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Abstract: Multiple sclerosis (MS) is associated with brain volume loss throughout the
disease course. Currently available automated segmentation methods can measure
total brain volume as well as ventricular volume, which has been advocated as a robust
surrogate for brain volume based on clinically acquired magnetic resonance imaging
(MRI). However, brain and ventricle volumes change naturally with age and may be
susceptible to biases from differences in acquisition hardware, imaging protocol, and
image quality, in addition to statistical biases such as regression to the mean. In this
work, brain charts for people living with MS were established that account for patient
biological sex, age, and differences in acquisition and image quality. 379 subjects were
imaged longitudinally at 5 MS centers using 13 MRI scanner models from 2 scanner
manufacturers employing a variety of protocols that included T1-weighted and
T2-weighted FLAIR imaging. Generalized Additive Models for Location Scale and
Shape (GAMLSS) were employed, and scanner metadata as well as automated
assessments of image quality were modeled. Cross-sectional brain charts and
conditional, longitudinal brain charts were estimated separately in female and male
participants resulting in interpretable and intuitive centile estimates. These findings
indicate that brain charts for people living with MS are a promising method for turning
quantitative volumetrics into actionable knowledge about a patient’s disease.
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Highlights:
A. Interpreting observed changes in brain volume can be challenging due to
statistical biases including regression to the mean.
B. Brain size changes naturally with age and may be susceptible to biases
associated with acquisition hardware, imaging protocol, and image quality.
C. Brain charts for people living with MS are a promising method for translating
quantitative volumetrics into interpretable knowledge about a patient’s disease.
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Introduction:

Improving brain MRI-based prediction of clinical outcomes for people living with
neurological conditions such as multiple sclerosis (MS) may depend on the ability to
accurately and sensitively quantify an individual’s pathology relative to typical disease
progression. Progression of MS pathology includes not only pathognomic white matter
lesions but also neurodegeneration that manifests as decreased brain volume and
increased ventricular volume (Filippi et al., 2016; Klaver et al., 2013; Lassmann, 2018).
MRI measurements of tissue volume and longitudinal changes in MRI volumetric
measurements over time have been associated with cognitive impairment (Eshaghi et
al., 2018; Preziosa et al., 2016) and physical disability (Matthews et al., 2023).
Individuals with specific patterns of deviation relative to typical disease progression may
have more or less severe forms of disease requiring differential clinical management.
However, the interpretation of quantitative assessments of brain volume in people living
with MS can be challenging due to confounding with sex differences, age-expected
changes, and other demographic factors. In this context, normative models of brain MRI
data may increase sensitivity to identify clinically-relevant alterations in individual
patients (Marquand et al., 2019).

Normative modeling is an increasingly popular statistical framework to quantify
imaging pathology relative to a reference population in human brain MRI research
(Bethlehem et al., 2020; Marquand et al., 2016; Wolfers et al., 2018, 2020; Ziegler et al.,
2014). Conceptually, the overarching goal of these studies is similar to the use-case of
pediatric growth charts for height or weight, which are a critical aspect of clinical care
and research, based on statistical models that have evolved since growth charts were
first introduced in the 19th century (Cole, 2012; Cole & Green, 1992; Wei et al., 2006).
For the development of growth charts, the World Health Organization has previously
recommended a distributional regression framework known as generalized additive
models for location, scale and shape (GAMLSS) due to its combination of modeling
flexibility and statistical rigor (Borghi et al., 2006). GAMLSS allow for the modeling of
data whose distribution does not follow an exponential family as in standard generalized
additive modeling (Stasinopoulos et al., 2018). Furthermore, this approach allows for
modeling the mean structure as well as the variance, skewness, and kurtosis in terms of
flexible nonlinear associations with covariates of interest (Rigby et al., 2019). This
modeling approach was recently employed in a large international effort to develop
brain charts based on cross-sectional MRI data, which were shown to be highly
sensitive to alterations in patients with neurodegenerative disorders and other
neuropsychiatric conditions (Bethlehem et al., 2022).

