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Abstract 

Both gene methylation and the gut microbiome are partially determined by host genetics 

and partially by environment. We investigated the relations between gene methylation in 

blood and the abundance of common gut bacteria profiled by 16s rRNA gene sequencing in 

two population-based Dutch cohorts: LifeLines-Deep (LLD, n = 616, discovery) and the 

Netherlands Twin Register (NTR, n = 296, replication). In LLD, we also explored microbiome 

composition using data generated by shotgun metagenomic sequencing (n = 683). We then 

investigated if genetic and environmental factors can explain the methylation–microbiota 

associations in a set of 78 associated CpG–taxa pairs from the EWAS meta-analysis. 

In both cohorts, blood and stool samples were collected within 2 weeks of each other. 

Methylation was profiled in blood samples using the Illumina 450K array. Methylation and 

microbiome analysis pipelines were harmonized across cohorts. Epigenome-wide 

association study (EWAS) of microbial features were analysed using linear regression with 

adjustment for technical covariates. 

Discovery and replication analysis using 16s data identified two independent CpGs 

associated with the genus Eggerthella: cg16586104 (Pmeta-analysis = 3.21 × 10
-11

) and 

cg12234533 (Pmeta-analysis = 4.29 × 10
-10

). While we did not find human genetic variants that 

could explain the associated CpG–taxa/pathway pairs, we show that microbiome can 

mediate the effect of environmental factors on epigenetics. 

In this first association study linking epigenome to microbiome, we found and replicated the 

associations of two CpGs to the abundance of genus Eggerthella and identified microbiome 

as a mediator of the exposome. 

Keywords: gut microbiome, host gene methylation, DNA methylation, 16s, shotgun-

metagenomics  
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Introduction 

The gut microbiome is now widely accepted to be a modifiable factor that is associated with 

a wide range of host health outcomes. It has been repeatedly shown to express its effects 

not only within the intestinal system, e.g. in colorectal cancer
1
 (CRC) and inflammatory 

bowel disease
2
 (IBD), but also at the systemic level, for instance in metabolic disorders such 

as type 2 diabetes
3
 or neuropsychiatric conditions

4
 such as Parkinson’s disease

5
 and mood 

disorders. Causal roles for the gut microbiome have been proven for some of these 

associations, and the underlying mechanisms include short-chain fatty acid production by 

bacteria
6
, stimulation of the vagus nerve

7 or via the enteroendocrine cells
8
, or microbial 

production of triggers for inflammatory pathways, such as lipopolysaccharides
9
. The gut 

microbiome is assumed to be shaped primarily by the exposome and secondarily by host 

genetics
10

, but the contribution of the host epigenome and its relation between 

environmental factors (such as diet) and microbiome, has never been studied in human 

cohorts at large scale. Thus the mechanistic links for the recently suggested “Microbiota ↔ 

Nutrient Metabolism ↔ Host Epigenome” model are far from being understood
11

. 

Host epigenetics is mostly studied by capturing DNA methylation at CpG dinucleotides over 

the human genome. Similar to the microbiome, methylation can be modified by both host 

genetics and environment
12

. Modification of CpG markers can be responsible for switching 

gene expression genes on or off during development
13

 and throughout life. In addition to 

genetic and environmental control for this modification, it can also be influenced by early 

life events
14,15

 and maternal factors
16,17

. Multiple epigenome-wide association studies 

(EWAS) have identified links between differential CpG methylation in blood cells and 

cardiovascular
18

, metabolic
19,20

, psychiatric
21

 outcomes and cancer
22

. In line with this, 
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several EWAS have also linked CpG methylation to environmental exposures, e.g. air 

quality
23

, stress
24

, occupational exposure to chemicals
25,26

, prescribed medications
27

, dietary 

habits such as coffee and alcohol consumption
28,29

 and supplement intake
30

. 

