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Abstract 11 

 12 

This study employed Machine Learning-Genome-Wide Association Study (ML-GWAS) to 13 

identify genomic regions linked to cuticular wax ester biosynthesis (SW) and early maturity 14 

(DM) in wheat. Using a dataset with 170 wheat accessions and 74K SNPs, four GWAS tools 15 

(MLM, CMLM, FarmCPU, and BLINK) and five machine learning techniques (RF, ANN, 16 

SVR, CNN, and SVM) were applied. A highly significant SW association was found on 17 

chromosome 1A, with the peak SNP (chr1A:556842331) explaining 50% of the phenotypic 18 

variation. A promising candidate gene, TraesCS1A01G385500, was identified as an ortholog 19 

of Arabidopsis thaliana's WSD1 gene, which plays a crucial role in very long-chain (VLC) wax 20 

ester biosynthesis. For DM, four QTLs were detected on chromosomes 4B (two QTLs), 2A, 21 

and 5A. Haplotype analysis revealed that alleles TT significantly contribute to cuticular wax 22 

ester biosynthesis and early maturity in wheat varieties. The study underscores the superior 23 

performance of ML models, especially when combined with advanced multi-locus GWAS 24 

models like BLINK and FarmCPU, with significantly lower p-values for identifying relevant 25 

QTLs compared to traditional methods. ML approaches hold potential for revolutionizing the 26 

study of complex genetic traits, offering insights to enhance wheat crops' resilience and quality. 27 

ML-GWAS emerges as a compelling tool for genomic-based breeding, enabling breeders to 28 

develop improved wheat varieties with greater precision and efficiency. 29 

 30 

Keywords: International wheat collection, Genotyping-by-Sequencing, population structure, 31 

Genome-Wide Association Study, Machine learning, spike waxiness, number of days-to-32 

maturity. 33 
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Introduction 46 

 47 

Wheat (Triticum aestivum L.), a globally essential staple crop, faces a multitude of 48 

environmental challenges, from drought and salinity to extreme temperatures and pest pressures 49 

(He et al., 2022). A vital component of its adaptive response to these challenges is the 50 

hydrophobic cuticle, composed of cutin and cuticular waxes (Wang and Chang, 2022). This 51 

lipidic shield defends against non-stomatal transpiration, UV radiation, pathogens, and insect 52 

invasions while maintaining the integrity of adjacent plant organs (Ingram and Nawrath, 2017; 53 

Martin and Rose, 2014). 54 

The cuticle consists of two primary constituents: cutin, an insoluble polyester, and cuticular 55 

waxes, encompassing very-long-chain (VLC) fatty acids, aldehydes, ketones, esters, alcohols, 56 

alkanes, and other compounds (Kunst and Samuels, 2009). Alkanes, a significant component 57 

of cuticular waxes, play a critical role in enhancing plant drought tolerance (Kosma et al., 2009; 58 

Seo et al., 2011). In the realm of wheat, genes related to wax biosynthesis, including TaFARs 59 

for primary alcohols and the W1 locus for β-diketones, have been identified (Hen-Avivi et al., 60 

2016; Y. Wang et al., 2015a, 2015b). One pivotal gene, TaCER1-1A, has been recognized for 61 

its involvement in alkane accumulation in wheat (Li et al., 2019). In a recent study by (He et 62 

al., 2022), attention is drawn to TaCER1-6A, another key gene involved in alkane biosynthesis 63 

in wheat, with investigations extending to overexpression and CRISPR/Cas9-mediated gene 64 

editing. 65 

To date, no study has pinpointed a gene responsible for the biosynthesis of wax VLC esters, 66 

which play a crucial role in mitigating leaf water loss, particularly under drought conditions. 67 

The journey of these wax constituents from the Golgi and trans-Golgi network (TGN) to the 68 

plasma membrane and onward to the cuticle involves pathways coordinated by ABCG 69 

subfamily half transporters and lipid transfer proteins (LTPs) (DeBono et al., 2009; Ichino and 70 

Yazaki, 2022; Pighin et al., 2004; Wang and Chang, 2022). 71 

 72 

Additionally, the cultivation of early-maturing wheat varieties holds critical importance in 73 

regions characterized by short growing seasons and extended daylight, exemplified by the 74 

Northern Great Plains of Canada and the USA (A. Kamran et al., 2013). Early maturation not 75 

only enhances crop yields but also acts as a safeguard against frost damage, a threat that can 76 

significantly compromise grain quality and overall agricultural productivity (Iqbal et al., 2007). 77 

The precise timing of wheat's flowering is intricately regulated by a complex interplay of genes 78 

that dictate growth patterns and earliness. These genetic regulators encompass vernalization 79 
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(Vrn), photoperiod (Ppd), and earliness per se (Eps) genes, shaping when wheat plants initiate 80 

flowering and influencing their growth habits (Atif Kamran et al., 2013). 81 

Adding to this complexity, certain genetic factors, such as dwarfing genes, subtly affect the 82 

timing of heading, flowering, and maturity, introducing further intricacies in the regulation of 83 

these vital agricultural traits (Chen et al., 2018; Daoura Goudia et al., 2014). Earliness per se 84 

genes also play a role in enhancing the adaptability of wheat plants, contributing to their 85 

resilience in varying environments (Snape et al., 2001). Recent studies, including one by 86 

Semagn et al. (2021), have delved into the intricate genetic mapping of Quantitative Trait Loci 87 

(QTLs) associated with days to maturity, particularly in wheat varieties evaluated under both 88 

conventional and organic farming practices. These studies have identified key QTLs on 89 

chromosome 4B, shedding light on the genetic mechanisms governing maturity. Furthermore, 90 

earlier research by authors such as (Zou et al., 2017a, 2017b) employing extensive genetic 91 

mapping using 1203 markers in RIL populations like 'Attila' and 'CDC Go' has uncovered a 92 

shared genomic region linked to maturity, situated on both chromosome 4B and 5A. 93 

Among the array of genetic factors at play, certain dwarfing genes, including Rht-B1, Rht5, 94 

Rht8, and Rht12, have been identified as contributing factors, subtly influencing the timing of 95 

heading, flowering, and maturity in wheat varieties. These genetic elements add an additional 96 

layer of complexity to the intricate regulation of these pivotal traits (Chen et al., 2018; Daoura 97 

Goudia et al., 2014). 98 

 99 

While molecular markers have facilitated characterizing genetic diversity, phenotypic 100 

assessments have primarily determined the utility of these genetic resources in breeding (Belzile 101 

et al., 2020). With the availability of high-density SNP markers, Genome-Wide Association 102 

Studies (GWAS) have become a powerful tool for identifying and mapping loci contributing to 103 

phenotypic variation among diverse genetic materials that have undergone extensive 104 

recombination (Yu and Buckler, 2006). Recent applications of highly reproducible GBS-105 

derived SNPs have uncovered candidate genes influencing grain size in bread wheat (Tekeu et 106 

al., 2021). GWAS has become a standard approach across species for identifying genes 107 

associated with critical traits (Ashkenazy et al., 2022).  108 

However, there remain challenges with conventional GWAS techniques, including the "large 109 

p, small n" issue when the number of markers surpasses the number of genotypes (Kaler et al., 110 

2020; Mohammadi et al., 2020). Conventional GWAS methods are better suited for identifying 111 

common SNPs with substantial main effects, while the distinction between causal variants and 112 
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correlated genes linked by linkage disequilibrium remains problematic (Enoma et al., 2022; 113 

Nicholls et al., 2020). Moreover, conventional GWAS approaches lack the power to uncover 114 

minor-effect SNPs associated with specific traits (Zhou et al., 2019). Consequently, machine 115 

learning (ML) techniques offer an opportunity to address these limitations and gain insights 116 

into the complex genetic basis of traits, as demonstrated in other crop species (Ashkenazy et 117 

al., 2022; Kwon et al., 2022). 118 

Machine learning models for GWAS vary in complexity, from simple logistic regression to 119 

sophisticated ensemble models such as random forests, gradient boosting, and neural networks. 120 

These ML algorithms focus on maximizing prediction accuracy and excel at capturing multi-121 

locus SNP interactions better than conventional methods. Support Vector Regression (SVR) is 122 

one such machine learning technique that has shown promise in predicting important 123 

agricultural traits (Yoosefzadeh Najafabadi et al., 2021). While SVR has found application in 124 

various crop studies, the potential of other ML techniques, such as Random Forest (RF), 125 

Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), and Support 126 

Vector Machines (SVM), remains largely untapped when compared to the more conventional 127 

GWAS tools like Mixed Linear Model (MLM), Compressed Mixed Linear Model (CMLM), 128 

Fixed and random model Circulating Probability Unification (FarmCPU), and Bayesian-129 

information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK).  130 

This study aims to address this gap and provide valuable insights to bolster crop resilience. By 131 

employing a diverse array of advanced ML techniques in GWAS analysis, we seek to identify 132 

the genomic regions associated with cuticular wax ester biosynthesis (SW) and early maturity 133 

(DM) in wheat. Our approach promises to shed light on the intricate genetic mechanisms 134 

governing these vital traits and contribute to the advancement of crop breeding efforts for 135 

improved wheat varieties. Our research hypotheses revolve around specific genomic regions 136 

influencing SW and DM in a diverse global collection of bread wheat accessions. Furthermore, 137 

it postulates that ML-GWAS approaches will outperform traditional GWAS methods, in 138 

identifying Quantitative Trait Loci (QTLs) relevant to SW and DM traits in wheat. The present 139 

study aims to decipher the genetic underpinnings of SW and DM using ML-GWAS approaches. 140 
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Materials and methods 141 

