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Abstract

As rapid responders to their environments, microglia engage in functions that are mirrored
by their cellular morphology. Microglia are classically thought to exhibit a ramified
morphology under homeostatic conditions which switches to an ameboid form during
inflammatory conditions. However, microglia display a wide spectrum of morphologies
outside of this dichotomy, including rod-like, ramified, ameboid, and hypertrophic states,
which have been observed across brain regions, neurodevelopmental timepoints, and
various pathological contexts. We used dimensionality reduction and clustering approaches
to consider contributions of multiple morphology measures together to define a spectrum
of microglial morphological states. Using ImageJ tools, we first developed a semi-
automated approach to characterize 27 morphology features from hundreds to thousands
of individual microglial cells in a brain subregion-specific manner. Within this pool of
morphology measures, we defined distinct sets of highly correlated features that describe
different aspects of morphology, including branch length, branching complexity, territory
span, and cell circularity. When considered together, these sets of features drove different
morphological clusters. Furthermore, our analysis toolset captured morphological states
similarly and robustly when applied to independent datasets and using different
immunofluorescent markers for microglia. We have compiled our morphology analysis
pipeline into an accessible, easy to use, and fully open-source ImageJ macro and R package
that the neuroscience community can expand upon and directly apply to their own analyses.
Outcomes from this work will supply the field with new tools to systematically evaluate
the heterogeneity of microglia morphological states across various experimental models
and research questions.

Key words: microglia, morphology, neuroimmunology, neuroscience

1 Introduction

Clinical and postmortem studies support a role for altered microglial function as a critical

component of multiple brain disorders, including Schizophrenia, Autism Spectrum Disorder, and
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Alzheimer’s Disease. (Hansen et al., 2018; Suzuki et al., 2013; Tetreault et al., 2012; Zhuo et al.,
2023) In addition to their resident immune functions, microglia play critical roles to establish and
maintain normal brain function including the regulation of neuronal cell number (Cunningham et al.,
2013), shaping of brain circuitry (Bialas & Stevens, 2013; Schwarz et al., 2012), and fine-tuning of
neuronal connections (Schafer et al., 2012; Wang et al., 2020; Zhan et al., 2014), processes that have
all been shown to be fundamentally disrupted in many brain disorders. (Hammond et al., 2018; Lenz
& Nelson, 2018) Microglia directly communicate with other cell types and modulate their function
by releasing and responding to various molecular substrates in the brain environment including
cytokines, chemokines, and neurotransmitters (Salvador et al., 2021). Thus, dysregulated microglial
responses can disrupt the homeostatic brain environment and normal communication across cell
types, ultimately altering brain function and behavior.

As rapid responders to their local environments, microglia exhibit a dynamic range of
phenotypes defined by multiple parameters including transcriptomic signatures (Hammond et al.,
2019; Lietal., 2019), epigenomic regulation (Ciernia et al., 2018; Meleady et al., 2023), and changes
in cellular morphology. Microglia are classically thought to engage in immune functions that are
mirrored in morphology, where homeostatic microglia exhibit a ramified morphology that switches
to an ameboid, unramified form in response to inflammatory signals in their environment. This
morphological switch is thought to allow for increased mobility to sites of infection or injury, efficient
phagocytosis, and release of cytokines into the microenvironment, all functions that are characteristic
of a “pro-inflammatory” state. However, a mechanistic link between reduced branching and
increased inflammatory function has only been shown recently, where increased P2RY12
potentiation of the THIK-1 channel caused decreased microglial ramifications and increased activity
of the I11b inflammasome in response to tissue damage (Madry et al., 2018, p. 1; Paolicelli et al.,
2022). Cdk1-mediated microtubule remodeling has also recently been shown to be required for
efficient cytokine trafficking and release and transformation of microglia from ramified to ameboid
forms after LPS exposure in vitro and in situ. (Adrian et al., 2023) In contrast, findings from other
studies display a reverse relationship, where ramified microglia have been shown to phagocytose
synapses during adult neurogenesis (Paolicelli et al., 2022; Sierra et al., 2010) and ameboid microglia
show reduced phagocytic capabilities in epilepsy (Abiega et al., 2016; Paolicelli et al., 2022). The
relationship between form and function is clearly not as dichotomous as historically thought, and
there has been an increasing effort in the field to move away from dualistic classification of microglial
function and towards a clearer understanding and appreciation of the heterogenous states of microglia
(Dubbelaar et al., 2018; Paolicelli et al., 2022).

Microglia morphology has been shown to be highly context and signal-dependent, displaying
various forms ranging from ameboid-like under inflammatory states to hyper-ramified in mouse
models of stress-induced depression, accelerated aging, and Alzheimer’s disease (Beynon & Walker,
2012; Hellwig et al., 2016; Madry et al., 2018; Raj et al., 2014). Subsets of microglial populations
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have also been shown to display rod-like morphologies characterized by long, thin processes
protruding from oval-shaped somas that retract neuron-adjacent planar processes in response to
diffuse brain injury (Taylor et al., 2014). Furthermore, microglia are highly motile and never truly
quiescent even in healthy conditions, constantly extending out protrusions to scan their environments
for pathogens and other harmful signals, as revealed by in vivo two-photon imaging studies of the
mouse brain (Bernier et al., 2020; Davalos et al., 2005; Nimmerjahn et al., 2005). Different
morphological forms have been observed to be conserved across species (Paolicelli et al., 2022) and
spatially distributed across brain regions, neurodevelopmental timepoints, and various pathological
contexts (Savage et al., 2019) . Microglial morphological forms including ramified, rod-like, reactive
or hypertrophic (rounder cell body with fewer and shorter processes) (Paolicelli et al., 2022), and
ameboid (less than two unramified processes) (Paolicelli et al., 2022) (Fig. 1B) have been commonly
observed in both humans and mice, and microglia have been shown to display similar dendritic
morphology across species. (Geirsdottir et al., 2019; Paolicelli et al., 2022)

