

## Transcriptomic responses of Mediterranean sponges upon encounter with seawater or symbiont microbial consortia

**Authors:** Marulanda-Gomez A.<sup>1</sup>, Ribes M.<sup>2</sup>, Franzenburg S.<sup>3</sup>, Hentschel U.<sup>1,4</sup>, Pita L.<sup>2</sup>

<sup>1</sup>RU Marine Symbioses, RD3 Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany

<sup>2</sup>Institut de Ciències del Mar, ICM – CSIC, Spain

<sup>3</sup> Research Group Genetics and Bioinformatics/Systems Immunology, Institute of Clinical Molecular Biology, Christian-Albrechts-Universität Kiel, Germany

<sup>4</sup>Christian-Albrechts-Universität Kiel, Germany

**Running title:** Sponge transcriptomic response to seawater *vs.* symbiont microbial consortia

## Abstract

Sponges (phylum Porifera) constantly interact with microbes from the water column while filter-feeding and with the symbiotic partners they harbor within their mesohyl. Despite early observations on differential uptake between symbiont and seawater bacteria, it is still poorly understood how sponges discriminate between different microbial consortia. Initial evidence of the diverse repertoire of sponge immune receptors suggests their involvement in specific microbial recognition, yet experimental data is still scarce. We characterized the transcriptomic response of two sponge species, *Aplysina aerophoba* and *Dysidea avara*, upon incubation with two different microbial consortia, which were either enriched from ambient seawater or extracted from *A. aerophoba*. The sponges were sampled after 1 h, 3 h, and 5 h for RNA-Seq differential gene expression analysis. *D. avara* showed higher expression levels of genes related to immunity, ubiquitination, and signaling when incubated with *A. aerophoba* symbionts, than in incubations with seawater microbial consortia. Interestingly, the different bacteria consortia triggered changes in Nucleotide Oligomerization Domain (NOD)-Like Receptors (NLRs) gene expression in *D. avara*. We here provide the first experimental evidence for NLRs playing a role in distinguishing between different microbes in a sponge. In contrast, the response of *A. aerophoba* involved comparatively few genes and lacked genes encoding for immune receptors. This indicates that *A. aerophoba* is less responsive to microbial encounters than *D. avara*. Our study further reveals different transcriptomic responses between the two sponge species to

33 microbes. The study of sponge responses to microbes aids in understanding the evolution of  
34 immune specificity and animal-microbe interactions.

35 **Keywords:** animal-microbe interactions; microbial consortia, HMA-LMA sponges; immune  
36 receptors; RNA-Seq; differential gene expression; symbiosis.

37 **Significant statement**

38 Animals rely on components of the immune system to recognize specific microbes, whether  
39 they are pathogens, food, or beneficial symbionts. However, in marine invertebrates, the  
40 mechanisms of microbial discrimination and specificity are not well understood. Our work  
41 suggests that:(i) the transcriptomic response by the sponge can be scaled according to the type  
42 of exposure, (ii) the response to microbial encounters is species-specific and (iii) NLRs seem  
43 to have a prominent role in the differential response to microorganisms, whether symbionts or  
44 food bacteria.

45 **Introduction**

46 Over the last decades, animals were recognized as “metaorganisms” or “holobionts” which  
47 encompass the multicellular host and its microbial symbionts, such as bacteria, archaea, viruses,  
48 fungi, and algae, (Bosch & McFall-Ngai, 2021; González-Pech et al., 2023; Rosenberg &  
49 Zilber-Rosenberg, 2018; Stévenne et al., 2021). Symbionts participate in the general fitness of  
50 the host by contributing to developmental cues, nutrient provision, potential metabolic  
51 expansion, and defensive traits (Carrier & Bosch, 2022; Gilbert et al., 2015; McFall-Ngai et al.,  
52 2013; Wein et al., 2019). Microbes thus provide adaptive advantages and shape animal  
53 evolution (Rosenberg & Zilber-Rosenberg, 2016; Roughgarden et al., 2018). These close and  
54 complex host-microbe interactions required fine-tuned communication between partners which  
55 is now known to be orchestrated by the host immune system (Berg et al., 2019; Dierking &  
56 Pita, 2020; Ganesan et al., 2022; Horak et al., 2020).

57 The immune system has a dual function of defending the animal against potentially harmful  
58 intruders and at the same time, establishing and maintaining interactions between the host and  
59 its symbiotic microbes (Eberl, 2010; Gerardo et al., 2020). How does immunity differentiate  
60 pathogens to be eliminated from symbionts to be acquired/maintained, and how does it  
61 safeguard guard homeostasis and equilibrium within the host? In both contexts, animals sense  
62 microbe-associated molecular patterns (MAMPs), such as lipopolysaccharide, peptidoglycan,  
63 or flagellin, via pattern recognition receptors (PRRs) (Janeway & Medzhitov, 2002). However,  
64 the encounter to a pathogenic microbe elicits inflammatory responses to eliminate the intruder,  
65 whereas the interaction with symbionts results in tolerance and colonization (Chu &

66 Mazmanian, 2013; Gerardo et al., 2020). Thus, the immune system is able to specifically  
67 distinguish between symbiotic, non-symbiotic and pathogenic signals.

68 Many invertebrate groups such as hydrozoans, cnidarians, mollusks, and echinoderms present  
69 large and strikingly complex repertoires of PRRs (Buckley & Rast, 2015; Hamada et al., 2013;  
70 Lange et al., 2011; Neubauer et al., 2016; Zhang et al., 2011). The diversity of these receptors  
71 contributes to microbial detection by the host, and potentially plays a role in microbial  
72 discrimination (Jacobovitz et al., 2021; Neubauer et al., 2016; Saco et al., 2020; Seneca et al.,  
73 2020). For example, the coral *Montipora aequituberculata* responds to potentially pathogenic  
74 and commensal bacteria *Vibrio coralliilyticus* and *Oceanospirillales* sp., respectively by  
75 regulating the expression of Toll-like receptors and via differential upregulation of G protein–  
76 coupled receptors (van de Water et al., 2018). On the other hand, the freshwater snail  
77 *Biomphalaria glabrata* recognizes different pathogens by different sets of PRRs belonging to  
78 the calcium-dependent lectin family and via enzymes and non-canonical immune components,  
79 like extracellular actin (Tetreau et al., 2017).

80 As arguably the earliest branching metazoans (Redmond & McLysaght, 2021; Turner, 2021),  
81 sponges (phylum Porifera) offer the opportunity to study the evolution of immune specificity  
82 and animal-microbe interactions. As active filter-feeders pumping thousands of liters of  
83 seawater per day through their aquiferous system, sponges constantly encounter microbes from  
84 the seawater, but, at the same time, harbor specific and complex microbial communities within  
85 their mesohyl matrix (Thomas et al., 2016; Webster & Thomas, 2016). Based on the density  
86 and diversity of their symbionts, sponges are classified as high microbial or low microbial  
87 abundance (HMA and LMA) species. HMA sponges contain three to four order of magnitude  
88 more microbes than LMA sponges (Bayer et al., 2014; Hentschel et al., 2006; Moitinho-Silva  
89 et al., 2017; Pankey et al., 2022). This long-recognized dichotomy in sponge-microbe symbiosis  
90 reflects particular signatures in the structure and persistence of the symbiosis as well as  
91 physiological differences such as density of the mesohyl and pumping rates (Gloeckner et al.,  
92 2014; Maldonado et al., 2012; Morganti et al., 2021; Weisz et al., 2008)). Additionally, LMA  
93 sponges are enriched in genes involved in microbial sensing and in host defense, such as  
94 SRCRs, NLRs, nucleosome-binding proteins, and bactericidal permeability-increasing proteins  
95 compared to HMA sponges (Germer et al., 2017; Ryu et al., 2016). The expression of immune-  
96 related genes upon different stimuli thus depends on the microbial abundance and diversity  
97 associated with the sponge, but can also be species-specific (Campana et al., 2022; Pita et al.,  
98 2018; Posadas et al., 2021). These observations suggest that the HMA-LMA status, as well as  
99 specific species traits, may affect how the sponge immune system responds to microbial cues.

100 Early experimental evidence showed that sponges preferentially take up seawater microbial  
101 consortia (i.e., bacterioplankton) over sponge symbiont consortia (Wehrl, 2006; Wehrl et al.,  
102 2007; Wilkinson et al., 1984). This was taken as evidence that the animal can differentiate  
103 between different microorganisms. This differentiation may derive from both host and  
104 microbial features. Recently, sponge symbionts were shown to evade phagocytosis by the  
105 expression of eukaryotic-like proteins containing ankyrin repeats which silence conserved  
106 components of phagocytosis and immune signaling (Jahn et al., 2019). On the host side, the  
107 high diversification of PRRs in sponges (Hentschel et al., 2012; Riesgo et al., 2014; Srivastava  
108 et al., 2010; Yuen et al., 2014) suggest their potential to recognize different and specific  
109 microbial ligands (Degnan, 2015). Experimental evidence supports the activation of PRR gene  
110 expression upon encounter with microbial elicitors (e.g., Wiens et al. 2005; Yuen 2016; Pita et  
111 al. 2018; Schmittmann et al. 2021), but it remains to be shown if (and how) the expression  
112 patterns of PRRs may be involved in specific immune responses to different microbes.

113 Our study aims to better understand the underlying molecular mechanisms of bacterial  
114 discrimination in sponges. We characterized the host response upon encounter to seawater- and  
115 sponge-derived microbial consortia by RNA-Seq differential gene expression analysis.  
116 Specimens of *Aplysina aerophoba* (HMA) and *Dysidea avara* (LMA) were incubated with  
117 either microbial consortia enriched from natural seawater or with a sponge-associated symbiotic  
118 consortium. Sponge symbiont consortium was obtained from *A. aerophoba* by differential  
119 centrifugation, a physical separation used for enrich sponge symbiotic fractions because sponge  
120 symbionts remain unculturable (Schmittmann et al., 2022; Markus Wehrl et al., 2007). We  
121 collected samples at 1h, 3h, and 5h from the start of the incubation. We hypothesized that (i)  
122 both sponges will rely on differential expression of PRRs for microbial discrimination, (ii)  
123 differentially-expressed genes will show lower expression levels upon symbiotic (“self”) than  
124 seawater microbial consortia (“non-self”) treatment and (iii) that the HMA-LMA status of the  
125 host sponge will influence the different transcriptomic response between microbial encounters.

## 126 **Material and Methods**

### 127 **Sponge collection**

128 Specimens of the Mediterranean sponge species *Aplysina aerophoba* (Nardo, 1833) and  
129 *Dysidea avara* (Schmidt, 1862) were collected via SCUBA diving at the coast of Girona (Spain)  
130 in March 2015 (42.29408 N, 3.28944 E and 42.1145863 N, 3.168486 E; respectively). Sponges  
131 were then transported to the Experimental Aquaria Zone (ZAE) located at the Institute of  
132 Marine Science (ICM-CSIC) in Barcelona (Spain) and were placed in separated 6 L aquaria in  
133 a flow-through system with direct intake of seawater. Temperature and light conditions were

134 set up mimicking natural conditions. Sponges were maintained under these conditions during  
135 10-12 days for acclimation.

136 **Experimental setup**

137 The experiment was conducted consecutively for each sponge species (end of March for *A.*  
138 *aerophoba*, beginning of April for *D. avara*). Before the microbial exposure experiments,  
139 sponges were kept overnight in 1  $\mu\text{m}$ -filtered seawater and an additional 0.1  $\mu\text{m}$ -filter was  
140 applied for 3 h before the experiments with the aim to reduce microbial load in seawater to a  
141 minimum. The flow-through was stopped during the experiment, but small aquarium pumps  
142 (Eheim GmbH & Co.) ensured the mixing of the water in the aquarium. Sponges were incubated  
143 with either microbial seawater consortia or symbiont consortia that had been prepared following  
144 the protocols below. The concentration of these stock microbial consortia was estimated via  
145 flow cytometry (see details in supplementary information, Text S1 and Fig. S1) and adjusted to  
146 reach  $10^{5-6}$  bacteria  $\text{mL}^{-1}$  final concentration in the experimental tanks. Sponge specimens that  
147 were actively pumping, as visually assessed by the presence of an open oscula, were randomly  
148 assigned to each treatment ( $n = 5$  individuals per treatment). For each individual, tissue samples  
149 were collected at 1 h, 3 h, and 5 h after adding the microbial consortia to the experimental tanks,  
150 then placed in RNAlater at 4°C overnight, and stored at -80°C until processing.

