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Abstract13

Protein structure modeling is an important but challenging task. Recent breakthroughs in Cryo-EM14
technology have led to rapid accumulation of Cryo-EM density maps, which facilitate scientists to15
determine protein structures but it remains time-consuming. Fortunately, artificial intelligence has16
great potential in automating this process. In this study, we present SMARTFold, a deep learning17
protein structure prediction model combining sequence alignment features and Cryo-EM density map18
features. First, using density map, we sample representative points along the predicted high19
confidence areas of protein backbone. Then we extract geometric features of these points and integrate20
these features with sequence alignment features in our proposed protein folding model. Extensive21
experiments confirm that our model performs best on both single-chain and multi-chain benchmark22
dataset compared with state-of-the-art methods, which makes it a reliable tool for protein atomic23
structure determination from Cryo-EM maps.24

Introduction25

Protein folding problem is one of the most fundamental problems in the field of biology. The way26
proteins work and perform functions is largely determined by their unique three-dimensional27
structures, so it is important to know the three-dimensional structure of a protein.28

In recent years, cryo-electron microscopy (Cryo-EM) technology has made breakthrough progress29
(Nakane et al., 2020; Yip et al., 2020). Cryo-EM electron density maps provides rich information of30
protein structure and is of great help for structural modeling. Consequently, it has become a reliable31
guidance for structural biologists to analyze protein structures. To expedite the Cryo-EM analyses,32
many software tools have been developed for Cryo-EM data processing, such as RELION (Scheres,33
2012) and CryoSPARC (Punjani et al., 2017). They use iterative optimization algorithms to estimate34
the pose parameters for particles and reconstruct 3D map. CryoDRGN (Zhong et al., 2021) and35
e2gmm (Chen and Ludtke, 2021) reconstruct multiple continuous conformations from single particle36
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dataset through deep learning. After density maps are produced, a critical step is to build the 3D37
atomic model. Although a large number of related methods have been developed (He et al., 2022;38
Jamali et al., 2022; Pfab et al., 2021; Terashi and Kihara, 2018; Terwilliger et al., 2018), automatic39
model building from Cryo-EM density map remains as a time-consuming and labor-intensive job.40

Meanwhile, with advancements in protein crystallography and cryo-electron microscopy, a large41
amount of protein structures have been unveiled, which provides a good foundation for AI to study the42
relationship between protein sequence and structure. In recent years, many scholars have devoted43
themselves to using artificial intelligence algorithms to solve the problem of automatically predicting44
3D atom positions from protein sequences (Baek et al., 2021; Jumper et al., 2021; Xu, 2019).45

AlphaFold2 (Jumper et al., 2021) is a breakthrough in this field. Compared to previous research,46
AlphaFold2, for the first time, realized end-to-end prediction from amino acid sequence to atomic47
coordinates by integrating evolutional information from MSA, and achieved atomic-level accuracy48
(The average prediction error is within 1 Angstrom in CASP14). Although AlphaFold2 has49
outstanding performance, it is designed to predict 3D structures given protein sequence only.50
Experimental information like EM density map is not used as input. Building structures solely from51
sequence has two limitations. First, it does not utilize the essential experimental information of the52
structure to be predicted, and highly relies on the result of MSA. Poor MSA search results could lead53
to bad predictions; Moreover, it is very common that protein chains may have more than one54
conformations, which means same chain sequence could have different 3D structures in different55
environments, but AlphaFold2 always gives the same result for same sequence input.56

Several researches have been done to automatically build structure from Cryo-EM maps. DeepTracer57
(Pfab et al., 2021) is the first deep learning effort to build atom level structure from Cryo-EM density58
maps. It treats the problem as an image segmentation task. It uses a U-Net model (Ronneberger et al.,59
2015) to identify main chain atom positions from the density map, and then apply heuristic approache60
to determine the atomic structure. A notable limitation is that it does not input protein sequence to the61
model. Therefore, it relies on several post-processing steps after the segmentation model, including62
tracing and alignment. These could lead to local fitting issues or tracing/connectivity problems.63
Besides, experimental Cryo-EM maps could have noises and some regions like side chains are often64
obscure, which makes it challenging to construct all-atom structure models if no sequence information65
is given.66

