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ABSTRACT

The Neolithic transition introduced major diet and lifestyle changes to human populations across1

continents. Beyond well-documented bioarchaeological and genetic effects, whether these changes2

also had molecular-level epigenetic repercussions in past human populations has been an open3

question. In fact, methylation signatures can be inferred from UDG-treated ancient DNA through4

postmortem damage patterns, but with low signal-to-noise ratios; it is thus unclear whether published5

paleogenomes would provide the necessary resolution to discover systematic effects of lifestyle and6

diet shifts. To address this we compiled UDG-treated shotgun genomes of 13 pre-Neolithic hunter-7

gatherer (HGs) and 21 Neolithic farmer (NFs) individuals from West and North Eurasia, published by8

six different laboratories and with coverage c.1x-58x (median=9x). We used epiPALEOMIX and a9

Monte Carlo normalization scheme to estimate methylation levels per genome. Our paleomethylome10

dataset showed expected genome-wide methylation patterns such as CpG island hypomethylation.11

However, analysing the data using various approaches did not yield any systematic signals for12

subsistence type, genetic sex, or tissue effects. Comparing the HG-NF methylation differences in our13

dataset with methylation differences between hunter-gatherers vs. farmers in modern-day Central14

Africa also did not yield consistent results. Meanwhile, paleomethylome profiles did cluster strongly15

by their laboratories of origin. Our results mark the importance of minimizing technical noise for16

capturing subtle biological signals from paleomethylomes.17

Introduction18

The last 12,000 years saw diverse human populations shift from mobile hunter-gathering to Neolithic lifeways involving19

sedentism and food production. These Neolithic transitions not only brought about changes in diet but also major20

shifts in daily activities, an increase in population density, as well as institutionalized social inequalities (Bar-Yosef and21

Belfer-Cohen, 1992; Richards, 2002). Beyond their social impact, how these changes shaped human health, physiology,22

genetics and epigenetics has long been debated. Anthropological evidence points to negative outcomes related to dietary23

constraints and high population density, such as increasing prevalence of growth disruption, anaemia, or dental caries24

in archaeological human remains from Neolithic populations compared to foragers (Latham, 2013; Larsen, 2006).25

Meanwhile, population genomic studies have reported multiple loci that evolved under positive selection pressures26

related to agriculture and pastoralism. These include the FADS genes involved in polyunsaturated fatty acid metabolism27

(Buckley et al., 2017) and the LCT gene responsible for lactase persistence (Tishkoff et al., 2007). Even though28

these selection pressures appear to have gained strength multiple millennia later than the original transitions to food29

production (Burger et al., 2020; Mathieson and Mathieson, 2018), their documentation is consistent with the notion that30

food production had significant long-term impacts on human physiology.31

It might be likewise expected that Neolithic transitions shifted human epigenetic profiles. Indeed, changes in overall32

methylation levels have been found in leukocytes related to vegetable-rich versus fat- and meat-rich diets in a human33

sample from the USA (Zhang et al., 2011). Even more relevant are the results by Fagny and colleagues, who compared34

blood methylation profiles between present-day hunter-gatherers (MHGs) and farmers (MFs) living in central Africa35

(Fagny et al., 2015). These authors reported thousands of loci showing differential methylation patterns correlated with36

both historical and recent shifts in lifestyle; they further associated these changes with immune- and development-related37

pathways. Whether similar past Neolithic human populations experienced similar lifestyle- and diet-related epigenetic38

shifts has remained an open question.39

Unfortunately, most epigenetic information related to physiology is lost in ancient specimens as soft tissue and RNA are40

not preserved (see Smith et al., 2019 for an exception). However, it has been shown that cytosine methylation sites can41
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survive in ancient DNA. A number of studies have used standard protocols for methylation profiling, such as bisulphite42

sequencing and immunoprecipitation, on ancient DNA (Smith et al., 2015; Seguin-Orlando et al., 2015) (Llamas et al.,43

