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Abstract 1 

As rapid responders to their environments, microglia engage in functions that are mirrored 2 
by their cellular morphology. Microglia are classically thought to exhibit a ramified 3 
morphology under homeostatic conditions which switches to an ameboid form during 4 
inflammatory conditions. However, microglia display a wide spectrum of morphologies 5 
outside of this dichotomy, including rod-like, ramified, ameboid, and hypertrophic states, 6 
which have been observed across brain regions, neurodevelopmental timepoints, and 7 
various pathological contexts. We used dimensionality reduction and clustering approaches 8 
to consider contributions of multiple morphology measures together to define a spectrum 9 
of microglial morphological states. Using ImageJ tools, we first developed a semi-10 
automated approach to characterize 27 morphology features from hundreds to thousands 11 
of individual microglial cells in a brain subregion-specific manner. Within this pool of 12 
morphology measures, we defined distinct sets of highly correlated features that describe 13 
different aspects of morphology, including branch length, branching complexity, territory 14 
span, and cell circularity. When considered together, these sets of features drove different 15 
morphological clusters. Furthermore, our analysis toolset captured morphological states 16 
similarly and robustly when applied to independent datasets and using different 17 
immunofluorescent markers for microglia. We have compiled our morphology analysis 18 
pipeline into an accessible, easy to use, and fully open-source ImageJ macro and R package 19 
that the neuroscience community can expand upon and directly apply to their own analyses. 20 
Outcomes from this work will supply the field with new tools to systematically evaluate 21 
the heterogeneity of microglia morphological states across various experimental models 22 
and research questions. 23 
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1 Introduction 26 

Clinical and postmortem studies support a role for altered microglial function as a critical 27 

component of multiple brain disorders, including Schizophrenia, Autism Spectrum Disorder, and 28 
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Alzheimer9s Disease. (Hansen et al., 2018; Suzuki et al., 2013; Tetreault et al., 2012; Zhuo et al., 29 

2023) In addition to their resident immune functions, microglia play critical roles to establish and 30 

maintain normal brain function including the regulation of neuronal cell number (Cunningham et al., 31 

2013), shaping of brain circuitry (Bialas & Stevens, 2013; Schwarz et al., 2012), and fine-tuning of 32 

neuronal connections (Schafer et al., 2012; Wang et al., 2020; Zhan et al., 2014), processes that have 33 

all been shown to be fundamentally disrupted in many brain disorders. (Hammond et al., 2018; Lenz 34 

& Nelson, 2018) Microglia directly communicate with other cell types and modulate their function 35 

by releasing and responding to various molecular substrates in the brain environment including 36 

cytokines, chemokines, and neurotransmitters (Salvador et al., 2021). Thus, dysregulated microglial 37 

responses can disrupt the homeostatic brain environment and normal communication across cell 38 

types, ultimately altering brain function and behavior.  39 

As rapid responders to their local environments, microglia exhibit a dynamic range of 40 

phenotypes defined by multiple parameters including transcriptomic signatures (Hammond et al., 41 

2019; Li et al., 2019), epigenomic regulation (Ciernia et al., 2018; Meleady et al., 2023), and changes 42 

in cellular morphology. Microglia are classically thought to engage in immune functions that are 43 

mirrored in morphology, where homeostatic microglia exhibit a ramified morphology that switches 44 

to an ameboid, unramified form in response to inflammatory signals in their environment. This 45 

morphological switch is thought to allow for increased mobility to sites of infection or injury, efficient 46 

phagocytosis, and release of cytokines into the microenvironment, all functions that are characteristic 47 

of a <pro-inflammatory= state. However, a mechanistic link between reduced branching and 48 

increased inflammatory function has only been shown recently, where increased P2RY12 49 

potentiation of the THIK-1 channel caused decreased microglial ramifications and increased activity 50 

of the Il1b inflammasome in response to tissue damage (Madry et al., 2018, p. 1; Paolicelli et al., 51 

2022). Cdk1-mediated microtubule remodeling has also recently been shown to be required for 52 

efficient cytokine trafficking and release and transformation of microglia from ramified to ameboid 53 

forms after LPS exposure in vitro and in situ. (Adrian et al., 2023) In contrast, findings from other 54 

studies display a reverse relationship, where ramified microglia have been shown to phagocytose 55 

synapses during adult neurogenesis (Paolicelli et al., 2022; Sierra et al., 2010) and ameboid microglia 56 

show reduced phagocytic capabilities in epilepsy (Abiega et al., 2016; Paolicelli et al., 2022). The 57 

relationship between form and function is clearly not as dichotomous as historically thought, and 58 

there has been an increasing effort in the field to move away from dualistic classification of microglial 59 

function and towards a clearer understanding and appreciation of the heterogenous states of microglia 60 

(Dubbelaar et al., 2018; Paolicelli et al., 2022). 61 

Microglia morphology has been shown to be highly context and signal-dependent, displaying 62 

various forms ranging from ameboid-like under inflammatory states to hyper-ramified in mouse 63 

models of stress-induced depression, accelerated aging, and Alzheimer9s disease (Beynon & Walker, 64 

2012; Hellwig et al., 2016; Madry et al., 2018; Raj et al., 2014). Subsets of microglial populations 65 
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have also been shown to display rod-like morphologies characterized by long, thin processes 66 

protruding from oval-shaped somas that retract neuron-adjacent planar processes in response to 67 

diffuse brain injury (Taylor et al., 2014). Furthermore, microglia are highly motile and never truly 68 

quiescent even in healthy conditions, constantly extending out protrusions to scan their environments 69 

for pathogens and other harmful signals, as revealed by in vivo two-photon imaging studies of the 70 

mouse brain (Bernier et al., 2020; Davalos et al., 2005; Nimmerjahn et al., 2005). Different 71 

morphological forms have been observed to be conserved across species (Paolicelli et al., 2022) and 72 

spatially distributed across brain regions, neurodevelopmental timepoints, and various pathological 73 

contexts (Savage et al., 2019) . Microglial morphological forms including ramified, rod-like, reactive 74 

or hypertrophic (rounder cell body with fewer and shorter processes) (Paolicelli et al., 2022), and 75 

ameboid (less than two unramified processes) (Paolicelli et al., 2022) (Fig. 1B) have been commonly 76 

observed in both humans and mice, and microglia have been shown to display similar dendritic 77 

morphology across species. (Geirsdottir et al., 2019; Paolicelli et al., 2022)  78 

Microglia morphology can be explained using various measures of branch length, branching 79 

complexity, territory span, and cell circularity, which together comprise distinct sets of morphology 80 

measures that are changing in conjunction with each other. Nevertheless, studies often selectively 81 

report changes in individual features such as the number of branches or cell area alone, ultimately 82 

depicting an incomplete or biased representation of changes in microglia morphology that fail to 83 

capture true morphological states. Therefore, an analysis approach that considers contributions of all 84 

feature measures together to explain various axes of morphology is necessary to gain a better 85 

understanding of a microglia9s actual morphological state and relationship to cellular function. A 86 

plethora of tools exist to analyze microglia morphology (Clarke et al., 2021; Salamanca et al., 2019; 87 

