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Abstract 

Virtual screening (VS) has been incorporated into the paradigm of modern drug 

discovery. This field is now undergoing a new wave of revolution driven by artificial 

intelligence and more specifically, machine learning (ML). In terms of those out-of-the-

box datasets for model training or benchmarking, their data volume and applicability 

domain are limited. They are suffering from the biases constantly reported in the ML 

application. To address these issues, we present a novel benchmark named MUBDsyn. 

The utilization of synthetic decoys (i.e., presumed inactives) is the main feature of 

MUBDsyn, where deep reinforcement learning was leveraged for bias control during 

decoy generation. Then, we carried out extensive validations on this new benchmark. 

First, we confirmed that MUBDsyn was superior to the classical benchmarks in control 

of domain bias, artificial enrichment bias and analogue bias. Moreover, we found that 

the assessment of ML models based on MUBDsyn was less biased as revealed by the 

analysis of asymmetric validation embedding bias. In addition, MUBDsyn showed better 

setting of benchmarking challenge for deep learning models compared with NRLiSt-

BDB. Overall, we have proven that MUBDsyn is the close-to-ideal benchmark for VS. 

The computational tool is publicly available for the easy extension of MUBDsyn. 

KEY WORDS: Virtual screening; Benchmarking datasets; Decoy; Drug design; 

Machine learning; Reinforcement learning; Generative model; Data augmentation 
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1. Introduction 

Virtual screening (VS) is born to simulate the wet-lab high-throughput screening 

campaigns at significantly low expense of time and money1. The target-based method 

is one of the most promising strategies as it has been validated by a large number of 

prospective applications2. In contrast to the rapid development of new techniques and 

models, there is great deficiency in the target-specific data committed to training and 

assessment. For one thing, the data size and diversity of active compounds are 

extremely limited when novel targets are concerned, resulting in the restricted 

applicability domain (AD) of ligand-based methods3. For another, adequate data for 

inactive compounds is essential for the simulation of real-world screening scenario. 

However, the target-specific inactives that have been experimentally validated remain 

scarce as most of the screening campaigns do not make all negative data accessible4. 

This situation promotes the employment of decoys, i.e., presumed inactives, in the 

construction of benchmarking datasets for the simulation.  

Since Bissantz et al. retrospectively compared the performance of different 

docking approaches on a primitive database in 20005, numerous benchmarking datasets 

have been published with their construction methodologies extensively studied3. For 

instance, Directory of Useful Decoys (DUD), followed by DUD-Enhanced (DUD-E) 

has become the golden standard for molecular docking assessment6,7. Benchmarking 

biases including artificial enrichment bias, false negative bias and analogue bias were 

mitigated by the chemical library-based screening strategies in structure-based virtual 
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screening (SBVS). Solid works regarding bespoke benchmarking datasets for ligand-

based virtual screening (LBVS) were also reported, where Maximum Unbiased 

Validation (MUV) datasets pioneered this field8. MUV focuses on optimal embedding 

of actives in the descriptor-defined chemical space where decoys are uniformly spread. 

Consequently, two-dimensional (2D) topological bias which causes overestimation of 

LBVS could be significantly reduced. Inspired by the spatial statistics used in MUV, a 

series of target-specific benchmarking datasets named Maximal Unbiased 

Benchmarking Datasets (MUBD)9 have been published in the last decade. They are 

applicable to both LBVS and SBVS methods. Recently, the computational tool named 

MUBD-DecoyMaker 2.0 was released with a Python-based graphical user interface, 

which is publicly accessible by the scientific community10. By carefully dealing with 

the inductive bias in the strategy for decoy production11, the construction of 

benchmarking datasets for classical VS methods becomes not that challenging. 

However, the simple extrapolation of ADs of these classical datasets to the recent VS 

techniques represented by machine learning (ML) will inevitably introduce new 

biases12. Wallach et al. demonstrated that the data clumping in both active set and 

inactive set causes huge redundancy in the random split of benchmarking datasets for 

training and validation, thus proposing the asymmetric validation embedding (AVE) for 

bias detection13. Sieg et al. discovered that ML approaches are prone to the superficial 

features of molecular data14. This situation was also noted by Chen et al.15, who named 

it as “decoy bias”. It is attributed to the obvious distinctions in topological structures 
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between actives and decoys. As a result, the discrimination can be an easy task for deep 

neural networks. In summary, these benchmarking biases can make ML approaches 

overestimated in performance assessment but poor in generalization on unseen data. 

The decoys of most VS benchmarking datasets are retrieved from chemical 

libraries including ZINC16, ChEMBL17 and PubChem18. Despite the rapid growth in 

their data size, these real libraries can never cover entire chemical space where drug-

like molecules alone are estimated to exceed 106019, thus making the chemical library-

based decoy production strategy hard to make decoys that ideally meet the predefined 

criteria. The situation is even worse for MUV or the recently published LIT-PCBA20 

that rigorously requires real compounds with determined bioactivity for a specific target. 

In fact, this fundamental issue has been recognized by the community. Wallach et al., 

as the pioneers, computationally generated virtual decoys which constituted a DUD-

strategy based benchmarking dataset called Virtual Decoys Set (VDS)21,22. The virtual 

decoys synthesized from chemical building blocks show better physicochemical 

matching and remain topologically dissimilar to ligands. In recent years, the 

exploitation of synthetic data gains popularity with the emerging of deep generative 

models23. Their applications have rapidly expanded from computer vision to 

biomedicine, particularly de novo drug design24, which is in turn leveraged by the VS 

benchmarking community. Imrie et al. innovatively introduced graph-based variational 

autoencoder to the in silico generation of property-matched decoys25. While DeepCoy 

is capable of generating large-scale decoys with less artificial enrichment bias, its model 
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architecture determines that the quality of virtual decoys highly depends on the pairs of 

molecules for model training. Fortunately, such an issue was circumvented by the 

progress of constrained molecular generation. In a very recent study, Zhang et al. was 

able to expand the chemical space of target-specific decoy molecules based on a 

conditional recurrent neural network26. With the feature named conformation decoys 

being integrated, they revealed that the ML-based scoring functions trained on the 

datasets built by TocoDecoy truly learned implicit physics of protein-ligand interactions. 

