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Abstract
Both gene methylation and the gut microbiome are partially determined by host genetics

and partially by environment. We investigated the relations between gene methylation in
blood and the abundance of common gut bacteria profiled by 16s rRNA gene sequencing in
two population-based Dutch cohorts: LifeLines-Deep (LLD, n = 616, discovery) and the
Netherlands Twin Register (NTR, n = 296, replication). In LLD, we also explored microbiome
composition using data generated by shotgun metagenomic sequencing (n = 683). We then
investigated if genetic and environmental factors can explain the methylation—-microbiota
associations in a set of 78 associated CpG—taxa pairs from the EWAS meta-analysis.

In both cohorts, blood and stool samples were collected within 2 weeks of each other.
Methylation was profiled in blood samples using the lllumina 450K array. Methylation and
microbiome analysis pipelines were harmonized across cohorts. Epigenome-wide
association study (EWAS) of microbial features were analysed using linear regression with
adjustment for technical covariates.

Discovery and replication analysis using 16s data identified two independent CpGs
associated with the genus Eggerthella: cg16586104 (Pmeta-analysis = 3.21 x 10™) and
812234533 (Pmeta-analysis = 4.29 x 107°°). While we did not find human genetic variants that
could explain the associated CpG—taxa/pathway pairs, we show that microbiome can
mediate the effect of environmental factors on epigenetics.

In this first association study linking epigenome to microbiome, we found and replicated the
associations of two CpGs to the abundance of genus Eggerthella and identified microbiome
as a mediator of the exposome.

Keywords: gut microbiome, host gene methylation, DNA methylation, 16s, shotgun-
metagenomics
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Introduction

The gut microbiome is now widely accepted to be a modifiable factor that is associated with
a wide range of host health outcomes. It has been repeatedly shown to express its effects
not only within the intestinal system, e.g. in colorectal cancer' (CRC) and inflammatory
bowel disease? (IBD), but also at the systemic level, for instance in metabolic disorders such
as type 2 diabetes® or neuropsychiatric conditions” such as Parkinson’s disease® and mood
disorders. Causal roles for the gut microbiome have been proven for some of these
associations, and the underlying mechanisms include short-chain fatty acid production by
bacteriaﬁ, stimulation of the vagus nerve’ or via the enteroendocrine cellss, or microbial
production of triggers for inflammatory pathways, such as lipopolysaccharides®. The gut
microbiome is assumed to be shaped primarily by the exposome and secondarily by host
genetics™, but the contribution of the host epigenome and its relation between
environmental factors (such as diet) and microbiome, has never been studied in human
cohorts at large scale. Thus the mechanistic links for the recently suggested “Microbiota <>

Nutrient Metabolism <> Host Epigenome” model are far from being understood™".

Host epigenetics is mostly studied by capturing DNA methylation at CpG dinucleotides over
the human genome. Similar to the microbiome, methylation can be modified by both host

genetics and environment™. Modification of CpG markers can be responsible for switching
gene expression genes on or off during development™ and throughout life. In addition to

genetic and environmental control for this modification, it can also be influenced by early

14,15 16,17

life events and maternal factors™"’. Multiple epigenome-wide association studies

(EWAS) have identified links between differential CpG methylation in blood cells and

19,20

cardiovascular®®, metabolic**?°, psychiatric21 outcomes and cancer?. In line with this,
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several EWAS have also linked CpG methylation to environmental exposures, e.g. air

25,26

. 23 24 . . . . . 27 .
quality”™, stress”", occupational exposure to chemicals®™ ", prescribed medications”’, dietary

28,29

habits such as coffee and alcohol consumption and supplement intake®.