Here, we performed an EWAS of the gut microbiome to test whether gut microbial 

abundances associate to differentially methylated CpGs measured in blood. We performed 

this study in a discovery and replication setting in two cohorts from the Netherlands: 

LifeLines-DEEP (LLD, n = 616) and the Netherlands Twin Register (NTR, n = 296). Additionally, 

using metagenomic shotgun sequencing (MGS) data generated in the LLD cohort, we 

obtained the abundances of bacterial metabolic pathways and microbial species and linked 

these with host DNA methylation (n = 683). Finally, as gut microbial abundances are, in part, 

under the control of host genetics
10

, environment
31

, diet
32

 and medication use
33

, we 

elucidated whether the observed associations can be explained by any of these factors and 

searched for a mediating role for the gut microbiome in these associations. 

Methods 

Cohorts LLD is a subcohort of Lifelines. Lifelines is a multi-disciplinary prospective 

population-based cohort study examining, in a unique three-generation design, the health 

and health-related behaviors of 167,729 persons living in the North of the Netherlands. It 

employs a broad range of investigative procedures to assess the biomedical, socio-

demographic, behavioral, physical and psychological factors that contribute to the health 

and disease of the general population, with a special focus on multi-morbidity and complex 

genetics. Blood and fecal samples of LLD participants were collected between April and 

August 2013. Fecal DNA was extracted using the Qiagen AllPrep kit with a bead-beating 

step. Sequencing of the bacterial 16s rRNA gene, domain V4, was performed at the Broad 
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Institute (Boston, USA) using the Illumina MiSeq platform, as described in 
10

. Metagenomics 

sequencing of the same DNA samples was performed at the Broad Institute, as described in 

31
.  

The NTR collects longitudinal data in twin families
34

. Biological samples are collected in the NTR- 

Biobank
35,36

. The NTR samples included in our microbiome EWAS were collected for two 

separate studies. The first focused on the association between obesity and the gut 

microbiome
37

 and the second collected samples from family members and spouses
38

. Fecal DNA 

was extracted using the Qiagen PowerSoil kit with the addition of the heating step from the 

protocol of the Qiagen PowerFecal kit. The sequencing of the V4 domain of the 16S gene was 

performed using the Illumina MiSeq platform, as described in 
10

. DNA extraction and sequencing 

were performed at the Avera Institute for Human Genetics (Sioux Falls, SD, USA). 

Analysis of 16s data In both cohorts, a standardized 16s processing pipeline 

(https://github.com/alexa- kur/miQTL_cookbook ) was used to characterize the V4 region 

using the RDP classifier
39

 over the SILVA128 database
40

. We used the 16s rRNA–based 

microbiome profiling from both cohorts, the data of which were harmonized earlier as part 

of a large meta-analysis
10

. MGS was only performed in LLD and was analyzed using the 

Metaphlan v.2 and Humann2 algorithms with the aim of yielding higher taxonomic 

resolution and functional insights
31

. 

Methylation In both cohorts, genome-wide DNA methylation in whole blood was analyzed 

using the Infinium HumanMethylation450 BeadChip Kit
41

. Genomic DNA (500Ong) from 

whole blood was bisulfite-treated using the ZymoResearch EZ DNA Methylation kit (Zymo 

Research Corp, Irvine, CA, USA), following the standard protocol for Illumina 450K micro-

arrays, at the Department of Molecular Epidemiology of Leiden University Medical Center, 

the Netherlands. In short, subsequent steps (sample hybridization, staining and scanning) 
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were performed by the Human Genomics Facility (HuGe-F) at the Erasmus Medical Center, 

Rotterdam, the Netherlands. The resulting data were processed in accordance with BIOS 

consortium guidelines, as detailed earlier
17,42

. Sample-level quality control was performed 

using MethylAid
43

. Probes were set to be missing in a sample if they had an intensity value 

of exactly zero, a detection P-value > .01 or a bead count < 3. After these steps, the probes 

that failed the above criteria in >5% of the samples were excluded from all samples, leaving 

only the probes with a success rate ≥0.95. Probes were also excluded from all samples if 

they were mapped to multiple locations in the genome or had a single nucleotide 

polymorphism (SNP) within the CpG site (at the C or G position), irrespective of the minor 

allele frequency in the Dutch population
41

. Only autosomal methylation sites were analyzed 

in the EWAS. The methylation data were normalized with functional normalization, as 

implemented in minfi
44

. In both cohorts, blood and stool samples were collected within 2 

weeks of each other. 

