified 37 significant unique 

aggregate associations with protein levels. Those aggregate tests altered measured protein 

levels by a mean absolute effect size of 1.35SD (signed mean -0.316). As with single variant 

rare pQTLs, the average effect of rare burden non-coding aggregates was considerably more 

balanced between circulating protein-increasing and decreasing effects, as compared to 

performing the same process for coding aggregates (signed mean = -1.33SD, P difference = 

2.23 x10-4
; ST12).  

Rare non-coding pQTL variants and aggregates were enriched in tissue-relevant 

panels and in proteins measurements with high cross-technology concordance  

To determine the degree to which rare non-coding single variant and aggregate based pQTLs 

were present in tissue relevant non-coding regulatory regions, we performed two additional 
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enrichment analyses. Firstly, we tested the hypothesis that rare non-coding pQTLs were more 

likely to be identified if the relevant protein was part of the cardiometabolic and 

inflammatory protein panels, rather than part of the neurology and oncology panels, on the 

basis that cardiometabolic and inflammatory processes are more relevant to circulating 

proteins. Secondly, we tested the hypothesis that rare non-coding pQTLs would be enriched 

in regions annotated as Ensembl regulatory elements in blood and liver cells ahead of 20 

other tissue types (Methods) on the basis that blood and liver would be the tissue types most 

relevant to circulating proteins26. We further stratified these analyses by type of regulatory 

region – testing all regulatory regions, promoters, enhancers, transcription factor binding sites 

and CTCF binding sites.  

Results of these tissue specific enrichment tests, separated by 22 tissue types and 4 panels, 

are presented in Fig 4 (ST13-18), and show that rare single variant and aggregate based non-

coding pQTLs are enriched for proteins classified into tissue/process relevant panels. 

Furthermore, the results indicate that aggregate based tests, including those in region-agnostic 

sliding windows, identified more relevant regions compared to single variants, and pQTLs in 

regions outside of promoters were more panel specific than those in promotors. Whilst single 

variant pQTLs were enriched for proteins in all four panels, including the neurology and 

oncology panels (Fig 4a), aggregate pQTLs in predefined regulatory regions (Fig 4b) and 

sliding windows (Fig 4c), were enriched in inflammatory panels more than neurology and 

oncology panels. When limiting the analysis to promoters or enhancers we saw evidence for 

greater tissue and process specificity for enhancers. For example, single variant associations 

in promoters were enriched in all four panels (Fig 4d) but those in enhancers were only 

enriched in the cardio-metabolic panel (Fig 4g). Across the tissue types tested, we did not 

observe consistent enrichment for any specific tissue across the different analyses except in 

enhancers in the sliding-window analysis (Fig 4i) where the largest enrichment was seen for 

pancreas, vessel, liver, and heart tissues. 

Fig 4. QQ plot for enrichment of loci within Ensembl predicted active regions within 

tissue groups. Empirical one-sided P-values for enrichment of signals within Ensembl 

predicted active regions within 22 tissue groups and four OLINK protein panels. Sub-figures 

a), d), and g) show enrichment for single variants, panels b), e), and h) show enrichment for 

Ensembl regulatory region based aggregate tests, and panels c), f), and i) show enrichment 

for sliding-window based aggregate tests. Panels a), to c) show enrichment within all 

predicted active regions, panels d) to f) for promoters, and g) to i) for enhancers. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.565589doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565589
http://creativecommons.org/licenses/by/4.0/


 

To determine which circulating protein measures were consistent across different platforms, 

Eldjarn et al (2023)12 additionally compared the output of Olink (Explore 3072) technology 

with SomaScan v4 in 1,514 individuals of inferred Icelandic ancestry with whole-genome 

sequencing data. Based on the correlation between circulating protein measures across the 

platforms, and the similarity of lead cis pQTLs associated with the two measures, they 

identified 551 (out of 2,931) proteins as highly concordant (confidence tier 1 in their ST29). 