Here, we performed an EWAS of the gut microbiome to test whether gut microbial
abundances associate to differentially methylated CpGs measured in blood. We performed
this study in a discovery and replication setting in two cohorts from the Netherlands:
LifeLines-DEEP (LLD, n = 616) and the Netherlands Twin Register (NTR, n = 296). Additionally,
using metagenomic shotgun sequencing (MGS) data generated in the LLD cohort, we
obtained the abundances of bacterial metabolic pathways and microbial species and linked
these with host DNA methylation (n = 683). Finally, as gut microbial abundances are, in part,
under the control of host geneticslo, environmentsl, diet*® and medication use33, we
elucidated whether the observed associations can be explained by any of these factors and

searched for a mediating role for the gut microbiome in these associations.
Methods

Cohorts LLD is a subcohort of Lifelines. Lifelines is a multi-disciplinary prospective
population-based cohort study examining, in a unique three-generation design, the health
and health-related behaviors of 167,729 persons living in the North of the Netherlands. It
employs a broad range of investigative procedures to assess the biomedical, socio-
demographic, behavioral, physical and psychological factors that contribute to the health
and disease of the general population, with a special focus on multi-morbidity and complex
genetics. Blood and fecal samples of LLD participants were collected between April and
August 2013. Fecal DNA was extracted using the Qiagen AllPrep kit with a bead-beating

step. Sequencing of the bacterial 16s rRNA gene, domain V4, was performed at the Broad
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Institute (Boston, USA) using the Illumina MiSeq platform, as described in *°. Metagenomics

sequencing of the same DNA samples was performed at the Broad Institute, as described in

31

The NTR collects longitudinal data in twin families™. Biological samples are collected in the NTR-
Biobank®>*. The NTR samples included in our microbiome EWAS were collected for two
separate studies. The first focused on the association between obesity and the gut
microbiome®’ and the second collected samples from family members and spousessg. Fecal DNA
was extracted using the Qiagen PowerSoil kit with the addition of the heating step from the
protocol of the Qiagen PowerFecal kit. The sequencing of the V4 domain of the 16S gene was
performed using the lllumina MiSeq platform, as described in '° DNA extraction and sequencing

were performed at the Avera Institute for Human Genetics (Sioux Falls, SD, USA).

Analysis of 16s data In both cohorts, a standardized 16s processing pipeline
(https://github.com/alexa- kur/miQTL_cookbook ) was used to characterize the V4 region
using the RDP classifier®® over the SILVA128 database®. We used the 16s rRNA-based
microbiome profiling from both cohorts, the data of which were harmonized earlier as part
of a large meta-analysis'®. MGS was only performed in LLD and was analyzed using the
Metaphlan v.2 and Humann2 algorithms with the aim of yielding higher taxonomic

resolution and functional insights®'.

Methylation In both cohorts, genome-wide DNA methylation in whole blood was analyzed
using the Infinium HumanMethylation450 BeadChip Kit*'. Genomic DNA (500&ng) from
whole blood was bisulfite-treated using the ZymoResearch EZ DNA Methylation kit (Zymo
Research Corp, Irvine, CA, USA), following the standard protocol for lllumina 450K micro-
arrays, at the Department of Molecular Epidemiology of Leiden University Medical Center,

the Netherlands. In short, subsequent steps (sample hybridization, staining and scanning)
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were performed by the Human Genomics Facility (HuGe-F) at the Erasmus Medical Center,
Rotterdam, the Netherlands. The resulting data were processed in accordance with BIOS

consortium guidelines, as detailed earlier”*

. Sample-level quality control was performed
using MethylAid®. Probes were set to be missing in a sample if they had an intensity value
of exactly zero, a detection P-value > .01 or a bead count < 3. After these steps, the probes
that failed the above criteria in >5% of the samples were excluded from all samples, leaving
only the probes with a success rate 20.95. Probes were also excluded from all samples if
they were mapped to multiple locations in the genome or had a single nucleotide
polymorphism (SNP) within the CpG site (at the C or G position), irrespective of the minor
allele frequency in the Dutch population™. Only autosomal methylation sites were analyzed
in the EWAS. The methylation data were normalized with functional normalization, as

implemented in minfi**. In both cohorts, blood and stool samples were collected within 2

weeks of each other.

