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ABSTRACT

The Neolithic transition introduced major diet and lifestyle changes to human populations across

]
2 continents. Beyond well-documented bioarchaeological and genetic effects, whether these changes
3 also had molecular-level epigenetic repercussions in past human populations has been an open
4 question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through
5 postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published
6 paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and
7 diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-
8 gatherer (HGs) and 21 Neolithic farmer (NFs) individuals from West and North Eurasia, published by
9 six different laboratories and with coverage c.1x-58x (median=9x). We used epiPALEOMIX and a

10 Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome

11 dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation.

12 However, analysing the data using various approaches did not yield any systematic signals for

13 subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our

14 dataset with methylation differences between hunter-gatherers vs. farmers in modern-day Central

15 Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly

16 by their laboratories of origin. Our results mark the importance of minimizing technical noise for

17 capturing subtle biological signals from paleomethylomes.

1z Introduction

19 The last 12,000 years saw diverse human populations shift from mobile hunter-gathering to Neolithic lifeways involving
20 sedentism and food production. These Neolithic transitions not only brought about changes in diet but also major
21 shifts in daily activities, an increase in population density, as well as institutionalized social inequalities (Bar-Yosef and
22 Belfer-Cohen, 1992; Richards, 2002). Beyond their social impact, how these changes shaped human health, physiology,
23 genetics and epigenetics has long been debated. Anthropological evidence points to negative outcomes related to dietary
24 constraints and high population density, such as increasing prevalence of growth disruption, anaemia, or dental caries
25 in archaeological human remains from Neolithic populations compared to foragers (Latham, 2013; Larsen, 2006).
26 Meanwhile, population genomic studies have reported multiple loci that evolved under positive selection pressures
27 related to agriculture and pastoralism. These include the FADS genes involved in polyunsaturated fatty acid metabolism
28 (Buckley ef al., 2017) and the LCT gene responsible for lactase persistence (Tishkoff ez al., 2007). Even though
29 these selection pressures appear to have gained strength multiple millennia later than the original transitions to food
3o production (Burger et al., 2020; Mathieson and Mathieson, 2018), their documentation is consistent with the notion that
31 food production had significant long-term impacts on human physiology.

32 It might be likewise expected that Neolithic transitions shifted human epigenetic profiles. Indeed, changes in overall
33 methylation levels have been found in leukocytes related to vegetable-rich versus fat- and meat-rich diets in a human
34 sample from the USA (Zhang et al., 2011). Even more relevant are the results by Fagny and colleagues, who compared
35 blood methylation profiles between present-day hunter-gatherers (MHGs) and farmers (MFs) living in central Africa
36 (Fagny et al., 2015). These authors reported thousands of loci showing differential methylation patterns correlated with
37 both historical and recent shifts in lifestyle; they further associated these changes with immune- and development-related
ss pathways. Whether similar past Neolithic human populations experienced similar lifestyle- and diet-related epigenetic
39 shifts has remained an open question.

40 Unfortunately, most epigenetic information related to physiology is lost in ancient specimens as soft tissue and RNA are
41 not preserved (see Smith et al., 2019 for an exception). However, it has been shown that cytosine methylation sites can
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42 survive in ancient DNA. A number of studies have used standard protocols for methylation profiling, such as bisulphite
43 sequencing and immunoprecipitation, on ancient DNA (Smith et al., 2015; Seguin-Orlando et al., 2015) (Llamas et al.,
44 2012). Meanwhile, methylation information can also be indirectly inferred from sequencing data from ancient DNA
45 molecules treated with the UDG (uracil-DNA glycosylase) enzyme. This is based on the knowledge that after death,
46 aDNA molecules undergo widespread cytosine deamination at their broken ends, resulting in C—U (uracil) transitions
47 if the cytosine is unmethylated, and in C—T (thymine) transitions if the cytosine is methylated (Briggs et al., 2007).
48 Treatment of aDNA with UDG eliminates uracil nucleotides from DNA, and when such UDG-treated aDNA is shotgun
49 sequenced, the level of observed C—T transitions at CpG sites allows inferring the relative methylation level at those
50 loci (Pedersen et al., 2014).