Of the 1,450 proteins (26.9%) in our study, 390 were highly concordant between the Olink 

and SomaScan technologies. Our pQTL associations, including those involving non-coding 

aggregate-based tests, were enriched in these 390 proteins. These 390 proteins represented 
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27% of the proteins we tested but included 37.8% (test of two proportions P = 1.45x10-14) of 

all our pQTLs and 42.2% of non-coding aggregate based pQTL associations (P = 1.31 x10-

11). 

Discussion 

Using circulating protein levels as exemplar traits, we have shown that the analysis of WGS 

data enables the discovery of multiple rare non-coding variants and aggregates of rare 

variants associated with common phenotypes. Importantly, WGS data enabled us to consider 

more than six times the number of variants than would have been possible through single 

variant testing and identify associations between aggregates of rare variants and common 

phenotypes, using methods analogous to those used to aggregate coding variants in exome 

sequencing studies. The presence of multiple rare non-coding associations is consistent with 

the presence in the non-coding genome of most common variant associations identified by 

GWAS.  

We have identified hundreds of novel non-coding rare aggregate and single variant 

associations with one of 1,450 measured protein levels in cis-windows 1Mbp either side of 

the cognate gene. We show that the effect sizes of non-coding associations can have similar 

absolute values compared to coding associations but are more balanced between circulating 

protein increasing and decreasing effects. We show that a single non-coding intronic deletion 

in ASGR1 is associated with at least 281 distinct protein measurements, potentially by 

impacting glycoprotein turnover. Eldjarn et al. (2023)12  also identified 212 circulating 

proteins associated with this variant, and Dhindsa et al. (2023)13 identified 186 circulating 

proteins associated with coding variants in ASGR1, highlighting ASGR1 as a potentially key 

regulator of glycoproteins. 

We demonstrate that the 5’UTR and predicted intronic splice acceptor/donor sites were 

enriched for rare non-coding pQTL variants, whereas we observed a depletion of downstream 

genetic variants associated with pQTLs. Our results suggest that, where statistical power is 

limited, variant-association discovery could be prioritised in those regions where we observed 

an enrichment of association signals.  

We additionally demonstrated the power of aggregate testing for non-coding regions, akin to 

work already done to aggregate functionally similar variants in coding exons. By testing rare 

genomic aggregates of non-coding elements, grouped by (for example) conservation, 
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constraint, or predicted regulatory activity, or using sliding windows, we identified a further 

55 conditionally independent regions of interest not identified by single variant testing alone.  

Compared to aggregate based coding associations, non-coding genomic aggregate 

associations were enriched for regions with bi-directional effect and association tests that 

allow a large fraction of variants to be non-causal. This observation is consistent with the fact 

that prediction of variant effects and functional regions is less precise in the non-coding 

genome compared to the coding genome. However, the fact that we have identified non-

coding associations with current annotations and data indicate that more discoveries in 

common phenotypes are likely as functional annotations improve and population genetic data 

accumulates. 

We have also made some important advances for conditional analyses when considering non-

coding aggregates. Due to the complex nature of linkage-disequilibrium (LD), it is extremely 

difficult to determine (without additional data or functional work) whether a coding signal is 

driving a non-coding signal, or vice-versa. To mitigate against this effect, we took a 

conservative approach and conditioned on all coding variants for the cognate gene. Where the 

cognate gene is not known, it may be necessary to condition on all coding variants within a 

pre-specified window determined by LD patterns.  

There were a number of limitations to our study. First, we were not able to replicate our 

results in a separate study as we did not have access to similar data from other studies. 