Similar prediction protocol is adopted in other methods, including EMBuild (He et al., 2022)，67
ModelAngelo (Jamali et al., 2022), etc.. EMBuild begins by predicting main-chain probability maps68
using a nested U-Net. Subsequently, it integrates AlphaFold2 structure prediction, FFT-based global69
fitting, domain-based semi-flexible refinement, and graph-based iterative assembling with predicted70
probability maps to construct structures. Its performance highly depends on the quality of AlphaFold271
prediction. It tends to give unsatisfactory results when AlphaFold2 is not accurate. ModelAngelo72
(Jamali et al., 2022) starts with a CNN to initialize a graph representation with nodes assigned to73
individual amino acids, and then refines the graph with a GNN, to combine Cryo-EM and sequence74
information. Finally a hidden Markov model (HMM) is applied to post-process the graph to search the75
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mappings for each chain to entries in a user input sequence file. However, ModelAngelo is sensitive to76
resolution. Its performance starts degrading at resolutions worse than 3.5Å.77

In this work, we propose a novel approach, SMARTFold, to integrate cryo-EM density map with78
sequence evolution for protein folding. This integration is achieved by sampling representative points79
(“support points”) from the EM density map, and then use MSA together with these points as model80
input. The foundational architecture of SMARTFold comes from AlphaFold2 and81
AlphaFold-Multimer (Evans et al., 2022). Our key contributions are as follows:82

1) we employ a U-Net to extract a representative point cloud, which captures backbone information83
from the sparsely populated 3D EM density map. The geometric features of these points are utilized as84
inputs for our model.;85

2) we develop a novel module named EMformer to fuse the features from MSA and point cloud for86
protein structure folding;87

3) through our uniquely designed point-residue distogram head, the model can learn the relationship88
between each support point and residue;89

4) we introduce a distinctive feature termed “point-residue affinity” to mitigate the ambiguity problem90
of homomultimer training.91

Our model outputs full atomic structure prediction directly and no post processing steps are needed.92
To the best of our knowledge, our approach is the first end-to-end deep learning model to learn93
structure determination directly from both evolutional information and EM map features. Our94
experiments show that SMARTFold outperforms methods used in previous studies on public protein95
data.96

Results97

Overview of SMARTFold98

The overall model of SMARTFold is inspired by recent advances in protein structure prediction with99
deep neural networks used in AlphaFold2, except that the density map is also introduced as input (Fig.100
1). The input of SMARTFold includes the residue sequences and Cryo-EM density map. Similar to101
AlphaFold2, we used the sequences to search MSA and PDB templates and fed these features into our102
model (SI 3.1). To represent the density map, we first use a U-Net to identify backbone confidence103
(Pfab et al., 2021), and then sample support points from the confidence map. The extracted geometric104
features of support points are also fed into the model (SI 2). Next we develop a special embedding105
module called EMformer, which is the most crucial part in our model, to combine the support point106
features with sequence evolutional features (SI 4). Finally, a structure module same as the one in107
AlphaFold2 is used for atomic structure prediction. A point residue distogram prediction head is used108
to supervise point-residue relations in training and helps superimpose the predicted structure into109
density map to get the final fitted structure (SI 6.2). Similar to AlphaFold2, the representations learned110
after EMformer can be recycled to improve the model performance. To avoid the ambiguity of111
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homomultimer inference, the point-residue affinity can be inferred from point residue distogram to112
match residues and points (SI 7).113

The SMARTFold model was trained on 8,749 map/model pairs (see SI 1 for dataset details) and the114
parameters was initialized with AlphaFold2’s parameters. Due to memory restriction, the sequence115
features and support points are cropped to fragments containing a maximum of 320 amino acids. All116
loss functions in AlphaFold2 are used in SMARTFold, with a slight change. These include the117
weighted backbone FAPE loss, side chain FAPE loss, etc. (see SI 6). Corresponding to new added118
heads, several new loss functions are introduced, including point-residue distogram loss, point119
segmentation loss and point noise loss (see SI 6). All loss functions satisfy translation and rotation120
invariance.121

122

123
Figure 1. Model architecture of SMARTFold. There are two branches for model input: sequences (left124
upper) and density map (left bottom). The input sequence is fed into the AlphaFold-Multimer data125
pipeline to search for MSA sequences and PDB templates, and then initialize the MSA representation126
and residue pair representation. Support points are sampled from the backbone confidence map, which127
is inferenced by 3D U-Net from the raw density map. Geometric features of these support points are128
embedded into point pair representation. A point-residue pair representation is introduced to maintain129
the relationships between support points and residues. In EMformer, MSA representation, residue pair130
representation, point-residue pair representation and point pair representation exchange their messages131
and get updated. The first row of MSA representation (single representation) and the residue pair132
representation are input to 8 consecutive structure module blocks to build 3D atomic model. A point133
residue distogram head is built upon the updated point-residue pair representation to predict the134
distance between each support point and residue. Highly confident “contact” point-residue135
relationship can be used to fit the structure model into the raw EM density map. The four136

representations above and the predicted �� distogram (from 3D model) are fed to the next recycle to137
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promote the structure prediction.138

