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Abstract:

Understanding computations in the visual system requires a characterization of the distinct feature
preferences of neurons in different visual cortical areas. However, we know little about how feature
preferences of neurons within a given area relate to that area’s role within the global organization of
visual cortex. To address this, we recorded from thousands of neurons across six visual cortical areas in
mouse and leveraged generative Al methods combined with closed-loop neuronal recordings to identify
each neuron’s visual feature preference. First, we discovered that the mouse’s visual system is globally
organized to encode features in a manner invariant to the types of image transformations induced by self-
motion. Second, we found differences in the visual feature preferences of each area and that these
differences generalized across animals. Finally, we observed that a given area’s collection of preferred
stimuli (‘own-stimuli’) drive neurons from the same area more effectively through their dynamic range
compared to preferred stimuli from other areas (‘other-stimuli’). As a result, feature preferences of
neurons within an area are organized to maximally encode differences among own-stimuli while
remaining insensitive to differences among other-stimuli. These results reveal how visual areas work
together to efficiently encode information about the external world.
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Introduction:

Our visual system makes sense of the world via its myriad neurons, each tasked with extracting
specific visual features from the environment. Decades of work in primates have shown that after visual
inputs arrive in primary visual cortex (V1), they proceed to numerous higher visual areas (HVAs)®. At an
inter-area level, each HVA is thought to prefer a specific portion of the visual world (e.g. there is a
preference for orientated edges in V12; there is a preference for faces in fusiform face area®). At an intra-
area level, individual neurons exhibit diverse tuning preferences that enable encoding of the portion of
the visual world that a given HVA is concerned with (e.g. V1 possesses neurons with preferences for edges
of different orientations?; face-selective areas possess neurons preferring different aspects of faces®).
However, due in part to the large size of visual areas in primates and the resulting difficulty in broadly
recording from neurons within and across different HVAs, a clear understanding of how across-area
differences in feature preferences relate to within-area organization of feature preferences is lacking. This
limits our ability to gain a holistic view of the visual system and to understand how its computational goals

guide its functional organization.

The mouse visual system provides a tractable model for addressing these issues. Anatomical

10-13

tracing®® and functional mapping of mouse cortex have revealed ~10 distinct HVAs, most of which

receive significant direct input from V1. Circuit tracing and light-evoked spike time analyses have found

67914 although these studies have

some evidence that mouse HVAs are organized in a hierarchal manner
also found that mouse HVAs appear to be more strongly interconnected than those in primates®™. In one
study?, a single hierarchy was described: V12 LM—>RL>LP>AL>PM—->AM (for full nomenclature of
mouse HVAs, see Methods). In contrast, other studies attempting to parallel primate visual streams have

sorted the mouse hierarchy into putative ventral (V12LM—>P->LI2>POR) and dorsal

(VI>RL>AL>A>PM—>AM) processing streams”®. Additional studies have examined differences in
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visual feature preferences between mouse HVAs, but to date it has been difficult to draw firm conclusions.
For instance, by presenting full field drifting grating stimuli, several studies have found differences in

101115717 ‘though some of the differences

spatial and temporal frequency tuning properties between HVAs
noted appear to arise from the specific inclusion criteria used*® or whether experiments were performed
under awake or anesthetized conditions®. Another study?°, which used 2-photon calcium imaging to
record from different genetically-defined cell types, across different cortical layers and HVAs, is notable
for revealing broad tuning curves and largely overlapping preferences within and across genetically-
defined cell types, across cortical layers, and across HVAs. Thus, what remains missing is a) an inter-area
level understanding of which portions of the visual world each mouse HVA is concerned with; b) an intra-
area level understanding of how specific portions of the visual world are specifically encoded by neurons

within each HVA; c) a cross-scale understanding of how inter-area feature preferences arise from and

relate to intra-area feature preferences.

To address this, we used in vivo 2-photon calcium imaging to record from thousands of neurons
across mouse V1 and five HVAs. We leveraged advances in modelling neuronal responses using artificial

)22 to build predictive models of the neurons, which we used to generate

neural networks (ANNs
preferred stimuli for individual neurons. This enabled us to outline how mouse HVAs are functionally

organized, ask why such an organization arises, and elucidate what the roles for such an organization are

in encoding visual stimuli.

Results:

Modelling multiple mouse visual cortical areas with artificial neural networks

To gain an understanding of the visual features encoded by neurons in various visual cortical areas

in the mouse, we modelled neuron responses to visual stimuli in different areas with artificial neural
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networks (ANNs). We used this approach to determine the preferred stimulus (i.e. a visual stimulus that
will strongly activate the neuron) for each neuron recorded in vivo, and to run in silico experiments that
would be otherwise infeasible experimentally. To generate these models, we recorded from neurons in
six visual cortical areas in mouse, including primary visual cortex (V1) and five HVAs spanning different
anatomical hierarchical levels of both putative dorsal and ventral visual streams (LM, LI, POR, AL, and RL;
Figure 1a). Each area was identified using widefield calcium imaging, with area segmentation based on
the phase of retinotopic maps!*'*24, using transgenic mice in which the calcium indicator JRGECO1a was
expressed throughout cortex®® (Figure 1a). After identifying a given cortical area, we used 2-photon
calcium imaging to record light-evoked responses from neurons in layer 2/3 during the presentation of

2,500 different static natural images.

Next, we used ANNs to model the responses from neurons in each cortical area (Figure 1b). We
used a shallow convolutional neural network with a factorized readout layer?® that separates the visual
features (i.e. ‘what’) and the spatial locations in the images that drive neurons (i.e. ‘where’), referred to
as the ‘spatial mask’. For each cortical area, we trained a unique ANN to predict the responses of individual
neurons to the natural images. For model training, we selected neurons that reliably responded to natural
image presentation (Supplementary Figure 1; see Methods). Additionally, only model units (i.e. digital
twins of our real neurons) with > 30% explainable variance explained were used for subsequent analyses.
This resulted in > 7,250 model units included for subsequent analyses (V1 = 1,418 units; LM = 1,469 units;
LI = 1,112 units; POR = 1,070 units; AL = 1,298 units; RL = 899 units). Importantly, each ANN model had a
significantly higher fraction of explainable variance explained compared to a simple linear model (Figure

1c; see Methods).

Finally, to validate our modelling strategy, for a subset of recordings (n = 2-3 animals per cortical
region), we re-recorded from the same neurons on a second day while presenting the animal with a subset

(n =300-500) of the natural images shown the first day, as well as their preferred stimuli (Figure 1d). Each
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preferred stimulus, generated to maximally activate the twinned model unit, also strongly and selectively
activated its corresponding in vivo neuron, with much smaller ‘off-diagonal’ activation compared to ‘on-
diagonal’ activation (Figure le-g). The median response generated for all preferred stimuli was greater
than 90% of the responses evoked by natural images (Figure 1h). Our results indicate that these ANNs can
serve as tools for predicting neuronal activity and exploring visual feature preferences in areas V1, LM, LI,

POR, AL, and RL.