However, a large proportion of our associations reached levels of statistical confidence far 

below our threshold. Furthermore, we observed an enrichment of associations for the 390 

circulating proteins which showed high concordance between technologies, and effect sizes 

were consistent in the individuals of African and South Asian ancestry. Second, we cannot be 

certain that we have accounted for all possible sources of residual confounding by LD with 

coding or common variants. However, it is unlikely our associations are substantially affected 

by residual confounding from coding variants because they have very different features 

including the much more equal distribution between trait increasing and decreasing effects 

compared to coding associations. Third, the majority of our discovery analyses were limited 

to individuals of European ancestry because we only had access to both WGS and Olink data 

from 881 individuals of non-European ancestry. However, within the samples available, we 

did identify variants not detected in the individuals of European ancestry and observed strong 

correlation between effect sizes across the three main ancestries. Fourth, all circulating 
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proteins were measured in blood. Although a large portion of tissue-specific proteins are only 

expressed in those specific tissues, we were limited to considering circulating protein levels. 

Finally, we limited our analysis to cis windows to limit the number of tests performed. There 

are likely to be many trans effects driven by rare non-coding variants that have not yet been 

detected. 

In conclusion, using an exemplar, biologically proximal trait of circulating protein 

measurements, we have shown that there are likely to be a large number of rare non-coding 

variants with large effects on complex phenotypes waiting to be discovered. 

Methods 

UK Biobank and Whole Genome Sequencing 

The whole genome sequencing performed for UKB had an average coverage of 32.5X, with a 

minimum of 23.5X, using Illumina NovaSeq sequencing machines provided by deCODE27. 

The genome build used for sequencing was GRCh38: single variant nucleotide 

polymorphisms and short ‘indels’ were jointly called using GraphTyper28. deCODE found 

that the number of variants identified per individual was 40 times larger than that found using 

WES in the initial 150,000 release of whole genome sequences. 

Of the 200,000 individuals whose genomes were sequenced, we found, using genetic 

principal components as previously described29, there were 183,803 individuals of European 

ancestry in this subset of the UK Biobank.  

Human Protein Expression Levels 

Protein levels for 1,463 proteins for 54,304 UKB participants were profiled using Olink 

technology, as described in Sun et al 202314, by the UK Biobank Pharma Proteomics Project. 

Quality control procedures were applied to the data before being made available for 

researcher use, including outlier removal etc. Protein levels were additionally log-2 

transformed before release. After quality control filtering, 54,189 individuals with protein 

expression data were approved for analysis. Sun et al found no evidence of batch or plate 

confounding effects. Of the 10,248 genetic variants reported by Sun et al, we successfully 

lifted 10,243 to human genome build 38 using UCSC liftover30. In total, 10,193 (99.5%) of 

those genetic variants were also present in the UKB whole-genome sequencing data. Of that 

subset, 1,145 genetic variants previously identified lay within the cis-window considered 

here. 
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Genetic Data Format 

We performed a multi-allele splitting procedure on each of the 60,648 pVCF whole genome 

sequencing files provided by the UK Biobank using bcftools31 and then converted those 

pVCFs to plink32 (v2.0) pgen/var/fam format. All plink files which contributed to a 

chromosome were then merged to generate a single per-chromosome genotype file.  

Genetic Variant Exclusion 

We excluded all variants from our association analyses if GraphTyper, the software used to 

by UK Biobank to perform genotype calling, assigned an AAScore which was less than 0.527, 

denoting variant quality.  

Association Analyses 

We performed both single variant and aggregate tests within cis loci for each of the 1,463 

proteins measured in UKB. To define the cis-window, we first mapped each protein to a 

coding gene (see ST1 for a small number of exclusions), and for each gene determined the 

longest transcript recorded by Ensembl. Based on the longest transcript, we then defined the 

cis-window as a 1Mb window either side of the 5’ and 3’ UTR of the transcript gene (limited 

by the beginning and ends of chromosomes), as well as the variants within the coding and 

intronic sequences. All association analyses were corrected for age, sex, age squared, UK 

Biobank recruitment centre (as a proxy for geography) the first forty genetic principal 

components, whole-genome sequencing batch and Olink plate.  

