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Abstract

The role of non-coding rare variation in common phenotypesis largely unknown, dueto a
lack of whole-genome sequence data, and the difficulty of categorising non-coding variants
into biologically meaningful regulatory units. To begin addressing these challenges, we
performed a cis association analysis using whol e-genome sequence data, consisting of 391
million variants and 1,450 circulating protein levelsin ~20,000 UK Biobank participants. We
identified 777 independent rare non-coding single variants associated with circulating protein
levels (P<1x10™), after conditioning on protein-coding and common associated variants.
Rare non-coding aggregate testing identified 108 conditionally independent regulatory
regions. Unlike protein-coding variation, rare non-coding genetic variation was aimost as
likely to increase as decrease protein levels. The regions we identified overlapped predicted
tissue-specific enhancers more than promoters, suggesting they represent tissue-specific
regulatory regions. Our results have important implications for the identification, and role, of

rare non-coding variation associated with common human phenotypes.
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I ntroduction

Rare genetic variants in non-coding regions of the human genome can cause severe rare
disease™?, but their role in common, complex traitsis still largely unknown. Array-based
genome-wide association studies (GWAS), which use imputed genotype measures, have
identified tens of thousands of common variant associations with human disease®, the
majority of which are located outside of coding regions’. However, efforts to identify rare
variants associated with common phenotypes have been largely limited to the coding regions,
using exome sequencing data. This limited progress is due to the lack of whole-genome
sequence datain large studies and the difficulty of defining biologically meaningful non-

coding regulatory genomic units.

The analysis of whole-genome sequencing (WGS) data could provide important insight into
relevant genes and their regulation that complements the knowledge gained from exome
sequencing and array-based studies. WGS alows us to examine the role of intronic, proximal
and distal regulatory elements, and covers the entire allele frequency spectrumin a
population, including a very large proportion of variants that are observed only once or twice

even in avery large sample.

The identification of non-coding regulatory elements could provide important insight into the
tissue-specific roles on the regulation of nearby genes. There is considerable evidence that the
non-coding genome is functionally important. For example, based on population genetic
metrics such as constraint, the amount of non-coding DNA that is functional could be 4-5x
greater than the amount of coding sequence®, and 10% and 6% of promoters and enhancers
respectively are under as much mutational constraint as coding regions’. Enhancers have also

been shown to be more tissue-specific than promoters’.

There are very few studies of WGS data in the context of common phenotypes. Recent
examples from TOPMed® have considered lipid-levels”° (N = 66,000) and blood pressure™
(N = 51,456) but found few novel signals, possibly because of the complexity of the
phenotypes and relatively small sample sizes for the detection of novel disease-associated

rare variants.
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The UK Biobank’s (UKB) release of circulating protein data, in combination with WGS,
provides an unprecedented opportunity to test the impact of rare non-coding genetic variation
on common, biologically proximal, and well-measured human phenotypes. Three recently
published studies'®™* described the 2023 release of this data on up to 2,923 circulating
proteinsin 54,306 individuals. These studies focused on conventional array-based GWAS
approaches or exome sequencing, analysing between 0.5 million and 58 million variants, but
did not attempt to use the full range of allelic variation consisting of >700 million variants
available in the WGS data. These studiesidentified alarge number of pQTLs (protein
Quantitative Trait Loci) including with rarer single variants and coding variants. Firstly,
Eldjarn et. al (2023)" identified 30,062 pQTLsin asingle-variant analysis of genetic data
imputed from the UKB 150,119 whole-genome sequences with 2,931 measured protein levels
and compared results with proteomics derived from an Icelandic cohort with whole-genome
sequences. Secondly, Dhindsa et al. (2023)" identified 5,433 pQTLs in an exome-sequencing
analysis, and performed aggregate testing within the coding regions, identifying 1,962 gene-
protein associations. Finally, Sun et al (2023)* identified 14,287 pQTL single-variants using
a conventional GWAS of array-based imputed data.

Using WGS data and circulating protein levels as exemplar traits, we tested two related
hypotheses: 1) non-coding single variants, not currently detectable by GWAS array or exome
seguencing, contribute to common human phenotypes with similar effects to coding variants,
and 2) we can identify aggregates (groups) of rare non-coding genetic variation in regulatory
regions of the genome associated with human phenotypes, akin to gene-level collapsing
analyses in exome sequences. Importantly, and in contrast to the previous three papers on the
UKB proteomic data, we used the full range of DNA sequence variation detected with short
read WGS, providing information on ~400 million variants, but limited the search for each

phenotype to cis regions around the protein-coding gene from which the protein derived.
Methods Summary

We performed primary discovery association analyses for 1,450 measured circulating protein
levels using annotated WGS data on 20,038 individuals of inferred European genetic ancestry
from the UK B, a population cohort from the United Kingdom. The vast majority (95.6%) of
samples were of genetically-inferred European genetic ancestry. Thirteen proteins that were
either fusion proteins or did not directly match to an HGNC gene symbol were excluded

(ST1). For each measured protein, we performed both single variant (minor allele count
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(MAC) > 5) and genomic aggregate association tests (minor allele frequency (MAF) < 0.1%)
in acis-window around the gene coding for the protein, extending IMb from the 5" and 3’
untranslated regions (UTRs), based on the most extreme 5" and 3' ends of any transcript of
the gene. We used 1Mbp as the approximate distance recently identified as the boundary
between when apQTL is more likely to be a cis rather than trans association™. Circulating
protein level measurements were rank-inverse normalised at runtime, and age, age squared,
sex, recruitment centre, 40 genetic principal components and Olink batch ID wereincluded as
covariates (M ethods). In total, we tested 52,925,315 single (including single nuclectide
variants and small insertions/deletions) and structural variant-protein associations. We
identified independent variant associations by a combination of joint-modelling and forward-
stepwise selection (M ethods).