2012). Meanwhile, methylation information can also be indirectly inferred from sequencing data from ancient DNA44

molecules treated with the UDG (uracil-DNA glycosylase) enzyme. This is based on the knowledge that after death,45

aDNA molecules undergo widespread cytosine deamination at their broken ends, resulting in C→U (uracil) transitions46

if the cytosine is unmethylated, and in C→T (thymine) transitions if the cytosine is methylated (Briggs et al., 2007).47

Treatment of aDNA with UDG eliminates uracil nucleotides from DNA, and when such UDG-treated aDNA is shotgun48

sequenced, the level of observed C→T transitions at CpG sites allows inferring the relative methylation level at those49

loci (Pedersen et al., 2014).50

Over the last decade, a growing number of studies have reported succesful retrieval of methylation patterns in past51

organisms using this approach (Orlando et al., 2015). In 2014, Pedersen and colleagues studied 20x coverage UDG-52

treated genomic data produced from a 4000-year-old hair sample from Greenland (Pedersen et al., 2014). These authors53

reported significant correlations between genome-wide methylation levels inferred from this data with methylation54

measured in present-day human tissues, with the highest correlations found with hair. This study also found expected55

signals of hypomethylation in CpG islands in the paleomethylome data and further inferred the age of the ancient56

individual using a methylation clock. The same year, studying the 52x-coverage Neanderthal and 30x-coverage57

Denisovan genomes derived from bone material, Gokhman and colleagues (Gokhman et al., 2014) found overall58

low CpG methylation rates (<1.5%) as inferred from postmortem deamination; however, binning those methylation59

scores yielded high correlations with global methylation patterns measured in modern-day human bone samples. These60

authors further used this data to predict a number of loci, developmental genes, that might be differentially methylated61

between archaic hominins and modern humans. In 2016, Hanghøj and colleagues published the epiPALEOMIX62

MethylMap algorithm for estimating methylation scores in UDG-treated ancient DNA libraries with sufficient (e.g.63

>2x) coverage (Hanghøj et al., 2016). Applying their algorithm to published ancient human genomes, these authors64

showed tissue-based clustering among at least some of the paleomethylomes they analysed. Successful retrieval of65

paleomethylation signatures has also been reported for other species, including barley, maize, and horses (Wagner et al.,66

2020; Smith et al., 2014; Liu et al., 2023).67

Therefore, despite the promising results described above, whether lifestyle-related paleomethylation signatures may68

be retrievable from ancient bone and tooth material is unknown. It is also unclear whether paleomethylome profiles69

inferred from data originating from different labs and different coverages could be easily comparable. This is a70

particularly challenging task because paleomethylome profiles are inferred indirectly, depending on the presence71

of random postmortem damage at read ends. The signal-to-noise ratio per locus is hence much lower compared to72

information collected using bisulphite sequencing on present-day tissue samples. Therefore the technical noise caused73

by different lab protocols could readily overshadow biological signals.74

Here we address these issues by investigating systematic methylation differences in 34 published paleogenomes from75

hunter-gatherer (HG) and Neolithic farmer (NF) contexts, produced by different laboratories and with a range of76

depth-of-coverages. We further ask whether convergent HG-NF epigenetic shifts can be detected between ancient and77

present-day populations.78

Results79

Our dataset comprises published paleogenomes of 13 HGs (45kya-4kya) and of 21 NFs (8.5kya-5kya) from Eurasia,80

all shotgun-sequenced and UDG-treated, and originating from 6 different laboratories and 8 different publications81

(Kılınç et al., 2021; Antonio et al., 2019; Fu et al., 2014; Günther et al., 2018; Lazaridis et al., 2014; Marchi et al.,82

2022; Sánchez-Quinto et al., 2019; Seguin-Orlando et al., 2014) (Supplementary Table 1; Supplementary Figures 1-2).83

As Figure 1A shows, our sample was concentrated in West and North Eurasia to limit genetic background variation84

(Methods). Of the 34 genomes, 23 were derived from bone and 11 from tooth; 12 were female and 22 male; 4 were85

produced using single-stranded and the rest double-stranded library protocols. The genome coverages ranged from86

c.1x-58x (median=9x). Genomes from different publications had different coverage levels (ANOVA P=3E-14), but the87

subsistence type groups (HG vs NF) coverages were not different in this sample (ANOVA P=0.69).88