Single Variant Association Testing 

To identify cis single variants associated protein levels we first performed an association test 

for all genetic variants with a minor-allele-count of at least 5 using regenie33 (v3.14) in the 

cis-window. Lead variants were then selected in a conditional-joint analysis using GCTA-

CoJo20 (diff-freq = 0.2, cojo-p = 1x10-9), with the UK Biobank whole-genome sequencing 

data, limited to individuals with proteomic data, as an LD reference panel. 

If any lead conditionally-independent variant derived by GCTA-CoJo had an absolute joint-

beta > 4 (determined by the limits of a normal distribution with 20,000 samples), we instead 

performed forward-stepwise conditioning. Forwards stepwise selection was performed by 

repeatedly performing association analyses at the single variant level: if any variant in each 

run was study-wide significant, we selected the variant with the highest p-value and re-
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performed association analyses conditional on that variant (and all previously selected 

variants).  

Rare Variant Genomic Aggregate Testing  

To identify non-coding, potentially regulatory regions of the genome which were 

insufficiently powered for single variant analysis, we subsequently performed non-coding 

rare-variant (minor allele frequency <0.1%) genomic aggregate association grouping variants 

according to proximal 5’, proximal 3’ or intronic. To test whether non-coding rare variant 

aggregate signals were caused by / confounded by residual LD and haplotype structure with 

common variants and or single variant signals we performed the following steps for each rare 

variant aggregate test result reaching Bonferroni p <0.05: 

1. To generate our primary non-coding discovery results we adjusted for the 

common lead variants identified as independent signals in the joint (COJO) analysis 

(at MAF >0.1% ~ MAC 40) AND adjusted for all genetic variants (regardless of p 

value) which we had annotated as coding in the gene which mapped to the protein of 

interest 

2. To identify independent non-coding aggregate associations, we performed a 

forward stepwise regression. Starting from the most-strongly associated (genome-

wide) non-coding aggregate (by p-value), per-protein, we perform an additional non-

coding aggregate-testing run for any genome-wide significant aggregate adjusted for 

all variants in the top signal. This process is repeated, with more variants added, until 

no aggregate is genome-wide significant. 

3. To establish the extent to which our primary aggregate discovery results could be 

due to a single low-frequency lead variant, we identified aggregate associations 

containing exactly one lead genetic variant.  

4. As a sensitivity step, to establish the extent to which these results could be due to 

confounding linkage disequilibrium, we performed a further step where we adjusted 

for all pQTL single variants identified 

Genome unit testing was performed for variants with a maximum allele frequency threshold 

of 0.1%, using regenie, based on the genetic units specified in Table 1. regenie performs four 

types of genome unit tests: 

1. Standard BURDEN tests, under the assumption that each variant in a given gene unit 

mask has approximately the same effect size and sign on the phenotype 
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2. SKAT tests, where the sign of association of each variant in the unit is allowed to 

vary 

3. ACAT tests, where the sign of association of each variant in the unit can differ, and 

only a small number of variants in the mask need be associated 

4. ACAT-O, which is an omnibus test of BURDEN, SKAT and ACAT that aims to 

maximise the statistical power across the three tests 

We performed each of the four statistical tests above for each mask for which a genome unit 

has at least one variant. Additionally, a singleton association test was performed for all 

variants with MAC=1 in each unit. regenie also estimated an `all-mask` association strength 

for each genome unit, which is an aggregation of the test statistics of the individual masks. To 

ensure that this did not result in a mixing of non-coding and coding association statistics, we 

split each gene transcript into a coding transcript, which we tested for all coding masks, and a 

proximal transcript that we tested for all proximal masks. Regulatory genome units were 

either classified by their ENSR assignment, by the extent of a 1kb constrained window, or a 

phastCon conserved window. We named sliding windows masks by the region of the 

respective chromosome that they covered. 