The functional organization of mouse visual cortex

We first examined the overall organization of visual cortex. To do so, we examined the functional
similarity between HVAs by using our ANN models to test how features of visual stimuli were differentially
represented across brain areas. We took advantage of the fact that we could align the spatial masks (the
‘Where-layer’) of the factorized readout layer for each model unit (Figure 2a), which allowed us to focus
exclusively on differences arising from the ‘What-layer’. We presented 10,000 natural images taken from
ImageNet?” to the spatial mask centered units. For each image, we measured the evoked population
response (i.e. how strongly each model unit was activated by each image) and repeated this process for
ANN models of V1 and the five HVAs. We then compared the similarity of population responses to the
same set of natural images across visual areas by calculating the distance correlation (dCor), a non-linear
method for measuring statistical dependence between two multivariate random variables (Figure 2a). We
found that the distance correlations between pairs of HVAs showed clear differences in their strength
(Figure 2b). However, we also observed that distance correlation values were relatively high between all
areas, suggesting the presence of some widely shared correlations. To specifically focus on unique
correlations shared between each pair of regions, we calculated the partial distance correlation (pdCor)

between each pair of regions after conditioning out correlations with all other regions (Figure 2a).
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Focusing on pdCor, we found that activity in V1 was most similar to LM and LI. Activity in LM was most
similar to RL and AL. LI and POR were most similar to each other, RL and AL were most similar to each
other, and these latter two groups (LI+POR vs. RL+AL) were particularly dissimilar from one another
(Figure 2c). We used multidimensional scaling (MDS) to visualize the distance correlations and partial
distance correlations between the different areas as undirected graphs. This visualization emphasized the
existence of two distinct functional streams emerging from V1 and passing through LM: one being
V1->LM—>LI=>POR, the other being V1> LM->RL>AL (Figure 2b,c; note that since we know a priori that
V1 is the predominant input region receiving signals from the visual thalamus, we orientated the MDS
graph to place V1 at the bottom). Remarkably, a proposed dorsal/ventral two-stream hierarchy based on
anatomical connectivity® is in strong agreement with our results (Figure 2d), revealing a tight relationship

between function and anatomy.

Finally, previous work has shown that receptive field size increases as one moves up the visual
hierarchy”9142 We examined whether the spatial mask size in the factorized readout layer, which is
loosely analogous to a receptive field, showed differences across visual cortical areas. We normalized
mask size to V1 and found that spatial mask size increased along the visual hierarchy (Figure 2e). Overall,
these analyses provide strong evidence that, on a functional level, mouse HVAs are representationally
organized along two distinct hierarchical processing streams. Moreover, representations of natural

images increasingly differ between HVAs as a function of hierarchical distance.

Visual feature similarity with invariance to self-motion related image transformations gquides the

organization of feature preferences across HVAs

We next asked why HVAs are organized in this manner. Unlike in primates — where it is well-

established that IT cortex is dedicated to processing visual objects®, and thus specific hypotheses can be
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formulated around how preferences for specific visual categories are organized in different HVAs?-3! —
we did not have a clear a priori assumption for the type of model that might guide the organization of
visual feature preferences in mouse cortex. We therefore decided to compare three simple image-based
organizing models: a) a template-matching based model; b) a spatial frequency based model; c) a model
based on visual feature similarity with invariance to image transformations that could arise as an animal
moves around the world (we focused on invariance to affine transformations, including translation, scaling

and in-plane rotation, as these are simple to apply to 2-D images).

To compare between these three models, we pooled the preferred stimuli from all areas. Next,
for each model we constructed a 256-dimensional embedding space. For the template-matching based
model, we performed a principal component analysis (PCA) on the preferred stimuli and defined the
resulting principal component space as the embedding. For the spatial frequency based model, we
performed a fast Fourier transform (FFT) on each preferred stimulus, followed by PCA. For the third model,
we embedded the preferred stimuli using SimCLR, a contrastive deep learning tool specifically designed
to group together images that are similar to one another®, and which has previously been used to
measure the similarity of Al-generated preferred stimuli from primate V433, SimCLR maximizes invariances
towards arbitrary transformations of input images, which we achieved by applying a set of affine
transformations to the preferred stimuli — translation (x 10% X/Y shift), rotation (+ 90°), and resizing —
then projecting these images into SimCLR’s latent space, and minimizing the distance between different
transformations of the same preferred stimuli (Figure 3a). Notably, the transformations we applied are

similar to those that would be expected from self-motion.

First, we tested which of these models was best able to group together preferred stimuli according
to the area that they were generated from. For each embedding model of preferred stimuli, we performed
a k-nearest neighbours analysis (kNN; k = 20) and examined its classification accuracy (Figure 3b). We

found that the SImCLR method significantly outperformed both template-matching (pixel-level PCA) and
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spatial frequency (FFT) based models (Figure 3b), meaning that SimCLR was better at grouping together
preferred stimuli from the same HVA. We thus further explored details of the SImCLR embedding of

preferred stimuli.

We visualized SimCLR’s 256-dimensional space by projecting it down to two dimensions using
UMAP34, In this visualization (Figure 3c), each point represents a preferred stimulus, and the distance
between any two points indicates the relative similarity between those two preferred stimuli in SimCLR’s
latent space: specifically, distance in this space relates to image similarity with invariance to affine
transformations. While the UMAP plot did not reveal distinct clusters — as predicted by the strong pairwise
functional correlation between areas (Figure 2b) — colour-coding the embedding according to the visual
area that each preferred stimulus came from revealed strong biases in the extent to which preferred

stimulus space was represented by each visual area (Figure 3c).

How do we know if SimCLR’s embedding of preferred stimuli is related to how the brain organizes
visual feature preferences? To ask this question, we examined whether SimCLR’s embedding of preferred
stimuli could recapitulate the functional organization of HVAs (Figure 2b,c). We reasoned that the
functional relationship between HVAs could be reflected in the overlap of their respective manifolds
within the SimCLR embedding space. To calculate this, for each preferred stimulus from each HVA, we
measured the likelihood of finding preferred stimuli from other HVAs within its 20 nearest neighbours
(Figure 3d). As visualized with an MDS plot (Figure 3d), SimCLR’s embedding of preferred stimuli resulted
in an organization of HVAs that was remarkably similar to that generated from neuron population
responses (Figure 2b,c). To quantify this, we measured the topological similarity between SimCLR’s
embedding (Figure 3d) and the results from the partial distance correlation analysis (Figure 2c) via the
Spearman correlation coefficient of the respective similarity matrices. This indicated a significantly higher
topological similarity between the SimCLR embedding and the functional organization of HVAs compared

to when the same analysis was run on the template-matching or spatial frequency based models (Figure

8
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3e). These results suggest that, at a cortex-wide scale, HVAs encode visual features agnostic to their

orientation, scale, and position, in line with a general invariance to types of image transformations that

can be induced by self-motion.