Microglia morphology can be explained using various measures of branch length, branching
complexity, territory span, and cell circularity, which together comprise distinct sets of morphology
measures that are changing in conjunction with each other. Nevertheless, studies often selectively
report changes in individual features such as the number of branches or cell area alone, ultimately
depicting an incomplete or biased representation of changes in microglia morphology that fail to
capture true morphological states. Therefore, an analysis approach that considers contributions of all
feature measures together to explain various axes of morphology is necessary to gain a better
understanding of a microglia’s actual morphological state and relationship to cellular function. A
plethora of tools exist to analyze microglia morphology (Clarke et al., 2021; Salamanca et al., 2019;
York et al., 2018; Young & Morrison, 2018), but often involve significant effort to extract
meaningful information at a larger scale, as many approaches that allow for the analysis of
morphological information at a cellular resolution involve manually choosing and segmenting
individual cells within an image. This introduces a potential bias for which cells are selected and
vastly limits the feasible sample size for analysis. While there has been considerable progress in the
development of toolsets which automate these time-consuming steps, there has been less
development, transparency about, and availability of methods to analyze the resulting morphological
measures (Reddaway et al., 2023). The underlying code and datasets for the majority of published
toolsets are not openly available nor well-documented, further limiting the uptake and progression of
the most up-to-date toolsets by the larger research community. (Reddaway et al., 2023)

Here, we describe an accessible and open-source morphology analysis toolset:
MicrogliaMorphology (ImagelJ tool) and MicrogliaMorphologyR (R package), which supplies the
field with new tools to systematically evaluate the heterogeneity of microglia morphological states
by considering 27 different measures of microglia morphology. To demonstrate use cases for our

toolset, we characterized and analyzed microglia morphology in an experimental model of repeated
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immune stimulation by peripheral lipopolysaccharide (LPS) administration, a commonly used
model (H. Jung et al., 2023; Wendeln et al., 2018) which induced population shifts in the four major
classes of microglia morphology in our dataset: ramified, hypertrophic, ameboid, and rod-like.
Application of MicrogliaMorphology and MicrogliaMorphologyR by the scientific community will
yield novel insights into microglia morphology differences in the brain at a single-cell resolution and
in a spatially-resolved manner across various experimental models and research questions.
Additionally, the toolset is not limited to microglia morphology alone, but can also be applied in the

same way to characterize morphology of other cell types.

2 Materials and Methods

In vivo experiments

All experiments were conducted in accordance with the Canadian Council on Animal
Care guidelines, with approval from the University of British Columbia’s Animal Care
Committee. Mice were housed in groups of two to four on a regular 12-hr light/12-hr dark
cycle and all experiments were performed in regular light during the mouse’s regular light
cycle. CX3C motif chemokine receptor 1 (Cx3crl) is a commonly used microglial marker
that is expressed on microglia and other immune cells, and cells under control of the
endogenous Cx3crl locus express GFP (IMSR_JAX:005582). (S. Jung et al., 2000) 8-week
old male and female Cx3cr1-GFP mice bred on a C57BL/6J background (n=2 females and
1 male/condition) were intraperitoneally injected with 0.5 mg/kg lipopolysaccharide (LPS;
Lipopolysaccharides from E. coli O55:B5, Sigma-Aldrich L5418) or vehicle solution (PBS;
Phosphate buffered saline, Fisher BioReagents BP3991) once every 24 hours for 2 days.

1xLPS experiments (Supplementary Figure 3): Mice were housed in groups of two
to four on a reversed 12-hr light/12-hr dark cycle. Because mice are nocturnal animals, all
experiments were performed in red light during the mouse’s dark cycle when they are most
active. 8-week old male and female CS57BL/6J mice (n=2/sex/condition) were
intraperitoneally  injected once with 1.0 mg/kg lipopolysaccharide (LPS;
Lipopolysaccharides from E. coli O55:B5, Sigma-Aldrich L5418) or vehicle solution 1xPBS
(Phosphate buffered saline, Fisher BioReagents BP3991).

Tissue collection

3 hours (2xLPS experiments) or 24 hours (IXxLPS experiments) after the final
injection, mice were quickly anesthetized with isofluorane and transcardially perfused with
15ml of 1xPBS before brains were extracted for downstream immunohistochemistry
experiments. Extracted brains were immersion-fixed in 4% paraformaldehyde for 48 hours

before cryoprotecting in 30% sucrose for 48 hours prior to cryosectioning. Cryoprotected
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brains were then sectioned at 30um on the cryostat, collected in 1xPBS for long-term storage,

and processed for immunohistochemistry.

Immunohistochemistry

30um brain sections were immunofluorescently stained for various markers of
microglia: ionized calcium binding adaptor molecule 1 (Ibal) and/or purinergic receptor
P2Y12 (P2ry12) to analyze microglial morphology. Brain sections in the 1XLPS experiments
(Supp. Fig. 3) were stained with only Ibal and brain sections in the 2XLPS experiments were
stained with both Ibal and P2ry12. Free-floating brain sections were washed 3 times for 5
minutes each in 1xPBS, permeabilized in 1xPBS + .5% Triton (Fisher BioReagents BP151-
500) for 5 minutes, and incubated in blocking solution made of 1xPBS + .03% Triton + 1%
Bovine Serum Albumin (BSA; Bio-techne Tocris 5217) for 1 hour. After the blocking steps,
sections were incubated overnight at 4°C in primary antibody solution containing 2%
Normal Donkey Serum (NDS; Jackson Immunoresearch Laboratories Inc. 017-000-121) +
1xPBS + .03% Triton + primary antibodies (chicken anti-Ibal: 1:1000, Synaptic Systems
234 009; rabbit anti-P2RY12: 1:500, Anaspec AS-55043A). After primary antibody
incubation, sections were washed 3 times for 5 minutes each with 1xPBS + .03% Triton
before incubating for 2 hours in secondary solution containing 2% NDS + DAPI (1:1000;
Biolegend 422801) + secondary antibodies (Alexafluor 647 donkey anti-chicken: 1:500,
Jackson Immunoresearch Laboratories Inc. 703-605-155; Alexafluor 568 donkey anti-
rabbit: 1:500, Invitrogen A10042). Sections were washed 3 times for 5 minutes each with
1xPBS + .03% Triton before being transferred into 1xPBS for temporary storage before
mounting. Sections were mounted onto microscope slides (Premium Superfrost Plus
Microscrope Slides, VWR CA48311-703) and air dried before being coverslipped with
mounting media (ProLong Glass Antifade Mountant, Invitrogen P36980; 24x60mm 1.5H
High Performance Coverslips, Marienfield 0107242).