To measure methylation rates, we used 13,270,411 autosomal CpG positions in the reference genome excluding variable89

positions (Methods). In this set an average of 9,238,400 (2,849,025-12,427,015) CpG’s were covered by at least one90

read per genome. Filtering for a minimum depth of 4 left us with an average of 3,006,714 (10,642-11,721,229) CpG91

positions per genome. Running epiPALEOMIX (Hanghøj et al., 2016) on this data, we computed the number of likely92

methylated (deaminated) and possibly non-methylated (not deaminated) reads, and the resulting methylation score (MS)93

for each CpG position per genome. The distribution of the MS values per CpG site across all 34 genomes revealed94

average methylation rates <7% (Figure 1B). This is much lower than the average CpG methylation rates in human95
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Figure 1: (A) The excavation locations of the ancient individuals included in this study. Colour coding indicates
subsistence type. (B) Left panel: Violin plots of the methylation score (MS) data related to ancient individuals included
in this study. The brown and blue points indicate the mean and the median, respectively. The x-axis shows the
log2-transformed MSs. The y-axis represents the ancient individuals. Right panel: Zoomed-in version of the left panel.
(C) The distribution of mean MS per individual on CpG islands and genomic sites representing shelves, shores and
open seas. We used the R (Wickham, 2016) functions “ggmap” and “ggplot” for plotting geographical distributions
and the CpG distributions. 3
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tissues (60-80% (Anastasiadi et al., 2018; D. and Meissner, 2013)), but in line with published estimates from other96

paleogenomes (Hanghøj et al., 2016; Gokhman et al., 2014), and is caused by the indirect nature of methylation level97

measurements. We also observed multiple-fold differences in mean MS among the 34 paleogenomes (c.1% versus98

c.6%), which likely reflects technical effects rather than biological signals (Supplementary Tables 1-2).99

Despite this variability, we found that CpG islands (CGIs), which are normally hypomethylated regions of the genome,100

show significantly lower MS scores (Wilcoxon signed rank test P<1e-10; Supplemental Table 3) across these 34101

paleogenomes, compared to CGI shores (2 kb from CGI) and CGI shelves (4 kb from CGI) and more distant "open sea"102

areas (Figure 1C; Supplementary Figures 3-4). This indicates that the genome-wide MS values measured here have103

some degree of biological relevance.104

Tests for subsistence type, tissue and sex effects: few or no genes with evidence for systematic methylation105

differences106

We next tested for differentially methylated genes (DMGs) related to subsistence type, tissue of origin (tooth or bone),107

and genetic sex. Before running the tests, to avoid possible biological effects being confounded by inter-genome108

variability in average MS values (Figure 1B), we normalized the dataset by subsampling reads for every individual109

genome randomly so that each genome gained a genome-wide mean MS of 0.02 (Methods). We performed this110

subsampling 20 times, creating 20 normalized replicate datasets. Using each of these replicates separately, and for each111

gene, we ran linear mixed effects models: all MS values across a gene as the response, subsistence type, tissue, and sex112

were fixed effects, and “individual” was the random effect.113

We thus tested 9,657-9,660 genes across the 20 normalized datasets, with a median of 261 CpG positions in each gene114

(1-18,097). A total of 55-71 genes (0.5%-0.7% of tested genes) had ANOVA P < 0.05 after Benjamini-Hochberg (BH)115

correction for multiple testing for only subsistence type. The number of BH-corrected significant genes for tissue type116

and genetic sex were 19-39 (0.2%-0.4%) and 0-12 (0%-0.1%), respectively. Figure 2A shows the top genes identified117

for each factor. We note that this approach may be overestimating effects due to some degree of pseudoreplication,118

which we address below (Methods).119

We further performed enrichment analysis in Gene Ontology (GO) categories to identify possible functional roles of120

DMGs (those passing BH-corrected ANOVA P<0.05) relative to the background set of 9,657-9,660 genes across the 20121

subsampled datasets. Although the most enriched GO terms included development- and regulation-related mechanisms122

