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Abstract

This study employed Machine Learning-Genome-Wide Association Study (ML-GWAS) to
identify genomic regions linked to cuticular wax ester biosynthesis (SW) and early maturity
(DM) in wheat. Using a dataset with 170 wheat accessions and 74K SNPs, four GWAS tools
(MLM, CMLM, FarmCPU, and BLINK) and five machine learning techniques (RF, ANN,
SVR, CNN, and SVM) were applied. A highly significant SW association was found on
chromosome 1A, with the peak SNP (chr1A:556842331) explaining 50% of the phenotypic
variation. A promising candidate gene, TraesCSIA01G385500, was identified as an ortholog
of Arabidopsis thaliana's WSD1 gene, which plays a crucial role in very long-chain (VLC) wax
ester biosynthesis. For DM, four QTLs were detected on chromosomes 4B (two QTLs), 2A,
and 5A. Haplotype analysis revealed that alleles TT significantly contribute to cuticular wax
ester biosynthesis and early maturity in wheat varieties. The study underscores the superior
performance of ML models, especially when combined with advanced multi-locus GWAS
models like BLINK and FarmCPU, with significantly lower p-values for identifying relevant
QTLs compared to traditional methods. ML approaches hold potential for revolutionizing the
study of complex genetic traits, offering insights to enhance wheat crops' resilience and quality.
ML-GWAS emerges as a compelling tool for genomic-based breeding, enabling breeders to

develop improved wheat varieties with greater precision and efficiency.

Keywords: International wheat collection, Genotyping-by-Sequencing, population structure,
Genome-Wide Association Study, Machine learning, spike waxiness, number of days-to-

maturity.
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Introduction

Wheat (Triticum aestivum L.), a globally essential staple crop, faces a multitude of
environmental challenges, from drought and salinity to extreme temperatures and pest pressures
(He et al., 2022). A vital component of its adaptive response to these challenges is the
hydrophobic cuticle, composed of cutin and cuticular waxes (Wang and Chang, 2022). This
lipidic shield defends against non-stomatal transpiration, UV radiation, pathogens, and insect
invasions while maintaining the integrity of adjacent plant organs (Ingram and Nawrath, 2017;
Martin and Rose, 2014).

The cuticle consists of two primary constituents: cutin, an insoluble polyester, and cuticular
waxes, encompassing very-long-chain (VLC) fatty acids, aldehydes, ketones, esters, alcohols,
alkanes, and other compounds (Kunst and Samuels, 2009). Alkanes, a significant component
of cuticular waxes, play a critical role in enhancing plant drought tolerance (Kosma et al., 2009;
Seo et al., 2011). In the realm of wheat, genes related to wax biosynthesis, including TaFARs
for primary alcohols and the W1 locus for -diketones, have been identified (Hen-Avivi et al.,
2016; Y. Wang et al., 2015a, 2015b). One pivotal gene, TaCER1-1A, has been recognized for
its involvement in alkane accumulation in wheat (Li et al., 2019). In a recent study by (He et
al., 2022), attention is drawn to TaCER1-6A, another key gene involved in alkane biosynthesis
in wheat, with investigations extending to overexpression and CRISPR/Cas9-mediated gene
editing.

To date, no study has pinpointed a gene responsible for the biosynthesis of wax VLC esters,
which play a crucial role in mitigating leaf water loss, particularly under drought conditions.
The journey of these wax constituents from the Golgi and trans-Golgi network (TGN) to the
plasma membrane and onward to the cuticle involves pathways coordinated by ABCG
subfamily half transporters and lipid transfer proteins (LTPs) (DeBono et al., 2009; Ichino and
Yazaki, 2022; Pighin et al., 2004; Wang and Chang, 2022).

Additionally, the cultivation of early-maturing wheat varieties holds critical importance in
regions characterized by short growing seasons and extended daylight, exemplified by the
Northern Great Plains of Canada and the USA (A. Kamran et al., 2013). Early maturation not
only enhances crop yields but also acts as a safeguard against frost damage, a threat that can
significantly compromise grain quality and overall agricultural productivity (Igbal et al., 2007).
The precise timing of wheat's flowering is intricately regulated by a complex interplay of genes

that dictate growth patterns and earliness. These genetic regulators encompass vernalization
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80  (Vrn), photoperiod (Ppd), and earliness per se (Eps) genes, shaping when wheat plants initiate
81  flowering and influencing their growth habits (Atif Kamran et al., 2013).

82  Adding to this complexity, certain genetic factors, such as dwarfing genes, subtly affect the
83  timing of heading, flowering, and maturity, introducing further intricacies in the regulation of
84  these vital agricultural traits (Chen et al., 2018; Daoura Goudia et al., 2014). Earliness per se
85  genes also play a role in enhancing the adaptability of wheat plants, contributing to their
86 resilience in varying environments (Snape et al., 2001). Recent studies, including one by
87  Semagn et al. (2021), have delved into the intricate genetic mapping of Quantitative Trait Loci
88  (QTLs) associated with days to maturity, particularly in wheat varieties evaluated under both
89  conventional and organic farming practices. These studies have identified key QTLs on
90  chromosome 4B, shedding light on the genetic mechanisms governing maturity. Furthermore,
91  earlier research by authors such as (Zou et al., 2017a, 2017b) employing extensive genetic
92  mapping using 1203 markers in RIL populations like 'Attila’ and 'CDC Go' has uncovered a

93  shared genomic region linked to maturity, situated on both chromosome 4B and 5SA.

94  Among the array of genetic factors at play, certain dwarfing genes, including Rht-B1, Rht5,
95  Rht8, and Rht12, have been identified as contributing factors, subtly influencing the timing of
96  heading, flowering, and maturity in wheat varieties. These genetic elements add an additional
97  layer of complexity to the intricate regulation of these pivotal traits (Chen et al., 2018; Daoura

98 Goudia et al., 2014).
99

100  While molecular markers have facilitated characterizing genetic diversity, phenotypic
101  assessments have primarily determined the utility of these genetic resources in breeding (Belzile
102 et al., 2020). With the availability of high-density SNP markers, Genome-Wide Association
103 Studies (GWAS) have become a powerful tool for identifying and mapping loci contributing to
104  phenotypic variation among diverse genetic materials that have undergone extensive
105  recombination (Yu and Buckler, 2006). Recent applications of highly reproducible GBS-
106  derived SNPs have uncovered candidate genes influencing grain size in bread wheat (Tekeu et
107 al., 2021). GWAS has become a standard approach across species for identifying genes
108  associated with critical traits (Ashkenazy et al., 2022).

