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Abstract 

Maximum lifespan is an intrinsic characteristic of a biological species and is defined as the longest 

time an individual of a species has been reported to survive. By analyzing 15K samples derived 

from 348 mammalian species representing 25 taxonomic orders we previously identified CpG 

methylation sites associated with maximum lifespan. Here we present accurate DNA methylation-

based (DNAm) predictors of maximum lifespan (r=0.89), average gestation time (r=0.96), and age 

at sexual maturity (r=0.85). Our DNAm maximum lifespan predictor indicates a potential innate 

longevity advantage for females over males in 17 mammalian species such as humans, red deer, 

and cattle. The DNAm maximum lifespan predictions do not vary significantly by caloric restriction 

and partial reprogramming. Genetic disruptions in the somatotropic axis, which includes growth 

hormone, IGF-1, and their related receptors, have an impact on DNAm maximum lifespan only in 

select mouse tissues. Cancer mortality rates in major mammalian orders show no correlation with 

our epigenetic estimates of life history traits. The DNAm maximum lifespan predictor does not 

detect variation in lifespan between individuals of the same species, such as between the breeds 
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of dogs. We also present the first prototypes of accurate pan mammalian DNAm predictors of sex 

and tissue type. 

Collectively, our findings indicate that maximum lifespan is determined, at least in part, by an 

epigenetic signature that is an intrinsic property of each species and is distinct from the signatures 

that relate to individual lifespan, which is unaffected by interventions influencing the mortality risk 

of individuals.  

 

INTRODUCTION 

Maximum lifespan varies dramatically across mammalian species: the cinereus shrew 

lives less than 1.9 years while bowhead whales can live for at least 211 years (1). The species 

appear to exhibit a maximum lifespan 3 an intrinsic characteristic of a biological species defined 

as the longest time an individual of a species has been reported to survive. However, the 

molecular mechanisms that determine it remain poorly understood (2, 3), despite prior studies 

correlating maximum lifespan with specific molecular processes and life history strategies (4-6). 

Many have suggested that epigenetic mechanisms play a role in determining lifespan (7-15). 

However, prior studies of cross-species variation in methylation patterns suffer from low sample 

size and heterogeneity in data acquisition methods. 

 

To facilitate rigorous methylation studies of life history traits, the Mammalian Methylation 

Consortium generated an unprecedented and homogeneous data set of DNA methylation at well 

conserved loci across 348 mammals using a tailor-made DNA methylation measurement platform 

(16). Other reports by the Consortium have described pan-mammalian age-related methylation 

changes, epigenetic aging clocks, phylo-epigenetic trees and unsupervised machine learning 

approaches that were brought to bear on the analyses of this dataset (17, 18). In recent 

publications by our Mammalian Methylation Consortium, we released a DNA methylation dataset 
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(n=15,456 tissue samples) (17, 18). These prior investigations uncovered individual cytosines and 

modules that correlate with maximum lifespan, gestation time, and age at sexual maturity. 

 

In this study, we pivot our analytical approach. Rather than seeking individual CpGs tied to 

maximum lifespan and other life-history traits, we develop regularized multivariate regression 

models that estimate maximum lifespan and other characteristic traits of species. Drawing on 

statistical terminology, our previous work focused on univariate analysis (specifically, the selection 

of CpGs) and CpG modules (18). In contrast, here we utilize multivariate regression models to 

predict maximum lifespan (the dependent variable), based on highly conserved cytosines (the 

independent variables or covariates) simultaneously. Using this approach, we successfully 

developed methylation-based predictors of time-related life history traits: maximum lifespan, 

gestation time, and age at sexual maturity across mammalian species. Next, we characterized 

these new epigenetic biomarkers with regards to a variety of conditions ranging from demographic 

characteristics (age, sex, human mortality risk), and interventions that modulate murine lifespan. 

 

RESULTS 

DNA methylation data from 348 mammalian species 

Leveraging our publicly accessible data from the Mammalian Methylation Consortium, we focused 

on highly conserved cytosine methylation profiles from n = 15K DNA samples. These samples 

spanned 59 unique tissue types and originated from 348 distinct mammalian species across 25 

taxonomic orders. In total, the Mammalian Consortium profiled 25 of the 26 mammalian taxonomic 

orders as catalogued in the Mammal Diversity Database (Version 1.8, 2022), with marsupial 

moles being the only exception. 
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These methylation profiles were obtained using the mammalian methylation array, a tailor-made 

DNA array developed for the consortium's objectives (16). This array efficiently gauges the 

methylation levels of roughly 36,000 highly conserved CpG sites. These CpGs are flanked by 50 

base-pair DNA sequences that are remarkably conserved across various mammalian species. 

 

Universal predictors of sex and tissue type 

The mammalian array-generated DNA methylation data proves highly effective in accurately 

classifying sample species, sex, and tissue. This is supported by our random forest predictors, 

which boast an out-of-bag accuracy rate of over 99% (table 1). Importantly, we crafted universal 

sex predictors grounded in CpG methylation levels that are applicable to all mammalian species, 

barring marmosets (table 1). It's widely recognized that mosaicism in marmosets hinders the 

creation of methylation-based sex predictors for them (19). We previously postulated that the 

inability to build methylation-based predictors of sex in marmosets is due to their nature as 

hematopoietic chimeras. Specifically, littermates in marmosets exchange stem cells through 

placental anastomoses during development, as discussed in (19).  

 

Our universal tissue predictors, based on methylation, are likely influenced by species variations, 

potentially making them less precise than the universal sex predictors. While we offer these tissue 

predictors to the community as potential tools for identifying human platemap errors, we advise 

users to be aware of the potential species-related confounding factors associated with these 

predictors. 

 

Multivariate predictors of life history traits 

Since we aimed to focus on species traits, we first removed the confounding effect of sex and 

tissue type by averaging across these variables. Specifically, we calculated the mean 
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methylation value for each CpG within each species, producing a summarized dataset in which 

each data point corresponds to a species' average methylation level per CpG (table S1). In 

addition to this overarching dataset, we curated two more specialized datasets: one stratified by 

both species and tissue type and another that exclusively focuses on younger samples that 

were derived from animals that are both not yet sexually mature and under 5 years of age. 

 

We employed three distinct penalized regression models to predict the log-transformed values of 

maximum lifespan, gestation time, and age at sexual maturity for each species. The trait values 

for these species were derived from the latest version of the anAge database (2, 18). For the 

convenience of our readers, we have included these values in table S1 and table S2. The 

resultant epigenetic predictors showcased high accuracy as evidenced by the leave-one-species-

out (LOSO) or leave-one-clade-out (LOCO) cross-validation. For instance, the predicted log 

maximum lifespans aligned closely with those recorded in anAge, exhibiting a Pearson9s 

correlation of R = 0.89 (see Fig. 1a,b). An alternative method for assessing predictive precision 

entails dividing the data into training and test subsets. Utilizing our 70%-30% training-test random 

partitioning of species, we observed comparably robust correlations for the log maximum lifespan 

in both subsets (training set, R = 0.98, Fig. 2a; test set, R = 0.88, Fig. 2a,b). 

 

Shifting our focus to other life history traits, the actual log gestation time4which is inherently more 

straightforward to determine than maximum lifespan4manifested an even higher correlation with 

its predicted counterpart (R = 0.96, Fig. 1c). Intriguingly, the epigenetic prediction of (log-

transformed) age at sexual maturity presented a somewhat lower correlation of R = 0.85 with 

recorded data (Fig. 1d). This discrepancy might stem from the fact that the age at sexual maturity 

is considerably more variable than gestation time, being influenced by factors like food availability 

and varying ecological conditions. 
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We will refer to the predicted maximum lifespan, expressed in log years, as either the epigenetic 

maximum lifespan or DNA methylation (DNAm) maximum lifespan. Analogous naming 

conventions will apply to other DNAm-derived estimates of life history traits. The final life history 

predictor coefficients, which were trained on all available samples, and the corresponding CpG 

annotations are summarized in table S5-S7 (also available as an R package on Github: 

caeseriousli/MammalianMethylationPredictors). 

 

Chronological age versus epigenetic maximum lifespan 

We carried out two analyses to study the relationship between the life history traits and 

chronological age of the individuals of species sampled. First, we built a separate maximum 

lifespan predictor using only samples obtained from animals that were younger than their species' 

average age of sexual maturity and younger than 5 years, and this had a considerable correlation 

with predicted maximum lifespan (R = 0.68, Fig. S1), even though the restriction of age resulted 

in fewer species (n = 122) being available for this analysis. The predictor's remarkable accuracy 

in long-lived species (for instance, those with a maximum lifespan exceeding 20 years) indicates 

that the determinants of maximum lifespan can be discerned from DNA samples obtained even 

from relatively young individuals. 

