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Abstract

Protein-ligand interaction prediction poses a significant challenge in the field of drug design. Numerous machine learning
and deep learning models have been developed to identify the most accurate docking poses of ligands and active
compounds against specific targets. However, the current models often suffer from inadequate accuracy and lack practical
physical significance in their scoring systems. In this research paper, we introduce IGModel, a novel approach that
leverages the geometric information of protein-ligand complexes as input for predicting the root mean square deviation
(RMSD) of docking poses and the binding strength (the negative value of the logrithm of binding affinity, pKd) with
the same prediction framework. By incorporating the geometric information, IGModel ensures that its scores carry
intuitive meaning. The performance of IGModel has been extensively evaluated on various docking power test sets,
including the CASF-2016 benchmark, PDBbind-CrossDocked-Core, and DISCO set, consistently achieving state-of-the-
art accuracies. Furthermore, we assess IGModel’s generalization ability and robustness by evaluating it on unbiased
test sets and sets containing target structures generated by AlphaFold2. The exceptional performance of IGModel on
these sets demonstrates its efficacy. Additionally, we visualize the latent space of protein-ligand interactions encoded by
IGModel and conduct interpretability analysis, providing valuable insights. This study presents a novel framework for
deep learning-based prediction of protein-ligand interactions, contributing to the advancement of this field.
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Key Messages

• We introduce the first framework for simultaneously predicting the RMSD of the ligand docking pose and its binding

strength to the target.

• IGModel can effectively improve the accuracy of identifying the near-native binding poses of the ligands, and can still

outperform most baseline models in scoring power, ranking power and screening power tasks.

• IGModel is still ahead of other state-of-the-art models in the unbiased data set and the target structure predicted by

AlphaFold2, proving its excellent generalization ability.

• Latent space provided by IGModel learns the physical interactions, thus indicating the robustness of the model.

Introduction

Understanding the precise binding poses of ligands within

protein receptor structures holds immense significance in the

field of drug design[1, 2, 3, 4]. By accurately predicting

ligand binding poses, researchers gain valuable insights into

the intricate mechanisms underlying drug-target interactions.

This knowledge empowers them to optimize binding affinity,

selectivity, and pharmacological properties, ultimately leading

to the development of more potent and efficient therapeutic

agents[5, 6].

Although experimental methods can be employed to

determine the binding mode of small molecules within proteins,

their efficiency tends to be relatively low, and their accuracy

is not always guaranteed[7, 8]. Experimental technique such
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as X-ray diffraction offers atomic insights into protein-

ligand interactions, is often time-consuming, resource-intensive,

and may encounter challenges in obtaining high-resolution

structures or capturing dynamic aspects of the binding

process[9, 10]. Additionally, experimental approaches may be

limited by the availability of suitable protein samples and the

complexity of the system under investigation. Consequently,

relying solely on experimental techniques for ligand binding

pose determination may not always meet the demands of

high-throughput drug discovery and design[11].

Computational methods, such as molecular docking, play

a pivotal role in this endeavor, offering efficient and accurate

tools to explore the vast chemical space and guide rational

drug design efforts[12, 13, 14, 15]. To guide fast and accurate

protein-ligand complex structure prediction, especially the

ligand binding pattern (given that the protein structure is

already known or determined), the scoring functions (SFs) are

developed[16, 17]. SFs are used to calculate the binding energy

or score associated with each pose, allowing for the ranking and

selection of the most favorable binding configurations[17, 9].

During ligand pose prediction, SFs consider various factors,

such as the complementarity of molecular shapes, electrostatic

interactions, van der Waals forces, hydrogen bonding, and

solvation effects[11]. By evaluating these energy terms, SFs

estimate the overall binding affinity or likelihood of a ligand

pose being biologically relevant. SFs help guide the exploration

of ligand conformational space, identifying potential binding

modes and providing insights into the binding strength and

specificity of ligand-receptor interactions[18]. They enable

researchers to prioritize ligand poses for further analysis or

optimization, facilitating the rational design of drug candidates

with improved binding affinity and selectivity[9, 19].