(results for two randomly chosen datasets are shown in Supplementary Figures 4-5), none were significantly enriched123

after multiple testing corrections (BH-corrected Fisher’s exact test P<0.05).124

We next repeated the previous analysis but this time using the "laboratory-of-origin" as random effect (instead of125

"individual"). The numbers of genes with sufficient information to execute ANOVA to compute P-values for all126

categories were 8,867-8,891 across the 20 subsampled datasets (Methods). This time, either no gene or a maximum of127

2 genes were significant at BH-corrected P < 0.05 for any of the three fixed factors. The top genes are shown in Figure128

2B; similar to those in Figure 2A no strong effects are visible even among these genes.129

Instead of using the full data, summarizing MS values per gene might reduce noise and clarify the signal. For each of130

the 9,956 genes and all 34 individuals, we calculated the average MS across all CpG positions covered with a minimum131

of 4 reads per gene and averaged these across all 20 subsampled datasets (Methods). Using this dataset we performed a132

multi-dimensional scaling (MDS) analysis on Euclidean distances between individuals. This revealed that the K14133

and Motala12 genomes, which also had the lowest coverage of CpG sites in our set, also behaved as outliers in their134

paleomethylome profiles (Supplemental Fig. 6). Removing these two genomes, an MDS plot of distances among the135

remaining 32 genomes revealed salient clustering by laboratory-of-origin (Figure 3).136

We further limited the dataset to 9,273 genes observed in a minimum of 20 individuals, and ran Kruskal-Wallis with137

laboratory-of-origin as an explanatory factor, excluding Motala12 and K14 individuals: we found an effect across 14%138

of genes tested (BH-corrected P <0.05). In contrast, running the same test using subsistence type, tissue, or sex as139

explanatory factors yielded no significant genes at this cutoff. Performing this analysis by limiting the dataset to a140

minimum of 25 or 30 individuals, using only genomes with 10x coverage, or using ANOVA produced qualitatively the141

same outcome. Hence, the laboratory-of-origin has a dominant signal in the data, which may obscure any biological142

effects.143

No significant correlation with subsistence-type effects in modern-day Africa144

Although our previous analyses did not yield any clear signs of subsistence-related differential methylation, weak145

but authentic signals might still be detected by comparing our MS data with subsistence-related DMGs identified in146

modern-day populations, assuming Neolithic shifts would create convergent methylation signatures. We also decided147
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Figure 2: Representative genes with the most significant differential methylation results in linear mixed model analyses,
related to subsistence type, tissue and sex, from top to bottom. The x-axis represents the factors while the y-axis
represents the mean MS values per gene per individual. (A) Genes chosen using models with "individual" as random
factor. Upper panel: ICAM5 (subsistence type P < 0.01). Blue: HG; red: NF. Middle panel: ATPB1 (tissue type P <
0.01). Coral: tooth; grey: bone. Lower panel: CEP135 (genetic sex P=0.02). Green: female; purple: male. (B) Genes
chosen using models with "laboratory-of-origin" as random factor. The color coding is the same as panel A. Upper
panel: TOX2 (subsistence type P=0.006). Middle panel: PCDHA2 (tissue type P=0.03). Lower panel: RCOR1 (genetic
sex P=0.04).
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Figure 3: Multi-dimensional scaling (MDS) plot of 32 paleomethylome profiles. The data was created by Monte Carlo
normalizing MS values followed by summarizing per gene. Circles: HG; triangles: NF. The colouring of the points
represents the laboratory-of-origin of the samples (indicated by their city), as shown in the legend. The Motala12 and
K14 genomes were not included in the analyses due to their outlier profiles compared to the rest likely representing
technical effects (Supplementary Figure 6), which leaves us with five laboratories.

to run this comparison both on our full dataset of HG-NF differences, but also separately on three paleomethylome148

datasets from different laboratories where both subsistence types were represented (Figure 4); we considered that this149

might help remove confounding between real signals and technical effects.150

To this end, we utilized methylation differences documented between modern-day HGs and agriculturalists in Central151

Africa, measured in whole blood samples using bisulphite treatment and the Illumina 450K array (Fagny et al., 2015).152

The authors of this study reported c.9000 and c.6000 genes that included CpG sites differentially methylated between153

independent groups of traditional HGs and agriculturalists living in Eastern Central Africa (EC Africa) or in Western154