109  However, there remain challenges with conventional GWAS techniques, including the "large
110 p, small n" issue when the number of markers surpasses the number of genotypes (Kaler et al.,
111 2020; Mohammadi et al., 2020). Conventional GWAS methods are better suited for identifying

112  common SNPs with substantial main effects, while the distinction between causal variants and
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113 correlated genes linked by linkage disequilibrium remains problematic (Enoma et al., 2022;
114 Nicholls et al., 2020). Moreover, conventional GWAS approaches lack the power to uncover
115  minor-effect SNPs associated with specific traits (Zhou et al., 2019). Consequently, machine
116  learning (ML) techniques offer an opportunity to address these limitations and gain insights
117  into the complex genetic basis of traits, as demonstrated in other crop species (Ashkenazy et
118 al., 2022; Kwon et al., 2022).

119  Machine learning models for GWAS vary in complexity, from simple logistic regression to
120  sophisticated ensemble models such as random forests, gradient boosting, and neural networks.
121  These ML algorithms focus on maximizing prediction accuracy and excel at capturing multi-
122 locus SNP interactions better than conventional methods. Support Vector Regression (SVR) is
123 one such machine learning technique that has shown promise in predicting important
124 agricultural traits (Yoosefzadeh Najafabadi et al., 2021). While SVR has found application in
125  various crop studies, the potential of other ML techniques, such as Random Forest (RF),
126  Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), and Support
127 Vector Machines (SVM), remains largely untapped when compared to the more conventional
128  GWAS tools like Mixed Linear Model (MLM), Compressed Mixed Linear Model (CMLM),
129  Fixed and random model Circulating Probability Unification (FarmCPU), and Bayesian-
130  information and Linkage-disequilibrium Iteratively Nested Keyway (BLINK).

131 This study aims to address this gap and provide valuable insights to bolster crop resilience. By
132 employing a diverse array of advanced ML techniques in GWAS analysis, we seek to identify
133 the genomic regions associated with cuticular wax ester biosynthesis (SW) and early maturity
134 (DM) in wheat. Our approach promises to shed light on the intricate genetic mechanisms
135  governing these vital traits and contribute to the advancement of crop breeding efforts for
136  improved wheat varieties. Our research hypotheses revolve around specific genomic regions
137  influencing SW and DM in a diverse global collection of bread wheat accessions. Furthermore,
138 it postulates that ML-GWAS approaches will outperform traditional GWAS methods, in
139 identifying Quantitative Trait Loci (QTLs) relevant to SW and DM ftraits in wheat. The present

140  study aims to decipher the genetic underpinnings of SW and DM using ML-GWAS approaches.
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141 Materials and methods

142  Plant materials

143 In this study, an international collection of 170 accessions was employed for genome-wide
144 association analyses. These cultivars were obtained from various international wheat breeding
145  programs. The South African accessions consisted of spring wheat lines from the Western Cape
146  region, along with some winter bread wheat lines from other parts of the country. The East
147  African spring-type accessions were gathered in Kenya and Ethiopia. The Mexican accessions
148  were obtained via the International Maize and Wheat Improvement Center (CIMMYT), and
149  they included spring accessions from Mexicali and Baja California. The Central African
150  accessions were provided by the Institute of Agricultural Research for Development (IRAD)
151 and farmers (Tekeu et al., 2017). The French accessions were winter lines, and those from North
152 Africa were composed of spring lines acquired from the International Center for Agricultural

153  Research in the Dry Areas (ICARDA).

154  Phenotyping

155 A panel of 170 accessions of bread wheat was phenotyped and used for genome-wide
156  association analyses. Field trials were conducted in two different locations in the bimodal humid
157  forest zone of Cameroon, during the 2015-2016 season in Munt Mbankolo (1057 m above sea
158  level) and during 2016-2017 in Nkolbisson (650 m a. s. 1.). At each trial site, an incomplete
159  alpha-lattice design with two replications was used and each accession was planted, as
160  previously reported by (Tekeu et al., 2021). Then, fields trials were managed in accordance
161  with the technical recommendations and standard agricultural practices for wheat (Pask et al.,
162 2012). Spike waxiness (SW; 0: Absent, 2: Almost none, 3: Very little, 4: Little, 5: Intermediate,
163 6: Some, 7: Much, 8: Very much) and DM (days-to-maturity) were assessed when 50% of
164  spikes had turned yellow (Zadoks et al., 1974).

165

166  Analysis of phenotypic data

167  We conducted the analysis of variance for each trait using PROC MIXED in SAS 9.4. In this
168  analysis, each cultivar was considered a fixed effect, while replications and environments were
169  treated as random effects. Pearson correlation coefficients between pairs of phenotypic traits
170  were computed using Pearson's correlation in SPSS 20.0. To assess the heritability of each trait,

171  we utilized the broad-sense heritability (h?) formula: h2 = VG / (VG + VGE + Ve), where VG
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172 represents genetic variance, VGE is the genetic-environment interaction variance, and Ve is the

173  error variance.

174 DNA isolation, GBS library construction and sequencing

175  To extract genomic DNA from dried young leaf tissue (~ 5 mg) of all accessions, we used a
176  CTAB DNA isolation method (Doyle and Doyle, 1990). The extracted DNA was quantified
177  using a Quant-iT™ PicoGreen kit (ThermoFisher Scientific, Canada), and concentrations were
178  normalized to 20 ng/ul for library preparation. We constructed three 96-plex PstI-Mspl GBS
179  libraries as described by (Elshire et al., 2011). Subsequently, each library was sequenced on
180  three P1 chips using an Ion Torrent PGM sequencer at the Plate-forme d'Analyses Génomiques

181  of the Institut de Biologie Intégrative et des Systemes (Université Laval, Québec, Canada).