In the 1980s, people began to design rules for evaluating

ligand binding mode based on physical knowledge and expert

experience, or using the force field parameters from bio-

molecule simulation systems, which was the early SF[20]. The

traditional SF is usually a polynomial with few parameters and

atom type definitions, thus is not accurate enough to describe

the conformational space of the protein-ligand complex[21].

Another category of SF involves machine learning (ML)-

based approaches, which have been traced back to 2004[22].

This kind of SF predicts the ligand binding affinity by

extracting interaction features using various machine learning

techniques[23, 24]. Over the years, numerous notable SFs

have been proposed, including RF-Score[25] (as well its

virtual screen version, RF-score-VS), NN-Score[26], AGL-

Score[27], etc. These SFs have achieved excellent performance

(”scoring power”[28]) under the PDBbind related benchmarks.

The growing availability of public experimental data and

advancements in DL algorithms have led to a rising

trend of utilizing DL models for predicting protein-ligand

interactions[29, 30, 31]. Since 2017, numerous DL-based models

have been introduced for predicting protein-ligand affinity. For

example, AtomNet[32], Kdeep[33] and Pafnucy[34] employed 3D

convolutional neural networks (CNN) to establish a connection

between the 3D mesh representation of the complex and

its affinity. Additionally, our group has contributed two 2D

convolution-based models, namely OnionNet and OnionNet-

2, which assess protein-ligand affinity by counting the number

of contacts between ligand atoms and protein atoms/residues

in different distance intervals[35, 36]. However, recent studies

have revealed that ML or DL models trained with only

native structures exhibit limited performance when applied

to docking power and screening power tasks, despite their

strong performance in scoring power[37]. In order to make

the model applicable to practical scenarios, researchers began

to design predictors that can be directly applied to identify

near-native poses of the ligand or screening active compounds.

For instance, DeepBSP employed 3D CNN to predict the

RMSD of ligand docking poses[38].The DeepRMSD+Vina,

previously proposed by our group, adopts the modified formats

of van del waals and columbic terms used in many traditional

force fields in molecular mechanics as features and has been

demonstrated to be effective in docking power and docking

pose optimization[39]. In addition, DeepDock utilized a graph

neural network to learn the distance probability distribution

between protein-ligand atoms, rather than directly predicting

the protein-ligand binding affinity or the ligand pose RMSD[40].

However, it turns out that many DL scoring functions could

not perform well for all evaluation metrics[28]. Building

upon the idea of DeepDock, RTMScore introduced a novel

graph representation and employed a graph transformer model

to learn distance probability distributions, achieving state-

of-the-art results across multiple virtual screening test sets

and docking poses prediction tasks[41]. More researches now

realized the importance to have balanced performance for both

docking and screening tasks[42, 43, 44].

Among the numerous deep learning methods mentioned

above, they either provide affinity prediction or ligand pose

prediction, with few being able to simultaneously offer directly

interpretable indicators with physical meanings, which is more

intuitive for computational drug developers[45, 28]. Other

methods lack robustness, especially when using predicted

structures or cross-docked structures as protein templates,

there are few approaches that can accurately predict the

optimal ligand binding poses[46, 47].

To these ends, we proposed a SF based on the geometric

graph neural network, named IGModel, to further elevate

the upper limit of protein-ligand interaction prediction,

especially the docking poses prediction. The input of IGModel

includes two graphs: one is the protein binding pocket

graph, and the other is the protein-ligand atomic interaction

graph. Unlike previous graph representations[48, 49], IGModel

integrates the distance and orientation between interacting

atoms as geometric features of the complex to provide a

more comprehensive description of the relative positions of the

ligand within the binding pocket. We employ EdgeGAT layers

proposed by Kamiński et al.[50] to encode the protein-ligand

interaction to obtain a latent vector which is further decoded

into the RMSD of the pose and the binding strength to the

protein through two decoding modules. Therefore, IGModel can

be subdivided into two sub-branches, namely IGModelRMSD

and IGModelpkd. In the CASF-2016[28] docking power test,

IGModelRMSD achieved the highest Top1 docking success rate

(97.5% and 95.1% when including and excluding the native

poses, respectively). On cross-docking datasets like PDBbind-

CrossDocked-Core set[51] and DISCO set[52], IGModel still

performs well, which is comparable or even better than

other baseline models. In addition, IGModel can also show

excellent performance on the unbiased test set and the datasets

containing target structures generated by AlphaFold2[53],

proving that IGModel has outstanding generalization ability

and are practical for drug discovery. The model captures

key charge-charge or hydrogen bond interactions indicating

potential robustness for protein-ligand interaction prediction

and the model thus could also be used for lead optimization.