Neuroimaging applications have largely focused on brain charts based on
cross-sectional reference samples, which can be applied post hoc to longitudinal data.
However, there are clear advantages to explicitly deriving models based on a
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longitudinal reference sample. Within-individual change can then be quantified using
longitudinal growth charts, which model interindividual variability in velocity rather than
distance, and can also account for the expected regression to the mean of extreme
measurements over time (Cole, 1994; Wei & He, 2006). Within-individual change can
be formalized in GAMLSS models by conditioning data from one time point on data
obtained at a previous time point. Such models are particularly compelling for research
or clinical contexts where longitudinal data is the norm rather than the exception, as is
the case for individuals living with MS. As is true for pediatric growth charts (Canadian
Paediatric Society, 2010), the degree of within-individual change between
measurements may be of clinical concern even if each measurement lies within the
“‘normal” range if considered independently.

For both cross-sectional and longitudinal models, the interpretation of normative
models depends on the nature of the reference sample. While most prior work in
neuroimaging normative modeling has used “healthy controls” as the reference sample,
comparing individuals living with MS to a reference composed of other individuals living
with MS may be more informative. In many if not most cases, the diagnosis of MS is not
in question, but individuals undergo regular MRI scans to monitor disease progression
(Kaunzner & Gauthier, 2017). In this context, while MS is generally expected to be
associated with a more pronounced decline in gray matter volume compared to typical
aging, individuals with different patterns of disease progression relative to an
MS-specific model may represent informative subgroups who benefit from alternative
management strategies or experimental therapeutics. The utility of population-specific
normative models has been anticipated in other areas of medicine, for instance, the use
of specific growth charts for children with known neurogenetic conditions (Cronk et al.,
1988; Lyon et al., 1985). Sex-specific MS models are also critical, because not only do
average brain volumes differ across the sexes, but men living with MS tend to have
accelerated brain volume loss compared to women (Voskuhl et al., 2020).

In addition to measurements of brain parenchymal volume, changes in
ventricular volume are sensitive measures of neuropathology. Shrinking of cortical and
subcortical gray and white matter, coupled with expansion of the ventricular
compartment, is a typical part of human aging (Barron et al., 1976; Bethlehem et al.,
2022). This trend is more pronounced in neurodegenerative disease, for example
increased volume in the inferior portion of lateral ventricles is a robust marker of tissue
loss in medial temporal lobe structures in Alzhiemer’s disease (Brewer et al., 2009; Jack
et al., 1997; Murphy et al., 2010). Certain patterns of ventricular volume changes have
also been specifically linked to MS (Brex et al., 2000; Dalton et al., 2006; Millward et al.,
2020; Sinnecker et al., 2020), resulting in an outstanding clinical and scientific need for
brain charts of MRl measurements of both total brain volume and ventricular volume in
MS.
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The present study extends prior research in MS and normative modeling in
several novel directions. Using GAMLSS, normative models of total brain volume and
ventricular volume in MS (“MS brain charts”) were derived using a large multi-site
dataset that includes 13 MRI scanners and 2 MRI scanner manufacturers. To maximize
clinical applicability, the FDA-cleared NeuroQuant software tool was applied for tissue
segmentation (NeuroQuant MS, v3.1, Cortechs.ai), and an automated measure of
image quality was incorporated into brain chart models. Distinct brain chart models were
estimated for cross-sectional evaluation and longitudinal monitoring. We hypothesized
that MS brain charts would provide a personalized measure with improved sensitivity to
interindividual differences in brain atrophy for people living with MS.

Methods:

Experimental Methods: Real-world MRI data were aggregated from 5 MS centers
using 13 MRI scanner models from 2 scanner manufacturers employing a variety of
standard-of-care protocols that included T1-weighted and T2-weighted FLAIR imaging.

Total brain volume and total ventricle volume were extracted using the FDA-cleared
NeuroQuant software tool (NeuroQuant MS, v3.1, Cortechs.ai), and automated image
quality assessment was employed using the MRIqc tool (Esteban et al., 2017).