Plant materials 142 

In this study, an international collection of 170 accessions was employed for genome-wide 143 

association analyses. These cultivars were obtained from various international wheat breeding 144 

programs. The South African accessions consisted of spring wheat lines from the Western Cape 145 

region, along with some winter bread wheat lines from other parts of the country. The East 146 

African spring-type accessions were gathered in Kenya and Ethiopia. The Mexican accessions 147 

were obtained via the International Maize and Wheat Improvement Center (CIMMYT), and 148 

they included spring accessions from Mexicali and Baja California. The Central African 149 

accessions were provided by the Institute of Agricultural Research for Development (IRAD) 150 

and farmers (Tekeu et al., 2017). The French accessions were winter lines, and those from North 151 

Africa were composed of spring lines acquired from the International Center for Agricultural 152 

Research in the Dry Areas (ICARDA).  153 

Phenotyping  154 

A panel of 170 accessions of bread wheat was phenotyped and used for genome-wide 155 

association analyses. Field trials were conducted in two different locations in the bimodal humid 156 

forest zone of Cameroon, during the 2015-2016 season in Munt Mbankolo (1057 m above sea 157 

level) and during 2016-2017 in Nkolbisson (650 m a. s. l.). At each trial site, an incomplete 158 

alpha-lattice design with two replications was used and each accession was planted, as 159 

previously reported by (Tekeu et al., 2021). Then, fields trials were managed in accordance 160 

with the technical recommendations and standard agricultural practices for wheat (Pask et al., 161 

2012). Spike waxiness (SW; 0: Absent, 2: Almost none, 3: Very little, 4: Little, 5: Intermediate, 162 

6: Some, 7: Much, 8: Very much) and DM (days-to-maturity) were assessed when 50% of 163 

spikes had turned yellow (Zadoks et al., 1974). 164 

 165 

Analysis of phenotypic data  166 

We conducted the analysis of variance for each trait using PROC MIXED in SAS 9.4. In this 167 

analysis, each cultivar was considered a fixed effect, while replications and environments were 168 

treated as random effects. Pearson correlation coefficients between pairs of phenotypic traits 169 

were computed using Pearson's correlation in SPSS 20.0. To assess the heritability of each trait, 170 

we utilized the broad-sense heritability (h²) formula: h² = VG / (VG + VGE + Ve), where VG 171 
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represents genetic variance, VGE is the genetic-environment interaction variance, and Ve is the 172 

error variance. 173 

DNA isolation, GBS library construction and sequencing 174 

To extract genomic DNA from dried young leaf tissue (~ 5 mg) of all accessions, we used a 175 

CTAB DNA isolation method (Doyle and Doyle, 1990). The extracted DNA was quantified 176 

using a Quant-iT™ PicoGreen kit (ThermoFisher Scientific, Canada), and concentrations were 177 

normalized to 20 ng/μl for library preparation. We constructed three 96-plex PstI-MspI GBS 178 

libraries as described by (Elshire et al., 2011). Subsequently, each library was sequenced on 179 

three P1 chips using an Ion Torrent PGM sequencer at the Plate-forme d'Analyses Génomiques 180 

of the Institut de Biologie Intégrative et des Systèmes (Université Laval, Québec, Canada). 181 

Single nucleotide polymorphism calling and bioinformatics analysis. 182 

Genomic DNA sequences of wheat samples, with an average of 2.4 million reads per wheat 183 

line, were analyzed using the FastGBS pipeline (Torkamaneh et al., 2017). The reads were 184 

aligned to the wheat reference genome (Chinese Spring v1.0), and SNPs were called using 185 

FastGBS. Standard filtration steps were applied to the FastGBS results, as previously described 186 

by (Tekeu et al., 2021). Additional filtration steps were carried out on this subset to retain only 187 

SNPs with a minor allele frequency (MAF) of at least 0.05. 188 

 189 

Machine Learning-Genome-Wide Association Study 190 

 191 

We conducted a genome-wide association study (GWAS) to identify genomic regions 192 

associated with variation in SW and DM using a dataset comprising 170 accessions and 74K 193 

single nucleotide polymorphisms (SNPs). We employed a comprehensive approach that 194 

integrated four GWAS analytical methods, namely the Mixed Linear Model (MLM), 195 

Compressed Mixed Linear Model (CMLM), Fixed and random model Circulating Probability 196 

Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively 197 

Nested Keyway (BLINK). In addition, we harnessed the power of five machine learning 198 

algorithms, which included Random Forest (RF), Support Vector Regression (SVR), 199 

Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), and Support 200 

Vector Machines (SVM). This integrated approach allowed us to assess the association between 201 

SNP markers and estimated genotypic values (BLUEs) for each trait. 202 

 203 
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For MLM, CMLM, FarmCPU, and BLINK methods, we made use of the Genomic Association 204 

and Prediction Integrated Tool (GAPIT) version 2 (Lipka et al., 2012) in conjunction with the 205 

rMVP packages (Yin et al., 2021). Our association analyses were performed while correcting 206 

for both population structure and relationships among individuals, with the incorporation of 207 

either the Q+K matrices. The K matrix was computed using the Van Raden method (Lipka et 208 

al., 2012). The significance threshold for genome-wide association was determined based on a 209 

false discovery rate (FDR-adjusted p < 0.05). 210 

 211 

In the case of machine learning algorithms, we utilized a scaled method (ranging from 0 to 100) 212 

to estimate the importance of each SNP associated with the traits of interest. To integrate the 213 

machine learning approach into GWAS, we implemented a five-fold cross-validation strategy 214 

with ten repetitions to estimate the variable importance of each SNP, following (Siegmann and 215 

Jarmer, 2015). Therefore, we applied a global empirical threshold, as proposed by (Churchill 216 

and Doerge, 1994; Doerge and Churchill, 1996). This threshold was determined by fitting the 217 

ML algorithm, recording SNPs with the highest variable importance scores, repeating the 218 

process 1000 times, and selecting associated SNPs based on α = 0.5. The machine learning 219 

methods were executed using the Caret package (Kuhn et al., 2020) in R software version 4.2.2. 220 

Throughout these analyses, we ensured that association analysis was conducted while 221 

correcting for both population structure and relationships among individuals, using a 222 

combination of the Q + K matrices. The p-value threshold for significance in the genome-wide 223 

association was determined based on a false discovery rate (FDR-adjusted p ≤ 0.05). 224 

 225 

Identification of candidate genes and haplotype analysis 226 

To identify candidate genes contributing to SW and DM, we defined haplotype blocks 227 

containing the peak SNP. Each region with the peak SNP was visually explored for its LD 228 

structure and for genes located in such regions, and the annotated genes within each interval 229 

were screened thanks to the annotated and ordered reference genome sequence in place by 230 

(International Wheat Genome Sequencing Consortium (IWGSC), 2018). Candidate genes 231 

potentially involved in each trait were further investigated. The function of these genes was 232 

also inferred by a BLAST of their sequences to the UniProt reference protein database 233 

(http://www.uniprot.org/blast/). To further provide more information about potential candidate 234 

genes, we used RNA-seq data of (Ramírez-González et al., 2018), based on the electronic 235 

fluorescent pictograph (eFP) at bar.utoronto.ca/eplant (by (Waese et al., 2017) to identify in 236 

what tissues and at which developmental stages candidate genes were expressed in wheat. 237 
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To better define the possible alleles in a strong candidate gene and trait, we defined haplotypes 238 

around the peak SNP. For each haplotype, we calculated the trait mean for lines sharing the 239 

same haplotype using the R ggpubr program. 240 

 241 

Results 242 

Phenotypic characterization  243 

In order to delve into the traits of SW and DM in wheat, we meticulously assessed their 244 

phenotypes over the span of two years at two distinct sites. As summarized in Table 1, the 245 

observed means (± standard deviation) for these traits were as follows: 5.35 (±1.56) for SW and 246 

98.06 days (±4.65) for DM. The broad-sense heritability estimates were robust, measuring 55.4% 247 

for SW and 50% for DM. An analysis of variance uncovered noteworthy differences attributable 248 

to genotypes (G) for all traits, and, in the case of SW and DM, the interaction between genotype 249 

and environment (GxE) also emerged as a significant factor. A correlation analysis unveiled a 250 

highly significant positive correlation between SW and DM (r = 0.273; p < 0.01). 251 

Upon scrutinizing the relationship between SW and DM using bagplots analysis with the 170 252 

accessions in our collection, no outliers were detected when considering the interplay between 253 

these two traits (Supplementary Figure S1). Consequently, for subsequent analyses including 254 

those involving population structure and genome-wide association studies (GWAS), all 255 

accessions were retained. The distribution of phenotypic traits appeared to approximate a 256 

normal distribution and exhibited characteristics of quantitative inheritance (Figure 1). 257 

 258 

Table 1. Descriptive statistics, broad-sense heritability (h²), and F-values from variance 259 

analysis for two key agronomic traits in a cohort of 170 wheat lines. 260 

Traits R2 CV Range Mean±SD h2 F-values 

      Min Max     

Genotype 

(G) 

Environment 

(E) G x E 

SW 0.665 29.181 0 8 5.35±1.56 55.4 1.45*** 66.87 0.14 

DM 0.852 4.744 74 125 98.06±4.65  50 3.39*** 310.38** 3.39** 

SD Standard deviation, h2 Broad sense heritability, R2: R-squared; CV: Coefficient of 261 

variation; ***, ** and *: significant at p < 0.001, p < 0.01, and p < 0.05, respectively. 262 

