

1 **High temporal frequency light response in mouse retina is mediated by ON and**
2 **OFF bipolar cells and requires FAT3 signaling**

3 Evelyn C. Avilés^{1,2}, Sean K. Wang^{3,4}, Sarina Patel¹, Shuxiang Shi^{5,6}, Lucas Lin³,
4 Vladimir J. Kefalov⁷, Lisa V. Goodrich^{1*}, Constance L. Cepko^{3,4*}, Yunlu Xue^{3,5,8*}

5
6 1. Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston,
7 MA 02115

8 2. Present address: Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de
9 Chile, Santiago, Chile

10 3. Departments of Genetics and Ophthalmology, Harvard Medical School, Boston, MA
11 02115

12 4. Howard Hughes Medical Institute, Boston, MA 02115

13 5. Lingang Laboratory, Shanghai, China, 200031

14 6. School of Life Science and Technology, ShanghaiTech University, Shanghai, China,
15 201210.

16 7. Gavin Herbert Eye Institute & Center for Translational Vision Research, University of
17 California, Irvine, CA 92697

18 8. Lead contact

19

20 *Correspondence: ylxue@lglab.ac.cn, cepko@genetics.med.harvard.edu,

21 lisa_goodrich@hms.harvard.edu

22

23

24

25

26

27

28

29

30

31

32

33 **Abstract**

34 Vision is initiated by the reception of light by photoreceptors and subsequent processing
35 via parallel retinal circuits. Proper circuit organization depends on the multi-functional
36 tissue polarity protein FAT3, which is required for amacrine cell connectivity and retinal
37 lamination. Here we investigated the retinal function of *Fat3* mutant mice and found
38 decreases in physiological and perceptual responses to high frequency flashes. These
39 defects did not correlate with abnormal amacrine cell wiring, pointing instead to a role in
40 bipolar cell subtypes that also express FAT3. Indeed, similar deficits were observed in
41 mice lacking the bipolar cell glutamate receptors GRIK1 (OFF-bipolar cells) and GRM6
42 (ON-bipolar cells). Mechanistically, FAT3 binds to the synaptic protein PTP σ and is
43 required to localize GRIK1 to OFF-cone bipolar cell synapses with cone photoreceptors.
44 How FAT3 impacts ON-cone bipolar cell function at high temporal frequency remains to
45 be uncovered. These findings expand the repertoire of FAT3's functions and reveal the
46 importance of both ON- and OFF-bipolar cells for high frequency light response.

47

48

49 **Keywords: high frequency vision, retinal physiology, FAT cadherins,**
50 **bipolar cells, GRIK1, GRM6**

51 **Introduction**

52 The remarkable ability to detect light over a wide range of intensities and
53 frequencies is accomplished by highly specialized cell types and circuits within the
54 retina. These circuits transform signals originating from the photoreceptors following
55 their initial synapse with bipolar cells (BCs), which are classified as ON or OFF
56 depending upon their response to photoreceptor signals, setting the stage for
57 downstream processing events. Critical to these transformations are the >80 types of
58 retinal interneurons^{1–4}, which are organized into laminae with the cell bodies of the
59 horizontal, BCs, and amacrine cells (ACs) located in the inner nuclear layer (INL), while
60 the photoreceptor cell bodies reside in the outer nuclear layer (ONL). Retinal
61 interneurons form synaptic connections in two layers: in the outer plexiform layer (OPL)
62 among BCs, horizontal cells and photoreceptors, and in the inner plexiform layer (IPL)
63 among BCs, ACs, and the output neurons of the retina, the retinal ganglion cells (RGCs)
64 (**Figure 1a**). Despite the stereotyped and conserved organization of retinal neurons and
65 their connections, it is unclear how important the lamination is for the sense of vision.
66 Also unknown is how the organization of most retinal circuits mediate specific visual
67 responses, e.g. which cell types and connections are needed to process and transmit
68 high frequency signals⁵.

69 Several features of retinal circuit assembly depend upon FAT3, a tissue polarity
70 protein^{6–8}. FAT cadherins are transmembrane receptors that can sense cell position in
71 the environment *via* their huge extracellular domains. They induce appropriate changes
72 in cell morphology *via* their intracellular domains, thereby creating cellular asymmetries
73 that are aligned across the tissue. In *Fat3* mutant retinas, many ACs migrate to ectopic
74 locations in the IPL and the ganglion cell layer (GCL). They also fail to retract their
75 trailing neurites, which go on to form ectopic synapses in two misplaced plexiform layers,
76 one in the INL (the outer misplaced plexiform layer, OMPL) and one below the GCL (the
77 inner misplaced plexiform layer, IMPL)^{6–8}. These ectopic layers contain synapses
78 between ACs and between ACs and rod BCs, which do not express FAT3², but seem to
79 “follow” their AC partners to abnormal locations⁷. FAT3, which is localized to AC
80 dendrites in the IPL, mediates these effects by localizing cytoskeletal effectors needed
81 for migration and retraction⁶. The FAT3 intracellular domain also binds a variety of

82 synaptic proteins⁶ and is therefore poised to control synapse localization or function
83 independent of its effects on cell morphology. A direct functional role at the synapse has
84 not been described, and it was not clear how the loss of FAT3 impacts vision.

85 Here, we used retinal physiology and behavioral analyses to investigate the
86 effects of FAT3 disruptions on retinal function. We demonstrate that FAT3 ensures
87 formation of synapses between cones and BC dendrites that are required for proper
88 transmission of high temporal frequency signals. Basic light responses of retinal
89 neurons were found to be preserved in *Fat3* mutant mice despite the highly abnormal
90 ectopic plexiform layers. However, the overall retinal response to 30 Hz flashes were
91 severely reduced in amplitude and *Fat3* mutants behaved as if they see constant
92 illumination. Analysis of a variety of conditional *Fat3* knock-out mice revealed that this
93 phenotype is not due to altered AC lamination. Instead, we found that the OFF-cone
94 pathway is abnormal, as revealed by an *in vivo* electroretinogram (ERG) protocol that
95 we developed. Loss of *Grik1*, which encodes an ionotropic glutamate receptor
96 specifically localized to OFF-Cone BC (CBC) dendrites^{9,10}, showed a reduction in the d-
97 wave, but had little effect on the amplitude of the 30 Hz ERG. Indeed, only the loss of
98 *Grik1* along with *Grm6*, which encodes a metabotropic glutamate receptor in ON-CBCs,
99 resulted in reductions in the amplitude of the ERG response to high frequency flickering
100 lights, indicating that both CBC pathways are required for high temporal frequency light
101 responses. Further, we show that the FAT3 intracellular domain binds to the synaptic
102 protein PTP σ , and that in *Fat3* mutants, both PTP σ and GRIK1 are present at reduced
103 levels in the ribbon synapses that link cones to OFF-CBCs. Thus, FAT3 is required to
104 set up and/or maintain a properly organized and functional synapse between BCs and
105 photoreceptors and the transmission of high frequency signals, highlighting its multiple
106 and versatile roles in the development and function of retinal circuitry.

107

108 **Results**

109 **Global loss of *Fat3* affects the response of the cone pathway to high temporal 110 frequency light**

111 In *Fat3*^{ΔTM/ΔTM} mutant mice, which lack a membrane localized form of FAT3,
112 retinal lamination is strongly disrupted, with changes in the position of ACs and their

113 synapses with other ACs, as well as with other retinal cell types⁷. The abnormal
114 lamination can also be seen by optical coherence tomography (OCT) imaging in
115 animals *in vivo* (**Figure S1a**). To assess the functional consequences of this change in
116 circuit organization, we used ERG, a common way to measure electrical changes in the
117 retina in response to light. By altering the stimulus, it is possible to reveal the
118 contributions of specific cell types. For instance, signaling through the rod pathway is
119 assayed by performing the ERG after dark-adaptation and under scotopic conditions,
120 using dim flashes that elicit little response from the cone pathway. Conversely, photopic
121 ERG tests isolate the cone pathway by light-adapting the eyes and using a background
122 light that saturates rod phototransduction. In an ERG waveform, the a-wave originates
123 from photoreceptors and is followed by the b-wave, which reflects the activity of rod
124 bipolar cells (RBC) and/or ON-types of CBCs. By flashing the stimulus on and off with
125 increasing frequency, it is possible to determine how well photoreceptors and BCs are
126 able to resolve temporal differences in the visual stimulus. As the frequency of the flash
127 increases, OFF-CBCs are hypothesized to dominate the response based on evidence
128 from a few genetically modified strains¹¹. Additionally, the ERG d-wave, which emerges
129 when turning off a light step that lasts for a few seconds¹², is thought to represent
130 mainly OFF-CBC activity¹³. However, definitive *in vivo* evidence is lacking, and d-wave
131 measurements are not usually collected in the lab or the clinic.

132 Conventional ERG assays under scotopic and photopic conditions revealed no
133 obvious difference in *Fat3*^{ΔTM/ΔTM} vs. *Fat3*^{ΔTM/+} littermates, indicating that overall
134 signaling through rod and cone pathways was preserved (**Figure S1b-e**). Likewise, the
135 oscillatory potentials between the a- and b-waves, which are thought to reflect the
136 activity of ACs and/or RGCs¹⁴, showed no significant change in the number, amplitude
137 or timing of peaks (**Figure S1f**). Thus, *Fat3*^{ΔTM/ΔTM} mutant mice can detect standard light
138 stimuli despite changes in retinal lamination.

139 Although previous work showed its role in ACs^{6,7}, *Fat3* is also expressed in
140 RGCs and some subtypes of BCs, especially OFF-CBCs² (**Figure 1b,c**, **Figure S2**).
141 Consistent with this expression pattern, FAT3 protein localizes not only to the IPL but
142 also to the OPL, where BC dendrites form synapses with photoreceptors (**Figure 1d**),
143 raising the possibility of additional effects on retinal function. Indeed, *in situ* hybridization

144 confirmed co-expression of *Fat3* with the OFF-CBC marker *Grik1*, which encodes an
145 ionotropic glutamate receptor^{2,15} (**Figure 1f-i**). *Fat3* is also expressed in some *Grik1*-
146 negative CBCs, which are positive for the ON-CBC marker *Grm6*, though to a less
147 degree (**Figure 1i, S2**). This suggested that *FAT3* might be required for retinal functions
148 that would not be detected using standard ERG, as conventional photopic and scotopic
149 ERG measures overall activities from populations of photoreceptors and the ON-
150 pathway, but not the OFF-pathway or an individual ON-CBC subtype.

151 To determine whether *Fat3* is required for OFF-CBC function *in vivo*, we
152 recorded ERGs in response to lights that flicker in the high frequency range (i.e. over 15
153 Hz, as defined by Seeliger and colleagues¹¹). Flicker ERG responses in this range are
154 hypothesized to be dominated by the OFF-pathway but direct evidence has been
155 lacking¹¹. We observed a significant decrease in the amplitude of responses to lights
156 flickering at 30 Hz in *Fat3*^{ΔTM/ΔTM} compared to their *Fat3*^{ΔTM/+} littermates (**Figure 2a,b**).
157 Additionally, the timing of the first peak in response to 20 Hz stimulation (“the implicit
158 time”) was delayed (**Figure 2c**). 30 Hz implicit time was not measured, as many *Fat3*
159 mutant mice presented no response at this frequency. These results suggested that the
160 transmission of high temporal frequency light responses was impaired, and, more
161 specifically, in BCs, where the signal to the flicker ERG originates¹¹. To determine if this
162 physiological deficit in the retina had perceptual consequences, behavioral assays were
163 conducted, using contextual and vision-cued fear conditioning tests^{16,17}. Normally, fear
164 conditioned animals increase the time of “freezing” if they have been conditioned to
165 associate an unpleasant stimulus with an environmental cue, in this case, 33 Hz light
166 (**Figure 2d, Supplementary movies**). In contrast to *Fat3*^{ΔTM/+} mice (n=8 animals),
167 some *Fat3*^{ΔTM/ΔTM} mice (5 out of 9 animals) failed to show a freezing response when
168 switching from a static light to a 33 Hz flicker (**Figure 2e**). The lack of response was not
169 due to an inability to form fear memories, as all *Fat3*^{ΔTM/ΔTM} and *Fat3*^{ΔTM/+} animals froze
170 less when switching from an unpleasant olfactory and tactile context (group “context”) to
171 a novel and safe context within the group with static light (group “static light”) (**Figure**
172 **2e**). Mutant mice also performed like the WT controls in an optomotor behavioral assay,
173 which measures spatial discrimination (**Figure 2f**).

174 Responses to different frequencies of light are used to study the temporal
175 properties of vision at photoreceptor, brain or psychophysical levels¹⁸. The flicker ERG
176 at high temporal frequency was proposed, but had not been established, as a test for
177 OFF-CBC function. Usually, OFF-CBC function is probed using patch-clamping of single
178 cells, or assessed at the population level by examination of the d-wave of the ERG. To
179 assay overall function of the OFF-CBC population, we designed an *in vivo* ERG protocol
180 for mice based on a study of the *ex vivo* ERG response of amphibian retinas. This
181 assay measures the retinal voltage change, the d-wave, after turning off a long step of
182 light¹², which is called a “step ERG”. Using this newly developed *in vivo* protocol on
183 mice, we found that WT mice had a strong d-wave with robust oscillatory potentials at
184 the end of a three-second exposure to a 1,000 cd/m² step of light (**Figure 2g**). By
185 contrast, in *Fat3*^{ΔTM/ΔTM} mice, the d-wave amplitude was decreased, and the d-wave
186 related oscillatory potentials were absent (**Figure 2g,h**). Thus, responses to both high
187 frequency flickering light and the light being turned off showed that *Fat3*^{ΔTM/ΔTM} mice
188 have deficits in processing specific types of visual stimuli.

189

190 **Retinal lamination defects do not disrupt responses to flickering stimuli**

191 We next asked which changes to retinal organization and function are
192 responsible for the impaired high frequency light response in *Fat3*^{ΔTM/ΔTM} mutant mice.
193 To test the impact of an ectopic plexiform layer, *Fat3* was deleted specifically from ACs
194 using *Ptf1a*^{CRE}^{7,19} and a *Fat3* floxed allele (**Figure 3a,b**). In these conditional knock-out
195 (cKO) mutants, ACs migrate normally, but do not retract their trailing processes, leading
196 to formation of an OMPL⁷. We found that the 30 Hz flicker ERG amplitude and 20 Hz
197 implicit time were normal in *Ptf1a*^{CRE} *Fat3*cKO mice compared to littermate *Ptf1a*^{CRE}
198 control mice (**Figure 3d-f**), indicating that the high frequency light response defects
199 were not secondary either to the presence of *Fat3* mutant ACs or the lamination defects
200 they caused. To survey other FAT3+ cells for possible effects on high frequency light
201 response, we used the *Isl1*^{CRE} mouse line to drive recombination in all ON-CBCs,
202 starburst ACs, and RGCs, but not in OFF-CBCs²⁰ (**Figure 3c,g,h**). Although *Isl1*^{CRE}
203 *Fat3*cKO mice exhibited all of the cellular phenotypes previously described in the retina
204 of *Fat3*^{ΔTM/ΔTM} mice (**Figure 3g-m**), the 30 Hz flicker ERG amplitude and 20 Hz implicit

205 time were normal compared to littermate *ls/1*^{CRE} control mice (**Figure 3n-p**). Thus, the
206 high frequency light response defects are not due to the gross disorganization of retinal
207 lamination and do not reflect a role for FAT3 in RGCs or ON-CBCs alone. The 30 Hz
208 amplitude and 20 Hz implicit timing were also unaffected by removal of *Fat3* from
209 GABAergic ACs and the type 2 OFF-CBC subset using *Bhlhe22*^{CRE} (**Figure S3a-k**) or
210 loss of non-type 2 OFF-CBCs, as occurs in *Fezf2*^{-/-} mutants^{2,21} (**Figure S3l-q**). We
211 were not able to directly test whether high frequency light response requires FAT3 in
212 OFF-CBCs, as there is no Cre line that is active in all OFF-CBCs. Nonetheless, these
213 experiments showed that the high frequency light response defects are not caused by
214 retinal lamination defects and most likely involve the loss of FAT3 from OFF-CBCs,
215 potentially in combination with loss from other cell types.