182  Single nucleotide polymorphism calling and bioinformatics analysis.

183  Genomic DNA sequences of wheat samples, with an average of 2.4 million reads per wheat
184  line, were analyzed using the FastGBS pipeline (Torkamaneh et al., 2017). The reads were
185  aligned to the wheat reference genome (Chinese Spring v1.0), and SNPs were called using
186  FastGBS. Standard filtration steps were applied to the FastGBS results, as previously described
187 by (Tekeu et al., 2021). Additional filtration steps were carried out on this subset to retain only
188  SNPs with a minor allele frequency (MAF) of at least 0.05.

189

190 Machine Learning-Genome-Wide Association Study

191

192 We conducted a genome-wide association study (GWAS) to identify genomic regions

193 associated with variation in SW and DM using a dataset comprising 170 accessions and 74K
194  single nucleotide polymorphisms (SNPs). We employed a comprehensive approach that
195  integrated four GWAS analytical methods, namely the Mixed Linear Model (MLM),
196  Compressed Mixed Linear Model (CMLM), Fixed and random model Circulating Probability
197  Unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively
198  Nested Keyway (BLINK). In addition, we harnessed the power of five machine learning
199  algorithms, which included Random Forest (RF), Support Vector Regression (SVR),
200  Convolutional Neural Networks (CNN), Artificial Neural Networks (ANN), and Support
201  Vector Machines (SVM). This integrated approach allowed us to assess the association between
202  SNP markers and estimated genotypic values (BLUEs) for each trait.

203
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204  For MLM, CMLM, FarmCPU, and BLINK methods, we made use of the Genomic Association
205  and Prediction Integrated Tool (GAPIT) version 2 (Lipka et al., 2012) in conjunction with the
206  rMVP packages (Yin et al., 2021). Our association analyses were performed while correcting
207  for both population structure and relationships among individuals, with the incorporation of
208  either the Q+K matrices. The K matrix was computed using the Van Raden method (Lipka et
209  al., 2012). The significance threshold for genome-wide association was determined based on a
210  false discovery rate (FDR-adjusted p < 0.05).

211

212 Inthe case of machine learning algorithms, we utilized a scaled method (ranging from 0O to 100)
213 to estimate the importance of each SNP associated with the traits of interest. To integrate the
214 machine learning approach into GWAS, we implemented a five-fold cross-validation strategy
215  with ten repetitions to estimate the variable importance of each SNP, following (Siegmann and
216 Jarmer, 2015). Therefore, we applied a global empirical threshold, as proposed by (Churchill
217  and Doerge, 1994; Doerge and Churchill, 1996). This threshold was determined by fitting the
218 ML algorithm, recording SNPs with the highest variable importance scores, repeating the
219  process 1000 times, and selecting associated SNPs based on a = 0.5. The machine learning
220  methods were executed using the Caret package (Kuhn et al., 2020) in R software version 4.2.2.
221  Throughout these analyses, we ensured that association analysis was conducted while
222 correcting for both population structure and relationships among individuals, using a
223 combination of the Q + K matrices. The p-value threshold for significance in the genome-wide
224  association was determined based on a false discovery rate (FDR-adjusted p < 0.05).

225

226  Identification of candidate genes and haplotype analysis

227  To identify candidate genes contributing to SW and DM, we defined haplotype blocks
228  containing the peak SNP. Each region with the peak SNP was visually explored for its LD
229  structure and for genes located in such regions, and the annotated genes within each interval
230  were screened thanks to the annotated and ordered reference genome sequence in place by
231  (International Wheat Genome Sequencing Consortium (IWGSC), 2018). Candidate genes
232 potentially involved in each trait were further investigated. The function of these genes was
233 also inferred by a BLAST of their sequences to the UniProt reference protein database
234 (http://www.uniprot.org/blast/). To further provide more information about potential candidate
235  genes, we used RNA-seq data of (Ramirez-Gonzalez et al., 2018), based on the electronic
236  fluorescent pictograph (eFP) at bar.utoronto.ca/eplant (by (Waese et al., 2017) to identify in

237  what tissues and at which developmental stages candidate genes were expressed in wheat.
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To better define the possible alleles in a strong candidate gene and trait, we defined haplotypes
around the peak SNP. For each haplotype, we calculated the trait mean for lines sharing the

same haplotype using the R ggpubr program.

Results

Phenotypic characterization

In order to delve into the traits of SW and DM in wheat, we meticulously assessed their
phenotypes over the span of two years at two distinct sites. As summarized in Table 1, the
observed means (+ standard deviation) for these traits were as follows: 5.35 (£1.56) for SW and
98.06 days (+4.65) for DM. The broad-sense heritability estimates were robust, measuring 55.4%
for SW and 50% for DM. An analysis of variance uncovered noteworthy differences attributable
to genotypes (G) for all traits, and, in the case of SW and DM, the interaction between genotype
and environment (GXE) also emerged as a significant factor. A correlation analysis unveiled a
highly significant positive correlation between SW and DM (r = 0.273; p < 0.01).

Upon scrutinizing the relationship between SW and DM using bagplots analysis with the 170
accessions in our collection, no outliers were detected when considering the interplay between
these two traits (Supplementary Figure S1). Consequently, for subsequent analyses including
those involving population structure and genome-wide association studies (GWAS), all
accessions were retained. The distribution of phenotypic traits appeared to approximate a

normal distribution and exhibited characteristics of quantitative inheritance (Figure 1).

Table 1. Descriptive statistics, broad-sense heritability (h?), and F-values from variance
analysis for two key agronomic traits in a cohort of 170 wheat lines.

Traits R CV  Range Mean+SD h? F-values
Genotype  Environment
Min Max (G) (E) GxE
SW  0.665 29.181 O 8 5.35£1.56 554 1.45%%* 66.87 0.14

DM 0.852 4.744 74 125 98.06+4.65 50 3.39%%* 310.38%* 3.39%*

SD Standard deviation, h? Broad sense heritability, R%: R-squared; CV: Coefficient of
variation; ***, ** and *: significant at p <0.001, p<0.01, and p <0.05, respectively.
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265  Figure 1. Distribution of phenotypes for spike waxiness (a) and days-to-maturity (b).
266  Histograms are based on the average trait value of each wheat line across the different
267  environments. The bars under the histograms represent the density of individuals.

