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Abstract 

The prediction of externally visible traits (eye, hair and skin colours) from DNA can provide valuable 
information for both contemporary and ancient human populations. The validated HIrisPlex-S method 
is the primary tool in forensics for phenotyping modern samples. The HIrisPlex-S multiplex PCR assay 
can handle trace DNA from modern samples, but the analysis of degraded, low coverage ancient DNA 
(aDNA) presents additional challenges. Genotype imputation has recently proven successful in 
effectively filling in missing information in aDNA sequences. To assess the feasibility of this approach, 
we evaluated how key factors, such as genome coverage, minor allele frequency, extent of post mortem 
damage, and the population origin of the test individual influence the efficiency of imputing HIrisPlex-S 
markers and predicting phenotypes. We used high coverage sequence data from ancient remains for the 
evaluation. Our results demonstrate that even with genome coverages as low as 0.1-0.5x, the proposed 
workflow is capable of predicting phenotypes from degraded ancient (or forensic) WGS data with good 
accuracy. To aid the archaeogenetics community, we have developed a user-friendly, easily deployable 
imputation-based framework that includes the new bioinformatics tools and the pre-made reference data 
sets required for the whole analysis. 

Background 

The prediction of externally visible human traits from DNA has implications in forensics [1–3] but it 
can also provide valuable information for the analysis of archaeological remains. The most 
comprehensive and forensically validated HIrisPlex-S system currently uses 41 autosomal markers to 
simultaneously predict eye, hair, and skin colour [4–6]. While the HIrisPlex-S multiplex PCR assay can 
cope with trace amounts of DNA in forensic samples, the analysis of ancient DNA (aDNA) presents 
further challenges. DNA from archaeological remains is prone to post mortem damage (PMD), leading 
to DNA degradation over time. Typically, aDNA consists of very short DNA fragments, with an average 
length of 40-60 base pairs, and it undergoes frequent C>T and G>A nucleotide transitions, primarily 
near the ends of these fragments. These characteristics, including the small average DNA fragment size, 
potential contamination with high molecular weight modern DNA and frequent nucleotide changes, 
render PCR-based methods (including the HIrisPlex-S multiplex PCR assay) unfeasible on ancient 
samples. Consequently, majority of the population genetic analyses of aDNA are based on shotgun WGS 
or hybridisation-based targeted methods. 

To date, a substantial number of WGS sequences have been generated from ancient samples to facilitate 
the genetic characterization of ancient populations. However, due to the persisting challenges in 
sequencing degraded aDNA, there are currently only a handful of high-coverage WGS sequences 
available from aDNA, while the majority of aDNA samples typically have low genome coverage (0.1x-
2x). Although the current HIrisPlex-S system can handle partial information, its primary reliance on 
diploid genotype data results in increased uncertainty in phenotype predictions and a higher likelihood 
of producing invalid results when dealing with missing or low-confidence diploid genotypes. Due to the 
low genome coverage of aDNA samples, a significant portion of HIrisPlex-S markers typically lacks 
sequence information. Although sparse pseudo-haploid genotypes from aDNA can be used in a number 
of population genetic approaches like PCA, admixture and qpAdm, this data is not suitable for 
phenotype assessment with the HIrisPlex-S system. 

With the increasing number of low-coverage WGS sequences, new tools and approaches are emerging 
to address the challenges of analysing incomplete data. One of the latest approaches is to impute the 
missing diploid genotypes/haplotypes from partially genotyped data. This approach relies on the 
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observation that closely linked markers tend to be inherited together as haplotypes from parents to 
offspring. Hence, a catalogue of such common haplotypes and the partial information on sequential 
stretches of markers can be used to predict the most likely diploid state of markers in the low coverage 
sample. Several algorithms and tools have been developed to balance speed and precision in addressing 
the large computational requirements of the imputation [7–9]. Available literature indicates that 
imputation precision depends on multiple factors, including the fraction of missing and genotyped 
markers, the minor allele frequency of the imputed marker, the density of genotyped markers, the 
reference data set, the genome structure/population origin of the imputed sample, and the choice of 
algorithm/tool [8-10]. 

State-of-the-art imputation tools can achieve high genotyping precision for common variants with high 
minor allele frequency (MAF), even when dealing with partial information corresponding to 0.5x 
genome coverage data. Since most genetic markers of eye, hair, and skin colours consist of common 
alleles with high MAF, imputation has the potential to predict the diploid genotype state of these markers 
even from low-coverage aDNA. Given that the three predicted phenotypic traits result from the 
combination of several trait-defining markers, we hypothesised that a few imputation errors would not 
significantly impact the prediction of the most likely phenotype. This suggests that the approach can be 
feasible for phenotyping ancient individuals from aDNA. 

We developed a user-friendly, readily deployable imputation-based framework containing the new 
bioinformatics tools and the pre-made reference data sets required for the analysis. In our proposed 
workflow we selected the last version of GLIMPSE tool (GLIMPSE2, version 2.0.0) for imputation with 
the gold standard phased 1KG reference data, as it promises very fast and accurate imputation compared 
to other tools [10, 11]. Using our framework, we assessed the effect of major influencing factors (the 
genome coverage, minor allele frequency, extent of PMD, and the population origin of the test 
individual) on the imputation efficiency and phenotype prediction using high coverage experimental 
data from ancient remains. 