51 Over the last decade, a growing number of studies have reported succesful retrieval of methylation patterns in past
52 organisms using this approach (Orlando et al., 2015). In 2014, Pedersen and colleagues studied 20x coverage UDG-
53 treated genomic data produced from a 4000-year-old hair sample from Greenland (Pedersen et al., 2014). These authors
s4 reported significant correlations between genome-wide methylation levels inferred from this data with methylation
55 measured in present-day human tissues, with the highest correlations found with hair. This study also found expected
s6 signals of hypomethylation in CpG islands in the paleomethylome data and further inferred the age of the ancient
57 individual using a methylation clock. The same year, studying the 52x-coverage Neanderthal and 30x-coverage
s8  Denisovan genomes derived from bone material, Gokhman and colleagues (Gokhman et al., 2014) found overall
59 low CpG methylation rates (<1.5%) as inferred from postmortem deamination; however, binning those methylation
60 scores yielded high correlations with global methylation patterns measured in modern-day human bone samples. These
61 authors further used this data to predict a number of loci, developmental genes, that might be differentially methylated
62 between archaic hominins and modern humans. In 2016, Hanghgj and colleagues published the epiPALEOMIX
63 MethylMap algorithm for estimating methylation scores in UDG-treated ancient DNA libraries with sufficient (e.g.
64 >2x) coverage (Hanghgj et al., 2016). Applying their algorithm to published ancient human genomes, these authors
65 showed tissue-based clustering among at least some of the paleomethylomes they analysed. Successful retrieval of
66 paleomethylation signatures has also been reported for other species, including barley, maize, and horses (Wagner et al.,
67 2020; Smith et al., 2014; Liu et al., 2023).

68 Therefore, despite the promising results described above, whether lifestyle-related paleomethylation signatures may
69 be retrievable from ancient bone and tooth material is unknown. It is also unclear whether paleomethylome profiles
70 inferred from data originating from different labs and different coverages could be easily comparable. This is a
71 particularly challenging task because paleomethylome profiles are inferred indirectly, depending on the presence
72 of random postmortem damage at read ends. The signal-to-noise ratio per locus is hence much lower compared to
73 information collected using bisulphite sequencing on present-day tissue samples. Therefore the technical noise caused
74 by different lab protocols could readily overshadow biological signals.

75 Here we address these issues by investigating systematic methylation differences in 34 published paleogenomes from
76 hunter-gatherer (HG) and Neolithic farmer (NF) contexts, produced by different laboratories and with a range of
77 depth-of-coverages. We further ask whether convergent HG-NF epigenetic shifts can be detected between ancient and
78 present-day populations.

7o Results

go Our dataset comprises published paleogenomes of 13 HGs (45kya-4kya) and of 21 NFs (8.5kya-5kya) from Eurasia,
g1 all shotgun-sequenced and UDG-treated, and originating from 6 different laboratories and 8 different publications
g2 (Kiling et al., 2021; Antonio et al., 2019; Fu et al., 2014; Giinther et al., 2018; Lazaridis et al., 2014; Marchi et al.,
83 2022; Sanchez-Quinto et al., 2019; Seguin-Orlando et al., 2014) (Supplementary Table 1; Supplementary Figures 1-2).
s+ As Figure 1A shows, our sample was concentrated in West and North Eurasia to limit genetic background variation
85 (Methods). Of the 34 genomes, 23 were derived from bone and 11 from tooth; 12 were female and 22 male; 4 were
g6 produced using single-stranded and the rest double-stranded library protocols. The genome coverages ranged from
g7 ¢.1x-58x (median=9x). Genomes from different publications had different coverage levels (ANOVA P=3E-14), but the
g8 subsistence type groups (HG vs NF) coverages were not different in this sample (ANOVA P=0.69).