Overall, we present a highly accurate ligand pose and binding
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affinity prediction model which would be an useful tool for drug

design.

Methods

Datasets

In this study, the native protein-ligand complexes from the

PDBbind database (v.2019)[54] along with their corresponding

docking poses are utilized for training. In order to increase

the diversity of ligand binding conformations, an average of

15 docking poses are generated by AutoDock Vina[55] and

ledock[56] for each native protein-ligand complex. Samples from

CASF-2016 and those with peptide ligands were excluded,

as well as any samples that failed to be parsed by certain

programs, such as rdkit[57]. The actual root mean square

deviation (RMSD) of docking poses are calculated using the

spyrmsd package[58]. The binding affinity (pKd) of the native

protein-ligand complex is represented as the negative logarithm

of the dissociation constant (Kd), inhibition constant (Ki),

and half-inhibitory concentration (IC50). The parameters for

molecular docking and the distributions of RMSD and pKd of

docking poses are shown in Supplementary part 1.

Graphical representation of protein-ligand complexes

Physically, ligand binding within the pocket is influenced by

non-bonding interactions, and the potential energy surfaces

of protein-ligand binding reveal geometric preferences among

atoms. Therefore, accurately describing the relative positions of

atoms in the protein-ligand system is crucial for characterizing

the protein-ligand interactions. In this study, we construct

a heterogeneous graph GRR,LL,RL to encode protein-ligand

interactions. This graph comprises two node types: protein

atom nodes (VR) and ligand atom nodes (VL). To conserve

computational resources, only protein atoms within 8 Å of the

ligand co-crystal structure are used for interaction modeling,

without considering all atoms. There are four message-passing

channels in GRR,LL,RL, namely ERR (VR to VR), ELL (VL to

VL), ERL (VR to VL), and ELR (VL to VR).

Within the ligand subgraph GL=(VL,ELL), we define seven

types of ligand atoms: C, N, O, P, S, Hal (representing halogen

elements F, Cl, Br, and I), and DU (representing other element

types). If a covalent bond exists between atoms i and j, an edge

eij
L is defined between nodes vi

L and vj
L. The rdkit package

enables the extraction of physical and chemical information

related to the chemical bond, which is used as the edge feature

in conjunction with the bond length. For the protein subgraph

GR=(VR,ERR), we redefined atom types based on the element

type, the residue type it blongs to, and whether it is located

in the main chain or the side chain. For example, “LYS-MC”

and “LYS-SC” represent the C atom on the main chain and

side chain of LYS, respectively. The one-hot encoding of atom

types, along with aromaticity, charge, and the distance to

the α-C atom, are collectively used as node features for GR.

When the distance between two nodes vi
R and vj

R is less

than 5 Å, an edge eij
R is established, and the edge length

serves as the edge feature. If the distance between a protein

node vi
R and a ligand node vi

L is less than 8 Å, directed

edges ei,i
RL and ei,i

LR are created, where ei,i
RL denotes the

direction from vi
R to vi

L, and ei,i
LR represents the direction

from vi
L to vi

R. This multilateral architecture facilitates the

integration of node and edge information within the protein-

ligand graph. To provide a more comprehensive description of

the relative positions between protein-ligand atoms, in addition

to considering the interatomic distance, we introduce a novel

orientation feature. Specifically, we introduce a dihedral angle

ϕ (formed by the geometric center of the pose, vi
L, vi

R, and

α-C), as well as two angles θ1 and θ2, as shown in Figure 1B.