Results 

We expanded the genome windows around each of the 41 HIrisPlex-S marker coordinates by 2.5 million 
base pairs in both the 5' and 3' directions. Imputation was performed on the 1.7 million common variants 
within the resulting 11 genome segments, covering a total of around 70 megabases, as described in the 
methods section. To assess imputation accuracy and the robustness of imputation-based genotyping, we 
selected 31 high- coverage (>10x genome coverage) ancient WGS shotgun sequences from the Allen 
Ancient Data resource (AADR, version 54.1) [12, 13]. The sample IDs, the associated annotations from 
the AADR database, and the global population structure based on the FastNGSAdmix tool [14] of the 
selected samples are found in Supplementary Table S1. From the high-coverage WGS data, we obtained 
the most likely genotypes of the 31 samples for all 41 HIrisPlex-S markers, except for a few positions 
where they had 5x or lower genome coverages (Supplementary Table S2). We utilized the diploid 
genotypes from the high-coverage data as the ground truth for assessing concordance and genotyping 
errors in imputation. 

The original high-coverage data was downscaled to 2x, 1x, 0.5, and 0.1x genome coverages in 10 parallel 
replicates, each with different random seeds. Next, we conducted 10 parallel imputations for each 
downscaled dataset, resulting in a total of 100 parallel imputed sets of genotypes for each sample at each 
genome coverage. We filtered the imputed genotypes of each 41 HIrisPlex-S marker from all imputed 
variants and compared them with the ground truth to calculate the fraction of imputation errors. As 
imputation is a probabilistic method, we also tested the correspondence between the imputed genotypes 
from the original high coverage data and the ground truth. Thus, we also imputed the diploid genotypes 
from the original high-coverage samples in 100 parallel runs (Supplementary Table S3). 
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We distinguished between two types of genotyping errors based on their potential impact on phenotype 
prediction. The 8total error9 encompassed all cases where the imputed diploid genotype differed from 
the ground truth. The 'opposite error' refers to instances where homozygous opposite alleles appeared in 
the imputed sequence compared to the truth (HOM REF instead of HOM ALT or vice versa), as the 
second category would more severely affect the phenotype prediction probabilities considering either 
dominant-recessive, or quantitative inheritance. 

Effect of genome coverage on imputation accuracy 

According to our results, the mean imputation error rate was most severely affected by the genome 
coverage (Figure 1.), as this factor influences the number/density of genotyped markers used to predict 
the most likely haplotype configurations and diploid genotypes at all loci. 

 

Figure 1. The effect of genome coverage on the mean imputation error based on the analysis of 100 
parallel imputations of 31 ancient samples. In the <total error= category any imputed genotype that did 
not match the expected ground truth was considered. In the <opposite error= category we only considered 
cases were homozygous opposite alleles appeared in the imputed sequence compared to the truth.  

The accuracy of the imputed diploid genotypes is noteworthy. The median concordance of imputed 
diploid genotypes with the truth is approximately 95% at 0.5x and approximately 91% at 0.1x genome 
coverage for the analysed samples. At higher genome coverages the accuracy increases up to 97%. 
Nevertheless, even in the original high coverage data a very low frequency of imputation errors can be 
observed, likely at variants with skewed allelic balance. The rate of opposite genotype errors is 
negligible at or above 0.5x genome coverages, and even at 0.1x genome coverage, only a few samples 
had more than 1% of this type of error. At 1x genome coverage and below, most markers are usually 
represented by a single read, with only one allele randomly sampled. At 0.5x genome coverage, 
statistically half of the markers are covered, nevertheless the overall diploid genotyping accuracy 
remains 95% or higher. This high accuracy demonstrates the feasibility of imputing diploid genotypes 
for the HIrisPlex-S markers from ancient, low-coverage shotgun WGS data.  
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The effect of sample age, population origin and genotyping errors on imputation accuracy 

We also calculated the error rates in different sample subgroups to assess other factors that can impact 
imputation accuracy. These factors included sample age (which affects post mortem aDNA damage), 
the use of Uracil-DNA glycosylase (UDG) treatment (as it drastically reduces the amount of transition 
errors in the sequences), and the sample9s source population(s) (as the reference data and the genome 
structure of the test population could be largely different). Unfortunately, the number of available high-
coverage ancient samples does not allow us to create homogenous groups based on all potentially 
influencing factors. Therefore, we created contrasting subsets of samples (containing at least three 
samples) that differed in one or more influencing factors. We then calculated the mean genotyping error 
rates for these subsets (Table 1). 

 

  N 

mean inputation genotyping error fraction (%) 

total error opposite error 

0.1x 0.5x 1x 2x orig. 0.1x 0.5x 1x 2x orig. 