151 **Symbiont consortia preparation**

152 The *A. aerophoba*-symbiont fraction was obtained as described in Wehr et al. (2006). Briefly,  
153 20 g of sponge tissue from living individuals that had been cleaned off debris was rinsed in  
154 sterile, ice-cold Ca- and Mg-free artificial seawater (CMFASW) with EDTA (as in (Rottmann  
155 et al., 1987)), incubated for 30 min at 4°C, and then homogenized with a mortar and pestle.  
156 After filtration through 100  $\mu\text{m}$ -Nitex, the suspension was centrifuged twice at 4°C, 400 g for  
157 20 min to remove sponge cells, which remained in the pellet. The supernatants were combined  
158 and centrifuged at 4°C, 4000 g for 20 min to obtain a bacterial pellet. This pellet was washed  
159 twice in ice-cold CMFASW and recovered again by centrifugation. Finally, the bacterial pellet  
160 was resuspended in sterile ice-cold CMFASW. Symbiont extraction from *D. avara* was not  
161 possible because this species represents an LMA sponge and we could not obtain enough  
162 microbial extracts for the incubations.

163 **Seawater microbial consortia preparation**

164 Seawater microbial consortia were enriched from seawater from the aquaria setup (a flow-  
165 through system with direct intake of natural seawater), following the protocol by Wehr et al.  
166 (2006). In short, Marine Broth 2216 media was added to 10 L of seawater to a final

167 concentration of 15 mg L<sup>-1</sup>. The enriched seawater was incubated in the dark overnight at  
168 ambient temperature and gentle shaking. Aliquots of the enriched seawater were then sampled,  
169 and bacteria were recovered by differential centrifugation (4°C, 4000 g for 20 min), then  
170 washed twice, and re-suspended in sterile, ice-cold CMFASW.

### 171 **Sponge RNA extraction, sequencing, and *de novo* transcriptome assembly**

172 Total RNA from 30 samples were extracted for each species following the methods in Pita et  
173 al. (2018), but only 22 samples of *D. avara* passed the quality checks (i.e., RIN > 8 in Experion,  
174 Bio-Rad, USA). In short, 500 ng of total RNA were used for library construction with the  
175 TruSeq stranded mRNA library prep kit (Illumina, Inc., USA), including a poly-A enrichment  
176 step. Paired-end sequencing (150 bp) was performed on a NovaSeq S2 system (Illumina, Inc.,  
177 USA) at the Competence Centre for Genomic Analysis (CCGA; Kiel, Germany). Raw paired-  
178 end reads were trimmed and filtered to remove adapters and low-quality reads in Trimmomatic-  
179 v0.39 (Bolger et al. 2014). Prokaryotic and microbial eukaryotic reads were filtered in the  
180 classifier kaiju-v1.6.2 (Menzel & Krogh, 2015). All samples were used to construct a *de novo*  
181 assembly per each sponge species in Trinity-v2.10.0 (Haas et al., 2013). Quality check and  
182 completeness of the assemblies were assessed by statistics performed in TransRate-v1.0.2  
183 (Smith-Unna et al., 2016), and by comparing the assemblies against the metazoan-reference  
184 data in BUSCO-v3 (Simão et al., 2015).

### 185 **Annotation, gene quantification, and differential gene expression analysis**

186 Functional transcriptome annotation was performed following Trinotate-v3.2.0 (Haas et al.,  
187 2013). Contigs with blastx or blastp matches to Bacteria, Archaea, or Virus, as well as those  
188 annotated as ribosomal RNA were removed from the *de novo* assembly. Gene (i.e., trinity  
189 components) abundance was estimated based on RSEM bowtie2 quantification-v1.3.3  
190 (Langmead et al., 2009; Li & Dewey, 2014). Differential gene expression analysis was  
191 performed separately for each time point (i.e., 1 h, 3 h, and 5 h) in edgeR (Robinson et al., 2009)  
192 as implemented in Trinity-v2.10.0 (Haas et al., 2013) with default parameters. Differentially  
193 expressed genes (DEGs) in pairwise- treatment comparisons were defined by False Discovery  
194 Rate-corrected (FDR) p-value < 0.005 and log<sub>2</sub>|change| ≥ 2 (i.e., four-fold change) as in (Pita  
195 et al., 2018; Wu et al., 2022).

### 196 **Results**

197 We characterized the transcriptomic response of the Mediterranean sponges *A. aerophoba* and  
198 *D. avara* to either seawater microbial consortia or to symbiont consortia extracted from *A.*

199 *aerophoba* tissue. We followed upon the initial work by Wehrl et al. (2007), who observed  
200 lower uptake rates of symbionts than seawater bacteria in *A. aerophoba*.

201 **Reference transcriptome assembly**

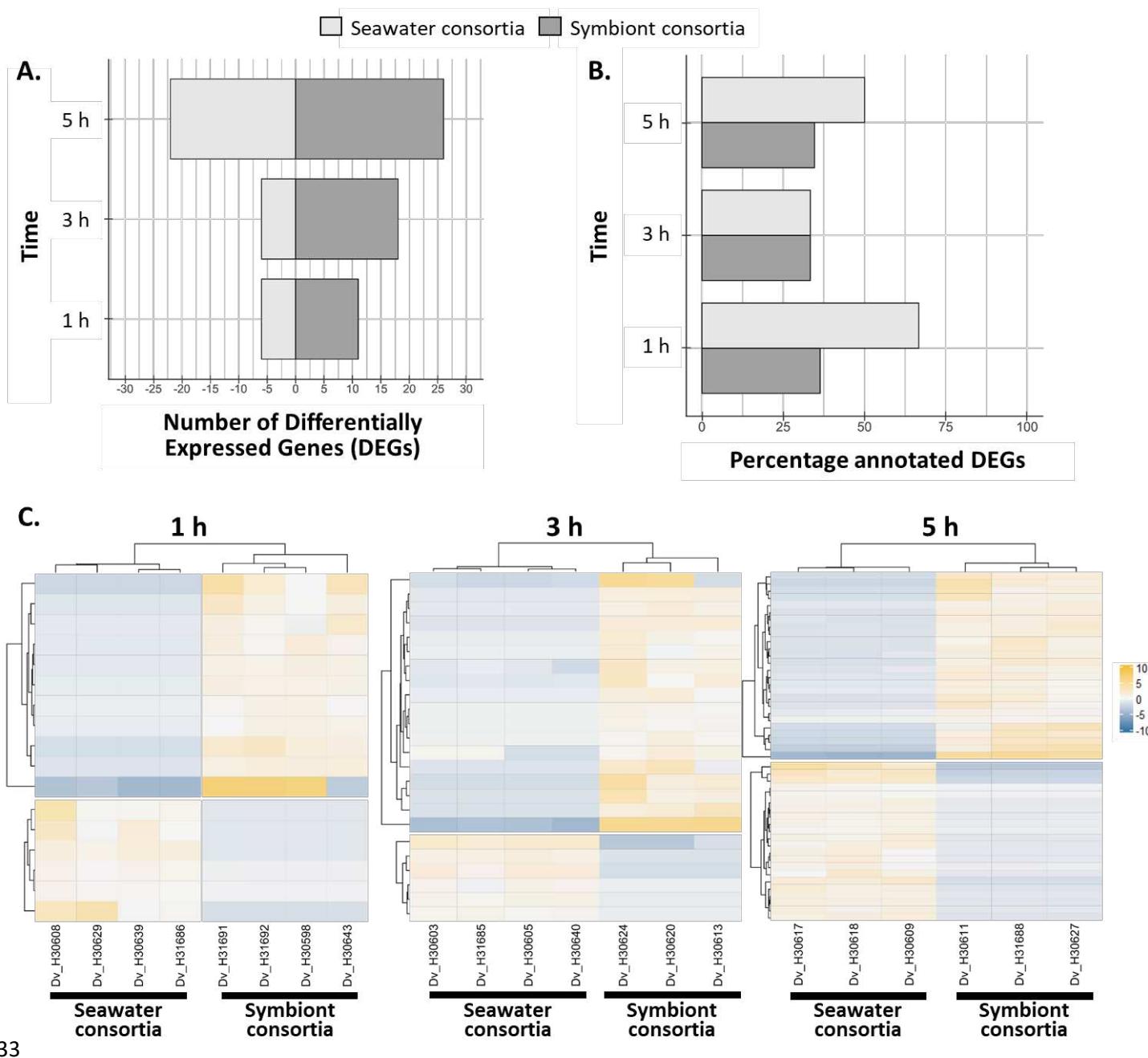
202 We sequenced 29 samples of *A. aerophoba* and 22 samples of *D. avara* corresponding to 3-5  
203 biological replicates per treatment within 1h, 3h, and 5h (Table 1). The number of paired-end  
204 Illumina reads generated in this study is summarized in Supplementary Table S1. BUSCO  
205 assessments revealed that the *de novo* reference transcriptomic assembly of *A. aerophoba*  
206 generated in this study contained 71.4 % of the 902 BUSCO Metazoan core genes, with 76.6  
207 % of the genes found as complete. The reference transcriptome assembly for *D. avara* consisted  
208 of 78.2% of the BUSCO Metazoan core genes, with 82.9% of these genes found as complete,  
209 suggesting this reference transcriptome is more complete than the reference in Pita et al. (2018).  
210 All statistics of the reference assemblies generated in this study are summarized in  
211 Supplementary Table S2. Overall,  $68.89 \pm 0.21\%$  and  $84.37 \pm 17\%$  (average  $\pm$  standard error)  
212 of the reads in each sample aligned to the *de novo*-assembled reference transcriptome of *A.*  
213 *aerophoba* and *D. avara*, respectively.

214 **Table 1.** Biological replicates per condition and time point

| Species             | Treatment                             | Time | Replicates |
|---------------------|---------------------------------------|------|------------|
| <i>A. aerophoba</i> | Seawater microbial consortia          | 1h   | 4          |
|                     |                                       | 3h   | 5          |
|                     |                                       | 5h   | 5          |
|                     | <i>A.aerophoba</i> symbiont consortia | 1h   | 5          |
|                     |                                       | 3h   | 5          |
|                     |                                       | 5h   | 5          |
| <i>D. avara</i>     | Seawater microbial consortia          | 1h   | 4          |
|                     |                                       | 3h   | 4          |
|                     |                                       | 5h   | 3          |
|                     | <i>A.aerophoba</i> symbiont consortia | 1h   | 4          |
|                     |                                       | 3h   | 3          |
|                     |                                       | 5h   | 3          |

215

216


217 **Transcriptomic response upon seawater microbial and symbiont consortia**

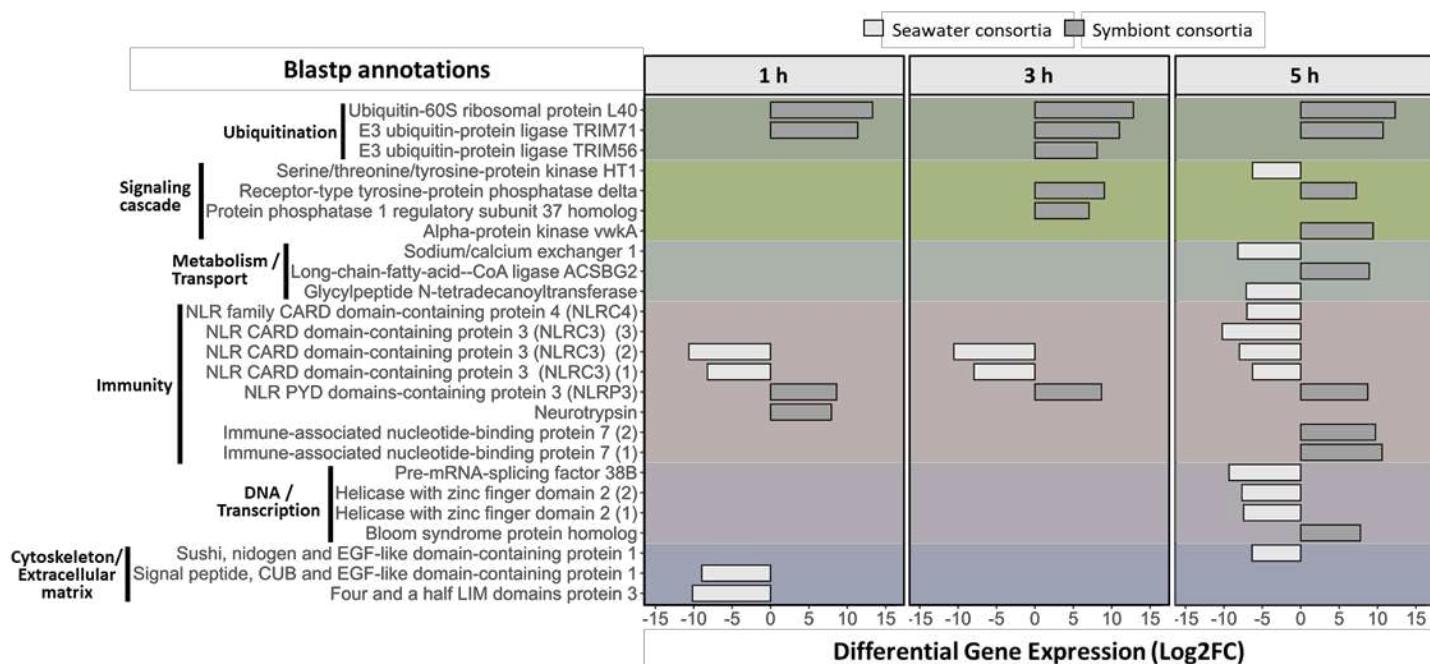
218 Significant differentially expressed genes (DEGs) were defined by edgeR, using a threshold of  
219  $\log_2|FC| \geq 2$  (i.e., 4-fold change) and FDR p-value  $< 0.005$ , as in previous studies (Pita et al.,  
220 2018; Wu et al., 2022). The DEGs were classified as up-regulated and down-regulated in the  
221 symbiont treatment when compared to the expression levels in the seawater microbial

222 treatment. The results from the differential expression analysis in edgeR and the full Trinotate  
223 annotation reports for the DEGs can be found in Tables S3 to S6.

