bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565479; this version posted November 5, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

LncPlankton V1.0: a comprehensive collection of plankton long
non-coding RNAs

Ahmed Debit'*, Pierre Vincens', Chris Bowler', Helena Cruz de Carvalho'*

! Institut de Biologie de I'ENS (IBENS), Département de biologie, Ecole normale supérieure, CNRS,
INSERM, Université PSL, 75005 Paris, France

? Université Paris Est-Créteil (UPEC), Faculté des Sciences et Technologie, 61, avenue du Général
De Gaulle, 94000 Créteil, France

* To whom correspondence should be addressed Email: debit@bio.ens.psl.eu | cruz@bio.ens.psl.eu

ABSTRACT

Long considered as transcriptional noise, long non-coding RNAs (IncRNAs) are emerging as central,
regulatory molecules in a multitude of eukaryotic species, from plants to animals to fungi. Yet, our
knowledge about the occurrence of these molecules in the marine environment, namely in planktonic
protists, is still elusive. To fill this gap of knowledge we developed LncPlankton v1.0, which is the first
comprehensive database of marine plankton IncRNAs. By integrating the predictions derived from ten
distinctive coding potential prediction tools in a majority voting setting, we identified 2,210,359
IncRNAs distributed across 414 marine plankton species from over nine different phyla. A user-
friendly, open-access web interface for the exploration of the database was implemented

(https://www.Incplankton.bio.ens.psl.eu/). We believe LncPlankton v1.0 will serve as a rich resource

for studies of IncRNAs that will contribute to small- and large-scale analyses in a wide range of marine

plankton species and allow comparative analysis well beyond the marine environment.
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INTRODUCTION

Often referred to as the “dark matter” of genomes, the non-protein coding DNA portion of eukaryotic
genomes has, in the last decade, been shown to be much bigger than what could have been
anticipated. Furthermore, with the advent of deep sequencing it has become clear that genomes are
pervasively transcribed and that the non-coding fraction generates huge amounts of transcripts that
cannot be accounted for as simple “junk” or transcriptional noise (1). Among this non-coding fraction,

long noncoding RNAs (IncRNAs) represent the most abundant and prevalent class (2, 3). LncRNAs

are arbitrarily defined as transcripts of more than 200 nucleotides (nt) in length that lack consensual
open reading frames (2). Like mRNAs, IncRNAs are largely polyadenylated, capped and processed (2,
3). However, besides their lack of protein coding potential, IncRNAs exhibit certain characteristics that
distinguish them from mRNAs. These include a low GC content, low number of exons, short
sequence length, low sequence conservation, and low expression levels (4). In terms of function,
IncRNAs have been shown to play important regulatory roles in various biological processes and
diseases, namely cancers, which involve the control of epigenetic modifications as well as gene and

protein expression regulation (1, 3).

With the booming of high-throughput sequencing techniques and the exponential rise of
transcriptomics data in public repositories, several databases dedicated to IncRNAs have been
developed. Some are exclusively devoted to human IncRNAs, like GeneCaRNA (5), and LNCipedia
(6), while other databases have grouped together a significant number of IncRNAs coming from
photosynthetic organisms such as CANTATAdDb (7) and GREENC v.2 (8). The NONCODE knowledge
database v6.0 on the other hand compiled IncRNAs from 39 species including 16 animals and 23
plants (9) and the RNAcentral catalogue is an extensive database of IncRNA sequences from a broad
range of organisms (10). Despite such extensive work on the identification of IncRNAs in animals and
plants, the ocean remains largely unexplored. To fill this gap of knowledge, our study took advantage
of the publicly available transcriptomic data originating from more than 400 marine protists from the
Marine Microbial Eukaryote Transcriptome Sequencing Project MMETSP (11), to perform a thorough
screening to identify and annotate IncRNAs in marine plankton. In order to do this, a computational
pipeline using a majority voting-based ensemble learning technique was developed and applied. The
objective was to increase the reliability and promote the diversity of the ensemble model. Furthermore,
a joint prediction is likely to behave better than any single model as recommended by Duan Y. et al.
(12), and likely obtain higher cross-species prediction performance (13). In order to use the strength
of multiple classifiers and to enhance their performance, several ensemble methods have been
developed in recent years, such as TLCInc (13), which combined a stacking of SVM predictors and a
naive Bayes classifier. Conversely, Simopoulos et al. (14) proposed a prediction method based on the
stochastic gradient boosting of random forest classifiers, and LncRNApred (15) proposes a method
using hybrid features. To promote the reliability of the results, CRIncRC (16) was developed on the
basis of five machine learning models including Random Forest (RF), Naive Bayes (NB), Support