268

269  Genome coverage and population structure

270  Our comprehensive analysis revealed a total of 73,784 polymorphic SNP markers that spanned
271  across the 21 chromosomes of the wheat genome, as depicted in Figure 2. As previously
272  reported in our prior study, the examination of population structure within the accessions of this
273  association panel revealed that K=6 provided the optimal representation of population structure
274  within this set of accessions. These clusters notably aligned with the geographic regions of
275  origin. The distribution of wheat accessions among these six subpopulations ranged from 6 to
276 43, with the largest number of accessions hailing from northwestern Baja California, Mexico,
277  specifically represented by Mexico 1 (43). Conversely, the smallest subpopulation was

278  observed in East and Central Africa, encompassing just 6 accessions.
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280 Fig 2. Genome coverage of polymorphic SNP markers over the physical map of the 21
281  chromosomes of the hexaploid wheat lines. The color reflects the density of SNP markers (i.e.
282  number of SNPs within a sliding 1-Mb window).

283

284  Marker-trait associations

285  To uncover the genomic regions responsible for the variation in SW and DM, we conducted an
286  association analysis (GWAS) on a subset of accessions with phenotypic data (170 accessions
287  and 73,784 SNPs). In this analysis, we employed four GWAS analytical tools (MLM, CMLM,
288  FarmCPU, and BLINK), complemented by five machine learning techniques (RF, ANN, SVR,
289  CNN, and SVM). Notably, the quantile-quantile (QQ) plots in Figure 3 demonstrated the
290  effective control of confounding effects related to population structure and relatedness by all
291  conventional GWAS and machine learning models. Deviations from the diagonal were
292  observed only for the most extreme p-values, indicating a well-controlled analysis for both
293 traits.

294

295  For the SW trait, the results of the association analyses are visualized in the Manhattan plots
296  presented in Figure 3. Using a threshold for false discovery rate (FDR) of <0.05 (as detailed in
297  Supplementary Figure S2, marked by the green horizontal line), we identified four QTLs.
298  Remarkably, only one QTL was co-identified by at least two models (Figure 4). The most robust

299  and consistent association, located on chromosome 1A, is summarized in Table 2.

11
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300  This particular QTL was defined by its peak SNP, marked as chrl1A:556842331, and was
301  identified by the multi-locus models (FarmCPU and BLINK) as well as all five machine
302  learning algorithms (RF, ANN, SVR, CNN, and SVM). Notably, this QTL explained a
303  substantial 50% of the phenotypic variation observed in SW. The minor allele frequency (MAF)
304  at this locus was 0.09, and it exhibited an allelic effect of 0.66.

305 These findings highlight a significant and consistent genetic association with SW on
306 chromosome 1A, showcasing the power of both traditional GWAS and machine learning
307  approaches in identifying key genomic regions influencing this trait.

308

309  Turning our attention to the DM trait, our investigation unveiled a total of eight genomic regions
310 that displayed significant associations. The results of these association analyses are visualized
311  in the Manhattan plots featured in Figure 3, with a stringent threshold for false discovery rate
312 (FDR) of < 0.05, as outlined in Supplementary Figure S2 and highlighted by the green
313  horizontal line. However, we noted the co-identification of only four Quantitative Trait Loci
314  (QTLs) by at least two models (Figure 3). Among these, the most robust associations, localized

315  on chromosomes 4B, 5A, and 2A, are thoughtfully summarized in Table 2.

316  Of noteworthy mention is chr4B:666048201, which emerged as the peak SNP and was jointly
317  identified by both multi-locus GWAS models (FarmCPU and BLINK) and four machine
318 learning algorithms (RF, ANN, SVR, and CNN). These markers formed a robust linkage block,
319  with all markers exhibiting perfect linkage disequilibrium (LD) (r* = 1), as detailed in
320  Supplementary Table S1. This discovery delineated a single QTL, with the peak SNP
321  accounting for a substantial 19.3% of the phenotypic variation associated with DM. The minor
322 allele frequency (MAF) at this locus was observed to be 0.08, while the allelic effect amounted
323 to 3.84 days (Table 2).

324  In addition, another noteworthy association with DM on chromosome 4B was unveiled, defined
325 by the peak SNP chr4B:37907825. This association was identified by the GWAS model BLINK
326  and all five machine learning methods (RF, ANN, SVR, CNN, and SVM). It explained 18.44%
327  of the phenotypic variation for DM, with a MAF of 0.09 and an allelic effect of -2.76 days.
328  Moreover, a QTL residing on chromosome 2A was brought to light, marked by the peak SNP
329  chr2A:605016602, which explained 8.65% of the phenotypic variation for DM. This QTL was
330 detected using both multi-locus GWAS models (FarmCPU and BLINK) and all five machine
331 learning methods (RF, ANN, SVR, CNN, and SVM).
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332 Furthermore, an additional QTL on chromosome 5A, characterized by the peak SNP
333 chr5A:580797118, was identified through the BLINK model and all five machine learning
334  methods (RF, ANN, SVR, CNN, and SVM). This QTL contributed to 0.72% of the phenotypic

335  wvariation associated with DM.

336  These findings underscore the efficacy of our approach in uncovering key genomic regions
337  associated with DM and highlight the potential of both traditional GWAS and machine learning

338  techniques in unraveling the genetic underpinnings of complex traits.

339

340  Overall, the GWAS and ML methods successfully mitigated the confounding effects of population
341  structure and relatedness and identified multiple genomic regions associated with spike waxiness
342 and Days to maturity in wheat. These findings can provide insights into the genetic architecture of
343  these traits and aid plant breeders in developing new bread wheat varieties with improved SW and
344 maturity.