8o To measure methylation rates, we used 13,270,411 autosomal CpG positions in the reference genome excluding variable
90 positions (Methods). In this set an average of 9,238,400 (2,849,025-12,427,015) CpG’s were covered by at least one
o1 read per genome. Filtering for a minimum depth of 4 left us with an average of 3,006,714 (10,642-11,721,229) CpG
92 positions per genome. Running epiPALEOMIX (Hanghgj er al., 2016) on this data, we computed the number of likely
93 methylated (deaminated) and possibly non-methylated (not deaminated) reads, and the resulting methylation score (MS)
94 for each CpG position per genome. The distribution of the MS values per CpG site across all 34 genomes revealed
95 average methylation rates <7% (Figure 1B). This is much lower than the average CpG methylation rates in human
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Figure 1: (A) The excavation locations of the ancient individuals included in this study. Colour coding indicates
subsistence type. (B) Left panel: Violin plots of the methylation score (MS) data related to ancient individuals included
in this study. The brown and blue points indicate the mean and the median, respectively. The x-axis shows the
log2-transformed MSs. The y-axis represents the ancient individuals. Right panel: Zoomed-in version of the left panel.
(C) The distribution of mean MS per individual on CpG islands and genomic sites representing shelves, shores and
open seas. We used the R (Wickham, 2016) functions “ggmap” and “ggplot” for plotting geographical distributions
and the CpG distributions. 3
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96 tissues (60-80% (Anastasiadi et al., 2018; D. and Meissner, 2013)), but in line with published estimates from other
97 paleogenomes (Hanghgj et al., 2016; Gokhman et al., 2014), and is caused by the indirect nature of methylation level
98 measurements. We also observed multiple-fold differences in mean MS among the 34 paleogenomes (c.1% versus
99 ¢.6%), which likely reflects technical effects rather than biological signals (Supplementary Tables 1-2).

100 Despite this variability, we found that CpG islands (CGls), which are normally hypomethylated regions of the genome,
101 show significantly lower MS scores (Wilcoxon signed rank test P<le-10; Supplemental Table 3) across these 34
102 paleogenomes, compared to CGI shores (2 kb from CGI) and CGI shelves (4 kb from CGI) and more distant "open sea"
103 areas (Figure 1C; Supplementary Figures 3-4). This indicates that the genome-wide MS values measured here have
104 some degree of biological relevance.

105 Tests for subsistence type, tissue and sex effects: few or no genes with evidence for systematic methylation
106 differences

107 We next tested for differentially methylated genes (DMGs) related to subsistence type, tissue of origin (tooth or bone),
108 and genetic sex. Before running the tests, to avoid possible biological effects being confounded by inter-genome
109 variability in average MS values (Figure 1B), we normalized the dataset by subsampling reads for every individual
110 genome randomly so that each genome gained a genome-wide mean MS of 0.02 (Methods). We performed this
111 subsampling 20 times, creating 20 normalized replicate datasets. Using each of these replicates separately, and for each
112 gene, we ran linear mixed effects models: all MS values across a gene as the response, subsistence type, tissue, and sex
113 were fixed effects, and “individual” was the random effect.

114 We thus tested 9,657-9,660 genes across the 20 normalized datasets, with a median of 261 CpG positions in each gene
115 (1-18,097). A total of 55-71 genes (0.5%-0.7% of tested genes) had ANOVA P < 0.05 after Benjamini-Hochberg (BH)
116 correction for multiple testing for only subsistence type. The number of BH-corrected significant genes for tissue type
117 and genetic sex were 19-39 (0.2%-0.4%) and 0-12 (0%-0.1%), respectively. Figure 2A shows the top genes identified
118 for each factor. We note that this approach may be overestimating effects due to some degree of pseudoreplication,
119 which we address below (Methods).

120 We further performed enrichment analysis in Gene Ontology (GO) categories to identify possible functional roles of
121 DMGs (those passing BH-corrected ANOVA P<0.05) relative to the background set of 9,657-9,660 genes across the 20
122 subsampled datasets. Although the most enriched GO terms included development- and regulation-related mechanisms
123 (results for two randomly chosen datasets are shown in Supplementary Figures 4-5), none were significantly enriched
124 after multiple testing corrections (BH-corrected Fisher’s exact test P<0.05).

125 We next repeated the previous analysis but this time using the "laboratory-of-origin" as random effect (instead of
126 "individual"). The numbers of genes with sufficient information to execute ANOVA to compute P-values for all
127 categories were 8,867-8,891 across the 20 subsampled datasets (Methods). This time, either no gene or a maximum of
128 2 genes were significant at BH-corrected P < 0.05 for any of the three fixed factors. The top genes are shown in Figure
129 2B; similar to those in Figure 2A no strong effects are visible even among these genes.