York et al., 2018; Young & Morrison, 2018), but often involve significant effort to extract 88 

meaningful information at a larger scale, as many approaches that allow for the analysis of 89 

morphological information at a cellular resolution involve manually choosing and segmenting 90 

individual cells within an image. This introduces a potential bias for which cells are selected and 91 

vastly limits the feasible sample size for analysis. While there has been considerable progress in the 92 

development of toolsets which automate these time-consuming steps, there has been less 93 

development, transparency about, and availability of methods to analyze the resulting morphological 94 

measures (Reddaway et al., 2023). The underlying code and datasets for the majority of published 95 

toolsets are not openly available nor well-documented, further limiting the uptake and progression of 96 

the most up-to-date toolsets by the larger research community. (Reddaway et al., 2023) 97 

Here, we describe an accessible and open-source morphology analysis toolset: 98 

MicrogliaMorphology (ImageJ tool) and MicrogliaMorphologyR (R package), which supplies the 99 

field with new tools to systematically evaluate the heterogeneity of microglia morphological states 100 

by considering 27 different measures of microglia morphology. To demonstrate use cases for our 101 

toolset, we characterized and analyzed microglia morphology in an experimental model of repeated 102 
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immune stimulation by peripheral lipopolysaccharide (LPS) administration, a commonly used 103 

model (H. Jung et al., 2023; Wendeln et al., 2018) which induced population shifts in the four major 104 

classes of microglia morphology in our dataset: ramified, hypertrophic, ameboid, and rod-like. 105 

Application of MicrogliaMorphology and MicrogliaMorphologyR by the scientific community will 106 

yield novel insights into microglia morphology differences in the brain at a single-cell resolution and 107 

in a spatially-resolved manner across various experimental models and research questions. 108 

Additionally, the toolset is not limited to microglia morphology alone, but can also be applied in the 109 

same way to characterize morphology of other cell types. 110 

 111 

2 Materials and Methods 112 

 113 
In vivo experiments  114 

 All experiments were conducted in accordance with the Canadian Council on Animal 115 

Care guidelines, with approval from the University of British Columbia9s Animal Care 116 

Committee. Mice were housed in groups of two to four on a regular 12-hr light/12-hr dark 117 

cycle and all experiments were performed in regular light during the mouse9s regular light 118 

cycle. CX3C motif chemokine receptor 1 (Cx3cr1) is a commonly used microglial marker 119 

that is expressed on microglia and other immune cells, and cells under control of the 120 

endogenous Cx3cr1 locus express GFP (IMSR_JAX:005582). (S. Jung et al., 2000) 8-week 121 

old male and female Cx3cr1-GFP mice bred on a C57BL/6J background (n=2 females and 122 

1 male/condition) were intraperitoneally injected with 0.5 mg/kg lipopolysaccharide (LPS; 123 

Lipopolysaccharides from E. coli O55:B5, Sigma-Aldrich L5418) or vehicle solution (PBS; 124 

Phosphate buffered saline, Fisher BioReagents BP3991) once every 24 hours for 2 days. 125 

 1xLPS experiments (Supplementary Figure 3): Mice were housed in groups of two 126 

to four on a reversed 12-hr light/12-hr dark cycle. Because mice are nocturnal animals, all 127 

experiments were performed in red light during the mouse9s dark cycle when they are most 128 

active. 8-week old male and female C57BL/6J mice (n=2/sex/condition) were 129 

intraperitoneally injected once with 1.0 mg/kg lipopolysaccharide (LPS; 130 

Lipopolysaccharides from E. coli O55:B5, Sigma-Aldrich L5418) or vehicle solution 1xPBS 131 

(Phosphate buffered saline, Fisher BioReagents BP3991).  132 

  133 

Tissue collection 134 

 3 hours (2xLPS experiments) or 24 hours (1xLPS experiments) after the final 135 

injection, mice were quickly anesthetized with isofluorane and transcardially perfused with 136 

15ml of 1xPBS before brains were extracted for downstream immunohistochemistry 137 

experiments. Extracted brains were immersion-fixed in 4% paraformaldehyde for 48 hours 138 

before cryoprotecting in 30% sucrose for 48 hours prior to cryosectioning. Cryoprotected 139 
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brains were then sectioned at 30um on the cryostat, collected in 1xPBS for long-term storage, 140 

and processed for immunohistochemistry. 141 

 142 

Immunohistochemistry 143 

 30um brain sections were immunofluorescently stained for various markers of 144 

microglia: ionized calcium binding adaptor molecule 1 (Iba1) and/or purinergic receptor 145 

P2Y12 (P2ry12) to analyze microglial morphology. Brain sections in the 1xLPS experiments 146 

(Supp. Fig. 3) were stained with only Iba1 and brain sections in the 2xLPS experiments were 147 

stained with both Iba1 and P2ry12. Free-floating brain sections were washed 3 times for 5 148 

minutes each in 1xPBS, permeabilized in 1xPBS + .5% Triton (Fisher BioReagents BP151-149 

500) for 5 minutes, and incubated in blocking solution made of 1xPBS + .03% Triton + 1% 150 

Bovine Serum Albumin (BSA; Bio-techne Tocris 5217) for 1 hour. After the blocking steps, 151 

sections were incubated overnight at 4°C in primary antibody solution containing 2% 152 

Normal Donkey Serum (NDS; Jackson Immunoresearch Laboratories Inc. 017-000-121) + 153 

1xPBS + .03% Triton + primary antibodies (chicken anti-Iba1: 1:1000, Synaptic Systems 154 

234 009; rabbit anti-P2RY12: 1:500, Anaspec AS-55043A). After primary antibody 155 

incubation, sections were washed 3 times for 5 minutes each with 1xPBS + .03% Triton 156 

before incubating for 2 hours in secondary solution containing 2% NDS + DAPI (1:1000; 157 

Biolegend 422801) + secondary antibodies (Alexafluor 647 donkey anti-chicken: 1:500, 158 

Jackson Immunoresearch Laboratories Inc. 703-605-155; Alexafluor 568 donkey anti-159 

rabbit: 1:500, Invitrogen A10042). Sections were washed 3 times for 5 minutes each with 160 

1xPBS + .03% Triton before being transferred into 1xPBS for temporary storage before 161 

mounting. Sections were mounted onto microscope slides (Premium Superfrost Plus 162 

Microscrope Slides, VWR CA48311-703) and air dried before being coverslipped with 163 

mounting media (ProLong Glass Antifade Mountant, Invitrogen P36980; 24x60mm 1.5H 164 

High Performance Coverslips, Marienfield 0107242).  165 

 166 

Imaging 167 

 All mounted brain sections were imaged on the ZEISS Axioscan 7 microscope slide 168 

scanner at 20x magnification with a step-size of 0.5um using the z-stack acquisition 169 

parameters within the imaging software (ZEISS ZEN 3.7). During image acquisition, 170 

Extended Depth of Focus (EDF) images were created using maximum projection settings 171 

and saved as the outputs in the final .czi files. Maximum projection EDF images only 172 

compile the pixels of highest intensity at any given position in a z-stack to construct a new 173 