Each HVA prefers distinct visual features

What do the preferred stimuli for different HVAs look like, and how do they differ between areas?
To address these questions, we visualized the two-dimensional UMAP projection of the SimCLR
embedding. We split the embedding into a 40 x 40 grid, and for each tile in the grid we randomly visualized
an image contained within that tile (Figure 4). We refer to this visualization as the ‘Feature landscape of
visual cortex’. It can be seen from this visualization that SimCLR effectively sorted preferred stimuli based
on image similarity, as neighbouring preferred stimuli appear alike. To examine visual feature preference
differences across HVAs, we selected the 200 most representative preferred stimuli for each visual area,
on which we performed additional analyses. This was done within the SimCLR embedding by using a kNN
analysis (k = 100) to select the images with the most preferred stimuli from the same visual area within

their neighbourhood.

We observed several differences between the representative stimuli from different HVAs (Figure
5a). First, we noted differences in mean luminance, with some areas preferring darker or brighter stimuli.
We found that preferred stimuli from LI and POR were particularly dark, whereas RL preferred stimuli
were relatively brighter (Figure 5b; Supplementary Figure 3). Second, we noted differences in how many
distinct segments made up preferred stimuli from each area. Calculating individual segments (measured
via thresholding preferred stimuli into black and white segments), we found that preferred stimuli from
most areas were best described as having white segments on top of a black background (i.e. significantly

more white than black segments (except for AL)), and having smaller white segments than black segments
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(Figure 5¢,d; Supplementary Figure 3; with LI having significantly more white segments than the other
areas). Third, we noted that representative stimuli from some areas were dominated by lower spatial
frequencies, whereas others possessed higher spatial frequency content. Performing an FFT and averaging
radially over all orientations, we found that POR was dominated by the lowest spatial frequencies (though
with increased power again at very high spatial frequencies), LM, AL, and RL were dominated by medium-
to-low spatial frequencies, V1 was dominated by medium-to-high spatial frequencies, and LI was
dominated by high spatial frequencies (Figure 5e; Supplementary Figure 3). Lastly, we noted that whereas
areas V1, AL, and RL had representative stimuli that tended to feature long edges orientated along a single
axis, areas LI and POR contained dotted segments that appeared to be arranged in grid-like patterns.
Calculating folio symmetry (i.e. folding the image once) vs. quarto symmetry (i.e. folding the image twice)
revealed that areas V1, LM, AL, and RL exhibited higher folio symmetry (Figure 5f; Supplementary Figure
3), whereas areas LI and POR exhibited significantly higher quarto symmetry (Figure 5g; Supplementary
Figure 3). Importantly, these differences in image statistics for preferred stimuli from different HVAs
persisted when we performed the same analyses on all preferred stimuli from each HVA, not just on the
200 most representative stimuli (Supplementary Figure 4). These results show that each HVA exhibits

distinct preferences in visual features.

The set of preferred stimuli in a visual area represents a spanning set that effectively drive neurons through

their dynamic range

The results above indicate that the preferred stimuli for each visual area possess distinct image
statistics. As such, we wondered whether at a population level the set of preferred stimuli generated from
a given area (which we refer to as ‘own-stimuli’) would drive stronger activity in the neurons from the
same area compared to the set of preferred stimuli generated from other visual areas (‘other-stimuli’). To

test this, we performed in vivo widefield calcium imaging with a new cohort of mice that were not included
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in the models from which we generated the preferred stimuli (Figure 6a). We presented a mix of preferred
stimuli from all areas and found that, for all areas other than LM, own-stimuli drove significantly stronger
activity in the area that they were generated from compared to other areas (Figure 6b; for in silico results,
see Supplementary Figure 5). As such, the biases we found in feature preferences for each area are

consistent and generalize across animals.

Do own-stimuli drive stronger average activity simply because they contain more of the overall
visual statistics preferred by neurons in a given area? To test this, we leveraged our in silico models, where
we could center both own- and other-stimuli on individual models units by aligning their spatial masks,
and we examined the range of responses evoked by sets of own- vs. other-stimuli. We found that instead
of increasing the average response amplitude to all stimuli, own-stimuli drove neurons through a wider
dynamic range (Figure 6¢). To quantify this, we compared response amplitudes at the 10" and 90"
percentiles and found that, compared to other-stimuli, own-stimuli extended the dynamic range over
which neurons responded, on both upper and lower bounds (Figure 6d). However, the effect size at the
90™ percentile was significantly stronger than at the 10™ percentile (Figure 6d), which explains why own-
stimuli drive stronger average activity in the area they were generated from compared to other-stimuli
(Figure 6b). This also indicates that each own-stimulus, though generated to maximize the response of a
specific neuron, actually also drives weak activity in many other neurons from the same area. Similarly,
responses to own stimuli are often weaker than responses to other-stimuli. Consistent with this finding,
we found that population variance (the extent to which a given stimulus drives diverse responses in a
population of neurons, defined as the inter-quartile range of the distribution of responses to a given
stimulus) was significantly higher for own- vs. other-stimuli (Figure 6e). Thus, the different features
preferred by neurons within a given area can be viewed as a ‘spanning set’ that maximally drives neurons

from that area through their dynamic range.
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Discussion:

Here we described the feature landscape of visual cortex. By combining widefield calcium
imaging, 2-photon calcium imaging, and modelling with ANNs, we generated digital twins of thousands of
neurons in six different cortical areas in mouse, including primary visual cortex (V1) and five higher visual
areas (LM, LI, POR, AL, and RL). Our results outline the functional organization of mouse visual cortex and
provide a detailed understanding of how visual feature preferences are arranged across HVAs, why they
are arranged in this manner, and what the outcomes of this organization are on encoding of the visual

world.