345
346
347
348
349
350
351
352
353
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Figure 3. Genome-wide association analysis of 170 hexaploid wheat cultivars. Manhattan and
Q-Q plots for all models shows the degree of association between SNPs and SW (A) and DM
(B). In both cases, associations are declared significant at an FDR <0.05. One marker (see the
red circle) displayed significant associations with the SW trait. Four SNP markers (see the red
circle) displayed significant associations with the DM.
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361 In order to gain a deeper understanding of the relationship between the peak SNP
362  (chrlA:556842331) and SW, we delved into the realm of SNP haplotypes. Through a thorough
363  analysis of haplotypes encompassing this peak marker, we unveiled two distinct haplotypes
364  (Figure 4). Remarkably, we observed a notable divergence in phenotypic outcomes between
365 these haplotypes. Haplotype TT displayed significantly higher values (5.481) compared to the
366  values associated with haplotype CC (3.642). This revelation suggests that SNP markers
367  flanking this gene could serve as valuable tools in marker-assisted breeding programs. By
368  selecting alleles that contribute to drought-resistant wheat varieties, these programs hold the

369  potential to enhance wheat productivity and bolster its resilience in the face of water scarcity.

370 To further refine our understanding of the association between the peak SNP
371  (chr4B:666048201) and DM, we embarked on an exploration of SNP haplotypes. This
372  investigation uncovered two distinct haplotypes encircling the peak SNP. Notably, our scrutiny
373  of these haplotypes revealed a substantial difference in phenotypic outcomes (Figure 4).
374  Haplotype TT was linked to significantly lower values (97.41) in comparison to haplotype CC
375  (107.36). This observation posits that SNP markers flanking this gene have the potential to be
376  valuable assets in marker-assisted breeding programs. By selecting alleles conducive to the
377  development of short-season wheat varieties, these programs can contribute to the improvement
378 of wheat productivity and the creation of cultivars better equipped to thrive in varying

379  environmental conditions. More details are provided in Supplementary Table S2.

380
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384  Table 2 Details of loci associated with phenotypic traits identified by at least two methods in wheat.

Allelic Alleles
Traits Loci P.value MAF effect PVE(%) (Maj/Min) Models
SW Chr1A:556842331 3.95E-08 0.09 0.66 50.00 T/C BLINK/FarmCPU/RF/ANN/SVR/CNN/SVM
Chr4B:666048201 2.73E-10 0.08 -3.84 19.3 T/C FarmCPU/BLINK/RF/ANN/SVR/CNN
DM Chr4B:37907825 2.32E-10 0.09 -2.76 18.44 T/C BLINK/RF/ANN/SVR/CNN/SVM
Chr2A:605016602 6.36E-07 0.06 2.39 8.65 G/A FarmCPU/BLINK/RF/ANN/SVR/CNN/SVM
Chr5A:580797118 1.64E-09 0.09 -2.28 10.72 C/T BLINK/RF/ANN/SVR/CNN/SVM

385  SW: Spike Waxiness; DM: Days to Maturity; MAF: Minor Allele Frequency; PVE: Phenotype_Variance_Explained (%).

386  Three conventional GWAS analytical tools, including CMLM (Compressed Mixed Linear Model); FarmCPU (Fixed and random model Circulating
387  Probability Unification) and BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway), completed by five machine
388  learning algorithms, which included RF (Random Forest), SVR (Support Vector Regression), SNN (Convolutional Neural Networks), ANN
389  (Artificial Neural Networks), and SVM (Support Vector Machines) were used. The most highly associated SNP within each QTL is indicated along
390  with the associated statistics of RF model.

391
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392 Identification of candidate genes

393  To pinpoint the candidate genes that potentially govern SW and DM in our diverse wheat
394  collection, we conducted an analysis of the genes located within the same linkage block as the

395  peak SNP for each QTL.

396 In the genomic interval encompassing the QTL that contributes the most to the phenotypic
397  variation in SW (50%) specifically, the region from 1A_555 to 557 Mb, surrounding the peak
398  SNP (chr1A:556842331), we identified a total of 24 high-confidence genes. Upon a detailed
399  examination of the gene annotations and expression profiles, one gene, TraesCS1A01G385500
400  on chromosome 1A, emerged as the most promising candidate. TraesCS1A01G385500 is an
401  ortholog of the Arabidopsis Thaliana O-acyltransferase gene, commonly known as WSD1, a
402  bifunctional wax ester synthase/diacylglycerol acyltransferase, involved in cuticular wax
403  biosynthesis and essential for reducing leaf water loss, particularly during drought conditions.
404  WSDI has also been associated with the biosynthesis of very long-chain (VLC) wax esters,
405  contributing to drought tolerance in Arabidopsis. This gene exhibits the highest expression
406 levels in spike, roots, and shoot axis tissues (Figure 5). More details are provided in

407  Supplementary Table S3.

408 In our quest to identify potential candidate genes governing DM trait in our diverse wheat
409  collection, we performed a meticulous analysis of the genes residing within the same linkage
410  block as the peak SNP for each QTL. Within the genomic interval encompassing the QTL that
411  makes the most substantial contribution to the phenotypic variation in DM (comprising 19.3%
412 of the total variation), specifically spanning from 4B_666 to 668 Mb and surrounding the peak
413  SNP (chr4B:666048201), we pinpointed a total of 27 high-confidence genes. Through an in-
414  depth examination of gene annotations and expression profiles, no one emerged as the most

415  promising candidate. More details are provided in Supplementary Table S3.
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416
417  Figure 5. Expression profile of TraesCSIA01G385500 gene based on transcriptomic analysis in wheat. As shown, this gene is most expressed in spike,

418  roots and shoot axis and the image was generated with the eFP (RNA-Seq data) at http://bar.utoronto.ca/eplant/ by Waese et al.51. The legend at

419  bottom lef presents the expression levels, coded by colors (yellow=low, red=high).
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420  Comparison of ML and conventional GWAS methods for identifying genomic regions
421

422 In our study, the peak SNP position on chr1A:556842331 exhibited the highest allelic effect
423  (0.66) and explained a substantial phenotypic variance (50%) among all the identified SNPs
424  associated with wheat SW trait. These associations were successfully detected using both
425  GWAS models (BLINK and FarmCPU) and five machine learning algorithms (RF, ANN, SVR,
426  CNN, and SVM). Importantly, conventional methods (MLM and CMLM) failed to identify this
427  peak SNP linked to the SW trait (Supplementary Table S4). Furthermore, the machine learning
428  models produced significantly lower p-values (CNN, RF, SVM, SVR, and ANN, all with p-
429  values of 3.95E-08) compared to conventional GWAS models (CMLM with a p-value of 5.97E-
430 05, MLM with a p-value of 5.97E-05, FarmCPU with a p-value of 6.34E-03, and BLINK with
431  ap-value of 3.95E-08).