216

217 **FAT3 intracellular signaling is critical for high frequency light response and the 218 step ERG d-wave**

219 FAT3 is a versatile protein that can mediate non-autonomous interactions via its
220 extracellular domain and autonomous effects by recruiting different sets of cytoskeletal
221 effectors to its ICD⁶. To better understand how FAT3 signaling supports high frequency
222 visual signal transmission and contributes to the step ERG d-wave, we analyzed
223 *Fat3*^{ΔICD-GFP} animals, in which most of the ICD is replaced with GFP while keeping the
224 extracellular and transmembrane domains anchored to the cell membrane⁶ (**Figure 4a**).
225 These animals showed expression of the FAT3-GFP fusion protein in the OPL (**Figure
226 4b,c**), consistent with FAT3 protein localization (**Figure 1d**). In *Fat3*^{ΔICD-GFP/ΔICD-GFP}
227 mutant mice, ACs migrate to abnormal cell layers and fail to retract their neurites, but do
228 not form ectopic plexiform layers, as shown previously⁶. Therefore, analyzing *Fat3*<sup>ΔICD-
229 GFP/ΔICD-GFP</sup> mutants can reveal whether high frequency light response depends on
230 intracellular signaling and/or the ability to form synapses.

231 Consistent with previous histological analysis⁶, no ectopic plexiform layers were
232 detected by OCT *in vivo* imaging of *Fat3*^{ΔICD-GFP/ΔICD-GFP} eyes (**Figure 4d**). Nonetheless,
233 the amplitude of the 30 Hz flicker ERG response was decreased in *Fat3*^{ΔICD-GFP/ΔICD-GFP}
234 mice, as in *Fat3*^{ΔTM/ΔTM} mice (**Figure 4e-f**). Likewise, the 20 Hz implicit time was
235 delayed and the amplitude of the d-wave in step ERG responses was decreased

236 **(Figure 4g-i).** The loss of high frequency flicker ERG responses even in the absence of
237 ectopic plexiform layers further underscores that changes in AC wiring do not contribute
238 to altered visual function in *Fat3* mutant mice. Rather, these results suggest a potential
239 role for *FAT3* signaling in OFF-CBCs, in keeping with the results of the genetic analyses
240 described above.

241

242 **Disruption of glutamate receptor signaling in CBCs alters ERG responses**

243 The above results suggest that the OFF-CBC pathway is likely to be essential for
244 retinal responses to high frequency stimuli. To test this idea independently, we asked
245 whether ERG responses also are altered upon loss of *Grik1*, which is the only subunit of
246 ionotropic glutamate receptors (iGluR) enriched specifically in OFF-CBCs^{2,15,22,23}
247 **(Figure S2, Figure 5a,c,d).** To probe OFF-CBC morphology, we created a novel AAV
248 vector (AAV8-Grik1-GFP) using our previously described *Grik1* enhancer/promoter
249 element¹⁵. Viral delivery of the *Grik1*-GFP reporter resulted in the expression of GFP in
250 OFF-CBCs, consistent with the *Grik1* expression profile, and revealed normal cellular
251 morphologies in *Grik1*^{-/-} compared to WT littermates **(Figure S4a,b)**. The 0.5 Hz and 10
252 Hz flicker ERG responses of *Grik1*^{-/-} were similar to WT littermates **(Figure S4e-h)**. The
253 amplitude of the response to 30 Hz flickering stimuli was decreased in *Grik1*^{-/-} mice
254 ($21.34 \pm 1.92 \mu\text{V}$, n=10 eyes vs. $32.23 \pm 2.65 \mu\text{V}$ in WT, n=13 eyes, **Figure 5g-i, S4i-k**),
255 but more modestly than in *Fat3* mutants ($12.65 \pm 3.29 \mu\text{V}$ vs. $43.43 \pm 1.16 \mu\text{V}$ in WT;
256 n=10 eyes each, **Figure 2b**). Additionally, the 20 Hz implicit time was earlier in *Grik1*
257 mutants ($35.60 \pm 1.13 \text{ msec}$, n=10 eyes vs. $39.54 \pm 0.45 \text{ msec}$ in WT, n=13 eyes,
258 **Figure 5g,i, S4i,k**), whereas this response was delayed in *Fat3* mutants (46.20 ± 1.00
259 msec, n=10 eyes vs. $36.50 \pm 0.50 \text{ msec}$ in WT, n=10 eyes; **Figure 2c**). Like *Fat3*
260 mutants, *Grik1*^{-/-} mice showed decreased d-wave amplitudes and no d-wave oscillatory
261 potentials in response to step stimuli when compared to WT littermates **(Figure**
262 **5j,k,S4c,d)**.

263 As GRIK1 is the only iGluR subunit that is specifically expressed in OFF-CBCs
264 and *Grik1*^{-/-} eyes did not completely lose the flicker ERG response or the d-wave, we
265 wondered if glutamate receptors specific to ON-CBCs also contribute to the high
266 frequency ERG response. Since the mGluR subunit, GRM6, is predominantly

267 expressed by ON-CBCs and the loss of GRM6 is sufficient to remove all the transient
268 ON-BC responses such as the ERG b-wave^{2,24} (**Figure S2, Figure 5b**), we generated
269 *Grik1*^{-/-}; *Grm6*^{-/-} double homozygous knockout mice and confirmed the deletion of both
270 proteins with antibody staining (**Figure 5c-f**)^{25,26}. The effect on the ERG response to 30
271 Hz flickering stimuli was greater in *Grm6*^{-/-}; *Grik1*^{-/-} than *Grik1*^{-/-} mice, with strongly
272 reduced amplitudes ($3.63 \pm 1.03 \mu\text{V}$, n=10 eyes vs. $21.34 \pm 1.92 \mu\text{V}$ in *Grik1*^{-/-}, n=10
273 eyes, **Figure 5h**), similar to *Fat3* mutants ($12.65 \pm 3.29 \mu\text{V}$ in *Fat3*^{ΔTM/ΔTM}, n=10 eyes,
274 **Figure 2b**). Additionally, the 20 Hz implicit time was significantly delayed in *Grm6*^{-/-} mice
275 ($44.08 \pm 1.22 \text{ msec}$, n=12 eyes vs. $39.54 \pm 0.45 \text{ msec}$ in WT, n=13 eyes, **Figure 5i**),
276 similar to *Fat3* mutants ($46.20 \pm 1.00 \text{ msec}$, in *Fat3*^{ΔTM/ΔTM}, n=10 eyes, **Figure 2c**). Thus,
277 both GRIK1+ OFF-CBCs and GRM6+ ON-BCs contribute to retinal responses to high
278 frequency light, despite the observation that *Fat3* mRNA was expressed with *Grm6* in
279 only a few ON-CBC subtypes² (**Figure 1h',i', S2**). Contrary to the assumption that the
280 end of the step ERG is mediated entirely by OFF-CBCs, ERG recordings revealed a
281 complete loss of the d-wave in *Grm6*^{-/-}; *Grik1*^{-/-} mice, suggesting that both GRM6 and
282 GRIK1 mediate this response *in vivo* (**Figure 5j,k, S4c,d**).
283

284 **GRIK1 localization to the ribbon synapse is reduced in *Fat3* mutants**

285 To investigate possible cellular origins of the visual deficits, we analyzed the
286 retina for possible changes in cones and BCs. We found no change in the number or
287 distribution of cones (27.77 ± 0.91 cones, n=13 sections from 4 eyes vs. 29.00 ± 0.59
288 cones, n=15 sections from 4 WT eyes) or BCs (detected by staining for VSX2), which
289 occupied a similar area in WT compared to *Fat3*^{ΔTM/ΔTM} mutant retinas (21.09 ± 1.04
290 arbitrary units, n=15 sections from 4 eyes vs. 21.59 ± 0.97 arbitrary units, n=15 sections
291 from 4 WT eyes (**Figure S5a-f**). To visualize OFF-CBC morphology, WT and mutant
292 P2/P3 retinas were injected with AAV8-Grik1-GFP and evaluated at P22. Whereas 100%
293 (n=12 cells from 5 animals) of OFF-CBC axons terminated and stratified in the OFF
294 sublaminae of the IPL in WT animals, only $49 \pm 17\%$ of the mutant OFF-CBC axons
295 (n=7 animals, 22 cells) terminated properly with $56 \pm 19\%$ of axons terminating instead
296 in the OMPL or in both the OMPL and the IPL (**Figure S5g-i**). Despite this change in
297 axon position, mutant OFF-CBCs showed typical bipolar morphologies and extended

298 dendrites that terminated properly in the OPL, as in the WT retina (**Figure S5g-i**). Thus,
299 unlike its role in ACs, FAT3 is not essential for the position or shape of OFF-CBC
300 dendritic arbors.

301 Given the absence of obvious changes in position or morphology of BC dendrites,
302 we hypothesized that the observed changes in retinal function are due instead to FAT3-
303 dependent effects on retinal ribbon synapses. Indeed, in addition to binding to a variety
304 of cytoplasmic effectors important for neuronal migration and neurite retraction, the
305 FAT3 ICD binds to several proteins associated with synaptic function, such as
306 HOMER1⁶ and the LAR family protein, PTP σ , which is encoded by the *Ptprs* gene, as
307 shown by GST-pulldown (**Figure 6a**). Further, *Drosophila* Fat-like interacts with the
308 related RPTP protein dLAR²⁷, and PTP σ is required for excitatory synapse formation in
309 hippocampal neurons²⁸⁻³⁰. Since *Ptprs* RNA is detected in both ON- and OFF-BCs²
310 (**Figure S2**), we asked whether cell type-specific synaptic features might be altered in
311 the absence of FAT3. Immunostaining revealed that PTP σ localized to the post-synaptic
312 dendrites of CBCs, co-localized with GRIK1 and apposed CtBP2+ ribbons in the cones
313 (**Figure 6b,c**). However, significantly less PTP σ was detected in the OPL of *Fat3*^{ΔTM/ΔTM}
314 mutants (density in the OPL of 4871 ± 463.5 , n=3 mutants vs 8682 ± 583.0 in n=4 WT)
315 (**Figure 6d,e,h**). Immunostaining revealed no change in the levels of pre-synaptic
316 CTBP2+ ribbons (OPL mean fluorescence intensity: 5.00 ± 0.14 in n= 4 *Fat3*^{ΔTM/ΔTM}
317 animals vs. 4.80 ± 0.16 in n=4 WT; 9.70 ± 0.39 in n= 4 *Fat3*^{ΔICD-GFP/ΔICD-GFP} animals vs.
318 10.03 ± 0.32 in n=4 WT) (**Figure S6a,b,e,g,h,k**) or post-synaptic HOMER1 in the OPL
319 of *Fat3* mutants (**Figure 6f,g,i**), indicating that FAT3 is not required for synapse
320 formation *per se*. Moreover, GRIK1 staining was severely reduced in the OPL of both
321 *Fat3*^{ΔTM/ΔTM} (**Figure 7a-c**) and *Fat3*^{ΔICD-GFP/ΔICD-GFP} (**Figure 7d-f**) retinas compared to
322 WT littermates (density in the OPL: 25838 ± 5028 , n=4 *Fat3*^{ΔTM/ΔTM} vs 52727 ± 7204 in
323 n=4 WT and 11687 ± 1110 in n= 4 *Fat3*^{ΔICD-GFP/ΔICD-GFP} vs. 16119 ± 1168 in n=4 WT).
324 BCs also expressed less *Grik1* RNA in *Fat3*^{ΔTM/ΔTM} animals compared to WT (**Figure**
325 **S7a-c**). Loss of GRIK1 was apparent by 3 weeks of age in *Fat3*^{ΔTM/ΔTM} mice, when 30
326 Hz flicker ERG defects were already present (**Figure S7e-k**). By contrast, we did not
327 detect a significant change in the expression or localization of the ON-CBC synaptic

328 protein GRM6, with similar levels of *Grm6* RNA in the INL of mutant and control retinas
329 (**Figure S7a,b,d**) and of GRM6 in the OPL of mutant and control retinas (**Figure**
330 **S6c,d,f**). GRM6 levels were also unchanged in *Fat3*^{ΔICD-GFP/ΔICD-GFP} mutants (**Figure**
331 **S6i,j,l**). Loss of *Ptprs* (**Figure S8a,b**) also resulted in a modest decrease of GRIK1 in
332 the OPL (**Figure S8c,d,g**) without significantly affecting the ribbons of the
333 photoreceptors (**Figure S8e,f,h**). However, unlike *Fat3* mutants, *Ptprs*^{-/-} animals did not
334 show any change in the ERG response to a 30 Hz flickering stimulus, the implicit timing
335 of the response to a 20 Hz stimulus, or the d-wave amplitude in the step ERG assay
336 (**Figure S8i-k**). Thus, FAT3 likely impacts not only the presence of PTPσ and GRIK1,
337 but also additional features of the CBC synapses necessary for responses to high
338 temporal frequency stimuli.

339

340

341 **Discussion**

342 A major goal in neuroscience to understand how the diverse cell types of the
343 retina, including >80 types of interneurons, influence parallel circuits that transform
344 information about specific elements of the visual world. A valuable approach is to
345 characterize retinal physiology and visual behavior in mice carrying mutations in genes
346 required for proper circuit assembly and/or function. However, the nature of the circuits
347 that enable responses to stimuli that change with high temporal frequency has been
348 explored very little, in part because standard assays of retinal function, particularly the
349 conventional scotopic and photopic ERGs, are not designed to detect signals elicited by
350 these stimuli. Despite lacking the cellular level resolution that can be achieved by *ex*
351 *vivo* patch clamping, the ERG is an elegant and relatively simple measurement that can
352 be used *in vivo* to reveal behaviorally-relevant changes in overall retinal function from
353 population of cells. Here, we use flicker and step ERGs to show that retinal activity in
354 response to high frequency flickering and light-off stimuli is altered in *Fat3* mutant mice,
355 which also show an impaired behavioral response to flickering stimuli. FAT3 is a multi-
356 functional transmembrane protein that is expressed by ACs, BCs, and RGCs and is
357 required for retinal lamination. By analyzing the consequences of *Fat3* deletion from
358 different retinal cell types, we discovered that the loss of high frequency light response

359 was not due to changes in AC position or connectivity. Instead, these visual defects
360 appear to reflect abnormal synaptic responses in BCs. Although the precise origin of the
361 synaptic defects remains unclear, we found that FAT3 binds to the synaptic protein
362 PTP σ and that both FAT3 and PTP σ are required for enrichment of GRIK1 at the cone
363 to OFF-CBC synapse. Further, only the loss of glutamatergic signaling through both ON
364 and OFF CBCs recapitulates the *Fat3* visual deficits. Together, these data demonstrate
365 the importance of both ON and OFF CBCs for high temporal frequency light response,
366 and uncover a role for FAT3 in the formation and/or maintenance of functional cone to
367 BC synapses.