 

Second, we utilized the finalized lifespan predictor model on individual animal samples. While the 

predictor was designed to estimate species-level lifespan on a logarithmic scale, we used the 

coefficients to predict the lifespan of individual samples. Our findings indicate that the predicted 

maximum lifespans for individual samples can vary and, in certain species such as the naked 

mole rat skin, human blood, sheep ear, and cat blood, correlate significantly with chronological 

age (Fig. S2). In a similar vein, gestation duration and age of sexual maturity correlate significantly 

with age in select species tissue strata (Fig. S3, Fig. S4). 
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Overall, our analysis reveals that epigenetic indicators of life history traits, when confined to a 

specific species and tissue, do not have a consistent correlation with age. 

 

Tissue type can play a role 

In the preceding section, we introduce epigenetic predictors for life history traits, derived from 

mean methylation levels averaged across species and encompassing all available tissue types. 

As these predictors disregarded specific tissue types, we term these as tissue-agnostic life-history 

predictors.  

 

To delve deeper into the influence of tissue type on lifespan predictions, we applied our epigenetic 

predictors4specifically for maximum lifespan, gestation duration, and age of sexual maturity4to 

selected species with data from various tissues (Fig. S5, Fig. S6, and Fig. S7).  

 

The epigenetic maximum lifespan estimates do reveal disparities between certain tissues. For 

instance, in human samples, distinct epigenetic lifespan predictions emerge (table S3): Blood 

and epidermis yield elevated lifespan predictions of 98.1 and 94.6 years, respectively, while skin 

and cerebral cortex produce estimates of 79.1 and 51.1 years, respectively. In contrast, 

embryonic stem cells (34.4 years), iPSC cells (25.6 years), endothelial cells (23.9 years), and 

skeletal muscle (35.4 years) present lower lifespan predictions (table S3). 

 

Interestingly, the trend of blood samples reflecting the highest epigenetic maximum lifespan is 

consistent across various species (Fig. S5). For instance, in species ranging from humans to 

brown rats, blood samples consistently indicate elevated epigenetic maximum lifespan 

predictions. 
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In horses, we've observed that blood results in elevated lifespan predictions, whereas the ovaries 

and adrenal cortex yield lower estimates (Fig. S5). In mice, blood, LSK Progenitor Hematopoietic 

Stem cells, and bone marrow macrophages stand out with elevated predictions, whereas other 

tissues align closely. Both beluga whales and rhesus macaques show elevated lifespan estimates 

in blood (Fig. S5). In summary, blood samples consistently yield higher epigenetic maximum 

lifespan predictions across a variety of species. A detailed overview is available in table S3. The 

biological significance of these disparities warrants further investigation. 

 

We briefly describe a strategy for building epigenetic predictors of life history traits that mitigate 

the confounding influence of tissue types. A predictor for maximum lifespan can be built based on 

mean methylation levels in strata formed by species and tissue type, termed tissue-aware life 

history predictors. In this setup, every species is represented through multiple data points 

corresponding to different tissues collected from the same species. Notably, these predictors, 

rooted in species-tissue aggregated data, are highly accurate (Fig. S8). In addition, maximum 

lifespan, gestation time, and age at sexual maturity predictors produce similar tissue-stratified 

results (Fig. S9, Fig. S10, Fig. S11). The predictor coefficients and corresponding CpG 

annotations are summarized in table S8-S10. 

 

In our subsequent discussions and the remainder of the article, we will focus on tissue-agnostic 

predictors for life history traits. 

 

Superior Performance of DNAm-Based Predictors Over Phylogeny-Based Models 

While DNA methylation levels are influenced by genetics, our DNAm-based lifespan predictor 

seems to transcend mere DNA sequence variation influenced by phylogenetic relationships. This 

assertion is supported by two distinct analyses. 
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First, we employed elastic net regression models to predict maximum lifespan using both CpG 

methylation data and taxonomic order indicators. Interestingly, the model exclusively selected 

CpGs, indicating their superior explanatory power over taxonomic variables in lifespan variation. 

Second, we compared the accuracy of the epigenetic lifespan predictor against k-nearest 

neighbor (k-NN) regression models, which base predictions on phylogenetic tree branch lengths. 

At its simplest, with K=1, the k-NN model predicts a species' lifespan based on its closest 

taxonomic neighbor. Upon evaluating the correlation between predicted and actual values, the 

phylogeny-driven k-NN model slightly trails the DNAm predictor, especially under a leave-one-

species-out evaluation. This is primarily because many mammalian species in our dataset exhibit 

lifespans akin to their taxonomic neighbors (Fig. S12a,b, table S1). This trend is also pronounced 

at the taxonomic family level (Fig. S12c,d). However, the k-NN model's performance diminishes 

under a more rigorous leave-one-clade-out (LOCO) evaluation, which tests the model's ability to 

predict lifespan of taxonomically diverse species. While k-NN models (with K=1) achieved a 

moderate correlation of R=0.62 (Fig. 2d, Fig. S13), they lag behind the methylation-based 

predictor, which boasts a correlation of R=0.73 (Fig. 2c, Fig. S12). k-NN models with K=2 and 

K=3 neighbors yielded correlations of R=0.62 and R=0.57, respectively. A detailed examination 

of the residuals highlights the k-NN model's tendency to make generalized predictions for larger 

taxonomic orders, often deviating significantly from actual values (Fig. S13). 

 

In conclusion, when assessed through LOCO cross-validation, DNAm-based predictors distinctly 

outshine their phylogeny-based counterparts. The DNAm predictor's capability to accurately 

estimate lifespan across diverse taxonomic orders underscores its potential to capture aspects of 

mammalian lifespan that transcend mere phylogenetic relationships. 
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Sex differences in predicted lifespan 

We aimed to investigate any potential disparities in maximum lifespan predictions across sexes. 

Using our final regression model, based on average methylation data per species and designed 

to predict species-level lifespan on a logarithmic scale, we predicted individual sample lifespans. 

Predictions from female tissues showed a striking alignment with those from male tissues, with a 

strong correlation of R = 0.99 on a log scale. Most species showed consistent epigenetic 

estimates of maximum lifespan in female and male samples (table S4, column <Female 3 Male 

Significant Tissues,= where a <+= denotes Female minus male mean predicted DNAm lifespan is 

positive with an unadjusted p-value =< 0.01, <-= vice versa, and <.= denotes a p-value > 0.01). 

Stratifying by tissue type, we observed statistically interesting consistent sex difference in 

epigenetic maximum lifespan (a more conservative two-sided unadjusted Wilcoxon rank sum test 

p-value < 0.01) (20) in only 18 species (Fig. 2e). This means we only consider it statistically 

interesting when, 1. at least one tissue group within the species exhibits statistically interesting 

(two-sided unadjusted Wilcoxon rank sum test p-value =< 0.01) female-male differences 2. these 

differences must be in the same direction, for example, the female mean DNAm lifespan being 

greater than that of the males. In other words, we look for species for which one sex is consistently 

predicted to have longer DNAm lifespan than the other. Females were predicted to have a longer 

maximum lifespan than males in 17 of the 18 species, including humans (Fig. 2e, table S4). The 

one exception was blood from harbor seals. Across all species, females have a 1.8% longer 

predicted epigenetic maximum lifespan than males of the same species. 

 

Adult weight is not a driver of prediction accuracy 

Across species, there is a notable correlation between maximum lifespan and average adult 

weight (body mass), as depicted in Fig. S14a. This correlation has been well-documented in prior 

studies (2). Given this, we evaluated whether the high accuracy of epigenetic lifespan predictors 
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could be influenced by the average adult weight. Our findings from two distinct analyses suggest 

otherwise. 

In the first analysis, we focused on small animals, specifically those with an average adult weight 

of less than 150 grams. Despite a negative correlation between adult weight and maximum 

lifespan in these species (R = -0.28, Fig. S14c), the epigenetic predictor of maximum lifespan still 

showed a strong correlation with observed values (Pearson correlation R = 0.43, P = 6.2x10-7, 

Fig. S14b). In the second analysis, encompassing all animals, a multivariate regression model 

(with the dependent variable being the log of maximum lifespan, indicated that (log transformed) 

adult weight (Wald test P = 1.3x10-6) is a less significant covariate than (log-transformed) 

epigenetic maximum lifespan (P < 2x10-16). This shows that adult weight only weakly mediates 

the effect of epigenetic maximum lifespan on actual maximum lifespan. This observation is 

reinforced by a correlation value (R) of 0.54 between our model's predictions, after weight 

adjustments, and the actual maximum lifespan (Fig. S14d). In conclusion, both analyses 

consistently show that the epigenetic maximum lifespan provides predictive information that 

extends beyond adult weight. 