2D image which retains the 3D information. Using ImageJ, we created .tiff images of each 174 

fluorescent channel from .czi files and selected and saved .tiffs of brain regions of interest 175 

(ROIs) to use as input for downstream morphological analysis in MicrogliaMorphology and 176 
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MicrogliaMorphologyR. We focused our analyses on multiple brain regions including the 177 

hippocampus, frontal cortex, and striatum, as well as subregions within them. Images of 178 

coronal brain sections containing these regions were aligned to the Allen Brain Atlas 179 

(mouse.brain-map.org) (Pinskiy et al., 2015) using the ImageJ macro FASTMAP (Terstege 180 

et al., 2022). 181 

 182 

MicrogliaMorphology  183 

 MicrogliaMorphology is designed to be a user-friendly ImageJ macro that wraps 184 

around existing ImageJ plugins AnalyzeParticles, Skeletonize (2D/3D), and 185 

AnalyzeSkeleton, and is written using the ImageJ macro (IJM) language. (Schneider et al., 186 

2012) All supporting code for MicrogliaMorphology is available on Github at 187 

https://github.com/ciernialab/MicrogliaMorphology and a detailed video tutorial which 188 

includes relevant troubleshooting steps is available on Youtube at 189 

https://www.youtube.com/watch?v=YhLCdlFLzk8. After MicrogliaMorphology is installed 190 

into the user9s ImageJ plugins folder as described in the Github repository, it will appear in 191 

the Plugins dropdown menu from the ImageJ toolbar, where it can be clicked on to begin the 192 

user prompts. In Step 1, users are be prompted to measure dataset-specific parameters, which 193 

are critical because every imaging dataset is prepared and acquired differently, and thus 194 

requires user input to determine what parameters most appropriately and accurately capture 195 

microglia morphology within individual datasets. Image thresholding parameters including 196 

the method and radius considered for auto local thresholding are important to determine the 197 

most appropriate thresholding method which captures full, single microglial cells without 198 

losing branching connectivity. Area ranges that accurately describe single microglial cells 199 

are important to exclude any artifacts of 2D representation in the EDFs such as cell particles 200 

and incomplete cells or multiple cells that are overlapping. Dataset-specific image 201 

thresholding and cell area parameters determined by these initial steps are then called to 202 

within the macro to inform downstream steps of MicrogliaMorphology. In the subsequent 203 

steps, the only user input involves following prompts to select input folders to call from and 204 

output folders to write to, with the option of batch-processing. All protocols, computation, 205 

and analysis described below have been written to be automated within 206 

MicrogliaMorphology, unless otherwise specified. 207 

 Step 2 after determining dataset-specific parameters is thresholding input .tiff 208 

fluorescent images. MicrogliaMorphology cleans up and thresholds input images according 209 

to standard protocol (Young & Morrison, 2018): images are binarized and converted to 210 

grayscale before the brightness and contrast are enhanced, unsharp mask filter applied to 211 

clarify existing detail, despeckle function applied to remove noise, and auto local or auto 212 

thresholding applied. Then, a second despeckle step is applied before dilation and connection 213 

https://github.com/ciernialab/MicrogliaMorphology
https://www.youtube.com/watch?v=YhLCdlFLzk8
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steps are applied to connect branches, after which outliers are removed. The final images are 214 

then used as input for Step 3, which uses AnalyzeParticles and ROI manager functions to 215 

create and save new images of single-cells which pass the area criteria specified in Step 1. 216 

Generation of single-cell images in this step allows for the measurement of morphology 217 

measures at an unprecedented cellular resolution from hundreds to thousands of different 218 

microglia cells, each with unique identifiers.  219 

 The single-cell images are used as input for Step 4, which uses Skeletonize (2D/3D) 220 

(Lee et al., 1994) and AnalyzeSkeleton (Arganda-Carreras et al., 2010) to generate measures 221 

of different morphology features including maximum branch length, average branch length, 222 

and numbers of end point voxels, junction voxels, triple points, branches, junctions, slab 223 

voxels, and quadruple points for every cell. MicrogliaMorphology saves these outputs as 224 

individual .csv files, which contain all skeleton measures for every individual cell in the 225 

dataset, marked by unique identifiers. Step 5 involves FracLac (Karperien, A., 1999), a 226 

plugin separate from MicrogliaMorphology which uses fractal analysis to measure 227 

additional morphology features including the width of bounding rectangle, maximum radius 228 

from hull9s center of mass, maximum span across hull, diameter of bounding circle, 229 

maximum radius from circle9s center of mass, perimeter, mean radius, mean radius from 230 

circle9s center of mass, area, foreground pixels, height of bounding rectangle, max/min radii 231 

from circle9s center of mass, relative variation (CV) in radii from circle9s center of mass, 232 

span ratio of hull (major/minor axis), max/min radii from hull9s center of mass, relative 233 

variation (CV) in radii from hull9s center of mass, density of foreground pixels in hull area, 234 

and circularity. Because FracLac is incompatible with the IJM language, it was not integrated 235 

into our MicrogliaMorphology macro and Step 5 must be completed using FracLac-specific 236 

user prompts and common parameters outlined in (Young & Morrison, 2018). Steps to batch 237 

process the single-cell images generated from MicrogliaMorphology using FracLac are 238 

written out in detail on our Github page for MicrogliaMorphology. Importantly, the unique 239 

identifiers for each cell are retained in the FracLac output, allowing for integration with the 240 

MicrogliaMorphology measures. The final AnalyzeSkeleton output from 241 

MicrogliaMorphology (Step 4) and FracLac (Step 5) are merged using 242 

MicrogliaMorphologyR to generate a final, master .csv file containing measures for 27 243 

different morphology features for every individual cell.  244 

 An additional feature within MicrogliaMorphology is the ColorByCluster feature, 245 

which allows the user to color the microglia cells in the original .tiff input images by their 246 

k-means cluster identification (see MicrogliaMorphologyR section below). This is a unique 247 

feature of MicrogliaMorphology that allows the user to visually validate their morphological 248 

clusters and gain insight into their spatial distribution in the brain. (Fig. 3E) All original 249 

input immunofluorescent .tiff images containing FASTMAP subregion ROIs, thresholded 250 
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images generated by MicrogliaMorphology, thresholded single cell images generated by 251 

MicrogliaMorphology, and all analysis code for the data presented in this paper will be 252 

available on the Open Science Framework (OSF) when the paper is published. Final, tidied 253 

up datasets that were used for analysis in this paper are included as part of 254 

MicrogliaMorphologyR and can be loaded with the package (data_1xLPS_mouse, 255 

data_2xLPS_mouse, data_2xLPS_mouse_fuzzykmeans, and data_ImageTypeComparison). 256 

 257 

MicrogliaMorphologyR  258 

 MicrogliaMorphologyR is an R package that wraps several existing packages 259 

including tidyverse, Hmisc, pheatmap, factoextra, lmerTest, lme4, Matrix, SciViews, 260 

ggpubr, glmmTMB, DHARMa, rstatix, and gridExtra. (Auguie, B., 2017; Bates, D. et al., 261 