Statistical analysis We calculated methylation M-values as the logarithm of methylated 

over unmethylated probe intensity ratio. As M-values were the outcome in our regression 

models, we further excluded outliers, which we defined as values lying outside of the ± 3.5 

interquartile range for each methylation probe. We performed association tests in LLD 

(which has no related individuals) using linear regression models adjusted for age, gender, 

sample plate, position on plate, blood cell counts, smoking and the first three genetic 

principal components. Genome-wide inflation in each EWAS was corrected using the R 

package “Bacon”. In the replication cohort NTR, generalized estimation equation (GEE) 

models were fitted using the R package “gee” to enable inclusion of both the twins in the 

analysis, controlling for kinship. Covariates in the GEE models in NTR include age, sex, 

sample plate, array row, blood cell counts and smoking. We set a minimum number of 50 
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available data points (samples with both CpG and microbial trait abundance data available) 

as a criterium to be included in the EWAS analysis, and 223 taxa and 410K CpG markers 

were ultimately included in the analysis. For the EWAS of the 16s rRNA gene data, the final 

analytical set was 616 individuals for LLD and 296 individuals for NTR. 

In the EWAS of the LLD MGS data (683 individuals), we analyzed 209 bacterial taxa and 326 

bacterial pathways. In the single cohort analysis the experiment wide p-value was 

considered significant at 1.08 × 10
-9 

 for 16S, 7.36 × 10
-10

 for bacterial pathways and 1.15 × 

10
-9

 for MGS-derived taxa abundances. These numbers are based on the EWAS-sign 

threshold of 2.4 × 10
-7 

for a single experiment performed on 450k array 
45

 and according to 

the Bonferroni procedure for multiple testing correction. For meta-analysis, only discovery 

set associations with P < 1 × 10
-4

 were included in the meta-analysis. 

 We searched EWAS datahub
46

 and EWAS atlas
47

 for existing epidemiological evidence for 

the identified CpGs. We used the BIOS meQTL/eQTM atlas 

(http://bbmri.researchlumc.nl/atlas/#data, files: “Cis-meQTLs independent top effects” and 

“Cis-eQTMs independent top effects”) to identify genetic determinants of CpGs of 

interest
48,49

 and their correlated gene expression. Genetic determinants for bacterial 

abundance were extracted from MiBioGen GWAS results
10

. Phenome-wide associations for 

selected meQTLs were extracted from GWASATLAS
50

. Exposome data was initially available 

for 1135 individuals in the larger LLD cohort and included information about diet and 

medication. Association to these exposome exposures was performed in the LLD dataset, 

including 60 dietary preferences and 22 prescription medications (medications with >10 

users) in 870 people for 16s, in 1124 people for MGS and in 689 people for host gene-

methylation data. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 6, 2023. ; https://doi.org/10.1101/2023.11.03.565420doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565420
http://creativecommons.org/licenses/by-nd/4.0/


 8

 

Results 

EWAS of gut microbiome profiled by 16s gene sequencing, discovery and replication 

Figure 1 shows a schematic presentation of the study design. In the discovery EWAS of 16s-

derived taxonomy performed in 602 participants of the LLD cohort, we identified 3520 CpG–

taxa pairs with a Pdiscovery < 1.00 × 10
-4

 and tested their association in the replication set of 

296 samples from NTR. This revealed that two independent CpGs, cg16586104 (Preplication = 

1.25 × 10
-11

, Pmeta-analysis = 3.21 × 10
-11 

) and cg12234533 (Preplication = 2.87 × 10
-6

, Pmeta-analysis = 

4.29 × 10
-10

) were associated with the abundance of genus Eggerthella (Table 1). The 

methylation M-value of cg16586104, located ~600kb from the closest gene RWDD3 

(chr1p21.3), was associated with increased abundance of genus Eggerthella (methylation 

level positively correlated with abundance). The M-value of cg12234533, located inside 

ULK4 (unc-51-like serine/threonine kinase, chr3p22.1), was associated with decreased 

abundance of Eggerthella. Additionally, we selected 76 CpG–taxa pairs with a suggestive 

Pmeta-analysis < 1.00 × 10
-4

 for further investigation in relation to exposome, so that 78 CpG–

taxa pairs from the 16s EWAS were followed-up (TableS1, FigureS1 and S2).  