Imaging

All mounted brain sections were imaged on the ZEISS Axioscan 7 microscope slide
scanner at 20x magnification with a step-size of 0.5um using the z-stack acquisition
parameters within the imaging software (ZEISS ZEN 3.7). During image acquisition,
Extended Depth of Focus (EDF) images were created using maximum projection settings
and saved as the outputs in the final .czi files. Maximum projection EDF images only
compile the pixels of highest intensity at any given position in a z-stack to construct a new
2D image which retains the 3D information. Using ImageJ, we created .tiff images of each
fluorescent channel from .czi files and selected and saved .tiffs of brain regions of interest

(ROIs) to use as input for downstream morphological analysis in MicrogliaMorphology and
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MicrogliaMorphologyR. We focused our analyses on multiple brain regions including the
hippocampus, frontal cortex, and striatum, as well as subregions within them. Images of
coronal brain sections containing these regions were aligned to the Allen Brain Atlas
(mouse.brain-map.org) (Pinskiy et al., 2015) using the ImageJ macro FASTMAP (Terstege
et al., 2022).

MicrogliaMorphology

MicrogliaMorphology is designed to be a user-friendly Image] macro that wraps
around existing Image] plugins AnalyzeParticles, Skeletonize (2D/3D), and
AnalyzeSkeleton, and is written using the ImageJ macro (IJM) language. (Schneider et al.,
2012) All supporting code for MicrogliaMorphology is available on Github at

https://github.com/ciernialab/MicrogliaMorphology and a detailed video tutorial which

includes  relevant troubleshooting steps is available on  Youtube at

https://www.youtube.com/watch?v=YhLCdIFLzk8. After MicrogliaMorphology is installed

into the user’s ImageJ plugins folder as described in the Github repository, it will appear in
the Plugins dropdown menu from the ImageJ toolbar, where it can be clicked on to begin the
user prompts. In Step 1, users are be prompted to measure dataset-specific parameters, which
are critical because every imaging dataset is prepared and acquired differently, and thus
requires user input to determine what parameters most appropriately and accurately capture
microglia morphology within individual datasets. Image thresholding parameters including
the method and radius considered for auto local thresholding are important to determine the
most appropriate thresholding method which captures full, single microglial cells without
losing branching connectivity. Area ranges that accurately describe single microglial cells
are important to exclude any artifacts of 2D representation in the EDFs such as cell particles
and incomplete cells or multiple cells that are overlapping. Dataset-specific image
thresholding and cell area parameters determined by these initial steps are then called to
within the macro to inform downstream steps of MicrogliaMorphology. In the subsequent
steps, the only user input involves following prompts to select input folders to call from and
output folders to write to, with the option of batch-processing. All protocols, computation,
and analysis described below have been written to be automated within
MicrogliaMorphology, unless otherwise specified.

Step 2 after determining dataset-specific parameters is thresholding input .tiff
fluorescent images. MicrogliaMorphology cleans up and thresholds input images according
to standard protocol (Young & Morrison, 2018): images are binarized and converted to
grayscale before the brightness and contrast are enhanced, unsharp mask filter applied to
clarify existing detail, despeckle function applied to remove noise, and auto local or auto

thresholding applied. Then, a second despeckle step is applied before dilation and connection
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steps are applied to connect branches, after which outliers are removed. The final images are
then used as input for Step 3, which uses AnalyzeParticles and ROI manager functions to
create and save new images of single-cells which pass the area criteria specified in Step 1.
Generation of single-cell images in this step allows for the measurement of morphology
measures at an unprecedented cellular resolution from hundreds to thousands of different
microglia cells, each with unique identifiers.

The single-cell images are used as input for Step 4, which uses Skeletonize (2D/3D)
(Lee et al., 1994) and AnalyzeSkeleton (Arganda-Carreras et al., 2010) to generate measures
of different morphology features including maximum branch length, average branch length,
and numbers of end point voxels, junction voxels, triple points, branches, junctions, slab
voxels, and quadruple points for every cell. MicrogliaMorphology saves these outputs as
individual .csv files, which contain all skeleton measures for every individual cell in the
dataset, marked by unique identifiers. Step 5 involves FracLac (Karperien, A., 1999), a
plugin separate from MicrogliaMorphology which uses fractal analysis to measure
additional morphology features including the width of bounding rectangle, maximum radius
from hull’s center of mass, maximum span across hull, diameter of bounding circle,
maximum radius from circle’s center of mass, perimeter, mean radius, mean radius from
circle’s center of mass, area, foreground pixels, height of bounding rectangle, max/min radii
from circle’s center of mass, relative variation (CV) in radii from circle’s center of mass,
span ratio of hull (major/minor axis), max/min radii from hull’s center of mass, relative
variation (CV) in radii from hull’s center of mass, density of foreground pixels in hull area,
and circularity. Because FracLac is incompatible with the IJM language, it was not integrated
into our MicrogliaMorphology macro and Step 5 must be completed using FracLac-specific
user prompts and common parameters outlined in (Young & Morrison, 2018). Steps to batch
process the single-cell images generated from MicrogliaMorphology using FracLac are
written out in detail on our Github page for MicrogliaMorphology. Importantly, the unique
identifiers for each cell are retained in the FracLac output, allowing for integration with the
MicrogliaMorphology ~ measures. The final  AnalyzeSkeleton output from
MicrogliaMorphology (Step 4) and FracLac (Step 5) are merged using
MicrogliaMorphologyR to generate a final, master .csv file containing measures for 27
different morphology features for every individual cell.

An additional feature within MicrogliaMorphology is the ColorByCluster feature,
which allows the user to color the microglia cells in the original .tiff input images by their
k-means cluster identification (see MicrogliaMorphologyR section below). This is a unique
feature of MicrogliaMorphology that allows the user to visually validate their morphological
clusters and gain insight into their spatial distribution in the brain. (Fig. 3E) All original
input immunofluorescent .tiff images containing FASTMAP subregion ROIs, thresholded
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images generated by MicrogliaMorphology, thresholded single cell images generated by
MicrogliaMorphology, and all analysis code for the data presented in this paper will be
available on the Open Science Framework (OSF) when the paper is published. Final, tidied
up datasets that were used for analysis in this paper are included as part of
MicrogliaMorphologyR and can be loaded with the package (data 1xLPS mouse,
data 2xLPS mouse, data 2xLPS mouse fuzzykmeans, and data ImageTypeComparison).