Vector Machine (SVM), Logistic Regression (LR) and K-Nearest Neighbors (KNN), to predict cancer-
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related IncRNAs. In our study, we combined ten coding potential prediction classifiers (see
Supplementary Table S1) into a single meta-learner. The selected tools used different Al algorithms,
provided models pre-trained with diverse fine-tuned features, were non-species specific and achieved
good performance within a reasonable runtime. Furthermore, two tools considering full and partial
sequence length were included, mRNN (17) and LncADeep (18). In addition, the tools selected
presented a good usability score, which is based on ease-of-use in installation and running of the tool
as described in (19). Briefly, each transcript was predicted by each classifier and labelled as “Coding”
or “Noncoding”, and the class with the highest number of votes was the outcome. Several filters were

applied on the “Noncoding” set to discriminate between IncRNAs and sncRNAs.

The predicted IncRNAs and their annotations, including the nucleotide sequence, the encoded ORF(s),
the folding energy, and the predicted secondary structure were organized and stored in a database,
LncPlankton, with the aim to update it periodically on the basis of new knowledge and a potential
expansion in the number of planktonic species screened. A user-friendly, open-access web interface

for the exploration of the database was also implemented (https://www.Incplankton.bio.ens.psl.eu/).

The user interface provides modules for browsing, searching, and downloading IncRNA data per
species and/or per phylum, as well as interactive graphs, and an online BLAST service. Additionally, a
SHINY application was integrated which allows the user to customize and visualize the classifications.
With this user-friendly interface, we anticipate that LncPlankton will provide a rich source of
information about IncRNAs for small-and large-scale studies in a variety of plankion taxa and
contribute significantly to future efforts aimed at deciphering the biology and evolution of IncRNAs in

diverse eukaryotic lineages.

MATERIAL AND METHODS
Data sources

In the current version of LncPlankton (version 1.0), transcriptomic data of 406 marine micro-planktonic
species derived from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP)
(11) were used. The most represented phylum is Bacillariophyta (diatoms), to which we have
additionally added the transcriptomes of six other cosmopolitan diatom genera, originally not included
in the MMETSP project. Furthermore, the transcriptomes of the two reference diatom species,
Phaeodactylum tricornutum (20) and Thalasiossira pseudonana (21), were also included and
assembled using an in-house assembly pipeline (Figure S1). Taken together the transcriptomes
screened covered > 9 phyla (Figure 1A). In total, 11,623,179 contigs were obtained across 414
species, almost half of which belonging to the Dinophyta and Bacillariophyta groups, with 3.4 and 2.4
million contigs, respectively (Figure 1A). The average contig length varied between 593nt (Dinophyta)

and 949nt (Cercozoa) with a median = 651nt across all species (Figure 1B).

Data analysis pipeline
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The assembled transcriptomes (in a FASTA format) provided by the MMETSP project (11) were
screened for the prediction and identification of IncRNA-like transcripts, in each species, using the
majority voting-based procedure inspired by the ensemble machine learning methods. The aim was to
increase the reliability and promote the diversity of the ensemble model by combining all the
predictions from multiple models. To achieve that, 10 protein coding potential prediction tools were
selected and used in the pipeline. Each tool used a different algorithm and different training features,
and may produce a different classification result. Aggregating those different techniques in a majority
setting led to a single prediction representing the group’s consensus. We believe that such a hybrid

technique leads to more reliable results and acceptable performance.