Evaluating built models against the high-resolution single-chain dataset139

To compare the performance of SMARTFold with other methods and tools, we constructed four140
representative benchmark datasets from testing set: high-resolution single-chain dataset,141
high-resolution multiple-conformation single-chain dataset, high-resolution multi-chain dataset and142
low-resolution dataset. For each dataset, duplicated samples were removed to ensure that the143
maximum sequence similarity is less than 40% between each pair. Due to limited GPU memory, we144
only kept those models with a total sequence length of less than 2500 for the benchmark evaluation.145

We first evaluated our results on single-chain dataset. This is a subset of the benchmark dataset that146
consists of 27 single-chain PDBs and 41 segmented PDB chains with resolution ≤5Å. We compared147
our results against AlphaFold2 (Jumper et al., 2021), EMBuild (He et al., 2022), ModelAngelo (Jamali148
et al., 2022), and Phenix.map_to_model (Terwilliger et al., 2018). We used SeqMatch, ChainMatch149
and TM-score (Zhang and Skolnick, 2004) to evaluate the performance of each method. SeqMatch150
measures the proportion of residues in the deposited model that are within 3Å of the predicted amino151
acid. On the basis of SeqMatch, ChainMatch further requires that the amino acid types of the upstream152
and downstream adjacent residues for each position match those in the deposited model. TM-score153
quantifies the topological similarity between two protein structures. All predicted structures were154
aligned to deposited PDB structures using US-align (Zhang et al., 2022) before calculating metric155
values.156

Fig. 2 illustrates the results of our model on single-chain data compared to other methods, and the157
overall metrics is reported in Fig. 2K. It can be seen from Fig. 2A-J that for most test cases, our158
model outperformed all the other methods listed (ChainMatch: 0.918 vs. 0.758, 0.855, 0.764 and159
0.203). EMBuild is the second-ranked method. Since ModelAngelo and Phenix produce many160
discontinuous and short segments, TM-score was not calculated for these two methods.161

162
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163
Figure 2. Comparison between SMARTFold, AlphaFold2, ModelAngelo and Phenix on 68164
single-chain dataset.165

Compared with AlphaFold2, our method obtains structural information not only from MSA, but also166
from support points. To prove that the support points can constrain the protein folding, we selected 28167
groups of multi-conformational segmented PDB chains. Each group contains 2~8 PDB chains with168
highly similar sequences (>90%) but very different structures (pairwise TM-score<0.8). This dataset169
contains a total of 66 PDB chains with resolution ≤5 Å and has no intersection with the single-chain170
dataset in Fig. 2. We compare our results against AlphaFold2, EMBuild, ModelAngelo, and Phenix171
map_to_model (Fig. 3). It can be seen that our method is much better than others at predicting specific172
protein conformations (ChainMatch: 0.848 vs. 0.611, 0.724, 0.754, 0.260). Given that sequences in173
each group are highly similar, AlphaFold2 predictions highly resembled with each other within a174
single group. Furthermore, since EMBuild relies on templates derived from AlphaFold2, it also gave175
poor results in this case.176
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177
Figure 3. Comparison between SMARTFold, AlphaFold2, EMBuild, ModelAngelo and Phenix on 66178
single-chain multi-conformational dataset.179

Fig. 4A shows an example of bacteriophage lambda capsid protein (Wang et al., 2022). The same180
sequence exhibits distinct structures in precursor capsid protein (procapsid, PDB: 7via_G) and mature181
capsid protein (PDB: 7vik_A), with a pairwise TM-score of 0.770. The main difference between the182
two structures lies in the loop region. The segmented Cryo-EM density maps fit well with the two183
deposited structure models respectively (correlation coefficient values: 0.75 and 0.79). Fig. 4B shows184
structural model from 5 methods on two density maps. Only SMARTFold successfully predicted the185
correct loop structures for the two different conformations (Fig. 4B).186
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187

Figure 4. An example of multi-conformational monomer (PDB entries: 7via_G and 7vik_A). (A) The188
deposited PDB model of 7via_G and 7vik_A are aligned using US-align (left). The segmented density189
maps reflect two structure models well respectively (middle and right). (B) Model building results190
from SMARTFold, AlphaFold2, EMBuild, ModelAngelo and Phenix.191