In Figure 1B, Cα, R, L and P represent the Cα of the residue,

a certain atom within the residue, a certain atom within the

ligand and the geometric center of the ligand, respectively. θ1

and θ2 are the angles formed between the Cα-R edge and the L-

R edge, as well as P-L edge and R-L edge, respectively. Finally,

sin(ϕ/2), cos(θ1/2), cos(θ2/2), and distance are utilized as

features for the interaction edge. Table 1 summarizes all the

node and edge features within this heterogeneous graph.

As we all know, the physicochemical environment of

the binding pocket is critical for ligand binding[59, 60].

However, macroscopic descriptions of binding pockets cannot

be effectively conveyed solely through atomic-level interaction

graphs. To address this limitation, we construct an undirected

graph Gp=(Vp, Ep) to describe the residue states at the binding

pocket. Similar to RTMScore, we defined the binding pocket

as the residues within 8Å around the co-crystallized ligand.

Each node vi
p
∈Vp represents a residue within the binding

pocket, and an edge eij
p is established when the minimum

distance between two residues is less than 10 Å. Node features

primarily encompass the residue type, distance distribution

between internal atoms, and position relative to the pocket

center, while edge features represent the distances between

nodes in the main chain atoms. Table 2 summarizes the detailed

node and edge features of the binding pocket graph.

Architecture

IGModel mainly contains three parts: the interaction feature

encoding module, the RMSD decoding module and the pKd

decoding module.

The encoding part of IGModel comprises two branches,

dedicated to handing the binding pocket graph and the protein-

ligand interaction graph, with each branch containing two

EdgeGAT layers. When the binding pocket graph is input into

the encoder, its node features hpock and edge features fpock are

updated as shown in Eq.1. The updated node features h′

pock is

converted into a vector of length 1024 to represent the binding

pocket embedding.

h
′

pock, f
′

pock = EGATConv(EGATConv(hpock, fpock)) (1)

For the protein-ligand interaction graph, the first round

of message passing is shown in Eq.2-5. After the first round

of message passing, the nodes of protein and ligand atoms

have been updated. The updated nodes of the protein and

the ligand subgraphs, h′

rec and h′

lig, are as shown in Eq.6-7.

After two rounds of updates, the node features of the protein

and the ligand are transformed into 1024-dimensional vectors,

which serves as embeddings containing information about the

protein and ligand atoms. Combining these two embeddings

with the binding pocket embedding yields the final latent space

describing the protein-ligand interaction.

h
′

rec1, f
′

rec1 = EGATConv(hrec, frec) (2)

h
′

rec2, f
′

lig−rec = EGATConv((hlig, hrec), flig−rec) (3)

h
′

lig1, f
′

lig1 = EGATConv(hlig, flig) (4)

h
′

lig2, f
′

rec−lig = EGATConv((hrec, hlig), frec−lig) (5)
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Fig. 1. Overview of IGModel. A, Illustration of predicting RMSD and pKd from the protein-ligand complex structure. B, The orientation information

on the relative positions of protein-ligand atoms. Cα, R, L and P represent the Cα of the residue, a certain atom within the residue, a certain atom

within the ligand, and the geometric center of the ligand, respectively. The θ1 and θ2 are the angles between Cα-R and L-R, and between P-L and R-L,

respectively. The ψ denotes the dihedral angle formed by Cα, R, L and P.

h
′

rec = BatchNorm(h
′

rec1) + BatchNorm(Linear(h
′

rec2))

(6)

h
′

lig = BatchNorm(h
′

lig1) +BatchNorm(Linear(h
′

lig2)) (7)

The two learning modules in the decoding part consist of

a gMLP[61] layer and two linear layers. After passing through

these two learning modules, the latent space is converted into

two 128-dimensional vectors, namely VRMSD and Vpkd. In

order to make the predicted pKd perceive the change of the

RMSD of the ligand pose, we map VRMSD to a new vector

V′

pkd on the space of Vpkd, which is integrated with Vpkd for

decoding the pKd.