 263 
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 264 

Figure 1. Distribution of phenotypes for spike waxiness (a) and days-to-maturity (b). 265 

Histograms are based on the average trait value of each wheat line across the different 266 

environments. The bars under the histograms represent the density of individuals. 267 

 268 

Genome coverage and population structure 269 

Our comprehensive analysis revealed a total of 73,784 polymorphic SNP markers that spanned 270 

across the 21 chromosomes of the wheat genome, as depicted in Figure 2. As previously 271 

reported in our prior study, the examination of population structure within the accessions of this 272 

association panel revealed that K=6 provided the optimal representation of population structure 273 

within this set of accessions. These clusters notably aligned with the geographic regions of 274 

origin. The distribution of wheat accessions among these six subpopulations ranged from 6 to 275 

43, with the largest number of accessions hailing from northwestern Baja California, Mexico, 276 

specifically represented by Mexico 1 (43). Conversely, the smallest subpopulation was 277 

observed in East and Central Africa, encompassing just 6 accessions. 278 
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 279 

Fig 2. Genome coverage of polymorphic SNP markers over the physical map of the 21 280 

chromosomes of the hexaploid wheat lines. The color reflects the density of SNP markers (i.e. 281 

number of SNPs within a sliding 1-Mb window).  282 

 283 

Marker-trait associations 284 

To uncover the genomic regions responsible for the variation in SW and DM, we conducted an 285 

association analysis (GWAS) on a subset of accessions with phenotypic data (170 accessions 286 

and 73,784 SNPs). In this analysis, we employed four GWAS analytical tools (MLM, CMLM, 287 

FarmCPU, and BLINK), complemented by five machine learning techniques (RF, ANN, SVR, 288 

CNN, and SVM). Notably, the quantile-quantile (QQ) plots in Figure 3 demonstrated the 289 

effective control of confounding effects related to population structure and relatedness by all 290 

conventional GWAS and machine learning models. Deviations from the diagonal were 291 

observed only for the most extreme p-values, indicating a well-controlled analysis for both 292 

traits. 293 

 294 

For the SW trait, the results of the association analyses are visualized in the Manhattan plots 295 

presented in Figure 3. Using a threshold for false discovery rate (FDR) of ≤ 0.05 (as detailed in 296 

Supplementary Figure S2, marked by the green horizontal line), we identified four QTLs. 297 

Remarkably, only one QTL was co-identified by at least two models (Figure 4). The most robust 298 

and consistent association, located on chromosome 1A, is summarized in Table 2. 299 
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This particular QTL was defined by its peak SNP, marked as chr1A:556842331, and was 300 

identified by the multi-locus models (FarmCPU and BLINK) as well as all five machine 301 

learning algorithms (RF, ANN, SVR, CNN, and SVM). Notably, this QTL explained a 302 

substantial 50% of the phenotypic variation observed in SW. The minor allele frequency (MAF) 303 

at this locus was 0.09, and it exhibited an allelic effect of 0.66. 304 

These findings highlight a significant and consistent genetic association with SW on 305 

chromosome 1A, showcasing the power of both traditional GWAS and machine learning 306 

approaches in identifying key genomic regions influencing this trait. 307 

 308 

Turning our attention to the DM trait, our investigation unveiled a total of eight genomic regions 309 

that displayed significant associations. The results of these association analyses are visualized 310 

in the Manhattan plots featured in Figure 3, with a stringent threshold for false discovery rate 311 

(FDR) of ≤ 0.05, as outlined in Supplementary Figure S2 and highlighted by the green 312 

horizontal line. However, we noted the co-identification of only four Quantitative Trait Loci 313 

(QTLs) by at least two models (Figure 3). Among these, the most robust associations, localized 314 

on chromosomes 4B, 5A, and 2A, are thoughtfully summarized in Table 2.  315 

Of noteworthy mention is chr4B:666048201, which emerged as the peak SNP and was jointly 316 

identified by both multi-locus GWAS models (FarmCPU and BLINK) and four machine 317 

learning algorithms (RF, ANN, SVR, and CNN). These markers formed a robust linkage block, 318 

with all markers exhibiting perfect linkage disequilibrium (LD) (r2 = 1), as detailed in 319 

Supplementary Table S1. This discovery delineated a single QTL, with the peak SNP 320 

accounting for a substantial 19.3% of the phenotypic variation associated with DM. The minor 321 

allele frequency (MAF) at this locus was observed to be 0.08, while the allelic effect amounted 322 

to 3.84 days (Table 2). 323 

In addition, another noteworthy association with DM on chromosome 4B was unveiled, defined 324 

by the peak SNP chr4B:37907825. This association was identified by the GWAS model BLINK 325 

and all five machine learning methods (RF, ANN, SVR, CNN, and SVM). It explained 18.44% 326 

of the phenotypic variation for DM, with a MAF of 0.09 and an allelic effect of -2.76 days. 327 

Moreover, a QTL residing on chromosome 2A was brought to light, marked by the peak SNP 328 

chr2A:605016602, which explained 8.65% of the phenotypic variation for DM. This QTL was 329 

detected using both multi-locus GWAS models (FarmCPU and BLINK) and all five machine 330 

learning methods (RF, ANN, SVR, CNN, and SVM). 331 
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Furthermore, an additional QTL on chromosome 5A, characterized by the peak SNP 332 

chr5A:580797118, was identified through the BLINK model and all five machine learning 333 

methods (RF, ANN, SVR, CNN, and SVM). This QTL contributed to 0.72% of the phenotypic 334 

variation associated with DM. 335 

These findings underscore the efficacy of our approach in uncovering key genomic regions 336 

associated with DM and highlight the potential of both traditional GWAS and machine learning 337 

techniques in unraveling the genetic underpinnings of complex traits. 338 

 339 

Overall, the GWAS and ML methods successfully mitigated the confounding effects of population 340 

structure and relatedness and identified multiple genomic regions associated with spike waxiness 341 

and Days to maturity in wheat. These findings can provide insights into the genetic architecture of 342 

these traits and aid plant breeders in developing new bread wheat varieties with improved SW and 343 

maturity.  344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 
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 354 

 355 
Figure 3. Genome-wide association analysis of 170 hexaploid wheat cultivars. Manhattan and 356 

Q-Q plots for all models shows the degree of association between SNPs and SW (A) and DM 357 

(B). In both cases, associations are declared significant at an FDR ⩽0.05. One marker (see the 358 

red circle) displayed significant associations with the SW trait. Four SNP markers (see the red 359 

circle) displayed significant associations with the DM.  360 
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In order to gain a deeper understanding of the relationship between the peak SNP 361 

(chr1A:556842331) and SW, we delved into the realm of SNP haplotypes. Through a thorough 362 

analysis of haplotypes encompassing this peak marker, we unveiled two distinct haplotypes 363 

(Figure 4). Remarkably, we observed a notable divergence in phenotypic outcomes between 364 

these haplotypes. Haplotype TT displayed significantly higher values (5.481) compared to the 365 

values associated with haplotype CC (3.642). This revelation suggests that SNP markers 366 

flanking this gene could serve as valuable tools in marker-assisted breeding programs. By 367 

selecting alleles that contribute to drought-resistant wheat varieties, these programs hold the 368 

potential to enhance wheat productivity and bolster its resilience in the face of water scarcity.  369 

To further refine our understanding of the association between the peak SNP 370 

(chr4B:666048201) and DM, we embarked on an exploration of SNP haplotypes. This 371 

investigation uncovered two distinct haplotypes encircling the peak SNP. Notably, our scrutiny 372 

of these haplotypes revealed a substantial difference in phenotypic outcomes (Figure 4). 373 

Haplotype TT was linked to significantly lower values (97.41) in comparison to haplotype CC 374 

(107.36). This observation posits that SNP markers flanking this gene have the potential to be 375 

valuable assets in marker-assisted breeding programs. By selecting alleles conducive to the 376 

development of short-season wheat varieties, these programs can contribute to the improvement 377 

of wheat productivity and the creation of cultivars better equipped to thrive in varying 378 

environmental conditions. More details are provided in Supplementary Table S2. 379 

 380 
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 381 

Figure 4. Boxplots (lef) and bimodal distribution (right) of Spike Waxiness and Days-to-maturity 382 

are represented for each haplotype. ***: signifcant at P < 0.001  383 
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Table 2 Details of loci associated with phenotypic traits identified by at least two methods in wheat.  384 

Traits Loci 
P.value MAF 

Allelic 

effect 
PVE(%) 

Alleles 

(Maj/Min) Models 

SW Chr1A:556842331 3.95E-08 0.09 0.66 50.00 T/C BLINK/FarmCPU/RF/ANN/SVR/CNN/SVM 

DM 

Chr4B:666048201 2.73E-10 0.08 -3.84 19.3 T/C FarmCPU/BLINK/RF/ANN/SVR/CNN 

Chr4B:37907825 2.32E-10 0.09 -2.76 18.44 T/C BLINK/RF/ANN/SVR/CNN/SVM 

Chr2A:605016602 6.36E-07 0.06 2.39 8.65 G/A FarmCPU/BLINK/RF/ANN/SVR/CNN/SVM 

Chr5A:580797118 1.64E-09 0.09 -2.28 10.72 C/T BLINK/RF/ANN/SVR/CNN/SVM 

SW: Spike Waxiness; DM: Days to Maturity; MAF: Minor Allele Frequency; PVE: Phenotype_Variance_Explained (%). 385 