2023; Bates et al., 2015; Brooks et al., 2017; Grosjean, P., 2022; Harrell Jr F, 2023; Hartig, 262 

F., 2022; Kassambara, A, 2020; Kassambara, A., 2023a, 2023b; Kolde R, 2019; Kuznetsova 263 

et al., 2017; Wickham et al., 2019) While our ImageJ macro, MicrogliaMorphology, 264 

facilitates the semi-automated measurement of 27 individual morphology features at a 265 

single-cell level, our complementary R package, MicrogliaMorphologyR, allows for 266 

analysis and visualization of this data to characterize microglia morphological states and 267 

gain insight into their relevance in experimental models. Functions within 268 

MicrogliaMorphologyR integrate correlation analyses and statistical modeling approaches 269 

and are used in conjunction with dimensionality reduction by principal components analysis 270 

and k-means clustering to characterize morphological states and quantify population shifts 271 

in the experimental model of choice. MicrogliaMorphologyR also includes exploratory data 272 

analysis functions to generate heatmap and boxplot visualizations of data in flexible ways 273 

including at the single-cell level, animal-level, and experimental condition-level. 274 

Furthermore, MicrogliaMorphologyR includes functions for generating quality control 275 

metrics on input data such as identifying values that dominate and disproportionately skew 276 

feature distributions, data normalization options, and performing linear mixed effects 277 

modeling, ANOVA, and other statistical analyses on the input dataset. All source code for 278 

MicrogliaMorphologyR and descriptions of functions can be found on Github at: 279 

https://github.com/ciernialab/MicrogliaMorphologyR. 280 

 281 

3 Results 282 

Morphology analysis toolset: ImageJ macro MicrogliaMorphology  283 

Using ImageJ plugins (Karperien, A., 1999; Young & Morrison, 2018), we have 284 

developed an accessible and user-friendly ImageJ tool, MicrogliaMorphology, that automates the 285 

characterization of a vast range of morphology features from hundreds to thousands of individual 286 

https://github.com/ciernialab/MicrogliaMorphologyR
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microglial cells. (Fig. 1A) We compiled the ImageJ code into an ImageJ macro format such that 287 

users can simply click through options for their morphology analysis and specify where to read and 288 

write files. The following steps are automated within the MicrogliaMorphology ImageJ macro such 289 

that users can easily perform morphology analysis by following user prompts within ImageJ. Briefly, 290 

immunofluorescence images are binarized, cleaned up to remove any background noise, and 291 

thresholded according to standard protocol (Young & Morrison, 2018) before individual cell images 292 

are created based on area measurements to exclude any artifacts that arise as a product of 2D image 293 

representation. The newly generated single-cell images are then used downstream as input for ImageJ 294 

plugins AnalyzeSkeleton (Arganda-Carreras et al., 2010) and FracLac (Karperien, A., 1999; 295 

Young & Morrison, 2018) (Fig. 1A) to measure 27 unique morphology features from individual 296 

cells in a high-throughput and semi-automated manner. (Fig. 1A) Importantly, 297 

MicrogliaMorphology saves the ROI coordinate information of each individual cell in the output file 298 

so that the user has the option of linking the individual cells back to their spatial locations in the 299 

original input images. We have enabled this option through the complementary ColorByCluster 300 

functions in MicrogliaMorphology and MicrogliaMorphologyR. 301 

As MicrogliaMorphology is wrapped around the ImageJ plugin FracLac (Karperien, A., 302 

1999), which can only handle 2D input, it is limited to the analysis of 2D images. While 3D 303 

reconstructions of microglia offer the benefit of finer-grained detail for morphology analysis, the size 304 

of the generated datasets and the time and resources necessary to construct and process such data 305 

limits the applicability of 3D measurements to smaller areas, inevitably making the analysis 306 

comparatively low-throughput. 2D image options include maximum projection Extended Depth of 307 

Focus (EDF) images, which only compile the pixels of highest intensity at any position in a z-stack 308 

to construct a new 2D image which preserves some 3D information, vs. individual 2D images 309 

sampled that only capture single-plane information. To assess how accurately microglial 310 

morphology is represented in 3D image forms as compared to 2D image forms (EDF, single-plane 311 

2D), we analyzed just the skeletal measures (Fig. 2E) from 20 individual microglial cells manually 312 

isolated from z-stack images of the hippocampus of female mice. AnalyzeSkeleton, one of the 313 

ImageJ plugins that MicrogliaMorphology is wrapped around, is able to measure skeletal features in 314 

both 2D and 3D, enabling direct comparisons across different image forms. 5 cells of each 315 

morphological type (ameboid, ramified, hypertrophic, rod-like) were manually classified and 316 

selected out from the original 3D z-stacks, from which EDF images were generated and 2D single-317 

plane images from the center of the stack were saved to create the test dataset.  318 

As expected, the raw values of all skeletal measures quantified decreased considerably when 319 

measured from 3D to either of the 2D image forms (Supp. Fig. 1A). While cells with more 320 

ramification and cell branching complexity (hypertrophic, ramified classes) were better captured in 321 

3D (Fig. 2A), relative differences in morphology across the four different forms were well conserved 322 

across image types (Fig. 2B). After dimensionality reduction, PC2, which mostly captured variability 323 
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described by the maximum branch length (Supp. Fig 1C), was highly correlated between 3D and 324 

EDF forms but not 3D and 2D forms (Fig. 2C, Supp. Fig. 1B). Cell branching complexity, as 325 

described by numbers of junctions, end point voxels, branches, slab voxels, and triple points, was 326 

highly correlated across image types (Fig. 2D, Supp. Fig. 1B). Although the number of junctions was 327 

also highly correlated across image types, junction voxels, or the numbers of actual pixels which 328 

make up the junctions, had low correlation scores when comparing 3D images with either of the 2D 329 

image types (Fig. 2D), which is unsurprising, as a 3D image would retain much more of this kind of 330 

information. Numbers of quadruple points, which would describe the most complex type of junction, 331 

was the least well-captured in 2D representations (Supp. Fig. 1B). As expected, these results together 332 

indicate that EDF images better retain 3D skeletal information than 2D forms do, but that relative 333 

differences between ameboid, hypertrophic, ramified, and rod-like morphologies are still maintained 334 

across image forms.   335 

 336 

Morphology analysis toolset: R package MicrogliaMorphologyR 337 

Once the 27 morphological features are measured from individual microglia using the 338 

MicrogliaMorphology ImageJ macro and FracLac, they are concatenated into a final output data file 339 

which can be analyzed further to gain insight into microglia morphology changes in any given 340 

experimental model. We have provided an R package, MicrogliaMorphologyR, which contains a set 341 

of functions that implement one set of approaches for such an analysis in R. Using 342 