224 **D. avara differential response to microbial consortia involves immune- and**  
225 **ubiquitin-related genes**

226 We detected a total of 28 DEGs between *D. avara* sponges exposed to seawater and *A.*  
227 *aerophoba*-symbiont consortia and most genes showed higher expression levels in the symbiont  
228 treatment (Fig. 1). The highest proportion of DEGs was detected at 5h (Fig. 1A). Blastp  
229 provided annotation for 39 % of the total 64 DEGs (Fig. 1B) and searched in the SigP database  
230 classified all of them as non-transmembrane signaling peptides (Table S4). Expression profiles  
231 of *D. avara* individuals treated with each type of microbial consortia were consistent and  
232 biological replicates clustered together at all time points (Fig. 1C).




233

234 **Fig. 1.** Differential gene expression of *D. avara* individuals treated with seawater microbial vs.  
 235 *A. aerophoba*-symbiont consortia. **(A)** Number of differentially expressed genes (DEGs).  
 236 Genes with increased expression upon symbiont encounter compared to seawater microbial  
 237 consortia have positive values. **(B)** Percentage of DEGs with annotation for each microbial  
 238 treatment and time point. **(C)** Heatmaps show the TMM-normalized relative expression level  
 239 per DEG (rows) for each sample (columns) at 1 h, 3 h, and 5 h after microbial treatment. Genes  
 240 were defined as differentially expressed with edgeR, FDR p-value < 0.005 and  $\log_2|FC| \geq 2$ .

241

242 Based on Pfam and blast annotations, we identified five differentially expressed genes encoding  
 243 for NOD-like receptors (NLRs) (Fig. 2, within “immunity” category). Four out of five

244 differentially expressed NLRs showed higher expression levels upon seawater microbes than  
 245 upon *A. aerophoba*-symbiont exposure. Three of these (*TRINITY\_DN18609\_c0\_g1*,  
 246 *TRINITY\_DN65570\_c0\_g1*, *TRINITY\_DN18609\_c0\_g2*) were expressed at all time points and  
 247 corresponded to incomplete NLRs (only the LRR-domain was detected; PF13516), and  
 248 annotated as NLRC3 based on Blastp, whereas the fourth gene (*TRINITY\_DN6063\_c1\_g1*),  
 249 found only at 5 h (Fig. 2), contained the characteristic NACHT domain of NLRs (PF05729)  
 250 and a peptidase domain (PF00656), and was assigned to the NLRC4 family based on Blastp  
 251 annotation (Table S4). In contrast, there was one NLR that showed elevated gene expression in  
 252 sponges incubated with symbionts in all time points (*TRINITY\_DN42758\_c1\_g2*); it contained  
 253 a NACHT domain and was assigned to the NLRP3 family based on Blastp annotation (Fig. 2;  
 254 and Table S4).

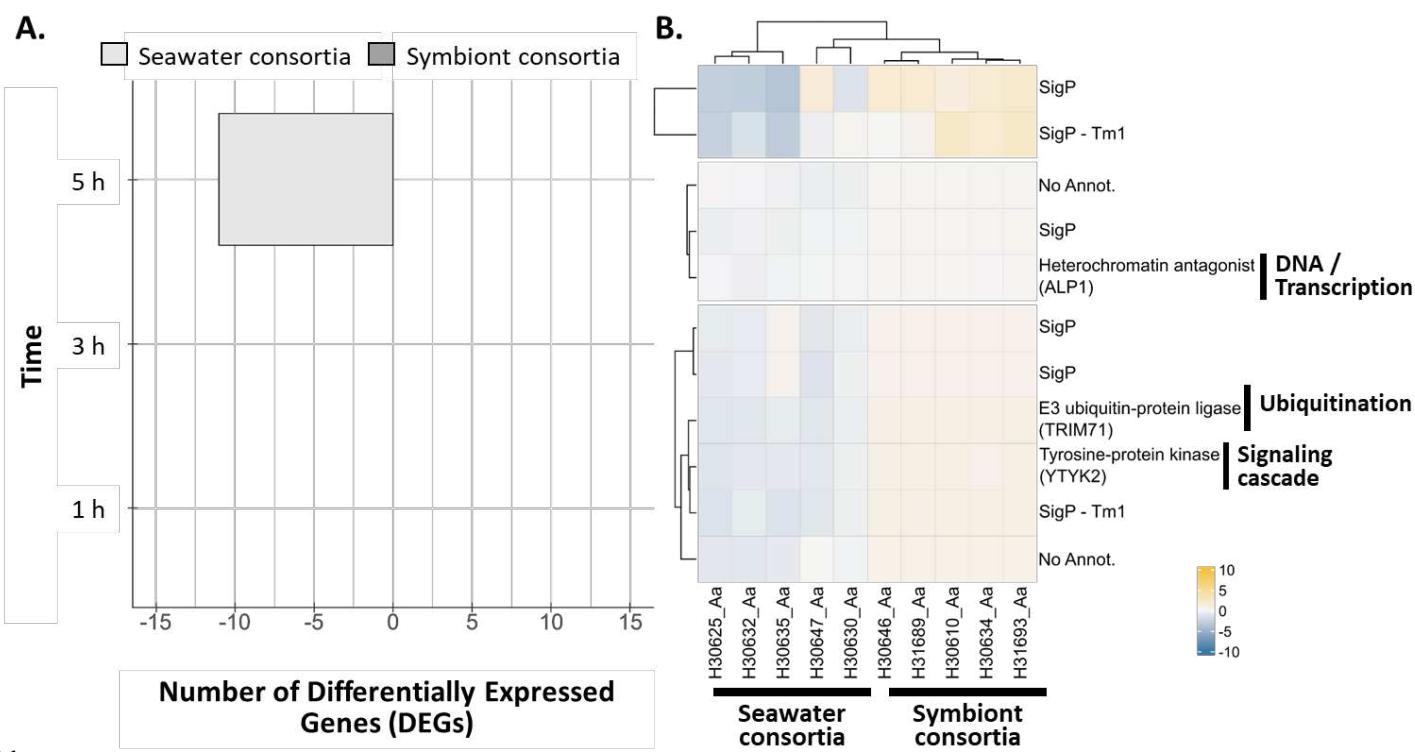


255

256 **Fig. 2.** Functions and expression levels of differentially expressed genes in *D. avara* at 1 h, 3  
 257 h, and 5 h after seawater microbial and *A. aerophoba*-symbiont consortia treatment. Genes with  
 258 increased expression upon symbiont encounter compared to seawater microbial consortia have  
 259 positive Log2FC values. Genes were defined as differentially expressed with edgeR, FDR p-  
 260 value < 0.005 and  $\log_2|FC| \geq 2$ . Only genes with Blast annotations are included. Numbers in  
 261 brackets indicate different genes with the same annotation.

262

263 In addition to NLRs, we detected other DEGs potentially involved in innate immunity and  
 264 ubiquitination that showed higher expression levels upon encounter to *A. aerophoba* symbionts  
 265 than to seawater microbes (Fig. 2). Among the immune genes, we detected a SRCR-containing


266 gene associated to neurotrypsin (*TRINITY\_DN137847\_c3\_g1*; PF00530), and two genes related  
267 to an immune-associated GTP-binding protein (PF04548) (*TRINITY\_DN1745\_c0\_g1* and  
268 *TRINITY\_DN5077\_c0\_g1*) (Fig. 2; and Table S4). The regulation of ubiquitination was evident  
269 by the differential expression of three genes: one ubiquitin-60S ribosomal protein L40-like  
270 (*TRINITY\_DN322946\_c0\_g1*) and two E3 ubiquitin ligases (*TRINITY\_DN739\_c0\_g4* and  
271 *TRINITY\_DN37530\_c0\_g1*, Fig. 2; and Table S4). The *A. aerophoba*-symbiont consortium also  
272 stimulated genes annotated as protein phosphatases (*TRINITY\_DN4437\_c1\_g1* and  
273 *TRINITY\_DN33881\_c0\_g1*) with fibronectin (PF00041) or LRR (PF13516) domains, an alpha-  
274 protein kinase (*TRINITY\_DN61539\_c1\_g1*), a CoA ligase (*TRINITY\_DN2791\_c1\_g1*), and a  
275 DEAD box-containing protein (*TRINITY\_DN9624\_c0\_g1*; PF00270) (Fig. 2; and Table S4).

276 The seawater microbial treatment showed higher expression levels of genes involved in cell  
277 surface and cytoskeleton organization than compared to the symbiont consortia treatment,  
278 including a calmodulin-ubiquitin and epidermal growth factor-like containing gene  
279 (*TRINITY\_DN5241\_c0\_g1*), and a LIM domain-containing gene (*TRINITY\_DN182729\_c0\_g1*)  
280 (Fig. 2 and Table S4). At 5h, genes related to functions such as DNA regulation and  
281 transcription, metabolism and transport, and signaling cascades showed elevated gene  
282 expression levels in seawater microbial treatment. For example, two genes  
283 (*TRINITY\_DN9504\_c0\_g1* and *TRINITY\_DN41910\_c0\_g1*) for helicases with a zinc finger  
284 domain (HELZ2) belonging to the superfamily of P-loop NTPases (PF13087 and PF04851)  
285 which are predicted to be nuclear co-activators of the peroxisome proliferator-activated  
286 receptors (Fig. 2 and Table S4) were identified. We also detected two genes  
287 (*TRINITY\_DN9504\_c0\_g1* and *TRINITY\_DN41910\_c0\_g1*) involved in the molecular function  
288 of calcium and calmodulin binding. One of these genes contained a nidogen-like domain  
289 (PF06119), which is predicted to enable Notch binding activity and to be involved in cell-matrix  
290 adhesion, whereas the other gene with a Calx-beta motif (PF03160) regulates the transport of  
291 calcium and sodium across the cell membrane. In addition, a serine/threonine tyrosine-protein  
292 kinase (*TRINITY\_DN63\_c1\_g1*), a glycylpeptide N-tetradecanoyltransferase  
293 (*TRINITY\_DN16852\_c2\_g2*) involve in lipid modification, and an mRNA-splicing factor  
294 (*TRINITY\_DN150336\_c1\_g1*) showed also higher gene expression levels 5 h after seawater  
295 consortia treatment than in symbiont treatment (Fig. 2 and Table S4).

296 ***A. aerophoba* differential response to microbial consortia involves signaling genes,  
297 ubiquitination-related genes and kinases**

298 Differential gene expression between *A. aerophoba* sponges incubated with seawater microbial  
299 and symbiont consortia was only observed at 5 h, ( $\log_2|FC| \geq 2$  (i.e., 4-fold change) and FDR p-

300 value < 0.005), (Fig. 4A) and showed consistently elevated expression profiles in seawater  
 301 microbial treatment than symbiont treatment (Fig. 4B). Within the total 11 DEGs detected, 9  
 302 genes were signaling peptides, as reported by signalP (and two contained a transmembrane  
 303 domain Table S6). We identified three genes with additional blast annotation. A leucine-rich  
 304 repeat receptor like protein kinase (*TRINITY\_DN146410\_c5\_g2*) with similarity to a  
 305 *Dictyostelium discoideum* gene (YTYK2; DDB\_G0283397), an ubiquitin ligase  
 306 (*TRINITY\_DN163315\_c3\_g2*; LIN41), and a transposase-derived protein antagonist of  
 307 heterochromatin (*TRINITY\_DN169091\_c1\_g1*; ALP1) (Fig. 3B). If relaxing the significance  
 308 threshold ( $\log_2|FC| \geq 1$  (2-fold change) and FDR p-value < 0.05), the number of DEGs increased  
 309 but the pattern of elevated expression levels of DEGs in the seawater microbial consortia than  
 310 symbiont treatment was consistent (Fig. S2).