We selected the 10 tools according to the following criteria: i) the tools must use a different Al
approach: among the 10 tools, 3 used a SVM-based model CPC2 (22), LncFinder (23), and longdist
(24), 2 were based on XGBOOST LncDC (25) and RNAmining (26); 2 on maximum likelihood
estimation MLE, and logistic regression LGC (27) and CPAT (28), respectively; and 3 other tools were

based on deep learning approaches with different intrinsic architectures; convolutional neural network
CNN in RNASamba (29), Recurrent neural network RNN in mRNN (17), and deep belief network DBN
in LncADeep (18); ii) the tools must provide pre-trained models with diverse fine-tuned classification
features; and iii) the tools should achieve good performance, particularly for cross-species prediction
within a reasonable ease-to-use score according to the usability score defined in (19). In addition, the
tools should accept sequences presented in a FASTA format. The tools selected and the key
characteristics of each of them are summarized in supplementary Table S1.
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Figure 1. Data used in LncPlankton v1.0. (A) The distribution of the number of species and the

number of assembled contigs across the different phyla; the number of contigs is displayed in millions

and reported on the right scale y-axis of the graph and (B) The density distribution of the scaled log2

contig length across phyla, the dotted vertical lines denotes the median length.

The selected tools were applied using their default parameters and their default pre-trained

classification models. The Python package ezLncPred (V.1.0) (30) was used to run the following tools:

CPC2, CPAT (-p Human), LGC and longdist. The remaining tools were run using an in-house script

with the following parameters: LncADeep (-MODE IncRNA, and the coding potential probability of a
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transcript was calculated as the mean of probabilities generated by the 21 intrinsic models of the
algorithm), IncFinder (svm.model="human”), mRNN (mRNN_ensemble which used the weighted
average prediction of the five best single mRBNN models), RNAmining (-organism_name
Homo_sapiens), and RNASamba (Full and partial weighted models were included). The FASTA files
containing the sequence contigs were used as an input to the pipeline displayed in (Figure 2).
Basically, a transcript sequence was inputted to each tool which predicted both the forward and the
reverse strand, and labelled them as “Coding-like” or “NonCoding-like”. A transcript was considered
as “NonCoding-like” within a single tool only if both strands were labelled “NonCoding-like”, otherwise
it was assigned the “Coding-like” label. For the assembly of the two species Phaeodactylum
tricornutum and Thalasiossira pseudonana, stranded libraries were used, thus only the forward strand
was assessed. The majority label output from all the tools was considered as the final coding
potential class. Alongside the majority class, a non-coding potential score was calculated as the
number of tools labelling the transcript as “NonCoding-like” divided by 10. This score was used to
calculate the reliability (confidence level) of the IncRNA transcripts identified. The transcripts with
significant hits in either the Pfam (V.35.0) or SwissProt (V.2023.01) databases were filtered out. A
series of stringent filters was then applied to the “NonCoding-like” transcript sequences to classify
them as long noncoding RNAs “IncRNAs” or small noncoding RNAs “sncRNAs” on the basis of

transcript length and peptide length information.

Transcript
|
'L - ¢ " ‘L - —Tools
Predigon (Forward) == NonCoding | | Predygn(Forward) == NonCoding Predgoin(Forward) == NonCoding CPAT
AND ? AND ? AND ” CPC2
Predy,qn(Reverse) == NonCoding | | Predjsp(Reverse) == NonCoding Predygin(Reverse) == NonCoding LGC
LncADeep
LncDC
LncFinder
Class Classs Class, Longdist
| I | mRNN
* RNAmining
RNASamba

Predogjority(Transeript) == NonCeding  AND

Peptide.length < 100 aa  AND

No significant hits Pfam (hmmscan: E_value < 0.001) AND

No significant hits SwissProt (blastp: E_value < 1e-5, simalarity >= 90%)

Then Else
If
Transeript.length > 200
Then | Else
\J Y
IncRNA-like sncRNA-like Coding-like

Figure 2. Overview of the majority voting-based pipeline for the prediction of IncRNAs. The 10 tools

included in the procedure are displayed on the right panel.


https://doi.org/10.1101/2023.11.03.565479
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.03.565479; this version posted November 5, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Evaluation of the performance of the majority voting-based procedure

The majority voting-based pipeline was tested on different sets of coding and non-coding datasets
related to 18 different organism species and compared to the state-of-the-art coding potential
prediction tools. Each tested dataset was independent of the training sets used in the construction of
the pre-trained classification models related to each method. Among the 18 organisms tested, 10
datasets were perfectly balanced, containing the same number of coding and non-coding RNA
transcripts. Furthermore, in order to test the robustness of the tools towards biased datasets, 7 highly
imbalanced testing sets were considered. The description of the tested datasets is provided in the

supplementary data (Table S2).