To the best of our knowledge, the previous studies have not made the most of 

virtual decoys to make ideal benchmarking datasets. Albeit the remarkable progress of 

methodologies in building generative models for decoys production, the criteria to 

make unbiased decoys remain the same as the standard of DUD-E, which are 

physicochemically similar but topologically dissimilar to the ligands. Due to the 

significant progress towards the multi-objective optimization of molecular 

properties27,28, it is now feasible to generate decoys with additional molecular features. 

Herein, we utilized deep reinforcement learning (RL) to generate maximal unbiased 

datasets for VS benchmarking and/or model training. First and foremost, the 

multiparameter objective (MPO) scoring function of deep generative model named 

REINVENT29 was highly customized to incorporate all the debiasing algorithms from 

MUBD. Then, the candidate decoys generated by REINVENT were further curated to 

balance the MPO score and structural diversity. After the development of this new 

computational tool, we built a series of datasets named MUBDsyn and detected their 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565594
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

benchmarking biases. We also conducted comparative study to evaluate their feasibility 

as a benchmark to assess various VS methods such as similarity search, molecular 

docking and ML-based ones. Particularly, both classical ML models and emerging deep 

learning models were included, with AVE biases computed to detect the data clumping. 

Figure 1 The construction and validation of MUBDsyn. (A) The pipeline for making MUBDsyn; (B) 

The MUBDsyn validation consists of “Internal validation” with well-known metrics and “External 

validation” with classical VS (similarity search and molecular docking) and ML-based VS. 

methods. 
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2. Material and methods 

2.1. Data collection and curation 

The datasets used as the source or for comparison in this work included Unbiased 

Ligand Sets/Unbiased Decoy Sets (ULS/UDS)30, MUV8, DUD-E7, DeepCoy25, 

TocoDecoy26 and NRLiSt BDB31.  

In the internal validation, 17 ligand sets from ULS were taken as the input, based 

on which MUBDsyn was made by the pipeline shown in Figure 1A. For comparison, 

MUBDreal was constructed by MUBD-DecoyMaker 2.010 that employs “real” chemical 

library-based decoy production strategy. 

Five cases, i.e., AID 652/Human immunodeficiency virus type 1 reverse 

transcriptase (HIVRT), AID 712/Heat shock protein HSP 90-alpha (HSP90A), AID 

713/Estrogen receptor alpha (ESR1), AID 733/Estrogen receptor beta (ESR2) and AID 

810/Focal adhesion kinase 1 (FAK1), were selected for external validation on classical 

VS methods (i.e., similarity search for LBVS and molecular docking for SBVS). These 

cases were covered by both MUV and DUD-E, and thus were available for a fair 

comparative study with MUBDsyn. The corresponding benchmarking datasets for these 

cases were then obtained from MUV and DUD-E. MUBDreal and MUBDsyn for these 

cases were constructed, with five ligand sets of MUV as input. Additionally, DeepCoy 

and TocoDecoy for the aforementioned five cases were taken into comparison as well. 

The benchmarking datasets of DeepCoy were accessed from the published resources 

without any processing32. The benchmarking datasets of TocoDecoy were made with 
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the scripts provided at the GitHub repository33 and five ligand sets of DUD-E as input. 

For TocoDecoy, it should be noted that the grid filter with 300 units was used to refine 

the candidate decoys, resulting in five TocoDecoy_9W datasets. 

In terms of the external validation on ML-based VS methods, ten ligand sets from 

NRLiSt BDB were taken as the input to make MUBDsyn in the way mentioned above, 

and MUBDreal for comparison as well. These ligand sets had sufficient number of 

diverse ligands after the curation of raw data, and their names were PR_agonist, 

LXR_alpha_agonist, LXR_beta_agonist, AR_antagonist, PPAR_beta_agonist, 

PR_antagonist, ER_beta_agonist, ER_alpha_agonist, PPAR_alpha_agonist and 

PPAR_gamma_agonist. 

2.2. Ligand preparation 

All the ligands were used in the representation of simplified molecular input line 

entry system34 (SMILES). Data curation with MolVS35 (version 0.1.1) and Dimorphite-

DL36 (version 1.3.2) including molecule standardization, salt stripping and protonation 

at the pH range from 7.3 to 7.5 were performed. To build the unbiased ligand set, 

“Analogue excluding” and “Property annotating” were performed on the ligand set. The 

“Analogue excluding” was achieved by the iterative selection of ligands based on the 

threshold of pairwise similarity between ligands. During the selecting loop, any ligand 

whose Molecular ACCess System (MACCS) structural keys-based similarity defined 

by Tanimoto coefficient (Tc) to the referenced one was beyond 0.75 was removed from 

the raw ligand sets. For “Property annotating”, each ligand was annotated with its raw 
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and linearly normalized values of six properties which were molecular weight (MW), 

number of rotatable bonds (RBs), number of hydrogen bond donors (HBDs), number 

of hydrogen bond acceptors (HBAs), net formal charge (nFC) and LogP. The annotated 

information also included the maximum and minimum values of these properties and 

pairwise similarity, which were employed to set the training configuration in the next 

step. RDKit37 (version 2020.09.1.0) was used to compute all the properties. 

2.3. Construction of MPO score 

MPO score constitutes the core of cost function of RL in REINVENT29. In our 

specific task for decoy generation, ten scoring components were designed to transform 

real chemical library-based MUBD decoy screening algorithms into RL-based decoy 

debiasing algorithms. The structure of our customized MPO score is shown in Figure 

S1A. 

According to the original workflow for MUBD construction30, the scoring 

components included the preliminary ones and the precise ones. The former part was 

further divided into two major component collections, i.e., components for property 

filter and components for topology filter. To be more specific about the design of 

components for property filter, in order to make a single score calculated by each 

scoring component within the interval of [0, 1], value transformation based on step 

functions was imposed on the raw scores. Consequently, a generated molecule would 

be scored 1 by each property component if its calculated physiochemical property was 

within the range of the corresponding property filter, otherwise it would be scored 0 
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(Figure S1B). The components for topology filter were designed in a similar manner. 