ALL 31 9.0% 4.4% 3.4% 2.9% 1.4% 0.4% 0.1% 0.0% 0.0% 0.0% 

no UDG (ALL) 15 9.2% 4.4% 3.6% 3.1% 1.9% 0.4% 0.1% 0.0% 0.0% 0.0% 

UDG (ALL) 16 8.7% 4.4% 3.3% 2.8% 0.9% 0.5% 0.0% 0.0% 0.0% 0.0% 

EUR (noUDG) 3 11.4% 6.6% 5.4% 3.8% 1.6% 0.4% 0.0% 0.0% 0.0% 0.0% 

EUR (UDG) 9 9.5% 4.1% 2.5% 2.1% 0.5% 0.6% 0.0% 0.0% 0.0% 0.0% 

AFR (UDG) 3 7.6% 6.0% 6.0% 5.4% 3.3% 0.3% 0.1% 0.1% 0.0% 0.0% 

30000-41400 BP 3 10.4% 4.9% 4.0% 3.3% 0.8% 0.8% 0.2% 0.1% 0.0% 0.0% 

8240-9615 BP 4 8.6% 2.8% 2.4% 1.4% 0.9% 0.1% 0.0% 0.0% 0.0% 0.0% 

163-1170 BP 5 6.5% 4.7% 4.3% 3.6% 2.0% 0.3% 0.1% 0.0% 0.0% 0.0% 

EUR (ALL) 12 9.9% 4.7% 3.2% 2.6% 0.8% 0.5% 0.0% 0.0% 0.0% 0.0% 

AFR (ALL) 4 8.0% 5.6% 5.5% 5.0% 4.9% 0.3% 0.1% 0.1% 0.0% 0.0% 

OTHER (ALL) 15 8.5% 3.9% 3.0% 2.6% 0.9% 0.3% 0.1% 0.0% 0.0% 0.0% 

Table 1: Mean imputation error rates observed in the different subsets of samples at different genome 
coverages based on 100 parallel imputations. UDG – Uracil-DNA glycosylase; EUR – European origin; 
AFR – African origin; BP – before present.  

The detailed data of the imputation genotype error rates for each individual sample at the different 
genome coverages are shown in Supplementary Table S4. Overall, the mean error rates in the selected 
subgroups exhibit only minor differences, underscoring that the primary factor influencing imputation 
errors is the genome coverage. It is noteworthy that samples of African origin (AFR) exhibit higher 
imputation error at higher genome coverages, even when using the original high coverage data. This 
observation strongly suggests the presence of reference errors, stemming from the fact that the greater 
haplotype diversity among AFR populations are not adequately represented in the 1KG reference panel. 
It appears that UDG treatment slightly decreases the imputation error rate, as evidenced by the difference 
between UDG treated and non-UDG treated individuals of European origin (EUR). This effect is likely 
associated with the higher level of PMD in samples without UDG treatment, which leads to an increased 
rate of random C>T and A>G transitions in ancient DNA sequences. We also observe a slight increase 
in the mean imputation error among older dated samples. As sample age in general correlates with the 
PMD level in aDNA, it is likely that this increase in imputation error rates is attributable to the age 
factor. Importantly, the opposite genotype error rate remains negligible at 0.5x genome coverage levels 
or higher, even in the oldest samples at 0.1x genome coverage, the opposite error rate did not exceed 
0.8%.  
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The imputation accuracy of the individual HIrisPlex-S markers 

To evaluate whether certain markers exhibit higher imputation error rates due to low MAF, insufficient 
linked marker context or poorly represented haplotypes in the reference data, we also calculated the 
mean genotyping error rate for each individual marker (Supplementary Table S5). Overall, most of the 
41 HIrisPlex-S markers, including those with lower MAF, had good imputation accuracy. Nevertheless, 
we noticed that certain markers had markedly worse imputation accuracy in specific samples even at 
high genome coverages. 

In order to distinguish between high and low imputation error rates, a threshold value needs to be 
defined. We established this threshold based on the currently available imputation accuracy for African 
genomes. In the literature the highest (>= 15%) imputation error rates are observed in African samples, 
even at higher genome coverages, and these are clearly associated with reference bias. Therefore, in our 
analysis, we considered the mean imputation error at high genome coverages (original, 2x and 1x) 
exceeding 15% as "high" error rates, and those below this threshold as "low" error rates. Applying this 
criteria, we identified 55 sample/marker combination that had significantly elevated imputation error 
rates across the original, and all lower coverage imputations (Supplementary Table S6). Out of the total 
of 1271 sample/marker combinations (31 genomes with 41 markers) this small subset of combinations 
accounted for ~47% of all imputation errors, as indicated by the number of imputation errors in the 
second row of the high error rate category in Table 2. 

  
high error rate sample/rsID combinations 

(N=55)* 

low error rate sample/rsID combinations 

(N=1217) 

genome coverage original 2x 1x 0.5x 0.1x original 2x 1x 0.5x 0.1x 

number of imputed 
genotypes 5500 5500 5500 5500 5500 121600 121600 121600 121600 121600 
number of 
imputation errors 1748 2470 2735 2818 2793 0 1219 1618 2814 8610 

% of imputation 
errors (error/no. of 
imputations*100) 31.78% 44.91% 49.73% 51.24% 50.78% 0.00% 1.00% 1.33% 2.31% 7.08% 
fraction of total 
error in the given 
category (high/low 
error rate vs total 
error) 100.00% 66.96% 62.83% 50.04% 24.49% 0.00% 33.04% 37.17% 49.96% 75.51% 

Table 2. Summary of high and low error rate sample / marker combinations. The criteria of >= 15% 
mean imputation error frequency observed in the high genome coverage (original, 2x, 1x) imputations 
was used to distinguish between high/low imputation error rate combinations. 