MicrogliaMorphologyR, the user can conduct exploratory data analysis to generate visualizations of 343 

their own data in flexible ways including heatmaps of how morphological features vary across 344 

morphological clusters and boxplots of how morphological populations shift at the subject-level 345 

across treatment conditions. Functions within MicrogliaMorphologyR are used in conjunction with 346 

principal component analysis and  k-means clustering to gain further insight into microglia 347 

morphology features, classify individual cells by their morphological states, and allow for the 348 

quantification of morphological population shifts in experimental contexts. MicrogliaMorphologyR 349 

also includes functions for generating quality control metrics on input data such as identifying values 350 

that dominate and disproportionately skew feature distributions, data normalization options, visiually 351 

exploring different sources of variability in the dataset, and performing ANOVA analysis, linear 352 

mixed effects modeling, and other statistical analyses on the input dataset.  353 

 354 

Application to 2xLPS mouse dataset 355 

 To demonstrate the utility of MicrogliaMorphology and MicrogliaMorphologyR, we 356 

describe an experimental dataset collected from the brains of 8-week old Cx3cr1-GFP mice. Male 357 

and female mice were injected peripherally with 2 daily injections of vehicle or 0.5 mg/kg 358 

lipopolysaccharide (LPS), a major structural component of gram-negative bacteria that is commonly 359 

used to induce and study microglial responses in the brain. (Fig. 1B) To capture a diverse range of 360 
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microglia morphologies across multiple brain regions, we focused on profiling the frontal cortex, 361 

striatum, and hippocampus from 6 individual mice (n=3/treatment, n=2 females and 1 362 

male/treatment). Using MicrogliaMorphology, we were able to quantify 27 morphological features 363 

from a total of 43,332 individual microglial cells, which made up our input dataset for analysis.  364 

Within the pool of morphology measures, we defined distinct sets of highly correlated 365 

features that describe different aspects of morphology, including branching complexity, area and 366 

territory span, branch length, and cell shape. (Fig. 3A) Spearman correlation analysis across all 27 367 

features revealed that those which describe branching complexity (number of end point voxels, 368 

junction voxels, triple points, branches, junctions) were highly correlated to each other compared to 369 

the other features (Rg0.8; p<0.05). Similar correlations were observed for features that describe area 370 

and territory span (width of bounding rectangle, maximum radius from hull9s center of mass, 371 

maximum span across hull, diameter of bounding circle, maximum radius from circle9s center of 372 

mass, perimeter, mean radius, mean radius from circle9s center of mass, area, number of slab voxels, 373 

foreground pixels, height of bounding rectangle), branch length (maximum branch length, average 374 

branch length), and cell shape (max/min radii from bounding circle9s and hull9s center of mass, 375 

relative variation in radii from bounding circle9s and hull9s center of mass). As expected, cell 376 

circularity was highly negatively correlated (Rf-0.8; p<0.05) with span ratio of the bounding hull 377 

(major/minor axis), a measure whose higher value indicates greater cell oblongness (Fig. 3A). The 378 

relationships observed among the 27 morphology features were consistently captured in another LPS 379 

dataset collected under entirely different conditions (reversed light cycle, single 1.0 mg/kg LPS 380 

exposure, 24 hour collection time) (Supp. Fig. 3A)., demonstrating that MicrogliaMorphology is able 381 

to consistently and robustly capture different aspects of microglia morphology across experimental 382 

models.  383 

 384 

Dimensionality reduction and soft clustering 385 

 To define morphological states from our 27-feature dataset, we performed dimensionality 386 

reduction using principal component analysis followed by fuzzy k-means clustering on the first three 387 

principal components (PCs), which together explained 84.6% of the variability in the dataset (Supp. 388 

Fig. 2B). Spearman9s correlation of the first 3 PCs to the 27 features showed that each PC was 389 

differentially correlated to and described by different sets of morphology features (abs(R)g0.75; 390 

p<0.05) (Fig. 3B). PC1 was highly positively correlated to features describing branching complexity 391 

and territory span, meaning that individual cells with greater branching complexity or area had higher 392 

PC1 scores (Fig. 3B). PC1 was also highly positively correlated to density of foreground pixels in 393 

hull area, which describes a cell9s occupancy within its territory and can be a proxy for soma and/or 394 

branch thickness. Taking these correlations together, PC1 captured the variability in the dataset 395 

driven by branching complexity, territory span, and territory occupancy. In a similar manner, PC2 396 

captured variability driven by cell circularity and cell shape and PC3 captured variability driven by 397 
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average branch length (Fig. 3B). In line with our feature analysis (Fig. 3A, Supp. Fig. 3A), we also 398 

observed that the PCs were similarly described by the same distinct sets of features in the 1xLPS 399 

dataset (Supp. Fig. 3B). 400 

The first three PCs were used as input downstream for fuzzy k-means clustering (Cebeci, 401 

Z., 2019), a soft clustering method that is similar in concept and algorithm to k-means clustering, 402 

which partitions data points within a given dataset into defined numbers of clusters based on their 403 

proximity to the nearest cluster9s centroid. In fuzzy k-means, data points are not exclusively assigned 404 

to just one cluster, but rather given scores of membership to all clusters, allowing for 8fuzziness9 or 405 

overlap between two or more clusters. This allows for additional characterization of high-scoring 406 

cells within each cluster, cells with more ambiguous identities, and other cases that the user might be 407 

interested in, which might be informative to their specific dataset. Fuzzy k-means also assigns a final 408 

8hard9 cluster assignment based on the class with the highest membership score, which can be used 409 

as input for downstream analysis. These final cluster assignments were then used for the analysis of 410 

the 2xLPS mouse dataset in this paper, unless otherwise specified. Using exploratory data analysis 411 

methods including the within sum of squares and silhouette methods (Supp. Fig. 2C), we found that 412 

a clustering parameter of 4 yields the highest degree of within-cluster similarity and was thus the 413 

most optimal parameter to use for our example 2xLPS dataset. 414 

 415 

Cluster characterization and analysis 416 

 Once cluster membership was defined using k-means clustering, we further explored what 417 

features describe the different clusters (Fig. 3D) and how cells belonging to each cluster visually look 418 

using the ColorByCluster feature in MicrogliaMorphology (Fig. 3E). We recommend that users 419 

always perform these steps in addition to the initial clustering optimization steps (Supp. Fig. 2C) to 420 

verify that the clusters defined within their datasets are morphologically distinct and in line with 421 

expected differences in microglia morphology. We computed the average values for all 27 422 

morphology measures, scaled across clusters, to characterize how each morphological cluster was 423 

differentially defined by the various morphology measures relative to the other clusters (Fig. 3D). 424 

Cluster 1 had the lowest branching complexity and territory span, resembling the classic ameboid 425 

shape in the original images upon visual confirmation using the ColorByCluster feature in 426 