Statistical analysis \We calculated methylation M-values as the logarithm of methylated

over unmethylated probe intensity ratio. As M-values were the outcome in our regression
models, we further excluded outliers, which we defined as values lying outside of the + 3.5
interquartile range for each methylation probe. We performed association tests in LLD
(which has no related individuals) using linear regression models adjusted for age, gender,
sample plate, position on plate, blood cell counts, smoking and the first three genetic
principal components. Genome-wide inflation in each EWAS was corrected using the R
package “Bacon”. In the replication cohort NTR, generalized estimation equation (GEE)
models were fitted using the R package “gee” to enable inclusion of both the twins in the
analysis, controlling for kinship. Covariates in the GEE models in NTR include age, sex,

sample plate, array row, blood cell counts and smoking. We set a minimum number of 50
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available data points (samples with both CpG and microbial trait abundance data available)
as a criterium to be included in the EWAS analysis, and 223 taxa and 410K CpG markers
were ultimately included in the analysis. For the EWAS of the 16s rRNA gene data, the final

analytical set was 616 individuals for LLD and 296 individuals for NTR.

In the EWAS of the LLD MGS data (683 individuals), we analyzed 209 bacterial taxa and 326
bacterial pathways. In the single cohort analysis the experiment wide p-value was
considered significant at 1.08 x 10™ for 165, 7.36 x 10*° for bacterial pathways and 1.15 x
10°° for MGS-derived taxa abundances. These numbers are based on the EWAS-sign
threshold of 2.4 x 107 for a single experiment performed on 450k array ** and according to
the Bonferroni procedure for multiple testing correction. For meta-analysis, only discovery

set associations with P < 1 x 10 were included in the meta-analysis.

We searched EWAS datahub*® and EWAS atlas*’ for existing epidemiological evidence for
the identified CpGs. We used the BIOS meQTL/eQTM atlas
(http://bbmri.researchlumc.nl/atlas/#data, files: “Cis-meQTLs independent top effects” and
“Cis-eQTMs independent top effects”) to identify genetic determinants of CpGs of

. 48,49
interest™

and their correlated gene expression. Genetic determinants for bacterial
abundance were extracted from MiBioGen GWAS results'®. Phenome-wide associations for
selected meQTLs were extracted from GWASATLAS. Exposome data was initially available
for 1135 individuals in the larger LLD cohort and included information about diet and
medication. Association to these exposome exposures was performed in the LLD dataset,
including 60 dietary preferences and 22 prescription medications (medications with >10

users) in 870 people for 16s, in 1124 people for MGS and in 689 people for host gene-

methylation data.
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Results

EWAS of gut microbiome profiled by 16s gene sequencing, discovery and replication

Figure 1 shows a schematic presentation of the study design. In the discovery EWAS of 16s-
derived taxonomy performed in 602 participants of the LLD cohort, we identified 3520 CpG—
taxa pairs with a Pgiscovery < 1.00 x 10™* and tested their association in the replication set of
296 samples from NTR. This revealed that two independent CpGs, cg16586104 (P epiication =
1.25 x 10™, Preta-analysis = 3.21 x 10™") and ¢g12234533 (P epiication = 2.87 X 10°°, P meta-analysis =
4.29 x 10™°) were associated with the abundance of genus Eggerthella (Table 1). The
methylation M-value of cg16586104, located ~600kb from the closest gene RWDD3
(chrip21.3), was associated with increased abundance of genus Eggerthella (methylation
level positively correlated with abundance). The M-value of cg12234533, located inside
ULK4 (unc-51-like serine/threonine kinase, chr3p22.1), was associated with decreased
abundance of Eggerthella. Additionally, we selected 76 CpG—taxa pairs with a suggestive
Pmeta-analysis < 1.00 x 10™ for further investigation in relation to exposome, so that 78 CpG—

taxa pairs from the 16s EWAS were followed-up {TableS1, FigureS1 and S2).

EWAS of metagenomics-derived abundance and pathway profiles

In contrast to 16s rRNA gene sequencing, MGS allows for accurate identification of bacterial
species and analysis of bacterial pathways. MGS was available for one cohort, LLD (683
individuals). None of the CpG-species/pathways pairs were associated at EWAS-wide
significant levels. We further selected the suggesting signals for the follow-up and
enrichment analyses. Twenty-three MGS-derived taxa that we found associated with host

DNA methylation in the discovery-only EWAS, with suggestive P-value significance level (2.4
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x 107> P > 1.25 x 10”). (Table S2). Ten of these 23 CpGs had been linked to other
phenotypic outcomes by previous EWAS (Table S2). We also found eleven independent
CpG-bacterial pathway associations that reached suggestive significance (2.4 x 107> P >

7.34 x 10™°). (Table S3, FigureS3 and S4).