We annotated all genetic variants using Ensembl’s Variant Effect Predictor (VEP)*®
(Methods) and used the output to categorise variants as gene-centric (e.g., coding, predicted
intronic splicing, proximal-regulatory) and intergenic-regulatory (e.g., Ensembl regulatory
regions, non-coding RNA) for aggregate-based association testing. Additionally, we
performed aggregate testing on all non-coding (excluding proximal regions, to minimise
overlap) variants in overlapping (1kbp overlap) 2kbp sliding windows. We additionally sub-
categorised variants within a subset of aggregate units by measures of constraint (JARVISY),
conservation (GERP*®) and/or predicted deleteriousness (CADD™). To identity independent
rare non-coding genomic aggregate associations, we adjusted non-coding aggregate tests for
common lead variants (MAF > 0.01), and all variants annotated as coding within the gene
coding for the protein itself, which we henceforth refer to as the cognate gene, regardless of
variant frequency. In total, we included 390,822,449 variants within our aggregate test
analysis, with amean of 179,319 per cis locus (approximately one variant per 10bp).

Results

We identified 1,425 rare variants associated with 1,450 circulating protein levels, with
consistent effect estimates across multiple genetic ancestries

We identified 5,997 cis pQTL associations (MAC > 5), 117 of which were structural variants
(Figs. 1&2; ST2). We identified at least one cis association for 1,126 proteins, with amedian
of four independent pQTLSs per circulating protein. One hundred and seventy circulating

proteins were associated with >10 independent pQTLs, including a maximum of 38 for lair2.


https://doi.org/10.1101/2023.11.04.565589
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.04.565589; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

The mean variance (within sample) explained jointly by all independent cispQTLs for a
given protein was 7.22%, with a median of 2.07%, similar to the estimates previously
reported by Sun et al**. Of the 5,997 variant associations identified, 937 (15.9%) werein the
rare frequency range (0.1% < MAF < 1%), and 488 (8.3%) were very rare (MAF < 0.1%).
We refer to the 1,425 lead variants in both frequency bins as rare pQTL variants forthwith.

We additionally performed single variant testing for 430 and 451 individuals of genetically-
inferred South Asian and African genetic ancestry respectively with both WGS and Olink
proteomic data. Across the three genetically inferred genetic ancestries considered
(European: EUR, South Asian: SAS and African: AFR), we observed a strong correlation of
effect sizes for pQTLs in the EUR analysis between EUR and SAS individuals (r = 0.902),
and weaker correlation between EUR and AFR individuals (0.646) and AFR and SAS
individuals (0.645). Despite the much smaller sample sizes available for the SAS and AFR
analyses each identified 100 independent pQTL variants (ST 3), although power was limited

to identify the full spectrum of pQTL variants across each cis locus.

We compared our single variant pQTL results with those of Eldjarn et al (2023)*?, who
analysed genomic data imputed from 150,119 UK B whole genome sequences in the 54,306
individuals with proteomic data. We found 2,586 of our 5,997 cis-pQTLs (42.8%) werein
strong linkage-disequilibrium (r? > 0.8) with at |east one of their signals for the same
circulating protein. The overlap was larger (723 out of 1425; 50.7%) when considering only
rare variants (MAF < 1%). There were 57 (3.93%) circulating proteins for which we
identified more cis-pQTL variants than Eldjarn et al, and 1,057 (72.9%) proteins where they
identified more variants. These differences may be partly driven by the sample size
difference, and by differences in methods for conditional analysis: their analysis used forward
stepwise conditional analysisto define conditionally independent pQTLSs, while we
performed both forward- and backward-conditional analysis steps implemented in GCTA
CoJo®. It islikely that these differences in methodology have led to the differencesin
associated pQTLs between the two studies, highlighting the difficulties of interpreting

multiple independent associated variants at the same locus.

Fig 1. Manhattan plots showing associ ations between cis variants and regions with
circulating protein levels, after adjusting for associated common variants and all coding
variants of the cognate gene. The x-axis represents genomic position, and the y-axis shows —

l0g10(p) for our cis results across all proteins, split into a) single variants, b) coding
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aggregates, ¢) gene-centric regulatory (proximal) aggregates, d) intergenic regulatory
aggregates and e) sliding window aggregates. Red lines represent Bonferroni significance
thresholds.
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The majority of rare coding pQTLs are associated with reduced circulating protein levels

As an additional validation step, we tested whether coding variants within the cognate gene
were associated with circulating levels of the protein. As expected, and consistent with the
recent exome sequencing study™, 98.6% of pQTLs annotated as high-confidence |oss-of -
function as defined by LOFTEE? were associated with reduced circulating protein levels
(ST2). The average effect of loss-of-function variants was -0.94 SD, equating to a reduction
of raw circulating protein levels to approximately half (53.2%), with some notable exceptions
(Extended Table 1). Consistent with variants in the last exon escaping nonsense mediated
decay?, the estimated effects of |oss-of-function variants were weaker towards the 3' ends of
the gene (SF1). Missense variants were associated with a much weaker effect, reducing
circulating protein levels by 15.7% on average (SF1) and, as a negative control, the average

effect of synonymous variants was close to zero.

Relative to the background proportion, defined as the full set of coding variants tested, we
observed an enrichment for rare pQTL variants annotated as loss-of-function (OR = 5.22
[4.24, 6.41], difference in proportion for rare pQTLs (AP) = 10.82%, Fisher’s exact
P=1.16x10"%) and missense variants (OR = 2.19 [1.84, 2.60], AP = 17.6%, P=4.71x10"").
We additionally observed a depletion of splice-region (OR = 0.431[0.294, 0.612], AP = -
7.60%, P=9.23x10"%%) and synonymous (OR = 0.0958 [0.0616, 0.14], AP = -20.80%,
P=8.39x10'") variants.
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Fig 2. Effect sizedistributions of rare pQTL variants. Effect sizes for rare pQTL variants
versus minor-allele-frequency for a) coding and b) non-coding pQTLs, and stratified by
predicted consequence for ¢) coding variants in the cognate gene, d) cognate (variants

annotated as regulatory for the protein-coding gene) non-cognate non-coding pQTLS.

a) Coding MAF vs. Effect Size

b) Non-coding MAF vs. Effect Size
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We also performed aggregate-based association tests of variants within protein-coding genes.