The training data consists of experimentally determined

structures and virtual conformations generated by molecular

docking. However, only the binding affinity of native complexes

are available. Here, we assume that the binding strength of the

binding pose against the target is inversely proportional to its

RMSD relative to the native conformation, while the native

protein-ligand conformation has the greatest binding affinity. In

this work, we aim to learn the relationship between the RMSD

of the docking pose and the binding strength through DL. In

detail, the model also predicted a decay factor W (as shown

in Figure 1A and Eq.8) with a value range of 0-1 in the pKd

decoding part to describe the magnitude of the reduction of

pKd with RMSD. Through W and the previous assumptions,

the binding strength (pKdlabel) of the docking pose to the

receptor can be deduced, this will serve as the label for pKd

(Eq.9).

W = Sigmoid(Linear(V
′

pkd + Vpkd)) (8)

pKdlabel = pKdnat −W ∗ RMSDreal (9)

In Eq.8, pKdnat is binding affinity between the native

conformation of the ligand and the receptor, and RMSDreal is

the real RMSD of the docking pose. When RMSDreal is close

to 0, pKdlabel will be close to pKdnat.

The loss function during training is defined as follows:

L = α ∗mse(RMSDreal, RMSDpred)+

β ∗mse(pKdlabel, pKdpred) + γ ∗
1

N

∑
pKdpred

(10)

where a, b and c are the weights when summing up the

components within the loss function. The last term in the loss

function is used to constrain the convergence direction of pKd,

thus improving the stability of pKd prediction.

Results

Evaluation on CASF-2016 benchmark

Distance information between protein and ligand atoms is

crucial for describing protein-ligand interaction[25, 35, 21].

However, in this work, we have also incorporated relative

positional information between protein and ligand atoms to

enhance the characterization of interaction. As illustrated in

Figure 2, we introduced two angles, θ1 and θ2, as well as

a dihedral angle φ, which are obviously rotation invariant.

Graph representation based on distance and direction will

more comprehensively restore the geometric information of

protein-ligand atoms.

The performance of the SF is generally evaluated from

four aspects: scoring power, ranking power, docking power

and screening power as defined in CASF-2016 benchmark[28].

Previous research has shown that some SFs with strong

docking power or screening power often have poor scoring

power and ranking power, such as DeepRMSD+Vina[39] and

RTMScore[41]. In other words, training a model that can

be applicable to various tasks with balanced performance is

quite challenging[43]. Despite our model primarily focusing

on identifying near-native conformation of the ligand (docking
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Table 1. Node and Edge Features employed for protein-ligand interaction graph.

Features Size

Nodes (Ligand atoms)

One hot encoding for the element of the atom (“C”, “N”, “O”, “P”, “S”, “Hal”, “DU”) 7

Edges (Ligand-Ligand nodes)

One hot encoding for the bond type (“SINGLE”, “DOUBLE”, “TRIPLE”,

“AROMATIC”)

4

Whether the bond is conjugated 1

Whether the bond is in ring 1

One hot encoding for the stereo configuration the bond (“STEREONONE”,

“STEREOANY”, “STEREOZ”, “STEREOE”)

4

The edge length 1

Nodes (Protein atoms)

One hot encoding for residue type (“GLY”,“ALA”, “VAL”, “LEU”, “ILE”, “PRO”,

“PHE”, “TYR”, “TRP”, “SER”, “THR”, “CYS”, “MET”, “ASN”, “GLN”, “ASP”,

“GLU”, “LYS”, “ARG”, “HIS”, “OTH”)

21

One hot encoding for the element of the atom (“C”, “N”, “O”, “S”, “DU”) 5

Whether the atom is located in the main chain ([1, 0] or [0, 1]) 2

Whether the atom is aromatic ([1, 0] or [0, 1]) 2

One hot encoding for charge (-1, 0, 1) of the atom 3

Distance between the atom and the α-C atom 1

Edges (Protein-Protein nodes)

The edge length 1

Edges (Protein-Ligand nodes)