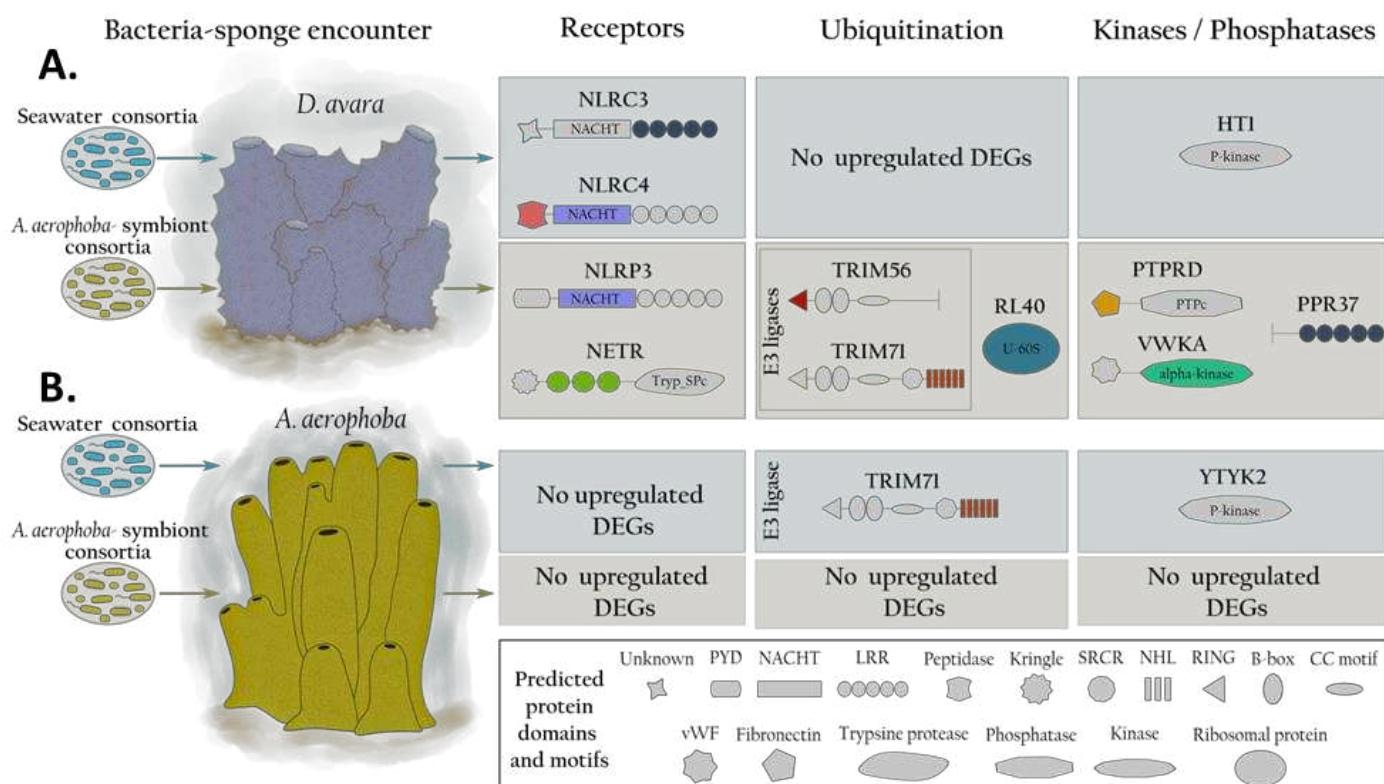
311  
 312 **Fig. 3.** Differential gene expression of *A. aerophoba* individuals treated with seawater microbial  
 313 consortia vs. sponge own symbionts. **(A)** Number of differentially expressed genes (DEGs).  
 314 Genes with increased expression upon symbiont encounter compared to seawater microbial  
 315 consortia have positive values. **(B)** Heatmap show the TMM-normalized relative expression  
 316 level per DEG (rows) for each sample (columns) at 5 h after microbial treatment. Functions of  
 317 DEGs are included only for genes with Blast annotations (right bold legend). Genes were  
 318 defined as differentially expressed with edgeR, FDR p-value < 0.005 and  $\log_2|FC| \geq 2$ .

319 **Discussion**

320 In this study, we characterized the transcriptomic responses of the Mediterranean sponges *A. aerophoba* and *D. avara* upon incubation with either microbial seawater or *A. aerophoba*-  
321 symbiont consortia. Previous studies comparing filtration rates showed that sponges take up  
322 seawater bacteria at higher rates than symbiotic bacteria (Wehrl et al., 2007; Wilkinson et al.,  
323 1984). Among transcriptomic studies in which sponges were subject to different stimuli  
324 (Koutsouveli et al., 2020; Pita et al., 2018; Posadas et al., 2021; Schmittmann et al., 2021; Wu  
325 et al., 2022), this one is among the first to simulate natural conditions and consequently, the  
326 overall host responses involved moderately fewer DEGs. The sponge species investigated  
327 responded differently to the experiment. The LMA sponge *D. avara* discriminated between  
328 treatments via NLR receptors, whereas no PRRs were differentially regulated in the HMA  
329 sponge *A. aerophoba*. This is the first time that the differential regulation of various NLR  
330 families is linked to microbial discrimination in sponges. While differentially-expressed genes  
331 in *D. avara* showed higher levels of expression upon symbiont consortia encounter than to  
332 seawater microbial consortia, little differential expression between both treatments was  
333 observed in *A. aerophoba*. We propose that the way sponges distinguish between microbes may  
334 depend on the HMA-LMA status as well as on species-specific traits.

336 **Moderate transcriptional response of sponges to microbial exposure**

337 The exposure of *A. aerophoba* and *D. avara* to seawater microbial consortia and *A. aerophoba*-  
338 symbionts showed differential gene expression of few genes (i.e., < 70 genes) for both sponge  
339 species investigated (Fig. 1A and Fig. 3A), even when significance threshold was relaxed (Fig.  
340 S2). In the current study, we detected a relatively lower transcriptional response (i.e., number  
341 of DEGs) than in previous studies, particularly for *A. aerophoba*. A previous experiment  
342 assessing the response of both sponge species studied here to commercial microbial elicitors  
343 (i.e., lipopolysaccharide and peptidoglycan), compared to a sham injection with filtered  
344 artificial seawater, detected > 400 DEGs and ca. 49 DEGs in *A. aerophoba* and *D. avara*,  
345 respectively (Pita et al., 2018). In another study, the transcriptional response of *A. aerophoba*  
346 to wounding included thousands of DEGs (Wu et al., 2022). Furthermore, *A. queenslandica*  
347 juveniles in response against its native bacteria compared to foreign bacteria involved the  
348 differential gene expression of >1000 genes (Yuen, 2016). Besides potential differences due to  
349 bioinformatics analysis, we propose that, to some extent, the different magnitude of differential  
350 gene expression observed in previous, and this study are linked to the microbial stimuli applied  
351 (commercial vs. “natural”), the way they were presented to the sponge (injection vs.  
352 incubation), and the life stage (juveniles vs. adults) of the sponges. It thus appears that the


353 magnitude of the host response is scalable depending upon the treatment, ranging from low  
354 (natural bacterial consortia), to medium (commercial elicitors), to high (mechanical damage).  
355 Figuratively speaking, in this study we are listening to the sponge “whispering”, as opposed to  
356 “talking” upon injection with elicitors (Pita et al., 2018), and even to “screaming” upon  
357 mechanical damage and snail predation (Wu et al., 2022). Furthermore, the higher number of  
358 immune related genes between in *A. queenslandica* juveniles compared to adult *D. avara* and  
359 *A. aerophoba* individuals could also be related to the maturation of the sponge immune system.  
360 The development and acquisition of immunity remains to be studied in sponges, but in other  
361 organisms (e.g., zebrafish, honey bees, mice and humans) a series of maturation steps are  
362 required for achieving immunocompetence, and this competence is adapted to the different life  
363 stages and previous encounters of the host with microbial cues (Gätschenberger et al., 2013;  
364 Lam et al., 2004; Park et al., 2020; Yang et al., 2015).

365 The present study presented the microbes in a way that is closer to natural conditions, in which  
366 sponge filter-feeding lifestyle translates into constant encounter with microbes in the  
367 surrounding water. The maintenance and implementation of immune mechanisms is  
368 energetically demanding, and the physiological costs may represent trade-offs between other  
369 metabolic activities (Ardia et al., 2012; Palmer, 2018). Thus, we speculate that the immune  
370 activity is constitutive in adult sponges due to their constant interactions with microbes. In fact,  
371 constitutive expression of a great variety of PRRs has been observed in the sponge *Halichondria*  
372 *panicea* (Schmittmann et al., 2021). Induced responses will be activated upon other type of  
373 stimuli, like “damage signals”, as in the response of *A. aerophoba* to wounding (Wu et al.,  
374 2022). In contrast, the response to microbes is based on “fine-tuning” of -immune components  
375 that are already in place. The constant interactions of sponges with their microbiome and  
376 seawater bacteria including potential pathogens may favor constitutive expression over induced  
377 activation of immune components. This strategy challenges traditional views on induced  
378 immunity from terrestrial animals, but it may indeed be widespread among marine invertebrates  
379 (Schmittmann et al., 2021; Williams & Gilmore, 2022).

380 **Sponges recognize microbial consortia differently**

381 *D. avara* individuals incubated with *A. aerophoba*-symbiont consortia showed an overall  
382 approx. 50 % higher number of DEGs compared to *A. aerophoba* sponges (Fig. 1A and 3A).  
383 We observed a differential expression of immune receptors in *D. avara* such as NLRs (Fig 2  
384 and Fig. 4A), whereas no PRRs were differentially expressed in *A. aerophoba* (Fig. 3B and Fig.  
385 4B). Moreover, *A. aerophoba* showed a lower transcriptomic response to symbiont (“self”) than  
386 to seawater microbial consortia (“non-self”). The few genes differentially regulated in *A.*

387 *aerophoba*, showing mainly reduced expression levels upon its own symbiont treatment (Fig.  
 388 3B), could indicate that the sponge detects microbes in a different way than *D. avara*. The low  
 389 transcriptomic response in *A. aerophoba* could be the result of the sponge recognizing its own  
 390 symbionts as “self” or of its HMA status. Since we did not detect high differential gene  
 391 expression between the microbial treatments in *A. aerophoba*, we argue this to be related to the  
 392 sponge HMA status rather than with “self”/“non-self” recognition. Ideally, we would have  
 393 included a fourth treatment consisting of *D. avara*-symbiont consortia exposure to clarify these  
 394 hypotheses, but we were not able to extract symbionts from *D. avara* in sufficient quantity for  
 395 our incubations, due to its LMA status. Moreover, we cannot exclude the possibility that *A.*  
 396 *aerophoba* sponge cells were remaining in the microbial symbiont fraction and, thus, affected  
 397 the transcriptional responses. However, we would expect that those sponge cells will activate a  
 398 transcriptional response in both *D. avara* and *A. aerophoba*, if any, because studies on sponge  
 399 self- and non-self-transplants suggest active rejection of cells from other sponges, even if  
 400 derived from other individuals of the same species (Hildemann et al., 1979; Hirose et al., 2021;  
 401 Saito, 2013). Overall, our results show a lack of a differential transcriptomic response in a HMA  
 402 sponge against microbes that we interpret as an adaptation to the permanent presence of  
 403 symbionts within the sponge mesohyl system. More sponge species representative of the HMA-  
 404 LMA categories will however be needed to validate and elaborate this hypothesis.



406 **Fig. 4.** Overview of the transcriptomic response in (A) *D. avara* and (B) *A. aerophoba* upon  
407 microbial consortia encounter, derived either from seawater or symbiont preparations. DEGs  
408 detected after each treatment and annotated as receptors or related to ubiquitination and  
409 signaling are shown along with UniProt ID of best blastp hits. Colored domains had a Pfam  
410 annotation, whereas gray-shaded ones were not detected, and the potential structure of each  
411 gene was drawn based on smart.embl.de.