Central Africa (WC Africa), respectively.155

There were 7890 genes overlapping between our paleomethylome dataset and the modern African dataset. Across these156

genes, we calculated the correlation between methylation differences between HG-NF groups in our dataset, and the log-157

transformed mean fold change [log(FC)] values between modern-day HGs and agriculturalists groups in the EC Africa158

and WC Africa datasets as calculated by Fagny and colleagues (Methods). We observed a significant positive correlation159

(Spearman’s rank correlation coefficient r=0.34, P <0.01; Figure 4) between methylation differences in modern-day160

HGs and agriculturalists measured in EC Africa and WC Africa, in line with the original publication (Fagny et al.,161

2015). However, no consistent correlation could be observed between HG-NF differences within our paleomethylome162

dataset or between differences in the paleogenomes and HG-agriculturalist differences measured either in EC Africa or163

in WC Africa. Two nominally significant correlations were in fact negative and all correlations were weak (Spearman’s164

r<0.05) across 2507 genes (Figure 4).165
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Figure 4: Pairwise comparisons of HG-agriculturalist DNA methylation differences between ancient and present-day
human datasets. The lower triangle panels show the scatterplots of HG-agriculturalist average DNA methylation
differences per gene in two datasets. The dataset and laboratory names are given on the diagonal panel. The upper
triangle panel reports Spearman rank correlation coefficient r and P-values. "ECAfrica" and "WCAfrica" represent
present-day HG-agriculturalist methylation differences (log fold-change) measured from humans in East Central
and West Central Africa, respectively. (A) "Boston", "Stanford" and "Mainz" stand for MS differences between
HG-NF groups measured using only paleogenomes produced in the respective city (Supplementary Table 1). (B) "All
Paleogenomes" stands for MS differences between HG-NF groups measured using all 32 paleogenomes (excluding
Motala12 and K14).

Lack of X chromosome methylation signatures among the 34 paleogenomes166

The X chromosome (chrX) is expected to be methylated at higher rates in females compared to males, due to female167

X inactivation (Liu et al., 2010). Indeed, Liu and colleagues recently reported clear clustering of X chromosome168

MS values measured in ancient female and male horses (Liu et al., 2023). To investigate such signal among the 34169

paleogenomes, we prepared a chrX paleomethylome dataset using the same steps as before, including normalizing by170

randomly subsampling once to 0.02x mean MS score. We tested each chrX gene for sex differences using ANOVA,171

using either "laboratory-of-origin" or "individual" as random factors. Unexpectedly, no chrX gene was significant for172

sex after the BH correction (P >0.05). A plot of chrX MS distributions between female and male individuals across all173

34 paleogenomes, or only using 13 NF paleogenomes from Mainz, similarly revealed no obvious difference between174

sexes (Figure 5). This suggests that the overall biological signal in the dataset is indeed limited.175

Conclusion176

Today, thousands of human paleogenomes are being produced every year and there is growing interest in using these177

to study biological processes beyond historical and social questions (Orlando et al., 2015). This includes the study178

of DNA methylation levels. Even though cytosine methylation appears to survive in aDNA (Pedersen et al., 2014;179

Gokhman et al., 2014; Seguin-Orlando et al., 2015), it has been yet unclear whether the highly variable nature of180

the published paleogenomic data could allow reproducible signals to be inferred from joint datasets from different181

laboratories.182

Here we investigated biological signals related to tissue source, sex, as well as subsistence type in a heterogeneous183

paleomethylome dataset comprising genomes from 6 different laboratories. We limited the calls to CpG sites with a184

minimum of 4 reads, normalized the data by subsampling to account for average coverage differences, and ran analyses185

using a number of different comparative approaches. Beyond hypomethylation of CGIs, we were unable to recover any186

biological signal that reached genome-wide statistical significance.187

Whether universal subsistence-type effects related to hunter-gatherer versus agriculturalist lifeways might be prevalent188

in bone methylomes is an open hypothesis. Hence, not finding a consistent signal in this dataset may be not surprising189

and attributable to a diversity of possible effects, including the lack of a real convergent signal, or small sample sizes.190

However, the lack of tissue (bone versus tooth) or sex signatures, including on chrX, was unexpected.191
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Figure 5: Violin plots of chrX MS values divided by the mean autosomal MS for that same individual Upper Panel: chrX
MS values of all 34 paleogenomes. Lower Panel: chrX MS values from NF individuals from Marchi and colleagues
(Marchi et al., 2022) These were chosen to remove the possible influence of other factors (different laboratory and
subsistence type effects) on chrX methylation estimates.

