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Abstract: 

 

Understanding computations in the visual system requires a characterization of the distinct feature 

preferences of neurons in different visual cortical areas. However, we know little about how feature 

preferences of neurons within a given area relate to that area9s role within the global organization of 
visual cortex. To address this, we recorded from thousands of neurons across six visual cortical areas in 

mouse and leveraged generative AI methods combined with closed-loop neuronal recordings to identify 

each neuron9s visual feature preference. First, we discovered that the mouse9s visual system is globally 

organized to encode features in a manner invariant to the types of image transformations induced by self-

motion. Second, we found differences in the visual feature preferences of each area and that these 

differences generalized across animals. Finally, we observed that a given area9s collection of preferred 
stimuli (8own-stimuli9) drive neurons from the same area more effectively through their dynamic range 

compared to preferred stimuli from other areas (8other-stimuli9). As a result, feature preferences of 
neurons within an area are organized to maximally encode differences among own-stimuli while 

remaining insensitive to differences among other-stimuli. These results reveal how visual areas work 

together to efficiently encode information about the external world. 
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Introduction: 

 

Our visual system makes sense of the world via its myriad neurons, each tasked with extracting 

specific visual features from the environment. Decades of work in primates have shown that after visual 

inputs arrive in primary visual cortex (V1), they proceed to numerous higher visual areas (HVAs)1. At an 

inter-area level, each HVA is thought to prefer a specific portion of the visual world (e.g. there is a 

preference for orientated edges in V12; there is a preference for faces in fusiform face area3). At an intra-

area level, individual neurons exhibit diverse tuning preferences that enable encoding of the portion of 

the visual world that a given HVA is concerned with (e.g. V1 possesses neurons with preferences for edges 

of different orientations4; face-selective areas possess neurons preferring different aspects of faces5). 

However, due in part to the large size of visual areas in primates and the resulting difficulty in broadly 

recording from neurons within and across different HVAs, a clear understanding of how across-area 

differences in feature preferences relate to within-area organization of feature preferences is lacking. This 

limits our ability to gain a holistic view of the visual system and to understand how its computational goals 

guide its functional organization. 

The mouse visual system provides a tractable model for addressing these issues. Anatomical 

tracing6–9 and functional mapping10–13 of mouse cortex have revealed ~10 distinct HVAs, most of which 

receive significant direct input from V1. Circuit tracing and light-evoked spike time analyses have found 

some evidence that mouse HVAs are organized in a hierarchal manner6,7,9,14, although these studies have 

also found that mouse HVAs appear to be more strongly interconnected than those in primates6–9. In one 

study14, a single hierarchy was described: V1→LM→RL→LP→AL→PM→AM (for full nomenclature of 

mouse HVAs, see Methods). In contrast, other studies attempting to parallel primate visual streams have 

sorted the mouse hierarchy into putative ventral (V1→LM→P→LI→POR) and dorsal 

(V1→RL→AL→A→PM→AM) processing streams7,9. Additional studies have examined differences in 
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visual feature preferences between mouse HVAs, but to date it has been difficult to draw firm conclusions. 

For instance, by presenting full field drifting grating stimuli, several studies have found differences in 

spatial and temporal frequency tuning properties between HVAs10,11,15–17, though some of the differences 

noted appear to arise from the specific inclusion criteria used18 or whether experiments were performed 

under awake or anesthetized conditions19. Another study20, which used 2-photon calcium imaging to 

record from different genetically-defined cell types, across different cortical layers and HVAs, is notable 

for revealing broad tuning curves and largely overlapping preferences within and across genetically-

defined cell types, across cortical layers, and across HVAs. Thus, what remains missing is a) an inter-area 

level understanding of which portions of the visual world each mouse HVA is concerned with; b) an intra-

area level understanding of how specific portions of the visual world are specifically encoded by neurons 

within each HVA; c) a cross-scale understanding of how inter-area feature preferences arise from and 

relate to intra-area feature preferences. 

To address this, we used in vivo 2-photon calcium imaging to record from thousands of neurons 

across mouse V1 and five HVAs. We leveraged advances in modelling neuronal responses using artificial 

neural networks (ANNs)21–23 to build predictive models of the neurons, which we used to generate 

preferred stimuli for individual neurons. This enabled us to outline how mouse HVAs are functionally 

organized, ask why such an organization arises, and elucidate what the roles for such an organization are 

in encoding visual stimuli. 

Results: 

 

Modelling multiple mouse visual cortical areas with artificial neural networks 

 

 To gain an understanding of the visual features encoded by neurons in various visual cortical areas 

in the mouse, we modelled neuron responses to visual stimuli in different areas with artificial neural 
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networks (ANNs). We used this approach to determine the preferred stimulus (i.e. a visual stimulus that 

will strongly activate the neuron) for each neuron recorded in vivo, and to run in silico experiments that 

would be otherwise infeasible experimentally. To generate these models, we recorded from neurons in 

six visual cortical areas in mouse, including primary visual cortex (V1) and five HVAs spanning different 

anatomical hierarchical levels of both putative dorsal and ventral visual streams (LM, LI, POR, AL, and RL; 

Figure 1a). Each area was identified using widefield calcium imaging, with area segmentation based on 

the phase of retinotopic maps12,13,24, using transgenic mice in which the calcium indicator jRGECO1a was 

expressed throughout cortex25 (Figure 1a). After identifying a given cortical area, we used 2-photon 

calcium imaging to record light-evoked responses from neurons in layer 2/3 during the presentation of 

2,500 different static natural images.  

Next, we used ANNs to model the responses from neurons in each cortical area (Figure 1b). We 

used a shallow convolutional neural network with a factorized readout layer26 that separates the visual 

features (i.e. 8what9) and the spatial locations in the images that drive neurons (i.e. 8where9), referred to 

as the 8spatial mask9. For each cortical area, we trained a unique ANN to predict the responses of individual 

neurons to the natural images. For model training, we selected neurons that reliably responded to natural 

image presentation (Supplementary Figure 1; see Methods). Additionally, only model units (i.e. digital 

twins of our real neurons) with > 30% explainable variance explained were used for subsequent analyses. 

This resulted in > 7,250 model units included for subsequent analyses (V1 = 1,418 units; LM = 1,469 units; 

LI = 1,112 units; POR = 1,070 units; AL = 1,298 units; RL = 899 units). Importantly, each ANN model had a 

significantly higher fraction of explainable variance explained compared to a simple linear model (Figure 

1c; see Methods).  

Finally, to validate our modelling strategy, for a subset of recordings (n = 2-3 animals per cortical 

region), we re-recorded from the same neurons on a second day while presenting the animal with a subset 

(n = 300-500) of the natural images shown the first day, as well as their preferred stimuli (Figure 1d). Each 
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preferred stimulus, generated to maximally activate the twinned model unit, also strongly and selectively 

activated its corresponding in vivo neuron, with much smaller 8off-diagonal9 activation compared to 8on-

diagonal9 activation (Figure 1e-g). The median response generated for all preferred stimuli was greater 

than 90% of the responses evoked by natural images (Figure 1h). Our results indicate that these ANNs can 

serve as tools for predicting neuronal activity and exploring visual feature preferences in areas V1, LM, LI, 

POR, AL, and RL. 