Genetic effects shared between host DNA methylation and qut microbiome

We next examined genetic control over microbial abundance and gene methylation. We
searched for the genetic determinants of 78 unique CpGs from the 16s rRNA EWAS and
their associated bacterial taxa (n = 54) . Based on an earlier meQTL study from the BIOS
consortium®®, we identified 68 unique meQTLs that act as genetic regulators of 27 of the 78
CpGs we investigated (TableS3). Seventeen of these meQTLS had earlier been found to be
associated with several traits and diseases (TableS4). Three of them, for which the
methylation was associated with an unknown genus from the Coriobacteriaceae family,
were also associated to gastrointestinal diseases in several studies: rs11576137 (meQTL of
€g13058819, located in SLC35F3), rs1736020 (meQTL of cg08706567, located in MPL) and
rs1736135 (cg08706567, MPL) were associated with diverticular disease®>*®, IBD>"*%,

. e 57 . 59 58
ulcerative colitis”™ and Crohn’s disease (

TableS4). As none of the associated bacterial
taxa were shown to be under genetic control in the previously published meta-analysis'®,

we did not find any shared genetic loci simultaneously controlling host methylation and

microbiome, indicating that the correlation we observe is not due to host genetics.

Shared effects of environmental exposures on host DNA methylation and qut microbiome

We next tested whether shared exposure effects could explain the associations between
host DNA methylation and abundance of bacterial taxa. We first tested the effect of the

exposome (82 environmental variables: 60 on dietary intake and frequencies and 22 on
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medication intake) on the microbiome for the 54 unique microbial abundances that we
selected by 16S meta-analysis. EWAS. In total, 52 exposure—taxa pairs passed the 5% FDR
cutoff (Benjamini-Hochberg procedure, TableS6). For five of them, the related CpG was also
associated with the exposure (Prominai < 0.05, Table 2). In particular, we identified that use of
SSRI-type antidepressants was negatively associated with abundances of both genus
Clostridium sensu stricto 1 and family Peptostreptococcaceae (P = 2.91 x 10®° and P = 1.84 x
10, respectively), as well as with their related CpGs: cg19655032 (P = 1.35 x 10”°) and
cg06372145 (P = 1.54 x 10°%). For dietary factors, shared microbiome/epigenetic
associations were observed for dairy and coffee consumption: Genus Ruminococcus
gauvreauii group and cg20400838 were associated with dairy consumption (P = 5.99 x 10™
and P = 1.45 x 107, respectively). A genus-level cluster from Coriobacteriaceae family and its
associated CpG cg13058819 were simultaneously associated with coffee consumption (P =
8.93 x 10% and P = 1.42 x 107, respectively). In conclusion, for 5 of the 52 exposure—taxa
pairs selected, we identified environmental traits that are associated to both the
microbiome marker and its linked CpG site, suggesting that the microbiome may have a

mediator effect.
Mediator effect of the microbiome

We next tested whether the associations of microbiome/exposure to methylation CpGs are
independent of each other. Table 2 shows the results from association models where CpG
methylation is included as the outcome and microbial traits and environmental exposures
are both included as predictors, along with technical covariates, age and gender. For three
taxa—CpG—exposure clusters, SSRI-type antidepressant use (N = 17 users in the statistical

model), laxative use (N = 12 users) and the amount of coffee consumption, the associations

10
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between the exposure and host gene methylation were weakened by inclusion of microbial
effects in the models. For these three traits, the association with host gene methylation
levels (CpGs cg19655032, cg13058819 and cg18194821, respectively) was lost when
association is adjusted for microbial features, indicating that the effect of environment may

be mediated by the microbiome. (Table 3).