Each tool was applied to each tested dataset to predict the classes of the transcripts. The default
parameters and pre-trained models were used for each tool. Tool outputs were parsed and analysed
with custom R scripts. A cross-tabulation of observed and predicted classes was generated, and the
performance metrics including the accuracy, sensitivity, and specificity were calculated using the
“confusionMatrix” method of the caret package (https:/CRAN.R-project.org/package=caret). The

Receiver operating characteristic (ROC) curve as well as its AUC (Area under the curve) value was

also computed using the ROCR package (http://rocr.bioinf.mpi-sb.mpg.de). All tested tools considered

coding transcripts as positive and non-coding transcripts as negative sets.

Architecture of the database

The 3-tier client/server architecture model containing data, logic, and presentation layers has been
implemented for LncPlankton as shown in (Figure 3A). The data layer represents the data storage
part which is handled by a relational database (Figure 3B) setup with the popular MySQL (version
5.7.36) open-source relational database management system (RDBMS). The data layer is expanded
with NoSQL file storage. The logic layer represents the core of the architecture, and is responsible for
the communication between the user queries from the presentation layer, fetching the data from the
data layer, processing the data, and formatting the response to the presentation layer. The JSON-
based (JavaScript Object Notation) data structure is mainly the most used format. In addition, the

logic layer is integrated with the followings components:

e A BLAST program implemented via the interface rBLAST
(https://github.com/mhahsler/rBLAST) for online similarity search,

« A RNAfold program implemented via the package LncFinder (23) and RNAPIot implemented
via the package RRNA (31) for the calculation and the visualization of secondary structure,
o ORFfinder implemented via LncFinder (23) for the exploration of INCRNA containing sORFs,
and seqinr package (https://github.com/cran/seqinr) for the translation to peptide sequences.
Those functionalities were provided via an express REST API web service implemented using the R

package Plumber (https://github.com/rstudio/plumber). A Shiny server function was also developed
7
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and was integrated into the logic layer. This function processes the request of the shiny prediction app
from the presentation layer and uses the static part of the data layer in addition to the SQL part. The
presentation layer contains several modules based on AJAX (Asynchronous JavaScript and XML),
jQuery (JavaScript Query system version 3.5.1), and the PHP server-side scripting language (version
7.1.26), as well as the CSS (Cascading Style Sheets) code to describe how HTML elements are to be
displayed on user side web interface. JQuery and AJAX provide methods to perform asynchronous
call requests to the logic tier using GET and POST methods, parsing the JSON response, and
dynamically rendering the browser display.

The Web server is hosted on an Ubuntu (22.04.3 LTS) operating system using an Apache (version
2.4.52) web server. The user interface was tested and is functional across major web browsers
including Chrome, Safari, and Firefox on Linux, Mac, Android, and Windows platforms. All graphs are
generated dynamically using the open-source Chart.js library (version 3.5), and plotly R library
(version 4.10.0).
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(Web + Application Server)
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Figure 3. Schema of the Web/Database system of LncPlankton. (A) A detailed 3-tier architecture
implemented in LncPankton; (B) The mySQL relational database scheme of LncPlankton containing

three main tables: transcript, species, and phylum

Implementation of the prediction application

The shiny application was built in R (V.4.3.1) using the shiny framework. The app currently depends
on the following R packages: shiny, shinyWidgets, reshape2, wesanderson, dplyr, ggplot2, ggthemes,
tidyverse, ggrepel, shinybusy, shinyjs, DT, plotly, leaflet, and RMySQL.
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RESULTS
Performance of the majority voting algorithm