MicrogliaMorphology. Cluster 2 had the greatest oblongness and branching inhomogeneity, and 427 

resembled rod-like shapes; Cluster 3 had the highest branch lengths and density of foreground pixels 428 

in the hull with average territory span values relative to the other clusters and appeared hypertrophic; 429 

and Cluster 4 had the greatest branching complexity, territory span, and circularity, and appeared 430 

ramified. (Fig. 3D, Fig. 3E) Clusters 1 (ameboid), 2 (rod-like), and 4 (ramified) cells had relatively 431 

lower overlap in PC space with each other compared to Cluster 3 (hypertrophic) cells, which highly 432 

overlapped with Cluster 1 and Cluster 2 cells (Fig. 3C). This was expected, as hypertrophic cells 433 

represent a state between ameboid and rod-like forms on the morphological spectrum. (Fig. 3C, Fig. 434 
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3E). Clusters were similarly described by the different morphology measures in the independent 435 

1xLPS dataset (Supp. Fig. 3C-D), further pointing to MicrogliaMorphology and 436 

MicrogliaMorphologyR as a robust means to characterize and analyze microglia morphologies.  437 

 438 

Analysis of different microglia markers 439 

 To test for LPS-induced morphological population shifts at the subject-level, we first 440 

calculated the percentage of cells in each morphology cluster for every brain region and antibody 441 

separately for every mouse using the 8clusterpercentage9 function within MicrogliaMorphologyR. 442 

To assess how cluster membership changes with LPS treatment across brain regions, we fit a 443 

generalized linear mixed model using a beta distribution to model the percentage of cluster 444 

membership as a factor of Cluster identity, Treatment, and BrainRegion interactions with Antibody 445 

as a fixed effect and MouseID as a repeated measure ("percentage ~ 446 

Cluster*Treatment*BrainRegion + Antibody + (1|MouseID)") using the `stats_cluster.animal̀  447 

function from MicrogliaMorphologyR, which is wrapped around the glmmTMB R package (Brooks 448 

et al., 2017). (Supp. Info. 2) The beta distribution is suitable for values like percentages or 449 

probabilities that are constrained to a range of 0-1. 2-way Analysis of Deviance (Type II Wald 450 

chisquare tests) on the model revealed a main effect for Cluster, Treatment, and BrainRegion 451 

interactions, X2(6, n=6)=20.479, Pr(>Chisq)=0.002. There was no significant effect of Antibody 452 

(X2(2, n=6)=0.085, Pr(>Chisq)=0.959), and we analyzed the Iba1, Cx3cr1, and P2ry12-stained cells 453 

as 3 separate datasets. We first filtered for each individual antibody before fitting updated models 454 

using the `stats_cluster.animal  ̀ function (<percentage ~ Cluster*Treatment*BrainRegion + 455 

(1|MouseID)=) for each antibody separately. T-tests between Treatments (PBS vs. 2xLPS) were 456 

corrected for multiple comparisons across Clusters and BrainRegions using the Bonferroni method 457 

(significance at p<0.05, Bonferroni). Using our toolset, we were able to characterize morphological 458 

population shifts across brain regions using different microglial markers in our experimental mouse 459 

model. Across the frontal cortex, hippocampus, and striatum, LPS-induced changes in 460 

morphological cluster membership were more similar between Cx3cr1 and Iba1-stained datasets, 461 

compared to changes in the P2ry12-stained dataset. (Fig. 4A) As one example, in the frontal cortex 462 

for both Cx3cr1 and Iba1 datasets, the percentage of ameboid and ramified cells significantly 463 

decreased while the percentage of hypertrophic cells increased and there was no significant change 464 

in the proportion of rod-like cells, indicating a shift towards a hypertrophic state. (Fig. 4A, Supp. Info. 465 

2) In the frontal cortex for the P2ry12 dataset, ameboid cells decreased and hypertrophic cells 466 

increased, while there was no significant change in the proportions of ramified and rod-like cells 467 

between treatments. (Fig. 4A) Antibody-specific differences were also apparent upon examination 468 

of the immunofluorescent images for each of the antibodies, where in the baseline PBS condition, 469 

P2ry12 distribution was less concentrated in the cell bodies and more spread throughout the cell 470 

branches. (Fig. 4B)  471 
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 We also assessed how the 27 individual morphology measures change with LPS treatment 472 

by fitting a linear model to the measure values as a factor of Treatment and BrainRegion interactions 473 

with Antibody as a fixed effect (<Value ~ Treatment*BrainRegion + Antibody=). We fit this model 474 

for each morphology measure individually using the `stats_morphologymeasures.animal  ̀function 475 

from MicrogliaMorphologyR, which is wrapped around the l̀m  ̀function in R. We analyzed the 476 

Iba1, Cx3cr1, and P2ry12-stained cells as 3 separate datasets (Supp. Info. 2). T-tests between 477 

Treatments (PBS vs. 2xLPS) were corrected for multiple comparisons across BrainRegions using 478 

the Bonferroni method (significance at p<0.05, Bonferroni). Using our toolset, we were able to 479 

characterize changes in specific morphology measures across brain regions and microglial markers. 480 

Similar to the changes seen when analyzing LPS-induced shifts in morphological clusters, LPS-481 

induced changes in individual morphology measures were more similar between Cx3cr1-stained and 482 

Iba1-stained cells than with P2ry12-stained cells. (Fig. 4B-C) From the 27 measures, we highlight 3 483 

here 3 the number of junctions, area, and circularity of the cells. (Fig. 4C, Supp. Info. 2) Changes in 484 

cell circularity were maintained across all three microglial markers. P2ry12-stained cells showed 485 

LPS-induced increases in cell area in the hippocampus and striatum that were not evident in the Iba1 486 

and Cx3cr1-stained cells. LPS-induced decreases in the number of junctions in the frontal cortex and 487 

hippocampus were consistent between only the Cx3cr1 and Iba1-stained datasets, while P2ry12-488 

stained cells showed no differences across all brain regions. Taken together, our findings from both 489 

the cluster and morphology measure analyses show that Cx3cr1 and Iba1 are more consistent with 490 

each other than with P2ry12. Thus, it is important to keep these differences in mind when choosing 491 

microglia markers for morphology experiments, and to keep choices consistent within an experiment 492 

to avoid antibody-related artifacts and false positives.  493 

    494 

4 Discussion 495 

 496 
MicrogliaMorphology and MicrogliaMorphologyR, a high-throughput pipeline to 497 

characterize microglia morphological states at a single-cell resolution 498 

   Microglia exhibit a dynamic range of morphologies including ramified, ameboid, 499 

rod-like, and hypertrophic forms that are highly context-specific and often rapidly changing 500 

in response to local environmental cues. (Paolicelli et al., 2022; Reddaway et al., 2023; 501 

Savage et al., 2019) There has been a concerted effort as a field to move away from dualistic 502 

characterization of all microglia as 'resting' or 8activated9, which is often described in terms 503 

of morphological differences, and towards a clearer understanding and appreciation for the 504 

heterogenous 8states9 of microglia that co-exist in the brain in any given context. (Dubbelaar 505 

et al., 2018; Paolicelli et al., 2022) In line with these efforts, there have been many recently 506 

published tools that classify and analyze microglia morphological subpopulations in an 507 

automated and high-throughput manner. (Clarke et al., 2021; Colombo et al., 2022; Hrj et 508 
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al., 2023; Leyh et al., 2021; Reddaway et al., 2023; Salamanca et al., 2019; York et al., 2018)  509 