To assess the distribution of total brain volume and ventricular volume through the age
span and build MS brain charts, GAMLSS [2] were employed for each measurement
individually. GAMLSS allow for the modeling of data whose distribution does not follow
an exponential family as in standard generalized additive modeling. The GAMLSS
approach employs the specification of a 3- or 4-parameter model to link the mean,
variance, skewness, and kurtosis to the predictor variables (Bethlehem et al., 2022). As
GAMLSS are complex models, convergence in limited sample sizes such as that under
study here is not guaranteed. To simplify model-building, cross-sectional modeling was
conducted in the last measurement from each subject for cross-sectional models and
the last pair of measurements for longitudinal models. Subsequent to model building,
predictors of volume distribution were assessed using Wald tests (Wald, 1943) with no
corrections for multiple comparisons due to the exploratory nature of the study.

Cross-Sectional Brain Chart Development: Denote the volume measurement under
study for subject i at visit j by Yl,j, their age by Aij, and additional covariates of interest

(see below) by Xl,j. For each parameter CH ( 6, =n for k = 1, for example) to be
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modeled, further define an appropriate link function g, and a family for the distribution of
Yl,j. The GAMLSS model employed was

9,(8)= o, sa)+ X8 @
fork = 1, ..., 3 or 4, depending on the choice of distributional family. Note that this is a
simplification of the general GAMLSS model without a random effect structure in the
mean specification, and that Sk(Aij) denotes an estimated smooth function of Aij for

each k.

Separate cross-sectional models were employed for biological males and females.
Employing worm plots (van Buuren, 2007) and visual assessment of fitted centiles,
model building and checking was conducted for each sex. Variables considered in the
modeling process were age, contrast-to-noise ratio (CNR, from MRIqc applied to the
T1-weighted imaging), scanner manufacturer, and scanner field strength. Scanner serial
number, model, and acquisition site were not included in modeling as the goal was to
maximize generalizability. Age was modeled using a penalized beta spline, which allows
for flexible nonlinear associations while mitigating roughness and overfitting. The default
three-parameter Box-Cox-Cole-Green distribution was employed, and more complex
distributional families were considered if worm plot analysis indicated insufficient model
flexibility. Model building was conducted by sequential inspection of worm plots starting
with mean modeling and then subsequently for higher-order models considering
variance, skewness, and finally kurtosis. Predictors for which worm plot analysis
indicated an association for a higher-order moment were appropriately included in
lower-order moment models. If model fit for a higher-order model was observed to be
inferior to a lower-order model, the lower-order model was selected. See
Supplementary Figure 1 for an illustrative example of a worm plot.

Longitudinal Brain Chart Development: While a patient’s current brain volume centile
is informative, the availability of longitudinal data allows for more granular assessments.
Indeed, a participant whose brain volume is near the population median might change
substantially relative to previous measurements but still have near-median brain volume
compared with other participants. Brain charts based only on cross-sectional data have
also been reported to systematically underestimate brain changes directly measured in

longitudinal data (Biase et al., 2023). This emphasizes the importance of longitudinal

brain charts, in which modeling is conducted conditionally on previous measurements
(see Figure 3, inspired by (Cole, 1994)).
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To model longitudinal measurements, the GAMLSS approach described in equation (1)
was employed with a parametric form determined by the model-building process. In
particular, and motivated by (Cole, 1994; Wei et al., 2006; Wei & He, 2006):

MY, o+ B X, (@)

ij—1 ij

gk(ek) = ot Bk,lAij + Bk,ZY ) + Bk,3(Al.j —A4 Jj—1

ij—

Covariates Xl,j were considered at the time of the follow-up visit j for the longitudinal

setting. Each term was examined for improvement in fit based on worm plot analysis,
and the distributional family was selected similarly to the cross-sectional modeling case.

Results:

Sample Description: 758 brain MRIs were acquired in 376 people living with MS (see
Table 1). 262 images were acquired at 1.5T and 496 images employed 3T MRI
equipment. 49% of images were acquired on scanners manufactured by General
Electric (GE, Milwaukee, WI) and 51% were acquired on Siemens scanners (Erlangen,
Germany). The sample was 76.5% female, and the median age was 43.2 years (range
20 — 76). Cross-sectional modeling was conducted in 379 MRIs, and longitudinal
modeling was conducted in 558 MRI scans (279 pairs, see Figure 1). All images were
employed in subsequent model diagnostics and visualizations.