Aggregate based testing of rare coding variants identified 523 genes associated with
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circulating protein levels after adjusting for common (>0.1%) pQTLs from our single variant
analysis (ST4). These genes were identified from 746 gene-protein associations, the majority
based on including high-confidence loss-of-function variants alone (245; 32.8%), or all
missense variants (291; 39%). Thirty-eight of these genes were not identified by the exome
sequencing analyses performed by Dhindsa et al (2023) (ST5), potentially due to differences

in sequencing coverage.

The majority of rare non-coding pQTL variants are upstream of the cognate gene and are

almost as likely to increase as decrease circulating protein levels

We identified 777 independent rare non-coding single variant-protein associations with one
of 354 proteins (Figs. 1& 2; ST6). We dtratified rare non-coding pQTLs into cognate and
non-cognate groups based on annotation and most severe annotated consequence®, with
priority given to annotations relative to the cognate gene. Of the 777, 551 (70.9%) were
annotated as regulatory for either the cognate or another gene (Figs. 2d and €), and 226
(29.1%) were not assigned to a gene-centric or non-gene-centric annotation category (Fig. 2e
“Unannotated”).

These non-coding variants had an average absolute effect of 1.19SD (median 0.975SD),
equating to 64.1% and 85.1% of the average absolute effect of rare loss of function and

missense pQTLs on circulating protein levels respectively.

Rare non-coding pQTLs were distributed across the cis loci, with maximum distance from the
cognate gene of 999 kb, and 247 of them (31.8%) were annotated as within a proximal or
regulatory sequence of a neighbouring (non-cognate) gene but not the cognate gene itself
(SF2). The single most strongly associated non-coding rare pQTL was located closest to, or
in, the cognate gene 44.1% of the time.

Rare non-coding pQTLs were more evenly distributed between circulating protein increasing
and decreasing effects (mean = -0.224, P sign = 8.08x10°®% Fig 2d and €), where ‘P sign’ is
the p-value for a sign test, with effect sizes more balanced in the 551 annotated non-coding
variants (mean = -0.162, P sign = 2.83x10°%, Fig 2d and €), compared to rare coding pQTLs
(mean = -1.05SD, P sign = 8.77 x10™).

Non-coding rare pQTLs annotated as regulatory for the cognate gene (252; 32.4%) were

more likely to occur in the upstream region of the gene than the downstream region. We
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observed that 120 (47.6% of 252) associ ations were annotated as upstream, 35 inthe 5’ UTR

(13.9%), 6 (2.43%) predicted intronic splice acceptor/donor sites, 19 (7.69%) inthe 3' UTRS,
58 (23.0%) downstream and 14 (5.6%) in non-coding exons. The remaining 67.6% of signals
were non-coding variants that were closer to, or resided within the intron of, a gene other than

the cognate gene (ST 2).

We then tested for enrichment withing different annotation categories for variants annotated
as regulatory for the cognate gene (252/777). Based on the most severe predicted
conseguence for each individual variant tested in any cis-window, with consequences related
to the cognate gene prioritised over conseguences on other genes, we observed an enrichment
for lead variants annotated in the 5 UTRs (difference in abundance between background and
lead variants, AP = 11.9%, Fisher's exact P=5.89x10°), and intron splice sites (AP = 2.38%,
P=1.53x10""). We additionally observed a depletion of downstream proximal variants (AP =
-15.3%, P=3.40x10") (Fig. 3a). We did not observe any evidence for enrichment for 3’ UTR
variants (P = 0.710), cumulatively suggesting that regulation of translation initiation is more
important to protein levels than regulation of transcription termination or mRNA stability.
We did not observe any significant enrichment when considering rare non-coding pQTLSs that
were annotated as regulatory for another gene (the non-cognate gene; 247/777) in the cis
window, suggesting the majority of these pQTLs were unlikely to be operating through a
separate gene, and are distal regulatory elements for the cognate gene (Fig. 3b).

Given the challenges of grouping, analysing, and interpreting non-coding variants, we were
interested in comparing the utility of several different computational metrics for variant
prioritisation. Comparing the distribution of three widely-used measures of deleteriousness
(CADD™), inter-species conservation (GERP') and human variation constraint (JARVIS")
between non-coding pQTLs and all variants tested, we observed enrichment for
deleteriousness (ACADD = 2.25%, P = 7.06x10™), and constraint (AJARVIS = 8.89%, P =
2.96x10), but not conservation (SF3). The observed enrichment was strengthened when
considering only pQTLs annotated as regulatory for the cognate gene (ACADD = 4.97%, P =
2.60x10™, AJARVIS = 17.4%, P = 3.92x10 ). Although we did not test the performance of
other algorithms that aim to predict variant deleteriousness, most metrics - particularly of
conservation - are primarily trained on the coding region, and better methods for variant

prioritisation in the non-coding genome are urgently needed.
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Fig 3. Distribution of annotations of lead pQTL non-coding variants compared to all
variants tested. Proportion of variants in sets of lead variants (dark blue) compared to all
variants tested (light blue), stratified by whether a variant was annotated to the cognate gene
(@) or not (b). p-values are derived from Fischer’s exact test, only nominally significant
(P<0.05) p-values are shown.
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A downstream variant produced the largest effect size observed for an annotated rare