MicrogliaMorphologyR

MicrogliaMorphologyR is an R package that wraps several existing packages
including tidyverse, Hmisc, pheatmap, factoextra, lmerTest, Ime4, Matrix, SciViews,
ggpubr, glmmTMB, DHARMa, rstatix, and gridExtra. (Auguie, B., 2017; Bates, D. et al.,
2023; Bates et al., 2015; Brooks et al., 2017; Grosjean, P., 2022; Harrell Jr F, 2023; Hartig,
F., 2022; Kassambara, A, 2020; Kassambara, A., 2023a, 2023b; Kolde R, 2019; Kuznetsova
et al,, 2017; Wickham et al., 2019) While our ImageJ macro, MicrogliaMorphology,
facilitates the semi-automated measurement of 27 individual morphology features at a
single-cell level, our complementary R package, MicrogliaMorphologyR, allows for
analysis and visualization of this data to characterize microglia morphological states and
gain insight into their relevance in experimental models. Functions within
MicrogliaMorphologyR integrate correlation analyses and statistical modeling approaches
and are used in conjunction with dimensionality reduction by principal components analysis
and k-means clustering to characterize morphological states and quantify population shifts
in the experimental model of choice. MicrogliaMorphologyR also includes exploratory data
analysis functions to generate heatmap and boxplot visualizations of data in flexible ways
including at the single-cell level, animal-level, and experimental condition-level.
Furthermore, MicrogliaMorphologyR includes functions for generating quality control
metrics on input data such as identifying values that dominate and disproportionately skew
feature distributions, data normalization options, and performing linear mixed effects
modeling, ANOVA, and other statistical analyses on the input dataset. All source code for
MicrogliaMorphologyR and descriptions of functions can be found on Github at:
https://github.com/ciernialab/MicrogliaMorphologyR.

3 Results

Morphology analysis toolset: ImageJ macro MicrogliaMorphology
Using ImageJ plugins (Karperien, A., 1999; Young & Morrison, 2018), we have
developed an accessible and user-friendly ImagelJ tool, MicrogliaMorphology, that automates the

characterization of a vast range of morphology features from hundreds to thousands of individual
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microglial cells. (Fig. 1A) We compiled the ImageJ code into an ImageJ macro format such that
users can simply click through options for their morphology analysis and specify where to read and
write files. The following steps are automated within the MicrogliaMorphology ImageJ macro such
that users can easily perform morphology analysis by following user prompts within Imagel. Briefly,
immunofluorescence images are binarized, cleaned up to remove any background noise, and
thresholded according to standard protocol (Young & Morrison, 2018) before individual cell images
are created based on area measurements to exclude any artifacts that arise as a product of 2D image
representation. The newly generated single-cell images are then used downstream as input for ImageJ
plugins AnalyzeSkeleton (Arganda-Carreras et al., 2010) and FracLac (Karperien, A., 1999;
Young & Morrison, 2018) (Fig. 1A) to measure 27 unique morphology features from individual
cells in a high-throughput and semi-automated manner. (Fig. 1A) Importantly,
MicrogliaMorphology saves the ROI coordinate information of each individual cell in the output file
so that the user has the option of linking the individual cells back to their spatial locations in the
original input images. We have enabled this option through the complementary ColorByCluster
functions in MicrogliaMorphology and MicrogliaMorphologyR.

As MicrogliaMorphology is wrapped around the ImageJ plugin FracLac (Karperien, A.,
1999), which can only handle 2D input, it is limited to the analysis of 2D images. While 3D
reconstructions of microglia offer the benefit of finer-grained detail for morphology analysis, the size
of the generated datasets and the time and resources necessary to construct and process such data
limits the applicability of 3D measurements to smaller areas, inevitably making the analysis
comparatively low-throughput. 2D image options include maximum projection Extended Depth of
Focus (EDF) images, which only compile the pixels of highest intensity at any position in a z-stack
to construct a new 2D image which preserves some 3D information, vs. individual 2D images
sampled that only capture single-plane information. To assess how accurately microglial
morphology is represented in 3D image forms as compared to 2D image forms (EDF, single-plane
2D), we analyzed just the skeletal measures (Fig. 2E) from 20 individual microglial cells manually
isolated from z-stack images of the hippocampus of female mice. AnalyzeSkeleton, one of the
ImageJ plugins that MicrogliaMorphology is wrapped around, is able to measure skeletal features in
both 2D and 3D, enabling direct comparisons across different image forms. 5 cells of each
morphological type (ameboid, ramified, hypertrophic, rod-like) were manually classified and
selected out from the original 3D z-stacks, from which EDF images were generated and 2D single-
plane images from the center of the stack were saved to create the test dataset.

As expected, the raw values of all skeletal measures quantified decreased considerably when
measured from 3D to either of the 2D image forms (Supp. Fig. 1A). While cells with more
ramification and cell branching complexity (hypertrophic, ramified classes) were better captured in
3D (Fig. 2A), relative differences in morphology across the four different forms were well conserved

across image types (Fig. 2B). After dimensionality reduction, PC2, which mostly captured variability



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

1(

described by the maximum branch length (Supp. Fig 1C), was highly correlated between 3D and
EDF forms but not 3D and 2D forms (Fig. 2C, Supp. Fig. 1B). Cell branching complexity, as
described by numbers of junctions, end point voxels, branches, slab voxels, and triple points, was
highly correlated across image types (Fig. 2D, Supp. Fig. 1B). Although the number of junctions was
also highly correlated across image types, junction voxels, or the numbers of actual pixels which
make up the junctions, had low correlation scores when comparing 3D images with either of the 2D
image types (Fig. 2D), which is unsurprising, as a 3D image would retain much more of this kind of
information. Numbers of quadruple points, which would describe the most complex type of junction,
was the least well-captured in 2D representations (Supp. Fig. 1B). As expected, these results together
indicate that EDF images better retain 3D skeletal information than 2D forms do, but that relative
differences between ameboid, hypertrophic, ramified, and rod-like morphologies are still maintained

across image forms.