368

369 **FAT3 mutant mice show deficits in high frequency light response**

370 Despite their severe defects in neuronal wiring, *Fat3* mutant mice are not blind,
371 as seen by the preservation of conventional ERG and optomotor responses. However,
372 when presented with fast flickering stimuli, *Fat3* mice showed severe visual deficits
373 consistent with loss of signaling from cones to OFF-CBCs. In support of this idea,
374 abnormal high temporal frequency light response was observed only in mice lacking
375 *Fat3* in BCs and did not correlate with effects on retinal lamination (**Figure 2,3,4**).
376 Additionally, *Fat3* is expressed by multiple BC types, including GRIK1-positive OFF-
377 CBCs, and GRIK1 levels were reduced in the OPL of *Fat3* mutant mice (**Figure 1,7**). To
378 independently assay cone to OFF-CBC signaling, we established a step ERG protocol
379 and showed that the d-wave was reduced in both *Fat3* and *Grik1*^{-/-} mutant mice
380 compared to WT littermates (**Figure 2,4,5**). Collectively, these data suggest that FAT3
381 is required for proper OFF-CBC function and hence the ability to detect fast flickering
382 stimuli. This phenotype is fundamentally different from that which occurs in *Fat3* mutant
383 ACs, which extend extra neurites that form ectopic synapses.

384

385 **Both ON and OFF BCs are required for high frequency light response**

386 BCs are the first retinal interneurons that encode, segregate, and relay visual
387 information into over a dozen pathways for further processing. It had been hypothesized
388 that the OFF-CBCs mediate high frequency visual signal transmission, based upon
389 indirect evidence from flicker ERG studies of mice carrying mutations such as *Grm6*^{-/-}¹¹.

390 Here, we found that both ON and OFF CBCs are required for high frequency light
391 response (**Figure 5**). Inspired by the loss of GRIK1 from *Fat3* mutant OFF-CBC
392 synapses, we assayed visual responses in mutant mice lacking critical glutamate
393 receptors specific to either ON (GRM6) or OFF (GRIK1) CBCs. However, in contrast to
394 the shared effects on the d-wave, *Grik1*^{-/-} mice showed only a modest reduction in the
395 amplitude of the response to a 30 Hz flicker ERG. This was striking given the drastic
396 reductions in this measurement in *Fat3* mutants. These findings raised the possibility
397 that FAT3 is also required for ON-CBCs to transmit high frequency signals. Indeed,
398 mice lacking both *Grm6* and *Grik1* showed a similar reduction in high frequency light
399 detection as *Fat3* mutants. Other physiological phenotypes also were seen: *Grik1*^{-/-} mice
400 had advanced implicit time in response to 20 Hz, while *Grm6*^{-/-} mice had delayed implicit
401 time, similar to *Fat3* mutants. These data strongly suggest a role for both ON and OFF
402 classes of CBCs in supporting high frequency visual signal transmission.

403 OFF-CBC activities are thought to be initiated by two classes of ionotropic GluRs,
404 namely kainate and AMPA receptors, which were proposed to differentially encode
405 temporal signals from cones³¹. AMPA receptors also have been reported to mediate
406 high frequency signaling in cb2, a particular OFF-CBC subtype in ground squirrel retina,
407 as shown by *ex vivo* patch recording³². Here, we found that *Grik1*^{-/-}; *Grm6*^{-/-} mice lacked
408 all responses to 30 Hz flicker ERGs, arguing against a role for AMPA receptors in the
409 bulk transmission of high temporal frequency stimuli from cone to CBCs in mice, at least
410 not at the population level that is detectable by *in vivo* ERG. Despite some controversy
411 on this topic in mice^{33,34}, AMPA receptors might mediate only slow and/or sustained
412 OFF-CBCs responses that do not contribute to the transient and/or fast responses
413 needed for high temporal frequency visual signal transmission, as suggested by a
414 previous *ex vivo* study using pharmacological blockers with patch recordings³⁵.

415 How FAT3 impacts ON-CBC function remains unclear. Although *Fat3* RNA is
416 weakly expressed in the 5D and 6 ON-CBC subtypes² (**Figure S2**), possibly affecting
417 some ON-CBC functions directly, it is unlikely that an autonomous change in only two
418 subtypes would alter the ON-CBC population responses that the ERG measures.
419 Further, *Fat3* mutants showed no detectable change in the level of GRM6, the
420 glutamate receptor that leads to membrane voltage changes in ON bipolar cells²⁴. OFF-

421 CBCs are connected to ON-BCs via All amacrine cells in IPL. However, this circuit is
422 unlikely to affect the flicker ERG, which originates from the cation channels of BCs in or
423 near the OPL^{9,36}. However, it is possible that modulation originating within the IPL
424 affects OPL signaling through an undescribed backpropagation mechanism, which was
425 suggested by an *ex vivo* study using pharmacological blockers within the amphibian
426 retina³⁷. We propose three possible explanations for the observations of the role of the
427 ON-CBC: 1) GRM6 protein levels in ON-CBC are affected in *Fat3* mutants but we are
428 unable to resolve them, as there is abundant GRM6 in RBCs, the most numerous of all
429 BCs, 2) FAT3 regulates certain GRM6 functions and/or related signaling pathways (e.g.
430 G proteins or TRPM1, which would also be masked by their expression in RBCs) that
431 we did not assay, and/or 3) GRM6 is not directly downstream of FAT3 but can act in
432 concert with FAT3-dependent signaling in OFF-CBCs and/or ACs to modulate high
433 frequency visual signal transmission. For example, PTP σ might serve as an
434 intermediary, as it can act in *trans*, is expressed in both ON and OFF-BCs² (**Figure S2**),
435 and is reduced in *Fat3* mutants (**Figure 6**). Further studies, including detailed patch
436 clamp analysis, are needed to address these possible explanations.

437 It is also interesting that the d-wave was completely gone in *Grik1*^{-/-}; *Grm6*^{-/-} eyes,
438 but only slightly reduced in *Grik1*^{-/-} eyes, again suggesting an unexpected role for ON-
439 BCs in the response to light turning off. One possible explanation concerns the
440 phenomenon of lateral inhibition. An individual ON-BC can be depolarized instead of
441 hyperpolarized when there is no light in its peripheral receptive field, i.e. surrounding the
442 central receptive field³⁸. ON-BCs were originally termed “ON-center” BCs to accurately
443 reflect their response to light in their central and peripheral fields. Since the ERG light
444 stimulus is full-field, it is possible that the effect of having the light turn off in the
445 peripheral receptive field of individual GRM6+ ON bipolar cells contributes to the
446 residual d-wave in *Grik1*^{-/-} retina.

447

448 ***Fat3* effects on high temporal frequency light response requires intracellular 449 signaling**

450 The discovery of a new synaptic defect in *Fat3* mutant retinas highlights FAT3’s
451 versatility as a signaling molecule. Previous work showed that FAT3 acts through

452 different motifs in its ICD to control AC migration, neurite retraction, and synapse
453 localization, likely by recruiting different combinations of cytoplasmic effectors⁶. Here,
454 we found that the FAT3 ICD is also required for CBC function, possibly acting through a
455 separate module of synapse-related effectors. The FAT3-ICD interacts with several
456 known synaptic proteins, including PTP σ , which is one of the four type IIA family of
457 receptor-type protein tyrosine phosphatase in the LAR-RPTP subfamily³⁹. Interactions
458 between FAT3 and PTP σ appear to regulate the amount of GRIK1 at the synapse,
459 since PTP σ levels were reduced in the OPL of *Fat3* mutants (**Figure 6**) and GRIK1
460 levels were reduced in the OPL of both *Fat3* and *Ptprs* mutants (**Figure S8**). Although
461 PTP σ plays a well-established role in differentiation of the pre-synaptic component of
462 excitatory synapses in the brain^{28,30,39}, our findings point to a role on the post-synaptic
463 side, as suggested previously²⁹. Further, the related protein LAR also can be localized
464 to the post-synaptic compartment and is required for proper surface expression and
465 clustering of AMPA receptors⁴⁰. Thus, it is possible that PTP σ acts similarly to control
466 the distribution of GRIK1 in CBCs, either on its own or in collaboration with FAT3. Since
467 *Ptprs* mutants do not show the same visual deficits as *Fat3* mutants (**Figure S8**), other
468 LAR subfamily members may compensate. This might also explain why *Ptprs* mutants
469 have no obvious changes in retinal lamination⁴¹. Alternatively, other FAT3-dependent
470 proteins may enable sufficient GRIK1 activity for OFF-CBC signaling in *Ptprs* mutants.
471 Although much remains to be learned about the contribution of FAT3-PTP σ interactions
472 to the synapse, this seems to be a conserved relationship, since *Drosophila* Fat-like and
473 LAR interact to ensure collective cell migration²⁷, in this case acting in *trans*⁴².

474 There are several ways that FAT3 might influence synaptic function. One model
475 is that the FAT3 ICD serves as a scaffold for synaptic proteins that secures them to the
476 OFF-CBC dendrites in the OPL and thus directly shapes visual signal transmission. This
477 fits with the fact that FAT3, PTP σ , and GRIK1 are all localized to the OPL, and that
478 several other synaptic proteins, including the WAVE regulatory complex, also interact
479 with the FAT3 ICD⁶. Alternatively, FAT3 may ensure directed trafficking of PTP σ and
480 other proteins to the synapse, echoing its role as a tissue polarity protein and its ability
481 to promote asymmetric localization of cytoskeletal proteins⁸. These possibilities are not
482 mutually exclusive, as FAT3 could control synapse assembly during development and

483 then maintain the synapse in the mature retina. Finally, FAT3 may impact the synapse
484 through effects on gene expression. In flies, the Fat-like ICD is cleaved and binds to a
485 transcriptional co-repressor to influence gene expression⁴³. Since the LAR ICD can be
486 internalized and thus inhibit transcription⁴⁴, FAT3 and PTP σ could cooperate to control
487 expression of synaptic genes. This notion is supported by the observation that *Grik1*
488 RNA is modestly reduced in *Fat3* mutant bipolar cells (**Figure S6**).

489

490 ***Physiological consequences of high frequency light response***

491 Finally, it is interesting to mention some recent studies reporting a benefit of
492 gamma frequency entrainment. A one-hour daily exposure of 40 Hz light flashes plus
493 40 Hz sound was reported to alleviate dementia symptoms and neurodegeneration in
494 mouse models of Alzheimer's disease, and in human patients⁴⁵⁻⁴⁷. The data shown here
495 concerning how high temporal frequency light signals are transmitted at the first
496 synapse may contribute to our understanding of the mechanisms of gamma frequency
497 entrainment. These data may also help resolve the different results reported in a recent
498 study of a mouse model of Alzheimer's disease⁴⁸ where 40 Hz light stimulation provided
499 little benefit.

500

501 **Limitations of the study**

502 Although our data provide strong evidence that FAT3 impacts cone-CBC
503 signaling needed for high frequency light response, this study does not show definitively
504 what is wrong at the level of the synapse. The ERG is a measurement of cellular activity
505 across a population of cells, i.e. a group of cells from the same class that function
506 similarly, such as OFF-CBC vs. ON-CBC. Due to the lack of Cre lines specific for all
507 BCs, or OFF-CBCs, or ON-CBCs, it is not possible to analyze the consequences of
508 FAT3 loss in these cell types. Additionally, despite being an excellent and relatively
509 easy tool to assay overall retinal physiology of cell populations *in vivo*, the ERG cannot
510 distinguish electrical activity limited to a particular subtype, e.g. CBC-5D. ERGs are also
511 not designed to detect signals carried within distinct microcircuits that perform
512 transformations of particular features of a visual scene. Patch clamping is necessary to
513 study the responses of specific BC types at single-cell resolution. Likewise, the large

514 size of FAT3 and its localization to the cell surface make it difficult to define the precise
515 nature of its effects on PTP σ , GRIK1 and other uncharacterized players. Our discovery
516 that CBC activity is compromised in *Fat3* mutants sets the stage for more detailed
517 analysis in the future.

518 **Acknowledgements**

519 We thank members of the Goodrich and Cepko labs, as well as A.P. Sampath (UCLA),
520 for their insightful comments; Barbara Caldarone, Mouse Behavior Core, Harvard
521 Medical School for assistance on behavioral studies; Paula Montero-Llopis, Microscopy
522 Resources on the North Quad, Harvard Medical School for support on microscopic
523 imaging; C. Wright (Vanderbilt U.), M.E. Greenberg (Harvard Medical School), and
524 Christophe Mulle (University of Bordeaux) for sharing mouse strains; Jeannie Chen
525 (University of Southern California), Frans Vinberg (University of Utah), Shinya Sato
526 (University of California Irvine), Henri Leinonen (University of Eastern Finland), Gabriella
527 Niconchuk, Sylvain Lapan and Emma West (Harvard Medical School), Neal Peachey
528 (Cleveland Clinic), Peter Lukasiewicz and Daniel Kerschensteiner (Washington
529 University in St. Louis) for materials, and technical and advisory support. NIH grants
530 K99EY030951 (to Y.X. before June 30, 2022), EY030912 (V.J.K), Howard Hughes
531 Medical Institute (to C.L.C.); The Edward R. and Anne G. Lefler Center and a Harvard
532 Brain Initiative Bipolar Disorders grant (LVG); Lingang Laboratory startup fund (to Y.X.
533 after July 20, 2022); and a Leonard and Isabelle Goldenson Fellowship and Alice and
534 Joseph Brooks Fund Postdoctoral Fellowship (ECA). The authors also acknowledge
535 support from an RPB unrestricted grant to the Department of Ophthalmology, University
536 of California, Irvine.

537

538 **Author contributions**

539 Conceptualization, ECA, LVG, CLC, YX; methodology, SKW, SP, SS, LL, VJK;
540 investigation, ECA, YX; writing, ECA, YX, LVG, CLC, VJK; funding acquisition, LVG,
541 CLC, YX; supervision, LVG, CLC, YX.

542

543 **Declaration of interests**

544 The authors declare no competing interests.

545

546

547

548

549 **Methods**

550 **Animals**

551 The *Fat3*^{ΔTM} mouse line lacks exon 23, which contains the coding region for the
552 transmembrane domain. Since no ICD anchored to the membrane has been detected^{6,7},
553 this allele is expected to act as a full loss of function. The *Fat3*^{flaxed} line contains LoxP
554 sites flanking exon 23⁷. The *Fat3*^{ΔICD-GFP} mouse line has a deletion of most of the FAT3-
555 ICD, which is replaced by GFP. This line possesses a full extracellular domain anchored
556 to the cell membrane⁶. *Fezf2*^{-/-} mice were generated by Hirata and colleagues⁴⁹.
557 Heterozygous mice were used as breeders to obtain wildtype and knockout littermates.
558 *Grik1*^{-/-} mice were obtained from Christophe Mulle (University of Bordeaux, France)⁵⁰.
559 *Grm6*^{-/-} mice (also known as *Grm6*^{nob3}), which was characterized by Maddox and
560 colleagues⁵¹, were purchased from The Jackson Laboratory (ME, Strain #: 016883).
561 *Grik1*^{-/-}; *Grm6*^{-/-} mice were bred in house by crossing the two lines. *Ptprs* KO mice were
562 made by Michel Tremblay's laboratory (McGill University)⁵². Transgenic mice
563 expressing Cre recombinase were obtained from the following sources: *Ptf1a*^{CRE} (C.
564 Wright, Vanderbilt U.)¹⁹; *Islet1*^{CRE} (a.k.a. *Is1*^{tm1(cre)Sev}/J)⁵³ (The Jackson Laboratory, ME.
565 Strain #: 024242); and *Bhlhe22*^{CRE} (a.k.a *Bhlhb5*^{CRE})⁵⁴ (M.E. Greenberg, Harvard
566 Medical School). Mice were maintained on a 12 hour/12 hour light/dark cycle at 18–
567 23 °C and 40–60% humidity. Animals were handled ethically according to protocols
568 approved by the Institutional Animal Care and Use Committee at Harvard Medical
569 School. Genotyping was done using real time PCR (Transnetyx, Cordova, TN).