Model Fitting: Cross-sectional GAMLSS modeling of total brain volume and ventricle
volume for males and females was conducted separately based on model (1) (see
Figure 2). Worm plots indicated nonlinear age associations as well as linear
contributions of T1 CNR, field strength, and scanner manufacturer for the mean and
variance models for both sexes (see Supplementary Figure 1). In the larger female
sample, skewness was also noted for total brain volume and a nonlinear age term and
linear terms for T1 CNR and scanner manufacturer were included. For ventricle volume
in females, skewness was observed and these same terms as well as field strength
were included.

Worm plot analysis of longitudinal GAMLSS modeling of total brain volume based on
model (2) indicated linear mean associations with T1 CNR (at follow-up), scanner
manufacturer, and field strength in addition to the first four terms in model (2). Variance
associations with those same predictors were also observed. Worm plots indicated
models for skewness and kurtosis in females and the Box-Cox t (Rigby &
Stasinopoulos, 2006) distribution was employed with a nonlinear age term, scanner
manufacturer, field strength, and T1 CNR for both ventricle volume as well as total brain
volume.
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Predictors of Volume Distribution: GAMLSS-based fixed effect inference was
conducted on all non-age-related terms to assess which factors were significantly
associated with the cross-sectional and longitudinal distribution of the modeled
volumes.

Cross-sectionally, Siemens scanners showed lower average brain volume in males
(57mL, p<0.05). No statistically significant associations were observed between
acquisition parameters and total brain volume in females. Longitudinally, average brain
volume was slightly lower on Siemens scans (10mL, p<0.04), and greater brain volume
variance was associated with GE scanners (p<0.03) in males. In females, 3T magnets
were associated with smaller variance (p<0.02) and Siemens scanners (p<0.001).

For ventricle volume, cross-sectional GAMLSS modeling in males found higher average
volume on Siemens scanners (6mL, p<0.04) and lower variance with higher T1 CNR
(p<0.02) and GE scanners (p<0.04). No statistically significant associations were
observed between acquisition parameters and ventricle volume in females. Longitudinal
modeling in males indicated increased ventricle volume was associated with lower T1
CNR (p<0.001) and Siemens scanners (0.4mL, p<0.001). 1.5T imaging, GE scanners,
and higher T1 CNR were associated with smaller variance in ventricle volume in males
(all p<0.001). On the other hand, larger follow-up ventricle volume was associated with
1.5T imaging (p<0.05) in females. Smaller variance was associated with higher T1 CNR
(p<0.02) and 3T imaging (p<0.01). T1 CNR was associated with greater skewness and
less kurtosis (both p<0.001), and Siemens scanners exhibited more kurtosis (p<0.02).

Visualizing and Interpreting Brain Charts: Figure 4 shows examples of fitted
cross-sectional and longitudinal models in three subjects labeled as A, B, and C.

Subject A was observed at four visits between the ages of 46 and 50, whereas Subject
B was observed at three visits between 37 and 41, and Subject C was observed at
three visits between 37 and 39. The top row of Figure 4 shows axial views of the
T1-weighted imaging; Subject A was imaged on a 1.5T Siemens Avanto scanner at all
time points, and Subject C was imaged on two 3T GE scanners. Subject B, on the other
hand, was imaged at the first time point on a 1.5T Avanto, and at the following time
points on 3T Siemens Skyra Fit equipment.

All three subjects showed decreasing brain volume and increasing ventricle volume
during the study follow-up. They also showed a more prominent brain volume drop
between the first two timepoints, but none showed a change in cross-sectional MS brain
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chart percentile of more than 10% (see third row of Figure 4). However, longitudinal
centiles for the first follow-up visits for all three subjects were in the bottom quintile
indicating a large within-subject relative change. On subsequent follow-up visits, brain
volumes and observed decreases therein were within the middle tertile.

