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Abstract

Protein-ligand interaction prediction poses a significant challenge in the field of drug design. Numerous machine learning
and deep learning models have been developed to identify the most accurate docking poses of ligands and active
compounds against specific targets. However, the current models often suffer from inadequate accuracy and lack practical
physical significance in their scoring systems. In this research paper, we introduce IGModel, a novel approach that
leverages the geometric information of protein-ligand complexes as input for predicting the root mean square deviation
(RMSD) of docking poses and the binding strength (the negative value of the logrithm of binding affinity, pKd) with
the same prediction framework. By incorporating the geometric information, IGModel ensures that its scores carry
intuitive meaning. The performance of IGModel has been extensively evaluated on various docking power test sets,
including the CASF-2016 benchmark, PDBbind-CrossDocked-Core, and DISCO set, consistently achieving state-of-the-
art accuracies. Furthermore, we assess IGModel’s generalization ability and robustness by evaluating it on unbiased
test sets and sets containing target structures generated by AlphaFold2. The exceptional performance of IGModel on
these sets demonstrates its efficacy. Additionally, we visualize the latent space of protein-ligand interactions encoded by
IGModel and conduct interpretability analysis, providing valuable insights. This study presents a novel framework for
deep learning-based prediction of protein-ligand interactions, contributing to the advancement of this field.
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Key Messages

e We introduce the first framework for simultaneously predicting the RMSD of the ligand docking pose and its binding
strength to the target.

e IGModel can effectively improve the accuracy of identifying the near-native binding poses of the ligands, and can still
outperform most baseline models in scoring power, ranking power and screening power tasks.

e IGModel is still ahead of other state-of-the-art models in the unbiased data set and the target structure predicted by
AlphaFold2, proving its excellent generalization ability.

e Latent space provided by IGModel learns the physical interactions, thus indicating the robustness of the model.

Introduction selectivity, and pharmacological properties, ultimately leading
to the development of more potent and efficient therapeutic

Understanding the precise binding poses of ligands within
. . L . agents[5, 6].
protein receptor structures holds immense significance in the X
. .. Although experimental methods can be employed to
field of drug design[l, 2, 3, 4]. By accurately predicting . T L .
. .. R L . determine the binding mode of small molecules within proteins,
ligand binding poses, researchers gain valuable insights into X i . .
.. . . . . their efficiency tends to be relatively low, and their accuracy
the intricate mechanisms underlying drug-target interactions. X i X
. 7. L. R is not always guaranteed[7, 8]. Experimental technique such
This knowledge empowers them to optimize binding affinity,
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as X-ray diffraction offers atomic insights into protein-
ligand interactions, is often time-consuming, resource-intensive,
and may encounter challenges in obtaining high-resolution
structures or capturing dynamic aspects of the binding
process[9, 10]. Additionally, experimental approaches may be
limited by the availability of suitable protein samples and the
complexity of the system under investigation. Consequently,
relying solely on experimental techniques for ligand binding
pose determination may not always meet the demands of
high-throughput drug discovery and design[11].

Computational methods, such as molecular docking, play
a pivotal role in this endeavor, offering efficient and accurate
tools to explore the vast chemical space and guide rational
drug design efforts[12, 13, 14, 15]. To guide fast and accurate
protein-ligand complex structure prediction, especially the
ligand binding pattern (given that the protein structure is
already known or determined), the scoring functions (SFs) are
developed[16, 17]. SFs are used to calculate the binding energy
or score associated with each pose, allowing for the ranking and
selection of the most favorable binding configurations[17, 9].
During ligand pose prediction, SFs consider various factors,
such as the complementarity of molecular shapes, electrostatic
interactions, van der Waals forces, hydrogen bonding, and
solvation effects[11]. By evaluating these energy terms, SFs
estimate the overall binding affinity or likelihood of a ligand
pose being biologically relevant. SFs help guide the exploration
of ligand conformational space, identifying potential binding
modes and providing insights into the binding strength and
specificity of ligand-receptor interactions[18]. They enable
researchers to prioritize ligand poses for further analysis or
optimization, facilitating the rational design of drug candidates
with improved binding affinity and selectivity[9, 19].

In the 1980s, people began to design rules for evaluating
ligand binding mode based on physical knowledge and expert
experience, or using the force field parameters from bio-
molecule simulation systems, which was the early SF[20]. The
traditional SF is usually a polynomial with few parameters and
atom type definitions, thus is not accurate enough to describe
the conformational space of the protein-ligand complex[21].
Another category of SF involves machine learning (ML)-
based approaches, which have been traced back to 2004[22].
This kind of SF predicts the ligand binding affinity by
extracting interaction features using various machine learning
techniques[23, 24]. Over the years, numerous notable SFs
have been proposed, including RF-Score[25] (as well its
virtual screen version, RF-score-VS), NN-Score[26], AGL-
Score[27], etc. These SFs have achieved excellent performance
(”scoring power” [28]) under the PDBbind related benchmarks.
The growing availability of public experimental data and
advancements in DL algorithms have led to a rising
trend of utilizing DL models for predicting protein-ligand
interactions[29, 30, 31]. Since 2017, numerous DL-based models
have been introduced for predicting protein-ligand affinity. For
example, AtomNet[32], Kgeep[33] and Pafnucy([34] employed 3D
convolutional neural networks (CNN) to establish a connection
between the 3D mesh representation of the complex and
its affinity. Additionally, our group has contributed two 2D
convolution-based models, namely OnionNet and OnionNet-
2, which assess protein-ligand affinity by counting the number
of contacts between ligand atoms and protein atoms/residues
in different distance intervals[35, 36]. However, recent studies
have revealed that ML or DL models trained with only
native structures exhibit limited performance when applied
to docking power and screening power tasks, despite their
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strong performance in scoring power[37]. In order to make
the model applicable to practical scenarios, researchers began
to design predictors that can be directly applied to identify
near-native poses of the ligand or screening active compounds.
For instance, DeepBSP employed 3D CNN to predict the
RMSD of ligand docking poses[38].The DeepRMSD+Vina,
previously proposed by our group, adopts the modified formats
of van del waals and columbic terms used in many traditional
force fields in molecular mechanics as features and has been
demonstrated to be effective in docking power and docking
pose optimization[39]. In addition, DeepDock utilized a graph
neural network to learn the distance probability distribution
between protein-ligand atoms, rather than directly predicting
the protein-ligand binding affinity or the ligand pose RMSD[40].
However, it turns out that many DL scoring functions could
Building
upon the idea of DeepDock, RTMScore introduced a novel

not perform well for all evaluation metrics[28].