412 ***D. avara* and *A. aerophoba* employ different sets of genes**

413 The differential transcriptomic response of *D. avara* individuals to symbionts and seawater  
414 microbial consortia involved several immune genes including one SRCR-containing receptor  
415 and two GTP-binding proteins. The genes encoding for the immune-associated GTP-binding  
416 protein (IAN) in *D. avara* are part of the GIMAP family. IAN genes were not detected in any  
417 other early divergent metazoans including the genome of the sponge *A. queenslandica*, but are  
418 broadly and patchy distributed among eukaryotes, and orthologs have been reported in plants,  
419 corals, and molluscs as means of microbial defense (Coelho et al., 2022; Liu et al., 2008;  
420 McDowell et al., 2016; Weiss et al., 2013). GIMAP family is conserved among vertebrates,  
421 where it is implicated in the development and maintenance of immune cells (e.g., lymphocytes  
422 (Limoges et al., 2021)). SRCRs are involved in the recognition of a broad range of ligands and  
423 are highly diversified in invertebrates (Buckley & Rast, 2015; Neubauer et al., 2016; Smith et  
424 al. 2018). These receptors are also expanded in sponges (Pita et al., 2018; Ryu et al., 2016;  
425 Schmittmann et al., 2021) and potentially play a role in sponge symbiosis. For instance, a  
426 SRCR-domain containing gene was up-regulated in symbiotic individuals of the sponge  
427 *Petrosia ficiformis* compared to aposymbiotic individuals (i.e., photosymbiont-free),  
428 suggesting the involvement of this immune receptor in sponge symbiosis (Steindler et al.,  
429 2007). Moreover, in juveniles of *A. queenslandica*, different SRCRs were upregulated in  
430 response to native and foreign bacteria (Yuen, 2016). Altogether, SRCRs arise as putative  
431 mediators of sponge-microbe interactions in different sponge species and the GIMAP family  
432 may as well deserve more attention in future studies.

433 In comparison to *D. avara*, the lower differential transcriptomic response of *A. aerophoba* was  
434 limited to reduced expression of a kinase-like receptor, an E3 ligase and an antagonist of  
435 heterochromatin in symbiont vs. seawater microbial consortia treatment (Fig 3B and Fig. 4B).  
436 The antagonist of like-heterochromatin protein (ALP1) in plants acts as a transposase mediating  
437 various cellular pathways and capable of silencing gene expression involving E3 ubiquitin  
438 ligases (Golbabapour et al., 2013; Ohtsubo et al., 2008). The role of this transposase in  
439 inhibiting transcriptional responses is proposed to have evolved as a means for evading

440 surveillance by the hosts (Liang et al., 2015). In fact, pathogens cause a variety of transcriptional  
441 changes (e.g., alteration of chromatin structure, proteolytic degradation, deactivation of  
442 transcription factors, etc.) to exploit a wide range of pathways which enhances their survival  
443 within the host (De Monerri & Kim, 2014; Villares et al., 2020). We therefore hypothesize that  
444 the late (i.e., at 5h) down-regulation of both ALP1 and E3 ubiquitin ligase in symbiont  
445 compared to seawater microbial exposure (Fig. 3B) could indicate active host gene silencing  
446 by symbionts, to prevent becoming target material for degradation. Functional studies are  
447 imperative to validate the processes in which the detected DEGs are involved, yet this remains  
448 a challenge in sponges as models for genetic manipulation are currently limited to explants or  
449 cells of two sponge species (Hesp et al., 2020; Revilla-I-Domingo et al., 2018).

450 **D. avara distinguishes between seawater microbial and symbiont consortia via**  
451 **NLRs**

452 *D. avara* sponges differentiated between seawater microbes and symbionts via differential  
453 expression of NLRs. Moreover, the differentially-expressed NLRs with higher expression  
454 levels in sponges incubated with seawater microbial consortia were similar to the NLRC3 and  
455 NLRC4 families (based on Blastp results; Fig 2 and Fig. 4A), whereas the NLR that exhibited  
456 higher expression levels in response to *A. aerophoba* symbionts showed similarity to the  
457 NLRP3 family (Fig 2 and Fig. 4A). A phylogenetic analysis of these NLRs was not possible  
458 because our transcripts for these NLR-like genes were incomplete (i.e., lacking NACHT or  
459 LRR domains, Fig 4A). To confirm if these NLRs belonged to different subfamilies, we  
460 performed an additional blast search (at protein level, e-value < 1e-5; Table S7) of the  
461 differentially expressed NLRs in *D. avara* against the freshwater sponge *Ephydatia muelleri*,  
462 for which a chromosome-level genome is available (Kenny et al., 2020). The best hits of  
463 differentially-expressed *D. avara* NLRs in *E. muelleri* support that the NLRs activated in  
464 response to seawater bacteria belong to a different NLR subfamily than the one responding to  
465 *A. aerophoba* symbiont consortia (Table S7).

466 Differential gene expression of NLRs in *D. avara* was accompanied by differential expression  
467 of ubiquitination, kinases and phosphatases (Fig 2 and Fig. 4A). We speculate that the different  
468 types of NLRs (i.e., NLRC3, NLRC4 and NLRP3) activate different downstream signaling  
469 pathways in *D. avara* whose ultimate goal is to regulate microbial recognition by the sponge.  
470 In humans and mice these NLR families regulate inflammatory pathways (Pan et al., 2022;  
471 Schneider et al., 2013; Sun et al., 2022; Uchimura et al., 2018; Walle & Lamkanfi, 2016).  
472 Inflammation requires various post-translational modifications comprising ubiquitin ligases,  
473 kinases and phosphatases (Akther et al., 2021; Song & Li, 2018; Yang et al., 2017), and the

474 ubiquitin system, which is crucial in many biological process, is proposed as an essential innate  
475 immunity regulator and as a modulator of host-microbe interactions (Li et al., 2016; Zhang et  
476 al., 2021). Overall, our results show experimentally for the first time the role of NLRs in  
477 microbial discrimination by sponges and suggest their role in sponge-symbiont interactions.  
478 Importantly, LMA sponges are known to contain an expanded and diverse set of NLRs  
479 compared to HMAs (e.g., (Germer et al., 2017; Ryu et al., 2016; Schmittmann et al., 2021;  
480 Yuen et al., 2014)). The regulation of NLRs in the LMA sponge *D. avara*, compared to the non-  
481 regulation of these receptors in the HMA sponge *A. aerophoba*, may further support the  
482 previous hypothesis that the HMA-LMA status may influence how the sponge immune system  
483 responds to microbial encounters. The first experimental evidence of enhanced NLRs  
484 expression in sponges was reported in *D. avara* as a response to commercial microbial elicitors  
485 (Pita et al., 2018). Our results build on these observations and support the participation of  
486 poriferan NLRs in specific microbial recognition. Future studies should focus on identifying  
487 the ligand of this different NLRs to finally provide functional evidence of the role of sponge  
488 NLRs in immune specificity.

#### 489 Conclusion

490 The molecular mechanisms employ in early divergent metazoans for microbial discrimination  
491 are still only poorly understood. In the present study, we characterized the transcriptomic  
492 response of two sponge species upon incubations with seawater microbes and sponge-derived  
493 symbionts by RNA-Seq differential gene expression analysis. Our observations showed that  
494 sponges mount a moderately low (less than 70 DEGs) but different transcriptomic response to  
495 natural microbial encounters. Microbial discrimination in sponges seems to be driven by the  
496 repertoire of immune genes harbored by the host and the degree in which these are induced.  
497 The HMA sponge *A. aerophoba* showed little differential gene expression and no participation  
498 of PRRs upon microbial exposure. Contrastingly, our results support the involvement of NLRs  
499 in specific microbial discrimination in the studied LMA sponge. We hypothesize that the  
500 different NLR families under regulation might trigger various signaling pathways in *D. avara*  
501 which are tuned to recognize among different microbial cues. Furthermore, we suggest that the  
502 differential response to microbial exposure between sponge species could be the result of  
503 species-specific traits or HMA-LMA features that influence the regulation of immune  
504 components in the host. To unveil more potential sponge molecular adaptations to microbial  
505 encounters it is crucial to investigate different sponge species along the LMA-HMA spectrum,  
506 under experimental setups that resemble as much as possible natural conditions, and to test  
507 different microbial structures that may induce or silence the transcriptomic response of the host.  
508 Finally, conducting comparative studies between the relevant genes mediating microbial

509 discrimination in sponges and other early divergent invertebrates would further expand our  
510 understanding on the role of PRRs on microbial recognition and place sponges with their unique  
511 life-styles in an evolutionary context.

512

## 513 **Supplementary Material**

514 Supplementary data are available at Genome Biology and Evolution online.

## 515 **Acknowledgments**

516 We are grateful to Rafel Coma and Manel Bolívar (CEAB-CSIC) for assistance during the  
517 sponge collection. We thank Marc Catllà and the personal from the ZAE at ICM-CSIC for  
518 assistance during the experimental work in Barcelona. We acknowledge the staff from IKMB  
519 sequencing facilities for cDNA library preparation and sequencing. We also thank Dr. Lara  
520 Schmittmann and Dr. Vasiliki Koutsouveli for helpful discussions and feedback in the data  
521 analysis. LP received supported by “la Caixa” Foundation (ID 10010434), co-financed by the  
522 European Union’s Horizon 2020 research and innovation program under the Marie  
523 Skłodowska-Curie grant agreement No 847648), fellowship code is 104855. LP and MR  
524 received additional institutional support by the “Severo-Ochoa Centre of Excellence”  
525 accreditation (CEX2019-000928-S). This is a contribution from the Marine Biogeochemistry  
526 and Global Change research group (Grant 2021SGR00430, Generalitat de Catalunya). UH was  
527 supported by the DFG (“Origin and Function of Metaorganisms”, CRC1182-TP B01) and the  
528 Gordon and Betty Moore Foundation (“Symbiosis in Aquatic Systems Initiative”, GBMF9352).

## 529 **Data availability**

530 The raw reads, metadata, transcriptome assembly and full annotation for this study have been  
531 deposited in the European Nucleotide Archive (ENA) at EMBL-EBI under the accession  
532 number PRJEB61959 (ERP147040).

533

## 534 **References**

535 Akther, M., Haque, M. E., Park, J., Kang, T. B., & Lee, K. H. (2021). NLRP3 ubiquitination—  
536 a new approach to target NLRP3 inflammasome activation. *Int. J. Mol. Sci.* 22(16), 8780.  
537 doi:10.3390/ijms22168780

538 Ardia, D. R., Gantz, J. E., Schneider, B. C., & Strelbel, S. (2012). Costs of immunity in insects:  
539 an induced immune response increases metabolic rate and decreases antimicrobial activity.  
540 *Funct. Ecol.* 26(3), 732–739. doi:10.1111/j.1365-2435.2012.01989.x

541 Bayer, K., Moitinho-Silva, L., Brümmer, F., Cannistraci, C. V., Ravasi, T., & Hentschel, U.  
542 (2014). GeoChip-based insights into the microbial functional gene repertoire of marine  
543 sponges (high microbial abundance, low microbial abundance) and seawater. *FEMS*  
544 *Microbiol. Ecol.* 90(3), 832–doi:10.1111/1574-6941.12441

545 Berg, M., Monnin, D., Cho, J., Nelson, L., Crits-Christoph, A., & Shapira, M. (2019).  
546 TGF $\beta$ /BMP immune signaling affects abundance and function of *C. elegans* gut  
547 commensals. *Nat. Commun.* 10(1). doi:10.1038/s41467-019-08379-8

548 Bosch, T. C. G., & McFall-Ngai, M. (2021). Animal development in the microbial world: Re-  
549 thinking the conceptual framework. *Curr. Top. Dev. Biol.* 141, 399–427.  
550 doi:10.1016/bs.ctdb.2020.11.007

551 Buckley, K. M., and J. P. Rast. (2015). Diversity of animal immune receptors and the origins  
552 of recognition complexity in the deuterostomes. *Dev. Comp. Immunol.* 49: 179–189.  
553 doi:10.1016/j.dci.2014.10.013

554 Campana, S., Riesgo, A., Jongepier, E., Fuss, J., Muyzer, G., & de Goeij, J. M. (2022). Meta-  
555 transcriptomic comparison of two sponge holobionts feeding on coral- and macroalgal-  
556 dissolved organic matter. *BMC Genom.*, 23(1), 1–16. doi:10.1186/s12864-022-08893-y

557 Carrier, T. J., & Bosch, T. C. G. (2022). Symbiosis: the other cells in development.  
558 *Development (Cambridge)*. 149(13). doi:10.1242/dev.200797

559 Chu, H., & Mazmanian, S. K. (2013). Innate immune recognition of the microbiota promotes  
560 host-microbial symbiosis. *Nat. Immunol.* 14(7), 668–675. doi:10.1038/ni.2635.Innate

561 Coelho, J. C., Calhoun, E. D., Calhoun, G. N., & Poole, A. Z. (2022). Patchy distribution of  
562 GTPases of immunity-associated Proteins (GIMAP) within cnidarians and dinoflagellates  
563 suggests a complex evolutionary history. *GBE*. 14(2), evac002. doi: 10.1093/gbe/evac002

564 De Monerri, N. C., & Kim, K. (2014). Pathogens hijack the epigenome: a new twist on host-  
565 pathogen interactions. *Am. J. Pathol.* 184(4), 897–911. doi:10.1016/j.ajpath.2013.12.022

566 Degnan, S. M. (2015). The surprisingly complex immune gene repertoire of a simple sponge,  
567 exemplified by the NLR genes: A capacity for specificity? *Dev. Comp. Immunol.* 48: 269–  
568 274. doi:10.1016/j.dci.2014.07.012