Morphology analysis toolset: R package MicrogliaMorphologyR

Once the 27 morphological features are measured from individual microglia using the
MicrogliaMorphology ImageJ macro and FracLac, they are concatenated into a final output data file
which can be analyzed further to gain insight into microglia morphology changes in any given
experimental model. We have provided an R package, MicrogliaMorphologyR, which contains a set
of functions that implement one set of approaches for such an analysis in R. Using
MicrogliaMorphologyR, the user can conduct exploratory data analysis to generate visualizations of
their own data in flexible ways including heatmaps of how morphological features vary across
morphological clusters and boxplots of how morphological populations shift at the subject-level
across treatment conditions. Functions within MicrogliaMorphologyR are used in conjunction with
principal component analysis and k-means clustering to gain further insight into microglia
morphology features, classify individual cells by their morphological states, and allow for the
quantification of morphological population shifts in experimental contexts. MicrogliaMorphologyR
also includes functions for generating quality control metrics on input data such as identifying values
that dominate and disproportionately skew feature distributions, data normalization options, visiually
exploring different sources of variability in the dataset, and performing ANOVA analysis, linear
mixed effects modeling, and other statistical analyses on the input dataset.

Application to 2xLPS mouse dataset

To demonstrate the utility of MicrogliaMorphology and MicrogliaMorphologyR, we
describe an experimental dataset collected from the brains of 8-week old Cx3cr1-GFP mice. Male
and female mice were injected peripherally with 2 daily injections of vehicle or 0.5 mg/kg
lipopolysaccharide (LPS), a major structural component of gram-negative bacteria that is commonly

used to induce and study microglial responses in the brain. (Fig. 1B) To capture a diverse range of
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microglia morphologies across multiple brain regions, we focused on profiling the frontal cortex,
striatum, and hippocampus from 6 individual mice (n=3/treatment, n=2 females and 1
male/treatment). Using MicrogliaMorphology, we were able to quantify 27 morphological features
from a total of 43,332 individual microglial cells, which made up our input dataset for analysis.
Within the pool of morphology measures, we defined distinct sets of highly correlated
features that describe different aspects of morphology, including branching complexity, area and
territory span, branch length, and cell shape. (Fig. 3A) Spearman correlation analysis across all 27
features revealed that those which describe branching complexity (number of end point voxels,
Jjunction voxels, triple points, branches, junctions) were highly correlated to each other compared to
the other features (R>0.8; p<0.05). Similar correlations were observed for features that describe area
and territory span (width of bounding rectangle, maximum radius from hull’s center of mass,
maximum span across hull, diameter of bounding circle, maximum radius from circle’s center of
mass, perimeter, mean radius, mean radius from circle’s center of mass, area, number of slab voxels,
foreground pixels, height of bounding rectangle), branch length (maximum branch length, average
branch length), and cell shape (max/min radii from bounding circle’s and hull’s center of mass,
relative variation in radii from bounding circle’s and hull’s center of mass). As expected, cell
circularity was highly negatively correlated (R<-0.8; p<0.05) with span ratio of the bounding hull
(major/minor axis), a measure whose higher value indicates greater cell oblongness (Fig. 3A). The
relationships observed among the 27 morphology features were consistently captured in another LPS
dataset collected under entirely different conditions (reversed light cycle, single 1.0 mg/kg LPS
exposure, 24 hour collection time) (Supp. Fig. 3A)., demonstrating that MicrogliaMorphology is able
to consistently and robustly capture different aspects of microglia morphology across experimental

models.

Dimensionality reduction and soft clustering

To define morphological states from our 27-feature dataset, we performed dimensionality
reduction using principal component analysis followed by fuzzy k-means clustering on the first three
principal components (PCs), which together explained 84.6% of the variability in the dataset (Supp.
Fig. 2B). Spearman’s correlation of the first 3 PCs to the 27 features showed that each PC was
differentially correlated to and described by different sets of morphology features (abs(R)>0.75;
p<0.05) (Fig. 3B). PC1 was highly positively correlated to features describing branching complexity
and territory span, meaning that individual cells with greater branching complexity or area had higher
PC1 scores (Fig. 3B). PC1 was also highly positively correlated to density of foreground pixels in
hull area, which describes a cell’s occupancy within its territory and can be a proxy for soma and/or
branch thickness. Taking these correlations together, PC1 captured the variability in the dataset
driven by branching complexity, territory span, and territory occupancy. In a similar manner, PC2

captured variability driven by cell circularity and cell shape and PC3 captured variability driven by
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average branch length (Fig. 3B). In line with our feature analysis (Fig. 3A, Supp. Fig. 3A), we also
observed that the PCs were similarly described by the same distinct sets of features in the 1xLPS
dataset (Supp. Fig. 3B).

The first three PCs were used as input downstream for fuzzy k-means clustering (Cebeci,
Z.,2019), a soft clustering method that is similar in concept and algorithm to k-means clustering,
which partitions data points within a given dataset into defined numbers of clusters based on their
proximity to the nearest cluster’s centroid. In fuzzy k-means, data points are not exclusively assigned
to just one cluster, but rather given scores of membership to all clusters, allowing for ‘fuzziness’ or
overlap between two or more clusters. This allows for additional characterization of high-scoring
cells within each cluster, cells with more ambiguous identities, and other cases that the user might be
interested in, which might be informative to their specific dataset. Fuzzy k-means also assigns a final
‘hard’ cluster assignment based on the class with the highest membership score, which can be used
as input for downstream analysis. These final cluster assignments were then used for the analysis of
the 2xLPS mouse dataset in this paper, unless otherwise specified. Using exploratory data analysis
methods including the within sum of squares and silhouette methods (Supp. Fig. 2C), we found that
a clustering parameter of 4 yields the highest degree of within-cluster similarity and was thus the
most optimal parameter to use for our example 2xLPS dataset.

Cluster characterization and analysis

Once cluster membership was defined using k-means clustering, we further explored what
features describe the different clusters (Fig. 3D) and how cells belonging to each cluster visually look
using the ColorByCluster feature in MicrogliaMorphology (Fig. 3E). We recommend that users
always perform these steps in addition to the initial clustering optimization steps (Supp. Fig. 2C) to
verify that the clusters defined within their datasets are morphologically distinct and in line with
expected differences in microglia morphology. We computed the average values for all 27
morphology measures, scaled across clusters, to characterize how each morphological cluster was
differentially defined by the various morphology measures relative to the other clusters (Fig. 3D).
Cluster 1 had the lowest branching complexity and territory span, resembling the classic ameboid
shape in the original images upon visual confirmation using the ColorByCluster feature in
MicrogliaMorphology. Cluster 2 had the greatest oblongness and branching inhomogeneity, and
resembled rod-like shapes; Cluster 3 had the highest branch lengths and density of foreground pixels
in the hull with average territory span values relative to the other clusters and appeared hypertrophic;
and Cluster 4 had the greatest branching complexity, territory span, and circularity, and appeared
ramified. (Fig. 3D, Fig. 3E) Clusters 1 (ameboid), 2 (rod-like), and 4 (ramified) cells had relatively
lower overlap in PC space with each other compared to Cluster 3 (hypertrophic) cells, which highly
overlapped with Cluster 1 and Cluster 2 cells (Fig. 3C). This was expected, as hypertrophic cells
represent a state between ameboid and rod-like forms on the morphological spectrum. (Fig. 3C, Fig.
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3E). Clusters were similarly described by the different morphology measures in the independent
IXLPS dataset (Supp. Fig. 3C-D), further pointing to MicrogliaMorphology and

MicrogliaMorphologyR as a robust means to characterize and analyze microglia morphologies.