graph representation and employed a graph transformer model
to learn distance probability distributions, achieving state-
of-the-art results across multiple virtual screening test sets
and docking poses prediction tasks[41]. More researches now
realized the importance to have balanced performance for both
docking and screening tasks[42, 43, 44].

Among the numerous deep learning methods mentioned
above, they either provide affinity prediction or ligand pose
prediction, with few being able to simultaneously offer directly
interpretable indicators with physical meanings, which is more
intuitive for computational drug developers[45, 28]. Other
methods lack robustness, especially when using predicted
structures or cross-docked structures as protein templates,
there are few approaches that can accurately predict the
optimal ligand binding poses[46, 47].

To these ends, we proposed a SF based on the geometric
graph neural network, named IGModel, to further elevate
the upper limit of protein-ligand interaction prediction,
especially the docking poses prediction. The input of IGModel
includes two graphs: one is the protein binding pocket
graph, and the other is the protein-ligand atomic interaction
graph. Unlike previous graph representations[48, 49], IGModel
integrates the distance and orientation between interacting
atoms as geometric features of the complex to provide a
more comprehensive description of the relative positions of the
ligand within the binding pocket. We employ EdgeGAT layers
proposed by Kaminski et al.[50] to encode the protein-ligand
interaction to obtain a latent vector which is further decoded
into the RMSD of the pose and the binding strength to the
protein through two decoding modules. Therefore, IGModel can
be subdivided into two sub-branches, namely IGModelgarsp
and IGModelpkq. In the CASF-2016[28] docking power test,
IGModelgrarsp achieved the highest Topl docking success rate
(97.5% and 95.1% when including and excluding the native
poses, respectively). On cross-docking datasets like PDBbind-
CrossDocked-Core set[51] and DISCO set[52], IGModel still
performs well, which is comparable or even better than
other baseline models. In addition, IGModel can also show
excellent performance on the unbiased test set and the datasets
containing target structures generated by AlphaFold2[53],
proving that IGModel has outstanding generalization ability
and are practical for drug discovery. The model captures
key charge-charge or hydrogen bond interactions indicating
potential robustness for protein-ligand interaction prediction
and the model thus could also be used for lead optimization.
Overall, we present a highly accurate ligand pose and binding
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affinity prediction model which would be an useful tool for drug
design.

Methods

Datasets

In this study, the native protein-ligand complexes from the
PDBbind database (v.2019)[54] along with their corresponding
docking poses are utilized for training. In order to increase
the diversity of ligand binding conformations, an average of
15 docking poses are generated by AutoDock Vina[55] and
ledock[56] for each native protein-ligand complex. Samples from
CASF-2016 and those with peptide ligands were excluded,
as well as any samples that failed to be parsed by certain
programs, such as rdkit[57]. The actual root mean square
deviation (RMSD) of docking poses are calculated using the
spyrmsd package[58]. The binding affinity (pKd) of the native
protein-ligand complex is represented as the negative logarithm
of the dissociation constant (Kg), inhibition constant (K;),
and half-inhibitory concentration (IC50). The parameters for
molecular docking and the distributions of RMSD and pKd of
docking poses are shown in Supplementary part 1.

Graphical representation of protein-ligand complexes

Physically, ligand binding within the pocket is influenced by
non-bonding interactions, and the potential energy surfaces
of protein-ligand binding reveal geometric preferences among
atoms. Therefore, accurately describing the relative positions of
atoms in the protein-ligand system is crucial for characterizing
the protein-ligand interactions. In this study, we construct
a heterogeneous graph GELLEL 44 encode protein-ligand
interactions. This graph comprises two node types: protein
atom nodes (V) and ligand atom nodes (V). To conserve
computational resources, only protein atoms within 8 A of the
ligand co-crystal structure are used for interaction modeling,
without considering all atoms. There are four message-passing
channels in GERLLRL namely EEE (VE to VE), EXL (VE to
vy, EFE (VE to VI), and EXF (VE to V).

Within the ligand subgraph GY=(VL ELL), we define seven
types of ligand atoms: C, N, O, P, S, Hal (representing halogen
elements F, Cl, Br, and I), and DU (representing other element
types). If a covalent bond exists between atoms i and j, an edge
and ij. The rdkit package
enables the extraction of physical and chemical information

eijL is defined between nodes v;*

related to the chemical bond, which is used as the edge feature
in conjunction with the bond length. For the protein subgraph
GE=(VE EER) we redefined atom types based on the element
type, the residue type it blongs to, and whether it is located
in the main chain or the side chain. For example, “LYS-MC”
and “LYS-SC” represent the C atom on the main chain and
side chain of LYS, respectively. The one-hot encoding of atom
types, along with aromaticity, charge, and the distance to
the a-C atom, are collectively used as node features for G,
When the distance between two nodes viR and VjR
R is established, and the edge length
serves as the edge feature. If the distance between a protein
R L is less than 8 A, directed