EWAS of metagenomics-derived abundance and pathway profiles 

In contrast to 16s rRNA gene sequencing, MGS allows for accurate identification of bacterial 

species and analysis of bacterial pathways. MGS was available for one cohort, LLD (683 

individuals). None of the CpG-species/pathways pairs were associated at EWAS-wide 

significant levels. We further selected the suggesting signals for the follow-up and 

enrichment analyses. Twenty-three MGS-derived taxa that we found associated with host 

DNA methylation in the discovery-only EWAS, with suggestive P-value significance level (2.4 
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× 10
-7 

> P > 1.25 × 10
-9

). (Table S2). Ten of these 23 CpGs had been linked to other 

phenotypic outcomes by previous EWAS (Table S2). We also found eleven independent  

CpG–bacterial pathway associations that reached suggestive significance (2.4 × 10
-7 

> P > 

7.34 × 10
-10

). (Table S3, FigureS3 and S4).  

Genetic effects shared between host DNA methylation and gut microbiome 

We next examined genetic control over microbial abundance and gene methylation. We 

searched for the genetic determinants of 78 unique CpGs  from the 16s rRNA EWAS and 

their associated bacterial taxa (n = 54) . Based on an earlier meQTL study from the BIOS 

consortium
48

, we identified 68 unique meQTLs that act as genetic regulators of 27 of the 78 

CpGs we investigated (TableS3). Seventeen of these meQTLS had earlier been found to be 

associated with several traits and diseases (TableS4). Three of them, for which the 

methylation was associated with an unknown genus from the Coriobacteriaceae family, 

were also associated to gastrointestinal diseases in several studies: rs11576137 (meQTL of 

cg13058819, located in SLC35F3), rs1736020 (meQTL of cg08706567, located in MPL) and 

rs1736135 (cg08706567, MPL) were associated with diverticular disease
55,56

, IBD
57,58

, 

ulcerative colitis
57

 and Crohn’s disease
59

 
58

 (TableS4). As none of the associated bacterial 

taxa were shown to be under genetic control in the previously published meta-analysis
10

, 

we did not find any shared genetic loci simultaneously controlling host methylation and 

microbiome, indicating that the correlation we observe is not due to host genetics. 

Shared effects of environmental exposures on host DNA methylation and gut microbiome 

We next tested whether shared exposure effects could explain the associations between 

host DNA methylation and abundance of bacterial taxa. We first tested the effect of the 

exposome (82 environmental variables: 60 on dietary intake and frequencies and 22 on 
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medication intake) on the microbiome for the 54 unique microbial abundances that we 

selected by 16S meta-analysis.  EWAS. In total, 52 exposure–taxa pairs passed the 5% FDR 

cutoff (Benjamini-Hochberg procedure, TableS6). For five of them, the related CpG was also 

associated with the exposure (Pnominal < 0.05, Table 2). In particular, we identified that use of 

SSRI-type antidepressants was negatively associated with abundances of both genus 

Clostridium sensu stricto 1 and family Peptostreptococcaceae (P = 2.91 × 10
-5

 and P = 1.84 × 

10
-5

, respectively), as well as with their related CpGs: cg19655032 (P = 1.35 × 10
-2

) and 

cg06372145 (P = 1.54 × 10
-2

). For dietary factors, shared microbiome/epigenetic 

associations were observed for dairy and coffee consumption: Genus Ruminococcus 

gauvreauii group and cg20400838 were associated with dairy consumption (P = 5.99 × 10
-4

 

and P = 1.45 × 10
-2

, respectively). A genus-level cluster from Coriobacteriaceae family and its 

associated CpG cg13058819 were simultaneously associated with coffee consumption (P = 

8.93 × 10
-25

 and P = 1.42 × 10
-2

, respectively). In conclusion, for 5 of the 52  exposure–taxa 

pairs selected, we identified environmental traits that are associated to both the 

microbiome marker and its linked CpG site, suggesting that the microbiome may have a 

mediator effect. 