569 Dierking, K., & Pita, L. (2020). Receptors mediating host-microbiota communication in the  
570 metaorganism: the invertebrate perspective. *Front. Immunol.* 11(June), 1–17.  
571 doi:10.3389/fimmu.2020.01251

572 Eberl, G. (2010). A new vision of immunity: homeostasis of the superorganism. *Mucosal*  
573 *Immunol.* 3(5), 450–460. doi:10.1038/mi.2010.20

574 Ganesan, R., Wierz, J. C., Kaltenpoth, M., & Flórez, L. V. (2022). How it all begins: bacterial  
575 factors mediating the colonization of invertebrate hosts by beneficial symbionts.  
576 *Microbiol. Mol. Biol. Rev.* 86(4). doi:10.1128/mmbr.00126-21

577 Gätschenberger, H., Azzami, K., Tautz, J., & Beier, H. (2013). Antibacterial immune  
578 competence of honey bees (*Apis mellifera*) is adapted to different life stages and  
579 environmental risks. *PLoS One*. 8(6). doi:10.1371/journal.pone.0066415

580 Gerardo, N. M., K. L. Hoang, and K. S. Stoy. (2020). Evolution of animal immunity in the light  
581 of beneficial symbioses. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 375: 20190601.  
582 doi:10.1098/rstb.2019.0601

583 Germer, J., N. Cerveau, and D. J. Jackson. (2017). The holo-transcriptome of a calcified early  
584 branching metazoan. *Front. Mar. Sci.* 4: 1–19. doi:10.3389/fmars.2017.00081

585 Gilbert, S. F., Bosch, T. C. G., & Ledón-Rettig, C. (2015). Eco-Evo-Devo: developmental  
586 symbiosis and developmental plasticity as evolutionary agents. *Nat. Rev. Genet.* 16(10),  
587 611–622. doi:10.1038/nrg3982

588 Gloeckner, V., Wehrl, M., Moitinho-Silva, L., Gernert, C., Hentschel, U., Schupp, P., Pawlik,  
589 J. R., Lindquist, N. L., Erpenbeck, D., Wörheide, G., & Wörheide, G. (2014). The HMA-  
590 LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. *Biol.  
591 Bull.* 227(1), 78–88. doi:10.1086/BBLv227n1p78

592 Golbabapour, S., Majid, N. A., Hassandarvish, P., Hajrezaie, M., Abdulla, M. A., & Hadi, A.  
593 H. A. (2013). Gene silencing and polycomb group proteins: an overview of their structure,  
594 mechanisms and phylogenetics. *OMICS*. 17(6), 283–296. doi:10.1089/omi.2012.0105

595 González-Pech, R. A., Li, V. Y., Garcia, V., Boville, E., Mammone, M., Kitano, H., Ritchie,  
596 K. B., & Medina, M. (2023). The evolution, assembly, and dynamics of marine holobionts.  
597 *Ann. Rev. Mar. Sci.* 14(41), 1–24. doi: 10.1146/annurev-marine-022123-104345

598 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Philip, D., Bowden, J., Couger, M.  
599 B., Eccles, D., Li, B., et al. (2013). De novo transcript sequence reconstruction from RNA-  
600 Seq: reference generation and analysis with Trinity. *Nat. Protoc.* 8 (8).  
601 doi:10.1038/nprot.2013.084.De

602 Hamada, M., Shoguchi, E., Shinzato, C., Kawashima, T., & Miller, D. J. (2013). The complex  
603 NOD-like receptor repertoire of the coral *Acropora digitifera* includes novel domain  
604 combinations. *Mol. Biol. Evol.* 30(1), 167–176. doi:10.1093/molbev/mss213

605 Hentschel, U., J. Piel, S. M. Degnan, and M. W. Taylor. (2012). Genomic insights into the  
606 marine sponge microbiome. *Nat. Rev. Microbiol.* 10: 641–54. doi:10.1038/nrmicro2839

607 Hentschel, U., Usher, K. M., & Taylor, M. W. (2006). Marine sponges as microbial fermenters.  
608 *FEMS Microbiol. Ecol.* 55(2), 167–177. doi:10.1111/j.1574-6941.2005.00046.x

609 Hesp, K., Flores Alvarez, J. L., Alexandru, A. M., van der Linden, J., Martens, D. E., Wijffels,  
610 R. H., & Pomponi, S. A. (2020). CRISPR/Cas12a-Mediated gene editing in *Geodia  
611 barretti* sponge cell culture. *Front. Mar. Sci.* 7(December), 1–10.  
612 doi:10.3389/fmars.2020.599825

613 Hildemann, W. H., Johnson, I. S., & Jokiel, P. L. (1979). Immunocompetence in the lowest  
614 metazoan phylum: transplantation immunity in sponges. *Science*. 204(4391), 420–422.  
615 doi:10.1126/science.441730

616 Hirose, Y., Aini, S. N., & Yamashiro, H. (2021). Contact reactions between individuals of the  
617 coral-killing sponge, *Terpios hoshinota*. *Zool. Stud.* 60, 1–9. doi:10.6620/ZS.2021.60-41

618 Horak, R. D., Leonard, S. P., & Moran, N. A. (2020). Symbionts shape host innate immunity  
619 in honeybees. *Proc. Royal Soc. B*. 287(1933). doi:10.1098/rspb.2020.1184

620 Jacobovitz, M. R., Rupp, S., Voss, P. A., Maegele, I., Gornik, S. G., & Guse, A. (2021).  
621 Dinoflagellate symbionts escape vomocytosis by host cell immune suppression. *Nat.*  
622 *Microbiol.* 6(6), 769–782. doi: 10.1038/s41564-021-00897-w

623 Jahn, M. T., Arkhipova, K., Markert, S. M., Stigloher, C., Lachnit, T., Pita, L., et al. (2019). A  
624 phage protein aids bacterial symbionts in eukaryote immune evasion. *Cell Host Microbe*  
625 26 (4), 542–550.e5. doi: 10.1016/j.chom.2019.08.019

626 Janeway, C. A., and R. Medzhitov. (2002). Innate immune recognition. *Annu. Rev. Immunol.*  
627 20: 197–216. doi:10.1146/annurev.immunol.20.083001.084359

628 Kenny, N. J., Francis, W. R., Rivera-Vicéns, R. E., Juravel, K., de Mendoza, A., Díez-Vives,  
629 C., Lister, R., et al. (2020). Tracing animal genomic evolution with the chromosomal-level  
630 assembly of the freshwater sponge *Ephydatia muelleri*. *Nat. Commun.* 11(1), 1–11.  
631 doi:10.1038/s41467-020-17397-w

632 Koutsouveli, V., Manousaki, T., Riesgo, A., Lagnel, J., Kollias, S., Tsigenopoulos, C. S.,  
633 Arvanitidis, C., et al. (2020). Gearing up for warmer times: transcriptomic response of  
634 *Spongia officinalis* to elevated temperatures reveals recruited mechanisms and potential  
635 for resilience. *Front. Mar. Sci.* 6(January), 1–14. doi:10.3389/fmars.2019.00786

636 Lam, S. H., Chua, H. L., Gong, Z., Lam, T. J., & Sin, Y. M. (2004). Development and  
637 maturation of the immune system in zebrafish, *Danio rerio*: a gene expression profiling,  
638 *in situ* hybridization and immunological study. *Dev. Comp. Immunol.* 28(1), 9–28.  
639 doi:10.1016/S0145-305X(03)00103-4

640 Lange, C., Hemmrich, G., Klostermeier, U. C., López-Quintero, J. A., Miller, D. J., Rahn, T.,  
641 Weiss, Y., Bosch, T. C. G., & Rosenstiel, P. (2011). Defining the origins of the NOD-like  
642 receptor system at the base of animal evolution. *Mol. Biol. Evol.* 28(5), 1687–1702. doi:  
643 10.1093/molbev/msq349

644 Langmead, B., Trapnell, C., Pop, M., & Salzberg, S. L. (2009). Ultrafast and memory-efficient  
645 alignment of short DNA sequences to the human genome. *Genome Biol.* 10(3).  
646 doi:10.1186/gb-2009-10-3-r25

647 Li, B., & Dewey, C. N. (2014). Assembly of non-unique insertion content using next-generation  
648 sequencing. *BMC Bioinformatics*. 12(6), 21–40. doi: 10.1201/b16589

649 Li, J., Chai, Q. Y., & Liu, C. H. (2016). The ubiquitin system: a critical regulator of innate  
650 immunity and pathogen-host interactions. *Cell. Mol. Immunol.* 13(5), 560–576.  
651 doi:10.1038/cmi.2016.40

652 Liang, S. C., Hartwig, B., Perera, P., Mora-García, S., de Leau, E., Thornton, H., de Alves, F.  
653 L., Rapsilber, J., et al. (2015). Kicking against the PRCs – a domesticated transposase  
654 antagonises silencing mediated by polycomb group proteins and is an accessory  
655 component of polycomb repressive complex 2. *PLoS Genet.* 11(12), 1–26.  
656 doi:10.1371/journal.pgen.1005660

657 Limoges, M. A., Cloutier, M., Nandi, M., Ilangumaran, S., & Ramanathan, S. (2021). The  
658 GIMAP family proteins: an incomplete puzzle. *Front. Immunol.* 12(May), 1–15.  
659 doi:10.3389/fimmu.2021.679739

660 Liu, C., Wang, T., Zhang, W., & Li, X. (2008). Computational identification and analysis of  
661 immune-associated nucleotide gene family in *Arabidopsis thaliana*. *J. Plant  
662 Physiol.* 165(7), 777–787. doi: 10.1016/j.jplph.2007.06.002

663 Maldonado, M., Ribes, M., & van Duyl, F. C. (2012). Nutrient fluxes through sponges. biology,  
664 budgets, and ecological implications. *Adv. Mar. Biol.* 62, 113–182. doi:10.1016/B978-0-  
665 12-394283-8.00003-5

666 McDowell, I. C., Modak, T. H., Lane, C. E., & Gomez-Chiarri, M. (2016). Multi-species protein  
667 similarity clustering reveals novel expanded immune gene families in the eastern oyster  
668 *Crassostrea virginica*. *Fish Shellfish Immunol.* 53, 13–23. doi: 10.1016/j.fsi.2016.03.157

669 McFall-Ngai, M., Hadfield, M. G., Bosch, T. C. G., Carey, H. V., Domazet-Lošo, T., Douglas,  
670 A. E., Dubilier, N., et al. (2013). Animals in a bacterial world, a new imperative for the life  
671 sciences. *PNAS* 110 (9), 3229–3236. doi:10.1073/pnas.1218525110

672 Menzel, P., & Krogh, A. (2015). Fast and sensitive taxonomic classification for metagenomics  
673 with Kaiju. *Nat. Commun.* 7(1), 11257. doi:10.1101/031229

674 Moitinho-Silva, L., Steinert, G., Nielsen, S., Hardoim, C. C. P., Wu, Y. C., McCormack, G. P.,  
675 López-Legentil, S., Marchant, R., Webster, N., Thomas, T., & Hentschel, U. (2017).  
676 Predicting the HMA-LMA status in marine sponges by machine learning. *Front.  
677 Microbiol.* 8(May), 1–14. doi:10.3389/fmicb.2017.00752

678 Morganti T, Ribes M, Moskovich R, Weisz BJ, Yahel G, Coma R (2021). *In situ* pumping rate  
679 of 20 marine desmosponges is a function of osculum area. *Front. Mar. Sci.* 8: 583188. doi:  
680 10.3389/fmars.2021.583188.

681 Neubauer, E. F., Poole, A. Z., Weis, V. M., & Davy, S. K. (2016). The scavenger receptor  
682 repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate  
683 symbiosis. *PeerJ*. 4, e2692. doi:10.7717/peerj.2692

684 Ohtsubo, M., Yasunaga, S., Ohno, Y., Tsumura, M., Okada, S., Ishikawa, N., Shirao, K.,  
685 Kikuchi, A., et al. (2008). Polycomb-group complex 1 acts as an E3 ubiquitin ligase for

686 Geminin to sustain hematopoietic stem cell activity. *PNAS*. 105(30), 10396–10401.  
687 doi:10.1073/pnas.0800672105

688 Palmer, C. V. (2018). Immunity and the coral crisis. *Commun. Biol.* 1(1), 1–7.  
689 doi:10.1038/s42003-018-0097-4

690 Pan, Y., Cai, W., Huang, J., Cheng, A., Wang, M., Yin, Z., & Jia, R. (2022). Pyroptosis in  
691 development, inflammation and disease. *Front. Immunol.* 13(September), 1–17.  
692 doi:10.3389/fimmu.2022.991044

693 Sabrina Pankey, M., Plachetzki, D. C., Macartney, K. J., Gastaldi, M., Slattery, M., Gochfeld,  
694 D. J., & Lesser, M. P. (2022). Cophylogeny and convergence shape holobiont evolution in  
695 sponge–microbe symbioses. *Nat. Ecol. Evol.* 6(6), 750–762.