are created, where e,;,iRL denotes the

is less
than 5 A, an edge €;j
node v; " and a ligand node v;
edges eiﬁiRL and eiﬁiLR
direction from viR to viL, and ei,iLR represents the direction
from v;¥ to v;. This multilateral architecture facilitates the
integration of node and edge information within the protein-
ligand graph. To provide a more comprehensive description of

the relative positions between protein-ligand atoms, in addition
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to considering the interatomic distance, we introduce a novel
orientation feature. Specifically, we introduce a dihedral angle
¢ (formed by the geometric center of the pose, vit, v;®, and
a-C), as well as two angles 61 and 02, as shown in Figure 1B.
In Figure 1B, C,, R, L and P represent the C, of the residue,
a certain atom within the residue, a certain atom within the
ligand and the geometric center of the ligand, respectively. 61
and 03 are the angles formed between the Ca-R edge and the L-
R edge, as well as P-L edge and R-L edge, respectively. Finally,
sin(¢/2), cos(01/2), cos(02/2), and distance are utilized as
features for the interaction edge. Table 1 summarizes all the
node and edge features within this heterogeneous graph.

As we all know, the physicochemical environment of
the binding pocket is critical for ligand binding[59, 60].
However, macroscopic descriptions of binding pockets cannot
be effectively conveyed solely through atomic-level interaction
graphs. To address this limitation, we construct an undirected
graph GP=(VP?, EP) to describe the residue states at the binding
pocket. Similar to RTMScore, we defined the binding pocket
as the residues within 84 around the co-crystallized ligand.
Each node v;P€V? represents a residue within the binding
pocket, and an edge e;;? is established when the minimum
distance between two residues is less than 10 A. Node features
primarily encompass the residue type, distance distribution
between internal atoms, and position relative to the pocket
center, while edge features represent the distances between
nodes in the main chain atoms. Table 2 summarizes the detailed
node and edge features of the binding pocket graph.

Architecture

IGModel mainly contains three parts: the interaction feature
encoding module, the RMSD decoding module and the pKd
decoding module.

The encoding part of IGModel comprises two branches,
dedicated to handing the binding pocket graph and the protein-
ligand interaction graph, with each branch containing two
EdgeGAT layers. When the binding pocket graph is input into
the encoder, its node features hp,cr and edge features o1 are
updated as shown in Eq.1. The updated node features h'pock is
converted into a vector of length 1024 to represent the binding
pocket embedding.

Broens Froer = EGATConv(EGAT Conv(hpock, fpock)) (1)

For the protein-ligand interaction graph, the first round
of message passing is shown in Eq.2-5. After the first round
of message passing, the nodes of protein and ligand atoms
have been updated. The updated nodes of the protein and
the ligand subgraphs, h’,... and h/ug, are as shown in Eq.6-7.
After two rounds of updates, the node features of the protein
and the ligand are transformed into 1024-dimensional vectors,
which serves as embeddings containing information about the
protein and ligand atoms. Combining these two embeddings
with the binding pocket embedding yields the final latent space
describing the protein-ligand interaction.

h;eclv f;‘ecl = EGATConv(hrec, frec) (2)

/
hrecQ’

fl,igfrec = EGATCO"'U((hZigy hrec)7 flig—rec) (3)
hiig1s Fligyt = BGATConv(hiig, fiig) (4)

Rligas Freetig = BEGATConv((hree, hiig), free—tig)  (5)
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Fig. 1. Overview of IGModel. A, Illustration of predicting RMSD and pKd from the protein-ligand complex structure. B, The orientation information
on the relative positions of protein-ligand atoms. C,, R, L and P represent the C, of the residue, a certain atom within the residue, a certain atom
within the ligand, and the geometric center of the ligand, respectively. The 6, and 65 are the angles between C,-R and L-R, and between P-L and R-L,
respectively. The ¢ denotes the dihedral angle formed by C,, R, L and P.

R!..= BatchNorm(h!

recl

) + BatchNorm(Linear(h,...5))

(6)
h;ig = Batcth“m(hZigl) + BatchNorm(Linear(h;igz)) (7)

The two learning modules in the decoding part consist of
a gMLP[61] layer and two linear layers. After passing through
these two learning modules, the latent space is converted into
two 128-dimensional vectors, namely Vgrysp and Vprgq. In
order to make the predicted pKd perceive the change of the
RMSD of the ligand pose, we map Vgrysp to a new vector
V'pkd on the space of V4, which is integrated with Vg for
decoding the pKd.

The training data consists of experimentally determined
structures and virtual conformations generated by molecular
docking. However, only the binding affinity of native complexes
are available. Here, we assume that the binding strength of the
binding pose against the target is inversely proportional to its
RMSD relative to the native conformation, while the native
protein-ligand conformation has the greatest binding affinity. In
this work, we aim to learn the relationship between the RMSD
of the docking pose and the binding strength through DL. In
detail, the model also predicted a decay factor W (as shown
in Figure 1A and Eq.8) with a value range of 0-1 in the pKd
decoding part to describe the magnitude of the reduction of
pKd with RMSD. Through W and the previous assumptions,
the binding strength (pKdjqpe;) of the docking pose to the
receptor can be deduced, this will serve as the label for pKd
(Eq.9).

W = Sigmoid(Linear(Vp/kd + Vpkd)) (8)

pKdlabel = pKdnat - W x RMSDrcal (9)
In Eq.8,
conformation of the ligand and the receptor, and RMSD,..,; is

the real RMSD of the docking pose. When RMSD,..,; is close
to 0, pKd;gper will be close to pKdy gt

pKd, .+ is binding affinity between the native

The loss function during training is defined as follows:

L =oaxmse(RMSDyeqr, RMSDprea)+
. (10)
ﬂ * mse(pKdlabelvpdered) + v * N Zpdered

where a, b and c¢ are the weights when summing up the
components within the loss function. The last term in the loss
function is used to constrain the convergence direction of pKd,
thus improving the stability of pKd prediction.