 

Cancer mortality risk across mammals 

Distinct variations in cancer mortality rates across major mammalian orders have been 

documented (21). Notably, there exists a pronounced negative correlation between mammalian 

cancer risk and observed gestation time (Pearson r=-0.37, p=0.0031, Fig. S15). Considering the 

notable correlation among gestation time, maximum lifespan, and age at sexual maturity on a 

logarithmic scale (Fig. S15a-b), one might theorize that one or more of these life history traits 

could predict cancer mortality risk in mammals. However, this theory is challenged by the data: 

neither maximum lifespan (Fig. S15d) nor average age at sexual maturity (Fig. S15e) exhibits 

this anticipated relationship. The only significant correlation with cancer mortality risk is 

observed for gestation time and its epigenetic counterpart (r=-0.41, p=0.00092, Fig. S15i). 
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Further, upon adjusting for observed values, no significant correlation was found between 

epigenetic predictions of life history traits and mammalian cancer risk (Fig. S15k-m). 

Collectively, these findings indicate that the epigenetic markers predicting life history traits, such 

as gestation time, do not inherently offer predictive information into mammalian cancer risk 

beyond the observed life history values. This result is consistent with the concept of Peto9s 

paradox where there is no correlation between cancer rates and either maximum lifespan or 

body mass (21). 

 

Weak effect of mutations in the somatotropic axis 

The somatotropic axis, encompassing growth hormone, IGF-1 levels, and their respective 

receptors, is a focal point in aging and longevity research (22). Growth hormone receptor knock-

out mice (dwarf mice) typically exhibit an extended maximum lifespan (23, 24). Intriguingly, a 

full-body growth hormone receptor knock-out (GHRKO) mouse holds the record of nearly 

reaching a lifespan of five years (22). In our study, we sought to determine if decreased 

GH/IGF-1 pathway activity influences the epigenetic estimates of maximum lifespan across 

three distinct mouse models. It should be noted that Snell dwarf mice and full-body GHRKO 

mice show extended maximum lifespans (25-27). On the other hand, liver-specific GHRKO 

mice, despite exhibiting reduced serum IGF1 levels, do not show a corresponding increase in 

maximum lifespan (28, 29). 

 

Our observations indicate that both the full-body GHRKO and liver-specific dwarf mice show a 

notably extended epigenetic maximum lifespan, particularly in samples from liver and kidney 

(Fig. 3). However, such association was not observed in samples from blood, cerebral cortex, 

hippocampus, spleen, or tail. Similarly, we did not detect any significant association across 

tissues in Snell dwarf mice. Given these observations, two potential inferences emerge. Either 

manipulation within the somatotropic axis (comprising growth hormone, IGF-1 levels, and their 
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associated receptors) has only a weak effect on epigenetic lifespan estimators in select tissues, 

or the epigenetic predictor of maximum lifespan is insufficiently precise when utilized in mouse 

studies. 

 

Equivocal effect of caloric restriction and high-fat diet on epigenetic lifespan  

Caloric restriction has been documented to extend the maximum lifespan in approximately one-

third of all mouse strains. We aimed to gauge the influence of caloric restriction on the 

epigenetic estimates of maximum lifespan from mouse liver samples. Surprisingly, in four of the 

five studies, no significant (when assessed with a relaxed, unadjusted Type I error rate control 

of 5%) impact on epigenetic maximum lifespan in murine liver was observed (Fig. 3). Only one 

study presented the expected association between caloric restriction and a prolonged maximum 

lifespan (Fig. 3). 

 

On the other hand, high-fat diets have been identified as factors that both shorten murine 

lifespan and accelerate epigenetic aging (30). Consistent with this, our observations did confirm 

the anticipated link between a high-fat diet and a reduction in epigenetic maximum lifespan (Fig. 

3). In sum, the outcomes from the application of epigenetic maximum lifespan indicators to 

mouse interventions, which inherently influence mouse longevity, are somewhat equivocal.  

 

Cellular reprogramming based on the Yamanaka factors 

The Yamanaka factors, comprising Oct4, Sox2, KLF4, and Myc, are known for their role in full 

reprogramming (resulting in induced pluripotent stem cells) as well as in partial reprogramming of 

somatic cells (31-36). We tested whether reprogramming affects epigenetic maximum lifespan 

using publicly accessible data from both complete and partial reprogramming studies conducted 

on human and mouse cells. 
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Our findings (Fig. 4) show the maximum lifespan predictor outcomes for various cellular 

reprogramming treatment groups. Notably, human dermal fibroblasts subjected to a full 

reprogramming course based on OSKM transduction exhibited a slightly increased (and 

statistically significant p<0.05) epigenetic maximum lifespan after 20 days (see Fig. 4a). 

Meanwhile, in a partial reprogramming experiment (GSE165179) (37), the treatment group 

displayed a marginally reduced mean predicted maximum lifespan. However, the disparity 

between the groups did not reach a statistically significant level (Fig. 4b). 

 

We note that our examination of tissue and cell types did not yield conclusive evidence indicating 

a significant divergence in the epigenetic maximum lifespan between embryonic stem cells or iPS 

cells and primary cells (see fig. S5). Our findings are somewhat inconclusive. Although full 

reprogramming in human dermal fibroblasts hints at an increase in epigenetic maximum lifespan 

after 20 days of OSKM administration, other experiments were unable to confirm this effect. We 

discuss caveats surrounding the measurement platform below. 

 

Human epidemiological cohort studies 

We utilized methylation-based estimators to assess the maximum lifespan in blood samples 

sourced from participants of the Framingham Heart Study (n=2544) (38)and the Women's Health 

Initiative (n=2107) (39, 40). Given that these samples were processed using a different 

methylation platform (the human Infinium 450K array), we employed the Array Converter software 

to convert values from the mammalian methylation probes (18). We observed no significant 

correlations between the predicted maximum lifespan and the actual age of participants across 

three distinct racial/ethnic groups (Fig. 5a-d). It's important to highlight that this finding contrasts 

with our previous analysis, where we identified a correlation between age and epigenetic 

maximum lifespan in humans. These discrepancies likely arise from variations in measurement 
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platforms. Our earlier analyses employed the mammalian array, whereas the epidemiological 

cohort studies utilized the human Illumina array. 

 

Our analysis reveals no significant associations with other demographic variables: in blood 

samples, the DNAm-based maximum lifespan does not show a significant association with sex 

(p=0.55, Fig. 5e), racial/ethnic group (p=0.087, Fig. 5f), human mortality risk (Fig. 5g), body mass 

index (p=0.069), smoking pack years (Fig. 5i), or age at female menopause (Fig. 5j). The Mini-

Mental State Examination (MMSE) is a diagnostic tool for cognitive impairment and dementia. 

The MMSE evaluates various cognitive domains. A higher score on the MMSE indicates better 

cognitive functioning. We noted a marginally significant negative correlation (p=0.025, Fig. 5k) 

between MMSE and age-adjusted DNAm lifespan. However, this significance disappears after 

accounting for multiple comparisons. 

 

We delved into the relationship between our methylation-based lifespan estimators and several 

dietary and health-related biomarkers (Fig. S16). This comprehensive assessment covered 59 

variables: 27 from self-reported dietary inputs, 9 from blood-based dietary measurements 

(including mean carotenoid levels, indicative of vegetable and fruit consumption), 17 clinical 

indicators including metabolic characteristics, central adiposity, inflammatory markers, leukocyte 

telomere length, cognitive performance, lung function. We also analyzed lifestyle and 

demographic variables (diet, exercise, education, income). Upon analysis, neither the epigenetic 

estimate of maximum lifespan nor its age-adjusted counterparts showed any significant 

association with the biomarkers after adjusting the analysis for multiple comparisons (Fig. S16). 

The inconclusive results suggest that lifestyle behaviors do not profoundly influence the maximum 

bounds of human lifespan, as measured by epigenetic predictors. However, it is essential to 

highlight a significant limitation in our analysis: the human data was sourced from a different 

methylation array platform and was heavily dependent on imputation methods. Future research 
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should revisit these findings using data from methylation platforms that assess the highly 

conserved CpGs on the mammalian array. 