How is the mouse visual system organized? Using a data driven approach, based on similarities of
population activity to natural image presentations, assessed with distance correlation, we identified two
hierarchically organized processing streams: V12>LM—->LI>POR and V1>LM->RL>AL. These two
processing streams are corroborated by previous studies that split mouse HVAs into dorsal and ventral
streams based on anatomical tracing”® and certain functional response properties®, and are consistent
with studies in mouse which found that receptive fields become larger at successive stages in the visual
hierarchy”92, Our finding that most areas’ preferred stimuli are biased towards lower luminance values
build upon work from other mammalian species which have indicated that more neuronal resources are
dedicated to processing OFF vs ON visual stimuli®¢, Furthermore, our findings of differences in spatial
frequency preferences for preferred stimuli from different HVAs are consistent with some previous
studies, which for instance found that RL and AL tended to prefer lower spatial frequencies, and V1 and
LI tended to prefer relatively higher spatial frequencies!®1635 Nonetheless, similar to previous studies
of mouse V123%, using an ANN-based methodology to generate preferred stimuli allowed us to reveal
how the various feature preferences (e.g. luminance, spatial frequency, receptive field size, etc.) interact
to generate each neuron’s specific preferred stimulus, in various HVAs. For example, this revealed that

many neurons in LI and POR appear to have preferences for dotted, grid-like patterns. However, to what
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purpose the mouse visual system developed these specific visual feature preferences across its HVAs
remains an open question. To facilitate further exploration of the feature landscape of mouse visual

cortex, we generated a graphical user interface that can be accessed here.

Why is the mouse visual system organized in this manner? We took inspiration from primate
models, which have tried to explain why the primate ventral visual stream is organized into functional
patches preferring specific aspects of the visual world (e.g. faces, bodies, colours, etc.)?*3!, Unlike in
primates, where the hierarchy of HVAs is well matched by ANNs trained on object categorization, this
does not appear to be the case for mouse cortex®, so we did not focus on testing models based on the
computation of object categorization. However, much like primates, mice wander around the world and
thus need to visually recognize things in a manner invariant to the types of transformations their visual
system experiences?. We leveraged an ANN model that allowed us to sort preferred stimuli based on
image similarity3*33 that was trained to be invariant to specific image transformations. We focused on the
types of transformations that could be induced by self-motion and that are applicable to 2-D images:
translation, scale, and in-plane rotation. We compared this to the most naive model possible, a template-
matching model that compared pixel-level similarity between preferred stimuli, and another model based
solely on spatial frequency content, which was the focus of many early studies of mouse HVAs*®. Our
results indicate that, of the models tested, the model based on image similarity with invariance to self-
motion related transformations best explained how visual feature preferences are organized in the
mouse’s visual cortex. This suggests that at a cortex-wide level, while HVAs have arisen to extract distinct
visual features from the world, they have done so in a way to minimize the effect of the types of
transformations that could arise from self-motion. Nonetheless, it should be noted that whereas our
SimCLR model only contained affine transformations, future work that studies exactly how a mouse’s body
and eyes move in tandem could generate a more ecologically relevant set of image transformations, and

we predict that such a model would outperform the one we present here.
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What are the implications of this functional organization on how the visual world is encoded by
the mouse? We found that the answer depends on the scale at which the question is asked. At the brain-
wide level, the visual system is organized to encode features in a manner that is invariant to self-motion
related image transformations (Figure 3). In turn, neurons in a given area possess an overall set of visual
feature preferences that distinguish one area from another. The differences in area-wide feature
preferences are delineated in the feature landscape of visual cortex (Figure 4). Though the preferred
stimuli from each HVA do not clearly cluster, their image statistics are significantly different from one
another (Figure 5). Finally, at the intra-area level, we find that individual neurons are driven through their
dynamic range to a greater extent when presented with the set of own-stimuli compared to other-stimuli
(Figure 6). This occurs because even though each preferred stimulus was designed to strongly activate a

specific neuron, own-stimuli drive weak activity in many other neurons from the same area.

Since own-stimuli maximally activate their target neurons, responses to own-stimuli can be
thought of as lying at the boundary of the neuron population manifold (the space of all possible patterns
of activity for a population of neurons). Trajectories through the neuron population manifold that drive
neurons from low to high activity can then be thought of as tuning curves. Now consider trajectories along
the boundary of the manifold (Figure 6f, red arrow). Our results show that these trajectories effectively
drive individual neurons through their dynamic range. Since movement along the boundary corresponds
to rotations of the population vector, neuron population activity is also strongly decorrelated along these
directions through the manifold. As such, trajectories along the boundary represent an efficient way to
encode differences between the tuning preferences of neurons in the same area (which we refer to as
‘intra-area coding axes’). In contrast, consider trajectories that move from the center of the manifold
outwards towards the boundary — these correspond to scaling of the population vector (Figure 6f, black
arrow). These trajectories encode information that is shared across the neuron population, such as

transitioning from the overall features preferred by one visual area to those of another (which we refer
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to as ‘inter-area coding axes’). Notably, the strong correlations between neurons that arise when moving
from manifold center towards the boundary mean that such trajectories fail to encode differences in
preferred features of neurons within an area. Therefore, since preferred stimuli lie at the boundary of the
manifold, traversal through the set of preferred stimuli provides a principled and data-driven way of
constructing tuning curves for a population of neurons. This is especially useful for brain areas whose
neurons exhibit highly mixed tuning preferences or in which tuning properties are otherwise not easily
parameterized. Finally, future work is needed to develop methods for identifying which specific

trajectories through the set of preferred stimuli represent ecologically meaningful coding directions.
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Figure 1: Modelling mouse visual cortex with artificial neural networks. a, Visual cortical areas were
identified via retinotopic mapping using widefield calcium imaging. Six visual areas were targeted for
subsequent 2-photon calcium imaging: V1, LM, LI, POR, AL, and RL. (A: Anterior, L: Lateral, M: Medial, P:
Posterior). b, Workflow for building ANN models of mouse visual areas. Neuronal responses to 2,500
natural images were recorded in each area using 2-photon calcium imaging. For each area, an ANN model
was trained to predict the neuronal responses to the same image set. We used the models to generate
preferred stimuli. For validation experiments, preferred stimuli were presented back to the animal on a
second day. ¢, Model performance measure as the fraction explainable variance explained for ANN
models (coloured, left bars) compared to a linear model (grey, right bars). d, Top, Example 2-photon
imaging field of view from a validation experiment. Bottom, Zoomed-in view of the region highlighted
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above. Scale bars: Top, 50 um; Bottom, 30 um. e, Responses of ten example neurons (rows) to their
respective preferred stimuli (columns) from the experiment shown in (d). f, Same as (e), except for all 231
neurons simultaneously recorded in a single V1 session, showing a strong selective preference for
preferred stimuli, with little ‘off-diagonal’ activity. g, For the recording session above, the distribution of
response amplitudes of each neuron to its preferred stimulus, as a percentile of its response amplitude to
all preferred and natural stimuli. Inset — Normalized neuronal response amplitudes to preferred (P) and
natural (N) images. h, Same as (g), except pooling all validation experiments across all six visual cortical
areas (V1: n = 364 neurons/2 mice, LM: n = 351 neurons/2 mice, LI: n = 129 neurons/3 mice, POR: n = 80
neurons/2 mice, AL: n = 126 neurons/2 mice, RL: n = 105 neurons/2 mice). All asterisks, p-value < 1e-11.