A similar but slightly different pattern was observed in ventricle volumes. All three
subjects had relatively large ventricles, with Subjects A and B near or in the top decile
and Subject C in the top quartile. Subjects A and B also showed a rapid increase in
ventricle volume between the first two visits contemporaneous with the brain volume
loss described above, with longitudinal centiles also over 85%. However Subject C’s
ventricle volume was quite stable, with longitudinal centiles below the median for
ventricular growth.

Discussion:

By providing quantitative models of interindividual variability in brain volume
measurements and brain volume changes over time, brain charts have the potential to
significantly advance our understanding of brain volume alterations associated with MS.
The present study uses a real-world multi-center cohort of clinically acquired brain MRI
images to develop disease-specific normative models of total brain volume and ventricle
volume. A WHO-recommended statistical modeling framework with GAMLSS (Borghi et
al., 2006; Stasinopoulos et al., 2018) yielded MS brain charts for males and females
and for both cross-sectional and conditional longitudinal settings. Measurements of
brain volume were subtly influenced by MRI scanner hardware and MRI scan quality,
supporting their inclusion as covariates in brain chart models. Compared to
cross-sectional models, longitudinal models yielded more precise and sensitive
descriptions of changes in both total brain and ventricle volume. Collectively, these
results point to the capacity for MS brain charts to advance imaging biomarker
development and to augment the clinical interpretation of brain MRIs for people living
with the disease.

It is predicted by prior literature that MS brain charts would benefit from the inclusion of
information about MRI scan quality, scanner manufacturer, and acquisition parameters.
It is well known that MRI scanner platform can bias automated volumetric
measurements derived from brain MRI images (Agartz et al., 2001; Jovicich et al., 2013;
Schnack et al., 2004; Shinohara et al., 2017). Systematic differences in estimated brain
volumes between scanner manufacturers, as was observed in this study, have been
documented extensively (Auzias et al., 2016; Jovicich et al., 2009; Lee et al., 2019).
Moreover, statistical harmonization has been demonstrated to mitigate this bias in a
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variety of contexts (Chen et al., 2022; Fortin et al., 2018). Relatedly, it is known that
automated quantitative measures derived from structural brain MRI are sensitive to
interindividual differences in MRI scan quality that can result, for instance, from
interindividual differences in in-scanner motion (Alexander-Bloch et al., 2016;
Blumenthal et al., 2002). It is increasingly common practice in neuroimaging studies for
statistical models to include as covariates manual image quality ratings or automated
measures related to image quality, such as the Euler number from Freesurfer’s cortical
reconstruction or statistics output by the MRIqc tool (Esteban et al., 2017; Rosen et al.,
2018). Consistent with this prior literature, conditioning GAMLSS models on scanner
platform, field strength, and MRI image quality improved model fit for centiles scores for
volumetric measures provided by the present study.

MS brain charts benefited from the inclusion of longitudinal data in statistical models.
While cross-sectional models can be utilized to track changes over time, longitudinal
models are likely superior for the detection and quantification of “surprising” changes in
a measured variable (Cole, 1994; Wei & He, 2006). These changes are of high clinical
relevance for people living with MS, as brain volume loss may be associated with
disease progression and worsening cognitive disability (De Stefano et al., 2014;
Eshaghi et al., 2018; Frau et al., 2018; Sastre-Garriga et al., 2017). In the present study,
conditioning GAMLSS models on previous brain volume measurements in the same
participant improved the quality of statistical models. When directly comparing
cross-sectional and longitudinal MS brain charts, longitudinal models provided
increased sensitivity to disease-related change in both total brain volume and ventricle
volume.