Our negative results appear to contrast with the recent report by Liu and colleagues who identified systematic methylation192

signatures of sex, age, and castration in paleogenomes (Liu et al., 2023), or those by Hanghøj and colleagues (Hanghøj193

et al., 2016) who clustered genomes based on tissue type. However, the first study used >5x coverage genomes produced194

in the same laboratory, and the second study used data from two laboratories and only >14x genomes.195

In our heterogeneous dataset, the most prominent clustering was by laboratory-of-origin. Such technical effects on196

methylation scores could be due to differences in mean depth-of-coverage, as well as variable coverage patterns across197

paleogenomes, which, in turn, could be driven by laboratory protocol differences in aDNA isolation, library preparation,198

or sequencing. We hypothesize that such technical variability overshadows any differential methylation signals that are199

subtle and measured indirectly. Hence, strict control of technical effects and the use of relatively high coverage (e.g.200

>5x) genomes appears to be a minimum requirement for future paleomethylome studies.201

Methods202

Genome data selection and preprocessing203

We selected UDG/USER-treated shotgun-sequenced genomes from published genomic data including including 13 HGs204

and 21 NFs from West and North Eurasia. Sample-related information can be found in Supplementary Table 1. We note205

that the Siberian Bronze Age individuals were included in the HG category since these groups had an HG-like lifestyle206

with a diet composed mainly of marine and freshwater products (Kılınç et al., 2021). We chose to limit our sample to207

West and North Eurasia in order to limit the effect of differences in population genetic background but also tried to keep208

our sample large enough to increase power. We used the R (Wickham, 2016) function “ggmap” for plotting the chosen209

individuals’ geographical distributions (Figure 1A).210

All data was downloaded as BAM or FASTQ files from the European Nucleotide Archive (ENA;211

https://www.ebi.ac.uk/ena), with reference numbers listed in Supplementary Table 1. All FASTQ and BAM files212

were remapped on Homo sapiens genome assembly hs37d5 using bwa aln with parameters “-l 16500 -n 0.01 -o 2” (Li213
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and Durbin, 2009) . We filtered out reads of size less than 35 bps, with a mapping quality (MAPQ) of less than 30, and214

with more than 10% mismatches to the reference genome. We verified the effectiveness of the UDG/USER treatment215

by studying the PMD profiles created using “pmdtools” (Skoglund et al., 2014) on each genome (Supplemental Figure216

1, 2).217

We called all CG dinucleotide autosomal positions (n= 26,752,702) from the human (hg19) reference genome using the218

R Bioconductor package “BSgenome.Hsapiens.UCSC.hg19” (Pagès, 2019) and stored these in a BED file. We then219

filtered these by removing any positions that overlapped with SNP positions from dbSNP 142 (Sherry et al., 2001). Our220

aim here was to avoid confounding between methylation signals and real variants at CpG positions. There remained221

13,270,411 autosomal CpG positions in the reference genome.222

We downloaded CpG island (CGI) positions for hg19 from the UCSC Genome Browser (Karolchik et al., 2004). We223

termed 2 kb sequences flanking CpG islands "shores" (upstream regions "shores5" and downstream regions "shores3"),224

2 kb sequences flanking the shores "shelves" (upstream regions "shelves5" and downstream regions "shelves3"), and225

distal sites outside the CpG island regions as "open sea", following (Hanghøj et al., 2016). "shores3" shores5226