Analysis of different microglia markers

To test for LPS-induced morphological population shifts at the subject-level, we first
calculated the percentage of cells in each morphology cluster for every brain region and antibody
separately for every mouse using the ‘clusterpercentage’ function within MicrogliaMorphologyR.
To assess how cluster membership changes with LPS treatment across brain regions, we fit a
generalized linear mixed model using a beta distribution to model the percentage of cluster
membership as a factor of Cluster identity, Treatment, and BrainRegion interactions with Antibody
as a fixed effect and MouseID as a repeated measure ("percentage ~
Cluster*Treatment*BrainRegion + Antibody + (1|MouselD)") using the ‘stats cluster.animal’
function from MicrogliaMorphologyR, which is wrapped around the glmmTMB R package (Brooks
et al., 2017). (Supp. Info. 2) The beta distribution is suitable for values like percentages or
probabilities that are constrained to a range of 0-1. 2-way Analysis of Deviance (Type II Wald
chisquare tests) on the model revealed a main effect for Cluster, Treatment, and BrainRegion
interactions, X*(6, n=6)=20.479, Pr(>Chisq)=0.002. There was no significant effect of Antibody
(X*4(2, n=6)=0.085, Pr(>Chisq)=0.959), and we analyzed the Ibal, Cx3cr1, and P2ry12-stained cells
as 3 separate datasets. We first filtered for each individual antibody before fitting updated models
using the ‘stats cluster.animal’ function (“percentage ~ Cluster*Treatment*BrainRegion +
(IMouselD)”) for each antibody separately. T-tests between Treatments (PBS vs. 2xLPS) were
corrected for multiple comparisons across Clusters and BrainRegions using the Bonferroni method
(significance at p<0.05, Bonferroni). Using our toolset, we were able to characterize morphological
population shifts across brain regions using different microglial markers in our experimental mouse
model. Across the frontal cortex, hippocampus, and striatum, LPS-induced changes in
morphological cluster membership were more similar between Cx3crl and Ibal-stained datasets,
compared to changes in the P2ry12-stained dataset. (Fig. 4A) As one example, in the frontal cortex
for both Cx3crl and Ibal datasets, the percentage of ameboid and ramified cells significantly
decreased while the percentage of hypertrophic cells increased and there was no significant change
in the proportion of rod-like cells, indicating a shift towards a hypertrophic state. (Fig. 4A, Supp. Info.
2) In the frontal cortex for the P2ryl2 dataset, ameboid cells decreased and hypertrophic cells
increased, while there was no significant change in the proportions of ramified and rod-like cells
between treatments. (Fig. 4A) Antibody-specific differences were also apparent upon examination
of the immunofluorescent images for each of the antibodies, where in the baseline PBS condition,
P2ry12 distribution was less concentrated in the cell bodies and more spread throughout the cell
branches. (Fig. 4B)
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We also assessed how the 27 individual morphology measures change with LPS treatment
by fitting a linear model to the measure values as a factor of Treatment and BrainRegion interactions
with Antibody as a fixed effect (“Value ~ Treatment*BrainRegion + Antibody”). We fit this model
for each morphology measure individually using the “stats morphologymeasures.animal’ function
from MicrogliaMorphologyR, which is wrapped around the "Im" function in R. We analyzed the
Ibal, Cx3crl, and P2ryl2-stained cells as 3 separate datasets (Supp. Info. 2). T-tests between
Treatments (PBS vs. 2xLPS) were corrected for multiple comparisons across BrainRegions using
the Bonferroni method (significance at p<0.05, Bonferroni). Using our toolset, we were able to
characterize changes in specific morphology measures across brain regions and microglial markers.
Similar to the changes seen when analyzing LPS-induced shifts in morphological clusters, LPS-
induced changes in individual morphology measures were more similar between Cx3crl-stained and
Ibal-stained cells than with P2ry12-stained cells. (Fig. 4B-C) From the 27 measures, we highlight 3
here — the number of junctions, area, and circularity of the cells. (Fig. 4C, Supp. Info. 2) Changes in
cell circularity were maintained across all three microglial markers. P2ry12-stained cells showed
LPS-induced increases in cell area in the hippocampus and striatum that were not evident in the Ibal
and Cx3crl-stained cells. LPS-induced decreases in the number of junctions in the frontal cortex and
hippocampus were consistent between only the Cx3crl and Ibal-stained datasets, while P2ry12-
stained cells showed no differences across all brain regions. Taken together, our findings from both
the cluster and morphology measure analyses show that Cx3crl and Ibal are more consistent with
each other than with P2ry12. Thus, it is important to keep these differences in mind when choosing
microglia markers for morphology experiments, and to keep choices consistent within an experiment

to avoid antibody-related artifacts and false positives.

4 Discussion

MicrogliaMorphology and MicrogliaMorphologyR, a high-throughput pipeline to
characterize microglia morphological states at a single-cell resolution
Microglia exhibit a dynamic range of morphologies including ramified, ameboid,

rod-like, and hypertrophic forms that are highly context-specific and often rapidly changing
in response to local environmental cues. (Paolicelli et al., 2022; Reddaway et al., 2023;
Savage et al., 2019) There has been a concerted effort as a field to move away from dualistic
characterization of all microglia as 'resting' or ‘activated’, which is often described in terms
of morphological differences, and towards a clearer understanding and appreciation for the
heterogenous ‘states’ of microglia that co-exist in the brain in any given context. (Dubbelaar
et al., 2018; Paolicelli et al., 2022) In line with these efforts, there have been many recently
published tools that classify and analyze microglia morphological subpopulations in an

automated and high-throughput manner. (Clarke et al., 2021; Colombo et al., 2022; Hrj et
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al.,2023; Leyh et al., 2021; Reddaway et al., 2023; Salamanca et al., 2019; York et al., 2018)