Left and right step functions were respectively employed for value transformations to 

define the high and low thresholds of this filter. Precise scoring components were 

designed based on two metrics, i.e., similarity in properties (simp) calculated by the Eq. 

(1) and similarity in structure difference (simsdiff) calculated by the Eq. (2): 
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The simp measures the similarity in physicochemical properties between the query 

ligand and the generated decoy. In the Eq. (1), p represents the normalized value of 

physicochemical property, Q or D is respectively denoted as query ligand or generated 

decoy, i refers to the index of individual property and n is the total number of properties. 

The value of simp was directly taken as the output of corresponding scoring component 

without extra transformation. For simsdiff, it was formulated to measure the relative 

topological difference between query ligand and generated decoy, where the anchor 

point was defined by the rest of ligands collectively. In the Eq. (2), similarity in 

structure (sims) is the Tc of MACCS structural keys-based similarity between two 

compounds, j refers to the index of each remaining ligand and m denotes the total 

number of unbiased ligands. Reverse sigmoid function was imposed on the raw value 

of simsdiff (Figure S1B). Notably, parameters of this transformation function were 

adjusted to achieve the balance between the return of a specific value extremely close 
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to 1 when simsdiff is 0 and a steep drop in the output when simsdiff increases. Weighted 

sum29 was taken to organize all the scoring components. 

2.4. Training REINVENT 

The customized training parameters were configured based on the REINVENT 

community notebook38. To be more specific about the parameters of this block, the prior 

and agent networks were both initialized by the pretrained model named 

“random.prior.new” provided at the repository. Moreover, the training stopped when it 

reached 2,000 epochs. For the block of “Diversity Filter”, “Identical Murcko Scaffold” 

was set as the type of controlling molecular diversity and its bin size was set to 5. 

Notably, the minimum total score was set to 0.9, which means that only the generated 

decoy that could achieve an average score over 0.9 was stored in the memory during 

the training period. Finally, scoring function was configured based on the description 

above. The parameters not mentioned here were set as default according to the RL 

notebook. 

2.5. Decoy refinement 

The potential decoy sets were generated ligand by ligand. Concretely, the 

generative model was trained individually for each ligand and the corresponding decoy 

set would be collected in the memory when the training was done. As the ratio of decoys 

to ligands was set to 39 in our previous study30, it was essential to refine the potential 

decoy set before the selection of the most unbiased decoys for each ligand. Curation 

was firstly conducted to remove invalid SMILES and duplicates from the datasets, 
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followed by molecular clustering based on structural similarity. The agglomerative 

clustering implementation of scikit-learn39 (version 1.2.2) was employed to obtain 39 

clusters and then the top-ranking decoys were retrieved from each cluster. Finally, all 

the selected decoys were annotated with the properties and merged into the unbiased 

decoy set.  

2.6. Validation of MUBDsyn 

As shown in Figure 1B, the internal and external validations constituted the full 

validation scheme. The internal validations focused on the established metrics that 

detected the benchmarking biases, and the datasets used here all belonged to the MUBD 

series. In comparison, the external datasets including MUV, DUD-E, DeepCoy, 

TocoDecoy and NRLiSt BDB were obtained for external validations, wherein the main 

theme was retrospective study with both classical and ML-based VS methods. 

2.6.1. Unique scaffold ratio 

The Bemis-Murcko atomic framework40 was extracted from each decoy and the 

duplicates were removed to produce a unique scaffold set. The ratio of scaffold to decoy 

was calculated as a metric of chemical diversity. Accordingly, a decoy set achieves 

maximum diversity when the ratio is 1. 

2.6.2. simp/sims-based similarity search 

Similarity search was implemented in the form of leave-one-out cross-validation 

(LOO CV) where each query ligand was iteratively selected from the diverse ligand set 

and pairwise similarity was calculated between the query ligand and the remaining 
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compounds. In terms of artificial enrichment bias, simp was calculated to constitute the 

score list and the label that was true or false (i.e., ligand or decoy) was assigned to the 

corresponding compound in the score list. Eventually, receiver operating characteristic 

curve (ROC) was plotted by Matplotlib41 (version 3.4.3), and area under curves (AUCs) 

obtained by scikit-learn were statistically analyzed to get mean(AUCs)s and standard 

deviations. The diagonal line with AUC equal to 0.5 in ROC analysis signifies random 

discrimination of samples. Accordingly, the dataset was less biased in term of artificial 

enrichment if the ROC was closer to the diagonal line or AUC was closer to 0.5. As an 

intuitive supplement to artificial enrichment bias measurement, physiochemical 

property matching between the ligand set and the decoy set was also validated in the 

form of property distribution curve plotted by Matplotlib. 

Analogue bias was measured in a similar pattern while the similarity search was 

based on sims between the query ligand and each compound from both ligand and decoy 

subset. Mean(AUCs)s and standard deviations were also calculated to reflect the extent 

to which LBVS was distorted by non-uniform compound distribution, and the value of 

0.5 denoted that the dataset was free of such bias. 

2.6.3. Near ligands bias (NLB) score 

This metric has been applied to the comparative study of previous MUBD9 with 

DUD-E and DEKOIS. It is formulated in the Eq. (3) and the Eq. (4): 
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Briefly, let i be the index for query ligand Q and δk be a state scalar for remaining ligand 

𝑘, δk is counted 1 when sims between query ligand Qi and ligand 𝑘 is greater than the 

maximum sims between query ligand Qi and each decoy molecule D, otherwise 0. 

Taking n as the total number of ligands, formula in brackets computes the percentage 

of near ligands (NLs) in one iteration of cross validation, and then it is summed and 

averaged to quantify overall 2D bias. 

2.6.4. Uniform manifold approximation and projection (UMAP) visualization 

Visualization and analysis of chemical space were realized by UMAP42 provided 

in the umap-learn (version 0.5.3). Both active and decoy molecules were encoded by 

two kinds of molecular representations. The physicochemical descriptors were six 

normalized properties including MW, RBs, HBDs, HBAs, nFC and LogP whereas the 

other representations were MACCS structural keys. Both kinds of representations were 

embedded into two dimensions and visualized with Matplotlib.  