17


https://doi.org/10.1101/2023.11.03.565500
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565500; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

a b
. Trained model Spatial mask alignment Distance correlation
10k images
L] {3 ES| TTT VA
8 g B e
Feature Llx :--# HLIx ::ﬁ--:
g % E T : T LM
oo H 1T T
(e Spatial—___ Unit 1 Unit 2 LI
1 - Population responses across areas to 2 - Distance correlation (dCor) 3 - Partial distance correlation (pdCor) POR
the same images Measure representational Measure correlation between a pair of
similarity between areas regions by conditioning out correlations
Population response to image x shared with other areas AL
g B T - dCor o pdCor ndtiones
o O
Population response to image y
c i d e
) Partial Ventral Dorsal
distance correlation
3 POR .
’ 1.5 - ,f,.’
= @©
Vi POR > o2 Ll’i‘,"
_ o 1.4 q< AL
] e ’
LM - £ 1 //
b e Ll 9 1.3 1 4
Q et /‘vdpuc
LI = @© A RL
£ 512 T
— AL @ l.£ 7 N
0.12 o s
POR 1003 1004 8 v [ ”
= M RL Eq114 L7
012 0.18 0.03 =
AL 4004 3004 005 #0.04 2 ”
o -
010 028 -001 -002 & 1.0 1 & v
RL 1004 40005 1005 0.04 " . .
0.0 0.5 1.0
Vi LM LI POR AL RL Vi

Distance from V1 (1-pdCor)

Figure 2: The functional organization of mouse visual cortex. a, Top, The spatial mask layer of each model
unit was aligned, and each ANN was presented with the same 10,000 natural images. Bottom, Distance
correlation (dCor) was used to compute the functional similarity between responses of pairs of areas.
Partial distance correlation (pdCor) was used to condition out correlations shared globally across all areas.
b, A matrix showing the pairwise distance correlation (dCor) between the stimulus manifolds of pairs of
areas. Inset, Visualization of the resulting network structure using multidimensional scaling (MDS). c,
Same as (b) but for pdCor. d, Two-stream hierarchy proposed by D’Souza et al. based on anatomical
connectivity®. e, The functional distance from V1, defined as 1 — pdCor, is shown against the median spatial
mask area of each visual area. Inset — Distribution of spatial mask area for each ANN model. For full

statistical comparisons, see Supplementary Figure 2.
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Figure 3: A preferred stimulus embedding based on image similarities with invariance to self-motion
related transformations best explains the functional organization of mouse visual cortex. a, SimCLR was
used to generate an embedding space that is invariant to affine transformations. The SimCLR model was
trained to minimize the distance in its 256-dimensional embedding space between pairs of randomly
transformed versions of a given preferred stimulus. b, Classification accuracy of stimulus labels using a
kNN (k=20) trained either on a template-matching embedding (Pixel), spatial frequency embedding (FFT),
or SImCLR embedding. ¢, Visualization of SimCLR’s embedding of all preferred stimuli, reduced to two
dimensions using UMAP. Preferred stimuli from each area are colour-coded according to the visual area
that each stimulus originated from. d, A matrix indicating the extent of local overlap between the stimulus
manifolds in the SimCLR embedding space between each area, and the resulting network structure
visualized using MDS. e, Spearman correlation of the pairwise overlap matrix (d) with the partial distance
correlation matrix (Figure 2c) for Pixel, FFT, and SimCLR embeddings.
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Figure 4: The feature landscape of visual cortex. Preferred stimuli were first projected into SImCLR’s 256-
dimensional embedding space, then further projected onto a two-dimensional plane using UMAP. The
UMAP projection was tiled into a 40 x 40 grid, and for each tile a random preferred stimulus contained
within that tile is shown. Inset — Distribution of preferred stimuli from different cortical areas across the
UMAP embedding (related to Figure 3c).
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Figure 5: Mouse visual areas have distinct visual feature preferences. a, The most representative stimuli
for each visual area. b, Mean luminance of representative stimuli across regions. ¢, Number of light and
dark segments. d, Area of light and dark segments normalized to the area of the full stimulus. e, Radially
averaged spatial frequency power spectrum. f, Folio (one-fold), and g, quarto (two-fold) symmetry index.
For the full set of statistical comparisons, see Supplementary Figure 3.
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Figure 6: Intra- vs. inter-area feature coding axes arise from distinct trajectories through the neuron
population manifold. a, Schematic outlining that preferred stimuli from various areas were presented to
mice while activity across visual areas was measured using widefield calcium imaging. b, For experiments
outlined in (a), average response amplitude within an area to its own preferred stimuli was compared to
the activity that the same preferred stimuli drove in other areas. Wilcoxon rank sum test: for V1, LI, POR
and AL, p < 0.001; for RL, p = 0.0118; for LM, p = 0.1007. See also Supplementary Figure 5. C, Example in
silico data of response amplitudes of individual neurons to own- and other-stimuli, pooled across model
units and all visual areas. Left, Probability density plots (histograms) of response amplitudes for all model
units, pooled across all areas, evoked by the sets of ‘own-stimuli’ or ‘other-stimuli. Right, Cumulative
density plots (line plots) of the same data. d, Left, The response amplitude (from in silico models, averaged
across all areas) at the 10" and 90™ percentiles evoked by own-stimuli and other-stimuli. Wilcoxon rank
rum test: p < 0.001. Right, The Left data replotted to show that the 90" percentile is significantly more
different between own- and other-stimuli than the 10" percentile. Mann-Whitney U test: p < 0.001. e, For
in silico experiments, for all areas averaged together, the population variance in an area was greater when
it was shown own- compared to other-stimuli. Mann-Whitney U Test: p < 0.001. f, Schematic of
trajectories through the neuron population manifold. X’s represent responses to 3 different own- (red)
and other-stimuli (black). Own-stimuli are located on the boundary of the population response manifold
(the space of all possible population responses). Trajectories along the boundary of the manifold, i.e.
rotations of the population vector, encode intra-area feature differences (intra-area coding axes, red),
whereas trajectories from the center outwards, i.e. scaling of the population vector, correspond to axes
encoding the overall feature differences across areas (inter-area coding axes, black).
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Supplementary Figure 1: Distribution of response reliability of all neurons recorded across all areas.
Response reliability was calculated as the Spearman-Brown corrected correlation coefficient across half-
splits of repeated presentation of 100 natural images. Many areas exhibited a clear bimodal distribution.