The edge length 1

sin(ϕ/2), ϕ is the dihedral angle formed by the ligand center, the ligand atom, the

protein atom and the α-C atom of the residue where the protein atom is located

1

cos(θ1), θ1 is the angle formed by the ligand atom, the protein atom and the α-C atom

of the residue where the protein atom is located

1

cos(θ2), θ2 is the angle formed by the protein atom, the ligand atom and the ligand

center

1

power), what is surprising is that it also has a relatively

balanced performance in other tasks (Figure 2 and Table

3). Firstly, for docking power, the top 1 success rate of

IGModelrmsd with native poses included in the test set is

97.5%, and the value remains as high as 95.3% when the native

poses are excluded. At the same time, IGModelpkd can also

achieve the higher top 1 success rates compared to most models,

which are 93.0% and 90.0% when crystal structures are included

and excluded in the test set, respectively. In addition, screening

power refers to the ability of the SFs to identify the true binders

to a specific receptor among a large library of compounds, which

is measured by two indicators: the first one is the success rate

of identifying the highest-affinity binder among the 1%, 5%

or 10% top-ranked ligands over all 57 target proteins in the

test set; the second indicator is enrichment factor (EF) that

is calculated by the average percentage of the true binders

among the 1%, 5% or 10% top-ranked candidates across all

57 targets. IGModel achieved a Top 1% success rate of 66.7%,

which is comparable to RTMScore[41] but slightly lower than

GT ft 1.0[43]. However, the EF achieved by IGModelpkd is only

19.8, which is significantly lower than RTMScore and GT ft 1.0,

but still higher than most predictors, such as DeepDock[40]. In

general, IGModel exhibits a relatively balanced performance

across various metrics based on CASF-2016 benchmark. The

ablation experiments of IGModel on the validation set and

CASF-2016 docking power are shown in Support Information

part 3. Interestingly, for scoring power, IGModelpkd achieved

a Person correlation coefficient (PCC) of 0.831, which is very

close to the 0.834 and 0.824 achieved by GatedCGN ft 1.0[43]

and PLANET[42] repectively. The scatter plots of IGModelpkd

on the validation set and CASF-2016 core set are shown

in Support Information part 2. Lastly, for ranking power

test, IGModelpkd achieved a Spearman correlation coefficient

(SCC) of 0.723, which is higher than the 0.686 achieved by

GatedCGN ft 1.0.

Evaluation on the redocking and cross-docking test

sets

Currently, in most molecular docking applications, the protein

is treated as a rigid molecule, which deviated from the

actual protein-ligand binding behavior observed in the real

world, since the binding pocket could accommodate different

compounds with flexible side-chains and sometimes also

adjusted backbones[63]. Cross-docking refers to redocking a

certain ligand to a non-cognate receptor[52]. Redocking and

cross-docking are two ways for evaluating molecular docking,

which refers to redocking a certain ligand to a cognate

receptor and docking a ligand to a non-cognate receptor in

the original pocket, respectively. To comprehensively assess the

docking power of IGModel, various redocking and cross-docking

benchmarks were adopted.
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Table 2. Node and Edge Features Employed for protein pocket graph

Features Size

Nodes

One hot encoding for residue type (“GLY”,“ALA”, “VAL”, “LEU”, “ILE”,

“PRO”, “PHE”, “TYR”, “TRP”, “SER”, “THR”, “CYS”, “MET”, “ASN”,

“GLN”, “ASP”, “GLU”, “LYS”, “ARG”, “HIS”, “OTH”)

21

Max distance between any atom and α-C atom 1

Distance between atoms named C and N 1

Distance between α-C atom and the pocket center 1

Max and Min distance between any atom and the pocket center 2

sin(φ/2) and sin(ψ/2), where φ and ψ are main chain dihedral angles 2

sin(χi/2), where χi (i = 1, 2, 3, 4 and 5) is the side chain dihedral angle. If

a dihedral angle does not exist in the residue, it is set to -2.

5

Edges

Distance between the α-C atoms of two residues 1

Distance between the main-chain carboxyl O atoms of two residues 1

Distance between the main-chain N atoms of two residues 1

Distance between the main-chain carboxyl C atoms of two residues 1

Distance between the centers of two residues 1

Max and min distance between two residues 2

Fig. 2. Comparison of the scoring power, ranking power and docking power in the CASF-2016 benchmark with other SFs. The CASF-2016 benchmark

is compared with other traditional SFs reported in refxx, as well as some recently reported DL-based models. A. Scoring power measures the correlation

between the scores of the model and experimental affinity, and the evaluation metric is the Pearson correlation coefficient. B. Ranking power evaluates

the ability of a SF to rank the known ligands for a certain target, and its evaluation metric is the Spearman correlation coefficient. C and D show the

top 1 success rate when the crystal structures are included and excluded from the test set, respectively.