2.6.5. Classical VS methods 

LBVS, which adopted the ligand-based similarity search in the form of LOO CV, 

was performed and ROC analysis was used to evaluate the performance. Two Morgan 

fingerprints, i.e., ECFP_4 and FCFP_6, were generated for each molecule43. Followed 

by iteratively calculating the topological similarity between query ligand and the 

remaining compounds, ROC analysis was conducted to get their AUCs. The 

mean(AUCs) and standard deviation were used to quantify the quality of datasets.  
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In terms of the SBVS approach, smina44, which is a fork of AutoDock Vina45, was 

employed for molecular docking. Five receptor structures including HIVRT (PDB: 

3LAN), HS90A (PDB: 1UYG), ESR1 (PDB: 1SJ0), ESR2 (PDB: 2FSZ), FAK1 (PDB: 

3BZ3) were directly retrieved from DUD-E and all compounds were prepared with the 

“Prepare Ligands” module of Discovery Studio46 (version 2016) to generate 3D 

conformers and change ionization states at pH 7.4 prior to molecular docking. With the 

“autobox” function of smina, each bounding box was automatically defined by the 

cognate ligand located in the binding site. Parameters not mentioned here were set as 

default for molecular docking. For ligand enrichment assessment, ROC curves were 

plotted based on the predicted binding affinity scores and true classes of all the 

compounds. Moreover, AUCs were also calculated for quantitative comparison. 

2.6.6. ML-based VS methods 

The MACCS structural keys of each molecule in benchmarking datasets were 

generated as the input for four classification algorithms including K nearest neighbors 

(KNN), logistic regression (LR), random forest (RF), and support vector machine 

(SVM). The training parameters were kept consistent with those provided by Wallach 

et al.13, and the models were trained in three-fold cross validation. Two balanced metrics 

were employed to compare all of the model performance, i.e., MCC and F1 score 

formulated by Eq. (7) and Eq. (8), respectively: 

 
TP

precision = 
TP + FP

 (5) 
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TP

recall = 
TP + FN

 (6) 

 
TP TN - FP FN

MCC = 
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

 
 (7) 

 
precision  recall

F1 score = 2
precision + recall


  (8) 

Next, the AVE bias was computed for all datasets. It is comprised of two components 

that basically leverage the nearest neighbor function of MUV to measure the data 

clumping: 

 
1

( , ) ( , )d

d D v V

H V T I v T
D V  

=    (9) 

 
a d a d a a a d

d d d a

( , , , ) [ ( , ) ( , )]

[ ( , ) ( , )]

B V V T T H V T H V T

H V T H V T

= −

+ −

 (10) 

 AVE bias (AA-AD) (DD-DA)= +  (11) 

The cumulative nearest neighbor function H shown in Eq. (9) describes the extent to 

which compounds in validation set are similar to those in training set. Eq. (10) further 

depicts the calculation of AVE bias, and it is simplified in Eq. (11) by the direct 

replacement of the functional symbols with the pharmacological attributes of 

corresponding datasets. Herein, “I” and “i” representing inactives in the original 

equation were replaced with “D” and “d” for decoy molecules in this study. The Pearson 

correlation coefficient (ρ) between MCC and AVE bias was also computed by the 

SciPy47(version 1.7.3).  

In the comparative benchmarking, the hyperparameters (“learning_rate”, 

“max_depth”, “min_child_weight”, “n_estimators” and “subsample”) of eXtreme 
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Gradient Boosting (XGBoost)48 on ECFP_4 and the hyperparameters (“depth”, 

“dropout”, “ffn_hidden_size”, “ffn_num_layers” and “hidden_size”) of Chemprop49 

were optimized with Hyperopt50 (version 0.2.7) via Bayesian Optimization algorithm 

for 20 iterations, and the objective was set as F1 score given by ten-fold cross-validation 

on corresponding datasets. The optimized hyperparameters are listed in Table S3. It 

should be noted that no additional adjustment was carried out to enhance the 

performance of Chemprop. The default hyperparameters of Transformer-CNN51 were 

used. Three ML models were benchmarked with ten cases from MUBDsyn and NRLiSt 

BDB in the form of five-fold cross-validation. 

3. Results and discussion 

3.1. The overview of MUBDsyn 

The pipeline for making MUBDsyn, briefly shown in Figure 1A, is composed of 

three submodules. The first module called “Ligand preparation” pre-processes the raw 

ligands to build the unbiased ligand set, followed by “Decoy generation” module which 

trains the generative model tuned by RL and collects the potential decoys in the memory, 

and the last module is called “Decoy refinement” which post-processes potential decoys 

to build the unbiased decoy set. Compared with the earlier versions of MUBD10,30, 

MUBDsyn has three noteworthy features: 

(1) The unbiased decoy set includes virtual molecules produced by the deep 

generative model, instead of real compounds screened from chemical libraries; 

(2)  The criteria for an ideal decoy defined in the earlier versions are integrated into 
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a new scoring function for RL to fine-tune the generator;  

(3) Potential decoys generated by the agent network are further refined to balance 

the high MPO score and the sufficient chemical diversity. 

Accordingly, the aforementioned pitfalls of the chemical library-based decoy 

selecting strategy were subtly circumvented. For instance, during the first selecting loop 

of precise filtering in the previous versions, the threshold of simp-based 

physicochemical filtering is lowered in a stepwise manner, i.e., from 0.95 to 0.50 by 

0.05, to ensure that each ligand shall have enough decoys for the subsequent simsdiff-

based topological filtering30. Such compromise to the target physicochemical space 

inevitably brings in artificial enrichment bias. In contrast, MUBDsyn is capable of 

providing enough potential decoys for further filtering. More importantly, the simp-

based score and the simsdiff-based score of a decoy were simultaneously optimized in 

an unbiased manner. Theoretically, no bias defined by the MUBD rules would be 

detected in final decoys if such molecules do exist in chemical space. Additionally, the 

easy expansion of chemical space makes sufficient room for the customized 

postprocessing of decoys, which may enable the better control of emerging biases 

including AVE bias13, domain bias14 and decoy bias15. 