Methylation score calculation227

We chose to use the software epiPALEOMIX (Hanghøj et al., 2016) over DamMet (Hanghøj et al., 2019); the latter is228

an alternative methylome mapping software developed by the same group but is described as requiring ≥20x coverage to229

generate reliable results. Since our dataset median was much lower we decided to use epiPALEOMIX. epiPALEOMIX230

requires UDG/USER-treated and ≥2x-coverage genomes (we still included three genomes <2x to increase our sample231

size). The BAM file, the hg19 reference fasta file, the reference BED file for CpG positions and the library type of the232

sample (single-stranded/double-stranded) were given as input. We thus constructed our sample set and epiPALEOMIX233

input files according to these criteria.234

We filtered the epiPALEOMIX output files for each CpG position having ≥4 reads to increase the precision of the MS235

values. We further generated a file that included the information related to the chromosome number, CpG position, and236

the MS values of each ancient individual as a column by joining all the files by CpG positions. Missing values were237

presented by “NA”.238

We calculated average MS values per CpG position for each individual from the epiPALEOMIX outputs. Let n1i239

denote the number of deaminated reads and n0i denote the number of non-deaminated reads in genome i. We then240

calculated: M̄Si = n1i/ (n0i + n1i). We also plotted the MS values per individual (Figure 1B) using ’ggplot2’ function241

in RWickham (2016).242

We performed gene annotation using the UCSC Genome Browser table for the hg19 assembly containing only243

exons (Karolchik et al., 2004). After that, we calculated MS at the promoter sites (4 kb long) by using 2kb upstream of244

the first exon on the positive strand.245

We also ran epiPALEOMIX on the X chromosomes (chrX) of the same 34 individuals. These chrX datasets were246

prepared employing the same steps used in the autosomal datasets.247

Monte Carlo normalization248

Given the large differences in mean MS values among the genomes (Figure 1), we normalized our ANOVA dataset,249

which includes all the reads corresponding to CpG positions per individual, by random subsampling the reads so that250

every individual in the dataset has M̄S = 0.02. Note that here we again only use CpG positions with ≥4 reads in each251

genome. We chose 0.02 as a target as this was on the lower end of our M̄S distribution.252

Let n1i denote the number of originally deaminated reads in genome i, and let n0i denote the number of originally253

non-deaminated reads in the same genome. We proceeded as follows: a) If genome i had original mean MS < 0.02: we254

subsampled from n0i a random subset n0is as n0is=49n1i, so that n1i/ (n0is + n1i) = 0.02. b) If genome i had original255

mean MS > 0.02: we subsampled from n1i a random subset n1is as n1is=n0i/49, so that n1is/ (n0i + n1is) = 0.02.256

We ran random resampling using the function "sample" offered by R.257

We repeated the random subsampling 20 times independently to produce 20 normalized datasets. The chrX dataset258

was also normalized in the same manner, separately. We note that normalization is performed using all reads (on259

autosomes, or chrX), not just ones that overlap genes. We also normalized the chrX dataset over the autosomal MSs and260

plotted violin plots for all CpGs and also for the Neolithic individuals reported by Marchi et al. 2022 using the function261

"vioplot" provided by base R (Figure 5).262
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Gene methylation datasets263

We used these 20 normalized datasets to compile methylation levels per gene, in two ways:264

i) Full data for linear mixed models: Here we used all normalized MS values for all CpGs overlapping a gene. Each265

individual may be represented by multiple CpG positions per gene (median 261). We had 20 parallel subsampled266

datasets of gene MS values. Note that the numbers of genes and CpG positions in each of these 20 datasets were slightly267

different because of random sampling of reads (e.g. genes with one CpG position might not be represented in some268

datasets).269

ii) Gene-averaged data: This single dataset was produced by calculating, per gene, the means of all CpG MS values and270

averaging these across the 20 subsampled datasets. This yielded a simplified dataset with 9,956 genes x 34 genomes.271

Statistical tests272

We used tests from the R "stats" package. All the tests were carried out two-sided unless otherwise indicated. We273

adjusted P-values for multiple testing using the Benjamini-Hochberg procedure using the R "p.adjust" function.274

Linear mixed effects models275

. We applied these to the full data (i) described above, where multiple CpG positions per gene represent an individual.276

Since we had fixed (subsistence type, tissue, and genetic sex) and random factors (individual or laboratory-of-origin) in277

the settings, we decided to conduct linear mixed-effects models employing the R “stats” package “aov” function (R278