The first test set we assessed is PDBbind-CrossDocked-

Core, with all receptors and ligands derived from the PDBbind

v2016 core set. Each ligand was extracted from 285 protein-

ligand crystal structures, and then was redocked into the

original protein or other four proteins belonging to the same

target cluster by three docking softwares: Surflex-Dock, Glide

SP and AutoDock Vina. IGModel was tested in these three

groups of poses and compared with other SFs, and the

results are shown in Table 4 and Figure 3. For cross-docking,

the top 1 success rates on poses generated by IGModelrmsd

with Surflex, Glide and Vina are 0.662, 0.595 and 0.594

respectively, which is slightly better than GT ft 1.0 and

GatedGCN ft 1.0, and significantly ahead of most predictors.

Meanwhile, IGModelpkd is still able to perform well that is

comparable with GatedGCN ft 1.0, though it is slight worse

than IGModelrmsd. For redocking tasks, the top 1 success

rates of IGModelrmsd and IGModelpkd on poses generated by

Surflex, Glide and Vina are 0.854 and 0.850, 0.786 and 0.779

as well as 0.761 and 0.754 respectively, which demonstrate a

significant advantage over other SFs.

Another cross-docking test set used in this study is DISCO,

which contains 4399 crystal protein-ligand complexes across 95
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Table 3. The docking power and screening power of several representative SFs on the CASF-2016 benchmark.

docking power screening power

Scoring function top 1 success rate (w/o

native poses)

top 1 success rate

(with native poses)

top 1% success rate enrichment factor

AutoDock Vina[28] 0.846 0.902 0.298 7.70

ChemPLP@GOLD[28] 0.832 0.860 0.351 11.91

GlideScore-SP[28] 0.846 0.877 0.368 11.44

∆V inaRF20[28] 0.849 0.891 0.421 (0.456) 11.73 (12.36)

∆V inaXGB[62] 0.920 0.368 13.14

∆LinF 9XGB[45] 0.867 0.404 12.61

OnionNet-

SFCT+Vina[44]

0.937 0.421 15.50

DeepBSP[38] 0.872 0.885

DeepDock[40] 0.870 0.439 16.41

RTMScore[41] 0.934 0.973 0.667 28.0

GT ft 1.0[43] 0.940 0.966 0.719 28.12

GatedGCN ft 1.0[43] 0.926 0.954 0.661 23.54

IGModelpkd 0.909 0.933 0.667 19.40

IGModelrmsd 0.951 0.975

Note: The results of SFs other than IGModel are cited from the reference.

Fig. 3. Docking power of IGModel and other SFs on PDBbind-CrossDocked-Core set. A, B and C show the top 1 success rate of SFs on poses generated

by Surflex, GLide and AutoDock Vina, respectively.

protein targets[52]. These targets are sourced from DUD-E[64],

thus covering a wide range of protein families. The poses of

ligands are generated by AutoDock Vina[55], with 20 poses

generated for each protein-ligand pair by default. In order to

be consistent with our previous research, each specific target-

ligand was treated as a single case when calculating the top1

success rate, which is different from the integrated idea when

tested on PDBbind-CrossDocked-Core set. The performance of

IGModel compared to several representative SFs on DISCO set

is shown in Figure 4. It can be clearly seen that IGModelrmsd

is ahead of other baseline SFs, while IGModelpkd performs

comparably to GatedGCN ft 1.0. The excellent performance

of IGModel in redocking and cross-docking tasks proves its

significant practical application value.
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Table 4. Docking power (Top 1 success rate) of IGModel and other SFs on the PDBbind-CrossDocked-Core set.