130 Instead of using the full data, summarizing MS values per gene might reduce noise and clarify the signal. For each of
131 the 9,956 genes and all 34 individuals, we calculated the average MS across all CpG positions covered with a minimum
132 of 4 reads per gene and averaged these across all 20 subsampled datasets (Methods). Using this dataset we performed a
133 multi-dimensional scaling (MDS) analysis on Euclidean distances between individuals. This revealed that the K14
134 and Motalal2 genomes, which also had the lowest coverage of CpG sites in our set, also behaved as outliers in their
135 paleomethylome profiles (Supplemental Fig. 6). Removing these two genomes, an MDS plot of distances among the
136 remaining 32 genomes revealed salient clustering by laboratory-of-origin (Figure 3).

137 We further limited the dataset to 9,273 genes observed in a minimum of 20 individuals, and ran Kruskal-Wallis with
138 laboratory-of-origin as an explanatory factor, excluding Motalal2 and K14 individuals: we found an effect across 14%
139 of genes tested (BH-corrected P <0.05). In contrast, running the same test using subsistence type, tissue, or sex as
140 explanatory factors yielded no significant genes at this cutoff. Performing this analysis by limiting the dataset to a
141 minimum of 25 or 30 individuals, using only genomes with 10x coverage, or using ANOVA produced qualitatively the
142 same outcome. Hence, the laboratory-of-origin has a dominant signal in the data, which may obscure any biological
143 effects.

144 No significant correlation with subsistence-type effects in modern-day Africa

145 Although our previous analyses did not yield any clear signs of subsistence-related differential methylation, weak
146 but authentic signals might still be detected by comparing our MS data with subsistence-related DMGs identified in
147 modern-day populations, assuming Neolithic shifts would create convergent methylation signatures. We also decided
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Figure 2: Representative genes with the most significant differential methylation results in linear mixed model analyses,
related to subsistence type, tissue and sex, from top to bottom. The x-axis represents the factors while the y-axis
represents the mean MS values per gene per individual. (A) Genes chosen using models with "individual" as random
factor. Upper panel: ICAM5 (subsistence type P < 0.01). Blue: HG; red: NF. Middle panel: ATPBI (tissue type P <
0.01). Coral: tooth; grey: bone. Lower panel: CEP135 (genetic sex P=0.02). Green: female; purple: male. (B) Genes
chosen using models with "laboratory-of-origin" as random factor. The color coding is the same as panel A. Upper
panel: TOX2 (subsistence type P=0.006). Middle panel: PCDHA?2 (tissue type P=0.03). Lower panel: RCORI (genetic
sex P=0.04).
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Figure 3: Multi-dimensional scaling (MDS) plot of 32 paleomethylome profiles. The data was created by Monte Carlo
normalizing MS values followed by summarizing per gene. Circles: HG; triangles: NF. The colouring of the points
represents the laboratory-of-origin of the samples (indicated by their city), as shown in the legend. The Motalal2 and
K14 genomes were not included in the analyses due to their outlier profiles compared to the rest likely representing
technical effects (Supplementary Figure 6), which leaves us with five laboratories.

148 to run this comparison both on our full dataset of HG-NF differences, but also separately on three paleomethylome
149 datasets from different laboratories where both subsistence types were represented (Figure 4); we considered that this
150 might help remove confounding between real signals and technical effects.

151 To this end, we utilized methylation differences documented between modern-day HGs and agriculturalists in Central
152 Africa, measured in whole blood samples using bisulphite treatment and the Illumina 450K array (Fagny et al., 2015).
153 The authors of this study reported ¢.9000 and ¢.6000 genes that included CpG sites differentially methylated between
154 independent groups of traditional HGs and agriculturalists living in Eastern Central Africa (EC Africa) or in Western
155 Central Africa (WC Africa), respectively.