570

571 **Electroretinography (ERG)**

572 Mice were dark adapted overnight before *in vivo* ERG recordings. Animals were
573 anesthetized with 100/10 mg/kg ketamine/xylazine cocktail and placed on a heating pad.
574 Their pupils were dilated with a drop of 1% tropicamide solution (Bausch + Lomb).
575 Electrodes were applied to the cornea to pick up the electrical signals from the retina.
576 Eyes were kept moist by a drop of phosphate buffered saline (PBS). With an Espion E3
577 System (Diagnosys LLC), four types of ERG tests were performed: 1) scotopic test; 2)
578 photopic tests with 1, 10, 100 and 1,000 cd s/m² under a 30 cd/m² background light to
579 saturate the rod responses; 3) flicker tests at 0.5, 10, 20, 30, 40 and 50 Hz; and 4) step-

580 light test with a three-second light step of 1,000 cd/m². The scotopic and photopic ERGs
581 were conducted as described previously⁵⁵. The flicker ERG was recorded using 3.162
582 cd s/m² flashes as adapted from a published protocol¹¹. The step ERG was created for
583 this study to probe the d-wave from OFF-bipolar cells.

584

585 **Optical Coherence Tomography (OCT)**

586 OCT of mouse eyes was conducted using an OCT2 system (Phoenix Research
587 Labs), as described previously⁵⁵. OCT imaging was performed on the mice *in vivo*
588 immediately after the ERG tests to confirm the previously observed *ex vivo* histological
589 changes. Before OCT imaging, a drop of GONAK 2.5% hypromellose solution (Akorn)
590 was applied to the eye as the immersion medium with the OCT lens.

591

592 **Flicker-light cued fear conditioning assay**

593 The fear conditioning test for high temporal frequency vision was created by
594 modifying previously published protocols¹⁶. The Med Associates (St Albans, VT) system
595 was used for the tests with four LED lights (two green and two yellow) controlled by a
596 computer software (Med PC). Mice were videotaped through Media Recorder Software
597 and the fear response of freezing was analyzed by researchers who were blinded to the
598 genotypes as a surrogate measurement of memory linked with visual input. On Day 1,
599 the mice were brought to the electric shock cage individually to get familiar with the
600 environment and procedure. They were in the cage for 30 minutes under a dim house
601 light in the background and LEDs turned off (**Figure S2**). On Day 2, mice were brought
602 back to the electric shock cage, first exposed to static green/yellow LED lights for two
603 minutes, followed by 30 seconds of 33 Hz LED flicker light (i.e. the cue). Within the last
604 2 seconds of the cue, a series of 0.7mA shocks were initiated to trigger the fear memory
605 linked with the cue. This static-flicker-shock cycle was repeated twice more. On Day 3,
606 contextual memory (i.e. context test) was measured by placing the mouse back into the
607 conditioning chamber for three minutes (no electric shock was delivered during this
608 session), and the duration of freezing was recorded. Then, cued memory was measured
609 by placing the mouse into an altered context, which was composed of different tactile
610 and olfactory cues. The amount of freezing in the altered context was measured as a

611 baseline (3 minutes, static light) followed by measurement of freezing during
612 presentation of the cued stimulus (3 minutes, 33 Hz flicker light). The videos were
613 analyzed by an examiner blinded to the genotypes to extract the freezing time of all
614 three conditions (i.e. context, static and 33 Hz flicker).

615

616 **Optomotor assay**

617 Using an OptoMotry System (CerebralMechanics), the optomotor assay to
618 measure the visual acuity of mice was conducted as described previously⁵⁵. The testing
619 grates were set with 100% contrast and were moved at 1.5 Hz temporal frequency. The
620 visual acuity (i.e. maximal spatial frequency in the unit of cycle/degree) was tested by
621 an examiner, who was blinded to the genotype. During each testing episode, the
622 examiner reported either “yes” or “no” to a computer program until the threshold of
623 acuity was reached. The parameter of each testing episode (i.e. spatial frequency) was
624 determined by the computer program and blinded to the examiner.

625

626 **Dissections and immunohistochemistry**

627 Animals of the desired postnatal age (3 or 6 weeks of age, as indicated) were
628 euthanized by CO₂ inhalation and cervical dislocation. Extraocular tissue, the cornea
629 and the lens were removed from the eyes and the eyecups were further fixed by
630 immersion in 4 % paraformaldehyde (PFA, EMS Cat#15710) for 30 minutes (min) at
631 room temperature or 15 min on ice. After several washes with PBS buffer, the eyes
632 were submerged in 30% sucrose and kept at 4°C for at least 2 hours (h). After sucrose
633 cryoprotection, eyes were incubated in NEG-50 (VWR, Cat#84000-154) overnight at
634 4°C and embedded by freezing in a liquid nitrogen vapor bath. Retinal slices were
635 obtained by cryosectioning the eyes at 20 µm thickness and mounting on Superfrost®
636 Plus Micro Slide (VWR, Cat#48311-703). The sections were either stained immediately
637 or stored at -80°C.

638 For regular immunohistochemistry, NEG-50 was removed by short incubation in
639 PBS and then sections were blocked and permeabilized by incubation in 5% Normal
640 Donkey Serum (NDS, Jackson ImmunoResearch Cat#017-000-121) in Sorenson’s
641 supplemented with 0.5% Triton-X for 1-2 h at room temperature. Sections were then

642 incubated in primary antibody diluted in blocking buffer overnight at 4°C. After several
643 washes with PBS, sections were incubated with fluorescent secondary antibodies
644 diluted in 5% NDS in Sorenson's buffer supplemented with 0.02% Triton-X for 1.5-2 h at
645 room temperature. After final washes, sections were mounted in DAPI-Fluoromount-G
646 (SouthernBiotech Cat#0100-20). Primary antibodies used for immunohistochemistry
647 were: rabbit anti-ARR3 (Millipore Sigma, Cat#AB15282), goat anti-Bhlhb5 (1:500; Santa
648 Cruz Biotechnology, Cat#sc-6045), mouse anti-CtBP2 (1:2,000, BD Biosciences,
649 Cat#612044), rabbit anti-dsRed (cross-reacts with TdTomato, 1:1,000, Clontech,
650 Cat#632496), mouse anti-FAT3^{6,7} (1:200), chicken anti-GFP (1:500; Aves, Cat#GFP-
651 1020), mouse anti-GRIK1 (GluR5, 1:200, Santa Cruz Biotechnology, Cat#sc-393420)²⁵,
652 sheep anti-GRM6 (1:2,000, a gift from Jeannie Chen, USC and originally developed by
653 Kirill Martemyanov Lab⁵⁶), goat anti-PTP σ (1:200; R&D Systems, Cat# AF3430), rabbit
654 anti-VGAT (1:300; SynapticSystems, Cat#131002), and mouse anti-VSX2 (Chx10,
655 1:100; Santa Cruz Biotechnology, Cat#sc-365519). All secondary antibodies were
656 diluted 1:1,000 and were: Donkey anti-chicken Alexa Fluor® 488, Donkey anti-goat
657 Alexa Fluor® 568, Donkey anti-mouse Alexa Fluor® 488, Donkey anti-mouse Alexa
658 Fluor® 568, Goat anti-mouse Alexa Fluor® 647, Donkey anti-rabbit Alexa Fluor® 488,
659 Donkey anti-rabbit Alexa Fluor® 568, Donkey anti-rabbit Alexa Fluor® 647, and Donkey
660 anti-sheep Alexa Fluor® 568.

661 To detect FAT3 on retinal sections, we performed Hybridization Chain Reaction
662 Immunohistochemistry (HCR-IHC)⁵⁷, according to the manufacturer's instructions
663 (Molecular Instruments, CA). In brief, on day 1 sections were treated similarly to regular
664 immunohistochemistry. After overnight incubation of the primary mouse anti-FAT3⁷
665 (1:200) antibody, sections were rinsed with PBS-0.1% Tween-20 (PBS-T) and
666 incubated with 1 μ g/mL of initiator-labeled anti-mouse secondary antibody (Molecular
667 Instruments) for 1 h at room temperature. Slides were rinsed with PBS-T and a final
668 rinse with 5X Saline-Sodium Citrate buffer with 0.1% Tween-20 (SSC-T) and incubated
669 with amplification buffer (Molecular Instruments) for 30 min at room temperature. H1
670 and h2 fluorescently-labeled hairpins were separately denatured at 95 °C for 90 s
671 followed by 30 min incubation at room temperature in the dark. A 60 mM hairpin solution
672 mix was prepared by adding snap-cooled h1 and h2 hairpins to amplification buffer and

673 incubated on the slides over night at room temperature in a dark, humidified chamber.
674 After several washes with SSC-T, sections were mounted with DAPI-Fluoromount-G.
675

676

677 ***In situ* hybridization (RNAscope)**

678 Tissue collection was performed similar as to for immunohistochemistry, except
679 using RNAase-free conditions. For RNAscope *in situ* hybridization, we used
680 RNAscope® Fluorescent Multiplex Reagent Kit v2 (ACD, Cat#323120) assay following
681 the manufacturer's instructions. In brief, retinal sections were post-fixed in 4% PFA for
682 15 min at room temperature, treated with hydrogen peroxide for 10 min at room
683 temperature and treated with Protease III for 10 min at 40°C before probe incubation.
684 Probes were obtained from ACD (see Key Resource table). Immunohistochemistry was
685 performed after *in situ* hybridization by rinsing the sections in PBS after the final
686 RNAscope wash and permeabilized and blocked again with 5% NDS/0.5% Triton X-100
687 Sorenson's buffer, followed by the regular immunohistochemistry protocol.

688

689 ***In vivo* viral injection**

690 The AAV-Grik1-GFP plasmid was generated by cloning a previously identified
691 Grik1 enhancer (CRM4)¹⁵ upstream of a simian virus 40 (SV40) intron, Kozak sequence,
692 GFP coding sequence, woodchuck hepatitis virus post-transcriptional regulatory
693 element (WPRE), and polyadenylation sequence. To produce the AAV8-Grik1-GFP
694 vector, HEK293T cells were triple transfected with a mixture of AAV-Grik1-GFP plasmid,
695 adenovirus helper plasmid, and rep2/cap8 packaging plasmid. Viral particles were
696 harvested from the supernatant 72 hours after transfection and purified using an
697 iodixanol gradient as described previously⁵⁸. The titer of AAV8-Grik1-GFP was
698 determined by comparing SYPRO Ruby (Molecular Probes) staining for viral capsid
699 proteins (VP1, VP2, and VP3) to that of a reference vector with known titer.

700 To deliver AAV8-Grik1-GFP into the developing retina, we injected into the
701 subretinal space as described previously^{59,60}. In brief, neonatal P2-3 mouse pups were
702 anesthetized by chilling on ice. We injected 2.5×10^9 vector genomes (vg) per eye,
703 which is at a titer not toxic to the eye, diluted in PBS and 0.1% Fast Green (for

704 visualization) using a pulled borosilicate glass needle with an opening of 0.5-1mm
705 diameter connected to an Eppendorf FemtoJet injector into the subretinal space. The
706 pups recovered on a warm pad and upon regaining consciousness they were returned
707 to their mother. We then let them develop until performing histological procedures at
708 P22.

709

710 **Image acquisition**

711 After immunohistochemistry or RNAscope, retinal sections were imaged within
712 300 μ m from the optic nerve head on a Leica SP8 or a Zeiss LSM800 confocal
713 microscope. The entire sections were imaged in consecutive z-slices separated by 1 μ m
714 using a 40x or 63x oil objective. The z stacks were then projected at maximum
715 fluorescence intensity using Fiji/ImageJ.

716

717 **Histochemical quantifications**

718 We assigned random numbers to each image to ensure blinded quantifications.
719 Only after the quantification was done, the identity of the images was revealed to assign
720 the values to their corresponding genotype. All the procedures were done under the
721 same technical parameters, and the comparisons were made between control and
722 experimental conditions within the same experiment to avoid batch effects. The animal
723 (N) and sample (i.e. sections, n) numbers, statistical test performed, and *p* values are
724 indicated in figure legends and/or figures.

725 We assessed AC migration and the “ectopic synapse score” or “OMPL score” as
726 described previously⁶. To quantify expression of PTP σ , GRIK1 or GRM6 proteins in the
727 OPL, the images were thresholded until background signal in the OPL was not
728 observed. All images from the same experiment were treated the same way using Fiji
729 (ImageJ). Then, the integrated density was measured to quantify protein expression in
730 the same total area of each image on the OPL region (44.69 μ m x 17.78 μ m). To
731 quantify CtBP2 fluorescence intensity on immunohistochemistry samples we used Fiji
732 (ImageJ) to measure the Mean Gray Value on areas of the OPL by tracing a rectangle
733 that took up most of the OPL height. In addition, the Mean Gray Value was measured

734 on a rectangle traced on the ONL (region where photoreceptors reside and is used as
735 background signal) to normalize the value of the OPL.

736

737 **Statistics**

738 To determine significant differences between control and experimental groups,
739 we used Prism6 software for statistical analysis. After applying a D'Agostino-Pearson
740 omnibus normality test to determine Gaussian distribution of the samples, we either
741 used two-tailed *t* test (if the samples followed a Gaussian distribution) or Mann-Whitney
742 test (if the samples did not follow a Gaussian distribution) to calculate the *p* values. For
743 ERG data of more than two groups, one-way ANOVA with Dunnett multiple comparison
744 test was used.

745

746 **GST Pull down and Western blot**

747 For binding analysis, we performed Western blots of supernatants after pulling
748 down binding partners from mouse brain protein homogenates with the FAT3-ICD fused
749 to Glutathione-S-transferase (GST) and GST alone generated previously⁶. Samples
750 were denatured at 95°C for 10 mins and subjected to SDS-PAGE in a 4–12%
751 Criterion™ XT Bis-Tris Protein Gel (Bio-Rad) using XT MES Running Buffer (Bio-Rad).
752 After 2 h at 150 V of electrophoresis, the proteins were transferred to Immobilon-P
753 PVSF (0.45μm, Sigma-Millipore) in Tris-Glycine buffer supplemented with 20%
754 methanol for 1 h at 75V. The Immobilon-P membranes were blocked with 5% skim milk
755 in TBS buffer and then incubated with primary antibodies at 4°C overnight. The primary
756 antibody used for Western blots was mouse anti-PTPσ (1:1,000, Medimabs, Cat# MM-
757 0020-P). After several washes with TBS supplemented with 0.5% Tween 20 (Sigma-
758 Aldrich), the membranes were incubated with a secondary goat anti-mouse HRP
759 antibody (Biorad, Cat# 170-6516) diluted 1:2,000 for 1-2 h at room temperature. The
760 signal was developed using Clarity ECL substrate following the manufacturer's
761 instructions (Bio-Rad). Western blots were done at least twice with similar results.

762

763 **External gene expression profile datasets**

764 Gene expression in different types of retinal bipolar cells was analyzed by using
765 the single-cell RNAseq [database](#) and a modified R script that were published
766 previously².

767

768 **Resource and data availability**

769 The source data for graphs are provided with this paper. For all quantifications,
770 the raw data are shown along with means and standard errors of the means as well as
771 the statistical analyses utilized. The original images used to generate these data are
772 available from the corresponding author upon request. All unique materials generated in
773 this study are available upon request.