Imputation determines the best likelihood of all genotype data within a large chunk of analyzed genome 
region of the test individual that fits to the best matching diploid allele combination inferred from the 
reference data. Discrepancies between linked markers in the sample and linkage information in the 
reference data can lead to inevitable ambiguities or incorrect predictions of the diploid genotype. Our 
data also suggests that within this smaller subset of combinations the primary cause of the elevated error 
rate is likely reference bias. Most prominently, imputation error occurs even in the original high 
coverage data. Furthermore, within the high-error category, the overall frequency of imputation errors 
remains significantly elevated at every level of genome coverage. This is in contrast to the low-error 
category of sample/marker combinations, where errors tend to increase as genome coverage decreases 
(3rd row in Table 2). 

Imputation analysis of the rs312262906 red hair marker 

The low minor allele frequency of the imputed marker is known to lead to lower concordance. While 
most HIrisPlex-S markers have high minor allele frequencies, the less common red hair trait is associated 
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with low minor allele frequency genetic variations [15]. The HIrisPlex-S system contains seven rare 
(MAF<0.002) markers to predict the red hair trait, rs312262906, rs11547464, rs1805008, rs1805006, 
rs1805009, rs201326893, and rs1110400. The red hair marker with lowest global MAF of 0.00078 is 
the rs312262906 variant, which, unlike all other HIrisPlex-S markers is not a single nucleotide 
polymorphism (SNP). Instead it is a one base pair duplication (NC_000016.10:g.89919344dup) 
resulting in an additional adenosine nucleotide insertion in the sequence. The typically lower genotyping 
accuracy of small insertions or deletions compared to unique SNPs, coupled with the extremely low 
MAF could potentially have a significantly adverse impact on the genotyping and imputation accuracy 
of this marker. 

As we had shown, the genotyping error rates of the individual markers showed similar figures for the 
rare markers. However, since none of the analysed ancient samples carried any red hair markers, this 
only shows that the false positive imputations of these low MAF markers were not excessive. Therefore, 
we also aimed to investigate the true positive recall of a known red-hair individual carrying this sequence 
variation. Due to the very low global MAF of this marker, only 5 unrelated individuals have this 
variation in the GRCh38 aligned 1KG phase III data set. Consequently, we selected data from a single 
high-resolution modern sample (NA10830) from the 1KG phase III data that carry a heterozygous 
mutation for this marker as our test individual. 

Since GLIMPSE2 is a reference-based imputation method, we created a custom GRCh38 reference data 
set that excluded the data from NA10830. We also verified that none of its relatives was included, as it 
would invalidate the results. We followed the same experimental setup as described for the ancient 
samples: the original ~30x NA10830 data were downscaled to 2x, 1x, 0.5x, and 0.1x genome coverages 
in 10 parallel runs using different random seeds, and imputation was performed in 10 parallels for each 
downscaled dataset. 

According to our analysis, the imputation of genotypes for this individual was 100% accurate down to 
0.5x genome coverage for all markers, including rs312262906. Even at 0.1x genome coverage, 80 out 
of 100 parallel runs resulted in the correct heterozygous dupA for rs312262906 without additional 
genotyping errors of the other markers. Our analysis revealed that, in the case of this high-quality 
modern sequence imputation was highly deterministic. For the same downscaled data, the inferred 
genotypes from parallel imputations were consistently identical (Supplementary Table S7). This 
suggests that in the downscaled 0.1x coverage BAM files with false negative imputation for this 
particular marker, all supporting reads containing the linked markers (and the rs312262906 marker 
itself) that are crucial for imputing accurate genotypes, were absent. 