696 Park, J. E., Jardine, L., Gottgens, B., Teichmann, S. A., & Haniffa, M. (2020). Prenatal  
697 development of human immunity. *Science*. 368(6491), 600–603.  
698 doi:10.1126/science.aaz9330

699 Pita, L., Hoeppner, M. P., Ribes, M., and Hentschel, U. (2018a). Differential expression of  
700 immune receptors in two marine sponges upon exposure to microbial- associated  
701 molecular patterns. *Sci. Rep.* 8 (1), 1–15. doi: 10.1038/s41598-018-34330-w

702 Posadas, N., Baquiran, J. I. P., Nada, M. A. L., Kelly, M., & Conaco, C. (2021). Microbiome  
703 diversity and host immune functions influence survivorship of sponge holobionts under  
704 future ocean conditions. *ISME J.* 16(1), 58–67. doi:10.1038/s41396-021-01050-5

705 Redmond, A. K., & McLysaght, A. (2021). Evidence for sponges as sister to all other animals  
706 from partitioned phylogenomics with mixture models and recoding. *Nat. Commun.* 12(1).  
707 doi:10.1038/s41467-021-22074-7

708 Revilla-I-Domingo, R., Schmidt, C., Zifko, C., & Raible, F. (2018). Establishment of  
709 transgenesis in the demosponge *Suberites domuncula*. *Genetics*. 210(2), 435–443.  
710 doi:10.1534/genetics.118.301121

711 Riesgo, A., N. Farrar, P. J. Windsor, G. Giribet, and S. P. Leys. (2014). The analysis of eight  
712 transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.  
713 *Mol. Biol. Evol.* 31: 1102–1120. doi:10.1093/molbev/msu057

714 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2009). edgeR: a Bioconductor package for  
715 differential expression analysis of digital gene expression data. *Bioinform.* 26(1), 139–140.  
716 doi:10.1093/bioinformatics/btp616

717 Rosenberg, E., & Zilber-Rosenberg, I. (2016). Microbes drive evolution of animals and plants:  
718 the hologenome concept. *MBio*, 7(2). doi:10.1128/mBio.01395-15

719 Rosenberg, E., & Zilber-Rosenberg, I. (2018). The hologenome concept of evolution after  
720 10 years. *Microbiome*. 6(1), 78. doi:10.1186/s40168-018-0457-9

721 Rottmann, M., Schröder, H. C., Gramzow, M., Renneisen, K., Kurelec, B., Dorn, A., et al.  
722 (1987). Specific phosphorylation of proteins in pore complex-laminae from the sponge  
723 *Geodia cydonium* by the homologous aggregation factor and phorbol ester. Role of protein  
724 kinase C in the phosphorylation of DNA topoisomerase II. *EMBO J.* 6 (13), 3939–3944.  
725 doi: 10.1002/j.1460-2075.1987.tb02735.x

726 Roughgarden, J., Gilbert, S. F., Rosenberg, E., Lloyd, E. A., Gilbert, S. F., & Lloyd, E. A.  
727 (2018). Holobionts as units of selection and a model of their population dynamics and  
728 evolution. *Biol. Theory.* 13(1), 44–65. doi:10.1007/s13752-017-0287-1

729 Ryu, T., L. Seridi, L. Moitinho-Silva, et al. (2016). Hologenome analysis of two marine sponges  
730 with different microbiomes. *BMC Genom.* 17: 158. doi:10.1186/s12864-016-2501-0

731 Saco, A., Rey-Campos, M., Novoa, B., & Figueras, A. (2020). Transcriptomic response of  
732 mussel gills after a *Vibrio splendidus* infection demonstrates their role in the immune  
733 response. *Front. Immunol.* 11(December), 1–18. doi:10.3389/fimmu.2020.615580

734 Saito, Y. (2013). Self and nonself recognition in a marine sponge, *Halichondria japonica*  
735 (Demospongiae). *Zool. Sci.* 30(8), 651–657. doi:10.2108/zsj.30.651

736 Schmittmann, L., Franzenburg, S., and Pita, L. (2021). Individuality in the immune repertoire  
737 and induced response of the sponge *Halichondria panicea*. *Front. Immunol.* 12, 1–13. doi:  
738 10.3389/fimmu.2021.689051

739 Schmittmann, L., Rahn, T., Busch, K., Fraune, S., Pita, L., and Hentschel, U. (2022). Stability  
740 of a dominant sponge-symbiont in spite of antibiotic-induced microbiome disturbance.  
741 *Environ. Microbiol.* 24 (12), 6392–6410. doi: 10.1111/1462-2920.16249

742 Schneider, M., Zimmermann, A. G., Roberts, R. A., Zhang, L., Karen, V., Rahman, A. H.,  
743 Conti, B. J., et al.. (2013). The innate immune sensor NLRC3 attenuates Toll-like receptor  
744 signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-  
745 κB. *Nat. Immunol.* 13(9), 823–831. doi:10.1038/ni.2378

746 Seneca, F., Davtian, D., Boyer, L., & Czerucka, D. (2020). Gene expression kinetics of  
747 *Exaiptasia pallida* innate immune response to *Vibrio parahaemolyticus* infection. *BMC*  
748 *Genom.* 21(768), 1–16.

749 Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015).  
750 BUSCO: assessing genome assembly and annotation completeness with single-copy  
751 orthologs. *Bioinform.* 31(19), 3210–3212. doi:10.1093/bioinformatics/btv351

752 Smith, L. C., Arizza, V., Barela Hudgell, M. A., Barone, G., Bodnar, A. G., Buckley, K. M., et  
753 al. (2018). Echinodermata: the complex immune system in echinoderms. *Adv. Comp.*  
754 *Immunol.* 409–501. doi: 10.1007/978-3-319-76768-0\_32

755 Smith-Unna, R., Boursnell, C., Patro, R., Hibberd, J. M., & Kelly, S. (2016). TransRate:  
756 reference-free quality assessment of de novo transcriptome assemblies. *Genome Res.*  
757 26(8), 1134–1144. doi:10.1101/gr.196469.115

758 Song, N., & Li, T. (2018). Regulation of NLRP3 inflammasome by phosphorylation. *Front.*  
759 *Immunol.* 9(October), 1–9. doi:10.3389/fimmu.2018.02305

760 Srivastava, M., O. Simakov, J. Chapman, et al. (2010). The *Amphimedon queenslandica*  
761 genome and the evolution of animal complexity. *Nature* 466: 720–726.  
762 doi:10.1038/nature09201

763 Steindler, L., Schuster, S., Ilan, M., Avni, A., Cerrano, C., & Beer, S. (2007). Differential gene  
764 expression in a marine sponge in relation to its symbiotic state. *Mar. Biotechnol.* 9(5),  
765 543–549. doi:10.1007/s10126-007-9024-2

766 Stévenne, C., Micha, M., Plumier, J.-C., & Roberty, S. (2021). Corals and sponges under the  
767 light of the holobiont concept: how microbiomes underpin our understanding of marine  
768 ecosystems. *Front. Mar. Sci.* 8(August). doi:10.3389/fmars.2021.698853

769 Sun, D., Xu, J., Zhang, W., & Song, C. (2022). Negative regulator NLRC3 : its potential role  
770 and regulatory mechanism in immune response and immune-related diseases. *Front.*  
771 *Immunol.* 13 (October), 1–13. doi:10.3389/fimmu.2022.1012459

772 Tetreau, G., Pinaud, S., Portet, A., Galinier, R., Gourbal, B., & Duval, D. (2017). Specific  
773 pathogen recognition by multiple innate immune sensors in an invertebrate. *Front.*  
774 *Immunol.* 8(October), 1249. doi:10.3389/fimmu.2017.01249

775 Thomas, T., Moitinho-Silva, L., Lurgi, M., Björk, J. R., Easson, C., Astudillo-García, C., et al.  
776 (2016). Diversity, structure and convergent evolution of the global sponge microbiome.  
777 *Nat. Commun.* 7, 1–12. doi: 10.1038/ncomms11870

778 Turner, E. C. (2021). Possible poriferan body fossils in early Neoproterozoic microbial reefs.  
779 *Nature*. 596(7870), 87–91. doi:10.1038/s41586-021-03773-z

780 Uchimura, T., Oyama, Y., Deng, M., Guo, H., Wilson, J. E., Rampanelli, E., Cook, K. D., et al.  
781 (2018). The innate immune sensor NLRC3 acts as a rheostat that fine-tunes T cell  
782 responses in infection and autoimmunity. *Immunity*. 49(6), 1049-1061.e6.  
783 doi:10.1016/j.jimmuni.2018.10.008

784 van de Water, J. A. J. M., Chaib De Mares, M., Dixon, G. B., Raina, J. B., Willis, B. L., Bourne,  
785 D. G., & van Oppen, M. J. H. (2018). Antimicrobial and stress responses to increased  
786 temperature and bacterial pathogen challenge in the holobiont of a reef-building coral.  
787 *Mol. Ecol.* 27(4), 1065–1080. doi:10.1111/mec.14489

788 Villares, M., Berthelet, J., & Weitzman, J. B. (2020). The clever strategies used by intracellular  
789 parasites to hijack host gene expression. *Semin. Immunopathol.* 42(2), 215–226.  
790 doi:10.1007/s00281-020-00779-z

791 Walle, L. V., & Lamkanfi, M. (2016). Pyroptosis. *Curr.Biol.* 26(13), R568–R572.  
792 doi:10.1016/j.cub.2016.02.019

793 Webster, N. S., & Thomas, T. (2016). The sponge hologenome. *MBio.* 7(2), 1–14.

794 doi:10.1128/mBio.00135-16

795 Wehrl, M. (2006). *Bakterielle Aufnahme, Selektivität und interne Prozessierung bei marin en*  
796 *Schwämmen (Porifera)* (Doctoral dissertation, Universität Würzburg).

797 Wehrl, M., Steinert, M., and Hentschel, U. (2007). Bacterial uptake by the marine sponge  
798 *Aplysina aerophoba*. *Microb. Ecol.* 53 (2), 355–365. doi: 10.1007/s00248-006- 9090-4

799 Wein, T., Romero Picazo, D., Blow, F., Woehle, C., Jami, E., Reusch, T. B. H., Martin, W. F.,  
800 & Dagan, T. (2019). Currency, exchange, and inheritance in the evolution of symbiosis.  
801 *Trends Microbiol.* 27(10), 836–849. doi:10.1016/j.tim.2019.05.010

802 Weiss, Y., Forêt, S., Hayward, D. C., Ainsworth, T., King, R., Ball, E. E., & Miller, D. J. (2013).  
803 The acute transcriptional response of the coral *Acropora millepora* to immune challenge:  
804 expression of GiMAP/IAN genes links the innate immune responses of corals with those  
805 of mammals and plants. *BMC genom.* 14(1), 1-13. doi: 10.1186/1471-2164-14-400

806 Weisz, J. B., Lindquist, N., & Martens, C. S. (2008). Do associated microbial abundances  
807 impact marine demosponge pumping rates and tissue densities? *Oecologia*, 155, 367–376.  
808 doi:10.1007/s00442-007-0910-0

809 Wiens, M., M. Korzhev, A. Krasko, et al. (2005). Innate immune defense of the sponge  
810 *Suberites domuncula* against bacteria involves a MyD88-dependent signaling pathway:  
811 induction of a perforin-like molecule. *J. Biol. Chem.* 280: 27949–27959.  
812 doi:10.1074/jbc.M504049200

813 Wilkinson, C. R., Garrone, R., and Vacelet, J. (1984). Marine sponges discriminate between  
814 food bacteria and bacterial symbionts: Electron microscope radioautography and in situ  
815 evidence. *Proc. R Soc. London - Biol. Sci.* 220 (1221), 519–528. doi: 10.1098/  
816 rspb.1984.0018

817 Williams, L. M., & Gilmore, T. D. (2022). An innate ability: how do basal invertebrates manage  
818 their chronic exposure to microbes? *PLoS Pathog.* 18(10), 1–8.  
819 doi:10.1371/journal.ppat.1010897

820 Wu, Y. C., Franzenburg, S., Ribes, M., & Pita, L. (2022). Wounding response in Porifera  
821 (sponges) activates ancestral signaling cascades involved in animal healing, regeneration,  
822 and cancer. *Sci. Rep.* 12(1), 1–13. doi:10.1038/s41598-022-05230-x

823 Yang, J., Liu, Z., & Xiao, T. S. (2017). Post-translational regulation of inflammasomes. *Cell.*  
824 *Mol. Immunol.* 14(1), 65–79. doi:10.1038/cmi.2016.29