Three conventional GWAS analytical tools, including CMLM (Compressed Mixed Linear Model); FarmCPU (Fixed and random model Circulating 386 

Probability Unification) and BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway), completed by five machine 387 

learning algorithms, which included RF (Random Forest), SVR (Support Vector Regression), SNN (Convolutional Neural Networks), ANN 388 

(Artificial Neural Networks), and SVM (Support Vector Machines) were used. The most highly associated SNP within each QTL is indicated along 389 

with the associated statistics of RF model. 390 

 391 
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Identification of candidate genes 392 

To pinpoint the candidate genes that potentially govern SW and DM in our diverse wheat 393 

collection, we conducted an analysis of the genes located within the same linkage block as the 394 

peak SNP for each QTL. 395 

In the genomic interval encompassing the QTL that contributes the most to the phenotypic 396 

variation in SW (50%) specifically, the region from 1A_555 to 557 Mb, surrounding the peak 397 

SNP (chr1A:556842331), we identified a total of 24 high-confidence genes. Upon a detailed 398 

examination of the gene annotations and expression profiles, one gene, TraesCS1A01G385500 399 

on chromosome 1A, emerged as the most promising candidate. TraesCS1A01G385500 is an 400 

ortholog of the Arabidopsis Thaliana O-acyltransferase gene, commonly known as WSD1, a 401 

bifunctional wax ester synthase/diacylglycerol acyltransferase, involved in cuticular wax 402 

biosynthesis and essential for reducing leaf water loss, particularly during drought conditions. 403 

WSD1 has also been associated with the biosynthesis of very long-chain (VLC) wax esters, 404 

contributing to drought tolerance in Arabidopsis. This gene exhibits the highest expression 405 

levels in spike, roots, and shoot axis tissues (Figure 5). More details are provided in 406 

Supplementary Table S3. 407 

In our quest to identify potential candidate genes governing DM trait in our diverse wheat 408 

collection, we performed a meticulous analysis of the genes residing within the same linkage 409 

block as the peak SNP for each QTL. Within the genomic interval encompassing the QTL that 410 

makes the most substantial contribution to the phenotypic variation in DM (comprising 19.3% 411 

of the total variation), specifically spanning from 4B_666 to 668 Mb and surrounding the peak 412 

SNP (chr4B:666048201), we pinpointed a total of 27 high-confidence genes. Through an in-413 

depth examination of gene annotations and expression profiles, no one emerged as the most 414 

promising candidate. More details are provided in Supplementary Table S3. 415 
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 416 

Figure 5. Expression profile of TraesCS1A01G385500 gene based on transcriptomic analysis in wheat. As shown, this gene is most expressed in spike, 417 

roots and shoot axis and the image was generated with the eFP (RNA-Seq data) at http://bar.utoronto.ca/eplant/ by Waese et al.51. The legend at 418 

bottom lef presents the expression levels, coded by colors (yellow=low, red=high).419 
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Comparison of ML and conventional GWAS methods for identifying genomic regions 420 

 421 

In our study, the peak SNP position on chr1A:556842331 exhibited the highest allelic effect 422 

(0.66) and explained a substantial phenotypic variance (50%) among all the identified SNPs 423 

associated with wheat SW trait. These associations were successfully detected using both 424 

GWAS models (BLINK and FarmCPU) and five machine learning algorithms (RF, ANN, SVR, 425 

CNN, and SVM). Importantly, conventional methods (MLM and CMLM) failed to identify this 426 

peak SNP linked to the SW trait (Supplementary Table S4). Furthermore, the machine learning 427 

models produced significantly lower p-values (CNN, RF, SVM, SVR, and ANN, all with p-428 

values of 3.95E-08) compared to conventional GWAS models (CMLM with a p-value of 5.97E-429 

05, MLM with a p-value of 5.97E-05, FarmCPU with a p-value of 6.34E-03, and BLINK with 430 

a p-value of 3.95E-08). 431 

Shifting our focus to the DM trait, our investigation revealed the co-identification of four QTLs 432 

on chromosomes 4B, 5A, and 2A (with peak SNPs chr4B:666048201, chr4B:37907825, 433 

chr5A:580797118, and chr2A:605016602) by both GWAS models (BLINK and FarmCPU) and 434 

the five machine learning algorithms (RF, ANN, SVR, CNN, and SVM). The details of these 435 

robust associations are succinctly presented in Table 2. Regrettably, conventional methods 436 

(MLM and CMLM) were unable to detect these SNP peaks associated with the DM trait. 437 

Additionally, the machine learning models yielded significantly lower p-values for each of the 438 

associated markers compared to conventional GWAS models (Supplementary Table S4). 439 

For the SNP chr4B:666048201, the machine learning models generated markedly lower p-440 

values (CNN, RF, SVM, SVR, and ANN, all with p-values of 1.09E-13) compared to 441 

conventional GWAS models (CMLM with a p-value of 1.42E-06, MLM with a p-value of 442 

1.42E-06, FarmCPU with a p-value of 2.73E-10, and BLINK with a p-value of 1.09E-13). 443 

For the SNP chr4B:37907825, the machine learning models produced substantially lower p-444 

values (CNN, RF, SVM, SVR, and ANN, all with p-values of 2.32E-10) compared to 445 

conventional GWAS models (CMLM with a p-value of 2.65E-04, MLM with a p-value of 446 

2.65E-04, FarmCPU with a p-value of 4.81E-04, and BLINK with a p-value of 2.32E-10). 447 

For the SNP chr5A:580797118, the machine learning models yielded notably lower p-values 448 

(CNN, RF, SVM, SVR, and ANN, all with p-values of 1.64E-09) compared to conventional 449 

GWAS models (CMLM with a p-value of 4.72E-04, MLM with a p-value of 4.72E-04, and 450 

FarmCPU with a p-value of 1, and BLINK with a p-value of 1.64E-09). 451 

For the SNP chr2A:605016602, the machine learning models generated significantly lower p-452 

values (CNN, RF, SVM, SVR, and ANN, all with p-values of 1.64E-09) compared to 453 
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conventional GWAS models (CMLM with a p-value of 1.38E-01, MLM with a p-value of 454 

1.38E-01, and FarmCPU with a p-value of 8.63E-02, and BLINK with a p-value of 6.36E-07). 455 

 456 

In essence, these traditional methods used for genetic data analysis and the establishment of 457 

associations between genetic variations and traits have limitations when it comes to identifying 458 

subtle or minor effects of certain SNPs on SW and DM characteristics in wheat. On the contrary, 459 

machine learning algorithms, particularly in conjunction with the recent multi-locus GWAS 460 

models (BLINK and FarmCPU), exhibited superior performance in identifying relevant QTLs 461 

when compared to traditional MLM and CMLM methods. 462 

 463 

Discussion 464 

In this study, we employed four GWAS models and five machine learning algorithms to 465 

investigate the genomic regions associated with spike waxiness and days to maturity within a 466 

dataset consisting of 170 accessions and 74K SNPs. Our analyses consistently identified a 467 

robust QTL located on chromosome 1A, demonstrating significance across both conventional 468 

GWAS models (FarmCPU and BLINK) and a variety of machine learning models (BLINK, 469 

RF, ANN, SVR, CNN, and SVM). Notably, the peak SNP (chr1A:556842331) within this QTL 470 

explained a substantial portion, 50%, of the phenotypic variation observed. Within the genomic 471 

interval encompassed by this QTL (1A_555 to 557 Mb) and centered around the peak SNP 472 

(chr1A:556842331), we identified a total of 24 high-confidence genes. Upon closer 473 

examination of gene annotations and expression profiles, one candidate gene, 474 

TraesCS1A01G385500 on chromosome 1A, stood out as particularly promising. This gene 475 

exhibits high expression levels in spike, roots, and shoot axis tissues and shares orthology with 476 

the Arabidopsis Thaliana O-acyltransferase gene, widely known as the WSD1 gene. Previous 477 

research has highlighted the significance of the WSD1 gene, which serves as a bifunctional wax 478 

ester synthase/diacylglycerol acyltransferase (Li et al., 2008; Patwari et al., 2019). Its 479 

involvement in cuticular wax biosynthesis is well-documented, and it plays a pivotal role in 480 

reducing leaf water loss, particularly during drought conditions (Li et al., 2008; Patwari et al., 481 

2019). The WSD1 gene has also been associated with the biosynthesis of very long chain (VLC) 482 

wax esters, contributing to drought tolerance in Arabidopsis (Patwari et al., 2019). VLC primary 483 

alcohols and acyl-CoAs serve as precursors for wax ester biosynthesis, catalyzed by the 484 

bifunctional wax ester synthase/diacylglycerol acyltransferase WSD1 (Li et al., 2008; Patwari 485 

et al., 2019). These wax components, including VLC fatty acids, aldehydes, alkanes, alcohols, 486 

ketones, and esters, undergo trafficking through the Golgi and trans-Golgi network (TGN) 487 
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pathways to the plasma membrane (PM). From there, they are exported to the cuticle via ABCG 488 

subfamily half transporters and lipid transfer proteins (LTPs) (DeBono et al., 2009; Ichino and 489 

Yazaki, 2022; Pighin et al., 2004; Wang and Chang, 2022). 490 

Moreover, prior studies have revealed the role of AtCER1 in VLC alkane biosynthesis in 491 