432  Shifting our focus to the DM trait, our investigation revealed the co-identification of four QTLs
433 on chromosomes 4B, 5A, and 2A (with peak SNPs chr4B:666048201, chr4B:37907825,
434 chr5A:580797118, and chr2A:605016602) by both GWAS models (BLINK and FarmCPU) and
435  the five machine learning algorithms (RF, ANN, SVR, CNN, and SVM). The details of these
436  robust associations are succinctly presented in Table 2. Regrettably, conventional methods
437 (MLM and CMLM) were unable to detect these SNP peaks associated with the DM trait.
438  Additionally, the machine learning models yielded significantly lower p-values for each of the
439  associated markers compared to conventional GWAS models (Supplementary Table S4).

440  For the SNP chr4B:666048201, the machine learning models generated markedly lower p-
441 values (CNN, RF, SVM, SVR, and ANN, all with p-values of 1.09E-13) compared to
442  conventional GWAS models (CMLM with a p-value of 1.42E-06, MLM with a p-value of
443 1.42E-06, FarmCPU with a p-value of 2.73E-10, and BLINK with a p-value of 1.09E-13).

444  For the SNP chr4B:37907825, the machine learning models produced substantially lower p-
445  values (CNN, RF, SVM, SVR, and ANN, all with p-values of 2.32E-10) compared to
446  conventional GWAS models (CMLM with a p-value of 2.65E-04, MLM with a p-value of
447  2.65E-04, FarmCPU with a p-value of 4.81E-04, and BLINK with a p-value of 2.32E-10).

448  For the SNP chr5A:580797118, the machine learning models yielded notably lower p-values
449  (CNN, RF, SVM, SVR, and ANN, all with p-values of 1.64E-09) compared to conventional
450 GWAS models (CMLM with a p-value of 4.72E-04, MLM with a p-value of 4.72E-04, and
451  FarmCPU with a p-value of 1, and BLINK with a p-value of 1.64E-09).

452  For the SNP chr2A:605016602, the machine learning models generated significantly lower p-
453  values (CNN, RF, SVM, SVR, and ANN, all with p-values of 1.64E-09) compared to
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454  conventional GWAS models (CMLM with a p-value of 1.38E-01, MLM with a p-value of
455  1.38E-01, and FarmCPU with a p-value of 8.63E-02, and BLINK with a p-value of 6.36E-07).
456

457  In essence, these traditional methods used for genetic data analysis and the establishment of
458  associations between genetic variations and traits have limitations when it comes to identifying
459  subtle or minor effects of certain SNPs on SW and DM characteristics in wheat. On the contrary,
460  machine learning algorithms, particularly in conjunction with the recent multi-locus GWAS
461  models (BLINK and FarmCPU), exhibited superior performance in identifying relevant QTLs
462  when compared to traditional MLM and CMLM methods.

463
464  Discussion
465 In this study, we employed four GWAS models and five machine learning algorithms to

466  investigate the genomic regions associated with spike waxiness and days to maturity within a
467  dataset consisting of 170 accessions and 74K SNPs. Our analyses consistently identified a
468  robust QTL located on chromosome 1A, demonstrating significance across both conventional
469 GWAS models (FarmCPU and BLINK) and a variety of machine learning models (BLINK,
470  RF, ANN, SVR, CNN, and SVM). Notably, the peak SNP (chr1 A:556842331) within this QTL
471  explained a substantial portion, 50%, of the phenotypic variation observed. Within the genomic
472  interval encompassed by this QTL (1A_555 to 557 Mb) and centered around the peak SNP
473  (chr1A:556842331), we identified a total of 24 high-confidence genes. Upon closer
474  examination of gene annotations and expression profiles, one candidate gene,
475  TraesCSIA01G385500 on chromosome 1A, stood out as particularly promising. This gene
476  exhibits high expression levels in spike, roots, and shoot axis tissues and shares orthology with
477  the Arabidopsis Thaliana O-acyltransferase gene, widely known as the WSD/ gene. Previous
478  research has highlighted the significance of the WSD1 gene, which serves as a bifunctional wax
479  ester synthase/diacylglycerol acyltransferase (Li et al., 2008; Patwari et al., 2019). Its
480  involvement in cuticular wax biosynthesis is well-documented, and it plays a pivotal role in
481  reducing leaf water loss, particularly during drought conditions (Li et al., 2008; Patwari et al.,
482  2019). The WSD1 gene has also been associated with the biosynthesis of very long chain (VLC)
483  wax esters, contributing to drought tolerance in Arabidopsis (Patwari et al., 2019). VLC primary
484  alcohols and acyl-CoAs serve as precursors for wax ester biosynthesis, catalyzed by the
485  bifunctional wax ester synthase/diacylglycerol acyltransferase WSDI1 (Li et al., 2008; Patwari
486 et al., 2019). These wax components, including VLC fatty acids, aldehydes, alkanes, alcohols,
487  ketones, and esters, undergo trafficking through the Golgi and trans-Golgi network (TGN)
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488  pathways to the plasma membrane (PM). From there, they are exported to the cuticle via ABCG
489  subfamily half transporters and lipid transfer proteins (LTPs) (DeBono et al., 2009; Ichino and
490  Yazaki, 2022; Pighin et al., 2004; Wang and Chang, 2022).

491  Moreover, prior studies have revealed the role of AtCER1 in VLC alkane biosynthesis in
492  Arabidopsis (Aarts et al., 1995; Bourdenx et al., 2011; Sakuradani et al., 2013). Recently, He
493 et al. (2022) identified a homologous gene of AtCER1 in wheat, named TaCER1-6A, which
494  shares 55% amino acid identity with AtCERI1. Similar to previously reported AtCERI1
495  orthologs, including rice OsCER1 (Ni et al., 2018), wheat TaCER1-1A (Li et al., 2019),
496  Brachypodium BACER1-8 (Wu et al., 2019), cucumber CsCER1 (W. Wang et al., 2015), and
497  P. pratensis PpCER1 (Wang et al., 2021), TaCER1-6A also contains three specific His-rich
498  motifs essential for VLC alkane biosynthesis (Bernard et al., 2012). Therefore, (He et al., 2022)
499  speculated that TaCER1-6A likely plays a similar role in VLC alkane biosynthesis in wheat.
500 Notably, we observed that alleles associated with higher wax content were more prevalent in
501  lines originating from East African spring-type accessions (Kenya and Ethiopia) and North
502 Africa. These accessions primarily consist of spring lines cultivated in arid regions and were

503  acquired from the International Center for Agricultural Research in the Dry Areas (ICARDA).