 

Evaluation in different dog breeds 

Dog breeds display a remarkable variability in lifespan, with certain breeds outliving others by as 

much as two-fold. We assessed our epigenetic predictor of maximum lifespan using 742 individual 

blood samples sourced from 93 distinct dog breeds (41). However, our canine dataset presented 

two primary challenges. First, the representation of dogs within each breed was inconsistent, 

ranging from as few as 2 samples for the English Setter to as many as 95 for the Portuguese 

Water Dog. Second, there was a disparity in age distributions across breeds; for example, the 

relative ages R for the Otterhound breed spanned from 0.06 to 0.14, while for the Beagle, R 

ranged from 0.06 to 0.73 (41). To average out these inconsistencies, we took the average of 

maximum lifespan predictions for each breed. When applying the mammalian maximum lifespan 

predictor to blood samples from 90 diverse dog breeds (Fig. 6), we did not observe a significant 

correlation between the predicted mammalian maximum lifespan and either the breed's 

average/maximum lifespan or its average weight. Overall, these results suggest that the 

epigenetic predictor of mammalian lifespan is not effective in predicting breed-specific lifespans 

in dogs. 

 

Since the predicted maximum lifespan for various dog breeds showed only minor variation (Fig. 

6), these results suggest that epigenetic maximum lifespan across dog breeds aligns closely with 

that of wolves. Thus, epigenetic maximum lifespan predictor remains unaffected by recent 

changes in dogs due to human selection and continues to reflect the lifespan of ancestral dog 

species. 
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DISCUSSION 

Drawing from the comprehensive dataset of our Mammalian Methylation Consortium, we 

developed multivariate predictors that adeptly discern maximum lifespan and associated life 

history traits. Notably, our epigenetic estimator demonstrated heightened precision for gestation 

duration (R = 0.96) compared to maximum lifespan (R = 0.89). This discrepancy might be 

attributed to the inherent challenges in procuring accurate maximum lifespan data across a 

diverse array of species. 

 

In terms of sexual dimorphism in lifespan predictions, for the majority of species, there was a 

congruence in the predicted maximum lifespan between sexes. However, a distinct trend 

emerged in 17 species, including humans, where females displayed a longer predicted lifespan, 

with harbor seals being a notable exception. This observation resonates with previously published 

studies that underscores the longevity advantage of females (42-44). 

 

Our epigenetic markers' predictive prowess seems to transcend mere phylogenetic correlations, 

indicating their broader applicability. Interestingly, neither chronological age nor typical adult 

weight appeared to markedly sway the accuracy of our life history trait predictors. In numerous 

species, there was a conspicuous absence of correlation between chronological age and the 

epigenetic lifespan. 

 

The actual maximum lifespan of humans, at 122.5 years, exceeds our epigenetic maximum 

lifespan estimates. For humans, the highest epigenetic lifespan values were observed in blood 

and epidermis samples, at 98.1 and 94.6 years respectively. This trend of elevated epigenetic 

lifespan in blood samples is consistent across various species, from humans to brown rats. We 

did not find definitive evidence suggesting that the epigenetic maximum lifespan of embryonic 

stem cells or iPS cells significantly diverges from that of somatic cells. The biological significance 
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of cell type and tissue-specific variations in epigenetic lifespan predictions warrants further 

investigation. 

 

Epigenetic maximum lifespan showed little variation across dog breeds indicating that it is not 

affected by recent genetic selection enforced on dogs and may represent the ancestral state of 

the dog as a species.  

 

An independent analysis centered on CpG density revealed a compelling linkage with maximum 

lifespan (10). This underscores the combined importance of sequence information and 

methylation levels in predicting maximum lifespan.  

 

Analysis of murine lifespan interventions showed that only growth hormone knockouts showed 

extended epigenetic lifespan in liver and kidney tissues, while other tissues and long-lived strains 

did not influence epigenetic maximum lifespan. strains. Similarly, caloric restriction did not affect 

epigenetic maximum lifespan.  

 

Our analysis of human cohorts, despite its comprehensiveness, did not definitively determine the 

effects of lifestyle on epigenetic maximum lifespan. One possible constraint might arise from using 

different methylation array platforms for data gathering (specifically, the human Illumina array as 

opposed to the mammalian methylation array). For more accurate insights in future human 

epidemiological cohort studies, it would be beneficial to profile the highly conserved CpGs using 

the mammalian methylation array. 

 

Taken together our results suggest that species maximum lifespan is determined, in part, by 

epigenetic signature that is largely independent of sex, body mass, calorie restriction, or other 

lifestyle factors. This signature may be an intrinsic property of each species that is difficult to 
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change. Interestingly, only growth hormone knockout and full reprogramming had some effect on 

epigenetic maximum lifespan. It would be interesting to identify novel interventions that affect 

epigenetic maximum lifespan as they may be the key to achieving large lifespan differences 

observed between species.  

 

METHODS 

DNA methylation data 

We used existing data from our Mammalian Methylation Consortium that were published 

previously (18). All data were generated using the mammalian methylation array 

(HorvathMammalMethylChip40) (16) which provides high sequencing depth of highly conserved 

CpGs in mammals. Nearly 36k probes (cytosines) on the array exhibit high levels of sequence 

conservation within mammalian species (16). The subset of species for which each probe is 

expected to work is provided in the chip manifest file which can be found at the NCBI Gene 

Expression Omnibus (GEO) as platform GPL28271, and on our Github webpage. The SeSaMe 

normalization method was used to define beta values for each probe and to calculate detection 

p-values (45).  

 

Data description 

We analyzed methylation data from 348 mammalian species representing 25 out of 26 taxonomic 

orders (table S2, Fig. 1). The only order not represented was the marsupial order 

Peramelemorphia. DNA was derived from 59 different tissues and organs including blood, skin, 

liver, muscle, and brain regions (table S1).  
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Life history traits and AnAge database 

The high accuracy of the epigenetic estimator of maximum lifespan is a testament to the 

success of a decade-long effort of biologists and the anAge database (2) to establish this 

elusive phenotype. For several species, maximum lifespan was not available in anAge. For 

select species, we used a K=1 nearest neighbor predictor to impute values. Therefore, we 

limited our comparative analysis to species for which this value was available and did not 

require imputation. To enhance the reproducibility of our findings we include our updated 

version of the anAge database (2) (table S1).  

 

Multivariate estimators of maximum lifespan 

The regression coefficients from the final predictor, that is, the full model trained on all available 

species-level data for extrapolation purposes, are reported in table S5. For most species, 

relatively few animals informed the determination of maximum lifespan, which may bias this life 

history trait (46, 47). To account for the fact that the maximum lifespan of humans and mice was 

established based on many studies while the maximum lifespan of other mammalian species was 

based on fewer animals, we corrected the maximum lifespan value of the remaining species by 

multiplying it by 1.3. This adjustment step assumes that each maximum lifespan estimate reported 

in anAge underestimates the true value by 30 percent in all species except for humans and mice. 

We applied the same adjustment step in our universal mammalian clock project (18). In addition, 

in the final model fitted to all species as a training set, we calibrated the predictor by the mean 

and standard deviation, similar to those of biomarker, to match those of the observed lifespan 

(48).  

 

The empirical distributions of mammalian life history traits in general, as well as they are 

represented in our dataset, are highly skewed towards the larger values. This is due to the fact 

that few species (such as humans and bowhead whales) live much longer than the majority of 
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mammal species. Therefore, to maintain statistical integrity regarding regression model fitting, 

and to counteract uneven species weighting by the numerous short-lived species, we employed 

a log-transformation step to all three life history traits studied here. 

 

We used elastic net regression to build different multivariate predictors of maximum lifespan, 

gestation time, and age at sexual maturity (49). To build a model on the basis of CpGs that are 

present/detectable in most species, we restricted the analysis to CpGs with significant median 

detection p-values (false discovery rate<0.05) (50) in 85% of the species. This resulted in a lower-

dimensional dataset consisting of 17,032 CpGs.  

 

We employed three strategies for building maximum lifespan predictors. The first strategy ignored 

tissue type. Here, all tissue samples from a given species were averaged resulting in a single 

observation per species. To arrive at unbiased estimates of the predictive accuracy of lifespan 

and other predictors, we used a leave-one-species-out (LOSO) cross-validation analysis that 

iteratively trained the predictive model on all but one species. Next, the predictor was applied to 

the observations from the left-out species. By cycling through the species, we arrived at LOSO 

estimates for each species. The second strategy formed average values for each stratum defined 

by tissue type and species. For example, this analysis formed an average value for human blood 

(considered as one stratum). The second approach allowed us to study the influence of tissue 

type on lifespan predictions. This second strategy shows similar prediction correlations in all three 

life history traits (Fig. S8).  