Arabidopsis (Aarts et al., 1995; Bourdenx et al., 2011; Sakuradani et al., 2013). Recently, He 492 

et al. (2022) identified a homologous gene of AtCER1 in wheat, named TaCER1-6A, which 493 

shares 55% amino acid identity with AtCER1. Similar to previously reported AtCER1 494 

orthologs, including rice OsCER1 (Ni et al., 2018), wheat TaCER1-1A (Li et al., 2019), 495 

Brachypodium BdCER1-8 (Wu et al., 2019), cucumber CsCER1 (W. Wang et al., 2015), and 496 

P. pratensis PpCER1 (Wang et al., 2021), TaCER1-6A also contains three specific His-rich 497 

motifs essential for VLC alkane biosynthesis (Bernard et al., 2012). Therefore, (He et al., 2022) 498 

speculated that TaCER1-6A likely plays a similar role in VLC alkane biosynthesis in wheat. 499 

Notably, we observed that alleles associated with higher wax content were more prevalent in 500 

lines originating from East African spring-type accessions (Kenya and Ethiopia) and North 501 

Africa. These accessions primarily consist of spring lines cultivated in arid regions and were 502 

acquired from the International Center for Agricultural Research in the Dry Areas (ICARDA). 503 

Ultimately, our study has unveiled a promising candidate gene, TraesCS1A01G385500, linked 504 

to spike waxiness, with implications for cuticular wax biosynthesis and its role in drought 505 

tolerance, as established in previous research. This discovery sheds light on the genetic 506 

mechanisms underpinning spike waxiness in bread wheat, offering valuable insights for future 507 

breeding and crop improvement efforts. 508 

Regarding DM, we identified four strong genomic regions significantly associated with the trait 509 

on chromosomes 4B, 2A and 5A. Our results were consistent with those of (Semagn et al., 510 

2021), who performed QTL mapping in four RIL populations evaluated under conventional and 511 

organic management systems and reported two QTLs associated with days to maturity on 512 

chromosome 4B (explaining 20.8% of the phenotypic variances), where one (QMat.dms-4B.2) 513 

at chr4B:569184188-599613837 is located on the extremity of long chromosome 4B arm with 514 

the peak SNP chr4B:666048201 (explaining 19.3% of the phenotypic variation) that was jointly 515 

identified by both multi-locus GWAS models and four ML algorithms (RF, ANN, SVR, and 516 

CNN) in the present study. QTL mapping conducted by previous authors (Zou et al., 2017a, 517 

2017b) in the 8Attila9 and 8CDC Go9 RIL populations using genetic maps of 1203 markers 518 

identified a coincident genomic region associated with maturity under both management 519 

systems on chromosome 4B and 5A. We also identified QTLs on chromosomes 4B and 5A, 520 
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with peak SNPs chr4B:666048201, chr4B:37907825, and chr5A:580797118 explaining 19.3%, 521 

18.44%, and 10.72%, of the phenotypic variation, respectively. The favorable alleles for those 522 

QTLs on 4B and 5A were most originated from the accessions of North Africa, including spring 523 

lines (Attila) acquired from the International Center for Agricultural Research in the Dry Areas 524 

(ICARDA). Interesting, previous works also identified two QTLs for maturity on chromosome 525 

4B (QMat.dms-4B) and chromosome 5A (QMat.dms-5A.2), which individually explained 526 

15.9% and 14.0% of the phenotypic variance, respectively, and together accounted for 29.9% 527 

of the phenotypic variance across seven environments (Zou et al., 2017a, 2017b). The favorable 528 

alleles for QMat.dms-4B and QMat.dms-5A.2 originated from 'Attila' and 'CDC Go', 529 

respectively. (Chen et al., 2020) also identified a QTL associated with maturity on chromosome 530 

4B (4B_s4991673- 4B_d1258252) using a linkage map of 4439 markers produced by DArTseq 531 

technology and phenotype data from 'Peace' and 'Carberry' RIL populations assessed for two 532 

years under organic management and conventional systems, consistent with our results. 533 

Our investigation into candidate genes associated with maturity in wheat led us to a genomic 534 

interval spanning the QTL that contributes significantly to the phenotypic variation in Days-to-535 

Maturity (19.3% of the variation). This region, located between 4B_666 and 668 Mb and 536 

centered around the peak SNP (chr4B:666048201), contained a total of 27 high-confidence 537 

genes. Our findings align with prior research that has identified genomic regions on 538 

chromosome 4B associated with maturity and housing candidate genes related to flower-539 

promoting factors. Notably, certain dwarfing genes, such as Rht-B1, Rht5, Rht8, and Rht12, 540 

have been reported to exert slight delays in heading, flowering, and/or maturity time in wheat. 541 

These genetic factors add complexity to the regulation of these traits (Chen et al., 2018; Daoura 542 

Goudia et al., 2014). The discovery in the present study contributes to our understanding of the 543 

genetic factors underpinning wheat maturity and sets the stage for future research aimed at 544 

elucidating the molecular mechanisms involved. 545 

The results our study highlight the remarkable superiority of machine learning (ML) models in 546 

identifying significant genetic associations compared to traditional Genome-Wide Association 547 

Study (GWAS) methods, as demonstrated through substantially lower p-values. For SW, the 548 

peak SNP was efficiently identified by both GWAS models (BLINK and FarmCPU) and the 549 

five ML algorithms, emphasizing their robustness. Notably, the ML models, including CNN, 550 

RF, SVM, SVR, and ANN, produced significantly lower p-values (3.95E-08) compared to the 551 

traditional GWAS models, which had p-values ranging from 5.97E-05 to 6.34E-03. Traditional 552 

methods (MLM and CMLM) failed to detect this critical SNP, showcasing their limitations in 553 

capturing minor genetic effects. Shifting the focus to DM, the robust associations identified by 554 
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GWAS models and ML algorithms demonstrated that conventional methods (MLM and 555 

CMLM) were less effective, failing to detect these essential SNP peaks. Once again, ML models 556 

consistently delivered significantly lower p-values, underscoring their increased sensitivity and 557 

accuracy in identifying genetic markers linked to DM. The differences in p-values were 558 

substantial, with ML models consistently outperforming the traditional GWAS methods. 559 

These findings reveal that traditional GWAS methods face limitations in detecting minor 560 

genetic effects on SW and DM traits in wheat. Conversely, ML models, especially when 561 

coupled with advanced multi-locus GWAS models like BLINK and FarmCPU, exhibited a 562 

superior performance characterized by significantly lower p-values. This work demonstrates 563 

the potential of ML approaches to revolutionize the study of complex genetic traits, offering 564 

valuable insights for crop improvement and stress resilience in bread wheat. Our hypotheses 565 

(1) regarding the presence of specific genomic regions associated with SW and DM in a diverse 566 

global collection of bread wheat accessions and (2) the superior performance of Machine 567 

Learning-Genome-Wide Association Study (ML-GWAS) approaches over traditional GWAS 568 

methods in identifying relevant genomic regions associated with SW and DM traits in bread 569 

wheat have been confirmed. Our study has provided evidence that conventional GWAS 570 

approaches, such as MLM, and CMLM, lack the ability to effectively detect SNPs with minor 571 

effects underlying specific traits. In other words, these traditional methods used to analyze 572 

genetic data and establish associations between genetic variations and traits are not sensitive 573 

enough to identify subtle or minor effects of certain SNPs on the characteristics of SW and DM 574 

in wheat. These findings align with previous research conducted by (Yoosefzadeh-Najafabadi 575 

et al., 2023; Zhou et al., 2019), which also highlighted the limited power of conventional GWAS 576 

approaches in detecting SNPs with minor effects on specific traits. 577 

However, our study has revealed the effectiveness of an alternative approach, utilizing machine 578 

learning algorithms in GWAS. By employing this method, we were able to overcome the 579 

limitations of traditional GWAS and more accurately identify SNPs with smaller yet significant 580 

effects on SW and DM traits in wheat. Additionally, the most robust associations identified by 581 

modern GWAS methodologies (BLINK and FarmCPU) were reaffirmed by machine learning 582 

techniques. These results are consistent with the studies conducted by (Yoosefzadeh-Najafabadi 583 

et al., 2023) and (Zhou et al., 2019), which compared SVR and RF algorithms, respectively, to 584 

conventional GWAS methods in soybean. They reported that machine learning algorithms are 585 

more accurate and sensitive in detecting subtle or minor effects of certain SNPs on traits of 586 

interest. Additionally, our study demonstrated the effectiveness of the new GWAS model, 587 

BLINK and FarmCPU, in accurately and efficiently detecting SNPs with smaller but significant 588 
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effects on SW and DM traits in wheat. In fact, both real and simulated data analyses have shown 589 

that BLINK significantly improves statistical power compared to FarmCPU, while also 590 

reducing computing time (Huang et al., 2019). 591 

The FarmCPU, developed by (Liu et al., 2016), represents an iterative method that addresses 592 

the issue of false positive control and confounding between testing markers and cofactors 593 

simultaneously. As FarmCPU tests markers in a fixed-effect model, it is computationally more 594 

efficient than methods that test markers in a random-effect model, such as MLM, CMLM, 595 

ECMLM, SUPER, and MLMM (Liu et al., 2016). Studies have demonstrated the order of the 596 

statistical power of these methods: BLINK > FarmCPU > CMLM > MLM (Huang et al., 2019; 597 