Evaluating built models against the high-resolution multi-chain dataset192

Next, we present our results on the multi-chain dataset, which consists of 126 multi-chain PDBs193
with resolution ≤5Å. We compared our method with the aforementioned approaches, with the194
exception of replacing AlphaFold2 with AlphaFold-Multimer. It can be seen in Fig. 5 that195
SMARTFold still achieved the highest scores in all metrics among all other methods (ChainMatch:196
0.857 vs. 0.680, 0.850, 0.751, 0.219), even though EMBuild is very close to our method in197
performance (ChainMatch: 0.865 vs. 0.850, TM-score: 0.936 vs. 0.918).198
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199
200

Figure 5. Comparison between SMARTFold, AlphaFold-Multimer, ModelAngelo and Phenix on 126201
multimer dataset.202

Evaluating built models against the low-resolution dataset203

We further examined our performance on low-resolution PDBs. We assessed the above metrics on 48204
PDB proteins with density map resolution worse than 5 Å. As expected, we observed a decline in205
metrics as map resolution gets worse, like all other approaches do. Our method achieved a median206
TM-score of 0.901 and a mean TM-score of 0.817 on these 48 proteins. Fig. 6 reveals that207
SMARTFold performed comparably to the state-of-the-art EMBuild method on low resolution dataset208
and was better than AlphaFold2 / AlphaFold-Multimer. Since ModelAngelo was trained on high209
resolution data only, we did not compare with it here.210

211
Figure 6. Comparison between SMARTFold, EMBuild and AlphaFold2/AlphaFold-Multimer on 48212
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low-resolution dataset.213

Robustness of the model on the number of support points214

For all the tests above, we set the number of support points sampled as the total length of the input215
sequences. In order to test whether SMARTFold can use fewer support points to achieve comparable216
performance, we conducted an experiment with 30 randomly selected samples from the multi-chain217
dataset, and run SMARTFold for 5 times with 90%, 80%, 70%, 60%, and 50% support points (with218
respect to the total sequence length) respectively. The results are shown in Fig. 7. We found that as219
long as the number of sampled support points is greater than 70% of the sequence length, the220
performance remains largely unaffected. Even when only 50% of the points are sampled, our method221
still performs much better than AlphaFold-Multimer (TM-score: 0.904 vs 0.831). Thus, we can222
conclude that our method is robust to the number of support points. Reducing the number of support223
points not only saves runtime, but also reduces memory consumption.224

225

Figure 7: TM-score and ChainMatch of SMARTFold using different sample rate of support points on226
30 randomly selected multi-chain samples. AFM is the abbreviation of AlphaFold-Multimer.227

Point-residue distogram head228

To further encourage the model to learn the relationship between support points and residues, we229
introduce a point-residue distogram head after the embedding module (EMformer) as an auxiliary task230
of our model. This head takes the updated point-residue pair representation as input and predicts the231
distance between each support point and residue (Fig. 8A). During training, the true distance labels232
can be calculated prior to the loss computation and it is discretized to 10 bins. We employ a linear233
layer to transform the input into logits and then utilize cross entropy loss for training. We use234
unevenly spaced bins and different class weights to address the problem of imbalance data. Detailed235
information can be found in SI 6.2.236

The point-residue distogram head is found to be essential for the model to learn how to fold the237
structure according to the positions of support points. Therefore it is of great help to improve the238
overall model performance. On the other hand, this head also helps us know why our model works and239
to prove that our model successfully absorbs the backbone information offered by the input density240
map.241

To demonstrate this, we visualized the output of point-residue distogram head as a heatmap. The242
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heatmap tells us the predicted correspondence between each point and residue. Fig. 8A shows an243
example of the predicted distances between points and residues. All support points clearly find their244
closest residues that should attend to. For example, point 3 is closest to residue 5 and the heatmap245
shows that the distance between point 3 and residue 5 is very close (< 2Å). This figure highlights that246
although the support points do not necessarily fall on the actual positions of main chain atoms, their247
distribution in the 3D space can effectively guide the model in discerning the backbone contour of the248
protein chains. This explains how our model determines atom positions according to the input points.249