Phenotype classification accuracy of the imputation-based data 

The HIrisPlex-S system calculates the probabilities of each phenotypic trait using a model that was 
cross-validated on a large dataset comprising both genotypic and phenotypic information. The web tool 
translates the genotype information of markers into a set of p-values [16], which can subsequently be 
used to classify each phenotypic trait. Due to the varying number of phenotype associated markers and 
the HIrisPlex-S classification scheme, the number of phenotype categories differ for the three 
phenotypic traits. The classification of the eye phenotype (blue, brown, black) is straightforward, as the 
highest phenotype probability (p blue eye, p brown eye, p black eye) indicates the most likely eye colour. 
In contrast, the classification of hair colour (red, blonde, dark-blonde/blonde, dark-blonde/brown, 
brown, dark-brown/brown, dark-brown/black, black) and especially the skin phenotype (very pale, very 
pale/darker, pale/lighter, pale, pale/darker, intermediate/lighter, intermediate, intermediate/darker, 
dark/lighter, dark, dark/dark-black, dark-black) is more complex. It relies on a greater number of 
phenotype-associated markers and involves complex heuristic rules based on the calculated p-values, as 
described in the HIrisPlex-S web tool manual [17]. To simplify and streamline phenotyping, we have 
incorporated a tool in our software package (classifHISplex), which classifies the three phenotypic traits 
based on these rules and the p-value output file from the HIrisPlex-S web tool. 
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To evaluate the impact of imputation errors on phenotype classification, we conducted a comparison 
between classifications based on the genotypes from high coverage data (considered as ground truth) 
and those based on the 100 parallel imputed genotypes at various genome coverages for each ancient 
sample (Supplementary Table S8). In general, a smaller number of phenotype-associated markers tend 
to result in statistically fewer imputation errors but potentially have a greater effect on the predicted 
phenotype, whereas a larger number of phenotype-associated markers tend to lead to statistically more 
imputation errors but with less drastic changes in the phenotype classification. For both eye and hair 
phenotypes, the majority of parallel imputations yielded an exact matching phenotype classification with 
the ground truth, even at 0.1x genome coverages (Figure 2). 

 

Figure 2. The fraction of exact matching phenotypes for the three phenotypic traits. The phenotypes 
based on the genotypes of 41 HIrisPlex-S markers from the original high-coverage data were used as 
the ground truth for each sample. We compared the true phenotypes with those based on the 100 parallel 
imputated genotypes and calculated the ratio of exact matching phenotypes for each sample at each 
genome coverage. 

The fraction of exact matching skin phenotypes was lower, particularly at lower genome coverages and 
higher imputation error rates. Although the fraction of exact phenotype classifications is lower in case 
of the skin phenotype even at higher imputation error rates, a spectrum of very similar phenotypes, 
compared to the truth, is indicated. Meanwhile, the number of significantly different phenotypic 
classifications remains relatively low. Our data suggests that this is primarily due to the finer granularity 
of classification in the case of the skin phenotype. Our results demonstrate that the observed rate of 
imputation errors, even at very low genome coverages, has a relatively minor impact on the phenotype 
probability values and the classification of intermediate phenotypes. However, for recessive traits, such 
as blue eye, blond hair or very pale skin, an imputation error, even in one of the underlying homozygous 
recessive state markers, leads to darker phenotype and a more severe misclassification. While we had 
only one individual with dark blonde hair and no individuals with very pale skin among the high genome 
coverage ancient samples, five out of the 31 samples were classified as having blue eyes. In these 
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samples, the correct blue eye phenotype was predominantly indicated in the majority of parallel 
imputations at genome coverage 1x or higher. For two samples (Loschbour.DG and VK1_noUDG.SG), 
the majority of imputations yielded the correct blue eye phenotype (91% and 100% respectively) even 
at 0.5x genome coverage. In contrast, for the other three samples (vbj004_noUDG.SG, SF12.SG and 
SZ45.SG) at 0.5x genome coverage, the blue eye phenotype was misclassified as brown with a high 
probability (61% and 59%, 34% respectively, Supplementary Table S8). As expected, the 
misclassification rate of the blue eye phenotype was even higher at 0.1x genome coverage. When 
investigating the eye phenotype associated markers, our data revealed that the higher-than-expected rate 
of imputation error in latter samples was attributed to sample (population) specific reference bias of the 
rs12913832 marker (Supplementary Table S6). The three particular samples (vbj004_noUDG.SG 
/Sweden Gotland Vasterbjers Pitted WareBattleAxe/, SF12.SG /Sweden Mesolithic/, SZ45.SG 
/Hungary Langobard outlier/) likely share similar marker combinations in this locus, which are poorly 
represented in the reference dataset. In these particular samples the homozygous A/A minor allele is 
imputed as heterozygous A/C in approximately 30% of the cases, even at 1-2x genome coverages, 
signifying reference bias. 

Discussion 

The vast majority of shotgun aDNA sequences consist of low genome coverage data, typically ranging 
from 0.1x to 2x coverage. Due to the low genome coverage, not all genome positions are covered with 
reads, leading to sparse genotype data. Furthermore, the low genome coverage does not permit true 
diploid genotyping, as in most positions only one allele is (randomly) sequenced. The sparse, pseudo-
haploid genotypes are not suitable for DNA-based phenotyping because the diploid state of the 
phenotype-defining markers is required to predict the exact phenotype with high confidence. 
Consequently, despite the abundance of available aDNA sequences, because of this limitation, we have 
phenotypic information only for a handful of ancient samples. 