  

The functional organization of mouse visual cortex 

We first examined the overall organization of visual cortex. To do so, we examined the functional 

similarity between HVAs by using our ANN models to test how features of visual stimuli were differentially 

represented across brain areas. We took advantage of the fact that we could align the spatial masks (the 

8Where-layer9) of the factorized readout layer for each model unit (Figure 2a), which allowed us to focus 

exclusively on differences arising from the 8What-layer9. We presented 10,000 natural images taken from 

ImageNet27 to the spatial mask centered units. For each image, we measured the evoked population 

response (i.e. how strongly each model unit was activated by each image) and repeated this process for 

ANN models of V1 and the five HVAs. We then compared the similarity of population responses to the 

same set of natural images across visual areas by calculating the distance correlation (dCor), a non-linear 

method for measuring statistical dependence between two multivariate random variables (Figure 2a). We 

found that the distance correlations between pairs of HVAs showed clear differences in their strength 

(Figure 2b). However, we also observed that distance correlation values were relatively high between all 

areas, suggesting the presence of some widely shared correlations. To specifically focus on unique 

correlations shared between each pair of regions, we calculated the partial distance correlation (pdCor) 

between each pair of regions after conditioning out correlations with all other regions (Figure 2a). 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565500doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565500
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

 

Focusing on pdCor, we found that activity in V1 was most similar to LM and LI. Activity in LM was most 

similar to RL and AL. LI and POR were most similar to each other, RL and AL were most similar to each 

other, and these latter two groups (LI+POR vs. RL+AL) were particularly dissimilar from one another 

(Figure 2c). We used multidimensional scaling (MDS) to visualize the distance correlations and partial 

distance correlations between the different areas as undirected graphs. This visualization emphasized the 

existence of two distinct functional streams emerging from V1 and passing through LM: one being 

V1→LM→LI→POR, the other being V1→LM→RL→AL (Figure 2b,c; note that since we know a priori that 

V1 is the predominant input region receiving signals from the visual thalamus, we orientated the MDS 

graph to place V1 at the bottom). Remarkably, a proposed dorsal/ventral two-stream hierarchy based on 

anatomical connectivity9 is in strong agreement with our results (Figure 2d), revealing a tight relationship 

between function and anatomy. 

 Finally, previous work has shown that receptive field size increases as one moves up the visual 

hierarchy7,9,14,20. We examined whether the spatial mask size in the factorized readout layer, which is 

loosely analogous to a receptive field, showed differences across visual cortical areas. We normalized 

mask size to V1 and found that spatial mask size increased along the visual hierarchy (Figure 2e). Overall, 

these analyses provide strong evidence that, on a functional level, mouse HVAs are representationally 

organized along two distinct hierarchical processing streams. Moreover, representations of natural 

images increasingly differ between HVAs as a function of hierarchical distance. 

 

Visual feature similarity with invariance to self-motion related image transformations guides the 

organization of feature preferences across HVAs 

 We next asked why HVAs are organized in this manner. Unlike in primates – where it is well-

established that IT cortex is dedicated to processing visual objects28, and thus specific hypotheses can be 
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formulated around how preferences for specific visual categories are organized in different HVAs29–31 – 

we did not have a clear a priori assumption for the type of model that might guide the organization of 

visual feature preferences in mouse cortex. We therefore decided to compare three simple image-based 

organizing models: a) a template-matching based model; b) a spatial frequency based model; c) a model 

based on visual feature similarity with invariance to image transformations that could arise as an animal 

moves around the world (we focused on invariance to affine transformations, including translation, scaling 

and in-plane rotation, as these are simple to apply to 2-D images). 

 To compare between these three models, we pooled the preferred stimuli from all areas. Next, 

for each model we constructed a 256-dimensional embedding space. For the template-matching based 

model, we performed a principal component analysis (PCA) on the preferred stimuli and defined the 

resulting principal component space as the embedding. For the spatial frequency based model, we 

performed a fast Fourier transform (FFT) on each preferred stimulus, followed by PCA. For the third model, 

we embedded the preferred stimuli using SimCLR, a contrastive deep learning tool specifically designed 

to group together images that are similar to one another32, and which has previously been used to 

measure the similarity of AI-generated preferred stimuli from primate V433. SimCLR maximizes invariances 

towards arbitrary transformations of input images, which we achieved by applying a set of affine 

transformations to the preferred stimuli – translation (± 10% X/Y shift), rotation (± 90°), and resizing – 

then projecting these images into SimCLR9s latent space, and minimizing the distance between different 

transformations of the same preferred stimuli (Figure 3a). Notably, the transformations we applied are 

similar to those that would be expected from self-motion. 

First, we tested which of these models was best able to group together preferred stimuli according 

to the area that they were generated from. For each embedding model of preferred stimuli, we performed 

a k-nearest neighbours analysis (kNN; k = 20) and examined its classification accuracy (Figure 3b). We 

found that the SimCLR method significantly outperformed both template-matching (pixel-level PCA) and 
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spatial frequency (FFT) based models (Figure 3b), meaning that SimCLR was better at grouping together 

preferred stimuli from the same HVA. We thus further explored details of the SimCLR embedding of 

preferred stimuli. 

We visualized SimCLR9s 256-dimensional space by projecting it down to two dimensions using 

UMAP34. In this visualization (Figure 3c), each point represents a preferred stimulus, and the distance 

between any two points indicates the relative similarity between those two preferred stimuli in SimCLR9s 

latent space: specifically, distance in this space relates to image similarity with invariance to affine 

transformations. While the UMAP plot did not reveal distinct clusters – as predicted by the strong pairwise 

functional correlation between areas (Figure 2b) – colour-coding the embedding according to the visual 

area that each preferred stimulus came from revealed strong biases in the extent to which preferred 

stimulus space was represented by each visual area (Figure 3c). 

How do we know if SimCLR9s embedding of preferred stimuli is related to how the brain organizes 

visual feature preferences? To ask this question, we examined whether SimCLR9s embedding of preferred 

stimuli could recapitulate the functional organization of HVAs (Figure 2b,c). We reasoned that the 

functional relationship between HVAs could be reflected in the overlap of their respective manifolds 

within the SimCLR embedding space. To calculate this, for each preferred stimulus from each HVA, we 

measured the likelihood of finding preferred stimuli from other HVAs within its 20 nearest neighbours 

(Figure 3d). As visualized with an MDS plot (Figure 3d), SimCLR9s embedding of preferred stimuli resulted 

in an organization of HVAs that was remarkably similar to that generated from neuron population 

responses (Figure 2b,c). To quantify this, we measured the topological similarity between SimCLR9s 

embedding (Figure 3d) and the results from the partial distance correlation analysis (Figure 2c) via the 

Spearman correlation coefficient of the respective similarity matrices. This indicated a significantly higher 

topological similarity between the SimCLR embedding and the functional organization of HVAs compared 

to when the same analysis was run on the template-matching or spatial frequency based models (Figure 
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3e). These results suggest that, at a cortex-wide scale, HVAs encode visual features agnostic to their 

orientation, scale, and position, in line with a general invariance to types of image transformations that 

can be induced by self-motion. 