Mediator effect of the microbiome 

We next tested whether the associations of microbiome/exposure to methylation CpGs are 

independent of each other. Table 2 shows the results from association models where CpG 

methylation is included as the outcome and microbial traits and environmental exposures 

are both included as predictors, along with technical covariates, age and gender. For three 

taxa–CpG–exposure clusters, SSRI-type antidepressant use (N = 17 users in the statistical 

model), laxative use (N = 12 users) and the amount of coffee consumption, the associations 
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between the exposure and host gene methylation were weakened by inclusion of microbial 

effects in the models. For these three traits, the association with host gene methylation 

levels (CpGs cg19655032, cg13058819 and cg18194821, respectively) was lost when 

association is adjusted for microbial features, indicating that the effect of environment may 

be mediated by the microbiome. (Table 3). 

We next used formal mediation analysis to test the role of the microbiome in mediating the 

effects of the three exposures (SSRI-type antidepressants, laxative use and coffee 

consumption) on gene methylation and calculated the Average Causal Mediation Effects, 

ACME (Table 4). For all three clusters, we found significant ACME for the microbiome 

mediating the effects of the exposure on host gene methylation. Genus Clostridium sensu 

stricto 1 mediates the effects of SSRI-type antidepressants on cg19655032 (ACME = -0.0216, 

P = 0.024, proportion of effect mediated = 0.20), a genus-level cluster from family 

Coriobacteriaceae mediates the effects of coffee exposure on cg13058819 (ACME = 

0.02245, P < 2 × 10
-16

, proportion of effect mediated = 0.75) and phylum Firmicutes 

mediates the effects of laxative use on cg18194821 (ACME = 0.055, P < 2 × 10
-16

, proportion 

of effect mediated = 0.28). These examples show that microbiome can mediate the effect of 

environment on DNA methylation.  

 

Discussion 

We performed an association study between the gut microbiome and host epigenome in 

912 individuals from two independent Dutch cohorts. For all samples, blood methylation 

and gut microbiome were analyzed at the same timepoint (within 2 weeks) and the same 

pipelines for the analysis of microbiome and methylation data were applied. We identified 
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study-wide association of CpG methylation with one bacterial taxa, Eggerthella, which was 

associated with two independent CpGs. Exploring the effect of environmental factors on the 

microbiome and methylation identified that for a subset of associations the same exposome 

factors – coffee consumption, dairy intake and use of laxatives, PPIs and antidepressants – 

are associated to both the microbiome and methylation. We also show a potential role for 

three bacterial taxa in mediating the effects of coffee, SSRI antidepressants and laxatives on 

DNA methylation, although this analysis is limited by the small number of users and the 

cross-sectional nature of this study. We did not observe shared effect of host genetics on 

both microbiome and methylation, which is expected given the overall modest contribution 

of host genetics in regulating microbial abundance.  

Genus Eggerthella is one of the gut microbiome genera we found to be associated with 

methylation in blood. Eggerthella is part of the normal human intestinal microbiome and 

has been most commonly associated with infections spreading from the gastrointestinal 

tract
60

, but it has also been found interacting with food intake while influencing metabolism 

of drugs
61

. This genus has also been shown to be more abundant in individuals with 

psychiatric diseases
62

 and higher grade neoplasms
63

. E. lenta from the same genus 

correlates with taurodeoxycholic acid, a bile acid metabolite, in the colon of smoke-exposed 

mice
64

 and has increased abundance in the presence of blood in stool, which is a marker for 

CRC
65

. However, we did not find any association with the related CpGs and the diseases 

mentioned above, although our search was limited to the EWAS studies carried out to date. 