We next used formal mediation analysis to test the role of the microbiome in mediating the
effects of the three exposures (SSRI-type antidepressants, laxative use and coffee
consumption) on gene methylation and calculated the Average Causal Mediation Effects,
ACME (Table 4). For all three clusters, we found significant ACME for the microbiome
mediating the effects of the exposure on host gene methylation. Genus Clostridium sensu
stricto 1 mediates the effects of SSRI-type antidepressants on cg19655032 (ACME = -0.0216,
P =0.024, proportion of effect mediated = 0.20), a genus-level cluster from family
Coriobacteriaceae mediates the effects of coffee exposure on cg13058819 (ACME =
0.02245, P < 2 x 10", proportion of effect mediated = 0.75) and phylum Firmicutes
mediates the effects of laxative use on cg18194821 (ACME = 0.055, P < 2 x 10™*°, proportion
of effect mediated = 0.28). These examples show that microbiome can mediate the effect of

environment on DNA methylation.

Discussion

We performed an association study between the gut microbiome and host epigenome in
912 individuals from two independent Dutch cohorts. For all samples, blood methylation
and gut microbiome were analyzed at the same timepoint (within 2 weeks) and the same

pipelines for the analysis of microbiome and methylation data were applied. We identified

11
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study-wide association of CpG methylation with one bacterial taxa, Eggerthella, which was
associated with two independent CpGs. Exploring the effect of environmental factors on the
microbiome and methylation identified that for a subset of associations the same exposome
factors — coffee consumption, dairy intake and use of laxatives, PPls and antidepressants —
are associated to both the microbiome and methylation. We also show a potential role for
three bacterial taxa in mediating the effects of coffee, SSRI antidepressants and laxatives on
DNA methylation, although this analysis is limited by the small number of users and the
cross-sectional nature of this study. We did not observe shared effect of host genetics on
both microbiome and methylation, which is expected given the overall modest contribution

of host genetics in regulating microbial abundance.

Genus Eggerthella is one of the gut microbiome genera we found to be associated with
methylation in blood. Eggerthella is part of the normal human intestinal microbiome and
has been most commonly associated with infections spreading from the gastrointestinal
tract®, but it has also been found interacting with food intake while influencing metabolism
of drugs®". This genus has also been shown to be more abundant in individuals with
psychiatric diseases®” and higher grade neoplasms®. E. lenta from the same genus
correlates with taurodeoxycholic acid, a bile acid metabolite, in the colon of smoke-exposed
mice®® and has increased abundance in the presence of blood in stool, which is a marker for
CRC®. However, we did not find any association with the related CpGs and the diseases

mentioned above, although our search was limited to the EWAS studies carried out to date.

Following up on the association of a genus-level cluster under family Coriobacteriaceae with
two independent methylation sites (cg13058819 and cg08706567), we came across -Cis

(rs11576137 )and -trans (rs1736020 and rs1736135) meQTLs that are also genetic

12
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determinants of diverticular disease, IBD, ulcerative colitis and Crohn’s disease®,
respectively. The Coriobacteriaceae family is known to have a decreased abundance in the
gut of individuals with IBD®. In summary, we observe that these disease-associated variants
influence methylation of CpG sites, associated to abundance of Coriobacteriaceae but we
found no evidence for association between these SNPs and abundance of Coriobacteriaceae

itself.

We did not find any genetic loci that explain the associations of microbial taxa to CpGs, but
we could show that exposome factors, mainly diet and medication factors, might drive 7 of
82 (8.5%) CpG—microbiome associations. Notably, both the abundance of a genus-level
cluster of the Coriobacteriaceae family and the methylation at cg13058819 correlated with
increased coffee consumption (P = 8.93 x 10°° and P = 1.42 x 10, respectively), with
Coriobacteriaceae family abundance mediating 75% of the effect of coffee consumption on
€g13058819. In earlier meQTL studies, the genetic determinant of this CpG was related to

diverticular disease.