156 There were 7890 genes overlapping between our paleomethylome dataset and the modern African dataset. Across these
157 genes, we calculated the correlation between methylation differences between HG-NF groups in our dataset, and the log-
158 transformed mean fold change [log(FC)] values between modern-day HGs and agriculturalists groups in the EC Africa
159 and WC Africa datasets as calculated by Fagny and colleagues (Methods). We observed a significant positive correlation
160 (Spearman’s rank correlation coefficient r=0.34, P <0.01; Figure 4) between methylation differences in modern-day
161 HGs and agriculturalists measured in EC Africa and WC Africa, in line with the original publication (Fagny et al.,
162 2015). However, no consistent correlation could be observed between HG-NF differences within our paleomethylome
163 dataset or between differences in the paleogenomes and HG-agriculturalist differences measured either in EC Africa or
164 in WC Africa. Two nominally significant correlations were in fact negative and all correlations were weak (Spearman’s
165 1<0.05) across 2507 genes (Figure 4).
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Figure 4: Pairwise comparisons of HG-agriculturalist DNA methylation differences between ancient and present-day
human datasets. The lower triangle panels show the scatterplots of HG-agriculturalist average DNA methylation
differences per gene in two datasets. The dataset and laboratory names are given on the diagonal panel. The upper
triangle panel reports Spearman rank correlation coefficient r and P-values. "ECAfrica" and "WCAfrica" represent
present-day HG-agriculturalist methylation differences (log fold-change) measured from humans in East Central
and West Central Africa, respectively. (A) "Boston", "Stanford" and "Mainz" stand for MS differences between
HG-NF groups measured using only paleogenomes produced in the respective city (Supplementary Table 1). (B) "All
Paleogenomes" stands for MS differences between HG-NF groups measured using all 32 paleogenomes (excluding
Motalal2 and K14).

166 Lack of X chromosome methylation signatures among the 34 paleogenomes

167 The X chromosome (chrX) is expected to be methylated at higher rates in females compared to males, due to female
168 X inactivation (Liu et al., 2010). Indeed, Liu and colleagues recently reported clear clustering of X chromosome
169 MS values measured in ancient female and male horses (Liu et al., 2023). To investigate such signal among the 34
170 paleogenomes, we prepared a chrX paleomethylome dataset using the same steps as before, including normalizing by
171 randomly subsampling once to 0.02x mean MS score. We tested each chrX gene for sex differences using ANOVA,
172 using either "laboratory-of-origin" or "individual" as random factors. Unexpectedly, no chrX gene was significant for
173 sex after the BH correction (P >0.05). A plot of chrX MS distributions between female and male individuals across all
174 34 paleogenomes, or only using 13 NF paleogenomes from Mainz, similarly revealed no obvious difference between
175 sexes (Figure 5). This suggests that the overall biological signal in the dataset is indeed limited.

176 Conclusion

177 Today, thousands of human paleogenomes are being produced every year and there is growing interest in using these
178 to study biological processes beyond historical and social questions (Orlando et al., 2015). This includes the study
179 of DNA methylation levels. Even though cytosine methylation appears to survive in aDNA (Pedersen et al., 2014;
180 Gokhman et al., 2014; Seguin-Orlando et al., 2015), it has been yet unclear whether the highly variable nature of
181 the published paleogenomic data could allow reproducible signals to be inferred from joint datasets from different
182 laboratories.

183 Here we investigated biological signals related to tissue source, sex, as well as subsistence type in a heterogeneous
184 paleomethylome dataset comprising genomes from 6 different laboratories. We limited the calls to CpG sites with a
185 minimum of 4 reads, normalized the data by subsampling to account for average coverage differences, and ran analyses
186 using a number of different comparative approaches. Beyond hypomethylation of CGIs, we were unable to recover any
187 biological signal that reached genome-wide statistical significance.

188 Whether universal subsistence-type effects related to hunter-gatherer versus agriculturalist lifeways might be prevalent
189 in bone methylomes is an open hypothesis. Hence, not finding a consistent signal in this dataset may be not surprising
190 and attributable to a diversity of possible effects, including the lack of a real convergent signal, or small sample sizes.
191 However, the lack of tissue (bone versus tooth) or sex signatures, including on chrX, was unexpected.
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Figure 5: Violin plots of chrX MS values divided by the mean autosomal MS for that same individual Upper Panel: chrX
MS values of all 34 paleogenomes. Lower Panel: chrX MS values from NF individuals from Marchi and colleagues
(Marchi et al., 2022) These were chosen to remove the possible influence of other factors (different laboratory and
subsistence type effects) on chrX methylation estimates.