Neurons with reliability > 0.5 were used for subsequent ANN modelling (dashed red line). Numbers
indicate the number of reliable neurons/total neurons.
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Supplementary Figure 2: Pairwise statistical differences of spatial mask area (related to Figure 2e).
Significance was assessed via Kruskal-Wallis and post hoc Dunn’s test with Bonferroni correction. Values
indicate p-value, and significantly different pairs are highlighted in red. V1: n = 961 model units (67.7%),
LM: n = 802 model units (54.6%), LI: n = 530 model units (47.7%), POR: n = 548 model units (51.2%), AL: n
= 610 model units (47.0%), RL: n = 431 model units (47.9%).
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Supplementary Figure 3: Pairwise statistical differences of visual feature preferences (related to Figure
5). Significance was assessed via Kruskal-Wallis and post hoc Dunn’s test with Bonferroni correction.
Values indicate p-value, and significantly different pairs are highlighted in dark red. n = 200 stimuli/area
a, Average pixel luminance. b, Folio symmetry index. ¢, Quarto symmetry index. d, Number of light (/eft)
and dark (middle) segments, and difference between the light and dark segments within each area (right).
e, Same as (d) but for segment area. f, Spatial frequency preferences were binned into low (0-0.04
cyc/deg), medium (0.04-0.15 cyc/deg), and high frequency bands (0.15-0.34 cyc/deg).
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Supplementary Figure 4: Visual feature preferences calculated across all preferred stimuli. The same as
Figure 5b-g, except instead of calculating these metrics only on the 200 most representative stimuli for
each HVA, here the metrics were computed for all preferred stimuli from each area. a, Mean luminance
of preferred stimuli across regions. b, Number of light and dark segments. ¢, Area of light and dark
segments normalized to the area of the full stimulus. d, Radially averaged spatial frequency power
spectrum. e, Folio (one-fold), and f, quarto (two-fold) symmetry index.
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Supplementary Figure 5: Own-stimuli drive increased area-wide activity in the area they were
generated from. The same as Figure 6b, but from our in silico models. The much larger effect size for the
in silico compared to in vivo results could arise from the fact that, unlike the in silico experiments, we are
unable to align the stimuli to be centered over each cell’s receptive field in vivo, or it could arise because
the effect size is small and swamped out by noise, or due to a combination of these issues. Wilcoxon rank
rum test: for V1, LI, POR, AL and RL, p < 0.001; for LM, p = 0.0575.
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Supplementary Table 1: Hyperparameters used for training ANN models.

Area Learning rate Learning rate L1 L2
decay

V1 0.001035 0.01986 0.0006565 0.0082100
LM 0.001562 0.04827 0.0002147 0.0006054
LI 0.001011 0.03148 0.0001245 0.0001245
POR 0.001404 0.04147 0.0019060 0.0019060
AL 0.001421 0.03263 0.0004504 0.0004504
RL 0.002319 0.02160 0.0052730 0.0052730
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Methods:

Animals All procedures were performed in accordance with the Canadian Council on Animal Care and
approved by the Montreal Neurological Institute’s Animal Care Committee. Mice used were Thyl-
JjRGECO1a-WPRE, line GP8.31 (The Jackson Laboratory #030526). All mice were adults (2-6 months old)
and mice of both sexes were included. Mice were maintained in a temperature and humidity controlled

facility on a 12 hr light/dark cycle.

Head-bar and cranial window implantation Mice were anesthetized with a cocktail containing fentanyl

(0.05mg/kg), medetomidine (0.5mg/kg), and midazolam (5mg/kg)*®. Skin was cut away over the skull, and
a custom head-bar (adapted from a design from the Polley lab (Harvard University)) was attached to the
skull over the right hemisphere using dental cement (C&B Metabond). Next, a 5 mm circular cranial
window was made on the left hemisphere over visual cortex and sealed with a 5 mm glass coverslip
(Warner) that was held in place with super glue. The exact position of the cranial window varied from

mouse to mouse to enable easier optical access to the specific higher visual areas we were interested in.

Widefield calcium imaging Widefield imaging was performed similarly to previous studies'*™324, In brief,

an awake head-fixed mouse was placed under a 2-photon microscope (Neurolabware) with an
independent epifluorescent imaging pathway. A 5X objective (Mitutoyo, M Plan Apo) was used to pass
excitation light and collect emitted light. Excitation light was generated by a white LED (Thorlabs,
MCWHLS5), passed through a 559 nm excitation filter (Thorlabs, MF559-34), and a 588 nm dichroic
(Thorlabs, MD588). Emission light passed back through the dichroic and a 630 nm emission filter (Thorlabs,
MF630-39) and was captured at 10 Hz by a digital camera (PCO edge 3.1 M). We recorded light-evoked
calcium responses through the cranial window on the left hemisphere, while visual stimuli were presented
to the right eye. The mouse was presented with an inverting checkerboard stimulus that passed in both

directions along both azimuth and elevation (10 repetitions for each direction) on a 24-inch computer
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monitor (BenQ RL2455) positioned 13 cm from the mouse’s eye. The moving stimulus was a 20° wide bar
that was periodically swept across the monitor at a velocity of 4 °/s. The bar was filled with a checkerboard
pattern (25° spatial frequency) reversing at 6 Hz. Spherical stimulus correction was applied to compensate
for the flatness of the monitor!’. The video data was first high pass filtered at half the stimulus frequency.

A discrete Fourier transform (DFT) at the stimulus frequency was then applied:

where v is the stimulus frequency, and the phase difference between directions offset by 180 degrees

was calculated to correct for the response delay due to slow dynamics of the calcium dye:

G

(%)) = Z0e
where 6 is the direction of the stimulus. Phase and amplitude were then extracted. To generate a sign
map, the difference between the gradients of the phases for both azimuth and elevation stimuli was

calculated:

Sign(x: Y) = sinA(V@qzimuth » VPelevation)

To identify HVA boundaries, the sign map was standardized, thresholded at 1.5 times the standard
deviation, and denoised via binary opening. Lastly, a few (1-4) iterations of binary erosion were applied

to refine the boundaries of each region.

For widefield experiments in Figure 6, static images were presented for 0.5 s with an inter-stimulus
interval uniformly distributed between 1.3-1.7 s. Calcium activity was averaged for each visual area,
identified by retinotopic mapping. The data was then high pass filtered at half the stimulus frequency,
normalized to baseline, and denoised using singular value decomposition (SVD). Specifically, we found

that the first right singular vector of the data matrix (stimulus x time matrix) corresponded well to the
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stimulus-evoked response kernel, and we therefore defined the response amplitude as the projection of
the data matrix onto this vector. In order to compare whether a given stimulus more strongly activated
neurons in the area it was generated from, we compared its response amplitude against the average

amplitude in all other areas.