504  Ultimately, our study has unveiled a promising candidate gene, TraesCS1A01G385500, linked
505  to spike waxiness, with implications for cuticular wax biosynthesis and its role in drought
506  tolerance, as established in previous research. This discovery sheds light on the genetic
507  mechanisms underpinning spike waxiness in bread wheat, offering valuable insights for future

508  breeding and crop improvement efforts.

509  Regarding DM, we identified four strong genomic regions significantly associated with the trait
510  on chromosomes 4B, 2A and 5A. Our results were consistent with those of (Semagn et al.,
511  2021), who performed QTL mapping in four RIL populations evaluated under conventional and
512 organic management systems and reported two QTLs associated with days to maturity on
513  chromosome 4B (explaining 20.8% of the phenotypic variances), where one (QMat.dms-4B.2)
514  at chrdB:569184188-599613837 is located on the extremity of long chromosome 4B arm with
515  the peak SNP chr4B:666048201 (explaining 19.3% of the phenotypic variation) that was jointly
516  identified by both multi-locus GWAS models and four ML algorithms (RF, ANN, SVR, and
517  CNN) in the present study. QTL mapping conducted by previous authors (Zou et al., 2017a,
518  2017b) in the ‘Attila’ and ‘CDC Go’ RIL populations using genetic maps of 1203 markers
519  identified a coincident genomic region associated with maturity under both management

520  systems on chromosome 4B and 5A. We also identified QTLs on chromosomes 4B and 5A,
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521  with peak SNPs chr4B:666048201, chr4B:37907825, and chr5A:580797118 explaining 19.3%,
522 18.44%, and 10.72%, of the phenotypic variation, respectively. The favorable alleles for those
523  QTLs on 4B and 5A were most originated from the accessions of North Africa, including spring
524  lines (Attila) acquired from the International Center for Agricultural Research in the Dry Areas
525 (ICARDA). Interesting, previous works also identified two QTLs for maturity on chromosome
526 4B (QMat.dms-4B) and chromosome 5A (QMat.dms-5A.2), which individually explained
527  15.9% and 14.0% of the phenotypic variance, respectively, and together accounted for 29.9%
528  of the phenotypic variance across seven environments (Zou et al., 2017a, 2017b). The favorable
529  alleles for QMat.dms-4B and QMat.dms-5A.2 originated from 'Attila' and 'CDC Go/,
530  respectively. (Chen et al., 2020) also identified a QTL associated with maturity on chromosome
531 4B (4B_s4991673- 4B_d1258252) using a linkage map of 4439 markers produced by DArTseq
532  technology and phenotype data from 'Peace' and 'Carberry' RIL populations assessed for two
533  years under organic management and conventional systems, consistent with our results.

534 Our investigation into candidate genes associated with maturity in wheat led us to a genomic
535 interval spanning the QTL that contributes significantly to the phenotypic variation in Days-to-
536  Maturity (19.3% of the variation). This region, located between 4B_666 and 668 Mb and
537  centered around the peak SNP (chr4B:666048201), contained a total of 27 high-confidence
538 genes. Our findings align with prior research that has identified genomic regions on
539  chromosome 4B associated with maturity and housing candidate genes related to flower-
540  promoting factors. Notably, certain dwarfing genes, such as Rht-B1, Rht5, Rht8, and Rht12,
541  have been reported to exert slight delays in heading, flowering, and/or maturity time in wheat.
542  These genetic factors add complexity to the regulation of these traits (Chen et al., 2018; Daoura
543  Goudia et al., 2014). The discovery in the present study contributes to our understanding of the
544  genetic factors underpinning wheat maturity and sets the stage for future research aimed at
545  elucidating the molecular mechanisms involved.

546  The results our study highlight the remarkable superiority of machine learning (ML) models in
547  1identifying significant genetic associations compared to traditional Genome-Wide Association
548  Study (GWAS) methods, as demonstrated through substantially lower p-values. For SW, the
549  peak SNP was efficiently identified by both GWAS models (BLINK and FarmCPU) and the
550  five ML algorithms, emphasizing their robustness. Notably, the ML models, including CNN,
551 RF, SVM, SVR, and ANN, produced significantly lower p-values (3.95E-08) compared to the
552 traditional GWAS models, which had p-values ranging from 5.97E-05 to 6.34E-03. Traditional
553  methods (MLM and CMLM) failed to detect this critical SNP, showcasing their limitations in

554  capturing minor genetic effects. Shifting the focus to DM, the robust associations identified by
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555 GWAS models and ML algorithms demonstrated that conventional methods (MLM and
556 CMLM) were less effective, failing to detect these essential SNP peaks. Once again, ML models
557  consistently delivered significantly lower p-values, underscoring their increased sensitivity and
558 accuracy in identifying genetic markers linked to DM. The differences in p-values were
559  substantial, with ML models consistently outperforming the traditional GWAS methods.

560 These findings reveal that traditional GWAS methods face limitations in detecting minor
561  genetic effects on SW and DM traits in wheat. Conversely, ML models, especially when
562  coupled with advanced multi-locus GWAS models like BLINK and FarmCPU, exhibited a
563  superior performance characterized by significantly lower p-values. This work demonstrates
564  the potential of ML approaches to revolutionize the study of complex genetic traits, offering
565  valuable insights for crop improvement and stress resilience in bread wheat. Our hypotheses
566 (1) regarding the presence of specific genomic regions associated with SW and DM in a diverse
567  global collection of bread wheat accessions and (2) the superior performance of Machine
568  Learning-Genome-Wide Association Study (ML-GWAS) approaches over traditional GWAS
569  methods in identifying relevant genomic regions associated with SW and DM traits in bread
570  wheat have been confirmed. Our study has provided evidence that conventional GWAS
571  approaches, such as MLM, and CMLM, lack the ability to effectively detect SNPs with minor
572  effects underlying specific traits. In other words, these traditional methods used to analyze
573  genetic data and establish associations between genetic variations and traits are not sensitive
574  enough to identify subtle or minor effects of certain SNPs on the characteristics of SW and DM
575  in wheat. These findings align with previous research conducted by (Yoosefzadeh-Najafabadi
576  etal., 2023;Zhou et al., 2019), which also highlighted the limited power of conventional GWAS
577  approaches in detecting SNPs with minor effects on specific traits.