Results
Evaluation on CASF-2016 benchmark

Distance information between protein and ligand atoms is
crucial for describing protein-ligand interaction[25, 35, 21].
However, in this work, we have also incorporated relative
positional information between protein and ligand atoms to
enhance the characterization of interaction. As illustrated in
Figure 2, we introduced two angles, 6, and 62, as well as
a dihedral angle ¢, which are obviously rotation invariant.
Graph representation based on distance and direction will
more comprehensively restore the geometric information of
protein-ligand atoms.

The performance of the SF is generally evaluated from
four aspects: scoring power, ranking power, docking power
and screening power as defined in CASF-2016 benchmark[28].
Previous research has shown that some SFs with strong
docking power or screening power often have poor scoring
power and ranking power, such as DeepRMSD+Vina[39] and
RTMScore[41]. In other words, training a model that can
be applicable to various tasks with balanced performance is
quite challenging[43]. Despite our model primarily focusing
on identifying near-native conformation of the ligand (docking
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Table 1. Node and Edge Features employed for protein-ligand interaction graph.

Features Size
Nodes (Ligand atoms)

One hot encoding for the element of the atom (“C”, “N” “O”, “P”, “S”, “Hal”, “DU”) 7
Edges (Ligand-Ligand nodes)

One hot encoding for the bond type (“SINGLE”, “DOUBLE”, ¢“TRIPLE”, 4

“AROMATIC”)

Whether the bond is conjugated 1

Whether the bond is in ring 1

One hot encoding for the stereo configuration the bond (“STEREONONE”, 4

“STEREOANY”, “STEREOZ”, “STEREOE”)

The edge length 1

Nodes (Protein atoms)
One hot encoding for residue type (“GLY”,“ALA”, “VAL”, “LEU”, “ILE”, “PRO”, 21
LLPHEW R “TYR” s LETRP” R “SER” s LLTHR” s “CYS” s LLMETW R LLASNﬂ s L‘GLN?’ s LLASP77 s

“QLU” , “LYS” , “ARQG” , “HIS” , “OTH”)

One hot encoding for the element of the atom (“C”, “N”, “O”, “S”, “DU”) 5

Whether the atom is located in the main chain ([1, 0] or [0, 1]) 2

Whether the atom is aromatic ([1, 0] or [0, 1]) 2

One hot encoding for charge (-1, 0, 1) of the atom 3

Distance between the atom and the a-C atom 1
Edges (Protein-Protein nodes)

The edge length 1
Edges (Protein-Ligand nodes)

The edge length 1

sin(¢/2), ¢ is the dihedral angle formed by the ligand center, the ligand atom, the 1

protein atom and the a-C atom of the residue where the protein atom is located

cos(61), 01 is the angle formed by the ligand atom, the protein atom and the a-C atom 1

of the residue where the protein atom is located

cos(6s3), 02 is the angle formed by the protein atom, the ligand atom and the ligand 1

center

power), what is surprising is that it also has a relatively
balanced performance in other tasks (Figure 2 and Table
3). Firstly, for docking power, the top 1 success rate of
IGModel,,,sq with native poses included in the test set is
97.5%, and the value remains as high as 95.3% when the native
poses are excluded. At the same time, IGModelyrq can also
achieve the higher top 1 success rates compared to most models,
which are 93.0% and 90.0% when crystal structures are included
and excluded in the test set, respectively. In addition, screening
power refers to the ability of the SF's to identify the true binders
to a specific receptor among a large library of compounds, which
is measured by two indicators: the first one is the success rate
of identifying the highest-affinity binder among the 1%, 5%
or 10% top-ranked ligands over all 57 target proteins in the
test set; the second indicator is enrichment factor (EF) that
is calculated by the average percentage of the true binders
among the 1%, 5% or 10% top-ranked candidates across all
57 targets. IGModel achieved a Top 1% success rate of 66.7%,
which is comparable to RTMScore[41] but slightly lower than
GT_ft_1.0[43]. However, the EF achieved by IGModel,q is only
19.8, which is significantly lower than RTMScore and GT_ft_1.0,
but still higher than most predictors, such as DeepDock[40]. In
general, IGModel exhibits a relatively balanced performance
across various metrics based on CASF-2016 benchmark. The
ablation experiments of IGModel on the validation set and
CASF-2016 docking power are shown in Support Information

part 3. Interestingly, for scoring power, IGModel,xq achieved
a Person correlation coefficient (PCC) of 0.831, which is very
close to the 0.834 and 0.824 achieved by GatedCGN_ft_1.0[43]
and PLANET[42] repectively. The scatter plots of IGModel,rq
on the validation set and CASF-2016 core set are shown
in Support Information part 2. Lastly, for ranking power
test, IGModel,xq achieved a Spearman correlation coefficient
(SCC) of 0.723, which is higher than the 0.686 achieved by
GatedCGN_ft_1.0.

Evaluation on the redocking and cross-docking test
sets

Currently, in most molecular docking applications, the protein
is treated as a rigid molecule, which deviated from the
actual protein-ligand binding behavior observed in the real
world, since the binding pocket could accommodate different
compounds with flexible side-chains and sometimes also
adjusted backbones[63]. Cross-docking refers to redocking a
certain ligand to a non-cognate receptor[52]. Redocking and
cross-docking are two ways for evaluating molecular docking,
which refers to redocking a certain ligand to a cognate
receptor and docking a ligand to a non-cognate receptor in
the original pocket, respectively. To comprehensively assess the
docking power of IGModel, various redocking and cross-docking
benchmarks were adopted.
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Table 2. Node and Edge Features Employed for protein pocket graph
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Features Size
Nodes
One hot encoding for residue type (“GLY”,“ALA”, “VAL”, “LEU”, “ILE”, 21
“PRO”, “PHE”, “TYR”, “TRP”, “SER”, “THR”, “CYS”, “MET”, “ASN”,
“GLN”, “ASP”, “GLU”, “LYS”, “ARG”, “HIS”, “OTH”)
Max distance between any atom and a-C atom 1
Distance between atoms named C and N 1
Distance between a-C atom and the pocket center 1
Max and Min distance between any atom and the pocket center 2
sin(¢/2) and sin(v¢/2), where ¢ and 1 are main chain dihedral angles 2
sin(x;/2), where x; (i = 1, 2, 3, 4 and 5) is the side chain dihedral angle. If 5
a dihedral angle does not exist in the residue, it is set to -2.
Edges
Distance between the a-C atoms of two residues 1
Distance between the main-chain carboxyl O atoms of two residues 1
Distance between the main-chain N atoms of two residues 1
Distance between the main-chain carboxyl C atoms of two residues 1
Distance between the centers of two residues 1
Max and min distance between two residues 2