Overall, we discovered and confidently replicated two host methylation loci related to genus
Eggerthella and identified mediating effects of gut bacteria on host gene methylation. While
our research remains underpowered due to relatively small samples size and heterogeneity
of microbiome and diet, these two cohorts currently form the largest dataset of
simultaneous studies of microbiome, epigenetics and environment. Our results demonstrate
the importance of studying microbiota and epigenetic variations concurrently when

exploring the effects of diet and medication on host health.
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The raw sequence data for both MGS and 165 rRNA gene sequencing data sets, and age and
gender information per sample are available from the European genome-phenome archive

(https://www.ebi.ac.uk/ega/) at accession number EGAS00001001704. Other phenotypic

data can be requested from the LifeLines cohort study (https://lifelines.nl/lifelines-

research/access-to-lifelines) following the standard protocol for data access. All data access

to the Lifelines population cohort must follow the informed consent regulations of the
Medical Ethics Review Board of the University Medical Center Groningen, which are clearly

described at https://lifelines.nl/upload/file/lifelines+data+access+policy %5B1%5D.pdf.

The pipeline for DNA methylation-array analysis developed by the Biobank-based
Integrative Omics Study (BIOS) consortium are available here:
https://molepi.github.io/DNAmArray_workflow/

(https://doi.org/10.5281/zenod0.3355292). The HumanMethylation450 BeadChip data from

the LLD and NTR are available as part of the Biobank-based Integrative Omics Studies (BIOS)
Consortium in the European Genome-phenome Archive (EGA), under the accession code
EGAD00010000887, https://ega-archive.org/datasets/EGAD00010000887. The OMICs data
and additional phenotype data are available upon request via the BBMRI-NL BIOS
consortium (https://www.bbmri.nl/acquisition-use-analyze/bios). All NTR data can be

requested by bona fida researchers (https://ntr-data-request.psy.vu.nl/).

Summary statistics of microbiome EWAS form LLD on 16s taxa, shotgun metagenomics
derived taxa and pathways are deposited on https://doi.org/10.5281/zenodo.10062077
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Table 1 CpGs associated with bacterial taxa.

Bacterial taxa Chro
moso Standard
CpG Gene me Position Stage P-value | Effect | error N
genus Egghertella cg16586104 | None (RP11- 1 95873476 Discovery | 9.52E-05 | 0.08 0.02 255
14019 locus)
Replicatio | 1.25E-11 | 0.25 0.04 73
n
Meta- 3.21E-11
analysis
genus Egghertella cg12234533 | ULK4* 3 41999027 Discovery | 4.87E-06 |-0.04 | 0.01 255
Replicatio | 2.87E-06 |-0.08 | 0.02 74
n
Meta- 4.29E-10
analysis

Table 1 shows CpGs associated with bacterial taxa. Two CpGs that were selected from the 16S discovery EWAS (LLD cohort) with Pgiscovery <10™

and replicated in the NTR with Prepiication<1.42 x 10°°. The CpGs were not associated with any disease or human traits in the EWAS datahub
(https://ngdc.cncb.ac.cn/ewas/datahub access date: 07/01/2022). *Other CpGs in ULK4 gene have been associated with smoking, preterm

birth, glucocorticoid exposure, down syndrome, systemic lupus erythematosus. P -value: two sided type 1 error rate of null hypothesis
assuming effect estimate of bacterial abundance equals zero in the regression model where methylation M-value is the outcome and bacterial
abundance, age, sex and smoking and technical covariates included. N: Number of observations included in the analyses.
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Table 2 Diet and medication use factors that associate simultaneously with bacterial taxa/pathways and host DNA methylation, forming seven

exposure-microbiome-methylation clusters.

Exposure Effect of exposure on microbial taxa/pathways Effect of exposure on host gene methylation
Taxa(outcome) Effect P-value | Ntotal (N BH P-value | CpG Effect | P-value | N total (N
users/non (outcome) users/non
users) users)
875(18/857 6.86E-05 689(13/676)
laxatives phylum.Firmicutes.id.1672 -0.17 | 8.37E-07 ) €g18194821 0.19 0.018
SSRI genus.Clostridiumsensustrictol.i -1.64 | 2.91E-05 | 829(22/807 3.02E-03 | cg19655032 | -0.15| 1.35E-02 689(21/68)
d.1873 )
coffee_log | genus.unknowngenus.id.826 0.51 | 8.93E-25 812 9.28E-23 | cg13058819 0.04 | 1.42E-02 689
dairy_log genus..Ruminococcusgauvreauii 0.32 | 5.99E-04 784 3.11E-02 | cg20400838 | -0.09 | 1.45E-02 689
group.id.11342
SSRI family.Peptostreptococcaceae.i -1.38 k1.84E- | 867(18/766 9.57E-04 | cg06372145 | -0.34 | 1.54E-02 689(21/68)
d.2042 05 )