Genetic Variant Annotation 

We annotated all genetic variants using Variant Effect Predictor (VEP). Where possible, we 

assigned each variant to one of three classifications: coding, proximal-regulatory or 

intergenic-regulatory. A variant was classified as coding if it had an impact on an exon of 

any transcript; proximal-regulatory if the variant lay within a 5kbp window around a 

transcript or an intron, and was not already a coding variant in any transcript, and finally 

intergenic-regulatory if the variant fell within a conserved, constrained, non-coding exon 

region (details below), and was neither proximal or regulatory. We additionally tested 

variants in sliding windows of size 2000 base pairs, regardless of the number of variants in 

each window, with proximal and coding variants excluded to minimise hypothesis overlap. 

We then assigned each variant to groupings, which we refer to as masks, according to 

their predicted consequence and location. We used five published variant scores to group 

variants by consequence: 

1. Genomic Evolutionary Rate Profiling (GERP) 
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The GERP score is a measure of conservation at the variant level18. We classified a 

variant as highly conserved if it had a GERP score >2. 

2. phastCon score 

phastCon is a window-based measure of conservation across species34: either strictly 

mammalian (phastCon 30), or for all species (phast_100). We tested non-coding 

genome windows, i.e. excluding any window containing an exon, that had a phastCon 

score in the top percentile. 

 

3. Constrained Score 

Constraint was calculated in windows of size 1kbp6 based on the local mutability and 

observed mutation rate of each window. We tested windows with a constraint z-score 

greater than or equal to four.  

4. SpliceAI score  

The SpliceAI score35 is a measure of how well predicted each variant within a pre-

mRNA region is of being a splice donor/acceptor, or neither. A variant was classified 

as a splice site with high confidence if it had an AI>70. 

 

5. Combined Annotation Dependent Deletion score (CADD) 

The CADD score19 predicts how deleterious a variant is likely to be. We applied the 

CADD score only to coding variants and considered loss-of-function variants only if 

tagged as high confidence by VEP. Missense variants with CADD>25 were 

segregated for testing in a separate mask. 

 

6. JARVIS Score  

The JARVIS score was derived to better prioritise non-coding genetic variation for 

association study, based on a machine learning model derived from measures of 

constraint17. 

Each genome mask consisted of a number of variants with different consequences, based on 

their location, one of the above scores and/or predicted coding consequences. For example, 

for a variant to be classified as missense CADD>25, it must change a codon of an exon of a 

gene transcript and be predicted to be highly deleterious. 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.04.565589doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.04.565589
http://creativecommons.org/licenses/by/4.0/


In Table 1 we present the full list of consequences assigned to each mask and 

classification. 

 

CLASSIFICATION MASK CONSEQUENCES 

Proximal 

 

3`UTR 3` UTR 

3` UTR (GERP>2) 3` UTR (GERP>2) 

5` UTR 
5` Start Gained, 5` Start Lost, 5` Start 

Rest 

5` Start Gained 5` Start Gained 

5` Start Lost 5` Start Lost 

Conserved and 

Intronic 
Constrained 

Downstream Any Downstream 

Downstream and 

conserved 
Downstream with GERP>2 

Downstream and 

deleterious 
Downstream with CADD>25 

Downstream and 

constrained 
Downstream with JARVIS > 0.99 

Intron Splice Variant 

with AI>70 

Intron Splice Acceptor gain/loss with 

AI>70, Intron Splice Donor gain/loss 

with AI>70 

Splice Variant Splice Region Variant 

Upstream and 

conserved 
Upstream Variant (GERP>2) 

Upstream and 

deleterious 
Upstream Variant (CADD > 25) 

Upstream and 

constrained 
Upstream Variant (JARVIS > 0.99) 

Upstream Variant Upstream Variant 

RNA Non-coding exon variant 

Regulatory Conserved, Constrained and Conserved 
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 Constrained and 