Imputation of the most likely haplotypes from sparse pseudo-haploid data promises to uncover the 
diploid genotypes with high confidence. While a very recent manuscript has shown that imputed diploid 
genotypes have high overall concordance even from noisy, low-quality, and low genome coverage 
ancient samples [18], there is currently no data available to assess whether this approach can reliably be 
used for the evaluation of complex phenotypic traits in ancient samples. Another challenge is that the 
entire workflow, from aligned NGS data to phenotypic classification involves numerous tools, data 
preparation and data shaping, with no single straightforward tool available to perform the entire analysis. 
Consequently, our goal was to create a user-friendly tool to facilitate the imputation-based workflow 
and to evaluate the effect of the major influencing factors on the proposed workflow. Accordingly, we 
investigated how the genome coverage, genotyping errors, sample age and the overall genome structure 
(population origin) of the sample influence imputation errors and the accuracy of phenotype prediction. 

There are different approaches used for imputation [7–9]; however, the majority of imputation tools 
infer the common haplotypes from phased, fully typed diploid references. While some approaches can 
assess common haplotypes 'on the fly' using a vast number of jointly analysed samples, these tools 
typically require very large sample sets and higher CPU resources. Unfortunately, such large, high-
quality sample sets are not yet available for ancient samples. Therefore, despite their limitations, 
reference-based imputation methods appear to be the only feasible option for analysing ancient samples. 
The imputation accuracy of reference panel-based methods inevitably depends on the reference used, as 
the representation of common haplotype configurations (series of linked markers) serve as a model to 
impute the most likely haplotypes of the test sample. The assumption that our gold standard reference 
data set represents most of the likely haplotypes in our test data clearly imposes limitations on the 
approach. Consequently, imputation can potentially yield false haplotypes/genotypes that exist in our 
reference but not in the test data. This can occur, for example, in the case of young markers that did not 
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exist yet at the given date in the ancient sample, or when the genome structure of the test individual is 
not (properly) represented in the reference dataset. 

Our results have confirmed that the most significant portion of the imputation errors could be attributed 
to genome coverage, as it directly impacts the quantity, quality and ploidy of genotype information used 
to infer the most probable haplotypes. In general, the mean genotyping error rate in the analysed ancient 
genomes was less than 5% even at genome coverages as low as 0.5x. Additionally, we demonstrated 
that the opposite genotype error was nearly non-existent at 0.5x or higher genome coverages, only 
becoming detectable at 0.1x genome coverage. Our data also confirms that even when dealing with 
partial genotype data, where only random single alleles are available due to low genome coverage, 
diploid genotypes can be imputed with high accuracy (Figure 1). 

According to our results there were only minor differences in the mean imputation error rates among 
different populations (Table 1). Previous literature has shown that the 1KG phase3 reference data set is 
less representative for populations of African origin, leading to a higher imputation error rate [9, 10, 
18]. The mean imputation error rate at 0.5x genome coverage, considering all variants in whole genome 
sequences, is expected to be 15 % or higher for genomes of African origin [18]. However, in the case of 
the analysed HIrisPlex-S markers the observed mean genotyping error was only ~5.6% at this genome 
coverage in AFR samples (Table 1). It is known that many markers associated with pigmentation are 
under selection pressure in Africa [19, 20], leading to less genetic diversity and likely better 
representation of haplotypes at these loci. This effect could contribute to the observed low imputation 
error rate of these markers in the majority of the tested African origin individuals. A notable difference 
was that AFR individuals had a considerably high imputation error rate even at 1x or 2x genome 
coverages, indicating reference bias and falsely imputed markers due to improper haplotype 
representation for a few HIrisplex-S markers in the used 1KG phase3 reference (Supplementary Table 
S6). 

When comparing the overall imputation error rates among different HIrisPlex-S markers, we observed 
that some of the markers exhibited considerably higher error rate across all genome coverages 
(Supplementary Table S5). Our analysis revealed that a portion of the imputation error is not random. 
Specifically, we identified 55 high error rate sample/marker combinations that collectively accounted 
for approximately ~47% of all imputation errors. Our results indicate that only specific samples had 
very high imputation errors at specific markers, even at the original, 2x and 1x genome coverages, while 
the rest of the samples had very low error rates for these markers (Supplementary Table S6, Table 2). 
When the reference is not representative for the haplotype combination of specific samples, we can 
expect a high deterministic imputation error. Only about 5% of all sample/rsID combinations have high 
imputation error that can be attributed to reference error. Our data indicates that, for the majority of 
imputed genotypes, the imputation error frequency caused by partial genotype information is 
consistently low, even when the genome coverage is as low as 0.5x. 

Markers of the HIrisPlex S system have moderate to high minor allele frequencies, except for those 
associated with red hair. Previous literature has indicated that imputation concordance tends to be lower 
for rare variants. Therefore, we conducted an accuracy test for the red hair variant (rs312262906), which 
has an exceptionally low minor allele frequency (MAF). In our study, using a high-quality genome of 
modern European origin, we observed a very high true positive recall rate for rs312262906. At genome 
coverage of 0.5x or higher, genotype imputation achieved 100% accuracy. Even at 0.1x genome 
coverage, this marker was correctly imputed in 80% of the parallel runs, while for the other HIrisPlex S 
markers, diploid genotypes were inferred with 100% accuracy at 0.1x coverage (Supplementary Table 
S7). 