 

Third, we also conducted a leave-one-clade-out analysis as described in the following. 

Conducting a comprehensive leave-one-taxonomic order out cross validation presented 

challenges. The primary issue was the unequal distribution of animals across taxonomic orders; 

for instance, Rodentia comprised 27% of all species, while many orders had fewer than 3% 
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(table S2). To circumvent this, we adjusted the leave-one-order-out analysis. In larger 

taxonomic orders with over 20 species (like Rodentia, Artiodactyla, Chiroptera, Primates, 

Carnivora, and Eulipotyphla), we left out all species except two, representing the minimum and 

maximum lifespan. These two species functioned as a benchmark, tasking the predictor to 

estimate the lifespan for the entire taxonomic order based on limited data. Conversely, smaller 

taxonomic orders were left out completely as test sets. For instance, orders such as 

Dasyuromorphia, Microbiotheria, Sirenia, and Tubulidentata were represented only by a single 

species (table S2). This modified approach was termed the leave-one-clade-out (LOCO) 

analysis. A predictor heavily influenced by neighboring species with close lifespans, like the 

tree-based k-NN, would likely struggle with this methodology. Notably, as we used k-NN for 

imputing missing lifespan observations for several species, lifespan estimates naturally favor k-

NN. Therefore, for this specific analysis, we relied on the original anAge database (2) that was 

devoid of imputed values. 

 

It became clear that, while the k-NN lifespan predictor showed a reasonable prediction 

correlation, it frequently provided static and deviant predictions for entire taxonomic orders (Fig. 

2b). When faced with any test set, the algorithm often perceived the "nearest" species as the 

two specified in the LOCO training set, or occasionally species in a neighboring small order. 

This led to uniform estimates across a taxonomic order, making the algorithm less effective for 

diverse species or clades. 

 

For assessing the sex difference in individuals9 DNAm maximum lifespan prediction results, we 

chose to conduct two-sided Wilcoxon rank sum tests (20) instead of Student T-tests, for the 

following considerations, 1. small sample sizes in some species9 tissue-sex strata, 2. weak 

normality assumption in these small sample sizes, 3. Wilcoxon rank sum test is a relatively more 

conservative test than a Student T-test (51), 4. both Wilcoxon rank sum test and Student T-test 
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work in other strata in which normality can be assumed and larger sample sizes are present, 

and 5. to be consistent across all strata and species, Wilcoxon rank sum test was used for sex 

difference in DNAm lifespan predictions. 

 

Interventions in mice 

We used existing mammalian methylation data from mouse studies (18). The mammalian array 

data were generated using two versions of the mammalian array: the original mammalian array 

(called "40K" array) and the expanded array (referred to as "320K") that also includes mouse 

probes (16). Some CpG probes unique to each array required imputation. Methylation levels of 

CpG sites missing on the 320K array were imputed from median beta values of the training mouse 

samples (<40K= array). None of the samples from the murine anti-aging studies were incorporated 

into the training set. Our DNAmMaxAge was assessed using the following independent test 

datasets: 1) Snell dwarf mice (n=95), 2) GHRKO experiment 1 (n=71), 3) GHRKO experiment 2 

(n=96), 4) Calorie restriction (n=95). 

 

T-tests evaluated whether these conditions affected epigenetic maximum lifespan. The DNA 

methylation data from datasets (1) and (3) were collected using an Illumina 320k customized array 

(available in GSE223943 and GSE223944). Datasets (2, 4, and 5) are available at GSE223748. 

Below is a brief overview of the experiments. Comprehensive details can be found in the 

Supplementary Information of (18).  

 

Snell Dwarf Experiment (n=95): We analyzed tissues from 47 Snell dwarfs and 48 age-matched 

wild-type control mice, aged around 6 months. Snell dwarf mice, known for an approximately 30-

40% extended lifespan, lack growth hormone, thyroid-stimulating hormone, and prolactin. 

Methylation profiling was conducted on blood, cerebral cortex, liver, kidney, spleen, and tail from 

these mice. 
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GHRKO Experiments: We analyzed tissues from full body (n=71) and liver-specific (n=96) 

GHRKO studies. The full-body GHRKO mice exhibited prolonged lifespan, while liver-specific 

GHRKO did not. DNA methylation profiles were created for various tissues, and age-matching 

was performed.  

 

Calorie Restriction Study (n=95): This study involved analyzing liver samples from 95 male mice, 

59 from the calorie-restricted group and 36 controls. All mice, sourced from UT Southwestern 

Medical Center, Dallas, were 1.57 years old and from the C57BL/6J strain. 

 

Cancer risk in different mammals 

We sourced estimates of mammalian cancer risk from a recent study (21). Two key metrics were 

considered: First, cancer Mortality Risk (abbreviated as CMR) - This refers to the ratio of cancer-

related deaths to the total number of individuals for whom postmortem pathological records exist. 

It is a measure that has been used in various comparative studies (52, 53). Second, cumulative 

Incidence of Cancer Mortality (abbreviated as ICM) - This metric gauges the risk of cancer 

mortality by eliminating potential biases from both left and right censoring. Notably, there is a 

strong correlation between CMR and ICM, with a Pearson correlation coefficient of r)=)0.89 (21). 

However, neither of these metrics showed any correlation with epigenetic maximum lifespan. 

 

Mortality analysis in human epidemiological cohort studies 

We estimated DNAm maximum age in blood methylation data from 4,651 individuals from (a) the 

Framingham Heart Study (FHS) offspring cohort (n=2544 Caucasians, 54% women) (38) and (b) 

Women's Health Initiative cohort (39, 40) (WHI, n=2,107, 100% women). Since these data were 

generated on a different platform (the Ilumina 450K array), we applied the Array Converter 
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algorithm to impute mammalian methylation array data (18). Although the epigenetic maximum 

lifespan estimates are not correlated with chronological age, we defined a measure of epigenetic 

age acceleration (AgeAccel) as the raw residual resulting from regressing DNAm maximum 

lifespan on chronological age. By definition, the resulting DNAmMaxLifespanAdjAge measure is 

not correlated with chronological age. We applied Cox regression analysis for time-to-death (as 

a dependent variable) to assess if individual variation in the predicted maximum lifespan is 

attributable to mortality risk. The analysis was adjusted for age at blood draw and sex in the FHS 

cohort. We stratified the WHI cohort by ethnic/racial groups and combined a total of four results 

across the FHS and WHI cohorts using fixed effect models weighted by inverse variance. The 

meta-analysis was performed using the metafor function in R. 

 

Dog breeds 

We used existing methylation profiles from 742 blood samples, representing 93 distinct dog 

breeds (Canis lupus familiaris) (41). Breed weight and average lifespan data were compiled from 

multiple sources as outlined in (41). We formed consensus values by integrating information from 

the American Kennel Club and the Atlas of Dog Breeds of the World. Lifespan approximations 

were derived from averaging standard breed lifespans across sexes. This information was 

gathered from a myriad of publications, most of which are multibreed studies focusing on age and 

mortality causes from veterinary clinics, as well as extensive breed-specific research typically 

conducted by purebred dog associations. The specific sources for each breed's median lifespan 

are cited in (41). 

 

To derive a reliable estimate for the maximum lifespan of each breed, we based our calculations 

on the breed's median lifespan. Specifically, we used the formula: MaxLifespan = 1.33 x 

MedianLifespan. Notably, our conclusions hold even when applying different multipliers beyond 

1.33, as the log transformation converts these multipliers into additive shifts. Comprehensive data 
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on the breeds can be found in (41). Among the 93 breeds studied, median lifespans varied 

between 6.3 years (Great Dane, with an average adult weight of 64 kg) and 14.6 years (Toy 

Poodle, average adult weight being 2.3 kg).  

 

Data Availability Statement 

The data have been made publicly available on Gene Expression Omnibus (GSE223748) as part 

of the data release from the Mammalian Methylation Consortium (18).  

 

The mammalian methylation array is available from the nonprofit Epigenetic Clock Development 

Foundation https://clockfoundation.org/MammalianMethylationConsortium/. 

 

Further, data sets are available on Gene Expression Omnibus (GEO) accession numbers, 

GSE174758, GSE184211, GSE184213, GSE184215, GSE184216, GSE184218, GSE184220, 

GSE184221, GSE184224, GSE190660, GSE190661, GSE190662, GSE190663, GSE190664, 

GSE174544, GSE190665, GSE174767, GSE184222, GSE184223, GSE174777, GSE174778, 

GSE173330, GSE164127, GSE147002, GSE147003, GSE147004. 