2-photon calcium imaging 2-photon imaging was performed similarly to previously described®. In brief,

the laser (Insight X3, Spectra-Physics) was set to 1080 nm, and head-fixed, awake animals were placed
under a resonant-galvo scanning 2P microscope (Neurolabware). Recordings were acquired at 10 Hz, from
neurons in layer 2/3 (depth between 120 and 300 pm measured at the center of the FOV). Animals were
presented with 2500 natural images from ImageNet?’. Images were scaled to a size of 135 x 135 pixels,
converted to grayscale, and shown for 0.5 s with a vertical height of 98 degrees. The inter-stimulus interval
was uniformly distributed between 1.3-1.7 s so that responses were not entrained by a fixed stimulation
frequency. A subset of the images (100/2500) were repeated 10 times and used for calculating response
reliability and evaluating model performance (see below). Following data acquisition, recordings were
processed using Suite2P*' to identify neurons and extract their responses (deconvolved spiking
responses). For ANN modelling, data was denoised via singular value decomposition (SVD) to extract
stimulus-dependent signals. Specifically, SVD was performed on the ‘trial x time’ matrix for each neuron
and the data was projected onto the first singular vector, as we found this closely corresponded to the
stimulus-evoked response kernel for the majority of neurons. This denoising was only performed for ANN
modelling; validation experiments were analyzed using raw deconvolved spiking responses. To extract
stimulus-evoked responses, we averaged the activity in a 700 ms window following stimulus onset and
normalized the response for each neuron. In total, we recorded from > 17,500 neurons from 21 animals
(V1=2,213 cells; LM = 2,315 cells; LI = 3,341 cells; POR = 2,524 cells; AL = 3,214 cells; RL = 4,232 cells), and
after taking into account response reliability and explainable variance explained into account (see below),

we used > 7,250 model units for our subsequent analyses.
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Response reliability The reliability of each neuron in response to the presentation of natural images was

calculated as the Spearman-Brown corrected correlation coefficient for random half-splits:

~_ 2P
P=1%0

where p is the Pearson correlation coefficient, averaged across 100 random samples. For many areas, we
found a bimodal distribution of response reliability across all experiments (Supplementary Figure 1) and
therefore only included neurons with response reliability > 0.5 for subsequent modeling. Reliability could
be affected by various factors, including ‘innate’ trial-by-trial variance, non-visual induced activity (e.g.
motor movements), or representational drift occurring over the course of a relatively long recording
session. Note that RL appeared to be less reliably overall than the other areas, similar to what has been

found previously®.

Calculation of explainable variance For each neuron, the amount of explainable variance was estimated

for the 100 repeated stimuli as

_ Var(r) — <02)trials
Varexplainable - Var(r)

where Var(r) is the variance of the response of a given neuron to all stimuli and (2) ;45 is the average

variance of the responses across repeated trials.

Linear model The performance of the ANN model was compared to a simple linear model. Neuron
responses were fitted using Partial Least Squares regression with 5-fold cross-validation. Each model was

run with a range of bottleneck dimensions (10-20) and the best performing model was chosen.

Artificial neural network modelling Deep convolutional neural networks were trained to predict neural

responses to natural images. The networks consisted of four blocks, each block composed of 2D

convolutional (kernel size = 3, stride = 1), batch normalization, rectified linear unit (ReLU), and max pooling
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(kernel size = 2, stride = 2) layers, followed by a factorized readout layer?. The factorized readout
decomposes into independent spatial and feature layers, which consist of tensors of shape (1 x height x
width) and (channel x 1 x 1), respectively. The number of channels in the feature layer was set to 512; the
height and width of the spatial layer amounted to 8. The spatial layer was further constrained to have
non-negative entries and unit Frobenius norm to facilitate its interpretation as a spatial mask.

Additionally, L1 regularization was applied to both layers to encourage sparsity.

Networks were trained to predict neural responses to natural images by maximizing the normalized dot

product:

N ~
1 (Vn» In)

max— ) ————
N LTIyl T3l

where y,,, ¥, are the response and predicted response of neuron n, respectively, averaged over all
neurons N. The networks were trained using Adam optimizer for 30 epochs, with L2 regularization, and
early stopping. A hyperparameter search was performed with Orion

(https://orion.readthedocs.io/en/stable/) to find optimal training parameters (Supplementary Table 1).

The performance of the model was assessed by calculating the squared Pearson correlation coefficient
with a set of held-out data (100 repeated stimuli). A linear regression without offset between the
explainable variance and model performance was then performed to estimate the fraction explainable

variance explained®,

Spatial mask analysis and alignment We upscaled the spatial layer of the factorized readout (8 x 8) to the

stimulus size (135 x 135). To calculate the area of the spatial mask, we fit a 2D Gaussian

=W (x-p)
2

+b 3=

2
f@x) = 4e [ o “"”y]

2
POxOy  Oxy
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where x are the pixel coordinates, i the center, ox and o, the standard deviations, p the correlation
coefficient, A the amplitude, and b the offset. The area of the spatial mask was defined as ooy of the
ellipse at one standard deviation. Only spatial masks that were fit well by the 2D Gaussian (r? > 0.8) were
used to estimate the area. For analyses of image statistics, we masked preferred stimuli to include only
those regions within two standard deviations of the median spatial mask size of each model. The edges of
the mask were further smoothed by applying a Gaussian filter (o = 5 pixels). We set the background of the

preferred stimuli to a pixel value of 0.5.

For in silico analyses, the centers of the spatial masks were aligned to the center of the input stimuli. The
spatial masks were shifted towards the center with boundaries being wrapped around and values

interpolated with 3™ order splines. This was repeated 10 times for more consistent alignment.

Generation of preferred stimuli Building on early work that sought to understand the features represented

by model units in ANNs*’, here, preferred stimuli were generated using the Lucent library
(https://github.com/greentfrapp/lucent). In brief, starting from random white noise, images were
updated to maximize the response of ANN model units by backpropagating the error through the ANN to
the input images. To avoid high frequency noise, which is known to result in image artefacts that interfere
with interpretability, small random transformations were applied to the images, including padding (0-4
pixels), jitter (0-8 pixels), and rotations (+ 10 degrees). The optimization was run for 512 epochs with a

learning rate of 3e-3.

In vivo validation experiments In vivo validation experiments followed the same protocol as described in

“2-photon calcium imaging”. After the first recording session, data was analyzed and preferred stimuli
were generated for all neurons. For the second recording session, the same field of view was found by
aligning the blood vessel patterns. On average, we were able to match ~80% of neurons across days.

Preferred stimuli and up to 500 natural images (randomly selected from ImageNet) were presented three
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times each. For the quantification, the responses to the three repeats were averaged and normalized to

the distribution of responses to natural images for each neuron.