192 Our negative results appear to contrast with the recent report by Liu and colleagues who identified systematic methylation
193 signatures of sex, age, and castration in paleogenomes (Liu e al., 2023), or those by Hanghgj and colleagues (Hanghgj
194 et al.,2016) who clustered genomes based on tissue type. However, the first study used >5x coverage genomes produced
195 in the same laboratory, and the second study used data from two laboratories and only >14x genomes.

196 In our heterogeneous dataset, the most prominent clustering was by laboratory-of-origin. Such technical effects on
197 methylation scores could be due to differences in mean depth-of-coverage, as well as variable coverage patterns across
198 paleogenomes, which, in turn, could be driven by laboratory protocol differences in aDNA isolation, library preparation,
199 or sequencing. We hypothesize that such technical variability overshadows any differential methylation signals that are
200 subtle and measured indirectly. Hence, strict control of technical effects and the use of relatively high coverage (e.g.
201 >5X) genomes appears to be a minimum requirement for future paleomethylome studies.

200 Methods

203 Genome data selection and preprocessing

204 We selected UDG/USER-treated shotgun-sequenced genomes from published genomic data including including 13 HGs
205 and 21 NFs from West and North Eurasia. Sample-related information can be found in Supplementary Table 1. We note
206 that the Siberian Bronze Age individuals were included in the HG category since these groups had an HG-like lifestyle
207 with a diet composed mainly of marine and freshwater products (Kiling et al., 2021). We chose to limit our sample to
208 West and North Eurasia in order to limit the effect of differences in population genetic background but also tried to keep
209 our sample large enough to increase power. We used the R (Wickham, 2016) function “ggmap” for plotting the chosen
210 individuals’ geographical distributions (Figure 1A).

211 All data was downloaded as BAM or FASTQ files from the European Nucleotide Archive (ENA;
212 https://www.ebi.ac.uk/ena), with reference numbers listed in Supplementary Table 1. All FASTQ and BAM files
213 were remapped on Homo sapiens genome assembly hs37d5 using bwa aln with parameters “-1 16500 -n 0.01 -0 2” (Li


https://doi.org/10.1101/2023.11.04.565610
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.04.565610; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

214 and Durbin, 2009) . We filtered out reads of size less than 35 bps, with a mapping quality (MAPQ) of less than 30, and
215 with more than 10% mismatches to the reference genome. We verified the effectiveness of the UDG/USER treatment
216 by studying the PMD profiles created using “pmdtools” (Skoglund et al., 2014) on each genome (Supplemental Figure
217 1, 2).

218 We called all CG dinucleotide autosomal positions (n= 26,752,702) from the human (hg19) reference genome using the
219 R Bioconductor package “BSgenome.Hsapiens.UCSC.hg19” (Pages, 2019) and stored these in a BED file. We then
220 filtered these by removing any positions that overlapped with SNP positions from dbSNP 142 (Sherry et al., 2001). Our
221 aim here was to avoid confounding between methylation signals and real variants at CpG positions. There remained
222 13,270,411 autosomal CpG positions in the reference genome.

223 We downloaded CpG island (CGI) positions for hg19 from the UCSC Genome Browser (Karolchik et al., 2004). We
224 termed 2 kb sequences flanking CpG islands "shores" (upstream regions "shores5" and downstream regions "shores3"),
225 2 kb sequences flanking the shores "shelves" (upstream regions "shelves5" and downstream regions "shelves3"), and
226 distal sites outside the CpG island regions as "open sea", following (Hanghgj et al., 2016). "shores3" shores5

227 Methylation score calculation

228 We chose to use the software epiPALEOMIX (Hanghgj et al., 2016) over DamMet (Hanghgj et al., 2019); the latter is
229 an alternative methylome mapping software developed by the same group but is described as requiring >20x coverage to
230  generate reliable results. Since our dataset median was much lower we decided to use epiPALEOMIX. epiPALEOMIX
231 requires UDG/USER-treated and >2x-coverage genomes (we still included three genomes <2x to increase our sample
232 size). The BAM file, the hg19 reference fasta file, the reference BED file for CpG positions and the library type of the
233 sample (single-stranded/double-stranded) were given as input. We thus constructed our sample set and epiPALEOMIX
234 input files according to these criteria.