 

Software Availability Statement 

DNAm Predictor R package available at Github: caeseriousli/MammalianMethylationPredictors) 
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Fig. 1 | Multivariate analysis of life history traits using epigenetic predictors 

This figure delves into the Leave-One-Species-Out (LOSO) cross-validation analysis of 

epigenetic predictors. It focuses on the log-transformed (base e) estimates for various life 

history traits, including: a,b, Maximum lifespan (in years) c, Gestation time (in days) d, Age at 

sexual maturity (in years). Each species in the scatter plot panels is symbolized by a specific 

number. The whole number (integer) part of this numeric representation corresponds to its 

taxonomic order. These numbers, color-coded by their respective taxonomic orders, link to 

distinct species. For detailed numeric values, refer to table S4. The title atop each panel 

provides essential statistical data: the Pearson correlation coefficient, median absolute error 

(MAE), and a two-sided uncorrected p-value. Consistency in color representation for taxonomic 

orders is maintained throughout this and other related figures. To comprehend the species-

specific numeric designations in the scatter plots, readers can refer to the accompanying figure 

legends that annotate the common names and taxonomic orders (fig. S8). A dotted line within 

the scatter plots illustrates the line of perfect prediction, while the solid red line portrays the fitted 

linear regression. Animal silhouettes featured are sourced from the Phylopic database 

(https://www.phylopic.org/). 
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Fig. 2 | Comparison of DNAm lifespan predictor, phylogeny-based predictor, and sex-

related differences in predicted lifespan 

a, b, Evaluation of the multivariate predictor of maximum lifespan based on cytosine methylation 

in training data (panel a) and test data (panel b), encompassing 70% and 30% of species, 

respectively. In panels a and b, each data point symbolizes a unique species, differentiated by its 

taxonomic order color-coding. The dotted red line indicates the fitted linear regression. 

c, d, Leave-one-clade-out (LOCO) cross-validation analyses concentrate on the log-transformed 

(base e) maximum lifespan predictions. Given that several species' missing lifespan observations 

were filled using neighboring species, lifespan estimates naturally favor k-NN. To mitigate this 

bias, this analysis only includes 250 species from the original anAge database (2) with actual 

maximum lifespan records. This analysis provides an unbiased assessment of the performance 

of the DNAm elastic net predictors (panel c) with the 1-Nearest-Neighbor (k-NN) predictor (panel 

d), which uses distances from the Mammalian phylogenetic TimeTree (54).  

e, Bar plots emphasize the differences in lifespan predictions between females and males, 

specifically highlighting species that exhibits uniformity across tissues with statistically interesting 

(two-sided unadjusted Wilcoxon rank sum test p-value =< 0.01) female-male differences. This 

means in all statistically interesting tissue groups, females are consistently predicted to have 

longer DNAm lifespan. Only species with DNAm lifespan predictions that significantly differ 

between sexes are reported, based on a two-sample T-test with a p-value less than 0.01. Error 

bars outline the 95% confidence interval of these differences. Bars throughout the figure are 

colored by tissue type, as detailed in the accompanying legend. 
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Fig. 3 | Predicted lifespan across murine experimental treatment groups 

This figure presents the predicted lifespan from our final model based on murine perturbation 

experiments. Each row corresponds to a specific experiment, and columns stratify these results 

by tissue type. The experimental treatment groups, from top to bottom, are as follows: Snell 

Dwarf mice, liver-specific growth hormone knock-out mice, full-body growth hormone knock-out 

mice, high-fat diet, and five separate caloric restriction experiments. The prefixes in the rows, 

like P30 for "project 30" and N08 for "number 8", denote distinct data sets. Empty cells signify 

the absence of samples for the corresponding tissue in the experiment. Grey dots represent 

associations that are not statistically significant. Red and blue markers highlight significant 

associations (p<0.05) that align with our expectations. We found no significant associations that 

deviated from our expectations. The x-axis reports Wald test statistics that follow a standard 

normal distribution under the null hypothesis. Dashed lines represent the critical Z statistic 

values when assessing a two-sided T-test with Type I error controlled at ALPHA=0.05. 
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Fig. 4 | Partial or full OSKM reprogramming versus epigenetic maximum lifespan  

Panels show, a. Predicted max lifespan in a 49-day full reprogramming time course of human 

dermal fibroblasts (HDFs) resulting in iPS cells (Kruskal Wallis test p-value = 0.0086) (55). Y 
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axis: log(max lifespan) calculated from DNA methylation arrays from the following cell 

populations: day 0 (HDFs), day 3 (OSKM expressing EGFP (+) HDFs), day 7 to 28 (TRA-1360 

(+) cells at intermediate stages of reprogramming), and iPSCs after days 35. b. Predicted max 

lifespan of human dermal-fibroblasts (HDFs) after transient reprogramming (GSE165179) (37).!

Different lengths of transient reprogramming were separated into sub-panels. Negative control 

cells, transiently reprogrammed cells (CD132 SSEA4+) and cells that failed to transiently 

reprogram (CD13+ SSEA42) were included in the plot.!c. Predicted max lifespan of HDFs with 

transient expression of OSKMLN (GSE142439) (56). OSKMLN was daily transfected for 4 

consecutive days, and DNA methylation was measured 2 days after the interruption. d. 

Predicted max lifespan in various tissues of 4F mice after 7 months of treatment (GSE190665) 

(35). B6 or 4F mice were given doxycycline in drinking water for 2 d followed by 5 d of 

withdrawal. The treatment started at 15 months of age and continued until 22 months of age (7-

month treatment). B6 mice: WT mice; 4F mice: mice with the OSKM polycistronic cassette. 
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Fig. 5 | Methylation-based estimate of maximum lifespan in human cohorts 

Panels a-d present scatter plots of the predicted maximum lifespan, transformed from log-years 

back to years (DNAmMaximumLifespan, x-axis), against chronological age (y-axis). These 

panels depict data from a) n=2,544 Caucasians of European ancestry in the Framingham Heart 

Study Offspring Cohort (FHS) and b-d) 2,107 women from the Women9s Health Initiative Cohort 

Broad Agency Award 23 (WHI BA23). This data is further categorized by three racial/ethnic 

groups: European ancestry, African American ancestry (AfricanA), and Hispanic ancestry. Each 

data point symbolizes an individual and is color-differentiated based on ethnic group. Titles 

indicate the sample size and furnish the Pearson correlation coefficients accompanied by their 

respective p-values. Panel e contrasts DNAm maximum lifespan with sex in the FHS, while f 

relates to ancestry. Panel g is a forest plot summarizing a meta-analysis of Cox regression 

models for time-to-death (due to all causes), based on the age-adjusted version of 

DNAmMaximumAge. This analysis spans various study-ethnic groups, with each row detailing 

the hazard ratio [95% confidence interval] for a one-year elevation in 

DNAmMaxLifespanAdjAge. The title reports the meta P-value, derived using inverse variance-

weighted fixed-effect models. Forest plots showcase the correlation between age-adjusted 

DNAmMaxLifespan and the following variables: h, human body mass index (BMI), i, self-

reported smoking pack-years, j, age at female menopause, k, Mini-Mental State Examination 

(MMSE) scores. The analysis, which spans different study-ethnic groups, outlines in each row 

the correlation coefficient [95% CI] corresponding to a one-year increase in 

DNAmMaxAgeAdjAge. All p-values are two-sided and are presented in their nominal form, 

without adjustment for multiple comparisons. 
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Fig. 6. Mammalian lifespan prediction applied to blood methylation data from 90 different 

dog breeds.  

All quantities are log transformed (base e). Predicted log transformed maximum lifespan (y-axis) 

versus characteristics of dog breeds. a., actual maximum lifespan of the breed (x-axis). 

Maximum age of the dog breed was estimated as the product of 1.33 times the median lifespan 

of the breed from Horvath et al 2022, (41). b., Average adult weight of the dog breed. Each 

integer label corresponds to a different dog breed (41). 
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Table 1: Sex and Pan Tissue Predictors Performance 

Predicted Outcome Predictor Framework Method 
Test Set / Out-of-bag 
Prediction Accuracy 

Sex (Female = yes/no)  Elastic Net  10 fold validation 98.53% 

Species  *RF Predictor *100 trees 99.94% 

Tissue  *RF Predictor 100 trees 98.22% 

Taxonomic Order *RF Predictor 100 trees 99.97% 

Note: *RF: Random Forest predictor; *100: each random forest was calibrated to use this many 
decision trees with a reasonable run time; random forest unbiased prediction accuracy estimate is 
calculated as follows; first, summarize by calculating the median of each category9s out-of-bag 
prediction errors, subtracted by unity, across the 500 trees; second, use these category mean 
accuracies to find the overall median-of-means accuracy. 