 

Each HVA prefers distinct visual features 

What do the preferred stimuli for different HVAs look like, and how do they differ between areas? 

To address these questions, we visualized the two-dimensional UMAP projection of the SimCLR 

embedding. We split the embedding into a 40 x 40 grid, and for each tile in the grid we randomly visualized 

an image contained within that tile (Figure 4). We refer to this visualization as the 8Feature landscape of 

visual cortex9. It can be seen from this visualization that SimCLR effectively sorted preferred stimuli based 

on image similarity, as neighbouring preferred stimuli appear alike. To examine visual feature preference 

differences across HVAs, we selected the 200 most representative preferred stimuli for each visual area, 

on which we performed additional analyses. This was done within the SimCLR embedding by using a kNN 

analysis (k = 100) to select the images with the most preferred stimuli from the same visual area within 

their neighbourhood. 

We observed several differences between the representative stimuli from different HVAs (Figure 

5a). First, we noted differences in mean luminance, with some areas preferring darker or brighter stimuli. 

We found that preferred stimuli from LI and POR were particularly dark, whereas RL preferred stimuli 

were relatively brighter (Figure 5b; Supplementary Figure 3). Second, we noted differences in how many 

distinct segments made up preferred stimuli from each area. Calculating individual segments (measured 

via thresholding preferred stimuli into black and white segments), we found that preferred stimuli from 

most areas were best described as having white segments on top of a black background (i.e. significantly 

more white than black segments (except for AL)), and having smaller white segments than black segments 
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(Figure 5c,d; Supplementary Figure 3; with LI having significantly more white segments than the other 

areas). Third, we noted that representative stimuli from some areas were dominated by lower spatial 

frequencies, whereas others possessed higher spatial frequency content. Performing an FFT and averaging 

radially over all orientations, we found that POR was dominated by the lowest spatial frequencies (though 

with increased power again at very high spatial frequencies), LM, AL, and RL were dominated by medium-

to-low spatial frequencies, V1 was dominated by medium-to-high spatial frequencies, and LI was 

dominated by high spatial frequencies (Figure 5e; Supplementary Figure 3). Lastly, we noted that whereas 

areas V1, AL, and RL had representative stimuli that tended to feature long edges orientated along a single 

axis, areas LI and POR contained dotted segments that appeared to be arranged in grid-like patterns. 

Calculating folio symmetry (i.e. folding the image once) vs. quarto symmetry (i.e. folding the image twice) 

revealed that areas V1, LM, AL, and RL exhibited higher folio symmetry (Figure 5f; Supplementary Figure 

3), whereas areas LI and POR exhibited significantly higher quarto symmetry (Figure 5g; Supplementary 

Figure 3). Importantly, these differences in image statistics for preferred stimuli from different HVAs 

persisted when we performed the same analyses on all preferred stimuli from each HVA, not just on the 

200 most representative stimuli (Supplementary Figure 4). These results show that each HVA exhibits 

distinct preferences in visual features. 

 

The set of preferred stimuli in a visual area represents a spanning set that effectively drive neurons through 

their dynamic range 

The results above indicate that the preferred stimuli for each visual area possess distinct image 

statistics. As such, we wondered whether at a population level the set of preferred stimuli generated from 

a given area (which we refer to as 8own-stimuli9) would drive stronger activity in the neurons from the 

same area compared to the set of preferred stimuli generated from other visual areas (8other-stimuli9). To 

test this, we performed in vivo widefield calcium imaging with a new cohort of mice that were not included 
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in the models from which we generated the preferred stimuli (Figure 6a). We presented a mix of preferred 

stimuli from all areas and found that, for all areas other than LM, own-stimuli drove significantly stronger 

activity in the area that they were generated from compared to other areas (Figure 6b; for in silico results, 

see Supplementary Figure 5). As such, the biases we found in feature preferences for each area are 

consistent and generalize across animals.  

Do own-stimuli drive stronger average activity simply because they contain more of the overall 

visual statistics preferred by neurons in a given area? To test this, we leveraged our in silico models, where 

we could center both own- and other-stimuli on individual models units by aligning their spatial masks, 

and we examined the range of responses evoked by sets of own- vs. other-stimuli. We found that instead 

of increasing the average response amplitude to all stimuli, own-stimuli drove neurons through a wider 

dynamic range (Figure 6c). To quantify this, we compared response amplitudes at the 10th and 90th 

percentiles and found that, compared to other-stimuli, own-stimuli extended the dynamic range over 

which neurons responded, on both upper and lower bounds (Figure 6d).  However, the effect size at the 

90th percentile was significantly stronger than at the 10th percentile (Figure 6d), which explains why own-

stimuli drive stronger average activity in the area they were generated from compared to other-stimuli 

(Figure 6b). This also indicates that each own-stimulus, though generated to maximize the response of a 

specific neuron, actually also drives weak activity in many other neurons from the same area. Similarly, 

responses to own stimuli are often weaker than responses to other-stimuli.  Consistent with this finding, 

we found that population variance (the extent to which a given stimulus drives diverse responses in a 

population of neurons, defined as the inter-quartile range of the distribution of responses to a given 

stimulus) was significantly higher for own- vs. other-stimuli (Figure 6e). Thus, the different features 

preferred by neurons within a given area can be viewed as a 8spanning set9 that maximally drives neurons 

from that area through their dynamic range.  
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Discussion: 

Here we described the feature landscape of visual cortex. By combining widefield calcium 

imaging, 2-photon calcium imaging, and modelling with ANNs, we generated digital twins of thousands of 

neurons in six different cortical areas in mouse, including primary visual cortex (V1) and five higher visual 

areas (LM, LI, POR, AL, and RL). Our results outline the functional organization of mouse visual cortex and 

provide a detailed understanding of how visual feature preferences are arranged across HVAs, why they 

are arranged in this manner, and what the outcomes of this organization are on encoding of the visual 

world.   