774

775

776 **KEY RESOURCES TABLE**

Reagent or resource	Source	Identifier
Antibodies		
Rabbit anti-ARR3	Millipore Sigma	Cat#AB15282; RRID:AB_1163387
Goat anti Blh5b	Santa Cruz	Cat#sc-6045; RRID:AB_2065343
Mouse anti-CTBP2	BD Biosciences	Cat#612044; RRID:AB_399431
Rabbit anti-dsRed	Clontech	Cat#632496; RRID:AB_10013483
Mouse anti FAT3	^{6,7}	N/A; RRID:AB_2904260
Chicken anti GFP	Aves	Cat#GFP-1020; RRID:AB_10000240
Mouse anti-GRIK1 (GluR5)	Santa Cruz Biotechnology	Cat#sc-393420; RRID:AB_2716684
Sheep anti-GRM6	⁵⁶	N/A

Goat anti-PTP σ	R&D Systems	Cat#AF3430; RRID:AB_2175157
Mouse anti-PTP σ	Medimabs	Cat# MM-0020-P
Rabbit anti VGAT	Synaptic systems	Cat#131002; RRID:AB_887871
Mouse anti-VSX2 (Chx10)	Santa Cruz Biotechnology	Cat#sc-365519; RRID:AB_10842442
Donkey anti chicken, Alexa Fluor \circledR 488	Jackson ImmunoResearch	Cat#703-545-155; RRID:AB_2340375
Donkey anti goat, Alexa Fluor \circledR 568	Thermo Fisher Scientific	Cat#A11057; RRID:AB_142581
Donkey anti mouse, Alexa Fluor \circledR 488	Abcam	Cat#ab150105; RRID:AB_2732856
Donkey anti mouse, Alexa Fluor \circledR 568	Thermo Fisher Scientific	Cat#A10037; RRID:AB_2534013
Goat anti mouse, Alexa Fluor \circledR 647	Thermo Fisher Scientific	Cat#A-21235; RRID:AB_2535804
Donkey anti rabbit, Alexa Fluor \circledR 488	Thermo Fisher Scientific	Cat#A21206; RRID:AB_2535792
Donkey anti rabbit, Alexa Fluor \circledR 568	Thermo Fisher Scientific	Cat#A10042; RRID:AB_2534017
Donkey anti rabbit, Alexa Fluor \circledR 647	Thermo Fisher Scientific	Cat#A31573; RRID:AB_2536183
Donkey anti sheep, Alexa Fluor \circledR 568	Thermo Fisher Scientific	Cat#A-21099; RRID:AB_2535753
Goat anti mouse – HRP	BioRad	Cat# 170-6516; RRID:AB_11125547
Commercial assays		
RNAscope \circledR Multiplex	ACD	Cat#323100

Fluorescent Reagent Kit v2		
HCR IHC Bundle	Molecular Instruments	N/A
Experimental models: Organisms/Strains		
Mouse: <i>Ptf1a</i> ^{CRE}	C. Wright, Vanderbilt U ¹⁹	MGI:2387812
Mouse: <i>Isl1</i> ^{CRE}	The Jackson Laboratory ⁵³	Strain #: 024242
Mouse: <i>Bhlhe22</i> ^{CRE}	M.E. Greenberg (Harvard Medical School) ⁵⁴	N/A
Mouse: <i>Fat3</i> ^{flaxed}	7	N/A
Mouse: <i>Fat3</i> ^{ATM}	7	N/A
Mouse: <i>Fat3</i> ^{ΔICD-GFP}	6	N/A
Mouse: <i>Fezf2</i> ^{-/-}	49	N/A
Mouse: <i>Grik1</i> ^{-/-}	Christophe Mulle (University of Bordeaux, France) ⁵⁰	N/A
Mouse: <i>Grm6</i> ^{-/-}	The Jackson Laboratory ⁵¹	Strain #: 016883
Mouse: <i>Ptprs</i> ^{-/-}	Michel Tremblay ⁵²	MGI:2158757
<i>In situ</i> hybridization Probes		
RNAscope® Probe- Mm- <i>Fat3</i> -O1	ACD	Cat# 509051
RNAscope® Probe- Mm- <i>Grik1</i> -C3	ACD	Cat# 438771-C3

Recombinant DNA		
AAV-Grik1-GFP plasmid	This paper	N/A
Viral vectors		
AAV8-Grik1-GFP	This paper	N/A

777

778

779

780

781

782 **References**

- 783 1. Shekhar, K., and Sanes, J.R. (2021). Generating and Using Transcriptomically
784 Based Retinal Cell Atlases. *Annu. Rev. Vis. Sci.* 7, 43–72.
- 785 2. Shekhar, K., Lapan, S.W., Whitney, I.E., Tran, N.M., Macosko, E.Z., Kowalczyk,
786 M., Adiconis, X., Levin, J.Z., Nemesh, J., Goldman, M., et al. (2016).
787 Comprehensive Classification of Retinal Bipolar Neurons by Single-Cell
788 Transcriptomics. *Cell* 166, 1308-1323.e30.
- 789 3. Yan, W., Laboulaye, M.A., Tran, N.M., Whitney, I.E., Benhar, I., and Sanes, J.R.
790 (2020). Mouse Retinal Cell Atlas: Molecular Identification of over Sixty Amacrine
791 Cell Types. *J. Neurosci.* 40, 5177–5195.
- 792 4. Tran, N.M., Shekhar, K., Whitney, I.E., Jacobi, A., Benhar, I., Hong, G., Yan, W.,
793 Adiconis, X., Arnold, M.E., Lee, J.M., et al. (2019). Single-Cell Profiles of Retinal
794 Ganglion Cells Differing in Resilience to Injury Reveal Neuroprotective Genes.
795 *Neuron* 104, 1039-1055.e12.
- 796 5. Demb, J.B., and Singer, J.H. (2015). Functional Circuitry of the Retina. *Annu. Rev.*
797 *Vis. Sci.* 1, 263–289.
- 798 6. Avilés, E.C., Krol, A., Henle, S.J., Burroughs-Garcia, J., Deans, M.R., and
799 Goodrich, L. V. (2022). Fat3 acts through independent cytoskeletal effectors to
800 coordinate asymmetric cell behaviors during polarized circuit assembly. *Cell Rep.*
801 38.
- 802 7. Deans, M.R., Krol, A., Abraira, V.E., Copley, C.O., Tucker, A.F., and Goodrich, L.
803 V. (2011). Control of Neuronal Morphology by the Atypical Cadherin Fat3. *Neuron*
804 71, 820–832.
- 805 8. Krol, A., Henle, S.J., and Goodrich, L. V. (2016). Fat3 and Ena/VASP proteins
806 influence the emergence of asymmetric cell morphology in the developing retina.
807 *Development* 143, 2172–2182.
- 808 9. Puller, C., Ivanova, E., Euler, T., Haverkamp, S., and Schubert, T. (2013). OFF
809 bipolar cells express distinct types of dendritic glutamate receptors in the mouse
810 retina. *Neuroscience* 243, 136–148.
- 811 10. DeVries, S.H., and Schwartz, E.A. (1999). Kainate receptors mediate synaptic
812 transmission between cones and “Off” bipolar cells in a mammalian retina. *Nature*

813 397, 157–160.

814 11. Tanimoto, N., Sohilingam, V., Kondo, M., Biel, M., Humphries, P., and Seeliger,
815 M.W. (2015). Electoretinographic assessment of rod- and cone-mediated bipolar
816 cell pathways using flicker stimuli in mice. *Sci. Rep.* 5, 10731.

817 12. Stockton, R.A., and Slaughter, M.M. (1989). B-wave of the electoretinogram. A
818 reflection of ON bipolar cell activity. *J. Gen. Physiol.* 93, 101–122.

819 13. Xu, X., and Karwoski, C. (1995). Current source density analysis of the
820 electoretinographic d wave of frog retina. *J. Neurophysiol.* 73, 2459–2469.

821 14. Kolb, H., Fernandez, E., and Nelson, R. (1995). Webvision. Webvision, 1–31.

822 15. Kishi, J.Y., Lapan, S.W., Beliveau, B.J., West, E.R., Zhu, A., Sasaki, H.M., Saka,
823 S.K., Wang, Y., Cepko, C.L., and Yin, P. (2019). SABER amplifies FISH:
824 enhanced multiplexed imaging of RNA and DNA in cells and tissues. *Nat.*
825 *Methods* 16, 533–544.

826 16. Gaub, B.M., Berry, M.H., Holt, A.E., Isacoff, E.Y., and Flannery, J.G. (2015).
827 Optogenetic Vision Restoration Using Rhodopsin for Enhanced Sensitivity. *Mol.*
828 *Ther.* 23, 1562–1571.

829 17. Shi, Q., Colodner, K.J., Matousek, S.B., Merry, K., Hong, S., Kenison, J.E., Frost,
830 J.L., Le, K.X., Li, S., Dodart, J.C., et al. (2015). Complement C3-Deficient Mice
831 Fail to Display Age-Related Hippocampal Decline. *J. Neurosci.* 35, 13029–13042.

832 18. Donner, K. (2021). Temporal vision: measures, mechanisms and meaning. *J. Exp.*
833 *Biol.* 224.

834 19. Fujitani, Y., Fujitani, S., Luo, H., Qiu, F., Burlison, J., Long, Q., Kawaguchi, Y.,
835 Edlund, H., MacDonald, R.J., Furukawa, T., et al. (2006). Ptf1a determines
836 horizontal and amacrine cell fates during mouse retinal development.
837 *Development* 133, 4439–4450.

838 20. Elshatory, Y., Deng, M., Xie, X., and Gan, L. (2007). Expression of the LIM-
839 homeodomain protein Isl1 in the developing and mature mouse retina. *J. Comp.*
840 *Neurol.* 503, 182–197.

841 21. Suzuki-Kerr, H., Iwagawa, T., Sagara, H., Mizota, A., Suzuki, Y., and Watanabe,
842 S. (2018). Pivotal roles of Fezf2 in differentiation of cone OFF bipolar cells and
843 functional maturation of cone ON bipolar cells in retina. *Exp. Eye Res.* 171, 142–

844 154.

845 22. Amamoto, R., Garcia, M.D., West, E.R., Choi, J., Lapan, S.W., Lane, E.A.,
846 Perrimon, N., and Cepko, C.L. (2019). Probe-Seq enables transcriptional profiling
847 of specific cell types from heterogeneous tissue by RNA-based isolation. *Elife* 8.

848 23. West, E.R., Lapan, S.W., Lee, C.H., Kajderowicz, K.M., Li, X., and Cepko, C.L.
849 (2022). Spatiotemporal patterns of neuronal subtype genesis suggest hierarchical
850 development of retinal diversity. *Cell Rep.* 38.

851 24. Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y.,
852 Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R., et al. (1995). Specific deficit of
853 the ON response in visual transmission by targeted disruption of the mGluR6
854 gene. *Cell* 80, 757–765.

855 25. Nemitz, L., Dedek, K., and Janssen-Bienhold, U. (2021). Synaptic Remodeling in
856 the Cone Pathway After Early Postnatal Horizontal Cell Ablation. *Front. Cell.*
857 *Neurosci.* 15.

858 26. Leinonen, H., Pham, N.C., Boyd, T., Santoso, J., Palczewski, K., and Vinberg, F.
859 (2020). Homeostatic plasticity in the retina is associated with maintenance of night
860 vision during retinal degenerative disease. *Elife* 9, 1–27.

861 27. Barlan, K., Cetera, M., and Horne-Badovinac, S. (2017). Fat2 and Lar Define a
862 Basally Localized Planar Signaling System Controlling Collective Cell Migration.
863 *Dev. Cell* 40, 467–477.

864 28. Han, K.A., Ko, J.S., Pramanik, G., Kim, J.Y., Tabuchi, K., Um, J.W., and Ko, J.
865 (2018). PTP σ drives excitatory presynaptic assembly via various extracellular and
866 intracellular mechanisms. *J. Neurosci.* 38, 6700–6721.

867 29. Horn, K.E., Xu, B., Gobert, D., Hamam, B.N., Thompson, K.M., Wu, C.L.,
868 Bouchard, J.F., Uetani, N., Racine, R.J., Tremblay, M.L., et al. (2012). Receptor
869 protein tyrosine phosphatase sigma regulates synapse structure, function and
870 plasticity. *J. Neurochem.* 122, 147–161.

871 30. Roppongi, R.T., Dhume, S.H., Padmanabhan, N., Silwal, P., Zahra, N., Karimi, B.,
872 Bomkamp, C., Patil, C.S., Champagne-Jorgensen, K., Twilley, R.E., et al. (2020).
873 LRRTMs Organize Synapses through Differential Engagement of Neurexin and
874 PTP σ . *Neuron*.

875 31. DeVries, S.H. (2000). Bipolar cells use kainate and AMPA receptors to filter visual
876 information into separate channels. *Neuron* 28, 847–856.

877 32. Grabner, C.P., Ratliff, C.P., Light, A.C., and DeVries, S.H. (2016). Mechanism of
878 High-Frequency Signaling at a Depressing Ribbon Synapse. *Neuron* 91, 133–145.

879 33. Puthussery, T., Percival, K.A., Venkataramani, S., Gayet-Primo, J., Grünert, U.,
880 and Rowland Taylor, W. (2014). Kainate receptors mediate synaptic input to
881 transient and sustained OFF visual pathways in primate retina. *J. Neurosci.* 34,
882 7611–7621.

883 34. Borghuis, B.G., Looger, L.L., Tomita, S., and Demb, J.B. (2014). Kainate
884 receptors mediate signaling in both transient and sustained OFF bipolar cell
885 pathways in mouse retina. *J. Neurosci.* 34, 6128–6139.

886 35. Ichinose, T., and Hellmer, C.B. (2016). Differential signalling and glutamate
887 receptor compositions in the OFF bipolar cell types in the mouse retina. *J. Physiol.*
888 594, 883–894.

889 36. Morgans, C.W., Zhang, J., Jeffrey, B.G., Nelson, S.M., Burke, N.S., Duvoisin,
890 R.M., and Brown, R.L. (2009). TRPM1 is required for the depolarizing light
891 response in retinal ON-bipolar cells. *Proc. Natl. Acad. Sci. U. S. A.* 106, 19174–
892 19178.

893 37. Awatramani, G., Wang, J., and Slaughter, M.M. (2001). Amacrine and ganglion
894 cell contributions to the electroretinogram in amphibian retina. *Vis. Neurosci.* 18,
895 147–156.

896 38. Nelson, R., and Connaughton, V. (1995). Bipolar Cell Pathways in the Vertebrate
897 Retina. *Webvision Organ. Retin. Vis. Syst.*

898 39. Cornejo, F., Cortés, B.I., Findlay, G.M., and Cancino, G.I. (2021). LAR Receptor
899 Tyrosine Phosphatase Family in Healthy and Diseased Brain. *Front. Cell Dev.*
900 *Biol.* 9, 3475.

901 40. Wyszynski, M., Kim, E., Dunah, A.W., Passafaro, M., Valtschanoff, J.G., Serra-
902 Pagès, C., Streuli, M., Weinberg, R.J., and Sheng, M. (2002). Interaction between
903 GRIP and liprin- α /SYD2 is required for AMPA receptor targeting. *Neuron* 34, 39–
904 52.

905 41. Sapieha, P.S., Duplan, L., Uetani, N., Joly, S., Tremblay, M.L., Kennedy, T.E.,

906 and Di Polo, A. (2005). Receptor protein tyrosine phosphatase sigma inhibits
907 axon regrowth in the adult injured CNS. *Mol. Cell. Neurosci.* 28, 625–635.

908 42. Williams, A.M., and Horne-Badovinac, S. (2023). Fat2 polarizes Lar and Sema5c
909 to coordinate the motility of collectively migrating epithelial cells. *bioRxiv* Prepr.
910 *Serv. Biol.*

911 43. Fanto, M., Clayton, L., Meredith, J., Hardiman, K., Charroux, B., Kerridge, S., and
912 McNeill, H. (2003). The tumor-suppressor and cell adhesion molecule Fat controls
913 planar polarity via physical interactions with Atrophin, a transcriptional co-
914 repressor. *Development* 130, 763–74.

915 44. Haapasalo, A., Doo, Y.K., Carey, B.W., Turunen, M.K., Pettingell, W.H., and
916 Kovacs, D.M. (2007). Presenilin/gamma-secretase-mediated cleavage regulates
917 association of leukocyte-common antigen-related (LAR) receptor tyrosine
918 phosphatase with beta-catenin. *J. Biol. Chem.* 282, 9063–9072.