Importance of point-residue affinity250

Stoichiometry must be accounted for when predicting homogenous multimer structures. In the251
prediction of a homodimerization, both ordering of two chain copies are equally valid, regardless of252
their ordering in the ground truth model. We originally only used AlphaFold-Multimer's multi-chain253
permutation alignment strategy (Evans et al., 2022) to solve the problem, but we found it unstable for254
point-residue distogram loss. Thereby, we introduce a new feature called point residue affinity to255
make the unconditional prediction (regarding which homogenous chain corresponds to which copy of256
support points) to be a conditional one. The point residue affinity map 푎푓푓푖�푖�� ∈ ℝ�×� is a binary257
matrix and each entry 푎푓푓푖�푖��[푖, �] indicates whether the point 푖 is close to (<5Å) residue � .258
Starting from the second recycle, the 푎푓푓푖�푖�� is linear transformed and element-wise added to259
point-residue representation. The point residue affinity map is only used in homogenous multimer260
prediction, otherwise is set to all 0. For more detailed information, please refer to SI 7. Fig. 8B-E261
provides an example of how point residue affinity features affect the homo-multimer structure262
prediction.263

264
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265

Figure 8. Point residue distance prediction and the use of point residue affinity feature to address the266
ambiguity problem of homo-multimers. We take PDB 7bvn (a homogenous trimer) as an example267
here (B-E). (A) An example of predicted point-residue distance diagram from point distogram head.268
The predicted distances are discretized into 10 categories, where darker colors indicate closer269
distances. (B) In the absence of point residue affinity feature, the predicted point-residue distance270
map shows that each support point corresponds to 3 residue positions because there are 3 chain copies,271
and the predicted structural model fails to align accurately with the ground truth model. (C) Using the272
position of points and residues to construct the point residue affinity feature. Specifically, three entries273
( [340, 126], [393 , 276], [23, 426] ) in the affinity feature are set to one. (D) The predicted distance274
distogram after the affinity feature is set. Now each support point corresponds to a single residue275
position respectively, and the predicted model can be well aligned with the ground truth model.276

We found that when the affinity features are not used in inference, the result become much worse (Fig.277
9).278

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 5, 2023. ; https://doi.org/10.1101/2023.11.02.565403doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.02.565403
http://creativecommons.org/licenses/by-nc-nd/4.0/


279

Figure 9. ChainMatch of SMARTFold with or without point residue affinity features in inference on280
102 homomultimer samples.281

Long sequence inference282

Due to memory issues, our multimer model can only solve protein sequences with limited residue283
length (up to 2500 residues on an A100, 40GiB GPU). For longer proteins, we offer an alternative284
“single chain model” to tackle the memory problem. This version allows us to infer the whole285
structure on a per-chain basis. This specially finetuned single chain model may take one chain286
sequence as imput while using the entire density map for sampling support points, though a lower287
sampling rate (e.g, 50% of the whole sequence) would be applied. The whole inference process can be288
completed by splitting the structure into individual chains and processing them separately, followed289
by combining the results to obtain the final predicted structure. For more training and inference details290
about this model, refer to SI 10.291

Fig. 10 illustrates three examples of long sequence protein prediction using single chain model: 7e89292
(2916 residues), 7u66 (3564 residues) and 7wfg (4554 residues). TM-score on these samples are 0.989,293
0.994 and 0.935 respectively. These examples show that our approach is capable of solving protein294
structures with long sequences.295

296

Figure 10. Long sequence inference samples with single-chain model. For all the three cases, the297
predicted models (pink) are very close the deposited PDB structures (blue).298
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Discussion299

In this study, we have proposed SMARTFold, an innovative end-to-end protein folding method by300
integrating MSA and Cryo-EM maps. Our results have demonstrated that SMARTFold could301
effectively build 3D protein structures model and output more accurate atomic positions compared302
with previous state-of-the-art methods in single-chain and multi-chain benchmark dataset.303
SMARTFold integrates experimental information by sampling support points from backbone304
confidence map.305

Although SMARTFold has demonstrated superior performance on the benchmark dataset, it still has306
some limitations that need to be improved.307

Memory Cost & long sequence issue. Due to the large amount of memory intensive operations, our308
model only supports sequence length up to 2500 on 40GiB A100 GPU. There are some techniques for309
making long sequence predictions. One way is to use unified virtual memory (UVM) of CUDA to310
share memory space between GPU and host, keeping memory from overflow at the expense of more311
running time. Another option is to use our alternative single chain model, to finish the inference by312
chain. We plan to present a smaller model which has less layers and smaller feature channels to save313
memory use.314

Time consumption. Our model typically takes as much time as AlphaFold2 to run the inference, or315
slightly higher due to support point relative calculations. Furthermore, MSA searching cost a316
nonnegligible time in the whole procedure. One potential way to alleviate this is to replace MSA with317
a protein language model. We leave this for future work as well.318
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