Intergenic 

Conserved (GERP 

>2) Constrained and 

Intergenic 

Constrained and conserved with GERP 

>2 

Regulatory Region 

Variant 
Regulatory Region Variant 

Conserved 

(phastCon 30) 

Top 1% conserved variants in 

phastCon 30 window 

Conserved 

(phastCon 100) 

Top 1% conserved variants in 

phastCon 100 window 

Phastcon100&30 and 

Conserved 

Any phastcon variant (top 1%) for both 

phastcon 100 and 30 and conserved 

(GERP>2) 

Phastcon100 and 

Conserved 

Phastcon100 (top 1%) and conserved 

(GERP>2) 

Phastcon30 and 

Conserved 

Phastcon100 (top 1%) and conserved 

(GERP>2) 

Phastcon100 and 

Conserved at any 

level  

Any phastcon variant (top 1%) for 

phastcon 100 and conserved 

Phastcon30 and 

Conserved at any 

level 

Any phastcon variant (top 1%) for 

phastcon 100 and conserved 

RNA Non-coding exon variant 

Coding 

 

Synonymous Synonymous 

Missense Missense 

Missense with 

CADD>25 
Missense variant (CADD>25) 

LoF High Confidence Loss of Function 

Splice Region Splice Region Variant 

Highly Damaging 

Splice Region 
Splice region variant (spliceAI > 0.7) 
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Table 1 Genetic variants included in each grouping. UTR = Untranslated Region, 3` = 

variants at the 3` end of a transcript, 5` = variants at the 5` end of a transcript, GERP = 

Genomic Evolutionary Rate Profiling score (a measure of conservation), Start Gained/Lost = 

the inclusion or removal of a start codon, Downstream = downstream of a transcript, CADD 

= Combined Annotation Dependent Deletion score, AI = Splice AI (AI) score. 

We re-assigned variants that fulfilled two distinct criteria within a given genome unit to avoid 

duplication. In these cases, a variant was re-labelled as a combination of the two criteria and 

were assigned to any mask which selects variants from at least one of those criteria. 

Pseudo Genes 

We assigned variants to pseudo gene transcripts if they contained pseudo-exons. However, 

pseudo exons were not excluded from proximal regions of non-pseudo gene associations, 

instead being tested as a regulatory genome unit. If a pseudo-exon overlapped with any 

significant genome unit signal, we performed a bespoke analysis.  

Heterogeneity Calculations 

We used the R-package metafor36 to calculate all heterogeneity p-values between effect 

estimates, under the assumption of a fixed-effects model.  

ENSEMBL Regulatory Region Enrichment 

We calculated the enrichment of overlap for both single variants and aggregate regions with 

ensemble regulatory regions, which are available for 118 tissues/cell-lines from 

ENSEMBL23. For each tissue, ENSEMBL additionally provide predictions on whether each 

region is active (or inactive, suppressed etc), and the type of regulatory activity (promoter, 

enhancer, CTCF binding site, TF binding site, open chromatin region). We subsequently 

exclusively considered regions that were predicted to be active, excluded cell-lines and 

cancer-derived tissues, and grouped the remaining tissue-types into 22 supergroups (see 

ST9). At the protein level, olink additionally grouped each protein into one of four panels 

(neurology, cardiometabolic, inflammation and oncology, as per the original publication14. 

To determine the statistical enrichment, we performed bootstrapping over 10,000 simulations. 

For each simulation, we randomly selected a number of rare non-coding variants/aggregates 

determined by the set of our rare non-coding single-variants/aggregate tests from the cis-

regions of the genome which we tested for association. We then determined the overlap of the 
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randomly selected set of variants/aggregates with any of the regulatory regions (we re-

performed this for each stratum of panel and tissue-type) and compared the distribution of the 

number of overlaps for any simulation with the number overlapping in our independent 

associations. We then assigned an empirical p-value to the observed overlap.  
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