919 45. Adaikkan, C., Middleton, S.J., Marco, A., Pao, P.C., Mathys, H., Kim, D.N.W.,
920 Gao, F., Young, J.Z., Suk, H.J., Boyden, E.S., et al. (2019). Gamma Entrainment
921 Binds Higher-Order Brain Regions and Offers Neuroprotection. *Neuron* 102, 929–
922 943.e8.

923 46. Martorell, A.J., Paulson, A.L., Suk, H.J., Abdurrob, F., Drummond, G.T., Guan, W.,
924 Young, J.Z., Kim, D.N.W., Kritskiy, O., Barker, S.J., et al. (2019). Multi-sensory
925 Gamma Stimulation Ameliorates Alzheimer's-Associated Pathology and Improves
926 Cognition. *Cell* 177, 256–271.e22.

927 47. Iaccarino, H.F., Singer, A.C., Martorell, A.J., Rudenko, A., Gao, F., Gillingham,
928 T.Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., et al. (2016). Gamma
929 frequency entrainment attenuates amyloid load and modifies microglia. *Nature*
930 540, 230–235.

931 48. Soula, M., Martín-Ávila, A., Zhang, Y., Dhingra, A., Nitzan, N., Sadowski, M.J.,
932 Gan, W.B., and Buzsáki, G. (2023). Forty-hertz light stimulation does not entrain
933 native gamma oscillations in Alzheimer's disease model mice. *Nat. Neurosci.*

934 49. Hirata, T., Suda, Y., Nakao, K., Narimatsu, M., Hirano, T., and Hibi, M. (2004).
935 Zinc finger gene fez-like functions in the formation of subplate neurons and
936 thalamocortical axons. *Dev. Dyn.* 230, 546–556.

937 50. Mulle, C., Sailer, A., Swanson, G.T., Brana, C., O'Gorman, S., Bettler, B., and
938 Heinemann, S.F. (2000). Subunit composition of kainate receptors in hippocampal
939 interneurons. *Neuron* 28, 475–484.

940 51. Maddox, D.M., Vessey, K.A., Yarbrough, G.L., Invergo, B.M., Cantrell, D.R.,
941 Inayat, S., Balannik, V., Hicks, W.L., Hawes, N.L., Byers, S., et al. (2008). Allelic
942 variance between GRM6 mutants, Grm6nob3 and Grm6nob4 results in
943 differences in retinal ganglion cell visual responses. *J. Physiol.* 586, 4409–4424.

944 52. Elchebly, M., Wagner, J., Kennedy, T.E., Lanctôt, C., Michaliszyn, E., Itié, A.,
945 Drouin, J., and Tremblay, M.L. (1999). Neuroendocrine dysplasia in mice lacking
946 protein tyrosine phosphatase σ . *Nat. Genet.* 21, 330–333.

947 53. Yang, L., Cai, C.L., Lin, L., Qyang, Y., Chung, C., Monteiro, R.M., Mummery, C.L.,
948 Fishman, G.I., Cogen, A., and Evans, S. (2006). *Isl1Cre* reveals a common Bmp
949 pathway in heart and limb development. *Development* 133, 1575–1585.

950 54. Ross, S.E., Mardinly, A.R., McCord, A.E., Zurawski, J., Cohen, S., Jung, C., Hu,
951 L., Mok, S.I., Shah, A., Savner, E.M., et al. (2010). Loss of inhibitory interneurons
952 in the dorsal spinal cord and elevated itch in *Bhlhb5* mutant mice. *Neuron* 65,
953 886–898.

954 55. Xiong, W., Wu, D.M., Xue, Y., Wang, S.K., Chung, M.J., Ji, X., Rana, P., Zhao,
955 S.R., Mai, S., and Cepko, C.L. (2019). AAV cis-regulatory sequences are
956 correlated with ocular toxicity. *Proc. Natl. Acad. Sci. U. S. A.* 116, 5785–5794.

957 56. Cao, Y., Masuho, I., Okawa, H., Xie, K., Asami, J., Kammermeier, P.J., Maddox,
958 D.M., Furukawa, T., Inoue, T., Sampath, A.P., et al. (2009). Retina-specific
959 GTPase accelerator RGS11/G beta 5S/R9AP is a constitutive heterotrimer
960 selectively targeted to mGluR6 in ON-bipolar neurons. *J. Neurosci.* 29, 9301–
961 9313.

962 57. Schwarzkopf, M., Liu, M.C., Schulte, S.J., Ives, R., Husain, N., Choi, H.M.T., and
963 Pierce, N.A. (2021). Hybridization chain reaction enables a unified approach to
964 multiplexed, quantitative, high-resolution immunohistochemistry and *in situ*
965 hybridization. *Development* 148.

966 58. Grieger, J.C., Choi, V.W., and Samulski, R.J. (2006). Production and
967 characterization of adeno-associated viral vectors. *Nat. Protoc.* 1, 1412–1428.

968 59. Matsuda, T., and Cepko, C.L. (2004). Electroporation and RNA interference in the
969 rodent retina *in vivo* and *in vitro*. *Proc. Natl. Acad. Sci. U. S. A.* *101*, 16–22.

970 60. Wang, S., Sengel, C., Emerson, M.M., and Cepko, C.L. (2014). A gene regulatory
971 network controls the binary fate decision of rod and bipolar cells in the vertebrate
972 retina. *Dev. Cell* *30*, 513–527.

973

974

975 **Figure 1: Fat3 RNA is enriched in OFF-cone bipolar cells.**

976 (a) Schematic representation of retinal layers and their neurons.

977 (b) *in situ* hybridization for *Fat3* RNA in WT P22 retinas.

978 (c) *in situ* hybridization for *Fat3* RNA in *Fat3*^{ΔTM/ΔTM} P22 retinal tissue. In b and c the
979 RNA puncta are shown in white and the yellow brackets indicate the area of
980 VSX2+ cell bodies. Yellow dashed lines demarcate the inner nuclear layer (INL) and
981 the outer misplaced plexiform layer (OMPL) in *Fat3*^{ΔTM/ΔTM} tissue. The squares
982 demarcate the insets seen in b' and c' at higher magnification. VSX2 protein is seen
983 in cyan.

984 (d) Hybridization Chain Reaction-Immunohistochemistry (HCR-IHC) of FAT3 in wild
985 type retinas. Inset demarcated in a yellow box in d is shown at higher magnification
986 in d'.

987 (e) HCR-IHC of FAT3 in *Fat3*^{ΔTM/ΔTM} mutant retinas. Inset demarcated in a yellow box
988 in e is shown at higher magnification in e'.

989 (f) Schematic representation of *Grik1* and *Grm6* RNA enrichment in bipolar cells,
990 according to data in Figure S2.

991 (g) *in situ* hybridization of *Grik1* RNA (magenta) and *Grm6* RNA (yellow, g') with
992 immunostaining for VSX2 (cyan). The insets in g and g' are shown at a higher
993 magnification in g'' and g'''.

994 (h) Triple *in situ* hybridization to *Fat3*, *Grik1* and *Grm6* RNA. Inset in h is seen at
995 higher magnification in i-i'''.

996 (i) Higher magnification of inset shown in h. Yellow dashed lines in i'' and i''' demarcate
997 *Grik1* RNA+ cell bodies. *Fat3* RNA (white) is shown together with *Grm6* RNA in i',
998 with *Grik1* RNA in i'' and alone in i'''.

999 Scale bars: 20μm.

1000

1001

1002 **Figure 2: Flicker ERG and vision at high frequency and step ERG of *Fat3*-deficient**
1003 **mice.**

1004 (a) Representative flicker ERG raw traces of WT control and *Fat3*^{ΔTM/ΔTM} eyes
1005 elicited by 3.162 cd s/m² flashes at 20 and 30 Hz frequencies.

1006 (b) Flicker ERG amplitude at 30 Hz for WT control (n=10) and *Fat3*^{ΔTM/ΔTM} (n=10)
1007 eyes. Unpaired two-tailed Student's t test.

1008 (c) Flicker ERG implicit time (1st peak) at 20 Hz for WT control (n=10) and
1009 *Fat3*^{ΔTM/ΔTM} (n=10) eyes. Unpaired two-tailed Student's t test.

1010 (d) Schematics of fear conditioning and optomotor behavioral experiment. On Day 1,
1011 a mouse is brought to the electric-shock cage with a floor of metal bars for
1012 habituation of the environment. On Day 2, the mouse is conditioned by electrical
1013 shock paired with 33 Hz flashing light. On Day 3 (see Supplementary movies for
1014 representative recordings from Fat3 mutant mice), the mouse is first subjected to
1015 a contextual check, in which the “Context” measures the freezing time of the
1016 mouse after it is brought back to the electric shock cage, which presents a fear-
1017 associated context environment, without the shock. “Static” measures the
1018 freezing time of the mouse with a static light, after the covering the metal bars
1019 and an odor change. Following this measurement, a 33 Hz flickering light is
1020 turned on, and the freezing time of the mouse is measured, as the “flicker” time.

1021 (e) Fear conditioning responses as freezing time (sec) from *Fat3*^{ΔTM/+} (n=8) and
1022 *Fat3*^{ΔTM/ΔTM} (n=9) mice. One-way ANOVA with Dunnett multiple comparison test.

1023 (f) The visual threshold of spatial frequency of WT (n=8) and *Fat3*^{ΔTM/ΔTM} (n=10)
1024 mice measured with the optomotor behavioral assay shown in the bottom cartoon
1025 in panel d. Unpaired two-tailed Student's t test.

1026 (g) Representative step ERG raw traces of WT (n=10) control and *Fat3*^{ΔTM/ΔTM} (n=10)
1027 eyes elicited by a 3-second step light at 1000 cd/m² intensity.

1028 (h) Statistics of step ERG amplitudes (b-wave, d-wave and b : d ratio) of WT (n=10)
1029 control and *Fat3*^{ΔTM/ΔTM} (n=10) eyes elicited by a 3-second step of light at 1000
1030 cd/m² intensity. Unpaired two-tailed Student's t test.

1031
1032

1033 **Figure 3: Flicker ERG at high frequency of *Ptf1a*^{CRE} and *Isl1*^{CRE} conditional *Fat3***
1034 **mice.**

1035 (a) Schematic representation of cell classes that express FAT3 in wild type tissue.
1036 Cells that express FAT3 are represented in magenta.

1037 (b) Schematic representation of cell classes, i.e. ACs, that lose *Fat3* expression in a
1038 *Ptf1a*^{CRE} cKO, shown in black outlines.

1039 (c) Schematic representation of cell classes, i.e. starburst ACs, RGCs and ON-
1040 CBCs, that lose *Fat3* expression in an *Isl1*^{CRE} cKO, shown in black outlines.

1041 (d) Flicker ERG amplitude at 30 Hz for the *Ptf1a*^{CRE} *Fat3*cKO condition. Control
1042 genotypes are *Ptf1a*^{CRE/+}; *Fat3*^{fl/+} (n=8 eyes) and *Ptf1a*^{cKO} genotypes are
1043 *Ptf1a*^{CRE/+}; *Fat3*^{fl/ΔTM} (n=8 eyes). Unpaired two-tailed Student's t test.

1044 (e) Flicker ERG implicit time at 20 Hz for *Ptf1a*^{CRE/+}; *Fat3*^{fl/+} (control, n=8 eyes) and
1045 *Ptf1a*^{CRE/+}; *Fat3*^{fl/ΔTM} (*Ptf1a*^{cKO}, n=8 eyes). Unpaired two-tailed Student's t test.

1046 (f) Representative flicker ERG raw traces for *Ptf1a*^{CRE/+}; *Fat3*^{fl/+} (control, n=8 eyes)
1047 and *Ptf1a*^{CRE/+}; *Fat3*^{fl/ΔTM} (*Ptf1a*^{cKO}, n=8 eyes).

1048 (g) VGAT immunostaining for control *Isl1*^{CRE/+}; *Fat3*^{fl/+} mice.

1049 (h) VGAT immunostaining for *Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM} *Isl1*^{cKO}. TdTomato reporter of Cre
1050 expression is seen in g'-h'.

1051 (i) Quantification of the OMPL score for *Isl1*^{CRE} *Fat3*^{cKO}. Controls (*Isl1*^{CRE/+}; *Fat3*^{fl/+}):
1052 0.095 ± 0.065 (n=14 sections, N=3 animals); *Isl1*^{cKO} (*Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM}): $0.825 \pm$
1053 0.074 (n=19 sections, N=3 animals), Mann-Whitney test.

1054 (j) DAPI and Bhlhb5 immunostaining of control retinas (*Isl1*^{CRE/+}; *Fat3*^{fl/+}).

1055 (k) DAPI and Bhlhb5 immunostaining of *Isl1*^{CRE} *Fat3*^{cKO} (*Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM}) retinas.

1056 (l) Quantification of the number of nuclei per field in the IPL. Controls
1057 (*Isl1*^{CRE/+}; *Fat3*^{fl/+}): 1.25 ± 0.35 (n=12 sections, N=3 animals); *Isl1*^{cKO}
1058 (*Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM}): 5.11 ± 0.39 (n=18 sections, N=3 animals). *t* test.

1059 (m) Quantification of the number of Bhlhb5+ nuclei per field in the IPL and GCL.
1060 Controls (*Isl1*^{CRE/+}; *Fat3*^{fl/+}): 3.67 ± 0.43 (n=12 sections, N=3 animals); *Isl1*^{cKO}
1061 (*Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM}): 9.33 ± 0.67 (n=18 sections, N=3 animals). *t* test.

1062 (n) Flicker ERG amplitude at 30 Hz for control (*Isl1*^{CRE/+}; *Fat3*^{fl/+}, n=6 eyes) and
1063 *Isl1*^{cKO} (*Isl1*^{CRE/+}; *Fat3*^{fl/ΔTM}, n=6 eyes). Unpaired two-tailed Student's t test.

1064 (o) Flicker ERG implicit time at 20 Hz for control ($Is/1^{CRE/+};Fat3^{fl/+}$, n=6 eyes) and
1065 $Is/1^{cKO}$ ($Is/1^{CRE/+};Fat3^{fl/\Delta TM}$, n=6 eyes). Unpaired two-tailed Student's t test.
1066 (p) Representative flicker ERG raw traces for control and $Is/1^{CRE} Fat3^{cKO}$.
1067 Scale bars: 20 μ m.

1068

1069

1070

1071 **Figure 4: High frequency flicker ERG and step ERG of FAT3 intracellular domain
(ICD) deficient mice.**

1072 (a) Schematics of molecular structure of FAT3 wild type protein and $FAT^{\Delta ICD-GFP}$.
1073 (b) Immunostaining for GFP in WT retinal sections. The arrow points the OPL.
1074 (c) Immunostaining for GFP in $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$ retinal sections. The arrow points
1075 the OPL.
1076 (d) Representative OCT images of $Fat3^{\Delta ICD-GFP/+}$ control and $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$
1077 eyes.
1078 (e) Representative flicker ERG raw traces of $Fat3^{\Delta ICD-GFP/+}$ control and $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$ eyes elicited by 3.162 cd s/m² flashes at 20 and 30 Hz frequencies.
1079 (f) Flicker ERG amplitude at 30 Hz for $Fat3^{\Delta ICD-GFP/+}$ control (n=10 eyes) and
1080 $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$ (n=10) eyes. Unpaired two-tailed Student's t test.
1081 (g) Flicker ERG implicit time at 20 Hz for $Fat3^{\Delta ICD-GFP/+}$ control (n=10 eyes) and
1082 $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$ (n=10) eyes at 20 Hz. Unpaired two-tailed Student's t test.
1083 (h) Representative step ERG raw traces of $Fat3^{\Delta ICD/+}$ control and $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$
1084 eyes elicited by a 3-second step light at 1000 cd/m² intensity.
1085 (i) Statistics of step ERG d-wave amplitudes for $Fat3^{\Delta ICD-GFP/+}$ control (n=10 eyes)
1086 and $Fat3^{\Delta ICD-GFP/\Delta ICD-GFP}$ (n=10) eyes elicited by a 3-second step of light at 1000
1087 cd/m² intensity. Unpaired two-tailed Student's t test.