Distance and partial distance correlation

Distance correlation was used to compare the functional similarity between areas. First, the spatial mask
of model units in the ANN models were aligned to the center of the input. Next, 10,000 natural images
were presented to the models and the responses were collected and normalized for each neuron. We
subsampled the resulting response matrix by randomly choosing 200 neurons and 1,000 stimuli and
computed the distance correlation®® between all pairs of models, repeated 100 times. The distance
correlation was then averaged across repeats. To isolate unique correlations between areas, we

computed the partial distance correlation*, which approximates the conditional distance correlation**:

pdCor(A,B) = dCor(A, B; ()

where C is the concatenated matrix over all areas C # A, B.

To visualize the resulting network structure, we converted the pairwise correlation matrix to a dissimilarity
matrix d = 1-dCor or d = 1-pdCor and performed multidimensional scaling (MDS) using the scikit-learn

library.

Embeddings of the collection of preferred stimuli Three image embeddings were used based on (1)

perceptual distance, (2) pixel distance, and (3) spatial frequency distance. The distances were defined as
the Euclidean distance in the respective embedding spaces. For perceptual distance, we trained a SImCLR
model which learns an embedding that is invariant to a custom set of transformations3%33, Specifically, we
used the backbone of the ResNet18 network and appended a 256-dimensional linear readout layer. The

network was then trained to minimize the following loss function:
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(1+d¥)/z

lsimene = —log
" i (L+di)"YT

where b=3955 is the batch size and 1 = 0.1 a temperature parameter. Setting t < 1 prevented
dimensionality collapse in which the rank of the embedding space would be much smaller than 256
dimensions. d denotes the Euclidean distance calculated for pairs i, j of two random transformations
applied to the same preferred image. For invariance to affine transformations, the random
transformations were cropping and scaling (area before resizing: 0.08-1 times the total image size of 64 x
64 pixels, resized to 32 x 32 pixels), random rotation (+ 90 degree range), random translation (+ 0.1 times
the total image size), random horizontal and vertical flips, and a Gaussian blur. SimCLR was trained for
500 epochs with Adam optimizer (learning rate = 1e-4) and a cosine annealing schedule for the learning
rate. To visualize the SimCLR embedding, UMAP3** was used to project the embedding into two-

dimensional space (metric = Euclidean, min_dist = 0.1, n_neighbours = 30).

For pixel similarity, the dimensionality of the images was reduced using PCA to match the 256 dimensions
of the SimCLR embedding. For the spatial frequency distance, we performed fast Fourier Transform (FFT),
calculated the power spectra, removed the DC component, and reduced the dimensionality to 256 using

PCA.

A k-nearest neighbours classifier (k=20) was used to assess classification accuracy of the image
embeddings (note that the results were qualitatively indistinguishable for k = 10, 20, or 50; data not
shown). The classifier was trained on 75% of the data and tested on the remaining 25%. This was repeated
100 times. We separately sampled each area’s preferred stimuli to account for unequal numbers of

preferred stimuli generated for each area.

To estimate the overlap between embeddings of preferred stimuli from two areas, we calculated the

average distribution of area labels of the 20 nearest neighbours of each image. For example, to calculate
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the overlap of V1 preferred stimuli with the HVAs, for the 20 nearest neighbours of each preferred
stimulus in V1, we counted the number of neighbours that belonged to each HVA. This procedure resulted
in a 6 x 6 overlap matrix M for each pair of visual areas. This matrix was not symmetric, so we next
averaged across the diagonal, Msymmetric = (M+MT)/2, i.e. we averaged the overlap of area A with B and the

overlap of area B with A. We used this symmetric matrix as a measure for local overlap.

The topological similarity between the local overlap with the functional similarity was computed as the
Spearman correlation between the symmetric overlap matrix (Figure 3d) and the pairwise partial distance

correlation matrix (Figure 2c).

Generating the ‘Feature landscape of mouse visual cortex’ We visualized the two-dimensional UMAP

projection of the SimCLR embedding as an image atlas. First, the embedding was scaled to lie within the
unit interval [0,1]. Next, we tiled the embedding into an NxN grid (for Figure 4, a 40x40 grid is shown).
Then, within each tile, we randomly chose an image to display. For visualization purposes, the small
number of empty tiles in the 40x40 grid that were fully enclosed within the UMAP projection (i.e. ‘holes’

in the grid) were filled in using the closest image from a neighbouring tile.

Computing the most representative preferred stimuli For each preferred stimulus, we defined the degree

of representative-ness as the fraction of nearest neighbours (k = 100) in SimCLR’s embedding space that
were from the same visual area. We then chose the top 200 most representative stimuli for each region

for subsequent analysis in Figure 5.

Preferred stimulus analyses We computed various low-level image statistics for the preferred stimuli. Pixel

intensities ranged from 0 to 1.

(1) Luminance was calculated as the average pixel intensity within the spatial mask.
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(2) Toidentify dark and light segments, we thresholded stimuli around the background intensity (for
dark segments: pixels < 0.49; for light segments: pixels > 0.51). Next, disconnected segments with
area > 2 pixels were identified. We analyzed the number of segments and the area, which was
normalized by the full area of the stimulus.

(3) To calculate the spatial frequency content, we first performed a FFT and averaged the power
spectrum radially with bin size = 1 pixel. To calculate the radial average, we converted pixel
Cartesian coordinates to polar coordinates, defining the center of the image as the origin (0,0).
Pixels were then binned according to their radius, rounded down. Spatial frequency power was
normalized for each frequency across all images from all areas.

(4) To calculate folio (1-fold) and quarto (2-fold) symmetries, we first performed FFT and averaged
the power spectrum axially with bin size = 1/16 n radians. To calculate the axial average, we
converted pixel Cartesian coordinates to polar coordinates, defining the center of the image as
the origin (0,0). Pixels were then binned according to their angle, rounded down. Next, we defined

an n-fold symmetry index (Sl) as

| 29 PeeiZnG |
S, =——
29 Pe
where Py is the average power at angle 8 and the scalar multiplier 2 is due to the inherent point

symmetry of the FFT power spectrum. Sl is defined on the unit interval with 0 denoting a lack of

symmetry and 1 being a fully n-fold symmetric image.

Data analysis Statistical significance was assessed using Mann-Whitney U test for unpaired data, Wilcoxon
rank sum test for paired data, and Kruskal-Wallis followed by post hoc Dunn’s test with Bonferroni
correction for multiple comparisons. Data values are reported as mean = SEM, unless mentioned
otherwise. Box plot elements are defined as follows: center line = median, box limits = upper and lower

quartiles, whiskers = 1.5 times interquartile range.
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Nomenclature of mouse HVAs The list!® of widely agreed upon mouse HVAs include: LM (lateromedial),

AL (anterolateral), RL (rostrolateral), A (anterior), AM (anteromedial), PM (posterior medial), LI

(laterointermediate), P (posterior), and POR (postrhinal).
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