How is the mouse visual system organized? Using a data driven approach, based on similarities of 

population activity to natural image presentations, assessed with distance correlation, we identified two 

hierarchically organized processing streams: V1→LM→LI→POR and V1→LM→RL→AL. These two 

processing streams are corroborated by previous studies that split mouse HVAs into dorsal and ventral 

streams based on anatomical tracing7,9 and certain functional response properties35, and are consistent 

with studies in mouse which found that receptive fields become larger at successive stages in the visual 

hierarchy7,9,14,20. Our finding that most areas9 preferred stimuli are biased towards lower luminance values 

build upon work from other mammalian species which have indicated that more neuronal resources are 

dedicated to processing OFF vs ON visual stimuli36. Furthermore, our findings of differences in spatial 

frequency preferences for preferred stimuli from different HVAs are consistent with some previous 

studies, which for instance found that RL and AL tended to prefer lower spatial frequencies, and V1 and 

LI tended to prefer relatively higher spatial frequencies10,11,16,35. Nonetheless, similar to previous studies 

of mouse V123,37, using an ANN-based methodology to generate preferred stimuli allowed us to reveal 

how the various feature preferences (e.g. luminance, spatial frequency, receptive field size, etc.) interact 

to generate each neuron9s specific preferred stimulus, in various HVAs. For example, this revealed that 

many neurons in LI and POR appear to have preferences for dotted, grid-like patterns. However, to what 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565500doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565500
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

purpose the mouse visual system developed these specific visual feature preferences across its HVAs 

remains an open question. To facilitate further exploration of the feature landscape of mouse visual 

cortex, we generated a graphical user interface that can be accessed here. 

 Why is the mouse visual system organized in this manner? We took inspiration from primate 

models, which have tried to explain why the primate ventral visual stream is organized into functional 

patches preferring specific aspects of the visual world (e.g. faces, bodies, colours, etc.)29–31. Unlike in 

primates, where the hierarchy of HVAs is well matched by ANNs trained on object categorization, this 

does not appear to be the case for mouse cortex38, so we did not focus on testing models based on the 

computation of object categorization. However, much like primates, mice wander around the world and 

thus need to visually recognize things in a manner invariant to the types of transformations their visual 

system experiences29. We leveraged an ANN model that allowed us to sort preferred stimuli based on 

image similarity32,33 that was trained to be invariant to specific image transformations. We focused on the 

types of transformations that could be induced by self-motion and that are applicable to 2-D images: 

translation, scale, and in-plane rotation. We compared this to the most naïve model possible, a template-

matching model that compared pixel-level similarity between preferred stimuli, and another model based 

solely on spatial frequency content, which was the focus of many early studies of mouse HVAs19.  Our 

results indicate that, of the models tested, the model based on image similarity with invariance to self-

motion related transformations best explained how visual feature preferences are organized in the 

mouse9s visual cortex. This suggests that at a cortex-wide level, while HVAs have arisen to extract distinct 

visual features from the world, they have done so in a way to minimize the effect of the types of 

transformations that could arise from self-motion. Nonetheless, it should be noted that whereas our 

SimCLR model only contained affine transformations, future work that studies exactly how a mouse9s body 

and eyes move in tandem could generate a more ecologically relevant set of image transformations, and 

we predict that such a model would outperform the one we present here. 
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What are the implications of this functional organization on how the visual world is encoded by 

the mouse? We found that the answer depends on the scale at which the question is asked. At the brain-

wide level, the visual system is organized to encode features in a manner that is invariant to self-motion 

related image transformations (Figure 3). In turn, neurons in a given area possess an overall set of visual 

feature preferences that distinguish one area from another. The differences in area-wide feature 

preferences are delineated in the feature landscape of visual cortex (Figure 4). Though the preferred 

stimuli from each HVA do not clearly cluster, their image statistics are significantly different from one 

another (Figure 5). Finally, at the intra-area level, we find that individual neurons are driven through their 

dynamic range to a greater extent when presented with the set of own-stimuli compared to other-stimuli 

(Figure 6). This occurs because even though each preferred stimulus was designed to strongly activate a 

specific neuron, own-stimuli drive weak activity in many other neurons from the same area. 

Since own-stimuli maximally activate their target neurons, responses to own-stimuli can be 

thought of as lying at the boundary of the neuron population manifold (the space of all possible patterns 

of activity for a population of neurons). Trajectories through the neuron population manifold that drive 

neurons from low to high activity can then be thought of as tuning curves. Now consider trajectories along 

the boundary of the manifold (Figure 6f, red arrow). Our results show that these trajectories effectively 

drive individual neurons through their dynamic range. Since movement along the boundary corresponds 

to rotations of the population vector, neuron population activity is also strongly decorrelated along these 

directions through the manifold. As such, trajectories along the boundary represent an efficient way to 

encode differences between the tuning preferences of neurons in the same area (which we refer to as 

8intra-area coding axes9). In contrast, consider trajectories that move from the center of the manifold 

outwards towards the boundary – these correspond to scaling of the population vector (Figure 6f, black 

arrow). These trajectories encode information that is shared across the neuron population, such as 

transitioning from the overall features preferred by one visual area to those of another (which we refer 
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to as 8inter-area coding axes9). Notably, the strong correlations between neurons that arise when moving 

from manifold center towards the boundary mean that such trajectories fail to encode differences in 

preferred features of neurons within an area. Therefore, since preferred stimuli lie at the boundary of the 

manifold, traversal through the set of preferred stimuli provides a principled and data-driven way of 

constructing tuning curves for a population of neurons. This is especially useful for brain areas whose 

neurons exhibit highly mixed tuning preferences or in which tuning properties are otherwise not easily 

parameterized. Finally, future work is needed to develop methods for identifying which specific 

trajectories through the set of preferred stimuli represent ecologically meaningful coding directions.  
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Figure 1: Modelling mouse visual cortex with artificial neural networks. a, Visual cortical areas were 

identified via retinotopic mapping using widefield calcium imaging. Six visual areas were targeted for 

subsequent 2-photon calcium imaging: V1, LM, LI, POR, AL, and RL. (A: Anterior, L: Lateral, M: Medial, P: 

Posterior). b, Workflow for building ANN models of mouse visual areas. Neuronal responses to 2,500 

natural images were recorded in each area using 2-photon calcium imaging. For each area, an ANN model 

was trained to predict the neuronal responses to the same image set. We used the models to generate 

preferred stimuli. For validation experiments, preferred stimuli were presented back to the animal on a 

second day. c, Model performance measure as the fraction explainable variance explained for ANN 

models (coloured, left bars) compared to a linear model (grey, right bars). d, Top, Example 2-photon 

imaging field of view from a validation experiment. Bottom, Zoomed-in view of the region highlighted 
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above. Scale bars: Top, 50 µm; Bottom, 30 µm. e, Responses of ten example neurons (rows) to their 

respective preferred stimuli (columns) from the experiment shown in (d). f, Same as (e), except for all 231 

neurons simultaneously recorded in a single V1 session, showing a strong selective preference for 

preferred stimuli, with little 8off-diagonal9 activity. g, For the recording session above, the distribution of 

response amplitudes of each neuron to its preferred stimulus, as a percentile of its response amplitude to 

all preferred and natural stimuli. Inset – Normalized neuronal response amplitudes to preferred (P) and 

natural (N) images. h, Same as (g), except pooling all validation experiments across all six visual cortical 

areas (V1: n = 364 neurons/2 mice, LM: n = 351 neurons/2 mice, LI: n = 129 neurons/3 mice, POR: n = 80 

neurons/2 mice, AL: n = 126 neurons/2 mice, RL: n = 105 neurons/2 mice). All asterisks, p-value < 1e-11. 
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Figure 2: The functional organization of mouse visual cortex. a, Top, The spatial mask layer of each model 

unit was aligned, and each ANN was presented with the same 10,000 natural images. Bottom, Distance 

correlation (dCor) was used to compute the functional similarity between responses of pairs of areas. 