Following up on the association of a genus-level cluster under family Coriobacteriaceae with 

two independent methylation sites (cg13058819 and cg08706567), we came across -cis 

(rs11576137 )and -trans (rs1736020 and rs1736135) meQTLs  that are also genetic 
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determinants of diverticular disease, IBD, ulcerative colitis and Crohn’s disease
50

, 

respectively. The Coriobacteriaceae family is known to have a decreased abundance in the 

gut of individuals with IBD
68

. In summary, we observe that these disease-associated variants 

influence methylation of CpG sites, associated to abundance of Coriobacteriaceae but we 

found no evidence for association between these SNPs and abundance of Coriobacteriaceae 

itself.  

We did not find any genetic loci that explain the associations of microbial taxa to CpGs, but 

we could show that exposome factors, mainly diet and medication factors, might drive 7 of 

82 (8.5%) CpG–microbiome associations. Notably, both the abundance of a genus-level 

cluster of the Coriobacteriaceae family and the methylation at cg13058819 correlated with 

increased coffee consumption (P = 8.93 x 10
-25

 and P = 1.42 x 10
-02

, respectively), with 

Coriobacteriaceae family abundance mediating 75% of the effect of coffee consumption on 

cg13058819. In earlier meQTL studies, the genetic determinant of this CpG was related to 

diverticular disease. 

Overall, we discovered and confidently replicated two host methylation loci related to genus 

Eggerthella and identified mediating effects of gut bacteria on host gene methylation. While 

our research remains underpowered due to relatively small samples size and heterogeneity 

of microbiome and diet, these two cohorts currently form the largest dataset of 

simultaneous studies of microbiome, epigenetics and environment. Our results demonstrate 

the importance of studying microbiota and epigenetic variations concurrently when 

exploring the effects of diet and medication on host health. 
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Table 1 CpGs associated with bacterial taxa.  

 

Bacterial taxa 

CpG Gene 

Chro

moso

me Position Stage P-value Effect  

Standard 

error  N 

genus Egghertella cg16586104 None (RP11-

14O19 locus) 

1 95873476 Discovery 9.52E-05 0.08 0.02 255 

   Replicatio

n 

1.25E-11 0.25 0.04 73 

   Meta-

analysis 

3.21E-11    

genus Egghertella cg12234533 ULK4* 3 41999027 Discovery 4.87E-06 -0.04 0.01 255 

   Replicatio

n 

2.87E-06 -0.08 0.02 74 

   Meta-

analysis 

4.29E-10    

 

Table 1 shows CpGs associated with bacterial taxa. Two CpGs that were selected from the 16S discovery EWAS (LLD cohort) with Pdiscovery <10
-4  

and replicated in the NTR with Preplication<1.42 × 10
-5

. The CpGs were not associated with any disease or human traits in the EWAS datahub 

(https://ngdc.cncb.ac.cn/ewas/datahub access date: 07/01/2022). *Other CpGs in ULK4 gene have been associated with smoking, preterm 

birth, glucocorticoid exposure, down syndrome, systemic lupus erythematosus. P -value: two sided type 1 error rate of null hypothesis 

assuming effect estimate of bacterial abundance equals zero in the regression model where methylation M-value is the outcome and bacterial 

abundance, age, sex and smoking and technical covariates included. N: Number of observations included in the analyses.  
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Table 2 Diet and medication use factors that associate simultaneously with bacterial taxa/pathways and host DNA methylation, forming seven 

exposure-microbiome-methylation clusters.  