Using our toolset, MicrogliaMorphology and MicrogliaMorphologyR, we take a data-
informed approach to characterize different populations of microglia morphologies and to
statistically model how membership across all morphological states dynamically changes in
experimental contexts and across brain regions in an automated and high-throughput
manner, which offers a great advantage over more labor-intensive morphological approaches
which employ manual categorizations of cells or assessment of individual measures of
morphology rather than morphological states. (Torres-Platas et al., 2014; Young &
Morrison, 2018) Furthermore, the ColorByCluster feature within MicrogliaMorphology and
functions within MicrogliaMorphologyR facilitate comparisons of morphological measures
across clusters and together provide a thorough validation for verifying cluster identities
both visually and analytically compared to existing tools. We demonstrate that
MicrogliaMorphology and MicrogliaMorphologyR are able to reproducibly detect both
subtle and pronounced changes in microglia morphology and together provide a robust
method to characterize morphological states across a wide range of experimental and disease
models. While our dataset was too underpowered to quantify sex differences in morphology,
our tool could be used to explore known sex differences in microglia in various contexts
such as early brain development. (Sullivan & Ciernia, 2022)

Importantly, we made both MicrogliaMorphology and MicrogliaMorphologyR free
and open source resources. Our toolset only relies on software that is open source and freely
available to download and all relevant materials including input images, data, and supporting
code used in this study will be available on the OSF website when the paper is published.
We will also include all of the single-cell images that were generated for this study at the
OSF link, which provides a unique, benchmarking dataset for researchers interested in
applying other approaches such as machine learning methods to classify microglia
morphology. The Image] and R code underlying both MicrogliaMorphology and
MicrogliaMorphologyR  are all  available through  Github repositories at
https://github.com/ciernialab/MicrogliaMorphology and

https://github.com/ciernialab/MicrogliaMorphologyR in the hopes that the larger research

community can openly share troubleshooting tips, benefit from discussion, and continue to

expand upon our work and develop our toolsets for broader use.

Choice of markers affects morphology analysis

Cx3crl, Ibal, and P2ry12 are all antibody markers that are commonly used to visualize
and study various aspects of microglia including morphology. Of these 3 markers, P2ry12 is the most
microglia-specific, as both Cx3crl and Ibal also label other macrophages. (Paolicelli et al., 2022)

While all three of these markers can label microglia reliably in homeostatic conditions and are
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considered ‘homeostatic’ markers, their expression can change in disease-associated and
inflammatory states. For instance, in a study (Kenkhuis et al., 2022) of co-expression patterns of
microglia markers Ibal, P2ry12, and Tmem1 19, another microglia-specific antibody, in the brains
of Alzheimer’s Disease patients, P2ry12 expression was lost in microglia surrounding amyloid-beta
plaques, while Ibal expression was increased in subsets of microglia and Tmem119 expression was
generally lost across microglia. Peripheral macrophages have also been shown to infiltrate the blood
brain barrier and enter the brain in disorders such as Parkinson’s Disease and Multiple Sclerosis
(Prinz & Priller, 2017), which could complicate the analysis of morphology in datasets stained with
non-specific markers such as Cx3crl and Ibal. Thus, careful consideration of morphological markers
should be taken depending on the experimental context in which microglia are being studied.
(Paolicelli et al., 2022)

In our analyses of LPS-induced shifts in morphological populations and changes in
individual morphology measures across three commonly used microglial markers — Cx3crl, Ibal,
and P2ry12 — we found that P2ry12 showed unique differences in the percentage of morphological
populations present across brain regions, the directionality of shifts across morphological
populations, and the specific morphological features such as the number of junctions and cell area
that change with LPS administration. (Fig. 4A, Fig. 4C, Supp. Info. 2) P2ry12 immunoflourescent
signal was also more uniformly distributed throughout the entirety of the cell and less localized to the
cell soma when compared to Cx3crl and Ibal-stained cells (Fig. 4B) (Paolicelli et al., 2022), making
P2ry12-stained cells potentially more likely to be recognized as overlapping cells and consequently
filtered out based on area during the thresholding and dataset optimization steps in
MicrogliaMorphology. Thus, P2ry12-stained datasets may be better suited for analysis in 3D image
types. If using MicrogliaMorphology for 2D P2ry12-stained images, the thresholded images and the
single-cells extracted from these images should be carefully examined and compared to the original
immunofluorescent images to ensure that the cells analyzed are accurately represented before

proceeding with analysis and biological interpretation of results.

Requirements of MicrogliaMorphology and MicrogliaMorphologyR

Our toolset requires the use of 2D image forms (Extended Depth of Focus or single-
plane 2D images) and depends on some user input to determine dataset-specific parameters
for MicrogliaMorphology. Introductory skills coding in the R language are also necessary
to be able to use MicrogliaMorphologyR and larger computational resources may be
required for the analysis of larger datasets. However, many of these requirements exist for

alternative approaches for morphology analysis that have been presented as well.

Future directions

To classify microglia by their morphological characteristics in any approach, hard
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cut-offs are used to define where one class starts and the next begins. This type of binning
of morphologies is limited in that microglia are inherently dynamic and more realistically
exist along a continuum of morphological forms. To represent the dynamic nature of
microglia morphology, we also demonstrate that MicrogliaMorphology and
MicrogliaMorphologyR can be optionally integrated with a soft clustering approach using
fuzzy k-means clustering, which is similar in concept and algorithm to k-means clustering.
Soft clustering approaches such as fuzzy k-means clustering not only yield final cluster (or
class) identities for every cell, but also membership scores of belonging to any given
cluster. This allows for additional characterization of high-scoring cells within each cluster
(i.e., quintessential ‘rod-like’, ‘ameboid’, ‘hypertrophic’, or ‘ramified’ cells), cells with
more ambiguous identities (e.g., a cell that is 5% rod-like, 5% ameboid, 45% hypertrophic,
and 45% ramified), and other cases that the user might be interested in which might be
informative for their specific dataset. Fuzzy k-means also assigns a final hard cluster
assignment for every cell based on the class with the highest membership score, so the user
can also use these final assignments as input for downstream analysis. While we used the
hard cluster assignments for the analysis in this paper, we provide an example of using the
soft clustering assignments from fuzzy k-means to analyze just the high-scoring cells for
each morphological class at the end of the Github page for MicrogliaMorphologyR. While
we used k-means clustering approaches in this study, our toolset is highly flexible and can
also be integrated with other clustering approaches such as hierarchical clustering or
gaussian mixture models.