We compared the performance of the proposed majority voting-based method with the ten tools
selected individually (Supplementary Table S1). We used as input all coding and non-coding RNA
sequences from the testing datasets of the 18 species described in Supplementary Table S2. Our
method showed the highest mean accuracy across all the datasets with a mean = 0.95 (Figure 4A),
and low inter-dataset variability (variance: 0.0014). At the species level, our method outperforms the
other tools in seven organisms, and performs well in cases where the other tools presented poor
performances; for example, for Homo sapiens the majority voting procedure yields an accuracy of
0.95 while longdist and RNAmining yield only 0.56 and 0.54, respectively. For the remaining
organisms, our method gets approximately the same accuracy as the other tools (Supplementary
Table S3).

In addition, our method showed comparable AUC performance (AUC: 0.92-1.00) with the best
performing coding potential methods like CPAT and CPC2 (Figure 4C). Among the 18 datasets tested,
our method showed the highest AUC score in 13 datasets (Supplementary Table 6). The AUC values

obtained by our method for the 18 organisms are shown in Figure 4B.

The detailed results regarding the accuracy, the sensitivity, the specificity, and the AUC of all the tools
can be found in Supplementary Tables S3, S4, S5, and S6, respectively.
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Figure 4. Benchmarking of ten coding potential prediction methods and the majority voting-based
procedure using 18 independent testing sets. (A) Distribution of the accuracy across the 11 methods
tested; the majority voting method on the last column showed the highest mean accuracy with a small
variability; (B) ROC curves of the majority voting-based procedure on the 18 datasets tested, the AUC
values corresponding to the curves are also reported; and (C) Distribution of the AUC scores obtained
by each method on the 18 datasets.

Data content of LhcPlankton V1.0

Data in the current version of LncPlankton v1.0 was based on transcriptomic datasets from 414
planktonic species ranging from the Cercozoa, representing 3.6% of the total number of species
screened, to the most abundant phylum Bacillariophyta, with 24.4% (Figure 1A). Using a majority
voting-based method combining the 10 coding potential tools with strict prediction criteria (Figure 2),
2,210,359 IncRNA transcripts were identified from an input set of 11,623,179 transcripts. Among them,

239,116 were predicted as non-coding by all the tools and have a non-coding potential score = 1, we
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dubbed them “high-confidence INcRNAs” as their non-coding potential status was indisputable (Figure
5A). The distribution of the predicted IncRNA transcripts across the groups is shown in Figure 5B.
More than 45% of the total IncRNA transcripts identified belong to the 2 most abundant groups, the
Dinophyta (531,029 IncRNAs, 24.1%) and the Bacillariophyta (482,473 IncRNAs, 21.8%). At the
species level, the highest percentage of IncRNAs were identified in the dinoflagellate Karenia brevis
Wilson (23,686 IncRNAs, 1.1%) followed by the diatom Fragilariopsis kerguelensis (21,011 IncRNAs,
1%), while the lowest in the Rhizarian Minchinia chitonis (83 IncRNAs, 0.003%) and the dinoflagellate
Thoracosphaera heimii (with only 10 IncRNAs) (see Supplementary Table S7).
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Figure 5. The current content of LncPlankton v1.0. (A) Summary statistics of the content of the
database, and (B) The percentage of transcripts predicted as IncRNA-like by the majority voting

pipeline distributed across phyla.

Functional modules of LncPlankton V1.0

LncPlankton v1.0 provides a very useful user interface (Ul) accessible from the browser. The Ul offers
various ways to browse and search IncRNA resources (Figure 6). Furthermore, users can download

the data deposited in LncPlankton v1.0 in FTP bulk or programmatically through dedicated APIs.