 

Table 1. Sex and pan tissue predictors performance 

The table summarizes test set prediction results for regularized-regression-based predictors and 

out-of-bag prediction results for random-forest-based predictors. Test sets are randomly 

partitioned into equal 10 folds of the entire data set. At each iteration, within the 90% training 

set, 10-fold-validation was employed to select the penalization parameter for the regularized 

regression (sex predictor). 
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Supplementary Information 

 

Fig. S1 | ElasticNet predictor based on young samples.  

Elastic Net Predictor, Leave-one-species-out analysis, fitted on a subset of all young samples 

(species n = 122). Young samples are defined as samples whose age is both younger than five 
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years and less than the species9 average age at sexual maturation. Feature filtering and Elastic 

Net tuning parameter set-up is the same as those for Fig. 1. Three panels show predictors for a, 

log maximum lifespan (in log years), b, log-transformed gestation time (in log days), and c, log-

transformed age at sexual maturity (in log years). As with the Fig. 1, species appear as 

designated numbers in scatter plot panels; the corresponding common names and phylogenetic 

orders are annotated in Figure legends; as indicated by the taxonomic order legend, the whole 

number (number before the decimal separator) part of each mammalian number is assigned in 

accordance with the corresponding taxonomic order. MAE abbreviates median absolute errors 

from the regression errors; r and p denote Pearson9s correlation and p-values, respectively. 

Numbers and colors are the mammalian species number and order annotation consistent with 

those of other Figures. Numeric values can be found in table S1. Red solid line represents the 

perfect prediction line, and the dotted line represents the fitted linear regression line. 
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Fig. S2 | The maximum lifespan predictor is applied to individual samples in comparison 

to their chronological ages. 

Mammalian maximum lifespan predictor, based on averaged species methylation, was used to 

predict individual sample lifespans (in years scale). The predicted values are also stratified by 

species and tissues. Only species with >100 sample sizes are shown. To demonstrate natural 

relations between maximum lifespan and chronological age, panel a scatter plot shows 

association between observed maximum lifespan and chronological age of corresponding 

samples. Each of panels b3x shows scatter plots of predicted lifespans converted to original 

scales vs. chronological age in specific species/tissue combinations. Numbers are the 

mammalian species number consistent with those in fig. S1. Red font is used when the 

absolute value of the Pearson correlation exceeds 0.5. Numeric values can be found in table 

S1.  
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Fig. S3 | The gestation time predictor is applied to individual samples in comparison to 

their chronological ages. 

Gestation time predictor, based on averaged species methylation, was used to predict individual 

sample gestation time (in log days). The predicted values are also stratified by species and 

tissues. Only species with >100 sample sizes are shown. To demonstrate natural relations 

between gestation time (days) and chronological age, panel a scatter plot shows association 

between observed gestation time (days) and chronological age of corresponding samples. Each 

of panels b3x shows scatter plots of predicted gestation time in log-days converted back to days 

vs. chronological age in specific species. Numbers are the mammalian species number 

consistent with those in fig. S1. Numeric values can be found in table S1.3. 
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Fig. S4 | The time to sexual maturity predictor is applied to individual samples in 

comparison to their chronological ages.  

Time to sexual maturity predictor, based on averaged species methylation, was used to predict 

individual sample time to sexual maturity (in log years). The predicted values are also stratified 

by species and tissues. Only species with >100 sample sizes are shown. To demonstrate 

natural relations between time to sexual maturity and chronological age, panel a scatter plot 

shows association between time to sexual maturity (years) and chronological age of 

corresponding samples. b3x, scatter plots of predicted age at sexual maturity in log-years 

converted back to years vs. chronological age in specific species. Numbers are the mammalian 

species number consistent with those in fig. S1. Numeric values can be found in table S1.3.  
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Fig. S5 | Tissue group differences in predicted mammalian maximum lifespan.  

Tissue-agnostic predictor of mammalian maximum lifespan, based on averaged species 

methylation, was used to predict individual maximum lifespan (in log years). The predicted 
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values are aggregated by taking the mean lifespan predictions by tissue groups. Panels a-i 

convert log scale back to original units (lifespan in years); only species with more than 6 

different tissue types are shown; mean tissue predicted value outliers are annotated; Tissue 

type <H.Stem.Progenitor.LSK= stands for <LSK Progenitor Hematopoietic Stem cells.= c, Apart 

from blood, laminae are an outlying tissue in horses. Laminae are interlocking leaf-like tissues 

that connect the inner surface of the horse's hoof wall to the bone of the foot. The boxplot, as 

implemented in the R programming language, provides a visual summary of key statistics from 

a dataset: The median is represented by the horizontal line inside the box. The interquartile 

Range (IQR) encompasses the middle 50% of the data. The box's upper boundary represents 

the 75th percentile, while the lower boundary represents the 25th percentile. The IQR is the 

difference between these two values. The whiskers extend to the most extreme data point which 

is no more than 1.5 times the interquartile range from the box. 
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Fig. S6 | Tissue groups differences in predicted mammalian gestation time.  

Tissue-agnostic predictor of gestation time, based on averaged species methylation, was used 

to predict individual sample gestation time (in log days). The predicted values are aggregated by 

taking the mean gestation time predictions by tissue groups. Panels a-i convert log scale back 
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to original units (gestation in days); only species with more than 6 different tissue types are 

shown; mean tissue predicted value outliers are annotated; Tissue type 

<H.Stem.Progenitor.LSK= stands for <LSK Progenitor Hematopoietic Stem cells.= The boxplot, as 

implemented in the R programming language, provides a visual summary of key statistics from 

a dataset: The median is represented by the horizontal line inside the box. The interquartile 

Range (IQR) encompasses the middle 50% of the data. The box's upper boundary represents 

the 75th percentile, while the lower boundary represents the 25th percentile. The IQR is the 

difference between these two values. The whiskers extend to the most extreme data point which 

is no more than 1.5 times the interquartile range from the box.  
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Fig. S7. Predicted time to sexual maturity in select species for which multiple tissues 

were available.  

Tissue-agnostic predictor of time to sexual maturity. The boxplot shows median predicted 

values (short horizontal line) across tissue types. Significantly outlying tissues have been 
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highlighted. The boxplot, as implemented in the R programming language, provides a visual 

summary of key statistics from a dataset: The median is represented by the horizontal line 

inside the box. The interquartile Range (IQR) encompasses the middle 50% of the data. The 

box's upper boundary represents the 75th percentile, while the lower boundary represents the 

25th percentile. The IQR is the difference between these two values. The whiskers extend to the 

most extreme data point which is no more than 1.5 times the interquartile range from the box. 

Tissue-agnostic predictor of time to sexual maturity predictor, based on averaged species 

methylation, was used to predict individual sample time to sexual maturity (in log years). The 

predicted values are aggregated by taking the mean lifespan predictions by tissue groups. 

Panels a-i convert log scale back to original units (age at sexual maturity in years); only species 

with more than 6 different tissue types are shown; mean tissue predicted value outliers are 

annotated; Tissue type <H.Stem.Progenitor.LSK= stands for <LSK Progenitor Hematopoietic 

Stem cells.= 
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Fig. S8 | Tissue-aware predictors trained on species-tissue combinations.  

A penalized joint linear model used to predict species lifespan (Elastic Net). Same framework as 

that of Fig. 1, except that it distinguishes tissue types. CpG probes are averaged by each species-

tissue combination. Different tissues within the same species share the same maximum lifespan 

but retain different methylation levels. Three panels show predictors for a, log maximum lifespan 
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(in log years), b, log-transformed gestation time (in log days), and c, log-transformed age at sexual 

maturity (in log years). Designated Mammalian numbers in scatter plot panels and the Figure 

legend are the same as those of main Fig. 1. MAE abbreviates median absolute errors from the 

regression errors; r and p denote Pearson9s correlation and p-values, respectively. Numbers and 

colors are the mammalian species number and order annotation consistent with those of other 

Figures. Numeric values can be found in table S3. As with the Fig. 1, species appear as 

designated numbers in scatter plot panels; the corresponding common names and taxonomic 

orders are annotated in Figure legends; the whole number (number before the decimal separator) 

part of each mammalian number is assigned in accordance with the corresponding taxonomic 

order. Red solid line represents the perfect prediction line, and the dotted line represents the fitted 

linear regression line. 
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Fig. S9 | Tissue group differences in predicted mammalian maximum lifespan 3 Tissue-

Aware  

Tissue-aware predictor of mammalian lifespan, based on averaged species methylation, was 

used to predict individual sample lifespan (in log years). The predicted values are aggregated by 
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taking the mean lifespan predictions by tissue groups. Panels a-i convert log scale back to 

original units (lifespan in years); only species with more than 6 different tissue types are shown; 

mean tissue predicted value outliers are annotated; Tissue type <H.Stem.Progenitor.LSK= 

stands for <LSK Progenitor Hematopoietic Stem cells.= 
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Fig. S10 | Tissue groups differences in predicted mammalian gestation time 3 Tissue-

aware.  