pQTL, and another single intronic ASGR1 variant was associated with 281 measured

protein levels

Of the 777 rare non-coding variant-protein associations, 136 (17.5%) and 245 (31.5%) had
absolute effect sizes larger than the average rare annotated pQTLs annotated as |oss of
function (mean absolute beta = 1.87SD) and missense (mean absolute beta = 1.41SD)
respectively. The rare pQTL with the largest effect size was un-annotated and non-coding:
1:203482673:C:T, an intronic variant of PRELP, increased measured circulating levels of
PRELP (beta = 3.89SD [4.47, 3.31SD], MAF = 2.85x10*, P = 2.09x10™). Further, the rare
annotated pQTL with the largest effect size was also a non-coding variant:
19:51129025:1G:C:CTT, adownstream of SGLEC9, which results in reduced measured
levels of SIGLEC9 (beta= -3.75SD [-4.27, -3.23SD], MAF = 2.85x10* P = 2.09x10™). In
contrast, the largest observed coding effect was -3.44SD.
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The 5'UTR variant with the largest change in protein levels was 18:597095:G:C, which
increased circulating CLUL1 levels (beta= 2.55SD [2.22, 2.88SD], MAF=8.36x10"*, P =
5.29x10"%). This conserved position (GERP = 0.953 - M ethods) impacts the 5’ UTR of
CLUL1 (c.-48G>C, ENST00000400606.6 Clusterin-like protein 1), potentially creating a
non-canonical (ACG) start site leading to anovel upstream open reading frame.

The 3'UTR variant with the largest effect size was 22:17110069:A:C, which increased
circulating levels of IL7RA (beta= 3.51SD [2.60, 4.43SD], MAF = 1.30x10*, P = 1.24 x10
%) by impacting a conserved position (GERP = 5.06) in the 3' UTR of IL7RA
(ENST00000319363.11:c.*249A>C).

Previous studies have shown that some cis pQTLs can have trans effects on multiple
proteins. We therefore tested the association of each rare non-coding pQTL with each of the
1,450 measured protein levels. Based on the 1,424 identified rare single variants, we
identified 677 additional trans variant-protein associations (ST 7). One rare small non-coding
deletion, 17:7176936:CCCCCAGCCCCAG:C (MAF=0.8%), was associated in cis with
circulating levels of two protein levels at the same locus (CLECL10A and TNFSR10B), and
with 279 proteins in trans. This variant overlaps an Ensembl Candidate Cis-Regulatory
Element (EH38E1844080) and lies within athird gene in the cis locus, in intron 4 of ASGR1,
but showed no evidence of association with ASGRL1 protein levels (P = 0.79). For all 281 (cis
and trans) associations, the deletion was associated with increased circulating protein levels.
Of the 281 proteins associated with this deletion, 275 (98%) were glycoproteins, representing

asignificant enrichment (binomia P < 2.2x10), in line with previous functional analysis*.

This ASGR1 variant has also previously been associated with reduced risk of coronary artery
disease, decreased LDL-C (LDL cholesteral), increased levels of alkaline phosphatase and
vitamin B1,**, and as a chronic inflammation marker®. In the UKB, we replicated the
associations with LDL-C, HDL-C, alkaline phosphatase, and triglycerides (ST8). In an
attempt to determine the causal pathway driving the association between the non-coding
variant and LDL-C we examined the effect of an aggregate of loss-of-function variants
(which would be predicted to decrease circulating protein levels) in each of the 275
associated glycoproteins on LDL-C. The strongest association of |oss-of-function variants
occurred with GAS5 (Growth Arrest Specific 6, beta= 0.496 [0.305, 0.688], P = 3.67x10™),
suggesting that the variant may act partialy through impacting gas6 levels to reduce LDL

levels.
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Aggregate testing identified 108 conditionally independent regulatory regions associated
with bi-directional effectson circulating protein levels, after adjusting for common pQTLs

and coding variation

Using aggregate variant tests, we identified 599 unique non-coding rare variant aggregates
associated with one of 86 circulating proteins after adjusting for common single pQTLs and
all protein-coding variants in the cognate gene (ST9). After a further forward stepwise
conditional analysis (M ethods), 108 conditionally independent rare-variant aggregate non-
coding regions remained (ST 10). The conditionally independent non-coding aggregate-based
tests used to identify these regions included 9 annotated to the 5’ UTR (8.3%), 4 tothe 3'UTR
(3.7%), 31 annotated as gene-centric upstream (28.7%), 16 as gene-centric downstream
(14.8%), 5 as predicted intronic splice acceptor/donor (4.6%), 6 as intergenic regulatory
regions (5.6%), 8 as annotated to a non-coding RNA (7.41%) and 29 sliding windows
agnostic to regional annotations (26.9%).

The majority, 55 (51%), of the 108 conditionally independent non-coding aggregate
associations contained no individual rare pQTLS, suggesting those regions would not have
been identified through single variant analysis. Of the remainder, 50 (46%) contained exactly

onerare pQTL, and 3 (2.8%) contained more than one.

Five of the 108 (4.63%) conditionally independent non-coding aggregate associations were
identified only when selecting highly conserved (GERP>2) variants, and 7 (6.5%) where
identified when selecting highly constrained (JARV1S>0.99) variants. No aggregate
associations were identified when selecting variants on predicted deleteriousness
(CADD>25).

Different aggregate-based tests, before conditional analysis, often located the same
noncoding region, with some identified by different sets of variantsincluded in the test (e.g.
conserved vs all variants), and some identified by overlapping 2kb sliding windows as well as
annotated regions. For example, aggregate based testing of rare variantsidentified 12 non-
contiguous regions across a 1.53Mb cis window associated with circulating levels of the
interleukin receptor, IL17RB. Seven of these regions were each identified by pairs of 2kbp
overlapping sliding windows. Two of these also contained regions annotated by Ensembl as
regulatory which reached our association threshold (ST9). Conditional analysis collapsed
these regions to two independent associations, one upstream of CHDH and RNA variants

near IL17RB. In another example, aggregate based testing identified 20 non-contiguous
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regions across a 1.18 Mb cis region associated with circulating levels of the prostaglandin D
synthase gene. These regions included 5 identified by sliding windows alone, and 15 as
proximal to a gene. Our results thus highlight the need to perform conditional analysis for

aggregate association testing, not only for single variants.