825 Yang, S., Fujikado, N., Kolodkin, D., Benoist, C., & Mathis, D. (2015). Regulatory T cells  
826 generated early in life play a distinct role in maintaining self-tolerance. *Science.*  
827 348(6234), 589–594. doi:10.1126/science.aaa7017

828 Yuen, B. (2016). Deciphering the genomic tool-kit underlying animal-bacteria interactions.  
829 PhD thesis. The University of Queensland. doi: 10.14264/uql.2017.39

830 Yuen, B., Bayes, J. M., & Degnan, S. M. (2014). The characterization of sponge NLRs provides  
831 insight into the origin and evolution of this innate immune gene family in animals. *Mol.*  
832 *Biol. Evol.* 31(1), 106–120. doi:10.1093/molbev/mst174

833 Zhang, L., Li, L., & Zhang, G. (2011). A *Crassostrea gigas* Toll-like receptor and comparative  
834 analysis of TLR pathway in invertebrates. *Fish Shellfish Immunol.* 30(2), 653-660.  
835 doi:10.1016/j.fsi.2010.12.023

836 Zhang, Z., Aweya, J. J., Yao, D., Zheng, Z., Tran, N. T., Li, S., & Zhang, Y. (2021).  
837 Ubiquitination as an important host-immune response strategy in penaeid shrimp:  
838 inferences from other species. *Front. Immunol.* 12(May), 1–11. doi:  
839 10.3389/fimmu.2021.697397

840

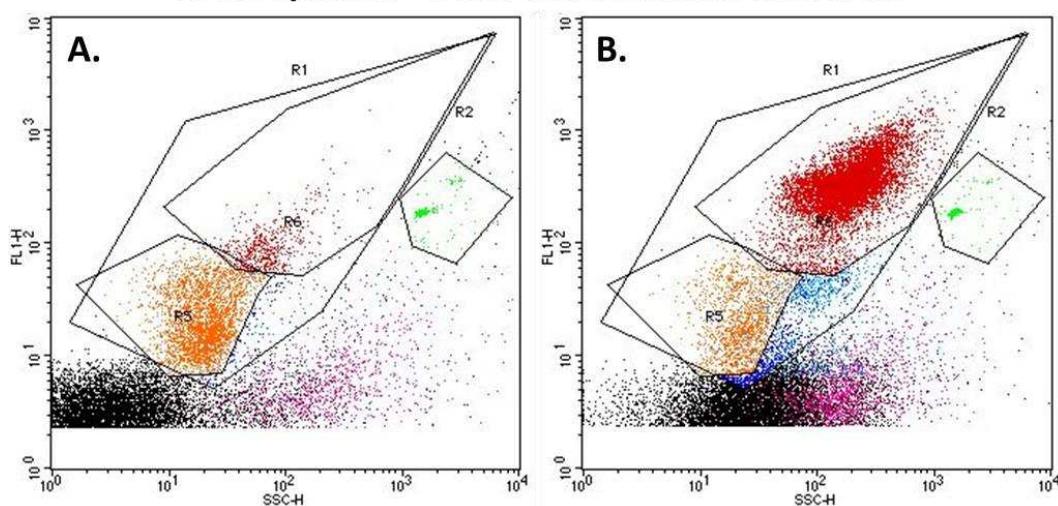
841

842 **Supplementary information**

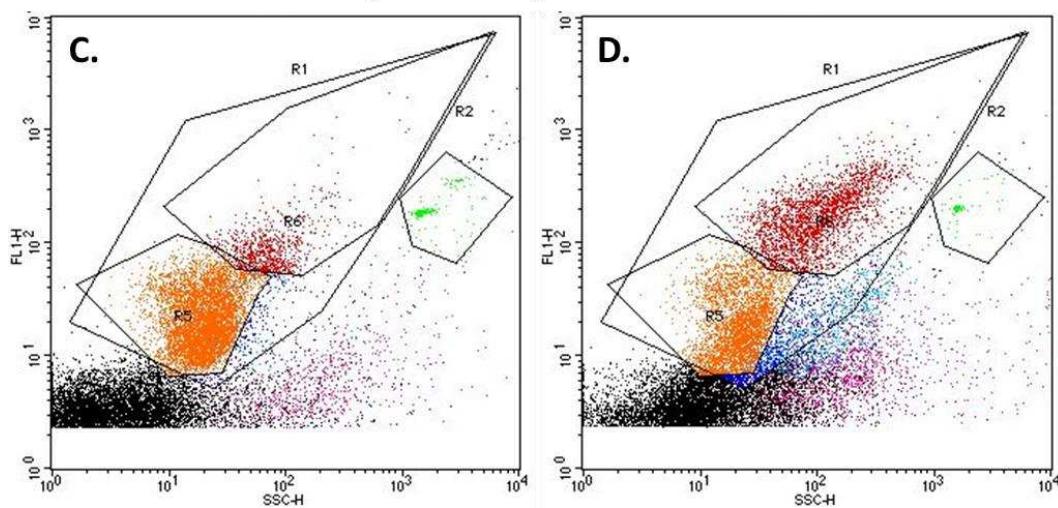
843

844 **Text S1.** Characterization of microbial consortium treatments by flow cytometry

845 The concentration of the microbial consortia stocks obtained by enrichment was estimated via flow  
846 cytometry and adjusted to reach  $10^{5-6}$  bacteria mL<sup>-1</sup> final concentration in each experimental aquarium.


847 In addition, water samples (2 mL) from each aquaria were collected right before the experiment (T-1h)  
848 and right after (T0h) adding the microbial consortium. Samples for flow cytometry were fixed in  
849 paraformaldehyde + glutaraldehyde (1% + 0.05% final, respectively) and stored at -80°C until analysis.

850 Microbial cell concentration was quantified by flow cytometry (FACSCalibur, Becton-Dickinson, 488  
851 nm excitation blue laser) following the method of Gasol and Morán (1999). In short, DNA in microbial  
852 cells was stained with Syto13, and detected based on cell-side scatter, forward scatter, and green  
853 fluorescence of the stained DNA. Plastic beads were used as reference for plotting. Bacterial cell  
854 concentrations were calculated based on number of events and calibrated flow rate.


855 Although the aquaria were kept overnight in 1  $\mu$ m-filtered seawater and an additional 0.1  $\mu$ m-filter was  
856 applied for 3 h before the experiments, the water in the aquaria was not sterile, some bacterial cells  
857 remained (Fig. S1 A and C). We could still detect the addition of the treatment, particularly in the cell  
858 population of higher DNA content, in both seawater and *A. aerophoba* symbiont treatments (Fig. S1 B  
859 and D, R6 gate). We could detect and increment of one order of magnitude in the bacterial concentrations  
860 in the water before and after the addition of microbial consortia, to a final concentration  $\sim 10^6$  cells/mL.

861

### A. aerophoba + Seawater microbial consortia



### A. aerophoba + Symbiont consortium



862

863

864 **Fig. S1.** Representative cytograms of seawater consortia (A-B) and *A. aerophoba*-symbiont (C-D)  
865 consortium used for the experiments. The microbial stock concentration was estimated before (T-1) (A-  
866 C) and after (T0) (B-D) adding the bacteria to the incubation tank. R1: all bacteria; R5 and R6: low and  
867 high DNA bacteria, respectively; R2: quantification beads. Water samples (2 mL) from all aquaria were  
868 collected before the experiment (time point -1h) and every hour during the course of the experiments  
869 (time points 0, 1, 2, 3, 4, 5 h), and fixed in paraformaldehyde + glutaraldehyde (1% + 0.05% final,  
870 respectively). Microbial cell concentration in the water by was quantified by flow cytometry  
871 (FACSCalibur, Becton-Dickinson, 488 nm excitation blue laser) following the method of Gasol and  
872 Morán (1999), to assess the sponge filtration activity. The bacterial cells were stained with Syto13, and  
873 detected based on cell-side scatter, forward scatter, and green fluorescence of the stained DNA. For  
874 comparison with the sponges, control aquaria (i.e., without sponge) were also exposed to the microbial  
875 treatments and sampled at the same time points.

876

877 **Table S1.** Number of read pairs (million reads). “Raw” refers to the output from sequencing; “Clean”  
878 to surviving read pairs after trimming and filtering in trimmomatic-v0.38; and “Eukaryote” to pairs  
879 identified as non-prokaryotic and nonmicrobial eukaryote by kaiju-v1.6.2 (Menzel & Krogh, 2015).

| Average per library<br>( $\pm$ standard error) | Raw            | Clean           | Eukaryote      |
|------------------------------------------------|----------------|-----------------|----------------|
| <i>A. aerophoba</i>                            | $23.8 \pm 1.8$ | $22.1 \pm 9.2$  | $15.0 \pm 6.3$ |
| <i>D. avara</i>                                | $19.6 \pm 1.2$ | $18.1 \pm 10.7$ | $11.7 \pm 0.7$ |

880

881 **Table S2.** Statistics of the *de novo* transcriptomic assemblies. Transcripts refer to Trinity isoforms,  
882 genes refer to Trinity components. Mb: mega bases.

| Statistics:                             | <i>A. aerophoba</i>       | <i>D. avara</i>           |
|-----------------------------------------|---------------------------|---------------------------|
| No. Transcripts – Trinity isoforms      | 900127                    | 983239                    |
| No. Genes – Trinity components          | 466345                    | 624596                    |
| Transcripts with open reading frames, % | 60.59                     | 52.88                     |
| Average transcript length, nucleotides  | 535.16                    | 636.86                    |
| N50                                     | 631                       | 873                       |
| Total assembled bases, Mb               | 481.7                     | 626.2                     |
| <b>BUSCO report</b>                     | <b>C:71.4%</b>            | <b>C:78.2%</b>            |
| <b>(metazoan database; 978 genes)</b>   | <b>[D:44.1%, F:23.6%]</b> | <b>[D:49.0%, F:17.1%]</b> |

883

884 **Table S3.** Differential Expression analysis for *D. avara* at as identified in edgeR (FDR p-value <  
885 0.005 and  $\log_2|FC| \geq 2$ ) at 1h, 3h and 5h (Excel file)

886 **Table S4.** Annotation of the differentially expressed genes for *D. avara* identified in edgeR (FDR p-  
887 value < 0.005 and  $\log_2|FC| \geq 2$ ) at 1h, 3h and 5h (Excel file)

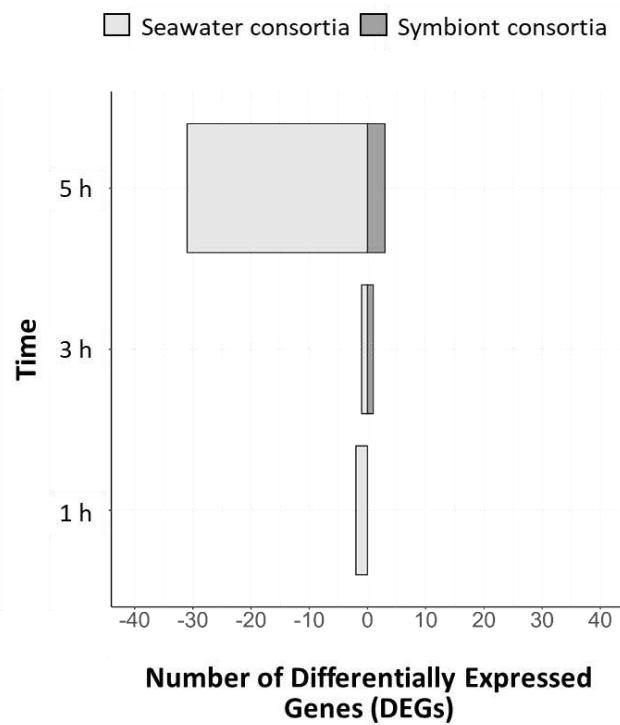
888 **Table S5.** Differential Expression analysis for *A. aerophoba* at as identified in edgeR (FDR p-value <  
889 0.005 and  $\log_2|FC| \geq 2$ ) at 5h (Excel file)

890 **Table S6.** Annotation of differentially expressed genes for *A. aerophoba* identified in edgeR (FDR p-  
891 value < 0.005 and  $\log_2|FC| \geq 2$ ) at 5h (Excel file)

892 **Table S7.** Blastp results of *D. avara* differentially expressed NLRs against *Ephydatia muelleri* (e-  
893 value <  $1e-5$ ) (Excel file)

894

895


896

897

898

899

900



901

902 **Fig. S2.** Number of differentially expressed genes (DEGs) of *A. aerophoba* individuals treated  
903 with seawater microbial consortia vs. symbiont consortia. Negative values reflect number of  
904 genes with lower expression levels in seawater microbial consortia treatment compared to  
905 symbiont treatment. Genes were defined as differentially expressed with edgeR, FDR p-value  
906  $< 0.05$  and  $\log_2|FC| \geq 1$ .

907

908

909

910