235  We filtered the epiPALEOMIX output files for each CpG position having >4 reads to increase the precision of the MS
236 values. We further generated a file that included the information related to the chromosome number, CpG position, and
237 the MS values of each ancient individual as a column by joining all the files by CpG positions. Missing values were
238 presented by “NA”.

239 We calculated average MS values per CpG position for each individual from the epiPALEOMIX outputs. Let ny;
240 denote the number of deaminated reads and ng; denote the number of non-deaminated reads in genome 7. We then
241 calculated: M .S; = ny1,/ (ng; + n1;). We also plotted the MS values per individual (Figure 1B) using ’ggplot2’ function
242 in RWickham (2016).

243  We performed gene annotation using the UCSC Genome Browser table for the hgl9 assembly containing only
244 exons (Karolchik ez al., 2004). After that, we calculated MS at the promoter sites (4 kb long) by using 2kb upstream of
245 the first exon on the positive strand.

246 We also ran epiPALEOMIX on the X chromosomes (chrX) of the same 34 individuals. These chrX datasets were
247 prepared employing the same steps used in the autosomal datasets.

248 Monte Carlo normalization

249 Given the large differences in mean MS values among the genomes (Figure 1), we normalized our ANOVA dataset,
250 which includes all the reads corresponding to CpG positions per individual, by random subsampling the reads so that
251 every individual in the dataset has M .S = 0.02. Note that here we again only use CpG positions with >4 reads in each
252 genome. We chose 0.02 as a target as this was on the lower end of our M S distribution.

253 Let ny; denote the number of originally deaminated reads in genome 4, and let ny; denote the number of originally
254 non-deaminated reads in the same genome. We proceeded as follows: a) If genome ¢ had original mean MS < 0.02: we
255 subsampled from ng; a random subset ng;s as no;s=49n1;, so that n1;/ (ng;s + n1;) = 0.02. b) If genome ¢ had original
256  mean MS > 0.02: we subsampled from ny; a random subset n1;5 as 11;5=n;/49, so that n1;s/ (ng; + n1;s) = 0.02.

257 We ran random resampling using the function "sample" offered by R.

258 We repeated the random subsampling 20 times independently to produce 20 normalized datasets. The chrX dataset
259 was also normalized in the same manner, separately. We note that normalization is performed using all reads (on
260 autosomes, or chrX), not just ones that overlap genes. We also normalized the chrX dataset over the autosomal MSs and
261 plotted violin plots for all CpGs and also for the Neolithic individuals reported by Marchi et al. 2022 using the function
262 "vioplot" provided by base R (Figure 5).
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263 Gene methylation datasets

264 We used these 20 normalized datasets to compile methylation levels per gene, in two ways:

265 1) Full data for linear mixed models: Here we used all normalized MS values for all CpGs overlapping a gene. Each
266 individual may be represented by multiple CpG positions per gene (median 261). We had 20 parallel subsampled
267 datasets of gene MS values. Note that the numbers of genes and CpG positions in each of these 20 datasets were slightly
268 different because of random sampling of reads (e.g. genes with one CpG position might not be represented in some
269 datasets).

270 ii) Gene-averaged data: This single dataset was produced by calculating, per gene, the means of all CpG MS values and
271 averaging these across the 20 subsampled datasets. This yielded a simplified dataset with 9,956 genes x 34 genomes.

272 Statistical tests

273 We used tests from the R "stats" package. All the tests were carried out two-sided unless otherwise indicated. We
274 adjusted P-values for multiple testing using the Benjamini-Hochberg procedure using the R "p.adjust" function.