The vast mgjority of rare non-coding aggregate associations were identified by statistical tests
that allow rare variants to be associated with both higher and lower trait values and that allow
alarge fraction of variants to be non-causal. Only three of the 108 (2.8%) rare non-coding
conditionally independent aggregate regions were most strongly associated in a burden
framework that assumes all rare variants result in effects in one direction. Thisisin strong
contrast to coding-based aggregate tests, where 26.4% of unique aggregate tests were
strongest in a burden framework. This difference suggests that rare variants in non-coding
regions are likely to result in amixture of trait increasing and trait decreasing effects, or that
not all variants included in the aggregate test are causal, whereas a greater proportion of rare

variantsin coding regions are likely to be deleterious and causal.

For example, we found that an aggregate of rare non-coding variantsin the 5 UTR of CAPG
which each resulted in an additional start-site (5 UATG gained) decreased circulating levels
of CAPG (beta=-1.23SD [-1.61, -0.851SD], P = 2.06x10™'%). As a second example, rare non-
coding variants with ahigh (>0.7) SpliceAl score in the introns of LRPAP1 decreased
circulating LRPAPL levels (beta = -1.39SD [-1.80, -0.983SD], P = 2.70 x10™).

When selecting only burden aggregates to identify aggregate associations (before performing
conditional analysis within cis aggregates) (ST 11), we identified 37 significant unique
aggregate associations with protein levels. Those aggregate tests altered measured protein
levels by a mean absolute effect size of 1.35SD (signed mean -0.316). As with single variant
rare pQTLSs, the average effect of rare burden non-coding aggregates was considerably more
balanced between circulating protein-increasing and decreasing effects, as compared to
performing the same process for coding aggregates (signed mean = -1.33SD, P difference =
2.23x10™* ST12).

Rare non-coding pQTL variants and aggregates were enriched in tissue-relevant

panels and in proteins measurements with high cross-technology concordance

To determine the degree to which rare non-coding single variant and aggregate based pQTLs

were present in tissue relevant non-coding regulatory regions, we performed two additional
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enrichment analyses. Firstly, we tested the hypothesis that rare non-coding pQTLs were more
likely to beidentified if the relevant protein was part of the cardiometabolic and
inflammatory protein panels, rather than part of the neurology and oncology panels, on the
basis that cardiometabolic and inflammatory processes are more relevant to circulating
proteins. Secondly, we tested the hypothesis that rare non-coding pQTLs would be enriched
in regions annotated as Ensembl regulatory elements in blood and liver cells ahead of 20
other tissue types (M ethods) on the basis that blood and liver would be the tissue types most
relevant to circulating proteins™. We further stratified these analyses by type of regulatory
region —testing all regulatory regions, promoters, enhancers, transcription factor binding sites
and CTCF binding sites.

Results of these tissue specific enrichment tests, separated by 22 tissue types and 4 panels,
are presented in Fig 4 (ST 13-18), and show that rare single variant and aggregate based non-
coding pQTLs are enriched for proteins classified into tissue/process relevant panels.
Furthermore, the results indicate that aggregate based tests, including those in region-agnostic
sliding windows, identified more relevant regions compared to single variants, and pQTLsin
regions outside of promoters were more panel specific than those in promotors. Whilst single
variant pQTLs were enriched for proteinsin all four panels, including the neurology and
oncology panels (Fig 4a), aggregate pQTLs in predefined regulatory regions (Fig 4b) and
sliding windows (Fig 4c), were enriched in inflammatory panels more than neurology and
oncology panels. When limiting the analysis to promoters or enhancers we saw evidence for
greater tissue and process specificity for enhancers. For example, single variant associations
in promoters were enriched in al four panels (Fig 4d) but those in enhancers were only
enriched in the cardio-metabolic panel (Fig 49). Across the tissue types tested, we did not
observe consistent enrichment for any specific tissue across the different analyses except in
enhancers in the sliding-window analysis (Fig 4i) where the largest enrichment was seen for

pancreas, vessel, liver, and heart tissues.

Fig 4. QQ plot for enrichment of loci within Ensembl predicted active regionswithin
tissue groups. Empirical one-sided P-values for enrichment of signals within Ensembl
predicted active regions within 22 tissue groups and four OLINK protein panels. Sub-figures
a), d), and g) show enrichment for single variants, panels b), €), and h) show enrichment for
Ensembl regulatory region based aggregate tests, and panels c), f), and i) show enrichment
for sliding-window based aggregate tests. Panels @), to ¢) show enrichment within all

predicted active regions, panels d) to f) for promoters, and g) to i) for enhancers.
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To determine which circulating protein measures were consistent across different platforms,
Eldjarn et al (2023)* additionally compared the output of Olink (Explore 3072) technology
with SomaScan v4 in 1,514 individuals of inferred Icelandic ancestry with whole-genome
sequencing data. Based on the correlation between circulating proteln measures across the
platforms, and the similarity of lead cis pQTLs associated with the two measures, they
identified 551 (out of 2,931) proteins as highly concordant (confidencetier 1 in their ST29).
Of the 1,450 proteins (26.9%) in our study, 390 were highly concordant between the Olink
and SomaScan technologies. Our pQTL associations, including those involving non-coding

aggregate-based tests, were enriched in these 390 proteins. These 390 proteins represented
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27% of the proteins we tested but included 37.8% (test of two proportions P = 1.45x10™) of
all our pQTLs and 42.2% of non-coding aggregate based pQTL associations (P = 1.31 x10

11) )

Discussion

Using circulating protein levels as exemplar traits, we have shown that the anaysis of WGS
data enables the discovery of multiple rare non-coding variants and aggregates of rare
variants associated with common phenotypes. Importantly, WGS data enabled us to consider
more than six times the number of variants than would have been possible through single
variant testing and identify associations between aggregates of rare variants and common
phenotypes, using methods anal ogous to those used to aggregate coding variants in exome
sequencing studies. The presence of multiple rare non-coding associationsis consistent with
the presence in the non-coding genome of most common variant associ ations identified by
GWAS.