The probabilities of each phenotype, including 3 eye colours, 7 hair and 11 skin tones, are determined 
based on the set of underlying genetic markers and HIrisPlex-S prediction models. Since these 
probabilities are contingent upon the combination of multiple markers, it is expected that in most cases, 
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the observed 1-2 imputation errors out of the 41 HIrisPlex-S markers do not significantly impact the 
phenotype probabilities and the derived phenotypic classifications. This is particularly true for 
intermediate phenotypes, where the p-values may shift slightly either direction, but this typically does 
not result in substantially different phenotype probabilities and classifications. In principle, recessive 
traits such as blue eye, blonde hair, and very pale skin are more susceptible to severe misclassification, 
as imputation error in any of the underlying markers can result in a darker (dominant) phenotype being 
assigned. Our results show that majority of imputation replicates still correctly classified blue eye at 1x 
genome coverage or higher. However, at 0.5x genome coverage three out of 5 samples with blue eyes 
experienced higher misclassification rate compared to the correct classification (Supplementary Table 
S8). Our findings revealed in these three ancient northern European samples, the primary cause of 
imputation errors and subsequent misclassification was the reference bias of the rs12913832 marker. 
While imputation errors equally impact the markers associated with darker shades, the heuristic applied 
in the phenotype classification scheme, which gives precedence to the darker tones, mitigates this issue, 
thus the classification of individuals with very dark pigmentation is less severely affected.  

Ultimately, the 31 samples were properly classified for the three phenotypic traits in the majority of 
parallel imputations, even at 0.1x genome coverages. The skin colour classification showed slightly 
larger phenotypic variability, but the predicted skin tones showed only minor differences compared to 
the truth (Supplementary Table S8). The higher incidence of observed minor differences in the indicated 
skin tone can be likely attributed to the more finely graded skin phenotype classification, which relies 
on a larger number of skin tone-associated genetic markers and involves more complex heuristic 
decision rules for deriving probabilities.  

The HIrisPlex-S system requires true diploid genotypes for each of its 41 markers to predict phenotypes. 
It is noteworthy that at 0.5x genome coverage, statistically, only half of the markers have pseudo-haploid 
genotype information available, and at 0.1x genome coverage, only 4-5 markers are covered by a single 
read. Despite this significant amount of missing information, the genotype imputations and the 
phenotype predictions were surprisingly accurate. Our analysis underscores the strength of imputation 
and demonstrates that even at these extremely low genome coverages, the applied method yields 
comparable results to phenotype predictions derived from the original high-coverage data. 

Conclusion 

In summary, we have developed an easily deployable, user-friendly, imputation-based workflow that 
incorporates the validated HIrisPlex-S system for phenotyping ancient samples. This proposed 
workflow is practical for analysing ancient whole-genome sequencing (WGS) data, even at low genome 
coverages of 0.1x to 0.5x, with the expectation of accurate classification in the majority of cases. Our 
results suggest that modern sequences with no genotyping errors and a closely matching reference lead 
to improved imputation accuracy, even when dealing with extremely low coverage. Currently, only a 
handful of ancient samples have been phenotyped due to the absence of suitable tools. Our workflow 
and the tools we've developed now enable the analysis of approximately 1500-2000 publicly accessible 
ancient WGS datasets that possess sufficient coverage to predict the phenotypes of past populations. 
Since a significant portion of the challenges stem from reference bias, it is anticipated that as reference 
genomes become enriched with high-quality data, this workflow could achieve even higher concordance 
rates.  Furthermore, as our understanding of genotype-phenotype associations continues to expand, the 
proposed workflow can be readily extended to accommodate new phenotypic markers. Additionally, 
aside from ancient samples, this framework can be employed for the analysis of degraded forensic 
samples, where the HIrisPlex-S multiple PCR-based method is hindered by short DNA fragments. 

Methods 
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Used data sets 

We selected 31 publicly available, high coverage ancient samples from the Allen Ancient Dataset 
(AADR, version V54.1) [12, 13]. Specifically, we chose samples that underwent shotgun whole-genome 
sequencing (WGS) and had genome coverage exceeding 10x. The annotations of the 31 selected 
samples, including information about their origin, and sample type can be found in Supplementary Table 
S1. The selected samples include both UDG and non-UDG treated samples, originates from various 
geolocations (including samples with EUR and AFR ancestry), and span a wide range of dates from 
41400BP to 1920CE. In all of our downstream analyses, we used the high coverage alignment files 
(BAM) available in public repositories referenced in the original manuscripts. 

Simulation of low coverage data 

We computed the total average genome coverage for each high-coverage ancient genome using 
mosdepth [21]. To simulate low genome coverage we used samtools [22] with the appropriate <view --

subsample 0.FRAC --subsample-seed INT= options to downscale the original high coverage BAM files. 
From each high coverage BAM file, we generated ten parallel downscaled 2x, 1x, 0.5x and 0.1x genome 
coverage data sets, each with different (seed 1-10) random seed. 