Partial distance correlation (pdCor) was used to condition out correlations shared globally across all areas. 

b, A matrix showing the pairwise distance correlation (dCor) between the stimulus manifolds of pairs of 

areas. Inset, Visualization of the resulting network structure using multidimensional scaling (MDS). c, 

Same as (b) but for pdCor. d, Two-stream hierarchy proposed by D9Souza et al. based on anatomical 

connectivity9. e, The functional distance from V1, defined as 1 – pdCor, is shown against the median spatial 

mask area of each visual area. Inset – Distribution of spatial mask area for each ANN model. For full 

statistical comparisons, see Supplementary Figure 2.  
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Figure 3: A preferred stimulus embedding based on image similarities with invariance to self-motion 

related transformations best explains the functional organization of mouse visual cortex. a, SimCLR was 

used to generate an embedding space that is invariant to affine transformations. The SimCLR model was 

trained to minimize the distance in its 256-dimensional embedding space between pairs of randomly 

transformed versions of a given preferred stimulus. b, Classification accuracy of stimulus labels using a 

kNN (k=20) trained either on a template-matching embedding (Pixel), spatial frequency embedding (FFT), 

or SimCLR embedding. c, Visualization of SimCLR9s embedding of all preferred stimuli, reduced to two 

dimensions using UMAP. Preferred stimuli from each area are colour-coded according to the visual area 

that each stimulus originated from. d, A matrix indicating the extent of local overlap between the stimulus 

manifolds in the SimCLR embedding space between each area, and the resulting network structure 

visualized using MDS. e, Spearman correlation of the pairwise overlap matrix (d) with the partial distance 

correlation matrix (Figure 2c) for Pixel, FFT, and SimCLR embeddings.  
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Figure 4: The feature landscape of visual cortex. Preferred stimuli were first projected into SimCLR9s 256-

dimensional embedding space, then further projected onto a two-dimensional plane using UMAP. The 

UMAP projection was tiled into a 40 x 40 grid, and for each tile a random preferred stimulus contained 

within that tile is shown. Inset – Distribution of preferred stimuli from different cortical areas across the 

UMAP embedding (related to Figure 3c).   
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Figure 5: Mouse visual areas have distinct visual feature preferences. a, The most representative stimuli 

for each visual area. b, Mean luminance of representative stimuli across regions. c, Number of light and 

dark segments. d, Area of light and dark segments normalized to the area of the full stimulus. e, Radially 

averaged spatial frequency power spectrum. f, Folio (one-fold), and g, quarto (two-fold) symmetry index. 

For the full set of statistical comparisons, see Supplementary Figure 3. 
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Figure 6: Intra- vs. inter-area feature coding axes arise from distinct trajectories through the neuron 

population manifold. a, Schematic outlining that preferred stimuli from various areas were presented to 

mice while activity across visual areas was measured using widefield calcium imaging. b, For experiments 

outlined in (a), average response amplitude within an area to its own preferred stimuli was compared to 

the activity that the same preferred stimuli drove in other areas. Wilcoxon rank sum test: for V1, LI, POR 

and AL, p < 0.001; for RL, p = 0.0118; for LM, p = 0.1007. See also Supplementary Figure 5. C, Example in 

silico data of response amplitudes of individual neurons to own- and other-stimuli, pooled across model 

units and all visual areas. Left, Probability density plots (histograms) of response amplitudes for all model 

units, pooled across all areas, evoked by the sets of 8own-stimuli9 or 8other-stimuli. Right, Cumulative 

density plots (line plots) of the same data. d, Left, The response amplitude (from in silico models, averaged 

across all areas) at the 10th and 90th percentiles evoked by own-stimuli and other-stimuli. Wilcoxon rank 

rum test: p < 0.001. Right, The Left data replotted to show that the 90th percentile is significantly more 

different between own- and other-stimuli than the 10th percentile. Mann-Whitney U test: p < 0.001. e, For 

in silico experiments, for all areas averaged together, the population variance in an area was greater when 

it was shown own- compared to other-stimuli. Mann-Whitney U Test: p < 0.001. f, Schematic of 

trajectories through the neuron population manifold. X9s represent responses to 3 different own- (red) 

and other-stimuli (black). Own-stimuli are located on the boundary of the population response manifold 

(the space of all possible population responses). Trajectories along the boundary of the manifold, i.e. 

rotations of the population vector, encode intra-area feature differences (intra-area coding axes, red), 

whereas trajectories from the center outwards, i.e. scaling of the population vector, correspond to axes 

encoding the overall feature differences across areas (inter-area coding axes, black). 
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Supplementary Figure 1: Distribution of response reliability of all neurons recorded across all areas. 

Response reliability was calculated as the Spearman-Brown corrected correlation coefficient across half-

splits of repeated presentation of 100 natural images. Many areas exhibited a clear bimodal distribution. 

Neurons with reliability > 0.5 were used for subsequent ANN modelling (dashed red line). Numbers 

indicate the number of reliable neurons/total neurons. 
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Supplementary Figure 2: Pairwise statistical differences of spatial mask area (related to Figure 2e). 

Significance was assessed via Kruskal-Wallis and post hoc Dunn9s test with Bonferroni correction. Values 
indicate p-value, and significantly different pairs are highlighted in red. V1: n = 961 model units (67.7%), 

LM: n = 802 model units (54.6%), LI: n = 530 model units (47.7%), POR: n = 548 model units (51.2%), AL: n 

= 610 model units (47.0%), RL: n = 431 model units (47.9%). 