Search per species. The current release of LncPlankton allows querying a given species to explore
the content of its transcriptome. The user is required to select a phylum and a species from drop-

down lists. A page will then appear (Figure 6B) displaying a summary table with the number of
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transcripts classified as IncRNA-like, sncRNA-like, and Coding-like by the majority voting procedure
described above. A pie chart reporting the percentage of IncRNAs found is also displayed. The user
can also visualize the distribution of IncRNA features such as transcript length, peptide length, GC
content and Fickett score. Additionally, all the information about the IncRNAs found for the selected
species are reported in a table with one row per IncRNA. The presented data include IncRNA id,
length, peptide length (if any), Fickett score, iso-electric point, longest ORF length (if any), coverage
ORF (if any), GC content, class determined by the pipeline above, and the probability of coding
potential generated by the majority voting procedure. To get access to more information on the

selected INcRNA the user can click upon the ‘More..." button in the last column of the table.

IncRNA details webpage. The detailed information about the IncRNA selected is displayed on this
page (Figure 6C). In addition to the basic details of IncRNA sequence (including phylum/group,
species name, length, GC content, the majority voting probability, and the confidence level), the page
displays the ORFs and conceptual translation products of the sequence, alongside with the length of
ORFs detected, their coverage information, and the length of the translated peptides. Furthermore,
the page shows the one-dimensional dot-bracket notation and the two-dimensional rendering
secondary structure of the IncRNA. The Minimum Free Energy (MFE) of the structure folding was also
calculated by the RNAfold tool (V.2.5.1) and displayed. A “save” button was added to allow the user to

download and save the structure.

IncRNA prediction app. The IncRNA content of the current release of LncPlankton was generated
using the majority voting-based procedure described above. To allow the user to customize their
predictions, for example using a preferred coding potential prediction tool, and/or to modify the cut-off
value of the filters, a SHINY application was developed and embedded to the Ul. The application
contains two panels (Figure 6A): i- The input panel in which the user can select the phylum, the
species, and the coding potential tool from dedicated drop-down lists. Other inputs can be set by the
user such as the transcript length, the peptide length, and whether or not to include the reverse strand
in the prediction. The input panel offers also the possibility to select the manner in which the result will
be displayed, namely as a histogram, polar plot, table, or map (with the sampling location coordinates
of the selected species); ii- The output panel, which renders the results and displays it according to
the choice of the user. All the figures and tables generated can be optionally downloaded and saved.

The output panel was implemented using the plotly package (V4.10.1).

BLAST module. The user can perform a sequence-based search of data stored in LncPlankton using
BLAST (Figure 6D). The input sequence should be in a FASTA format; and the user can select
between two tools, BLASTN and MEGABLAST. Except for the expectation value (E-value) and the
number of target hit sequences which can be selected in dedicated drop-down lists, the default
arguments were used. The BLAST search outputs a raw report which includes pairwise alignment,

BLAST hits based upon alignment scores and other measures of statistical significance. To
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interactively display the BLAST result, a viewer module was implemented using the BlasterdS library

(32), and was integrated to LncPlankton (Figure 6E).

Download. Both the full and the high-confidence collections of IncPlankton can be found on the
download page. The IncRNA collections related to each species can also be downloaded in a FASTA
format separately. In addition, the majority voting R package used for the prediction can be retrieved

from this page.

API. A representational state transfer application programming interface (REST-API) was
implemented using the plumber package, and made available to allow programmers to interface with
LncPlankton programmatically. The API returns documents in the JSON format and can be used in
any programming language. In the current version of LncPlankton, three APls were implemented and

documented to access and use data:

e GET /IncRNA_details: information about IncRNA transcript including: sequence length,
peptide length, reliability (confidence calculated by the majority voting-based procedure), GC
content, ORF coverage, MFE, Fickett score, isoelectric point, nucleotide sequence, peptide
sequence.

e GET /search_per_species: detailed information about species including the number and the
percentage of transcript predicted.

o GET /search_per_phylum: detailed information about phylum including number of species,

and statistics about the prediction of the transcriptomes of the species.
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Feature Distribution

Figure 6. Screenshots of LncPlankton web interface and modules. (A) Interface of the LncPlankton
prediction application. (B) Results page showing the content of the transcriptome of the diatom
species Amphiprora paludosa. A table showing the features of all the IncRNAs predicted by the
majority voting procedure was also displayed. (C) A page showing the detailed information on a
predicted IncRNA including the secondary structure of the transcript (D) Online BLAST module and
visual output in the LncPlankton database. Users can run blast against plankton IncRNAs by
submitting the sequence in FASTA format, and then the result is displayed in text format. (E) The

alignment result can be visualized in a more convenient way thanks to the BlasterJS module.