 Using our toolset, MicrogliaMorphology and MicrogliaMorphologyR, we take a data-510 

informed approach to characterize different populations of microglia morphologies and to 511 

statistically model how membership across all morphological states dynamically changes in 512 

experimental contexts and across brain regions in an automated and high-throughput 513 

manner, which offers a great advantage over more labor-intensive morphological approaches 514 

which employ manual categorizations of cells or assessment of individual measures of 515 

morphology rather than morphological states. (Torres-Platas et al., 2014; Young & 516 

Morrison, 2018) Furthermore, the ColorByCluster feature within MicrogliaMorphology and 517 

functions within MicrogliaMorphologyR facilitate comparisons of morphological measures 518 

across clusters and together provide a thorough validation for verifying cluster identities 519 

both visually and analytically compared to existing tools. We demonstrate that 520 

MicrogliaMorphology and MicrogliaMorphologyR are able to reproducibly detect both 521 

subtle and pronounced changes in microglia morphology and together provide a robust 522 

method to characterize morphological states across a wide range of experimental and disease 523 

models. While our dataset was too underpowered to quantify sex differences in morphology, 524 

our tool could be used to explore known sex differences in microglia in various contexts 525 

such as early brain development. (Sullivan & Ciernia, 2022)  526 

   Importantly, we made both MicrogliaMorphology and MicrogliaMorphologyR free 527 

and open source resources. Our toolset only relies on software that is open source and freely 528 

available to download and all relevant materials including input images, data, and supporting 529 

code used in this study will be available on the OSF website when the paper is published. 530 

We will also include all of the single-cell images that were generated for this study at the 531 

OSF link, which provides a unique, benchmarking dataset for researchers interested in 532 

applying other approaches such as machine learning methods to classify microglia 533 

morphology. The ImageJ and R code underlying both MicrogliaMorphology and 534 

MicrogliaMorphologyR are all available through Github repositories at 535 

https://github.com/ciernialab/MicrogliaMorphology and 536 

https://github.com/ciernialab/MicrogliaMorphologyR in the hopes that the larger research 537 

community can openly share troubleshooting tips, benefit from discussion, and continue to 538 

expand upon our work and develop our toolsets for broader use.  539 

Choice of markers affects morphology analysis 540 

Cx3cr1, Iba1, and P2ry12 are all antibody markers that are commonly used to visualize 541 

and study various aspects of microglia including morphology. Of these 3 markers, P2ry12 is the most 542 

microglia-specific, as both Cx3cr1 and Iba1 also label other macrophages. (Paolicelli et al., 2022) 543 

While all three of these markers can label microglia reliably in homeostatic conditions and are 544 

https://github.com/ciernialab/MicrogliaMorphology
https://github.com/ciernialab/MicrogliaMorphologyR


16 
 

considered 8homeostatic9 markers, their expression can change in disease-associated and 545 

inflammatory states. For instance, in a study (Kenkhuis et al., 2022) of co-expression patterns of 546 

microglia markers Iba1, P2ry12, and Tmem119, another microglia-specific antibody, in the brains 547 

of Alzheimer9s Disease patients, P2ry12 expression was lost in microglia surrounding amyloid-beta 548 

plaques, while Iba1 expression was increased in subsets of microglia and Tmem119 expression was 549 

generally lost across microglia. Peripheral macrophages have also been shown to infiltrate the blood 550 

brain barrier and enter the brain in disorders such as Parkinson9s Disease and Multiple Sclerosis 551 

(Prinz & Priller, 2017), which could complicate the analysis of morphology in datasets stained with 552 

non-specific markers such as Cx3cr1 and Iba1. Thus, careful consideration of morphological markers 553 

should be taken depending on the experimental context in which microglia are being studied. 554 

(Paolicelli et al., 2022) 555 

In our analyses of LPS-induced shifts in morphological populations and changes in 556 

individual morphology measures across three commonly used microglial markers 3 Cx3cr1, Iba1, 557 

and P2ry12 3 we found that P2ry12 showed unique differences in the percentage of morphological 558 

populations present across brain regions, the directionality of shifts across morphological 559 

populations, and the specific morphological features such as the number of junctions and cell area 560 

that change with LPS administration. (Fig. 4A, Fig. 4C, Supp. Info. 2) P2ry12 immunoflourescent 561 

signal was also more uniformly distributed throughout the entirety of the cell and less localized to the 562 

cell soma when compared to Cx3cr1 and Iba1-stained cells (Fig. 4B) (Paolicelli et al., 2022), making 563 

P2ry12-stained cells potentially more likely to be recognized as overlapping cells and consequently 564 

filtered out based on area during the thresholding and dataset optimization steps in 565 

MicrogliaMorphology. Thus, P2ry12-stained datasets may be better suited for analysis in 3D image 566 

types. If using MicrogliaMorphology for 2D P2ry12-stained images, the thresholded images and the 567 

single-cells extracted from these images should be carefully examined and compared to the original 568 

immunofluorescent images to ensure that the cells analyzed are accurately represented before 569 

proceeding with analysis and biological interpretation of results. 570 

 571 

Requirements of MicrogliaMorphology and MicrogliaMorphologyR 572 

 Our toolset requires the use of 2D image forms (Extended Depth of Focus or single-573 

plane 2D images) and depends on some user input to determine dataset-specific parameters 574 

for MicrogliaMorphology. Introductory skills coding in the R language are also necessary 575 

to be able to use MicrogliaMorphologyR and larger computational resources may be 576 

required for the analysis of larger datasets. However, many of these requirements exist for 577 

alternative approaches for morphology analysis that have been presented as well. 578 

Future directions  579 

To classify microglia by their morphological characteristics in any approach, hard 580 
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cut-offs are used to define where one class starts and the next begins. This type of binning 581 

of morphologies is limited in that microglia are inherently dynamic and more realistically 582 

exist along a continuum of morphological forms. To represent the dynamic nature of 583 

microglia morphology, we also demonstrate that MicrogliaMorphology and 584 

MicrogliaMorphologyR can be optionally integrated with a soft clustering approach using 585 

fuzzy k-means clustering, which is similar in concept and algorithm to k-means clustering. 586 

Soft clustering approaches such as fuzzy k-means clustering not only yield final cluster (or 587 

class) identities for every cell, but also membership scores of belonging to any given 588 

cluster. This allows for additional characterization of high-scoring cells within each cluster 589 

(i.e., quintessential 8rod-like9, 8ameboid9, 8hypertrophic9, or 8ramified9 cells), cells with 590 

more ambiguous identities (e.g., a cell that is 5% rod-like, 5% ameboid, 45% hypertrophic, 591 

and 45% ramified), and other cases that the user might be interested in which might be 592 

informative for their specific dataset. Fuzzy k-means also assigns a final hard cluster 593 

assignment for every cell based on the class with the highest membership score, so the user 594 

can also use these final assignments as input for downstream analysis. While we used the 595 

hard cluster assignments for the analysis in this paper, we provide an example of using the 596 

soft clustering assignments from fuzzy k-means to analyze just the high-scoring cells for 597 

each morphological class at the end of the Github page for MicrogliaMorphologyR. While 598 

we used k-means clustering approaches in this study, our toolset is highly flexible and can 599 

also be integrated with other clustering approaches such as hierarchical clustering or 600 

gaussian mixture models. 601 

Microglia have long been known as a highly heterogenous cell type as defined by 602 

their morphology, electrophysiological properties, transcriptomic profiles, and surface 603 

expression of immune markers. (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2020; 604 