 

 

 

 

 

 

 

 

 

 

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565500doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565500
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

 

Supplementary Figure 3: Pairwise statistical differences of visual feature preferences (related to Figure 

5). Significance was assessed via Kruskal-Wallis and post hoc Dunn9s test with Bonferroni correction. 
Values indicate p-value, and significantly different pairs are highlighted in dark red. n = 200 stimuli/area 

a, Average pixel luminance. b, Folio symmetry index. c, Quarto symmetry index. d, Number of light (left) 

and dark (middle) segments, and difference between the light and dark segments within each area (right). 

e, Same as (d) but for segment area. f, Spatial frequency preferences were binned into low (0-0.04 

cyc/deg), medium (0.04-0.15 cyc/deg), and high frequency bands (0.15-0.34 cyc/deg).  
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Supplementary Figure 4: Visual feature preferences calculated across all preferred stimuli. The same as 

Figure 5b-g, except instead of calculating these metrics only on the 200 most representative stimuli for 

each HVA, here the metrics were computed for all preferred stimuli from each area. a, Mean luminance 

of preferred stimuli across regions. b, Number of light and dark segments. c, Area of light and dark 

segments normalized to the area of the full stimulus. d, Radially averaged spatial frequency power 

spectrum. e, Folio (one-fold), and f, quarto (two-fold) symmetry index. 
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Supplementary Figure 5: Own-stimuli drive increased area-wide activity in the area they were 

generated from. The same as Figure 6b, but from our in silico models. The much larger effect size for the 

in silico compared to in vivo results could arise from the fact that, unlike the in silico experiments, we are 

unable to align the stimuli to be centered over each cell9s receptive field in vivo, or it could arise because 

the effect size is small and swamped out by noise, or due to a combination of these issues. Wilcoxon rank 

rum test: for V1, LI, POR, AL and RL, p < 0.001; for LM, p = 0.0575. 
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Supplementary Table 1: Hyperparameters used for training ANN models. 

Area Learning rate Learning rate 

decay 

L1 L2 

V1 0.001035 0.01986 0.0006565 0.0082100 

LM 0.001562 0.04827 0.0002147 0.0006054 

LI 0.001011 0.03148 0.0001245 0.0001245 

POR 0.001404 0.04147 0.0019060 0.0019060 

AL 0.001421 0.03263 0.0004504 0.0004504 

RL 0.002319 0.02160 0.0052730 0.0052730 
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Methods: 

Animals All procedures were performed in accordance with the Canadian Council on Animal Care and 

approved by the Montreal Neurological Institute9s Animal Care Committee. Mice used were Thy1-

jRGECO1a-WPRE, line GP8.31 (The Jackson Laboratory #030526). All mice were adults (2-6 months old) 

and mice of both sexes were included. Mice were maintained in a temperature and humidity controlled 

facility on a 12 hr light/dark cycle. 

Head-bar and cranial window implantation Mice were anesthetized with a cocktail containing fentanyl 

(0.05mg/kg), medetomidine (0.5mg/kg), and midazolam (5mg/kg)39. Skin was cut away over the skull, and 

a custom head-bar (adapted from a design from the Polley lab (Harvard University)) was attached to the 

skull over the right hemisphere using dental cement (C&B Metabond). Next, a 5 mm circular cranial 

window was made on the left hemisphere over visual cortex and sealed with a 5 mm glass coverslip 

(Warner) that was held in place with super glue. The exact position of the cranial window varied from 

mouse to mouse to enable easier optical access to the specific higher visual areas we were interested in. 

Widefield calcium imaging Widefield imaging was performed similarly to previous studies11–13,24. In brief, 

an awake head-fixed mouse was placed under a 2-photon microscope (Neurolabware) with an 

independent epifluorescent imaging pathway. A 5X objective (Mitutoyo, M Plan Apo) was used to pass 

excitation light and collect emitted light. Excitation light was generated by a white LED (Thorlabs, 

MCWHL5), passed through a 559 nm excitation filter (Thorlabs, MF559-34), and a 588 nm dichroic 

(Thorlabs, MD588). Emission light passed back through the dichroic and a 630 nm emission filter (Thorlabs, 

MF630-39) and was captured at 10 Hz by a digital camera (PCO edge 3.1 M). We recorded light-evoked 

calcium responses through the cranial window on the left hemisphere, while visual stimuli were presented 

to the right eye. The mouse was presented with an inverting checkerboard stimulus that passed in both 

directions along both azimuth and elevation (10 repetitions for each direction) on a 24-inch computer 
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monitor (BenQ RL2455) positioned 13 cm from the mouse9s eye. The moving stimulus was a 20° wide bar 

that was periodically swept across the monitor at a velocity of 4 °/s. The bar was filled with a checkerboard 

pattern (25° spatial frequency) reversing at 6 Hz. Spherical stimulus correction was applied to compensate 

for the flatness of the monitor11. The video data was first high pass filtered at half the stimulus frequency. 

A discrete Fourier transform (DFT) at the stimulus frequency was then applied:  

ý̂Ā = ∑ ýāþ2ÿ2�Āāā  

where � is the stimulus frequency, and the phase difference between directions offset by 180 degrees 

was calculated to correct for the response delay due to slow dynamics of the calcium dye: 

+ý̂Ā, =  ý̂Ā�ý̂Ā�+� 

where � is the direction of the stimulus. Phase and amplitude were then extracted. To generate a sign 

map, the difference between the gradients of the phases for both azimuth and elevation stimuli was 

calculated: 

Ā�Āÿ(ý, þ) =  sin Δ(∇�ÿÿÿăĂā/ , ∇��Ă�ăÿāÿąĄ) 

To identify HVA boundaries, the sign map was standardized, thresholded at 1.5 times the standard 

deviation, and denoised via binary opening. Lastly, a few (1-4) iterations of binary erosion were applied 

to refine the boundaries of each region. 

For widefield experiments in Figure 6, static images were presented for 0.5 s with an inter-stimulus 

interval uniformly distributed between 1.3-1.7 s. Calcium activity was averaged for each visual area, 

identified by retinotopic mapping. The data was then high pass filtered at half the stimulus frequency, 

normalized to baseline, and denoised using singular value decomposition (SVD). Specifically, we found 

that the first right singular vector of the data matrix (stimulus x time matrix) corresponded well to the 
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stimulus-evoked response kernel, and we therefore defined the response amplitude as the projection of 

the data matrix onto this vector. In order to compare whether a given stimulus more strongly activated 

neurons in the area it was generated from, we compared its response amplitude against the average 

amplitude in all other areas. 