A B

GatedGCN_ft_1.0 IGModelpg
1GModelis GatedGCN_ft_1.0
PLANET GT_ft 10
GT_f_10 PLANET
X-Score ChemPLP@GOLD
X-Score™® DrugScore“SD

8SAS LuDI2@DS

X-Score"® Lupl@ops
ASP@GOLD LigScore2@DS
ChemPLP@GOLD DrugScore2018
X-Scoreya XScore
AutoDock Vina X-Score™
DrugScore2018 Affinity-dG@MOE
DrugScore®s? LigScore1@DS
ASE@MOE ChemScore@SYBYL
ChemScore@SYBYL London-dG@MOE
PLP1@DS G-Score@SYBYL
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Fig. 2. Comparison of the scoring power, ranking power and docking power in the CASF-2016 benchmark with other SFs. The CASF-2016 benchmark

is compared with other traditional SFs reported in refxx, as well as some recently reported DL-based models. A. Scoring power measures the correlation

between the scores of the model and experimental affinity, and the evaluation metric is the Pearson correlation coefficient. B. Ranking power evaluates

the ability of a SF to rank the known ligands for a certain target, and its evaluation metric is the Spearman correlation coefficient. C and D show the

top 1 success rate when the crystal structures are included and excluded from the test set, respectively.

The first test set we assessed is PDBbind-CrossDocked-
Core, with all receptors and ligands derived from the PDBbind
v2016 core set. Each ligand was extracted from 285 protein-
and then into the
original protein or other four proteins belonging to the same
target cluster by three docking softwares: Surflex-Dock, Glide
SP and AutoDock Vina. IGModel was tested in these three
and the
results are shown in Table 4 and Figure 3. For cross-docking,

ligand crystal structures, was redocked
groups of poses and compared with other SFs,

the top 1 success rates on poses generated by IGModel,,sq
with Surflex, Glide and Vina are 0.662, 0.595 and 0.594

respectively, which is slightly better than GT_ft_ 1.0 and
GatedGCN_ft_1.0, and significantly ahead of most predictors.
Meanwhile, IGModel,xq is still able to perform well that is
comparable with Gated GCN_ft_1.0, though it is slight worse
than IGModel;p,sq-
rates of IGModel,,,s¢ and IGModel,q on poses generated by
Surflex, Glide and Vina are 0.854 and 0.850, 0.786 and 0.779
as well as 0.761 and 0.754 respectively, which demonstrate a

For redocking tasks, the top 1 success

significant advantage over other SFs.
Another cross-docking test set used in this study is DISCO,
which contains 4399 crystal protein-ligand complexes across 95
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Table 3. The docking power and screening power of several representative SFs on the CASF-2016 benchmark.

docking power

screening power

Scoring function top 1 success rate (w/o top 1

native poses)

success

rate top 1% success rate enrichment factor

(with native poses)

AutoDock Vina[28} 0.846 0.902 0.298 7.70
ChemPLPQGOLDI28] 0.832 0.860 0.351 11.91
GlideScore-SP[28] 0.846 0.877 0.368 11.44
AVinaRF20[28] 0.849 0.891 0.421 (0.456) 11.73 (12.36)
Av-maXGB[GZ] 0.920 0.368 13.14
ALinFQXGB[45] 0.867 0.404 12.61
OnionNet- 0.937 0.421 15.50
SFCT+Vinal[44]
DeepBSP([38] 0.872 0.885
DeepDock[40] 0.870 0.439 16.41
RTMScore[41] 0.934 0.973 0.667 28.0
GT_ft_1.0[43] 0.940 0.966 0.719 28.12
GatedGCNift71.0[43} 0.926 0.954 0.661 23.54
IGModely,rq 0.909 0.933 0.667 19.40
IGModel,msa 0.951 0.975
Note: The results of SFs other than IGModel are cited from the reference.
A Surflex B Glide C Vina
IGModekad
GatedGCN_ft_1.0
GT_ft_ 1.0
Glide XP
Glide SP
Pafnucy
X-Score
Vinardo
Vina
0 25 50 75 0 25 50 75 0 25 50 75

Success Rate (%)

Success Rate (%)

Success Rate (%)

Fig. 3. Docking power of IGModel and other SFs on PDBbind-CrossDocked-Core set. A, B and C show the top 1 success rate of SFs on poses generated

by Surflex, GLide and AutoDock Vina, respectively.

protein targets[52]. These targets are sourced from DUD-E[64],
thus covering a wide range of protein families. The poses of
ligands are generated by AutoDock Vina[55], with 20 poses
generated for each protein-ligand pair by default. In order to
be consistent with our previous research, each specific target-
ligand was treated as a single case when calculating the topl
success rate, which is different from the integrated idea when

tested on PDBbind-CrossDocked-Core set. The performance of
IGModel compared to several representative SFs on DISCO set
is shown in Figure 4. It can be clearly seen that IGModel, ., sq
is ahead of other baseline SFs, while IGModel,rqs performs
comparably to GatedGCN_ft_1.0. The excellent performance
of IGModel in redocking and cross-docking tasks proves its
significant practical application value.
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Table 4. Docking power (Top 1 success rate) of IGModel and other SFs on the PDBbind-CrossDocked-Core set.