Liu et al., 2016; Zhang et al., 2010). 598 

The utilization of machine learning algorithms (RF, ANN, SVR, CNN, and SVM), along with 599 

the recent multi-locus GWAS model, BLINK, and FarmCPU has enabled a more sensitive and 600 

precise identification of genetic factors influencing specific traits. This opens up new 601 

opportunities for wheat improvement and selection. Indeed, ML algorithms are focused on 602 

maximizing prediction accuracy at the individual subject level and have been shown to capture 603 

multi-locus SNP interactions better than univariate association studies (Okser et al., 2014, 604 

2013). Additionally, ML techniques provide an opportunity to better understand multi-locus 605 

genetic variants and their interactions in predicting complex traits (Ashkenazy et al., 2022; 606 

Kwon et al., 2022). This approach provides a more sophisticated and reliable means of 607 

discovering genetic markers associated with SW and DM traits, which can have significant 608 

implications for agriculture, varietal selection, and understanding the genetic mechanisms 609 

governing crop characteristics. 610 

Overall, both GWAS and machine learning methods have successfully addressed the 611 

confounding effects of population structure and relatedness, allowing us to identify multiple 612 

genomic regions associated with SW and DM traits in wheat. These findings shed light on the 613 

genetic architecture of these traits and offer valuable insights to plant breeders in their efforts 614 

to develop new bread wheat varieties with improved SW and DM. 615 

 616 

 617 

 618 

 619 

 620 

 621 
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Conclusion 622 

In this study, our primary objective was to identify the genomic regions associated with SW 623 

and DM using state-of-the-art Machine Learning-Genome-Wide Association Study (ML-624 

GWAS) techniques. Our findings provide a deep understanding of the genetic landscape 625 

governing these critical traits, delivering valuable insights that can significantly inform wheat 626 

breeding and crop improvement strategies. Leveraging ML-GWAS, we successfully identified 627 

a robust QTL significantly associated with SW on chromosome 1A, represented by the peak 628 

SNPs chr1A:556842331, explaining an impressive 50% of the phenotypic variation. 629 

Additionally, we detected four strong genomic regions significantly associated with DM on 630 

chromosomes 4B, 2A, and 5A, employing the same cutting-edge methods. Notably, our study 631 

unveiled a candidate gene linked to the QTLs for SW. TraesCS1A01G385500, an ortholog of 632 

the Arabidopsis Thaliana O-acyltransferase gene WSD1, plays a pivotal role in cuticular wax 633 

biosynthesis. It is essential for reducing leaf water loss, particularly during drought conditions, 634 

and contributes to drought tolerance through the biosynthesis of very long-chain (VLC) wax 635 

esters. Our study also shows that, ML models, especially when coupled with advanced multi-636 

locus GWAS models like BLINK and FarmCPU, exhibited a superior performance 637 

characterized by significantly lower p-values in identifying relevant QTLs compared to 638 

traditional methods like MLM and CMLM. This work demonstrates the potential of ML 639 

approaches to revolutionize the study of complex genetic traits, offering valuable insights for 640 

crop improvement and stress resilience in bread wheat. ML-GWAS emerges as a compelling 641 

approach for genomic-based breeding strategies, providing breeders with more accurate and 642 

efficient tools to develop improved wheat varieties. Our research significantly advances the 643 

precision and effectiveness of GWAS, emphasizing the importance of incorporating advanced 644 

computational methods into crop breeding studies. The insights into the genetic architecture of 645 

SW and DM traits in wheat offer essential knowledge for designing targeted crop improvement 646 

strategies. Moreover, the versatility and effectiveness demonstrated by the ML-GWAS 647 

approach extend its applicability beyond wheat and can be harnessed to address other crop 648 

traits, thus enhancing progress in crop genetics research and breeding efforts on a broader scale. 649 

Overall, the integration of machine learning techniques with GWAS stands as a potent tool for 650 

dissecting complex traits in crop genetics research. The findings of our study hold great promise 651 

for the field of wheat breeding and crop improvement strategies, making substantial 652 

contributions to enhancing agricultural productivity and ensuring food security in the face of 653 

evolving global challenges. 654 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

 

Additional Information Supplementary information for this paper is available at: 655 

Competing interests: The authors declare that they have no competing interests. 656 

Acknowledgements:  657 

Authors are grateful to the International Maize and Wheat Improvement Center (CIMMYT), 658 

the International Center for Agricultural Research in the Dry Areas (ICARDA) and the Plant 659 

Breeding Laboratory (Department of Genetics, Stellenbosch University) for their technical 660 

supports and wheat varieties collection. We would like to thank Dr Wuletaw Tadesse, Mr Tsimi 661 

Patrick, Mr Charly Mam for their technical support. We are grateful to Dr Amina Abed and Dr 662 

Jérôme Laroche for their technical support during bioinformatics analyses.  663 

 664 

References 665 

Aarts, M.G., Keijzer, C.J., Stiekema, W.J., Pereira, A., 1995. Molecular characterization of 666 

the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen 667 

fertility. Plant Cell 7, 2115–2127. https://doi.org/10.1105/tpc.7.12.2115 668 

Ashkenazy, N., Feder, M., Shir, O.M., Hübner, S., 2022. GWANN: Implementing deep 669 

learning in genome wide association studies. 670 

https://doi.org/10.1101/2022.06.01.494275 671 

Belzile, F., Abed, A., Torkamaneh, D., 2020. Time for a paradigm shift in the use of plant 672 

genetic resources. Genome 63, 189–194. https://doi.org/10.1139/gen-2019-0141 673 

Bernard, A., Domergue, F., Pascal, S., Jetter, R., Renne, C., Faure, J.-D., Haslam, R.P., 674 

Napier, J.A., Lessire, R., Joubès, J., 2012. Reconstitution of plant alkane biosynthesis 675 

in yeast demonstrates that Arabidopsis ECERIFERUM1 and ECERIFERUM3 are core 676 

components of a very-long-chain alkane synthesis complex. Plant Cell 24, 3106–3118. 677 

https://doi.org/10.1105/tpc.112.099796 678 

Bourdenx, B., Bernard, A., Domergue, F., Pascal, S., Léger, A., Roby, D., Pervent, M., Vile, 679 

D., Haslam, R.P., Napier, J.A., Lessire, R., Joubès, J., 2011. Overexpression of 680 

Arabidopsis ECERIFERUM1 promotes wax very-long-chain alkane biosynthesis and 681 

influences plant response to biotic and abiotic stresses. Plant Physiol. 156, 29–45. 682 

https://doi.org/10.1104/pp.111.172320 683 

Chen, H., Bemister, D.H., Iqbal, M., Strelkov, S.E., Spaner, D.M., 2020. Mapping genomic 684 

regions controlling agronomic traits in spring wheat under conventional and organic 685 

managements. Crop Sci. 60, 2038–2052. https://doi.org/10.1002/csc2.20157 686 

Chen, L., Du, Y., Lu, Q., Chen, H., Meng, R., Cui, C., Lu, S., Yang, Y., Chai, Y., Li, J., Liu, 687 

L., Qi, X., Li, H., Mishina, K., Yu, F., Hu, Y.-G., 2018. The Photoperiod-Insensitive 688 

Allele Ppd-D1a Promotes Earlier Flowering in Rht12 Dwarf Plants of Bread Wheat. 689 

Front. Plant Sci. 9. 690 

Churchill, G.A., Doerge, R.W., 1994. Empirical threshold values for quantitative trait 691 

mapping. Genetics 138, 963–971. https://doi.org/10.1093/genetics/138.3.963 692 

Daoura Goudia, B., Chen, L., Yingying, D., Yingang, H., 2014. Genetic effects of dwarfing 693 

gene Rht-5 on agronomic traits in common wheat (Triticum aestivum L.) and QTL 694 

analysis on its linked traits. Field Crops Res. 156, 22–29. 695 

https://doi.org/10.1016/j.fcr.2013.10.007 696 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

 

DeBono, A., Yeats, T.H., Rose, J.K.C., Bird, D., Jetter, R., Kunst, L., Samuels, L., 2009. 697 

Arabidopsis LTPG Is a Glycosylphosphatidylinositol-Anchored Lipid Transfer Protein 698 

Required for Export of Lipids to the Plant Surface. Plant Cell 21, 1230–1238. 699 

https://doi.org/10.1105/tpc.108.064451 700 

Doerge, R.W., Churchill, G.A., 1996. Permutation Tests for Multiple Loci Affecting a 701 

Quantitative Character. Genetics 142, 285–294. 702 

https://doi.org/10.1093/genetics/142.1.285 703 

Doyle, J.J., Doyle, J.L., 1990. Isolation ofplant DNA from fresh tissue. Focus 12, 39–40. 704 

Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S., Mitchell, 705 

S.E., 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High 706 

Diversity Species. PLoS ONE 6, e19379. 707 

https://doi.org/10.1371/journal.pone.0019379 708 

Enoma, D.O., Bishung, J., Abiodun, T., Ogunlana, O., Osamor, V.C., 2022. Machine learning 709 

approaches to genome-wide association studies. J. King Saud Univ. - Sci. 34, 101847. 710 

https://doi.org/10.1016/j.jksus.2022.101847 711 

He, J., Li, C., Hu, N., Zhu, Y., He, Z., Sun, Y., Wang, Z., Wang, Y., 2022. ECERIFERUM1-712 

6A is required for the synthesis of cuticular wax alkanes and promotes drought 713 

tolerance in wheat. Plant Physiol. 190, 1640–1657. 714 

https://doi.org/10.1093/plphys/kiac394 715 

Hen-Avivi, S., Savin, O., Racovita, R.C., Lee, W.-S., Adamski, N.M., Malitsky, S., 716 

Almekias-Siegl, E., Levy, M., Vautrin, S., Bergès, H., Friedlander, G., Kartvelishvily, 717 