2-photon calcium imaging 2-photon imaging was performed similarly to previously described40. In brief, 

the laser (Insight X3, Spectra-Physics) was set to 1080 nm, and head-fixed, awake animals were placed 

under a resonant-galvo scanning 2P microscope (Neurolabware). Recordings were acquired at 10 Hz, from 

neurons in layer 2/3 (depth between 120 and 300 µm measured at the center of the FOV). Animals were 

presented with 2500 natural images from ImageNet27. Images were scaled to a size of 135 x 135 pixels, 

converted to grayscale, and shown for 0.5 s with a vertical height of 98 degrees. The inter-stimulus interval 

was uniformly distributed between 1.3-1.7 s so that responses were not entrained by a fixed stimulation 

frequency. A subset of the images (100/2500) were repeated 10 times and used for calculating response 

reliability and evaluating model performance (see below). Following data acquisition, recordings were 

processed using Suite2P41 to identify neurons and extract their responses (deconvolved spiking 

responses). For ANN modelling, data was denoised via singular value decomposition (SVD) to extract 

stimulus-dependent signals. Specifically, SVD was performed on the 8trial x time9 matrix for each neuron 

and the data was projected onto the first singular vector, as we found this closely corresponded to the 

stimulus-evoked response kernel for the majority of neurons. This denoising was only performed for ANN 

modelling; validation experiments were analyzed using raw deconvolved spiking responses. To extract 

stimulus-evoked responses, we averaged the activity in a 700 ms window following stimulus onset and 

normalized the response for each neuron. In total, we recorded from > 17,500 neurons from 21 animals 

(V1 = 2,213 cells; LM = 2,315 cells; LI = 3,341 cells; POR = 2,524 cells; AL = 3,214 cells; RL = 4,232 cells), and 

after taking into account response reliability and explainable variance explained into account (see below), 

we used > 7,250 model units for our subsequent analyses. 
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Response reliability The reliability of each neuron in response to the presentation of natural images was 

calculated as the Spearman-Brown corrected correlation coefficient for random half-splits: 

ÿ̂ = 2ÿ1 + ÿ 

where Ä is the Pearson correlation coefficient, averaged across 100 random samples. For many areas, we 

found a bimodal distribution of response reliability across all experiments (Supplementary Figure 1) and 

therefore only included neurons with response reliability > 0.5 for subsequent modeling. Reliability could 

be affected by various factors, including 8innate9 trial-by-trial variance, non-visual induced activity (e.g. 

motor movements), or representational drift occurring over the course of a relatively long recording 

session. Note that RL appeared to be less reliably overall than the other areas, similar to what has been 

found previously20. 

Calculation of explainable variance For each neuron, the amount of explainable variance was estimated 

for the 100 repeated stimuli as  

�ÿÿ�ýĆĂÿÿĄÿĀĂ� = �ÿÿ(ÿ) 2 +ÿ2,āÿÿÿĂĀ�ÿÿ(ÿ)  

where Var(r) is the variance of the response of a given neuron to all stimuli and +ÿ2,āÿÿÿĂĀ is the average 

variance of the responses across repeated trials.  

Linear model The performance of the ANN model was compared to a simple linear model. Neuron 

responses were fitted using Partial Least Squares regression with 5-fold cross-validation. Each model was 

run with a range of bottleneck dimensions (10-20) and the best performing model was chosen.   

Artificial neural network modelling Deep convolutional neural networks were trained to predict neural 

responses to natural images. The networks consisted of four blocks, each block composed of 2D 

convolutional (kernel size = 3, stride = 1), batch normalization, rectified linear unit (ReLU), and max pooling 
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(kernel size = 2, stride = 2) layers, followed by a factorized readout layer26. The factorized readout 

decomposes into independent spatial and feature layers, which consist of tensors of shape (1 x height x 

width) and (channel x 1 x 1), respectively. The number of channels in the feature layer was set to 512; the 

height and width of the spatial layer amounted to 8. The spatial layer was further constrained to have 

non-negative entries and unit Frobenius norm to facilitate its interpretation as a spatial mask. 

Additionally, L1 regularization was applied to both layers to encourage sparsity.  

Networks were trained to predict neural responses to natural images by maximizing the normalized dot 

product: 

max 1� ∑ +þĄ, þ̃Ą,‖þĄ‖ ∙ ‖þ̃Ą‖�
Ą  

where þĄ, þ̃Ą are the response and predicted response of neuron n, respectively, averaged over all 

neurons N. The networks were trained using Adam optimizer for 30 epochs, with L2 regularization, and 

early stopping. A hyperparameter search was performed with Oríon 

(https://orion.readthedocs.io/en/stable/) to find optimal training parameters (Supplementary Table 1).  

The performance of the model was assessed by calculating the squared Pearson correlation coefficient 

with a set of held-out data (100 repeated stimuli). A linear regression without offset between the 

explainable variance and model performance was then performed to estimate the fraction explainable 

variance explained23. 

Spatial mask analysis and alignment We upscaled the spatial layer of the factorized readout (8 x 8) to the 

stimulus size (135 x 135). To calculate the area of the spatial mask, we fit a 2D Gaussian 

ÿ(ý) = ýþ2(ý2ÿ)�Σ−1(ý2ÿ)2 + Ā                       Σ = [ ÿý2 ÿÿýÿþÿÿýÿþ ÿýþ2 ] 
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where x are the pixel coordinates, µ the center, σx and σy the standard deviations, Ä the correlation 

coefficient, A the amplitude, and b the offset. The area of the spatial mask was defined as σxσy of the 

ellipse at one standard deviation. Only spatial masks that were fit well by the 2D Gaussian (r2 > 0.8) were 

used to estimate the area. For analyses of image statistics, we masked preferred stimuli to include only 

those regions within two standard deviations of the median spatial mask size of each model. The edges of 

the mask were further smoothed by applying a Gaussian filter (σ = 5 pixels). We set the background of the 

preferred stimuli to a pixel value of 0.5.  

For in silico analyses, the centers of the spatial masks were aligned to the center of the input stimuli. The 

spatial masks were shifted towards the center with boundaries being wrapped around and values 

interpolated with 3rd order splines. This was repeated 10 times for more consistent alignment.  

Generation of preferred stimuli Building on early work that sought to understand the features represented 

by model units in ANNs42, here, preferred stimuli were generated using the Lucent library 

(https://github.com/greentfrapp/lucent). In brief, starting from random white noise, images were 

updated to maximize the response of ANN model units by backpropagating the error through the ANN to 

the input images. To avoid high frequency noise, which is known to result in image artefacts that interfere 

with interpretability, small random transformations were applied to the images, including padding (0-4 

pixels), jitter (0-8 pixels), and rotations (± 10 degrees). The optimization was run for 512 epochs with a 

learning rate of 3e-3.   

In vivo validation experiments In vivo validation experiments followed the same protocol as described in 

<2-photon calcium imaging=. After the first recording session, data was analyzed and preferred stimuli 

were generated for all neurons. For the second recording session, the same field of view was found by 

aligning the blood vessel patterns. On average, we were able to match ~80% of neurons across days. 

Preferred stimuli and up to 500 natural images (randomly selected from ImageNet) were presented three 
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times each. For the quantification, the responses to the three repeats were averaged and normalized to 

the distribution of responses to natural images for each neuron. 

Distance and partial distance correlation  

Distance correlation was used to compare the functional similarity between areas. First, the spatial mask 

of model units in the ANN models were aligned to the center of the input. Next, 10,000 natural images 

were presented to the models and the responses were collected and normalized for each neuron. We 

subsampled the resulting response matrix by randomly choosing 200 neurons and 1,000 stimuli and 

computed the distance correlation43 between all pairs of models, repeated 100 times. The distance 

correlation was then averaged across repeats. To isolate unique correlations between areas, we 

computed the partial distance correlation44, which approximates the conditional distance correlation45: 

āýÿĀÿ(ý, þ) = ýÿĀÿ(ý, þ; ÿ) 

where C is the concatenated matrix over all areas C b A, B.  