DISCUSSION AND FUTURE DIRECTIONS

Determining the coding potential of a transcript is a crucial step in the identification of INcRNAs, yet it
represents a complex task due to overlapping characteristics and functions that exist between coding
and noncoding RNAs (33). To overcome this challenge, many computational methods have been

developed. The majority of tools use features derived from the nucleotide sequence of the transcript
14
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such as the Fickett score, GC content, and kmer composition. Some of the tools like IncFinder use
secondary structure properties to try to improve the discrimination between non-coding RNAs and
coding RNAs. Despite the good performances reported in many studies for those tools, they generate
a significant number of false positives and false negatives (7), and their reliability is questionable,
which introduces uncertainty to the findings. As reported in the supplementary data (Figure S2), the
IncRNA content of the LncPlankton database varies according to the coding potential prediction tool
used; for instances only 7.73% of the transcripts of the MMETSP datasets were predicted as IncRNAs
when using mRNN but this number reached 33.64% with LGC. Such difference in findings is
inevitably caused by the intrinsic algorithms used by each method, the training set, and the fine-tuned
learning features and parameters (see supplementary Table S1). In our pipeline, we opted for the use
of a combination of multiple tools in a majority voting setting, inspired from the ensemble method
technique used in machine learning. With this approach, 19% of the whole planktonic transcriptomes

surveyed in this study was labelled as “IncCRNAs”.

The choice of the coding potential prediction tool is not trivial and in most cases the criteria of
evaluating these tools was based on the accuracy, sensitivity, specificity, and the computational time,
but nothing has been reported about the reliability. In our case, the reliability of a predicted IncRNA
transcript was calculated as the number of tools labelling the transcript as IncRNAs and dividing by 10,
the total number of used tools. Therefore, a non-coding score value closer to 1 denotes a higher
reliability. The density of this score, calculated on the INcRNAs found by our pipeline and distributed
across groups shows high density at 0.6 and 0.7, decreasing at higher score values (Supplementary
Figure S3). A significant part of IncRNAs found have a medium reliability of 0.6 or 0.7, meaning that
at least 6 or 7 tools have predicted them as IncRNAs. A less significant number of INcRNAs have a
score = 1 (239,116, ~10,8% of the predicted IncRNAs), which means all the tools agreed that those
transcripts are indeed IncRNAs. We called these high confidence IncRNAs. The remaining INcRNAs

found have a good reliability with a score ranging between 0.8 and 0.9.

Regarding the filters introduced in our pipeline to discriminate INcRNA from other transcripts, default
values were used for the transcript length (= 200nt), and the putative peptide length (= 100aa).
Regarding peptide length, 1,475,973 IncRNA-like having predicted peptides > 3aa long which
represent ~ 67% of the total identified IncRNAs. Since IncRNAs are likely to possess ORFs purely by
chance, discarding any transcripts containing ORFs would result in losing a significant number of true
IncRNAs. Although this value has no fixed limit, the user can customize it in the SHINY prediction

application developed and integrated to the LncPlankton user interface.

As part of our pipeline, we used a meta-learner combining multiple and diverse protein coding
potential tools. We assessed the performance of our meta-learner using gold standard metrics such
as the accuracy and AUC-ROC, and compared to each single tool. Overall, our method showed
similar performance to the top performing coding potential tools, and it maintained a good