We have identified hundreds of novel nhon-coding rare aggregate and single variant
associations with one of 1,450 measured protein levelsin cis-windows 1Mbp either side of
the cognate gene. We show that the effect sizes of non-coding associations can have similar
absolute values compared to coding associations but are more balanced between circulating
protein increasing and decreasing effects. We show that a single non-coding intronic deletion
in ASGRL is associated with at least 281 distinct protein measurements, potentially by
impacting glycoprotein turnover. Eldjarn et al. (2023)* aso identified 212 circulating
proteins associated with this variant, and Dhindsa et al. (2023)* identified 186 circulating
proteins associated with coding variants in ASGRL, highlighting ASGR1 as a potentially key
regulator of glycoproteins.

We demonstrate that the 5 UTR and predicted intronic splice acceptor/donor sites were
enriched for rare non-coding pQTL variants, whereas we observed a depletion of downstream
genetic variants associated with pQTLs. Our results suggest that, where statistical power is
limited, variant-association discovery could be prioritised in those regions where we observed

an enrichment of association signals.

We additionally demonstrated the power of aggregate testing for non-coding regions, akin to
work already done to aggregate functionally similar variants in coding exons. By testing rare

genomic aggregates of non-coding elements, grouped by (for example) conservation,
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constraint, or predicted regulatory activity, or using sliding windows, we identified a further

55 conditionally independent regions of interest not identified by single variant testing alone.

Compared to aggregate based coding associations, non-coding genomic aggregate
associations were enriched for regions with bi-directional effect and association tests that
allow alarge fraction of variants to be non-causal. This observation is consistent with the fact
that prediction of variant effects and functional regionsis less precisein the non-coding
genome compared to the coding genome. However, the fact that we have identified non-
coding associations with current annotations and data indicate that more discoveriesin
common phenotypes are likely as functional annotations improve and population genetic data

accumulates.

We have also made some important advances for conditional analyses when considering non-
coding aggregates. Due to the complex nature of linkage-disequilibrium (LD), it is extremely
difficult to determine (without additional data or functional work) whether a coding signal is
driving anon-coding signal, or vice-versa. To mitigate against this effect, we took a
conservative approach and conditioned on all coding variants for the cognate gene. Where the
cognate geneis not known, it may be necessary to condition on all coding variants within a

pre-specified window determined by LD patterns.

There were a number of limitations to our study. First, we were not able to replicate our
results in a separate study as we did not have access to similar data from other studies.
However, alarge proportion of our associations reached levels of statistical confidence far
below our threshold. Furthermore, we observed an enrichment of associations for the 390
circulating proteins which showed high concordance between technologies, and effect sizes
were consistent in the individuals of African and South Asian ancestry. Second, we cannot be
certain that we have accounted for all possible sources of residual confounding by LD with
coding or common variants. However, it is unlikely our associations are substantially affected
by residual confounding from coding variants because they have very different features
including the much more equal distribution between trait increasing and decreasing effects
compared to coding associations. Third, the majority of our discovery analyses were limited
to individuals of European ancestry because we only had access to both WGS and Olink data
from 881 individuals of non-European ancestry. However, within the samples available, we
did identify variants not detected in the individuals of European ancestry and observed strong

correlation between effect sizes across the three main ancestries. Fourth, all circulating
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proteins were measured in blood. Although alarge portion of tissue-specific proteins are only
expressed in those specific tissues, we were limited to considering circulating protein levels.
Finally, we limited our analysis to cis windows to limit the number of tests performed. There
are likely to be many trans effects driven by rare non-coding variants that have not yet been
detected.

In conclusion, using an exemplar, biologically proximal trait of circulating protein
measurements, we have shown that there are likely to be a large number of rare non-coding

variants with large effects on complex phenotypes waiting to be discovered.
Methods

UK Biobank and Whole Genome Seguencing

The whole genome sequencing performed for UKB had an average coverage of 32.5X, with a
minimum of 23.5X, using Illumina NovaSeq sequencing machines provided by deCODE”’.
The genome build used for sequencing was GRCh38: single variant nucleotide
polymorphisms and short ‘indels’ were jointly called using GraphTyper®®. deCODE found
that the number of variantsidentified per individual was 40 times larger than that found using

WES in theinitial 150,000 release of whole genome seguences.

Of the 200,000 individuals whose genomes were sequenced, we found, using genetic
principal components as previously described®, there were 183,803 individuals of European
ancestry in this subset of the UK Biobank.

Human Protein Expression Levels

Protein levels for 1,463 proteins for 54,304 UKB participants were profiled using Olink
technology, as described in Sun et al 2023™, by the UK Biobank Pharma Proteomics Project.
Quality control procedures were applied to the data before being made available for
researcher use, including outlier removal etc. Protein levels were additionally log-2
transformed before release. After quality control filtering, 54,189 individuals with protein
expression data were approved for analysis. Sun et al found no evidence of batch or plate
confounding effects. Of the 10,248 genetic variants reported by Sun et al, we successfully
lifted 10,243 to human genome build 38 using UCSC liftover®. In total, 10,193 (99.5%) of
those genetic variants were also present in the UKB whole-genome sequencing data. Of that
subset, 1,145 genetic variants previously identified lay within the cis-window considered

here.
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Genetic Data Format

We performed a multi-allele splitting procedure on each of the 60,648 pV CF whole genome
sequencing files provided by the UK Biobank using bcftools™ and then converted those
pVCFs to plink* (v2.0) pgen/var/fam format. All plink files which contributed to a

chromosome were then merged to generate a single per-chromosome genotype file.

Genetic Variant Exclusion

We excluded all variants from our association analyses if GraphTyper, the software used to
by UK Biobank to perform genotype calling, assigned an AAScore which was less than 0.5%,

denoting variant quality.