1088

1089

1090 **Figure 5: Immunostaining, high frequency flicker ERG and step ERG of mice
1091 lacking glutamate receptors, GRIK1 and GRM6.**

1094 (a) Schematic representation of OFF-BCs and their synapses with cone
1095 photoreceptors. ARR3 (white) labels cones and GRIK1 (magenta) labels
1096 postsynaptic BC dendrites.

1097 (b) Schematic representation of ON-BCs and their synapses with cone
1098 photoreceptors. ARR3 (white) labels cones and GRM6 (magenta) labels
1099 postsynaptic cone and rod BC (RBC) dendrites.

1100 (c) GRIK1 and GRM6 immunostaining of adult WT retina.

1101 (d) GRIK1 and GRM6 immunostaining of *Grik1*^{-/-} retina.

1102 (e) GRIK1 and GRM6 immunostaining of *Grm6*^{-/-} retina.

1103 (f) GRIK1 and GRM6 immunostaining of *Grik1*^{-/-} *Grm6*^{-/-}.
1104 White: ARR3, magenta: GRIK1 and GRM6.

1105 (g) Representative flicker ERG raw traces of WT, *Grik1*^{-/-}, *Grm6*^{-/-} and *Grik1*^{-/-} *Grm6*^{-/-}
1106 eyes at 20 and 30 Hz frequencies.

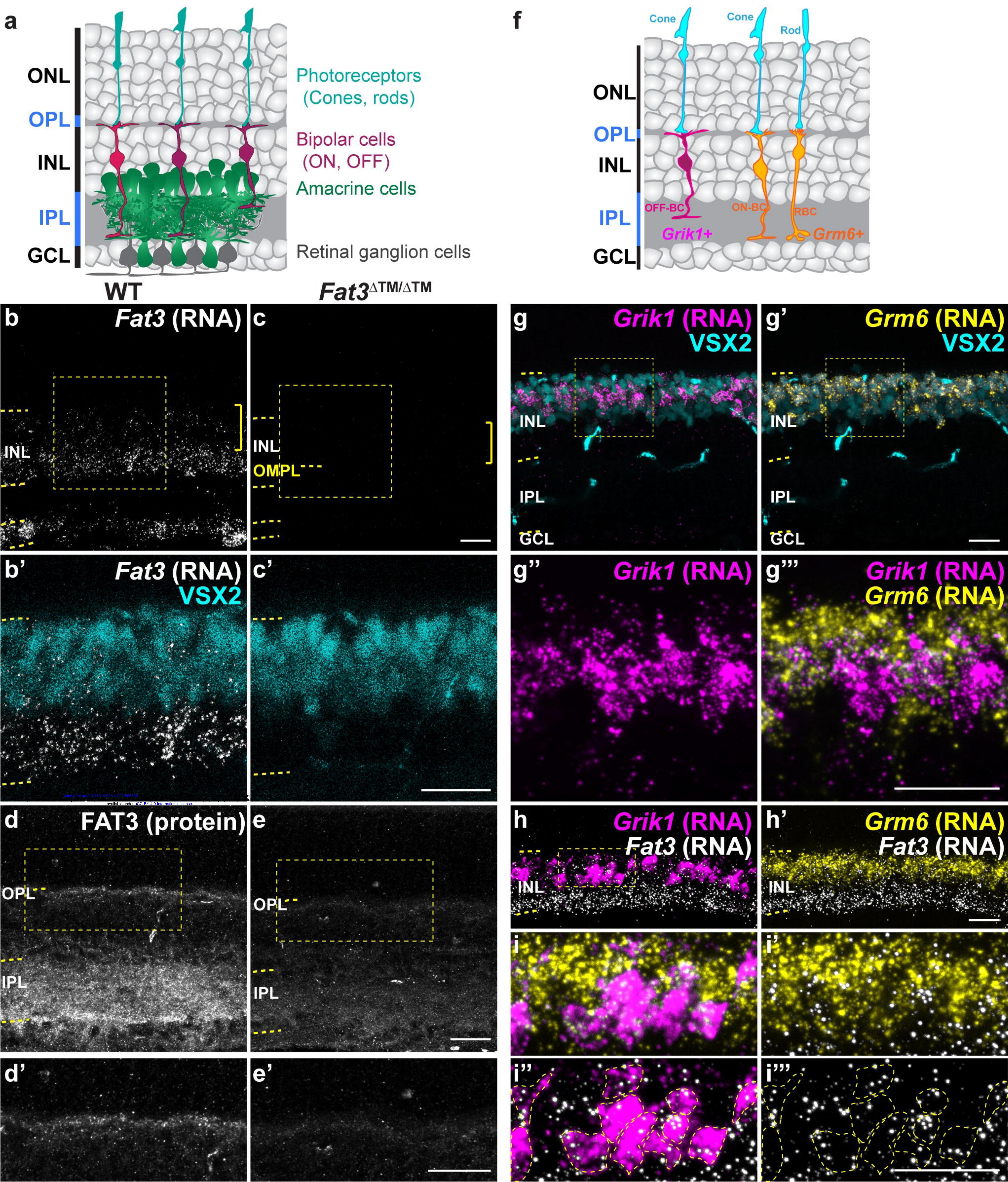
1107 (h) Flicker ERG amplitude at 30 Hz for WT (n=13 eyes), *Grik1*^{-/-} (n=10 eyes), *Grm6*^{-/-}
1108 (n=12 eyes) and *Grik1*^{-/-}; *Grm6*^{-/-} (n=10) eyes. One-way ANOVA with Dunnett
1109 multiple comparison test.

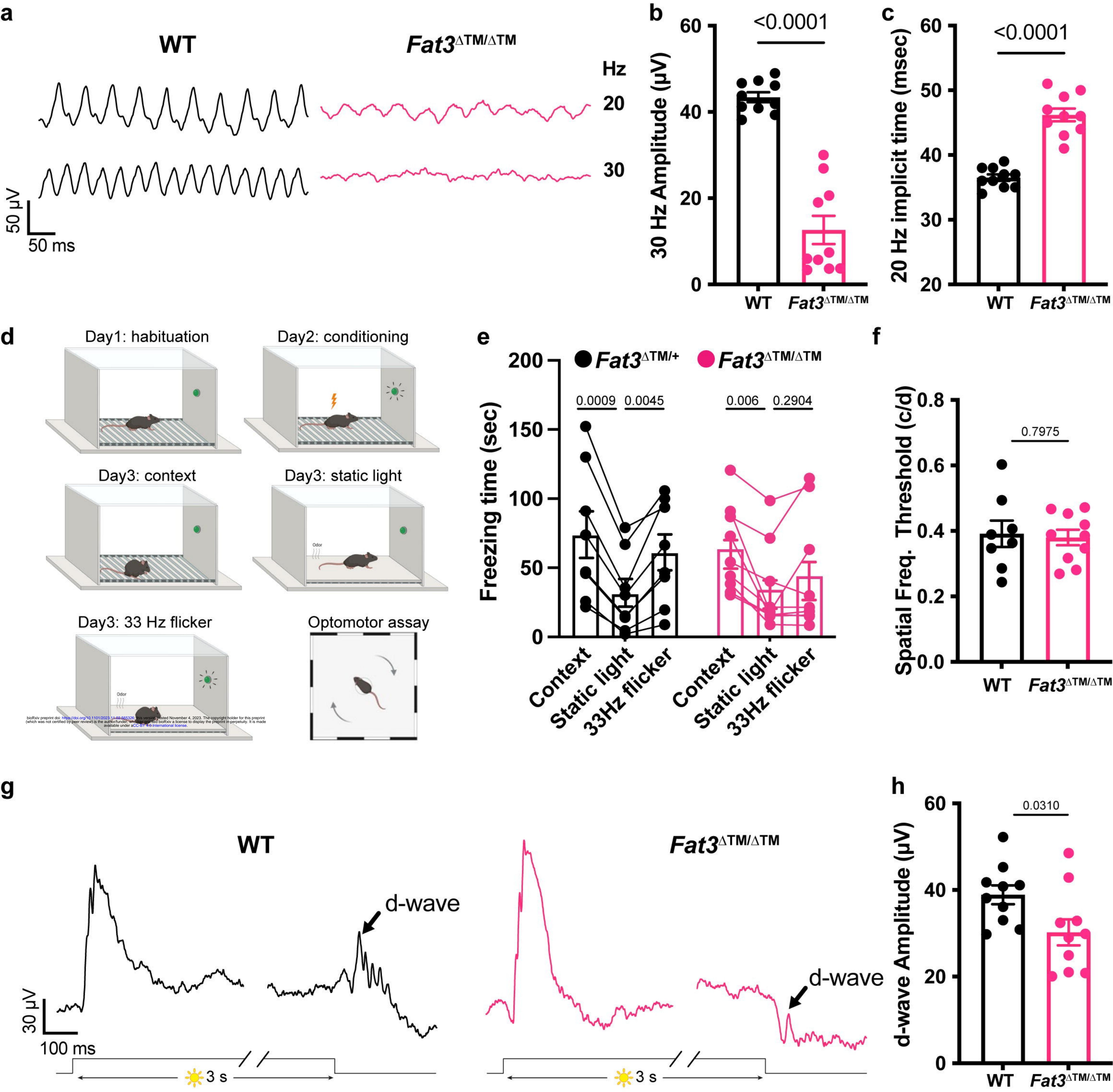
1110 (i) Flicker ERG implicit time at 20 Hz for WT (n=13 eyes), *Grik1*^{-/-} (n=10 eyes),
1111 *Grm6*^{-/-} (n=12 eyes) and *Grik1*^{-/-}; *Grm6*^{-/-} (n=10) eyes. One-way ANOVA with
1112 Dunnett multiple comparison test.

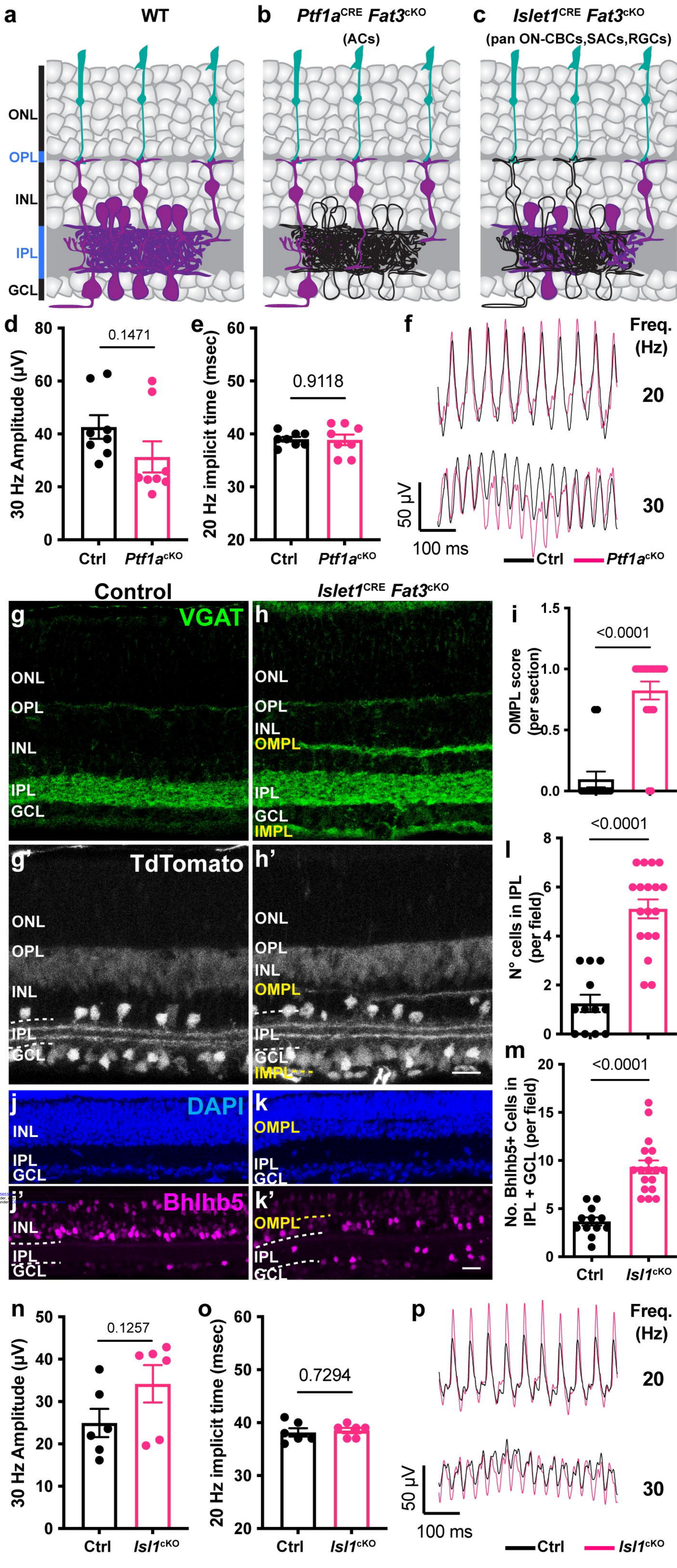
1113 (j) Representative step ERG raw traces of WT, *Grik1*^{-/-}, *Grm6*^{-/-} and *Grik1*^{-/-} *Grm6*^{-/-}
1114 eyes elicited by a 3-second step light at 1000 cd/m² intensity.

1115 (k) Ensemble-averaged flicker d-wave of step ERG amplitudes of WT (n=13 eyes),
1116 *Grik1*^{-/-} (n=10 eyes), *Grm6*^{-/-} (n=12 eyes) and *Grik1*^{-/-}; *Grm6*^{-/-} (n=10) eyes elicited
1117 by a 3-second step of light-OFF at 1000 cd/m² intensity. One-way ANOVA with
1118 Dunnett multiple comparison test.