In presenting MS growth charts for both total brain volume and ventricle volume, we
highlight the complementary information provided by different imaging-derived
neuroanatomical phenotypes. The relationship between total brain and ventricular
volume is nonlinear and age-varying (Bethlehem et al., 2022). In typical aging, total
brain volume decreases while ventricular volume increases, a pattern that is
accentuated in neurodegenerative disorders including MS (Brex et al., 2000; Dalton et
al., 2006; Millward et al., 2020; Sinnecker et al., 2020). Our results demonstrate that
measurements of total brain volume versus ventricle volume may have differential
sensitivity to disease progression in specific individuals. The differential sensitivity may
result from brain volume loss targeting different anatomical foci (Haider et al., 2016), for
instance subcortical nuclei or white matter compartments that are expected to have
different relationships with ventricular expansion.

There are several limitations of the presented analyses, many of which stem from the
limited sample size available. First, both the cross-sectional and longitudinal models
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were built based on subsets of the data due to issues with convergence when modeling
the full longitudinal data. Second, the value of each technical variable for the purpose of
improving model fit and accuracy of centile estimation was conducted by testing after
model construction. Testing after model construction may be biased due to
post-selection inference, although since visual assessments were conducted based on
residuals as opposed to stepwise regression using p-values the degree of this bias is
expected to be lessened. Furthermore, additional quality predictors would likely be
helpful in larger sample size modeling. For example, baseline quality data and scanner
information, or models for combinations of baseline-to-followup equipment settings, may
improve the precision of longitudinal settings. The longitudinal model specified in (2) is
linear, and could be expanded to nonlinear modeling cases in future studies. Finally,
treatment and disease duration information were not available for this cohort, and future
studies of more specialized clinical subpopulations promise further improvement for
precision medicine applications.

The potential for growth charts for quantitative assessments of brain volumes and
changes therein is vast. By leveraging longitudinal measurements in a statistically
principled way, longitudinal growth charts that integrate image quality allow for precise
and interpretable determinations of patients’ radiological changes in clinical practice
settings. These may help to mitigate the clinicoradiological paradox of a dissociation
between radiological findings and clinical outcomes (Barkhof, 2002) in management of
the disease, and guide decisions about therapeutic changes. In research settings,
GAMLSS will allow for more precisely charting of subject-specific changes and
therapeutic effects. Future methodological studies on modeling of regionally-specific
changes in brain volume and charting the evolution of lesion metrics are warranted, and
the approach presented here can also be readily adapted beyond MS to other
neurodegenerative diseases.


https://paperpile.com/c/9Q2AmV/0D2mp
https://doi.org/10.1101/2023.11.02.565251
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.02.565251; this version posted November 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Figures:

N =379 People Living with Multiple Sclerosis
758 Brain MRIs Acquired at 1.5 or 3T

Extract Subjects with Longitudinal Data

N =279 People Living with Multiple Sclerosis
Extract Last Visit Imaged More than Once in the Study
(658 MRIs)

Fit Cross-sectional Model
on Most Recent Study Visits
(379 MRIs)

Extract Last Two Visits

A4

(558 MRIs)

- Fit Longitudinal Model
Fitted Model

Apply Cross-sectional Model to All Data
(758 MRIs)
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Apply Longitudinal Model to All Data
(658 MRIs)