Microglia have long been known as a highly heterogenous cell type as defined by
their morphology, electrophysiological properties, transcriptomic profiles, and surface
expression of immune markers. (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2020;
Paolicelli et al., 2022) Context-specific regulation of morphology further emphasizes the
need to probe microglial phenotypes from multiple angles in conjunction with morphology
to gain more clarity on the relationship between microglial form and function. (Dubbelaar
et al., 2018; Paolicelli et al., 2022) While the majority of studies of microglia morphology
have yielded observational insights into the range of forms present in various contexts, only
a few (Adrian et al., 2023; Madry et al., 2018, p. 1; Parakalan et al., 2012) have actually
explored how different morphological states directly contribute to microglial function in
the brain. The rise of single-cell sequencing technologies has provided vast new insight
into the molecular mechanisms that shape heterogenous microglial responses and has
granted us a better understanding of microglial ‘states’ in homeostatic, developmental, and
disease-relevant contexts (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2020).
However, transcriptomic characterization alone does not capture the diversity of changes

that microglia exhibit and we still lack a direct understanding of whether morphologically
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different microglia populations are transcriptomically distinct. (Parakalan et al., 2012) is
one such study that directly explored these relationships by identifying over 2000
differentially expressed genes with unique sets of biological functions between ameboid
and ramified microglia laser-dissected and pooled from rat brains. However, while it’s
agreed upon that microglia exhibit a wide range of morphological forms across various
biological contexts, it is still unclear whether we can transcriptomically define the
heterogeneous morphological states that exist outside of the ‘resting’ vs. ‘activated’
morphological dichotomy and in what ways these transcriptomic signatures relate to
microglial function.

The advent of spatially-resolved transcriptomics and development of methods for
integrating multiple data modalities has opened new avenues to explore these relationships
more directly. The ability to map morphologically-classified microglia back to their spatial
locations in their original input images using the complementary ColorByCluster functions
in MicrogliaMorphology and MicrogliaMorphologyR allows for not only the visual
verification and exploration of morphological cluster identity across tissue sections, but
also facilitates the direct integration of spatial transcriptomics data to morphological data
at a cellular resolution. Our toolset serves as a resource that can complement new tools and
approaches such as spatial transcriptomics to answer questions about the relationship

between microglia morphology and microglia function more directly.
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Figure Legends

Figure 1: Study Overview. (A) Outline of steps involved in MicrogliaMorphology and
MicrogliaMorphologyR. (B) Experimental mouse model used for dataset described
throughout paper. Example images from dorsal hippocampus with individual microglia
insets for each treatment condition. Microglia (Ibal) in yellow and DAPI nuclear stain in

blue. Full size images scale bar 200um, insets 30um.

Figure 2: Comparison of 3D vs. Extended Depth of Focus vs. Single-plane 2D image types.
(A) Samples represented in Principal Components space and colored by image type or
morphology class. Each point is either a 2D, 3D, or EDF representation of one of twenty
different cells. (B) Comparison of changes across morphological classes when cells are
represented in 2D, 3D, or EDF forms. Values on plots are z-scores (centered and scaled)
calculated within image type. (C) Spearman’s correlation of PCs 1-2 after dimensionality
reduction across image types. (D) Individual Pearson correlations between image types for
specific morphology features measured using AnalyzeSkeleton. (E) Visual description of

morphology features measured using AnalyzeSkeleton.

Figure 3: Characterization of morphological clusters in 2xLPS dataset. (A) Spearman’s
correlation matrix of 27 features measured by MicrogliaMorphology. (B) Spearman’s
correlation of morphology measures to first 3 PCs after dimensionality reduction. (C) Cluster
classes displayed in PCs 1-2 space. (D) Average values for all 27 morphology features,
scaled across clusters. (E) Individual cells spatially registered back to original images and

visually annotated by morphological class using ColorByCluster feature.

Figure 4: Analysis of morphological clusters and individual morphology measures across
brain regions and antibody markers in 2xLPS dataset. (A) LPS-induced shifts in
morphological populations across brain regions and antibodies. (*p<0.05, Bonferroni) (B)
Immunofluorescent images of the same microglial cells stained with Cx3crl, Ibal, and
P2ry12 in PBS and 2xLPS conditions. Scale bars are 50um (C) LPS-induced changes in
individual morphology measures (number of junctions, area, circularity) across brain regions

and antibodies. (*p<0.05, Bonferroni)

Supplementary Figure 1: Extended comparison of 3D vs. 2D image types. (A) Changes in
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the raw values of AnalyzeSkeleton measures across 3D, EDF, and 2D image types. Each
line is an individual cell represented in 3D, EDF, and 2D. (B) Individual Pearson’s
correlations between image types for specific morphology features measured using
AnalyzeSkeleton. (C) Spearman’s correlation of skeletal morphology measures to first 5 PCs

after dimensionality reduction.

Supplementary Figure 2: Extended analysis of 2xLPS dataset. (A) Cells from dataset
visualized in PCs 1-2 space and colored by different experimental variables. (B) Elbow plot
depicting percentage of the variance in dataset explained by each Principal Component. (C)

LPS-induced shifts in morphological populations across subregions and antibodies.

Supplementary Figure 3: Analysis of IxLPS morphology measures and clusters. (A)
Spearman’s correlation matrix of 27 features measured by MicrogliaMorphology. (B)
Spearman’s correlation of morphology measures to first 3 PCs after dimensionality
reduction. (C) Optimal k-means clustering parameters determined using within sum of
squares and gap statistic techniques. Cluster classes displayed in PC space. (D) Average

values for all 27 morphology features, scaled across clusters.

Supplementary Information 1: Image Type Comparison analysis. Plots and underlying

code used to generate Figure 2 and Supplementary Figure 1.

Supplementary Information 2: 2xLPS dataset analysis. Plots, statistical analysis and
results, and underlying code used to generate Figure 3, Figure 4, and Supplementary Figure

2.

Supplementary Information 3: IxLPS dataset analysis. Plots and underlying code used to
generate Supplementary Figure 3.
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A Spearman correlations across features B Correlation between PCs and features
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A 2XLPS mouse dataset: K-means clusters
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A 1xLPS: Correlations across features
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