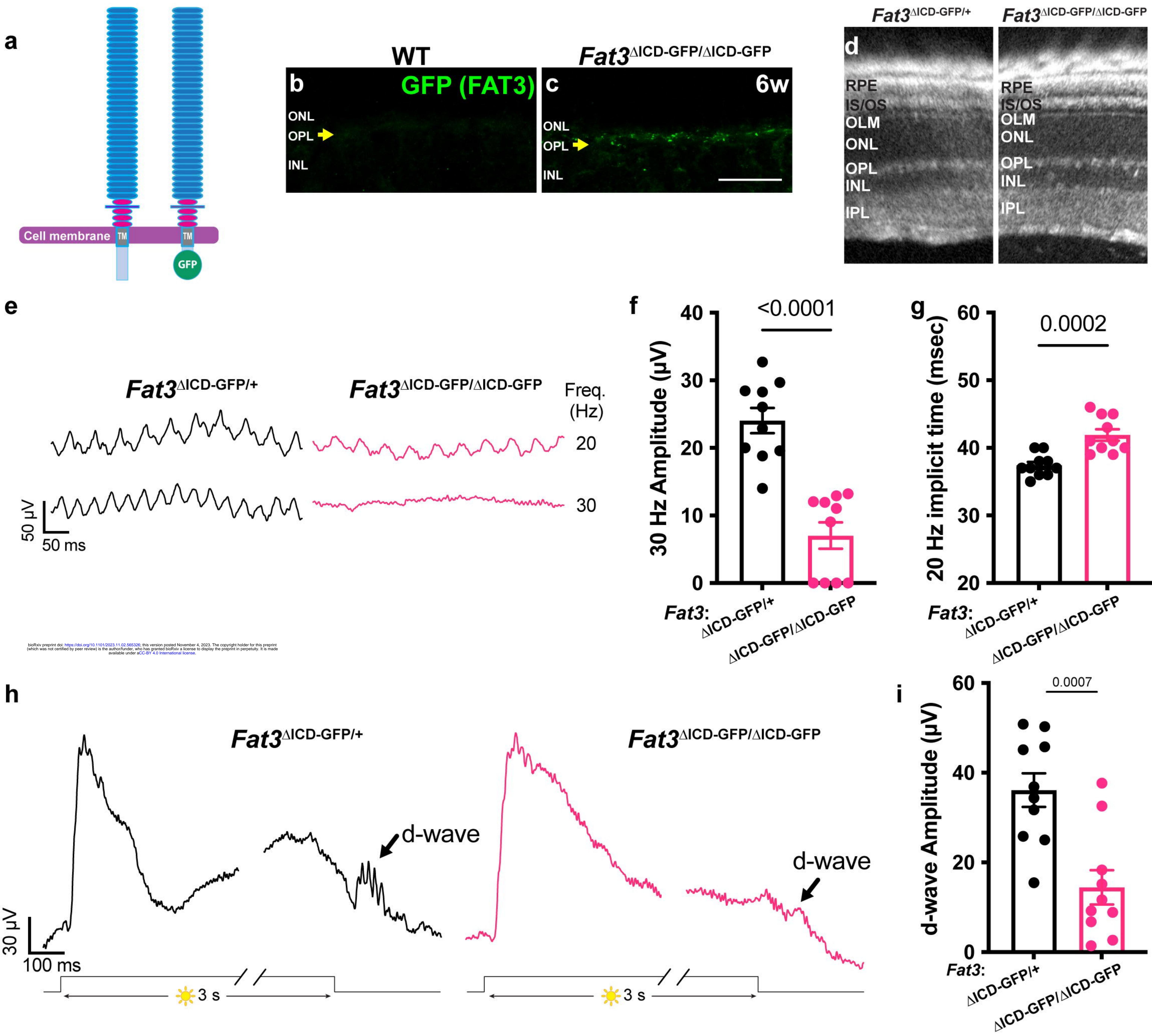
1119
1120


1121 **Figure 6: Assay of FAT3 binding to PTP σ and PTP σ localization in WT and FAT3-
1122 ICD mutant.**


1123 (a) Binding of FAT3-ICD to PTP σ was assayed using a pull down, with GST fused to
1124 FAT3-ICD.


1125 (b) Immunostaining of PTP σ and (b') CtBP2, a marker of ribbons in photoreceptor
1126 axons.
1127 (c) Immunostaining of PTP σ and (c') GRIK1.
1128 (d) Immunostaining of PTP σ in WT retinas.
1129 (e) Immunostaining of PTP σ in *Fat3*^{ΔTM/ΔTM} retinas.
1130 (f) Immunostaining of HOMER1 and SV2, and (f') HOMER1 alone in WT retinas.
1131 (g) Immunostaining of HOMER1 and SV2, and (f') HOMER1 alone in *Fat3*^{ΔTM/ΔTM}
1132 retinas.
1133 (h) Quantification of PTP σ integrated intensity in the OPL. WT Controls: 8682 ± 583
1134 (n=16 sections, N=4 animals); *Fat3*^{ΔTM/ΔTM}: 4871 ± 463.5 (n=12 sections, N=3
1135 animals), Mann-Whitney test.
1136 (i) Quantification of HOMER1 integrated intensity in the OPL. WT Controls: 34997 ±
1137 2509 (n=8 sections, N=3 animals); *Fat3*^{ΔTM/ΔTM}: 32051 ± 2003 (n=8 sections, N=3
1138 animals), t test.
1139 Scale bars: 20μm.
1140
1141

1142 **Figure 7: Immunohistochemical assay of GRIK1 in WT and *Fat3*^{ΔTM/ΔTM} retinas.**
1143 (a) Immunostaining for GRIK1 in WT retinas.
1144 (b) Immunostaining for GRIK1 in *Fat3*^{ΔTM/ΔTM} retinas. Cone arrestin (ARR3) labels
1145 the cone photoreceptor axonal endings in the OPL in a' and b'.
1146 (c) Quantification of GRIK1 integrated intensity in the OPL. WT Controls: 52727 ±
1147 7204 (n=19 sections, N=4 animals); *Fat3*^{ΔTM/ΔTM}: 25838 ± 5028 (n=18 sections,
1148 N=4 animals), Mann-Whitney test.
1149 (d) Immunostaining for GRIK1 in WT retinas.
1150 (e) Immunostaining for GRIK1 in *Fat3*^{ΔICD-GFP/ΔICD-GFP} retinas.
1151 Cone arrestin (ARR3) labels the cone photoreceptor endings in the OPL in d'
1152 and e'.


1153 (f) Quantification of GRIK1 integrated intensity in the OPL. WT Controls: 16119 ±
1154 1168 (n=16 sections, N=4 animals); *Fat3*^{ΔICD /ΔICD}: 11687 ± 1110 (n=15 sections,
1155 N=4 animals), Mann-Whitney test.
1156

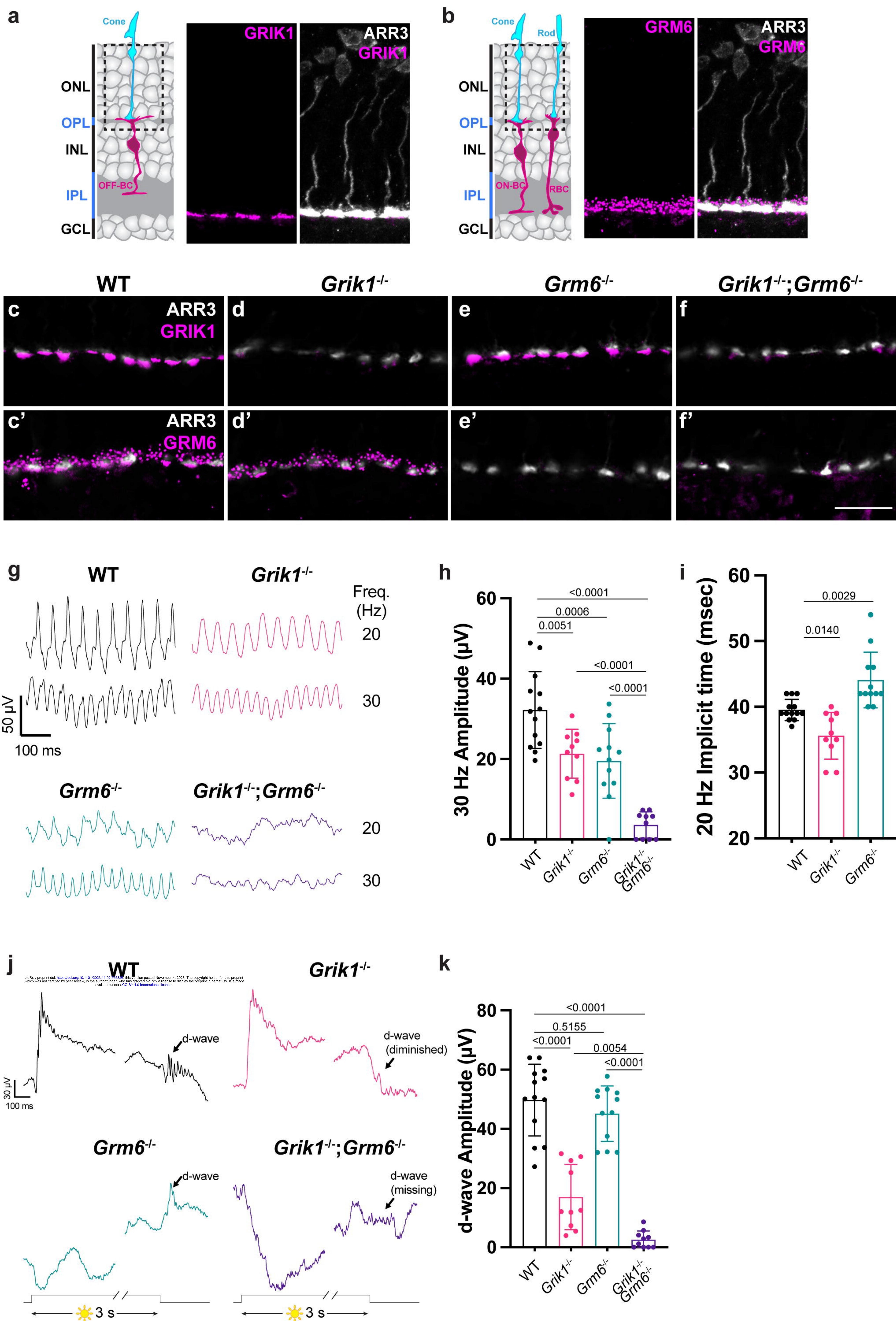

Figure 1

Figure 2

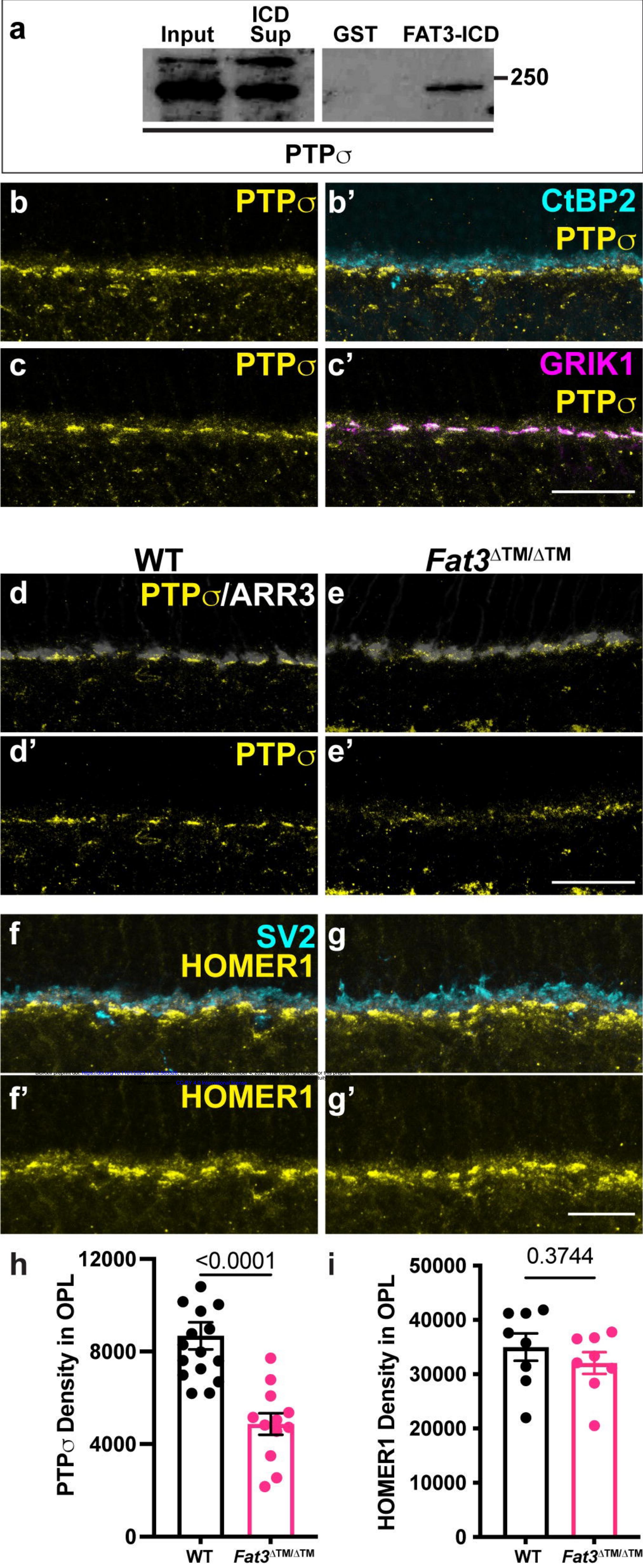

Figure 3

Figure 4

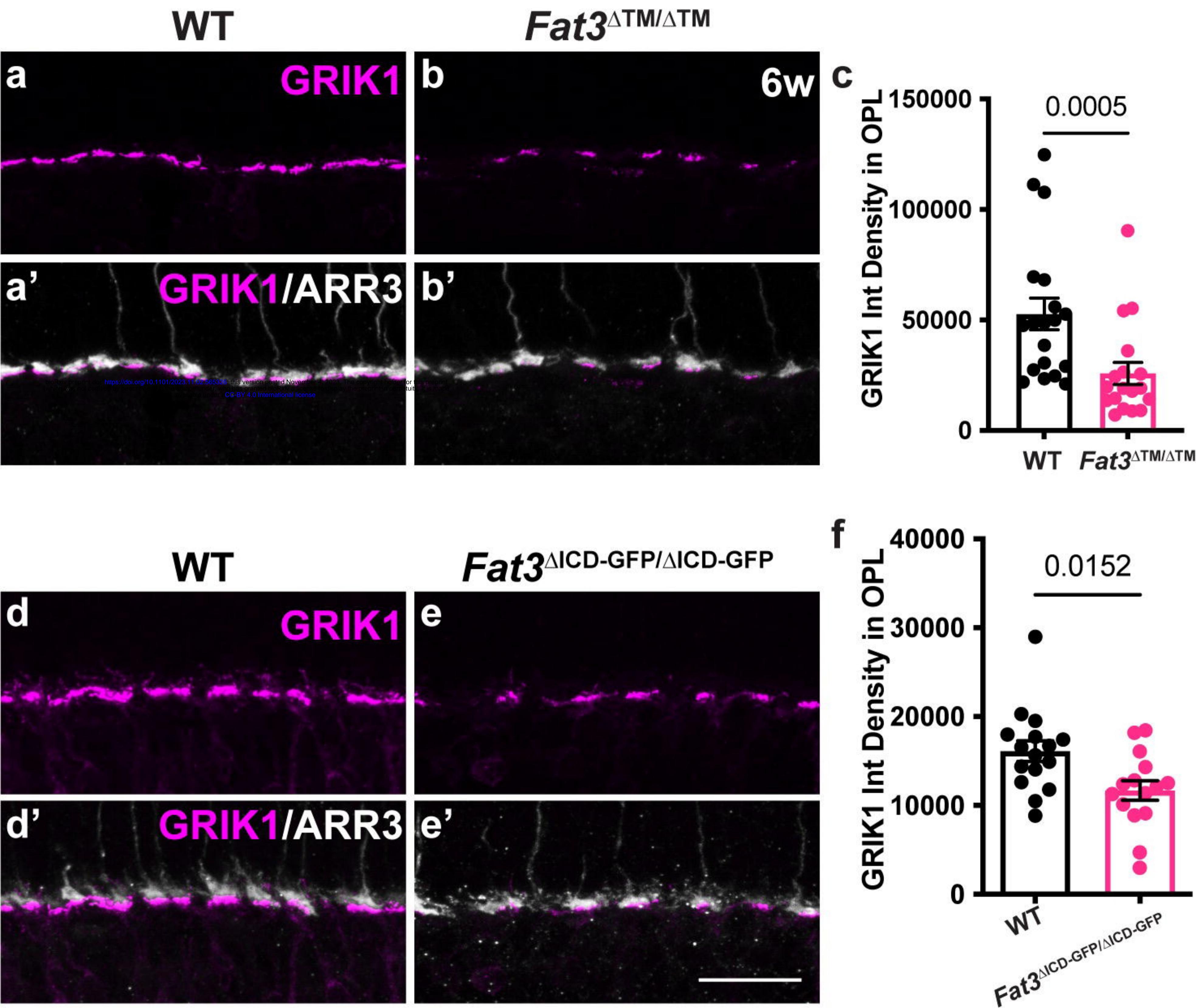


Figure 5

Figure 6

Figure 7