Table 2 shows the results from initial exposome analysis. In these analysis either bacterial abundance/taxa or CpG M values were included as

outcomes, and exposure as predictors in regression models, together with technical covariates. We first selected the BH-significant

microbiome-exposure pairs, and then tested whether they are significantly associated with CpGs, and selected a total of FIVE exposure-

microbiome-methylation clusters. Table shows the results from two different tests. P -value: two sided type 1 error rate of null hypothesis

assuming effect estimate of bacterial abundance equals zero in the regression model where methylation M-value is the outcome and bacterial

abundance, age, sex and smoking and technical covariates included. N: Number of observations included in the analyses.
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Table 3 Effects of diet and medication estimated by adjusted models

Exposure | Effect P-value Effect P-value N total (N users/non
CpG (outcome) (predictor) | microbi | microbio exposur | exposure users)
(outcome) Bacterial taxa (predictor)/pathway ome me e
genus.Clostridiumsensustrictol.id.18 SSRI
€g19655032 73 0.02 1.54E-04 -0.08 | 1.93E-01 583(17/566)
cg13058819 genus.unknowngenus.id.826 coffee_log 0.05 | 1.36E-04 0.01 | 6.98E-01 578
genus..Ruminococcusgauvreauiigrou dairy_log
cg20400838 p.id.11342 -0.05 8.32E-04 -0.08 | 3.07E-02 553
family.Peptostreptococcaceae.id.204 SSRI
cg06372145 2 -0.07 2.09E-05 -0.42 | 6.13E-03 610(17/593)
cg18194821 phylum.Firmicutes.id.1672 laxatives -0.36 8.17E-06 0.14 | 1.06E-01 616(12/604)

Table 3 shows the results from adjusted linear regression analyses where both microbiome and exposure were included in the models

together to associate with the outcome of CpG M values, along with age, sex and smoking and technical covariates.
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Table 4 Mediation analysis

ACME p- Total effect P- | Prop.
Outcome Exposure Mediator ACME value Total effect value Mediated
€g19655032 SSRI genus.Clostridiumsensustrictol.id.1873 -0.0216 0.024 -0.1053 0.056 0.2047
€g13058819 coffee_log.y genus.unknowngenus.id.826 0.02245 | <2e-16 0.02988 0.08 0.75139
€g18194821 laxatives phylum.Firmicutes.id.1672 0.0552 | <2e-16 0.1904 0.13 0.2897

Table 4 shows the results from mediation analysis for the clusters selected from adjusted analysis in Table 3. ACME: stands for Average Causal
Mediation Effects.
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Figure 2 Mediation analysis of environmental exposures, microbiome and CpG
methylation.

S

ot

PN

2 .

Os/\\o') R

R AN
N
oL
@Z\\o “
2o

Propmediatedzo’zo; PACME:O'O24 {
> 919655032

Clostridium
sensu stricto

Q ‘s
%Q’p P
N 0%”@ \‘ A
'QZV.‘\\
IO
@\\?)\‘
C H b H Propmedialed:0‘75; PACME<2X10-16 *
oriobacteriaceae
genus-level cluster €g13058819
Laxatives
o,b
N .
T/’\-\- o S
,\\0 N
)o\’@.‘\
AN
@g\\o ~‘
% .
Prop, . qiaea=0:29; Pacye<2X101° )*
Firmicutes 918194821

Figure 2. Mediation analysis of environmental exposures, microbiome and CpG methylation.
Prominal represents the p-value of association of environmental exposure to microbial trait
and CpG. P,q;represents the conditional association of environmental exposure to both
microbiome and methylation traits, adjusted for each other. Propmediated represents the
proportion of environmental effect on CpG methylation which is mediated by microbial
trait. Pacme represents the significance of Average Causal Mediation Effects (ACME).
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