275 Linear mixed effects models

276 . We applied these to the full data (i) described above, where multiple CpG positions per gene represent an individual.
277 Since we had fixed (subsistence type, tissue, and genetic sex) and random factors (individual or laboratory-of-origin) in
278 the settings, we decided to conduct linear mixed-effects models employing the R “stats” package “aov” function (R
279 Core Team, 2020). We tested two models that differed in their random factors for each gene:

280 Model 1: deamination ~ subsistence type + tissue type + genetic sex + Error(individual)
281 Model 2: deamination ~ subsistence type + tissue type + genetic sex + Error(laboratory-of-origin)
282

283 Here the response variable "deamination" is a binary [0,1] variable that describes how many reads falling into each gene
284 are deaminated or not. Note that this approach suffers from pseudoreplication, because the observations (reads) per
285 locus are dependent when multiple reads map to the same locus. To overcome this, we also used the gene-averaged
286 data (ii) described above. This time we applied ANOVA and Kruskal-Wallis tests on MS values per gene but without
287 an individual component, using the R “stats” package “aov’” and "kruskal.test" functions, respectively (R Core Team,
288 2020). Here we have a single observation per gene, and thus the results do not suffer from pseudoreplication.

289 Multidimensional Scaling Analysis

290 We carried out multidimensional scaling (MDS) analysis on our gene-averaged dataset which included mean MSs
291 per gene averaged 20 subsampled datasets. We used the R’s "cmdscale"” function. We ran MDS both including all
292 34 individuals, or using 32 individuals after excluding extreme outliers Motalal2 and K14 (Figure 3, Supplementary
293 Figure 6).

294 Gene Ontology Enrichment

295 Gene Ontology (GO) (Consortium, 2008) enrichment analysis (Subramanian et al., 2005) was performed by comparing
296 gene sets with evidence for significant effects (for subsistence type, tissue type, or genetic sex) that had BH-adjusted
297 P-values <0.05 from the linear mixed-effects models. We used the R “topGO” (Alexa and Rahnenfuhrer, 2019) and
298 “‘org.Hs.eg.db” packages (Carlson, 2019) to collect GO information for the genes. The background gene sets included
299 all 9,657-9,660 genes across the 20 normalized datasets included in the analyses. We ran the Fisher’s exact test within
300 “topGO”, and used its "elim" algorithm for transversing the GO hierarchy (removing genes from significantly enriched
301 lower nodes) (Alexa and Rahnenfuhrer, 2019). We also filtered the output to have >5 genes per GO term by using the
302 “nodeSize” option while creating the GO data. The P-value threshold for the significance of the GO terms was chosen
303 to be 0.01. We also visualized resulting GO terms using reviGO with default parameters (Supek et al., 2011). Results
so4 for two randomly chosen datasets (out of 20 datasets) are shown in Supplementary Figures 4-5.

s05s Subsistence Type-Related Methylation Differences in Ancient Eurasian vs Modern African Datasets

so6 A recently published study uses blood samples taken from individuals to compare modern-day HG (MHG) and modern-
307 day farmer (MF) blood methylation profiles in West and East African rainforests (Fagny et al., 2015). We used the
sos results file of the study which contained the multiple-testing corrected P-values and the logarithm of methylation

10
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so9 fold-change between MFs versus MHGs (logFC). In total, the dataset contained 365,401 CpG positions overlapping
sto 19,672 genes. We used this information to estimate correlations between our results and the modern results reported by
311 the original study.

312 We tested the co-directionality between the logFC values in this dataset and NF-HG differences we calculated in
313 our methylome dataset. In other words, we compared farmer versus HG differences in MS scores dyrs, 5 across
314 overlapping genes between pairs of datasets. Given the variability of MS profiles among genomes from different
315 laboratories, we performed this comparison using sub-datasets from 3 different laboratories that contained both NF
st6 and HG individuals (Boston, Stanford, Mainz; see Supplementary Table 1), and also using 12 HG and 20 NF genomes
317 excluding Motalal2 and K14 individuals. We calculated the Spearman’s rank correlation between dys s, values
s1e from two datasets across common genes using the R "stats" package function “cor.test” (R Core Team, 2020). We
319 plotted the lowess regression lines for the main laboratory of origins using the R "graphics" package “pairs” function
320 with the "panel.cor" and "panel.smooth" parameters (Figure 4). The correlations and P-values are calculated using
321 Spearman’s rank correlation method. For plotting we used the R "graphics" package and "ggplot2" package functions
s22  (Wickham, 2016).
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