Surflex Glide SP Vina
SFs Redocking Cross- Redocking Cross- Redocking Cross-
docking docking docking
AD4 0.702 0.498 0.603 0.498 0.551 0.437
Vina 0.691 0.505 0.606 0.505 0.540 0.380
Vinardo 0.677 0.477 0.628 0.477 0.558 0.391
X-Score 0.663 0.475 0.582 0.475 0.512 0.401
Pafnucy 0.512 0.319 0.422 0.319 0.211 0.165
Glide SP 0.730 0.547 0.645 0.547 0.502 0.376
Glide XP 0.726 0.525 0.610 0.525 0.470 0.366
GT_ft_1.0 0.815 0.636 0.743 0.585 0.660 0.590
GatedGCN_ft_1.0 0.822 0.627 0.719 0.575 0.674 0.581
IGModelpka 0.850 0.626 0.779 0.577 0.754 0.565
IGModel,msd 0.854 0.662 0.786 0.595 0.761 0.594

Note: The results of SFs other than IGModel are cited from reference[43].

Table 5. Pearson and Spearman correlation coefficient of IGModel and other SFs tested on the CASF2016-AF2, unbias-v2019 and unbias-

v2019-AF2 datasets.

CASF2016-AF2

unbias-v2019 unbias-v2019-AF2

SFs PCC scc PCC scc PCC scc
Vina 0.035 0.071 0.364 0.356 0.209 0.192
DeepBSP 0.401 0.375 0.543 0.507 0.451 0.418
DeepRMSD 0.463 0.430 0.285 0.246 0.261 0.247
DeepRMSD+Vina 0.248 0.290 0.405 0.362 0.299 0.287
GT f6.1.0 0.503 0.455

GatedGCN _ft 1.0 0.560 0.524

zPoseScore 0.659 0.593 0.604 0.535 0.554 0.507
IGModelppq 0.736 0.649 0.611 0.522 0.580 0.519
IGModel,pmsa 0.751 0.669 0.633 0.542 0.609 0.552

Note: The results of SFs other than IGModel are cited from reference[46].

85
3
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[0}
-
©
o
(%3]
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(7)) = |GModel,rq
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— GT_ft 10
—— GatedGCN_ft 1.0
25
1 2 3 4 5

Top N

Fig. 4. The top N success rate of IGModel and other baseline models on
DISCO set.

Generalization Assessment of IGModel

In this paper, we assessed the generalization ability of the
IGModel from two additional perspectives. Firstly, most of
SFs do not rigorously eliminate redundancy in the training
set, which may lead to the results of SFs on the test set
being much better than in actual scenarios. Therefore, we
introduced a unbiased test set (called unbias-v2019 set in this
work) that we previously proposed, which contains the protein-
ligand pairs with low similarity to those in PDBbind database
v2019,
excluded[46]. The similarity is defined as the product of protein

and the native conformation of the ligands were

sequence similarity (calculated by NW-align) and the Tanimoto
similarity of the ligand Morgan fingerprints calculatied by
rdkit[57]. Secondly, when the native conformation of the
target is unknown, predicting the binding pose of the ligand
becomes even more challenging. Computation methods such
as AlphaFold2[53] provide solutions rapidly obtaining high-
Then,
predicted protein structures, molecular docking was applied to

precision protein structures. on the basis of these

generate poses of the ligands. In our previously study, CASF-
2016 and the unbias-v2019 were used to construct the test
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Table 6. Topl success rate of IGModel and other SFs tested on the CASF2016-AF2, unbias-v2019 and unbias-v2019-AF2 datasets.

CASF2016-AF2

unbias-v2019 unbias-v2019-AF2

SFs 24 3A 24 3A 24 3A
Vina 0.127 0.208 0.453 0.526 0.130 0.219
DeepBSP 0.180 0.324 0.453 0.584 0.169 0.254
DeepRMSD 0.269 0.425 0.210 0.324 0.089 0.185
DeepRMSD+Vina 0.261 0.416 0.441 0.534 0.144 0.253
GT_ft_1.0 0.273 0.448

GatedGCN_ft_1.0 0.292 0.465

zPoseScore 0.339 0.506 0.599 0.700 0.185 0.274
IGModel,kq 0.338 0.558 0.562 0.690 0.227 0.318
IGModel,mad 0.364 0.571 0.587 0.690 0.227 0.296

Note: The results of SFs other than IGModel are cited from reference[46].

sets for the AlphaFold2 version, namely CASF-2016-AF2 and
unbias-2019-AF2, respectively[46].

We assessed the docking power of SFs on the three datasets
mentioned above. Table 5 shows the Pearson correlation
coefficient (PCC) and Spearman correlation coefficient (SCC)
between the scores of SFs and the true RMSD. It can be
clearly seen that, compared to other baseline SFs, IGModel
exhibits remarkably high accuracy. Especially on the unbias-
v2019-AF2 set, IGModel can still perform robustly. The Topl
success rate achieved by SFs with 24 and 3A as cutoffs is
shown in Table 6, and what is exciting is that IGModel still
significantly outperforms other SFs. This effectively verifies the
generalization ability and robustness of IGModel in different
situations. For CASF2016-AF2 and unbias-v2019-AF2, two
datasets based on the structures predicted by AlphaFold2, since
the poses generated by molecular docking have larger RMSDs
relative to the native poses, the overall topl success rate is
lower.