Association Analyses

We performed both single variant and aggregate tests within cis loci for each of the 1,463
proteins measured in UKB. To define the cis-window, we first mapped each protein to a
coding gene (see ST1 for a small number of exclusions), and for each gene determined the
longest transcript recorded by Ensembl. Based on the longest transcript, we then defined the
cis-window as a 1Mb window either sde of the’5’ and 3' UTR of the transcript gene (limited
by the beginning and ends of chromosomes), as well as the variants within the coding and
intronic sequences. All association analyses were corrected for age, sex, age squared, UK
Biobank recruitment centre (as aproxy for geography) the first forty genetic principal

components, whole-genome sequencing batch and Olink plate.

Single Variant Association Testing

To identify cis single variants associated protein levels we first performed an association test
for all genetic variants with aminor-allele-count of at least 5 using regenie® (v3.14) in the
cis-window. Lead variants were then selected in a conditional-joint analysis using GCTA-
CoJo?® (diff-freq = 0.2, cojo-p = 1x10°®%), with the UK Biobank whole-genome sequencing
data, limited to individuals with proteomic data, as an LD reference panel.

If any lead conditionally-independent variant derived by GCTA-CoJo had an absolute joint-
beta > 4 (determined by the limits of a normal distribution with 20,000 samples), we instead
performed forward-stepwise conditioning. Forwards stepwise selection was performed by
repeatedly performing association analyses a the single variant level: if any variant in each

run was study-wide significant, we selected the variant with the highest p-value and re-
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performed association analyses conditional on that variant (and all previously selected

variants).

Rare Variant Genomic Aggregate Testing

To identify non-coding, potentially regulatory regions of the genome which were
insufficiently powered for single variant analysis, we subsequently performed non-coding
rare-variant (minor allele frequency <0.1%) genomic aggregate associ ation grouping variants
according to proximal 5, proximal 3’ or intronic. To test whether non-coding rare variant
aggregate signals were caused by / confounded by residual LD and haplotype structure with
common variants and or single variant signals we performed the following steps for each rare

variant aggregate test result reaching Bonferroni p <0.05:

1. Togenerateour primary non-coding discovery results we adjusted for the
common lead variants identified as independent signalsin the joint (COJO) analysis
(at MAF >0.1% ~ MAC 40) AND adjusted for all genetic variants (regardless of p
value) which we had annotated as coding in the gene which mapped to the protein of
interest

2. Toidentify independent non-coding aggr egate associations, we performed a
forward stepwise regression. Starting from the most-strongly associated (genome-
wide) non-coding aggregate (by p-value), per-protein, we perform an additional non-
coding aggregate-testing run for any genome-wide significant aggregate adjusted for
al variantsin the top signal. This process is repeated, with more variants added, until
no aggregate is genome-wide significant.

3. Toestablish the extent to which our primary aggregate discovery results could be
due to asingle low-frequency lead variant, we identified aggregate associations
containing exactly one lead genetic variant.

4. Asasensitivity step, to establish the extent to which these results could be due to
confounding linkage disequilibrium, we performed a further step where we adjusted
for all pQTL single variants identified

Genome unit testing was performed for variants with a maximum allele frequency threshold
of 0.1%, using regenie, based on the genetic units specified in Table 1. regenie performs four

types of genome unit tests:

1. Standard BURDEN tests, under the assumption that each variant in a given gene unit

mask has approximately the same effect size and sign on the phenotype


https://doi.org/10.1101/2023.11.04.565589
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.04.565589; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2. SKAT tests, where the sign of association of each variant in the unit is allowed to
vary

3. ACAT tests, where the sign of association of each variant in the unit can differ, and
only asmall number of variants in the mask need be associated

4. ACAT-O, whichisan omnibus test of BURDEN, SKAT and ACAT that aimsto

maximise the statistical power across the three tests

We performed each of the four statistical tests above for each mask for which a genome unit
has at least one variant. Additionally, a singleton association test was performed for all
variants with MAC=1 in each unit. regenie also estimated an "all-mask™ association strength
for each genome unit, which is an aggregation of the test statistics of the individual masks. To
ensure that this did not result in amixing of non-coding and coding association statistics, we
split each gene transcript into a coding transcript, which we tested for al coding masks, and a
proximal transcript that we tested for all proximal masks. Regulatory genome units were
either classified by their ENSR assignment, by the extent of a 1kb constrained window, or a
phastCon conserved window. We named sliding windows masks by the region of the

respective chromosome that they covered.

Genetic Variant Annotation

We annotated all genetic variants using Variant Effect Predictor (VEP). Where possible, we
assigned each variant to one of three classifications: coding, proximal-regulatory or
intergenic-regulatory. A variant was classified as coding if it had an impact on an exon of
any transcript; proximal-regulatory if the variant lay within a 5kbp window around a
transcript or an intron, and was not already a coding variant in any transcript, and finally
intergenic-regulatory if the variant fell within a conserved, constrained, non-coding exon
region (details below), and was neither proximal or regulatory. We additionally tested
variantsin sliding windows of size 2000 base pairs, regardless of the number of variantsin

each window, with proximal and coding variants excluded to minimise hypothesis overlap.

We then assigned each variant to groupings, which we refer to as masks, according to
their predicted consequence and location. We used five published variant scores to group

variants by consequence:

1. Genomic Evolutionary Rate Profiling (GERP)
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The GERP score is a measure of conservation at the variant level*®. We classified a

variant as highly conserved if it had a GERP score >2.

2. phastCon score
phastCon is a window-based measure of conservation across species®: either strictly
mammalian (phastCon 30), or for all species (phast_100). We tested non-coding
genome windows, i.e. excluding any window containing an exon, that had a phastCon

score in the top percentile.

3. Constrained Score

Constraint was calculated in windows of size 1kbp® based on the local mutability and
observed mutation rate of each window. We tested windows with a constraint z-score

greater than or equal to four.