To visualize the resulting network structure, we converted the pairwise correlation matrix to a dissimilarity 

matrix d = 1-dCor or d = 1-pdCor and performed multidimensional scaling (MDS) using the scikit-learn 

library.  

 

Embeddings of the collection of preferred stimuli Three image embeddings were used based on (1) 

perceptual distance, (2) pixel distance, and (3) spatial frequency distance. The distances were defined as 

the Euclidean distance in the respective embedding spaces. For perceptual distance, we trained a SimCLR 

model which learns an embedding that is invariant to a custom set of transformations32,33. Specifically, we 

used the backbone of the ResNet18 network and appended a 256-dimensional linear readout layer. The 

network was then trained to minimize the following loss function: 
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��ÿă��� = 2�ĀĀ (1 + ýÿĀ2 )21/�∑ (1 + ýÿā2 )21/�2Āā≠ÿ  

where b=3955 is the batch size and τ = 0.1 a temperature parameter. Setting τ < 1 prevented 

dimensionality collapse in which the rank of the embedding space would be much smaller than 256 

dimensions. d denotes the Euclidean distance calculated for pairs i, j of two random transformations 

applied to the same preferred image. For invariance to affine transformations, the random 

transformations were cropping and scaling (area before resizing: 0.08-1 times the total image size of 64 x 

64 pixels, resized to 32 x 32 pixels), random rotation (± 90 degree range), random translation (± 0.1 times 

the total image size), random horizontal and vertical flips, and a Gaussian blur. SimCLR was trained for 

500 epochs with Adam optimizer (learning rate = 1e-4) and a cosine annealing schedule for the learning 

rate. To visualize the SimCLR embedding, UMAP34 was used to project the embedding into two-

dimensional space (metric = Euclidean, min_dist = 0.1, n_neighbours = 30).  

For pixel similarity, the dimensionality of the images was reduced using PCA to match the 256 dimensions 

of the SimCLR embedding. For the spatial frequency distance, we performed fast Fourier Transform (FFT), 

calculated the power spectra, removed the DC component, and reduced the dimensionality to 256 using 

PCA. 

A k-nearest neighbours classifier (k=20) was used to assess classification accuracy of the image 

embeddings (note that the results were qualitatively indistinguishable for k = 10, 20, or 50; data not 

shown). The classifier was trained on 75% of the data and tested on the remaining 25%. This was repeated 

100 times. We separately sampled each area9s preferred stimuli to account for unequal numbers of 

preferred stimuli generated for each area. 

To estimate the overlap between embeddings of preferred stimuli from two areas, we calculated the 

average distribution of area labels of the 20 nearest neighbours of each image. For example, to calculate 
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the overlap of V1 preferred stimuli with the HVAs, for the 20 nearest neighbours of each preferred 

stimulus in V1, we counted the number of neighbours that belonged to each HVA. This procedure resulted 

in a 6 x 6 overlap matrix M for each pair of visual areas. This matrix was not symmetric, so we next 

averaged across the diagonal, Msymmetric = (M+MT)/2, i.e. we averaged the overlap of area A with B and the 

overlap of area B with A. We used this symmetric matrix as a measure for local overlap. 

The topological similarity between the local overlap with the functional similarity was computed as the 

Spearman correlation between the symmetric overlap matrix (Figure 3d) and the pairwise partial distance 

correlation matrix (Figure 2c). 

Generating the 8Feature landscape of mouse visual cortex9 We visualized the two-dimensional UMAP 

projection of the SimCLR embedding as an image atlas. First, the embedding was scaled to lie within the 

unit interval [0,1]. Next, we tiled the embedding into an NxN grid (for Figure 4, a 40x40 grid is shown). 

Then, within each tile, we randomly chose an image to display. For visualization purposes, the small 

number of empty tiles in the 40x40 grid that were fully enclosed within the UMAP projection (i.e. 8holes9 

in the grid) were filled in using the closest image from a neighbouring tile. 

 

Computing the most representative preferred stimuli For each preferred stimulus, we defined the degree 

of representative-ness as the fraction of nearest neighbours (k = 100) in SimCLR9s embedding space that 

were from the same visual area. We then chose the top 200 most representative stimuli for each region 

for subsequent analysis in Figure 5.  

Preferred stimulus analyses We computed various low-level image statistics for the preferred stimuli. Pixel 

intensities ranged from 0 to 1. 

(1) Luminance was calculated as the average pixel intensity within the spatial mask.  
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(2) To identify dark and light segments, we thresholded stimuli around the background intensity (for 

dark segments: pixels < 0.49; for light segments: pixels > 0.51). Next, disconnected segments with 

area > 2 pixels were identified. We analyzed the number of segments and the area, which was 

normalized by the full area of the stimulus. 

(3) To calculate the spatial frequency content, we first performed a FFT and averaged the power 

spectrum radially with bin size = 1 pixel. To calculate the radial average, we converted pixel 

Cartesian coordinates to polar coordinates, defining the center of the image as the origin (0,0). 

Pixels were then binned according to their radius, rounded down. Spatial frequency power was 

normalized for each frequency across all images from all areas.  

(4) To calculate folio (1-fold) and quarto (2-fold) symmetries, we first performed FFT and averaged 

the power spectrum axially with bin size = 1/16 Ã radians. To calculate the axial average, we 

converted pixel Cartesian coordinates to polar coordinates, defining the center of the image as 

the origin (0,0). Pixels were then binned according to their angle, rounded down. Next, we defined 

an n-fold symmetry index (SI) as 

��Ą = | ∑ ��þÿ2Ą�� |∑ ���  

where Pθ is the average power at angle θ and the scalar multiplier 2 is due to the inherent point 

symmetry of the FFT power spectrum. SI is defined on the unit interval with 0 denoting a lack of 

symmetry and 1 being a fully n-fold symmetric image.  

Data analysis Statistical significance was assessed using Mann-Whitney U test for unpaired data, Wilcoxon 

rank sum test for paired data, and Kruskal-Wallis followed by post hoc Dunn9s test with Bonferroni 

correction for multiple comparisons. Data values are reported as mean ± SEM, unless mentioned 

otherwise. Box plot elements are defined as follows: center line = median, box limits = upper and lower 

quartiles, whiskers = 1.5 times interquartile range. 
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Nomenclature of mouse HVAs The list19 of widely agreed upon mouse HVAs include: LM (lateromedial), 

AL (anterolateral), RL (rostrolateral), A (anterior), AM (anteromedial), PM (posterior medial), LI 

(laterointermediate), P (posterior), and POR (postrhinal). 
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