Discussion

Different SFs were developed with various training data for
either pKd or RMSD predictions, and a single score (either a
traditional SF or a ML/DL-based SF) may perfectly address
the docking pose quality[44] regarding the pose selection
and virtual screening[28]. For pose selection, RMSD reflects
the difference between the docking pose and the native
conformation (thus solving the "how it binds” problem), but
cannot represent the binding strength with the target protein;
while for virtual screening, pKd represents the binding strength
between the molecule and the target (regarding the ”how strong
it binds” problem), but cannot reflect the difference between
the docking pose and the native pose [65].

Early ML-based or DL-based SFs usually directly predict
protein-ligand binding affinity (pKd) given the native protein-
ligand complex structures [25, 34, 35, 36]. However, testing
shows that the scores of such models are difficult to distinguish
correct binding poses generated by docking tools [28], and
their accuracies on screening tasks are neither satisfied[37].
Later, researchers began to directly predict the RMSD of
the docking poses (such as Gnina [66], DeepRMSD[39] and
DeepBSP[38]), or use scores from other mathematical spaces
(such as DeepDock[40], RTMScore[41] and GenScore[43]) but
trained with docking poses. The distance likelihood potential

generated by DeepDock, RTMScore and Genscore is difficult to
intuitively describe RMSD and the binding strength and could
not provide an explicit and physical meaningful predictions for
computational chemists. Whereas, RMSD corrected pKd is also
used as training target to construct ML models, it could provide
direct estimate for both pose binding pattern and molecule
binding strength with a single score[62, 45].

To this end, we try to answer the two questions (RMSD
prediction for "how it binds” and pKd prediction for ”how
strong it binds”) within one integrated framework, where
we characterize the protein-ligand interaction through two
geometric graph modules: the pocket graph module and the
protein-ligand atomic graph module, and then apply EdgeGAT
layers[50] to encode the interaction features. Tests under
different scenarios have shown that IGModel is good at
predicting the RMSD of the docking poses for both redocking,
cross-docking and AF2-based docking tasks, indicating that it
has a excellent generalization ability and robustness for pose
selection (Tables 3, 4 and 5).

In order to more clearly display the protein-ligand
interaction potential energy surface encoded by the graph
neural network, we visualized the ligand embedding output
by the last EdgeGAT layer in the protein-ligand graph branch
and the overall complex embedding. First, we cluster the latent
space and the ligand embedding of the samples in the validation
set through principal component analysis (PCA), and then
color them according to real RMSD, predicted RMSD, pKd;qper
and predicted pKd respectively. The distributions of RMSD
and pKd on the latent space are shown in Figure 5 A-D.
It can be clearly found that as the RMSD and pKd change,
obvious layering appears on the pattern. Similar trends can
also be observed in ligand embedding pattern (Figure 5 E-
H). However, there is a significant phenomenon that the latent
space image has a larger coverage area compared to the ligand
embedding, which means that the latent space is better able to
distinguish the differences between different clusters. This may
be attributed to the integration of protein pocket information
within the latent space, thus enhancing the representation of
protein-ligand interactions.

IGModel,
simultaneously predicting the RMSD of ligand docking poses

as the first deep learning model capable of

relative to the native conformation and the binding strength
to the target, is founded on the assumption of the negative
correlation between binding strength and RMSDs of docking
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Fig. 5. Visualization of the complex embedding, ligand embedding and the decay factor W. A-D (E-H) show the visualization of the complex embedding

(ligand embedding) of samples in the validation set after PCA clustering, colored according to real RMSD, predicted RMSD, pKd;up.; and predicted

pKd, respectively. I-K present visualization of the decay weight of binding strength with respect to RMSD variations, organized according to pKd, ,+-real
RMSD, pKdjgpei-real RMSD and predicted pKd-Predicted RMSD, respectively. Where pKd,,,; refers to the binding affinity of the native protein-ligand

complex.

poses. However, the decay weight of binding strength with
respect to the RMSDs of docking poses is unknown. Previously,
researchers have empirically set functions for the variation
of binding strength with RMSD[62, 45], but such manual
interventions may introduce systematic errors. Therefore, we
hope that the model can obtain the corresponding decay
weights based on different protein-ligand complexes (as shown
in Figure 1). We display the decay weights according to pKd,qt-
real RMSD (Figure 5I), pKd;gpei-real RMSD (Figure 5J) and
predicted pKd-predicted RMSD (Figure 5K) respectively. One
clear trend is that as the RMSD increases, the decay weight
W also increases. This aligns with the initial assumption
that poses closer to the native conformation have the stronger
binding strength.

Next we also explore the ability of the model to learning
physical protein-ligand interactions. It is assumed that protein-
ligand binding is majorly driven by non-bonded interactions
[67], solvation effects [68] and entropic effects [69]. For non-
bonded interactions, in particular, short-range interactions
such as hydrophobic interactions, cation-m interactions, salt
bridges, hydrogen bonds and w-7 stacking usually provide
favorable binding free energies for the protein-ligand complex

[70, 71, 67]. However, most current ML/DL-based SFs fail

to explicitly or implicitly emphasize or highlight the direct
non-bonded interactions between the protein and the ligand.
Atoms located in different residue side chains, and
even those at different positions within the same residue,
often exhibit distinct physicochemical properties. Therefore,
comprehensively considering multiple features such as residue
type, element type, main chain/side chain, polar/non-polar
and aromaticity, effectively assigns physiologically relevant
identifiers to protein atoms. This makes
IGModel to capture key non-bonded interactions such as

hydrogen bonding (Figure 6). We extracted the attention values

it possible for

generated by IGModel for each protein-ligand atom pair in
the protein-ligand complexes from CASF-2016 docking poses
to examine whether the physical interactions are highlighted
or have been paid enough ”attentions”. The importance of
a protein atom is defined as the sum of attention values
of the protein-ligand interaction edges in which this protein
atom participates. For example, if a protein atom forms
edges with five ligand atoms, the importance of the protein
atom is represented by the sum of these five attention values.
Subsequently, the importance of all protein atom types was
counted, with top 20 ranked types displayed in Figure 6 A.
We can clearly find that seven of top eight most important

protein atoms are polar atoms, which implies the significant role
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Fig. 6. Explainability and case study. A. Ranking of importance of protein atoms at the binding pocket (only the top 20 protein atom types are shown).