Core Team, 2020). We tested two models that differed in their random factors for each gene:279

Model 1: deamination ∼ subsistence type + tissue type + genetic sex + Error(individual)280

Model 2: deamination ∼ subsistence type + tissue type + genetic sex + Error(laboratory-of-origin)281

282

Here the response variable "deamination" is a binary [0,1] variable that describes how many reads falling into each gene283

are deaminated or not. Note that this approach suffers from pseudoreplication, because the observations (reads) per284

locus are dependent when multiple reads map to the same locus. To overcome this, we also used the gene-averaged285

data (ii) described above. This time we applied ANOVA and Kruskal-Wallis tests on MS values per gene but without286

an individual component, using the R “stats” package “aov” and "kruskal.test" functions, respectively (R Core Team,287

2020). Here we have a single observation per gene, and thus the results do not suffer from pseudoreplication.288

Multidimensional Scaling Analysis289

We carried out multidimensional scaling (MDS) analysis on our gene-averaged dataset which included mean MSs290

per gene averaged 20 subsampled datasets. We used the R’s "cmdscale" function. We ran MDS both including all291

34 individuals, or using 32 individuals after excluding extreme outliers Motala12 and K14 (Figure 3, Supplementary292

Figure 6).293

Gene Ontology Enrichment294

Gene Ontology (GO) (Consortium, 2008) enrichment analysis (Subramanian et al., 2005) was performed by comparing295

gene sets with evidence for significant effects (for subsistence type, tissue type, or genetic sex) that had BH-adjusted296

P-values <0.05 from the linear mixed-effects models. We used the R “topGO” (Alexa and Rahnenfuhrer, 2019) and297

“org.Hs.eg.db” packages (Carlson, 2019) to collect GO information for the genes. The background gene sets included298

all 9,657-9,660 genes across the 20 normalized datasets included in the analyses. We ran the Fisher’s exact test within299

“topGO”, and used its "elim" algorithm for transversing the GO hierarchy (removing genes from significantly enriched300

lower nodes) (Alexa and Rahnenfuhrer, 2019). We also filtered the output to have ≥5 genes per GO term by using the301

“nodeSize” option while creating the GO data. The P-value threshold for the significance of the GO terms was chosen302

to be 0.01. We also visualized resulting GO terms using reviGO with default parameters (Supek et al., 2011). Results303

for two randomly chosen datasets (out of 20 datasets) are shown in Supplementary Figures 4-5.304

Subsistence Type-Related Methylation Differences in Ancient Eurasian vs Modern African Datasets305

A recently published study uses blood samples taken from individuals to compare modern-day HG (MHG) and modern-306

day farmer (MF) blood methylation profiles in West and East African rainforests (Fagny et al., 2015). We used the307

results file of the study which contained the multiple-testing corrected P-values and the logarithm of methylation308
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fold-change between MFs versus MHGs (logFC). In total, the dataset contained 365,401 CpG positions overlapping309

19,672 genes. We used this information to estimate correlations between our results and the modern results reported by310

the original study.311

We tested the co-directionality between the logFC values in this dataset and NF-HG differences we calculated in312

our methylome dataset. In other words, we compared farmer versus HG differences in MS scores δMSF−HG
across313

overlapping genes between pairs of datasets. Given the variability of MS profiles among genomes from different314

laboratories, we performed this comparison using sub-datasets from 3 different laboratories that contained both NF315

and HG individuals (Boston, Stanford, Mainz; see Supplementary Table 1), and also using 12 HG and 20 NF genomes316

excluding Motala12 and K14 individuals. We calculated the Spearman’s rank correlation between δMSF−HG
values317

from two datasets across common genes using the R "stats" package function “cor.test” (R Core Team, 2020). We318

plotted the lowess regression lines for the main laboratory of origins using the R "graphics" package “pairs” function319

with the "panel.cor" and "panel.smooth" parameters (Figure 4). The correlations and P-values are calculated using320

Spearman’s rank correlation method. For plotting we used the R "graphics" package and "ggplot2" package functions321

(Wickham, 2016).322
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