performance in challenging cases in which some tools found difficulties to discriminate coding from
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non-coding transcripts. For highly imbalanced datasets like B_taurus, X tropicalis, and M_mulatta
which have a 1:72, 1:32, and 1:22 ratio of the number of coding to non-coding instances, some tools
performed poorly longdist and RNAmining, while our method preserved a high accuracy meaning that
our method is not impacted by the imbalancedness between coding and non-coding classes. The
following aspects supported our choice to use the meta-learner proposed: i) the meta-learner used
diverse and heterogeneous models covering a broad range of species since each model related to
each tool was trained using transcripts of different species. Therefore, we believe that our method is a
suitable choice for cross-species prediction; ii) our method achieved the highest accuracy. There are
two reasons why the meta-learner outperforms others. First, our method benefited from the ensemble
method principle since it combined multiple single tools. Second, the method integrated information
from different types of features to enhance IncRNA prediction performances; iii) our method is robust
showing a low variability of the prediction across the different testing datasets; iv) our method
promotes the diversity which is coming from the different mathematics and algorithms used by each
single tool, and fine-tuned features and parameters. Indeed, by pooling all the tools together, our
method allowed an in-depth analysis of the transcripts by using all possible features describing the
sequences; v) the reliability of the prediction in our method can be measured by the non-coding
potential probability of the ensemble. It reflects the agreement of the tools to recognize the correct
class of a transcript. In our method, we set the threshold to a value = 0.6 i.e. if at least 6 out of 10
tools recognized a transcript as non-coding RNA, it is more likely to be a non-coding RNA than a
coding RNA. Increasing this threshold to 1 means that all the tools recognize it as 3 non-coding RNA.

We believe the majority voting tool offers us a reliable choice for IncRNA identification, beyond what a
single tool can offer at the moment.

We collected all the reliable IncRNAs predicted by our pipeline and their information, and stored them
in a MySQL database termed LncPlankton. Many databases of IncRNAs have been implemented in
the past few years but most of them are dedicated to humans, vertebrates and plants. To date, no
other database of this scale collecting non-coding transcripts on planktonic organisms, with
representatives from the major branches of the eukaryotic tree of life, has been developed. Although
a few algal species have been included in plant IncRNA databases: 6 algae in GreenC (8), and 3
algae in Cantatadb (7), no database was completely dedicated to IncRNA in planktonic species.
Compared with other INcRNA databases, the INcRNA transcripts of LncPlankton were predicted using
the majority voting pipeline with stringent filters making them more reliable than what we could get

with other pipelines using a single coding potential prediction tool.

Similar to other IncRNA databases, LncPlankton v1.0 includes all the basic information of a given
IncRNA including the nucleotide sequence, the longest ORF sequence, and the predicted secondary
structure. Two missing features of IncRNA recorded in LncPlankton v1.0 are the genomic coordinates
(the start and stop position, and the strand information), and the expression profiles. This is due to the
lack of an annotated genome for the species surveyed (11). In addition to the regular update of the

database, the following future developments will be considered: i) the genomic coordinates of
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IncRNAs will be incorporated to further classify the IncRNAs identified as long intergenic ncRNAs
(lincRNAs), intronic-IncRNAs, or antisense as this information becomes available; ii) the expression
patterns can be integrated for the functional study of IncRNAs identified; iii) even if IncRNAs do not
show high conservation at the nucleotide level, a sequence clustering using Orthofinder algorithm will
be performed to provide information about highly conserved IncRNAs; iv) given that IncRNAs of
related functions often share similar short motif profiles, we will use a kmer-based approach called
SEEKR proposed in (34) to quantify the nonlinear sequence homology and the evolutionary
relationships between the IncRNAs predicted in LncPlankton.

In addition, the Ul will be improved accordingly by adding a submit page to the LncPlankton interface
to enhance the interaction between the research community and the database, and to encourage all
scientists to supply their own assembled contig data. All submitted entries will be processed by our

procedure described in Materials and Methods.

AVAILABILITY

The package of the majority voting procedure was implemented in R, and can be downloaded on
LncPlankton website at https://www.Incplankton.bio.ens.psl.eu/files/tools/majorityLNC.tar.gz.The
source code can be found at https://gitlab.com/a5076/majorityLNC. The database is freely available
without restrictions for use by academics and non-commercial researchers. The web server is publicly
available at https://www.Incplankton.bio.ens.psl.eu/. Inquiries concerning the database may be
directed to debit@bio.ens.psl.eu or cruz@biologie.ens.fr.

SUPPLEMENTARY DATA

Supplementary Data are available at bioRxiv online.
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