578  However, our study has revealed the effectiveness of an alternative approach, utilizing machine
579  learning algorithms in GWAS. By employing this method, we were able to overcome the
580  limitations of traditional GWAS and more accurately identify SNPs with smaller yet significant
581  effects on SW and DM traits in wheat. Additionally, the most robust associations identified by
582  modern GWAS methodologies (BLINK and FarmCPU) were reaffirmed by machine learning
583  techniques. These results are consistent with the studies conducted by (Y oosefzadeh-Najafabadi
584  etal., 2023) and (Zhou et al., 2019), which compared SVR and RF algorithms, respectively, to
585  conventional GWAS methods in soybean. They reported that machine learning algorithms are
586  more accurate and sensitive in detecting subtle or minor effects of certain SNPs on traits of
587  interest. Additionally, our study demonstrated the effectiveness of the new GWAS model,
588  BLINK and FarmCPU, in accurately and efficiently detecting SNPs with smaller but significant
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589  effects on SW and DM traits in wheat. In fact, both real and simulated data analyses have shown
590 that BLINK significantly improves statistical power compared to FarmCPU, while also
591  reducing computing time (Huang et al., 2019).

592 The FarmCPU, developed by (Liu et al., 2016), represents an iterative method that addresses
593  the issue of false positive control and confounding between testing markers and cofactors
594  simultaneously. As FarmCPU tests markers in a fixed-effect model, it is computationally more
595  efficient than methods that test markers in a random-effect model, such as MLM, CMLM,
596 ECMLM, SUPER, and MLMM (Liu et al., 2016). Studies have demonstrated the order of the
597  statistical power of these methods: BLINK > FarmCPU > CMLM > MLM (Huang et al., 2019;
598 Liuetal., 2016; Zhang et al., 2010).

599  The utilization of machine learning algorithms (RF, ANN, SVR, CNN, and SVM), along with
600 the recent multi-locus GWAS model, BLINK, and FarmCPU has enabled a more sensitive and
601  precise identification of genetic factors influencing specific traits. This opens up new
602  opportunities for wheat improvement and selection. Indeed, ML algorithms are focused on
603  maximizing prediction accuracy at the individual subject level and have been shown to capture
604 multi-locus SNP interactions better than univariate association studies (Okser et al., 2014,
605  2013). Additionally, ML techniques provide an opportunity to better understand multi-locus
606  genetic variants and their interactions in predicting complex traits (Ashkenazy et al., 2022;
607 Kwon et al., 2022). This approach provides a more sophisticated and reliable means of
608  discovering genetic markers associated with SW and DM traits, which can have significant
609 implications for agriculture, varietal selection, and understanding the genetic mechanisms

610  governing crop characteristics.

611  Overall, both GWAS and machine learning methods have successfully addressed the
612  confounding effects of population structure and relatedness, allowing us to identify multiple
613  genomic regions associated with SW and DM traits in wheat. These findings shed light on the
614  genetic architecture of these traits and offer valuable insights to plant breeders in their efforts
615  to develop new bread wheat varieties with improved SW and DM.

616

617

618
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620
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622  Conclusion

623  In this study, our primary objective was to identify the genomic regions associated with SW
624 and DM using state-of-the-art Machine Learning-Genome-Wide Association Study (ML-
625 GWAS) techniques. Our findings provide a deep understanding of the genetic landscape
626  governing these critical traits, delivering valuable insights that can significantly inform wheat
627  breeding and crop improvement strategies. Leveraging ML-GWAS, we successfully identified
628  a robust QTL significantly associated with SW on chromosome 1A, represented by the peak
629  SNPs chrlA:556842331, explaining an impressive 50% of the phenotypic variation.
630  Additionally, we detected four strong genomic regions significantly associated with DM on
631  chromosomes 4B, 2A, and 5A, employing the same cutting-edge methods. Notably, our study
632  unveiled a candidate gene linked to the QTLs for SW. TraesCS1A01G385500, an ortholog of
633  the Arabidopsis Thaliana O-acyltransferase gene WSD1, plays a pivotal role in cuticular wax
634  biosynthesis. It is essential for reducing leaf water loss, particularly during drought conditions,
635 and contributes to drought tolerance through the biosynthesis of very long-chain (VLC) wax
636  esters. Our study also shows that, ML models, especially when coupled with advanced multi-
637 locus GWAS models like BLINK and FarmCPU, exhibited a superior performance
638  characterized by significantly lower p-values in identifying relevant QTLs compared to
639 traditional methods like MLM and CMLM. This work demonstrates the potential of ML
640  approaches to revolutionize the study of complex genetic traits, offering valuable insights for
641  crop improvement and stress resilience in bread wheat. ML-GWAS emerges as a compelling
642  approach for genomic-based breeding strategies, providing breeders with more accurate and
643  efficient tools to develop improved wheat varieties. Our research significantly advances the
644  precision and effectiveness of GWAS, emphasizing the importance of incorporating advanced
645  computational methods into crop breeding studies. The insights into the genetic architecture of
646  SW and DM traits in wheat offer essential knowledge for designing targeted crop improvement
647  strategies. Moreover, the versatility and effectiveness demonstrated by the ML-GWAS
648  approach extend its applicability beyond wheat and can be harnessed to address other crop
649 traits, thus enhancing progress in crop genetics research and breeding efforts on a broader scale.
650  Overall, the integration of machine learning techniques with GWAS stands as a potent tool for
651  dissecting complex traits in crop genetics research. The findings of our study hold great promise
652  for the field of wheat breeding and crop improvement strategies, making substantial
653  contributions to enhancing agricultural productivity and ensuring food security in the face of

654  evolving global challenges.
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