E., Ben-Zvi, G., Alkan, N., Uauy, C., Kanyuka, K., Jetter, R., Distelfeld, A., Aharoni, 718 

A., 2016. A Metabolic Gene Cluster in the Wheat W1 and the Barley Cer-cqu Loci 719 

Determines β-Diketone Biosynthesis and Glaucousness. Plant Cell 28, 1440–1460. 720 

https://doi.org/10.1105/tpc.16.00197 721 

Huang, M., Liu, X., Zhou, Y., Summers, R.M., Zhang, Z., 2019. BLINK: a package for the 722 

next level of genome-wide association studies with both individuals and markers in 723 

the millions. GigaScience 8, giy154. https://doi.org/10.1093/gigascience/giy154 724 

Ichino, T., Yazaki, K., 2022. Modes of secretion of plant lipophilic metabolites via ABCG 725 

transporter-dependent transport and vesicle-mediated trafficking. Curr. Opin. Plant 726 

Biol. 66, 102184. https://doi.org/10.1016/j.pbi.2022.102184 727 

Ingram, G., Nawrath, C., 2017. The roles of the cuticle in plant development: organ adhesions 728 

and beyond. J. Exp. Bot. 68, 5307–5321. https://doi.org/10.1093/jxb/erx313 729 

International Wheat Genome Sequencing Consortium (IWGSC), 2018. Shifting the limits in 730 

wheat research and breeding using a fully annotated reference genome. Science 361, 731 

eaar7191. https://doi.org/10.1126/science.aar7191 732 

Iqbal, M., Navabi, A., Salmon, D.F., Yang, R.-C., Murdoch, B.M., Moore, S.S., Spaner, D., 733 

2007. Genetic analysis of flowering and maturity time in high latitude spring wheat. 734 

Euphytica 154, 207–218. https://doi.org/10.1007/s10681-006-9289-y 735 

Kaler, A.S., Gillman, J.D., Beissinger, T., Purcell, L.C., 2020. Comparing Different Statistical 736 

Models and Multiple Testing Corrections for Association Mapping in Soybean and 737 

Maize. Front. Plant Sci. 10, 1794. https://doi.org/10.3389/fpls.2019.01794 738 

Kamran, A., Iqbal, M., Navabi, A., Randhawa, H., Pozniak, C., Spaner, D., 2013. Earliness 739 

per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in 740 

the Cutler × AC Barrie spring wheat population. Theor. Appl. Genet. 126, 1965–1976. 741 

https://doi.org/10.1007/s00122-013-2110-0 742 

Kamran, Atif, Randhawa, H.S., Pozniak, C., Spaner, D., 2013. Phenotypic Effects of the 743 

Flowering Gene Complex in Canadian Spring Wheat Germplasm. Crop Sci. 53, 84–744 

94. https://doi.org/10.2135/cropsci2012.05.0313 745 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

 

Kosma, D.K., Bourdenx, B., Bernard, A., Parsons, E.P., Lü, S., Joubès, J., Jenks, M.A., 2009. 746 

The impact of water deficiency on leaf cuticle lipids of Arabidopsis. Plant Physiol. 747 

151, 1918–1929. https://doi.org/10.1104/pp.109.141911 748 

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A., Cooper, T., Mayer, 749 

Z., Kenkel, B., Team, R.C., 2020. Package 8caret.9 R J. 223. 750 

Kunst, L., Samuels, L., 2009. Plant cuticles shine: advances in wax biosynthesis and export. 751 

Curr. Opin. Plant Biol. 12, 721–727. https://doi.org/10.1016/j.pbi.2009.09.009 752 

Kwon, O.-S., Hong, M., Kim, T.-H., Hwang, I., Shim, J., Choi, E.-K., Lim, H.E., Yu, H.T., 753 

Uhm, J.-S., Joung, B., Oh, S., Lee, M.-H., Kim, Y.-H., Pak, H.-N., 2022. Genome-754 

wide association study-based prediction of atrial fibrillation using artificial 755 

intelligence. Open Heart 9, e001898. https://doi.org/10.1136/openhrt-2021-001898 756 

Li, F., Wu, X., Lam, P., Bird, D., Zheng, H., Samuels, L., Jetter, R., Kunst, L., 2008. 757 

Identification of the Wax Ester Synthase/Acyl-Coenzyme A:Diacylglycerol 758 

Acyltransferase WSD1 Required for Stem Wax Ester Biosynthesis in Arabidopsis. 759 

Plant Physiol. 148, 97–107. https://doi.org/10.1104/pp.108.123471 760 

Li, T., Sun, Y., Liu, T., Wu, H., An, P., Shui, Z., Wang, J., Zhu, Y., Li, C., Wang, Y., Jetter, 761 

R., Wang, Z., 2019. TaCER1-1A is involved in cuticular wax alkane biosynthesis in 762 

hexaploid wheat and responds to plant abiotic stresses. Plant Cell Environ. 42, 3077–763 

3091. https://doi.org/10.1111/pce.13614 764 

Lipka, A.E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P.J., Gore, M.A., Buckler, E.S., 765 

Zhang, Z., 2012. GAPIT: genome association and prediction integrated tool. 766 

Bioinforma. Oxf. Engl. 28, 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 767 

Liu, X., Huang, M., Fan, B., Buckler, E.S., Zhang, Z., 2016. Iterative Usage of Fixed and 768 

Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. 769 

PLOS Genet. 12, e1005767. https://doi.org/10.1371/journal.pgen.1005767 770 

Martin, L.B.B., Rose, J.K.C., 2014. There9s more than one way to skin a fruit: formation and 771 

functions of fruit cuticles. J. Exp. Bot. 65, 4639–4651. 772 

https://doi.org/10.1093/jxb/eru301 773 

Mohammadi, M., Xavier, A., Beckett, T., Beyer, S., Chen, L., Chikssa, H., Cross, V., Freitas 774 

Moreira, F., French, E., Gaire, R., Griebel, S., Lopez, M.A., Prather, S., Russell, B., 775 

Wang, W., 2020. Identification, deployment, and transferability of quantitative trait 776 

loci from genome-wide association studies in plants. Curr. Plant Biol. 24, 100145. 777 

https://doi.org/10.1016/j.cpb.2020.100145 778 

Ni, E., Zhou, L., Li, J., Jiang, D., Wang, Z., Zheng, S., Qi, H., Zhou, Y., Wang, C., Xiao, S., 779 

Liu, Z., Zhou, H., Zhuang, C., 2018. OsCER1 Plays a Pivotal Role in Very-Long-780 

Chain Alkane Biosynthesis and Affects Plastid Development and Programmed Cell 781 

Death of Tapetum in Rice (Oryza sativa L.). Front. Plant Sci. 9, 1217. 782 

https://doi.org/10.3389/fpls.2018.01217 783 

Nicholls, H.L., John, C.R., Watson, D.S., Munroe, P.B., Barnes, M.R., Cabrera, C.P., 2020. 784 

Reaching the End-Game for GWAS: Machine Learning Approaches for the 785 

Prioritization of Complex Disease Loci. Front. Genet. 11. 786 

Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., Aittokallio, T., 2014. 787 

Regularized Machine Learning in the Genetic Prediction of Complex Traits. PLOS 788 

Genet. 10, e1004754. https://doi.org/10.1371/journal.pgen.1004754 789 

Okser, S., Pahikkala, T., Aittokallio, T., 2013. Genetic variants and their interactions in 790 

disease risk prediction - machine learning and network perspectives. BioData Min. 6, 791 

5. https://doi.org/10.1186/1756-0381-6-5 792 

Pask, A.J.D., Pietragalla, J., Mullan, D.M., Reynolds, M.P., 2012. Physiological breeding II: a 793 

field guide to wheat phenotyping. Cimmyt. 794 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Patwari, P., Salewski, V., Gutbrod, K., Kreszies, T., Dresen-Scholz, B., Peisker, H., Steiner, 795 

U., Meyer, A.J., Schreiber, L., Dörmann, P., 2019. Surface wax esters contribute to 796 

drought tolerance in Arabidopsis. Plant J. Cell Mol. Biol. 98, 727–744. 797 

https://doi.org/10.1111/tpj.14269 798 

Pighin, J.A., Zheng, H., Balakshin, L.J., Goodman, I.P., Western, T.L., Jetter, R., Kunst, L., 799 

Samuels, A.L., 2004. Plant cuticular lipid export requires an ABC transporter. Science 800 

306, 702–704. https://doi.org/10.1126/science.1102331 801 

Ramírez-González, R.H., Borrill, P., Lang, D., Harrington, S.A., Brinton, J., Venturini, L., 802 

Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S.J., Cory, A.T., 803 

Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., Ridout, 804 

C.J., Chalhoub, B., Mayer, K.F.X., Benhamed, M., Latrasse, D., Bendahmane, A., 805 

International Wheat Genome Sequencing Consortium, Wulff, B.B.H., Appels, R., 806 

Tiwari, V., Datla, R., Choulet, F., Pozniak, C.J., Provart, N.J., Sharpe, A.G., Paux, E., 807 

Spannagl, M., Bräutigam, A., Uauy, C., 2018. The transcriptional landscape of 808 

polyploid wheat. Science 361, eaar6089. https://doi.org/10.1126/science.aar6089 809 

Sakuradani, E., Zhao, L., Haslam, T.M., Kunst, L., 2013. The CER22 gene required for the 810 

synthesis of cuticular wax alkanes in Arabidopsis thaliana is allelic to CER1. Planta 811 