3.2. Internal validation 

This kind of validation aims to detect the commonly-observed benchmarking 

biases. Since the baseline dataset was ULS/UDS, and most metrics here used for 

comparison originated from the design concepts of MUBD, this section is so-called the 
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internal validation (Figure 1B). The virtual decoy sets of MUBDsyn were generated 

through feeding REINVENT with the corresponding ligand sets, i.e., the ULS dataset 

in this section. 

Figure 2 Internal validation for MUBDsyn over 17 cases and comparison with MUBDreal. (A) The 

unique scaffold ratio of decoys (see Table S1 for case information); (B) The property distribution 

curves; (C) Performance of the simp-based similarity search; (D) NLB score; (E) Performance of 

the MACCS structural keys sims-based similarity search; (F) UMAP visualization of the whole 

MUBDsyn and MUBDreal with regard to the chemical space described by physicochemical 

descriptors (left panel) and MACCS structural keys (right panel), respectively. 
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3.2.1. Chemical scaffold diversity of decoys 

It is noted that the average unique scaffold ratio of decoy sets from MUBDreal was 

0.44 (Figure 2A and Table S1A), which means a unique Bemis-Murcko atomic 

framework40 was shared by more than two decoys. In comparison, there were 

significant increases in the unique scaffold ratios across all the cases from MUBDsyn. 

The average value rose to 0.91 (Table S1B), denoting that almost every molecule in the 

decoy set had its own unique scaffold. As discussed by Sieg et al., chemical diversity 

deficiency in chemical data leads to the domain bias14, which makes the estimated 

performance of ML models overoptimistic whereas their true power of generalization 

is in fact not good. It should be noted that the previous work adopted the similar scaffold 

analysis but only ensured the sufficient chemical diversity of ligand sets in MUBD9 

whereas neglected it in decoy production. Herein, we have made sure that both scaffolds 

in the ligand sets and decoys sets from MUBDsyn are diverse enough thus the domain 

bias is well controlled. 

3.2.2. Property matching and artificial enrichment bias 

As shown in Figure 2B, both decoys from MUBDreal and MUBDsyn closely 

matched the unbiased ligands in terms of six physicochemical properties. The excellent 

property matching was also reflected by the competitive performances of the simp-

based similarity search for both MUBDreal and MUBDsyn, indicating that artificial 

enrichment bias was strictly controlled in both MUBDs (Figure 2C). However, it is 

obvious to find that the mean(AUCs) curve of MUBDsyn was closer to the random 
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distribution line. Indeed, the mean(AUCs) of MUBDsyn achieved the average value of 

0.463, with a minimum of 0.377 and a maximum of 0.579, while that for MUBDreal 

ranged from 0.310 to 0.697 and only achieved the average value of 0.426 (Table S1). 

This implies that decoys from MUBDsyn were more similar to the unbiased ligands in 

terms of six physicochemical properties, and the rationale behind this improved 

performance is RL-based generative model continuously generated decoys with high 

scores. 

3.2.3. NLs and analogue bias 

NLB score is defined as the average value of the percentage of nearer ligands 

(NL%) in chemical space, a metric to signify the degree of 2D bias in the benchmarking 

datasets9. Apparently, the overall NLBScore of MUBDsyn was much less than that of 

MUBDreal (Figure 2D). It is impressive that 11 out of 17 datasets in MUBDsyn were 

completely free of NL bias whereas only 3 datasets in MUBDreal achieved such perfect 

performance. Accordingly, it is anticipated from these results that the benchmarking 

performance of LBVS especially for 2D similarity search is less artificially 

overestimated with MUBDsyn than that with MUBDreal. Consistently, Figure 2E shows 

that it was more challenging for the similarity search with MACCS structural keys to 

discriminate the ligands from the decoys of MUBDsyn than those of MUBDreal. That the 

mean(AUCs) curve of MUBDsyn was very close to the random distribution line implies 

this dataset was almost free of analogue bias. To demonstrate the effects that NLs may 

exert on 2D similarity search, we analyzed the dataset of PE2R3-AGO. By comparison, 
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we identified the NLB score for PE2R3-AGO from MUBDreal was 0.167 while that 

Figure 3 Topological features of MUBDsyn decoys and comparison with MUBDreal decoys. (A) A 

glimpse of chemical structures for the case of MTR1B-ANTA. A representative ligand was selected 

and presented in the central circle. The corresponding MUBDreal decoys (left) or MUBDsyn decoys 

(right) were sorted in a descending order by their sims values to the ligand, and decoys ranking at 

the 1st, 10th, 30th, 39th places were selected and presented in the outer ring adjacent to the ligand; (B)  

The kernel density estimation for SA scores over ligands and the corresponding decoys of MUBDreal 

and MUBDsyn. These curves were clipped within the range of SA score, i.e., [1,10].  
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from MUBDsyn was zero (Table S1). Consistently, the 2D similarity search performed 

much better with MUBDreal than MUBDsyn for this case, with mean(AUCs) of 0.72 

versus 0.55. This case implies that MUBDreal is more LBVS favorable and the 

evaluation outcome based on MUBDreal may not be as fair as that based on MUBDsyn. 

3.2.4. Visualization of chemical space 

UMAP was utilized to obtain the holistic understanding of interconnections 

between ligands and decoys (Figure 2F). In terms of the chemical space characterized 

by physicochemical descriptors, both decoys of MUBDreal and MUBDsyn uniformly 

distributed around the ligands, agreeing with their property distribution curves and 

results of simp-based similarity search. Notably, the decoys of MUBDsyn were more 

densely embedded in the adjacent areas of ligands from the point of MACCS structural 

keys. Individual visualization of two cases from MUBDreal (Figure S3B), i.e., SSR2-

ANTA and PE2R3-AGO that showed the highest NLBscore (0.167), indeed confirmed 

that their ligands were nearer to other ligands than the decoys that were sparsely 

distributed. In contrast, those unbiased but uncharted areas for ideal decoys were 

occupied by MUBDsyn, again demonstrating its less NL bias from a brand-new 

perspective.  