Exposure Effect of exposure on microbial taxa/pathways Effect of exposure on host gene methylation 

 Taxa(outcome) Effect P-value N total (N 

users/non 

users) 

BH P-value CpG 

(outcome) 

Effect P-value N total (N 

users/non 

users) 

laxatives phylum.Firmicutes.id.1672 -0.17 8.37E-07 

875(18/857

) 

6.86E-05 

cg18194821 0.19 0.018 

689(13/676) 

SSRI genus.Clostridiumsensustricto1.i

d.1873 

-1.64 2.91E-05 829(22/807

) 

3.02E-03 cg19655032 -0.15 1.35E-02 689(21/68) 

coffee_log genus.unknowngenus.id.826 0.51 8.93E-25 812 9.28E-23 cg13058819 0.04 1.42E-02 689 

dairy_log genus..Ruminococcusgauvreauii

group.id.11342 

0.32 5.99E-04 784 3.11E-02 cg20400838 -0.09 1.45E-02 689 

SSRI family.Peptostreptococcaceae.i

d.2042 

-1.38 k1.84E-

05 

867(18/766

) 

9.57E-04 cg06372145 -0.34 1.54E-02 689(21/68) 

 

Table 2 shows the results from initial exposome analysis. In these analysis either bacterial abundance/taxa or CpG M values were included as 

outcomes, and exposure as predictors in regression models, together with technical covariates. We first selected the BH-significant 

microbiome-exposure pairs, and then tested whether they are significantly associated with CpGs, and selected a total of FIVE exposure-

microbiome-methylation clusters. Table shows the results from two different tests. P -value: two sided type 1 error rate of null hypothesis 

assuming effect estimate of bacterial abundance equals zero in the regression model where methylation M-value is the outcome and bacterial 

abundance, age, sex and smoking and technical covariates included. N: Number of observations included in the analyses. 
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Table 3 Effects of diet and medication estimated by adjusted models 

CpG (outcome) 

(outcome) Bacterial taxa (predictor)/pathway 

Exposure 

(predictor) 

Effect 

microbi

ome 

P-value 

microbio

me 

Effect 

exposur

e 

P-value 

exposure 

N total (N users/non 

users) 

cg19655032 

genus.Clostridiumsensustricto1.id.18

73 

SSRI 

0.02 1.54E-04 -0.08 1.93E-01 583(17/566) 

cg13058819 genus.unknowngenus.id.826 coffee_log 0.05 1.36E-04 0.01 6.98E-01 578 

cg20400838 

genus..Ruminococcusgauvreauiigrou

p.id.11342 

dairy_log 

-0.05 8.32E-04 -0.08 3.07E-02 553 

cg06372145 

family.Peptostreptococcaceae.id.204

2 

SSRI 

-0.07 2.09E-05 -0.42 6.13E-03 610(17/593) 

cg18194821 phylum.Firmicutes.id.1672 laxatives -0.36 8.17E-06 0.14 1.06E-01 616(12/604) 

Table 3 shows the results from adjusted linear regression analyses where both microbiome and exposure were included in the models 

together to associate with the outcome of CpG M values, along with age, sex and smoking and technical covariates. 
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Table 4 Mediation analysis 

Outcome Exposure Mediator ACME 

ACME p-

value Total effect 

Total effect P-

value 

Prop. 

Mediated 

cg19655032 SSRI genus.Clostridiumsensustricto1.id.1873 -0.0216 0.024 -0.1053 0.056 0.2047 

cg13058819 coffee_log.y genus.unknowngenus.id.826 0.02245 <2e-16 0.02988 0.08 0.75139 

cg18194821 laxatives phylum.Firmicutes.id.1672 0.0552 <2e-16 0.1904 0.13 0.2897 

 

Table 4 shows the results from mediation analysis for the clusters selected from adjusted analysis in Table 3. ACME: stands for Average Causal 

Mediation Effects. 
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Figure 2 Mediation analysis of environmental exposures, microbiome and CpG 

methylation. 

 
Figure 2. Mediation analysis of environmental exposures, microbiome and CpG methylation. 

Pnominal represents the p-value of association of environmental exposure to microbial trait 

and CpG. Padj represents the conditional association of environmental exposure to both 

microbiome and methylation traits, adjusted for each other. Propmediated represents the 

proportion of environmental effect on CpG methylation which is mediated by microbial 

trait. PACME represents the significance of Average Causal Mediation Effects (ACME).  
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