237, 731–738. https://doi.org/10.1007/s00425-012-1791-y 812 

Semagn, K., Iqbal, M., Chen, H., Perez-Lara, E., Bemister, D.H., Xiang, R., Zou, J., Asif, M., 813 

Kamran, A., N9Diaye, A., Randhawa, H., Pozniak, C., Spaner, D., 2021. Physical 814 

Mapping of QTL in Four Spring Wheat Populations under Conventional and Organic 815 

Management Systems. I. Earliness. Plants 10, 853. 816 

https://doi.org/10.3390/plants10050853 817 

Seo, P.J., Lee, S.B., Suh, M.C., Park, M.-J., Go, Y.S., Park, C.-M., 2011. The MYB96 818 

transcription factor regulates cuticular wax biosynthesis under drought conditions in 819 

Arabidopsis. Plant Cell 23, 1138–1152. https://doi.org/10.1105/tpc.111.083485 820 

Siegmann, B., Jarmer, T., 2015. Comparison of different regression models and validation 821 

techniques for the assessment of wheat leaf area index from hyperspectral data. Int. J. 822 

Remote Sens. 36, 4519–4534. https://doi.org/10.1080/01431161.2015.1084438 823 

Snape, J., Butterworth, K., Whitechurch, E., Worland, A.J., 2001. Waiting for Fine Times: 824 

Genetics of Flowering Time in Wheat, in: Bedö, Z., Láng, L. (Eds.), Wheat in a 825 

Global Environment: Proceedings of the 6th International Wheat Conference, 5–9 826 

June 2000, Budapest, Hungary, Developments in Plant Breeding. Springer 827 

Netherlands, Dordrecht, pp. 67–74. https://doi.org/10.1007/978-94-017-3674-9_7 828 

Tekeu, H., Ngonkeu, E.L.M., Bélanger, S., Djocgoué, P.F., Abed, A., Torkamaneh, D., Boyle, 829 

B., Tsimi, P.M., Tadesse, W., Jean, M., Belzile, F., 2021. GWAS identifies an 830 

ortholog of the rice D11 gene as a candidate gene for grain size in an international 831 

collection of hexaploid wheat. Sci. Rep. 11, 19483. https://doi.org/10.1038/s41598-832 

021-98626-0 833 

Tekeu, H., Ngonkeu, E.M.L., Djocgoue, F.P., Ellis, A., Lendzemo, V., Springfield, L., 834 

Moulin, L., Klonowska, A., Diouf, D., Botes, W.C., Bena, G., 2017. Genetic diversity 835 

of Cameroonian bread wheat (Triticum aestivum L.) cultivars revealed by 836 

microsatellite markers. Afr. J. Biotechnol. 16, 1832–1839. 837 

https://doi.org/10.5897/AJB2017.16090 838 

Torkamaneh, D., Laroche, J., Bastien, M., Abed, A., Belzile, F., 2017. Fast-GBS: a new 839 

pipeline for the efficient and highly accurate calling of SNPs from genotyping-by-840 

sequencing data. BMC Bioinformatics 18, 1–7. 841 

Waese, J., Fan, J., Pasha, A., Yu, H., Fucile, G., Shi, R., Cumming, M., Kelley, L.A., 842 

Sternberg, M.J., Krishnakumar, V., Ferlanti, E., Miller, J., Town, C., Stuerzlinger, W., 843 

Provart, N.J., 2017. ePlant: Visualizing and Exploring Multiple Levels of Data for 844 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

 

Hypothesis Generation in Plant Biology. Plant Cell 29, 1806–1821. 845 

https://doi.org/10.1105/tpc.17.00073 846 

Wang, D., Ni, Y., Liao, L., Xiao, Y., Guo, Y., 2021. Poa pratensis ECERIFERUM1 847 

(PpCER1) is involved in wax alkane biosynthesis and plant drought tolerance. Plant 848 

Physiol. Biochem. PPB 159, 312–321. https://doi.org/10.1016/j.plaphy.2020.12.032 849 

Wang, W., Zhang, Y., Xu, C., Ren, J., Liu, X., Black, K., Gai, X., Wang, Q., Ren, H., 2015. 850 

Cucumber ECERIFERUM1 (CsCER1), which influences the cuticle properties and 851 

drought tolerance of cucumber, plays a key role in VLC alkanes biosynthesis. Plant 852 

Mol. Biol. 87, 219–233. https://doi.org/10.1007/s11103-014-0271-0 853 

Wang, X., Chang, C., 2022. Exploring and exploiting cuticle biosynthesis for abiotic and 854 

biotic stress tolerance in wheat and barley. Front. Plant Sci. 13, 1064390. 855 

https://doi.org/10.3389/fpls.2022.1064390 856 

Wang, Y., Wang, M., Sun, Y., Hegebarth, D., Li, T., Jetter, R., Wang, Z., 2015a. Molecular 857 

Characterization of TaFAR1 Involved in Primary Alcohol Biosynthesis of Cuticular 858 

Wax in Hexaploid Wheat. Plant Cell Physiol. 56, 1944–1961. 859 

https://doi.org/10.1093/pcp/pcv112 860 

Wang, Y., Wang, M., Sun, Y., Wang, Yanting, Li, T., Chai, G., Jiang, W., Shan, L., Li, C., 861 

Xiao, E., Wang, Z., 2015b. FAR5, a fatty acyl-coenzyme A reductase, is involved in 862 

primary alcohol biosynthesis of the leaf blade cuticular wax in wheat (Triticum 863 

aestivum L.). J. Exp. Bot. 66, 1165–1178. https://doi.org/10.1093/jxb/eru457 864 

Wu, H., Shi, S., Lu, X., Li, T., Wang, J., Liu, T., Zhang, Q., Sun, W., Li, C., Wang, Z., Chen, 865 

Y., Quan, L., 2019. Expression Analysis and Functional Characterization of CER1 866 

Family Genes Involved in Very-Long-Chain Alkanes Biosynthesis in Brachypodium 867 

distachyon. Front. Plant Sci. 10, 1389. https://doi.org/10.3389/fpls.2019.01389 868 

Yin, L., Zhang, H., Tang, Z., Xu, J., Yin, D., Zhang, Z., Yuan, X., Zhu, M., Zhao, S., Li, X., 869 

Liu, X., 2021. rMVP: A Memory-efficient, Visualization-enhanced, and Parallel-870 

accelerated Tool for Genome-wide Association Study. Genomics Proteomics 871 

Bioinformatics 19, 619–628. https://doi.org/10.1016/j.gpb.2020.10.007 872 

Yoosefzadeh Najafabadi, M., Tulpan, D., Eskandari, M., 2021. Using Hybrid Artificial 873 

Intelligence and Evolutionary Optimization Algorithms for Estimating Soybean Yield 874 

and Fresh Biomass Using Hyperspectral Vegetation Indices. Remote Sens. 13, 2555. 875 

https://doi.org/10.3390/rs13132555 876 

Yoosefzadeh-Najafabadi, M., Torabi, S., Tulpan, D., Rajcan, I., Eskandari, M., 2023. 877 

Application of SVR-Mediated GWAS for Identification of Durable Genetic Regions 878 

Associated with Soybean Seed Quality Traits. Plants 12, 2659. 879 

https://doi.org/10.3390/plants12142659 880 

Yu, J., Buckler, E.S., 2006. Genetic association mapping and genome organization of maize. 881 

Curr. Opin. Biotechnol. 17, 155–160. https://doi.org/10.1016/j.copbio.2006.02.003 882 

Zadoks, J.C., Chang, T.T., Konzak, C.F., 1974. A decimal code for the growth stages of 883 

cereals. Weed Res. 14, 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x 884 

Zhang, Z., Ersoz, E., Lai, C.-Q., Todhunter, R.J., Tiwari, H.K., Gore, M.A., Bradbury, P.J., 885 

Yu, J., Arnett, D.K., Ordovas, J.M., Buckler, E.S., 2010. Mixed linear model approach 886 

adapted for genome-wide association studies. Nat. Genet. 42, 355–360. 887 

https://doi.org/10.1038/ng.546 888 

Zhou, W., Bellis, E.S., Stubblefield, J., Causey, J., Qualls, J., Walker, K., Huang, X., 2019. 889 

Minor QTLs mining through the combination of GWAS and machine learning feature 890 

selection. https://doi.org/10.1101/712190 891 

Zou, J., Semagn, K., Iqbal, M., Chen, H., Asif, M., N9Diaye, A., Navabi, A., Perez-Lara, E., 892 

Pozniak, C., Yang, R.-C., Randhawa, H., Spaner, D., 2017a. QTLs associated with 893 

agronomic traits in the Attila × CDC Go spring wheat population evaluated under 894 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

 

conventional management. PLOS ONE 12, e0171528. 895 

https://doi.org/10.1371/journal.pone.0171528 896 

Zou, J., Semagn, K., Iqbal, M., N9Diaye, A., Chen, H., Asif, M., Navabi, A., Perez‐Lara, E., 897 

Pozniak, C., Yang, R., Randhawa, H., Spaner, D., 2017b. Mapping QTLs Controlling 898 

Agronomic Traits in the 8Attila9 × 8CDC Go9 Spring Wheat Population under Organic 899 

Management using 90K SNP Arra. Crop Sci. 57, 365–377. 900 

https://doi.org/10.2135/cropsci2016.06.0459 901 

 902 

 903 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.03.565125doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.03.565125
http://creativecommons.org/licenses/by-nc-nd/4.0/