Preparation of reference marker sets 

We prepared GRCh37, hg19, GRCh38, hg38 reference data sets to analyse the 41 HIrisPlex-S markers. 
Using the appropriate genome coordinates, we created a BED file that contains the marker positions for 
each reference data. Using <bedtools slop= [23], we extended the genome windows around each marker 
by 2.5M base pairs in both the 5' and 39 directions. Then we merged the overlapping genome windows 
using <bedtools merge=. If the resulting genome window was smaller than 5 million base pairs in size 
(in case of markers near telomeres or centromeres), we extended the genome window in the opposite 
direction. As a result, each of the resulting genome windows were at least 5 million base pairs, ensuring 
an ample number of flanking markers around the 41 HIrisPlex-S markers. We used GLIMPSE2_chunk 
with the <–recursive= option to create a list of genome regions suitable for imputation. We used the 
biallelic SNPs of the appropriate 1KG Phase 3 reference data. As the GLIMPSE2 framework only 
imputes genotypes at positions that exist in the reference data, we manually included the genotypes of 
the single biallelic dupA variant for red hair (rs312262906) to the reference. The 
GLIMPSE2_split_reference tool was used to generate the binary reference files required to impute the 
variants in the 11 genome regions containing the 41 HIrisPlex-S markers.  

Detailed description of the aHISplex tool and workflow 

We created an easily deployable package (https://github.com/zmaroti/aHISplex) that contains all the 
required tools, customised reference data and translation tables for the different reference genomes to 
run the whole analysis workflow from aligned BAM file(s) to phenotype classification. The workflow 
consists of three steps. 

 The first step is to run the GLIMPSE2 based imputation on a single BAM file or list of BAM 

files and filter/translate the imputed genotypes of the HIrisPlex-S markers resulting in a 
HIrisPlex-S web tool compatible data file. The tool also saves all the underlying raw analysis 
files and the log files of GLIMPSE2 phasing and ligation.  

 In the second step the 8HISplex41_upload.csv9 output file generated in the first step (conforming 
with the required HIrisPlex-S upload data file format) has to be uploaded and analysed at the 
official https://hirisplex.erasmusmc.nl/ website using the HIrisPlex-S batch upload phenotyping 
web service. 

 In the third step the downloaded results file can be processed by the classifHISplex tool 
(included in our software package) to evaluate the resulting phenotype probabilities and classify 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 4, 2023. ; https://doi.org/10.1101/2023.11.02.565295doi: bioRxiv preprint 

https://github.com/zmaroti/aHplex
https://hirisplex.erasmusmc.nl/
https://doi.org/10.1101/2023.11.02.565295
http://creativecommons.org/licenses/by-nc-nd/4.0/


each analysed sample for the three phenotypic traits based on the rules described in the 
HIrisPlex-S manual [17]. 

The tools of the aHISplex software package are written in golang and a shell script is included as a glue 
to call and run the public (GLIMPSE2_phase, GLIMPSE2_ligate, bcftools and optionally GNU parallel 
tool) and the included transToHISplex tool with the appropriate parameters. The whole analysis 
workflow (except the web tool part) can be performed with two commands providing the BAM file(s) 
and the output of the web tool. The github page contains a detailed README for the dependencies, 
installation and usage of the package. 

Assessment of aHISplex performance on the HIrisPlex-S system 

We downscaled each sample for each genome coverage in ten parallel runs with different (1-10) random 
seeds. Thus, the available genotype information (how many reads and at which ratio the alleles are 
represented) for the imputed markers was different in each downscaled data set. Furthermore, even from 
the same information, based on the allele counts and haplotype probabilities in the test sample and the 
most probable haplotype from the reference the predicted genotypes, multiple different solutions may 
exist (with different probabilities) leading to different imputed genotypes. Thus, we performed ten 
different imputations using each ten parallel downscaled data for each genome coverage and sample, 
resulting in 10 (imputation parallels) * 10 (downscale parallels) * 5 (different genome coverages) 
analysis for each of the 31 analysed sample. 

We genotyped the high coverage original BAM files based on the allele pileup (samtools mpileup) at 
genome positions of the 41 HIrisPlex-S markers. Using the genotypes, the strand and test allele 
information of the HIrisPlex-S markers, we calculated the allele counts for each marker and sample 
(Supplementary Table S2) and used this information as ground truth for the assessment of the imputation 
genotype concordance. 

For the 10x10 parallel imputation-based genotype predictions we calculated the genotype concordance 
with the ground truth. We counted total differences including all genotypes that were imputed 
differently, and we also counted the gross error situation, where an HOM ALT truth was imputed as 
HOM REF (or the opposite). Furthermore, since imputation can result in different genotypes from the 
same input data, we also calculated the count/frequency of minor alleles (imputation variability). 

Using the 10x10x5 imputation based allele counts of the 41 HIrisPlex-S markers for each sample, we 
run the phenotype probability calculation on the HIrisPlex web server to obtain the probability scores 
of the predicted hair, eye and skin colours (Supplementary Table S3). 

We used the included classifHISplex tool to classify the phenotype probabilities to eye, hair and skin 
colour shades based on the rules defined in the <HIRISPLEX-S, HIRISPLEX & IRISPLEX Eye, Hair 
and Skin colour DNA Phenotyping web tool USER MANUAL= [17]. 
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