Paolicelli et al., 2022) Context-specific regulation of morphology further emphasizes the 605 

need to probe microglial phenotypes from multiple angles in conjunction with morphology 606 

to gain more clarity on the relationship between microglial form and function. (Dubbelaar 607 

et al., 2018; Paolicelli et al., 2022) While the majority of studies of microglia morphology 608 

have yielded observational insights into the range of forms present in various contexts, only 609 

a few (Adrian et al., 2023; Madry et al., 2018, p. 1; Parakalan et al., 2012) have actually 610 

explored how different morphological states directly contribute to microglial function in 611 

the brain. The rise of single-cell sequencing technologies has provided vast new insight 612 

into the molecular mechanisms that shape heterogenous microglial responses and has 613 

granted us a better understanding of microglial 8states9 in homeostatic, developmental, and 614 

disease-relevant contexts (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2020). 615 

However, transcriptomic characterization alone does not capture the diversity of changes 616 

that microglia exhibit and we still lack a direct understanding of whether morphologically 617 
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different microglia populations are transcriptomically distinct. (Parakalan et al., 2012) is 618 

one such study that directly explored these relationships by identifying over 2000 619 

differentially expressed genes with unique sets of biological functions between ameboid 620 

and ramified microglia laser-dissected and pooled from rat brains. However, while it9s 621 

agreed upon that microglia exhibit a wide range of morphological forms across various 622 

biological contexts, it is still unclear whether we can transcriptomically define the 623 

heterogeneous morphological states that exist outside of the 8resting9 vs. 8activated9 624 

morphological dichotomy and in what ways these transcriptomic signatures relate to 625 

microglial function.  626 

The advent of spatially-resolved transcriptomics and development of methods for 627 

integrating multiple data modalities has opened new avenues to explore these relationships 628 

more directly. The ability to map morphologically-classified microglia back to their spatial 629 

locations in their original input images using the complementary ColorByCluster functions 630 

in MicrogliaMorphology and MicrogliaMorphologyR allows for not only the visual 631 

verification and exploration of morphological cluster identity across tissue sections, but 632 

also facilitates the direct integration of spatial transcriptomics data to morphological data 633 

at a cellular resolution. Our toolset serves as a resource that can complement new tools and 634 

approaches such as spatial transcriptomics to answer questions about the relationship 635 

between microglia morphology and microglia function more directly. 636 
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 658 

Figure Legends 659 

 660 
Figure 1: Study Overview. (A) Outline of steps involved in MicrogliaMorphology and 661 

MicrogliaMorphologyR. (B) Experimental mouse model used for dataset described 662 

throughout paper. Example images from dorsal hippocampus with individual microglia 663 

insets for each treatment condition. Microglia (Iba1) in yellow and DAPI nuclear stain in 664 

blue. Full size images scale bar 200um, insets 30um. 665 

 666 
Figure 2: Comparison of 3D vs. Extended Depth of Focus vs. Single-plane 2D image types. 667 

(A) Samples represented in Principal Components space and colored by image type or 668 

morphology class. Each point is either a 2D, 3D, or EDF representation of one of twenty 669 

different cells. (B) Comparison of changes across morphological classes when cells are 670 

represented in 2D, 3D, or EDF forms. Values on plots are z-scores (centered and scaled) 671 

calculated within image type. (C) Spearman9s correlation of PCs 1-2 after dimensionality 672 

reduction across image types. (D) Individual Pearson correlations between image types for 673 

specific morphology features measured using AnalyzeSkeleton. (E) Visual description of 674 

morphology features measured using AnalyzeSkeleton. 675 

 676 

Figure 3: Characterization of morphological clusters in 2xLPS dataset. (A) Spearman9s 677 

correlation matrix of 27 features measured by MicrogliaMorphology. (B) Spearman9s 678 

correlation of morphology measures to first 3 PCs after dimensionality reduction. (C) Cluster 679 

classes displayed in PCs 1-2 space. (D) Average values for all 27 morphology features, 680 

scaled across clusters. (E) Individual cells spatially registered back to original images and 681 

visually annotated by morphological class using ColorByCluster feature. 682 

 683 

Figure 4: Analysis of morphological clusters and individual morphology measures across 684 

brain regions and antibody markers in 2xLPS dataset. (A) LPS-induced shifts in 685 

morphological populations across brain regions and antibodies. (*p<0.05, Bonferroni) (B) 686 

Immunofluorescent images of the same microglial cells stained with Cx3cr1, Iba1, and 687 

P2ry12 in PBS and 2xLPS conditions. Scale bars are 50um (C) LPS-induced changes in 688 

individual morphology measures (number of junctions, area, circularity) across brain regions 689 

and antibodies. (*p<0.05, Bonferroni) 690 

 691 

Supplementary Figure 1: Extended comparison of 3D vs. 2D image types. (A) Changes in 692 
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the raw values of AnalyzeSkeleton measures across 3D, EDF, and 2D image types. Each 693 

line is an individual cell represented in 3D, EDF, and 2D. (B)  Individual Pearson9s 694 

correlations between image types for specific morphology features measured using 695 

AnalyzeSkeleton. (C) Spearman9s correlation of skeletal morphology measures to first 5 PCs 696 

after dimensionality reduction. 697 

 698 

Supplementary Figure 2: Extended analysis of 2xLPS dataset. (A) Cells from dataset 699 

visualized in PCs 1-2 space and colored by different experimental variables. (B) Elbow plot 700 

depicting percentage of the variance in dataset explained by each Principal Component. (C) 701 

LPS-induced shifts in morphological populations across subregions and antibodies.  702 

 703 

Supplementary Figure 3: Analysis of 1xLPS morphology measures and clusters. (A) 704 

Spearman9s correlation matrix of 27 features measured by MicrogliaMorphology. (B) 705 

Spearman9s correlation of morphology measures to first 3 PCs after dimensionality 706 

reduction. (C) Optimal k-means clustering parameters determined using within sum of 707 

squares and gap statistic techniques. Cluster classes displayed in PC space. (D) Average 708 

values for all 27 morphology features, scaled across clusters.  709 

 710 

Supplementary Information 1: Image Type Comparison analysis. Plots and underlying 711 

code used to generate Figure 2 and Supplementary Figure 1. 712 

 713 

Supplementary Information 2: 2xLPS dataset analysis. Plots, statistical analysis and 714 

results, and underlying code used to generate Figure 3, Figure 4, and Supplementary Figure 715 

2. 716 

 717 

Supplementary Information 3: 1xLPS dataset analysis. Plots and underlying code used to 718 

generate Supplementary Figure 3. 719 

 720 
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1xLPS: Correlation between PCs and features
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