3.2.5. Topological features 

Looking at the chemical structures of MTR1B-ANTA (Figure 3A), we found that 

MUBD  syn decoys were bigger than MUBDreal decoys in molecular size but more 

similar to the ligand, thus accounting for the more challenging performance in the sims-
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based similarity search of MUBDsyn [mean(AUCs)=0.55] than MUBDreal 

[mean(AUCs)=0.59]. It should be noted that even the most similar decoy of MUBDsyn 

remains below the maximum sims threshold of 0.75, satisfying the rule predefined for 

MUBD decoy. 

Facilitated by kernel density estimation, we visualized the distribution of 

topological features that are quantitatively characterized by synthetic accessibility (SA) 

score52 (Figure 3B). The original research pointed out that most of the synthetically 

accessible molecules fall within the SA score range from two to five. We found that 

Figure 4 External validation for MUBDsyn based on classical VS methods over five cases and 

comparison with MUBDreal, MUV and DUD-E. (A) Performance of similarity search (LOO CV) 

with Morgan fingerprints (ECFP_4 and FCFP_6). The median is represented by the horizontal line 

of the box; (B) Performance of molecular docking with smina. ROC AUC for each case was 

computed (Table 1). 
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most of the MUBD molecules were synthetically accessible whereas the distribution of 

MUBD decoys was much sharper and with lower variance. Intriguingly, there was a 

subtle shift towards lower SA score for the curve of MUBDsyn decoys, with the mean 

value 0.14 less than that of MUBDreal decoys, indicating that MUBDsyn decoys were 

less complex in topology. 

3.3. External validation with classical VS methods 

Unlike the internal validation, the external validation was conducted in the form 

Table 1 Ligand enrichment measured by ROC AUC with both LBVS approach and SBVS approach 

over 5 cases in the external validation. 

 Sources of benchmarking datasets 

Case Approacha MUBDreal MUBDsyn MUV DUD-E 

HIVRT ECFP_4 0.50±0.05 0.51±0.04 0.46±0.08 0.66±0.10 

FCFP_6 0.47±0.06 0.49±0.07 0.45±0.10 0.62±0.09 

smina 0.62 0.62 0.56 0.67 

HSP90A ECFP_4 0.53±0.05 0.55±0.05 0.51±0.09 0.65±0.15 

FCFP_6 0.50±0.06 0.54±0.07 0.52±0.10 0.66±0.13 

smina 0.57 0.55 0.65 0.32 

ESR1 ECFP_4 0.59±0.08 0.56±0.06 0.47±0.06 0.84±0.12 

FCFP_6 0.52±0.06 0.51±0.04 0.48±0.06 0.85±0.13 

smina 0.54 0.54 0.56 0.86 

ESR2 ECFP_4 0.52±0.06 0.51±0.04 0.49±0.05 0.84±0.12 

FCFP_6 0.57±0.08 0.55±0.05 0.56±0.07 0.84±0.13 

smina 0.41 0.40 0.46 0.84 

FAK1 ECFP_4 0.51±0.04 0.55±0.05 0.50±0.08 0.92±0.14 

FCFP_6 0.51±0.05 0.55±0.06 0.53±0.07 0.90±0.15 

smina 0.51 0.50 0.60 0.78 

aFor either ECFP_4 or FCFP_6 based similarity search, means and standard deviations of AUCs 

were computed, i.e., presented as mean(AUCs)±std. 
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of retrospective study to evaluate the performance of MUBDsyn in training and/or 

benchmarking several kinds of VS methods (Figure 1B). In this section, two classical 

VS methods including 2D similarity search and molecular docking were applied to five 

targets including HIVRT, HSP90A, ESR1, ESR2 and FAK1 as case studies for external 

validation (Figure 4 and Figure S4). The datasets used here can be categorized into two 

major subsets, i.e., classical datasets of which the data are derived from the real libraries 

includes MUBDreal, MUV and DUD-E, and synthetic datasets of which the decoys are 

made by generative models include MUBDsyn, DeepCoy and TocoDecoy. It is worth 

noting that the decoy sets of both DeepCoy and TocoDecoy were made according to the 

DUD-E ligands. Moreover, the conformation decoys of TocoDecoy were not taken into 

the comparative study since all the other datasets used in this study only included 2D 

topological information of the decoys.  

3.3.1. Benchmarking of classical LBVS: similarity search 

The box plot of similarity search that adopted ECFP_443 shows that the medians 

of AUCs for both MUBDreal and MUBDsyn over five cases were all close to the random 

distribution line (Figure 4A). More importantly, MUBDsyn showed more condensed 

distribution of AUCs than MUBDreal, and smaller standard deviations of AUCs except 

for FAK1 (Table 1). In terms of two chemical library-based datasets, i.e., MUV and 

DUD-E, MUV was similar to MUBDs whereas decoys of DUD-E were more easily 

discriminated from its ligands. For example, the similarity search achieved the best 

AUC of 0.92 on FAK1 case of DUD-E. Even the lowest AUC of 0.65 on HSP90A case 
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of DUD-E was much higher than the highest AUC on MUV (AUC of 0.51 on HSP90A 

case) or MUBDs (AUC of 0.59 on ESR1 case of MUBDreal and AUC of 0.56 on ESR1 

case of MUBDsyn). As mentioned by the developers of DUD-E, 2D VS methods would 

benefit from the topological difference between ligands and DUD-E decoys due to the 

design concept, thus the fair benchmarking of LBVS seems impossible7. On two 

synthetic datasets, DeepCoy and TocoDecoy, LBVS achieved similar performance to 

that on DUD-E (Figure S4A). This outcome was expected, as both datasets follow the 

principle of DUD-E to make property-matched but topology-distinguished decoys. 

Nevertheless, we noticed that TocoDecoy was more challenging to enrich except for 

FAK1 (Table S2), and this observation became more obvious when FCFP_6 was 

adopted. This may be attributed to the less analogue bias in TocoDecoy, since its 

topology decoy was further refined by the grid filter based on ECFP26. In summary, 

MUBDsyn was comparable to MUBDreal and more challenging than MUV while 

superior to DUD-E and DUD-E-like datasets (i.e., DeepCoy and TocoDecoy) in 

benchmarking LBVS. 