Figure 1: Flowchart demonstrating the dataset under study and modeling strategy.
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Figure 2: Demonstration of growth chart methodology. Panel A (left) shows n=573 total
brain volume measurements in mL from the female participants in our study (n=290) in
circles through the age span. Lines indicate the fitted centiles for expected volume at
each age, with different colors indicating example percentiles. Panel B (right) shows one
particular subject’s cross-sectional percentiles as she ages. At age 46, her brain is
estimated to be around the 57th percentile; however, at ages 47, 48, and 50 her brain
appears to be very close to the median, at the 52nd percentile.
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Figure 3: Example demonstrating the important distinction between cross-sectional and
longitudinal growth charts. Background colors show cross-sectional centiles, and lines
indicating longitudinal centiles as labeled to the right. Total brain volume at age 37 for
an example subject is shown in the empty circle at 1168mL, which corresponds to
above the median in this study. At age 40, her brain volume decreased by 31 mL which
was still above the median when viewed as a single cross-sectional measurement.
However, when viewed in light of the measurement at age 37, this is in fact at the 14th
percentile of expected brain volume, indicating a potentially clinically concerning
decrease. Inspired by Cole (1994).
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Figure 4: Results from cross-sectional and longitudinal GAMLSS modeling in three
subjects labeled A, B, and C. The first row shows axial views of each T1-weighted
image with a red outline around the ventricles. Visual inspection shows subtle brain
volume loss in all three cases, as expected in MS. The lower section of the figure
shows, in rows, raw brain volumes, cross-sectional percentiles, and longitudinal
percentiles with total brain volume in the left column and ventricle volume in the right
column. Note that the bottom row shows one fewer point for each subject compared
with the second-to-last row, as no previous data were available to assess longitudinal
change for the baseline scans. In all three subjects, brain volume decreases and
ventricle volume increases, but cross-sectional percentiles are somewhat stable.
Longitudinal centiles for brain volume are low for each of the second timepoints, but
closer to the median subsequently. For ventricle volume, a similar (but opposite
direction) trend was observed for subjects A and B, but subject C’s cross-sectional and
longitudinal centiles are more stable. This may indicate that the brain volume change
observed in subject C was anatomically focused in a brain region or tissue compartment
where changes in volume were less associated with corresponding ventricular change.
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Supplementary Figure 1: lllustrative example of worm plots from cross-sectional
modeling of total brain volume in females. A worm plot is a detrended normal QQ-plot,
which highlights deviations from normality in the model residuals. Worm plots where
deviations are close to zero (horizontal dashed line) and within the confidence bands
(inside the two elliptic dashed curves) indicate superior fit. Top row shows comparisons
of the final model with scanner manufacturer in the model (left) versus without scanner
manufacturer in the model (right) scanner manufacturer in the model, for data acquired
on GE versus Siemens MRI systems. Bottom row shows comparisons of the final model
with scanner field strength included in modeling (left) versus without scanner field
strength included in modeling (right), for data acquired at 3T versus 1.5T field strength.
Note that when scanner manufacturer is omitted (top right), there are deviations in
average (e.g., the “worm” passes below the origin in Siemens data indicating that the
fitted mean is too small), which are ameliorated by including manufacturer in the mean
model (top left). When field strength is omitted (bottom right), there are deviations in
average as well as slope (e.g., the worm has a positive slope in 1.5T data indicating that
the fitted variance is too small), which are ameliorated by including mean and variance
terms for field strength (bottom left).
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Tables:
Female Male Overall
(N=290) (N=89) (N=379)

Scanner Manufacturer (Baseline)

GE MEDICAL SYSTEMS 137 (47.2%) 48 (53.9%) 185 (48.8%)

SIEMENS 153 (52.8%) 41 (46.1%) 194 (51.2%)
Age (years)

Mean (SD) 433 (12.7) 43.4 (11.9) 43.3 (12.5)

Median [Min, Max] 42.0[20.0,76.0]  44.0[20.0, 67.0] 42.0[20.0, 76.0]
T1-weighted Contrast to Noise Ratio

Mean (SD) 2.99 (0.598) 2.77 (0.539) 2.94 (0.591)

Median [Min, Max] 3.03[0.553,4.41] 2.72[1.73,4.30]  2.99[0.553, 4.41]
Baseline Total Brain Volume (mL)

Mean (SD) 1120 (119) 1270 (118) 1160 (134)

Median [Min, Max] 1120 [800, 1420] 1270 [977, 1550] 1160 [800, 1550]
Baseline Ventricle Volume (mL)

Mean (SD) 31.7 (17.6) 39.3(17.2) 33.5(17.8)

Median [Min, Max] 26.6[10.2,133]  34.5[14.1,101]  28.9[10.2, 133]
Acquisition

Site 1 66 (22.8%) 20 (22.5%) 86 (22.7%)

Site 2 67 (23.1%) 20 (22.5%) 87 (23.0%)

Site 3 6 (2.1%) 1(1.1%) 7 (1.8%)

Site 4 78 (26.9%) 23 (25.8%) 101 (26.6%)

Site 5 73 (25.2%) 25 (28.1%) 98 (25.9%)

Table 1: Demographics and summary information for the study sample.
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