4. SpliceAl score
The SpliceAl score® is ameasure of how well predicted each variant within a pre-
MRNA region is of being a splice donor/acceptor, or neither. A variant was classified

as asplice site with high confidenceif it had an A1>70.

5. Combined Annotation Dependent Deletion score (CADD)
The CADD score™® predicts how deleterious a variant is likely to be. We applied the
CADD score only to coding variants and considered loss-of-function variants only if
tagged as high confidence by VEP. Missense variants with CADD>25 were
segregated for testing in a separate mask.

6. JARVIS Score
The JARVIS score was derived to better prioritise non-coding genetic variation for
association study, based on a machine learning model derived from measures of

constraint®’.

Each genome mask consisted of anumber of variants with different consegquences, based on
their location, one of the above scores and/or predicted coding consequences. For example,
for a variant to be classified as missense CADD>25, it must change a codon of an exon of a

gene transcript and be predicted to be highly deleterious.
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In Table 1 we present the full list of consequences assigned to each mask and

classification.
CLASSIFICATION MASK CONSEQUENCES
3UTR 3 UTR
3 UTR (GERP>2) 3 UTR (GERP>2)
5 Start Gained, 5° Start Lost, 5° Start
5 UTR
Rest
5 Start Gained 5" Start Gained
5" Start Lost 5" Start Lost
Conserved and _
_ Constrained
Intronic
Downstream Any Downstream
Downstream and )
Downstream with GERP>2
conserved
Downstream and )
_ Downstream with CADD>25
_ deleterious
Proximal

Downstream and
. Downstream with JARVIS > 0.99
constrained

_ _ Intron Splice Acceptor gain/loss with
Intron Splice Variant ) )
A1>70, Intron Splice Donor gain/loss

with AI>70 _
with AI>70
Splice Variant Splice Region Variant
Upstream and _
Upstream Variant (GERP>2)
conserved
Upstream and _
_ Upstream Variant (CADD > 25)
deleterious
Upstream and _
_ Upstream Variant (JARVIS > 0.99)
constrained
Upstream Variant Upstream Variant
RNA Non-coding exon variant

Regulatory Conserved, Constrained and Conserved
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Constrained and
Intergenic
Conserved (GERP _ _
_ Constrained and conserved with GERP
>2) Constrained and 5
>
Intergenic
Regulatory Region
= .y ~ Regulatory Region Variant
Variant
Conserved Top 1% conserved variants in
(phastCon 30) phastCon 30 window
Conserved Top 1% conserved variants in
(phastCon 100) phastCon 100 window
Any phastcon variant (top 1%) for both
Phastcon100& 30 and
phastcon 100 and 30 and conserved
Conserved
(GERP>2)
Phastcon100 and Phastcon100 (top 1%) and conserved
Conserved (GERP>2)
Phastcon30 and Phastcon100 (top 1%) and conserved
Conserved (GERP>2)
Phastcon100 and _
Any phastcon variant (top 1%) for
Conserved at any
phastcon 100 and conserved
level
Phastcon30 and )
Any phastcon variant (top 1%) for
Conserved at any
phastcon 100 and conserved
level
RNA Non-coding exon variant
Synonymous Synonymous
Missense Missense
Missense with _ _
_ Missense variant (CADD>25)
Coding CADD>25
LoF High Confidence Loss of Function
Splice Region Splice Region Variant
Highly Damagin
J .y ag J Splice region variant (spliceAl > 0.7)
Splice Region
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Table 1 Genetic variants included in each grouping. UTR = Untranslated Region, 3" =
variants at the 3" end of atranscript, 5 = variants at the 5" end of atranscript, GERP =
Genomic Evolutionary Rate Profiling score (a measure of conservation), Start Gained/Lost =
the inclusion or removal of a start codon, Downstream = downstream of a transcript, CADD
= Combined Annotation Dependent Deletion score, Al = Splice Al (Al) score.

We re-assigned variants that fulfilled two distinct criteria within a given genome unit to avoid
duplication. In these cases, avariant was re-labelled as a combination of the two criteriaand

were assigned to any mask which selects variants from at least one of those criteria.
Pseudo Genes

We assigned variants to pseudo gene transcripts if they contained pseudo-exons. However,
pseudo exons wer e not excluded from proximal regions of non-pseudo gene associ ations,
instead being tested as a regulatory genome unit. If a pseudo-exon overlapped with any

significant genome unit signal, we performed a bespoke analysis.

Heterogeneity Calculations

We used the R-package metafor® to calculate all heterogeneity p-values between effect

estimates, under the assumption of a fixed-effects model.

ENSEMBL Regulatory Region Enrichment

We calculated the enrichment of overlap for both single variants and aggregate regions with
ensemble regulatory regions, which are available for 118 tissues/cell-lines from
ENSEMBL?®, For each tissue, ENSEMBL additionally provide predictions on whether each
region is active (or inactive, suppressed etc), and the type of regulatory activity (promoter,
enhancer, CTCF binding site, TF binding site, open chromatin region). We subsequently
exclusively considered regions that were predicted to be active, excluded cell-lines and
cancer-derived tissues, and grouped the remaining tissue-types into 22 supergroups (see
ST9). At the protein level, olink additionally grouped each protein into one of four panels

(neurology, cardiometabolic, inflammation and oncology, as per the original publication™.

To determine the statistical enrichment, we performed bootstrapping over 10,000 simulations.
For each simulation, we randomly selected a number of rare non-coding variants/aggregates
determined by the set of our rare non-coding single-variants/aggregate tests from the cis-

regions of the genome which we tested for association. We then determined the overlap of the
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randomly selected set of variants/aggregates with any of the regulatory regions (we re-
performed this for each stratum of panel and tissue-type) and compared the distribution of the
number of overlaps for any simulation with the number overlapping in our independent

associations. We then assigned an empirical p-value to the observed overlap.
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