3.3.2. Benchmarking of classical SBVS: molecular docking 

For MUBDreal, MUBDsyn or MUV, the ROCs over five cases were all close to the 

random distribution line (Figure 4B), indicating that it was quite challenging for smina44, 

a renowned software for molecular docking, to enrich the ligands of these 

benchmarking datasets. Except for HSP90A, discrimination between DUD-E ligands 

and decoys remained the pretty easy task for smina. It is noteworthy that the AUC for 
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HSP90A of DUD-E was as low as 0.324 (Table 1), and this “anti-screening” 

phenomenon was also reported by Imrie et al. who performed the same retrospective 

analysis on SBVS25, where their reported value of AUC for HSP90A is 0.258. 

In terms of two deep learning-generated datasets, DeepCoy and TocoDecoy, the 

benchmarking results were similar to those of DUD-E, though DeepCoy seemed more 

challenging on ESR1, ESR2 and FAK1 (Figure S4B). It should be pointed out that 

TocoDecoy is elaborately designed for ML-based scoring functions. The classical 

SBVS method used here (i.e., molecular docking with smina) may not reveal its real 

value because the conformation decoys were not considered here. Nevertheless, DUD-

E stays as the golden standard in benchmarking classical SBVS while DeepCoy and 

TocoDecoy expands the chemical space of DUD-E through synthetic decoys. MUBDsyn 

that was designed according to the same principle as MUBDreal may become an 

alternative in this domain. 

3.4. External validation with ML-based VS methods 

MUBD has been confirmed robust in benchmarking classical VS methods9. It was 

also successfully applied to evaluating the descriptor-based ML models53. Herein, we 

sought to detect ML data redundancy in these datasets and evaluated the plausibility of 

MUBDsyn in training and/or benchmarking ML models. This validation covered both 

classical ML models based on molecular fingerprints and deep learning models with 

low-level representations such as text or graph. Normally, MUV should have been used 

as it was optimized for LBVS. However, its active data size was rather limited, with 30 
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actives for each target. To ensure the adequate amount and diversity of the active data, 

Figure 5 External validation for MUBDsyn based on AVE bias and performance correlation analysis. 

(A) Performances and biases of four ML models trained on MUBDsyn. Top left: AVE bias and its 

two decomposed terms for each case. Bottom left: Performances of four ML models measured by 

MCC (three-fold cross validation). Right: Pearson correlation coefficients (ρ) between AVE bias and 

MCC for each case. The data points were fit with linear regression implemented by regplot function 

of the seaborn package; (B) Performances and biases of four ML models trained on MUBDreal in 

comparison with MUBDsyn. 
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we chose NRLiSt BDB31 for the validation and selected ten cases (see Table S4 for 

detailed information), from which the actives were used to make the corresponding 

datasets of MUBDsyn as well as MUBDreal. 

3.4.1. AVE bias and performance correlation analysis 

As mentioned above, Wallach et al.13 provided an insight into the effects of data 

clumping on ML models training and benchmarking. For a specific molecule in either 

active set or decoy set, if other molecules, which are similar to that molecule in 

topological structure, all belong to the same set (active/decoy), there will be data points 

clumping together when the random partition is adopted. As a result, the data pattern 

will be memorized rather than generalized by ML models. The zero value of AVE bias 

indicates that there is no such data redundancy. Their study reported that AVE bias was 

positively correlated to the performance of ML models constructed with most of the 

commonly used datasets such as MUV, Tox-21 and PCBA benchmark, pointing out that 

the random partition is not appropriate for these datasets. We set to calculate AVE bias 

of MUBD datasets and trained four fingerprint-based ML models with the algorithms 

of KNN, LR, RF and SVM on MUBDsyn and also MUBDreal for comparison. Matthews 

correlation coefficient (MCC) was used as the performance metric due to the imbalance 

of datasets. 

As shown in Figure 5, the AVE bias for each case from MUBDsyn was significantly 

lower than that from MUBDreal. The average AVE bias over ten cases was as low as 

0.10 for MUBDsyn, and was lower than half of that for MUBDreal, indicating that the 
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introduction of virtual decoys greatly reduced the data clumping in MUBD. Moreover, 

the heatmap of model performance reveals that it was more challenging for 1-NN and 

RF to discriminate ligands from decoys of MUBDsyn than MUBDreal. For example, the 

average MCCs for MUBDsyn given by 1-NN and RF were 0.07 and 0.09, respectively, 

and this can be considered as random classification. Nonetheless, we deem that 

relatively close benchmarking performances were achieved on MUBDsyn and MUBDreal 

while the former may reflect true capacity of classical ML models due to its lower AVE 

bias. We noticed that there were moderate correlations between the AVE bias and the 

predictive performance in both MUBDsyn and MUBDreal, and the highest Pearson 

correlation coefficient was achieved by SVM (ρ=0.87) in MUBDsyn. Similar 

correlations were also observed from the separated (AA-AD) term (Figure S5). This 

indicates that the model assessment could still be overoptimistic when the random 

partition of MUBD datasets is adopted. Therefore, we suggest that the AVE bias and its 

correlation coefficient with the model performance should be reported when 

performing benchmarking with the specific dataset. Moreover, we encourage the 

Figure 6 External validation with the benchmark on three representative ML models. Model 

performance was measured by MCC in the form of five-fold cross-validation. (A) MUBDsyn; (B)  

NRLiSt BDB. 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565594doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565594
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

 

employment of either scaffold-based partition49 or AVE debiasing algorithms13 to 

further reduce the impact of data clumping in the prospective study. 