B and C show two cases (1QF1 and 2QE4) where IGModel identifies key interactions, including hydrogen bonding and m-7 stacking. In the two pictures

located on the right, the distances between key atoms are shown (black), and the names and importance values of key atoms in the protein are colored

in blue.

of polar interactions in protein-ligand binding[70] for binding
strength and binding specificity. In addition, certain non-polar
atoms, such as ILE-CD1 and PHE-CZ, also play a crucial
role. This is because alpha carbon atoms and aromatic rings
typically participate in the hydrophobic interactions, while it is
the most frequently occurring interaction type in protein-ligand
binding. Figure 6B shows that the protein atoms involved in
hydrogen bonding have higher importance values, which shows
that IGModel is capable of recognizing hydrogen bonds and
assigning them greater attention. In Figure 6C, the periphery
of the benzene ring in phenylalanine that is close to the benzene
ring of the small molecule also has a high importance value,
which indicates that IGModel has the ability to detect m-m
stacking.

Conclusion

In this work, we propose a new scoring framework called
IGModel for protein-ligand interaction prediction, which can
simultaneously predicts the RMSD of the ligand binding pose
and the binding strength with the target. IGModel applies
EdgeGAT layer to encode the two input graphs into the
latent space characterizing the protein-ligand interaction, and
then decodes the latent space into RMSD and pKd through
two decoders respectively. The results show that it achieves
SOTA performance in almost all docking power test sets.
Although IGModel aims to provide a more comprehensive
quality assessment for docking poses, it still performs well
on the CASF-2016 scoring power and ranking power test,
which is comparable or even better to the other models. For
screening power, out model is also ahead of most baseline
SFs. Furthermore, IGModel is also evaluated on the more
challenging unbiased set unbias-v2019 and data set containing

target structure predicted by AlphaFold2, proving its strong
generalization capabilities. We also visualized the latent space
encoded by IGModel, providing an intuitive representation of
the energy space describing the RMSD and binding strength of
the docking pose. Through case studies, it was observed that
IGModel is capable of identifying critical interactions, such as
hydrogen bonding and 7-7 stacking.

It is undeniable that one SF is difficult to perform perfectly
in all tasks, but IGModel can achieve a relatively balanced
performance. The most importance is that IGModel is a new
framework for predicting protein-ligand interactions, which
breaks the tradition that the SFs only output a single score,
and ensures that the output values have intuitive physical
meanings. We believe that this framework is valuable for
molecular docking and even the modification and optimization
of lead compounds in drug design. In summary, our research
proposes a new paradigm for the design of SFs in the future,
along withe new challenges.
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Supporting Materials

Part 1. Details of docking poses in the training set

In this work, docking poses were generated by AutoDock Vina and ledock, where the search space is a 15A*¥15A%15A cubic, the
maximum number generated is set to 10, and other parameters are used by default. The RMSD distribution of docking poses and

the pKd distribution of the native conformations corresponding to these docking poses are shown in Figure S1.
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Fig. S1. The RMSD (A) and pKd (B) distributions of docking poses in the training set.

Part 2. Performance of IGModel and some representative scoring functions in CASF-2016 benchmark

The Pearson correlation coefficient (PCC) and root-mean-squared error (RMSE) achieved by IGModel,rq on CASF-2016 core set
are 0.831 and 1.254, respectivily, as shown in Figure S2A. Figure S2B shows the results of IGModel,rq on the validation set,
including crystal structures and decoys. The performance of IGModel,rq and several recently published representative models on
CASF-2016 scoring power in Table S1.

Table S1. The scoring power of IGModel,rq and other representative scoring functions in CASF-2016 benchmark

Year SF's PCC RMSE Training set

2023 IGModelyq 0.831 1.254 PDBbind v2019 (general set)
2023 GatedGCN_ft_1.0 0.834 PDBbind v2020 (general set)
2023 GT_ft_1.0 0.802 PDBbind v2020 (general set)
2023 PLANET 0.824 1.247 PDBbind v2020 (general set)
2022 RTMScore 0.455 PDBbind v2020 (general set)
2022 MPNN 0.813 1.511 PDBbind v2016 (general set)

Part 3. The ablation study of IGModel

As shown in Table S2, when removing Angle 1, Angle 2, dihedral angle formed between the protein atoms and the ligand atoms in
the protein-ligand interaction graph, or removing the pocket graph, the performance of IGModel shows varying degrees of decrease.
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Fig. S2. A. The correlation between the pKd predicted by IGModel,,q and the experimental pKd for 285 native protein-ligand complexes in the
CASF-2016 core set. B. The scatter plot of pKd predicted by IGModel,q against the pKd labels on the validation set.

Table S2. The ablation experiment of IGModel on the validation set and CASF-2016 docking power

Validation set CASF-2016
RMSD pKd RMSD (Top 1 success rate) pKd (Top 1 success rate)
pPCC RMSE PCC RMSE including excluding including excluding
crystal crystal crystal crystal
poses poses poses poses
IGModel W/O Angle1 0.917 0.815 0.896 1.216 96.1% 94.0% 92.3% 88.4%
IGModel W/O Angle 2 0.923 0.787 0.902 1.247 97.9% 94.4% 93.7% 90.5%
IGModel W/O 0.923 0.792 0.898 1.276 95.1% 91.9% 92.3% 87.4%
dihedral angle
IGModel W/O pocket 0.894 0.914 0.895 1.281 94.7% 91.2% 86.3% 84.4%
graph

IGModel 0.927 0.768 0.905 1.220 97.5% 95.1% 93.3% 90.9%
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