Tissue-aware predictor of gestation time, based on averaged species methylation, was used to 

predict individual sample gestation time (in log days), trained on tissue-aware data. The 
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predicted values are aggregated by taking the mean gestation time predictions by tissue groups. 

Panels a-i convert log scale back to original units (gestation in days); only species with more 

than 6 different tissue types are shown; mean tissue predicted value outliers are annotated; 

Tissue type <H.Stem.Progenitor.LSK= stands for <LSK Progenitor Hematopoietic Stem cells.= 
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Fig. S11 | Tissue groups differences in predicted mammalian sexual maturity time 3 Tissue-

aware.  

Mammalian times to sexual maturity predictor, based on averaged species methylation, was 

used to predict individual sample time to sexual maturity (in log years), trained on tissue-aware 
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data. The predicted values are aggregated by taking the mean lifespan predictions by tissue 

groups. Panels a-i convert log scale back to original units (age at sexual maturity in years); only 

species with more than 6 different tissue types are shown; mean tissue predicted value outliers 

are annotated; Tissue type <H.Stem.Progenitor.LSK= stands for <LSK Progenitor Hematopoietic 

Stem cells. 
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Fig. S12 | Overall comparisons between DNAm lifespan predictors and phylogeny-based 

predictors.  

Various training-test validation analyses of predictors of log (base e) transformed estimates of 

maximum lifespan. We compared prediction performance between DNAm elastic net predictors 
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and 1-Nearest-Neighbor predictor (k-NN). 1-Nearest-Neighbor predictor utilizes distances from 

the Mammalian phylogenetic TimeTree (54). Results under different training-test separation 

methods are shown in panels a, b, DNAm and k-NN predictors test set predictions under leave-

one-species-out (LOSO) training-test separation scheme; c, d, DNAm and k-NN predictors test 

set predictions under leave-one-family-out training-test separation; e, f, DNAm and k-NN 

predictors test set predictions under leave-one-clade-out (LOCO) training-test separation. 

LOCO (leave-one-clade-out) is defined as, for orders with more than 20 species (Rodentia, 

Artiodactyla, Chiroptera, Primates, Carnivora, and Eulipotyphla), leaving out all member species 

except the longest-living and shortest-living species. MAE abbreviates median absolute errors 

from the regression errors; r and p denote Pearson9s correlation and p-values, respectively. 

Numbers and colors are the mammalian species number and order annotation consistent with 

those of other Figures. Numeric values can be found in table S1. Shaded areas represent 95% 

confidence intervals of the simple linear regression line. E). 
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Fig. S13 | Taxonomic order breakdown of DNAm lifespan predictors and Phylogeny-based 

Predictors under LOCO.  

A breakdown of predictor performance in large taxonomic orders under LOCO. We compared 

prediction performance between DNAm elastic net predictors and 1-Nearest-Neighbor predictor 

(k-NN). 1-Nearest-Neighbor predictor utilizes distances from the Mammalian phylogenetic 

TimeTree (54). a, DNAm predictor9s test set predictions leave-one-clade-out (LOCO) training-

test separation scheme; b, k-NN predictor9s test set predictions under LOCO; c, d, DNAm and 

k-NN predictors, respectively, test set predictions of lifespan for all species belonging to 

Carnivora under LOCO; e, f, DNAm and k-NN predictors, respectively, test set predictions of 

lifespan for all species belonging to Primates under LOCO; g, h DNAm and k-NN predictors, 

respectively, test set predictions of lifespan for all species belonging to Artiodactyla under 

LOCO. MAE abbreviates median absolute errors from the regression errors; r and p denote 

Pearson9s correlation and p-values, respectively. Numbers and colors are the mammalian 

species number and order annotation consistent with those of fig. S1. Numeric values can be 

found in table S1. Shaded areas represent 95% confidence intervals of the simple linear 

regression line. Panels a and b are analogous to those of Fig. 2c,d.  
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Fig. S14 | DNAm lifespan predictions do not reflect confounding by adult weight. 

a-c, Report results for a DNAm max lifespan predictor trained on mammal species with an 

average weight under 150 grams (small mammals). Panels a, observed (log) adult body weight 

vs. observed (log) maximum lifespan in all mammalian species within the data set, color-coded 

by small-size indicator (more than 150 grams); b, test set predictions for the maximum lifespan 

in small-sized (<150 grams) mammalian species vs. observed (log) maximum lifespan; c, test 

set predictions for the maximum lifespan in small-sized (<150 grams) mammalian species vs. 

observed (log) adult body weight. MAE abbreviates median absolute errors from the regression 

errors; r and p denote Pearson9s correlation and p-values, respectively. Numbers are the 

mammalian species number annotation consistent with those of other Figures. Numeric values 

can be found in table S1. Shaded areas represent 95% confidence intervals of the simple linear 

regression line. 
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d. Results for the final version of the tissue-agnostic DNAm predictor of maximum lifespan. 

Predicted maximum lifespan (on the log scale, y-axis) versus the corresponding adult weight 

adjusted version (x-axis). Specifically, the weight adjusted version of log maximum lifespan was 

defined as raw residual resulting from regressing log transformed predicted maximum lifespan 

on the log transformed average adult weight of the species.  
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Fig. S15 | Relationships between observed and epigenetic estimates of mammalian life 

history traits, including mammalian cancer risk. 

a-f, Panels depict log-transformed relationships between observed variables: a. Age at sexual 

maturity and maximum lifespan b. Gestation time and maximum lifespan c. Sexual maturity time 

and gestation time d. Cancer risk and maximum lifespan e. Cancer risk and sexual maturity f. 

cancer risk and gestation time. h-j, estimates of mammalian cancer risk (Vinczeo 2021, y-axis) 

are plotted against their corresponding epigenetic estimates: h. Maximum lifespan i. Gestation 

time j. age at sexual maturity. k-m, this set is analogous to h-j, but the x-axis reports residuals 

derived from regressing the epigenetic estimate of the life history trait on its observed value (on 

the log scale): k. Log maximum lifespan l. Log gestation time m. Log-transformed age at sexual 

maturity. "MAE" represents median absolute errors from the regression errors, while "r" and "p" 

signify Pearson9s correlation and p-values, respectively. Numbering and colors correspond to 

the mammalian species number and order, consistent with those in Fig. 1. Shaded areas 

illustrate the 95% confidence intervals of the simple linear regression line. log denotes the 

natural logarithm, i.e., base e. 
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Fig. S16. Human epidemiological cohort studies of diet and clinical biomarkers.  

We performed a correlation analysis between (1) our methylation-based estimator of maximum 

lifespan (first column) and its age adjusted version (second column) and (2) 59 variables 

spanning diet, clinically relevant measurements, and lifestyle factors. Comprehensive details of 

these variables can be found in (18). We conducted a robust correlation analysis (biweight 

midcorrelation, bicor) between (1) our methylation based measures (columns), and (2) 59 

variables encompassing 27 self-reported dietary factors, 9 dietary biomarkers, 17 clinical 

measurements related to vital signs, metabolic traits, inflammatory markers, cognitive and lung 

function, central adiposity, leukocyte telomere length, and 6 lifestyle factors. This bicor analysis 

was applied to individuals from both the Framingham Heart Study (up to n=2544) and Women's 

Health Initiative (up to n=2107), stratified by gender and ethnic category within each respective 

cohort. The results were consolidated using fixed-effects meta-analysis models, weighted by 

inverse variance, generating a meta-estimate of bicor and meta P-value. The clinical biomarkers 

in FHS offspring cohort were measured during the 8th examination aligned with the measures of 

DNA methylation profiles. The 9 dietary biomarkers, however, were only available in the WHI 

cohort, with measurements taken from fasting plasma collected at baseline. Food groups and 

nutrients considered were comprehensive, encompassing all types and preparation methods; 

for instance, folic acid included both synthetic and natural forms, and dairy encompassed 

cheese and all varieties of milk. Further details on the individual diet variables of the WHI cohort 

can be found in our previous study (57). 
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