3.4.2. ML-based VS benchmarking 

In this section, three representative ML models were assessed with MUBDsyn (ten 

cases from NRLiSt BDB). Specifically, XGBoost on ECFP_4 was set as the baseline 

representing traditional ML methods while Chemprop and Transformer-CNN, 

belonging to deep learning models that take 2D molecular graph or SMILES as input, 

were set as the baseline for advanced ML. It should be noted that the hyperparameters 

of XGBoost and Chemprop were tuned with Hyperopt based on the same settings (see 

Table S3 for the optimized hyperparameters) whereas Transformer-CNN was directly 

used for benchmarking as suggested by its authors51. Since there were small datasets in 

MUBDsyn (i.e., fewer than 100 active molecules), we used the form of five-fold cross-

validation and average performance to ensure robustness (Figure 6, Figure S6 and Table 

S4). This form was applied to all the cases to make sure of consistency throughout the 

whole calculation. 

For the benchmarking study with MUBDsyn, advanced ML models (Chemprop and 

Transformer-CNN) generally outperformed the traditional model (XGBoost) when the 

size of the active set was larger than 70, while the performances of two deep learning 

models got very close when the size of active set was larger than 120 (case 8, 9 and 10). 

It is worth noting that XGBoost was significantly better than Chemprop but worse than 

Transformer-CNN when evaluated with three cases including PR_ago (case 1), 
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LXR_alpha_ago (case 2) and LXR_beta_ago (case 3). We found that the numbers of 

actives of these cases were no more than 70. Moreover, the ratio of decoys to actives 

was kept 39 in MUBD, resulting in data imbalance. As pointed out by the authors of 

Chemprop49, their D-MPNN may underperform traditional ML models if the datasets 

are small and/or data classes are extremely imbalanced. As such, Chemprop did not 

perform well in the above mentioned three cases. In comparison, the superiority of 

Transformer-CNN for small datasets can be attributed to its informative SMILES-

embedding derived from a pretraining task about SMILES canonicalization. We also 

observed the great deviation of performance in the cross-validation on PR_ago (case 1), 

especially for XGBoost (more than 25% of the average). As expected, the deviation 

decreased with the growth of data size. For example, the deviations of MCCs on three 

models were all less than 5% of the average for PPAR_gamma_ago (case 10). 

In terms of the benchmark (Figure 6B) NRLiSt BDB, whose decoy sets were made 

based on the principle of DUD-E, is in fact not a good benchmark for ML models. In 

all of ten cases, the discrimination of ligands from decoys seemed extremely easy for 

deep learning models, because even the traditional ML model, i.e., XGBoost achieved 

excellent classification performance with the average MCC reaching 0.93. With such a 

benchmarking outcome, advanced ML models poorly distinguished themselves from 

traditional models. This may impair the interest of the VS community in method 

development, as it may underestimate the value of new methodology. In fact, this issue 

has long been acknowledged in other disciplines. For example, the widely used 
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benchmarking dataset named CIFAR54 for computer vision has various subsets 

compiled at different difficulty level to satisfy diverse benchmark demands. As far as 

this ML-based VS benchmarking was concerned, MUBDsyn outperformed traditional 

benchmark such as NRLiSt BDB when used for evaluating novel ML models due to its 

appropriate level of benchmark difficulty, and it is encouraging to see that MUBDsyn 

offers a solution to address the aforementioned issue in the field of VS benchmarking. 

4. Conclusions 

VS techniques are constantly advancing, thanks to the evolution of computational 

theories coupled with the explosive growth in computing capacity55, so should be the 

benchmarking methodologies and databases. In this study, we utilized deep 

reinforcement learning to make next-generation MUBD. The fundamental update is the 

revolution of decoy production strategy, which has switched from the chemical library-

based screening to the objective-oriented generation. We performed thorough 

validations on the new datasets named MUBDsyn. The internal validation has 

demonstrated its superiority to the previous MUBD in benchmarking bias control. For 

example, the scaffold diversity of decoy molecules has been significantly improved and 

NL bias has been almost eliminated in MUBDsyn. Notably, the UMAP technique has 

enabled the global visualization of the chemical space where decoys of MUBDsyn are 

embedded more sufficiently and uniformly. The external validation has further 

confirmed that the application of MUBDsyn is not limited to the classical VS methods 

but extended to emerging ML methods including deep learning. We firstly showed that 
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the AVE bias has been greatly reduced in this new MUBD, thus the ligand enrichment 

performance of ML models would be less artificially inflated by the data clumping. 

Furthermore, the comparative benchmark covering both traditional ML model and deep 

learning models highlighted the importance of compiling the VS benchmarking datasets 

at an appropriate difficulty level. MUBDsyn is challenging enough to present the 

superiority of advanced ML models while not that challenging to make all models 

indistinguishable.  

The rise of deep learning has boosted the development of computational tools for 

drug discovery. However, several eye-catching studies56-58 that report the successful use 

of artificial intelligence to discover promising leads all rely on the in-house data 

(released or not) with limited size for model training. This again emphasizes that the 

data mining should be the essential work of ML for drug discovery. The constant 

progress of MUBD is committed to alleviating data deficiency in biomedicine. 

Compared with DeepCoy and TocoDecoy that have taken advantage of the virtual 

decoys to make DUD-E-like decoys, we have proved that MUBDsyn has broader AD 

due to its unique debiasing algorithms, and we deem that it will be widely used by the 

VS community in the future.  

This work focuses on the in silico augmentation of negative data for VS methods 

while the shortage of diverse and high-quality positive data remains a concern that 

should be addressed in the future development of MUBD. In conclusion, our MUBDsyn 

offers a novel way to implement MUBD theory and will be applied to the construction 
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of large-scale VS benchmarking platforms. We posit that MUBDsyn will accelerate the 

computer-aided drug discovery through more robust VS tools. 
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ASSOCIATED CONTENT 

Data and Code Availability 

The Python and bash scripts, along with the detailed instructions of MUBDsyn are 

available at the GitHub repository (https://github.com/taoshen99/MUBDsyn). In order 

to ensure reproducibility of all the validations performed in this work, we also provided 

the guiding notebooks. The template config used for model training will be generated 

during the implementation of the test case. All the datasets curated and made in this 

work are available at the Zenodo dataset (https://doi.org/10.5281/zenodo.7943200), 

which can facilitate the reproduction of all experiments and benchmark of various VS 

methods. 

Supporting Information 

Case study on the optimization of MPO score for MUBDsyn, supplementary tables 

and figures of the internal and external validation (Supporting_Information.docx). 
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