Surflex Glide SP Vina

SFs Redocking Cross-

docking

Redocking Cross-

docking

Redocking Cross-

docking

AD4 0.702 0.498 0.603 0.498 0.551 0.437

Vina 0.691 0.505 0.606 0.505 0.540 0.380

Vinardo 0.677 0.477 0.628 0.477 0.558 0.391

X-Score 0.663 0.475 0.582 0.475 0.512 0.401

Pafnucy 0.512 0.319 0.422 0.319 0.211 0.165

Glide SP 0.730 0.547 0.645 0.547 0.502 0.376

Glide XP 0.726 0.525 0.610 0.525 0.470 0.366

GT ft 1.0 0.815 0.636 0.743 0.585 0.660 0.590

GatedGCN ft 1.0 0.822 0.627 0.719 0.575 0.674 0.581

IGModelpkd 0.850 0.626 0.779 0.577 0.754 0.565

IGModelrmsd 0.854 0.662 0.786 0.595 0.761 0.594

Note: The results of SFs other than IGModel are cited from reference[43].

Table 5. Pearson and Spearman correlation coefficient of IGModel and other SFs tested on the CASF2016-AF2, unbias-v2019 and unbias-

v2019-AF2 datasets.

CASF2016-AF2 unbias-v2019 unbias-v2019-AF2

SFs PCC SCC PCC SCC PCC SCC

Vina 0.035 0.071 0.364 0.356 0.209 0.192

DeepBSP 0.401 0.375 0.543 0.507 0.451 0.418

DeepRMSD 0.463 0.430 0.285 0.246 0.261 0.247

DeepRMSD+Vina 0.248 0.290 0.405 0.362 0.299 0.287

GT ft 1.0 0.503 0.455

GatedGCN ft 1.0 0.560 0.524

zPoseScore 0.659 0.593 0.604 0.535 0.554 0.507

IGModelpkd 0.736 0.649 0.611 0.522 0.580 0.519

IGModelrmsd 0.751 0.669 0.633 0.542 0.609 0.552

Note: The results of SFs other than IGModel are cited from reference[46].

Fig. 4. The top N success rate of IGModel and other baseline models on

DISCO set.

Generalization Assessment of IGModel

In this paper, we assessed the generalization ability of the

IGModel from two additional perspectives. Firstly, most of

SFs do not rigorously eliminate redundancy in the training

set, which may lead to the results of SFs on the test set

being much better than in actual scenarios. Therefore, we

introduced a unbiased test set (called unbias-v2019 set in this

work) that we previously proposed, which contains the protein-

ligand pairs with low similarity to those in PDBbind database

v2019, and the native conformation of the ligands were

excluded[46]. The similarity is defined as the product of protein

sequence similarity (calculated by NW-align) and the Tanimoto

similarity of the ligand Morgan fingerprints calculatied by

rdkit[57]. Secondly, when the native conformation of the

target is unknown, predicting the binding pose of the ligand

becomes even more challenging. Computation methods such

as AlphaFold2[53] provide solutions rapidly obtaining high-

precision protein structures. Then, on the basis of these

predicted protein structures, molecular docking was applied to

generate poses of the ligands. In our previously study, CASF-

2016 and the unbias-v2019 were used to construct the test
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Table 6. Top1 success rate of IGModel and other SFs tested on the CASF2016-AF2, unbias-v2019 and unbias-v2019-AF2 datasets.

CASF2016-AF2 unbias-v2019 unbias-v2019-AF2

SFs 2Å 3Å 2Å 3Å 2Å 3Å

Vina 0.127 0.208 0.453 0.526 0.130 0.219

DeepBSP 0.180 0.324 0.453 0.584 0.169 0.254

DeepRMSD 0.269 0.425 0.210 0.324 0.089 0.185

DeepRMSD+Vina 0.261 0.416 0.441 0.534 0.144 0.253

GT ft 1.0 0.273 0.448

GatedGCN ft 1.0 0.292 0.465

zPoseScore 0.339 0.506 0.599 0.700 0.185 0.274

IGModelpkd 0.338 0.558 0.562 0.690 0.227 0.318

IGModelrmsd 0.364 0.571 0.587 0.690 0.227 0.296

Note: The results of SFs other than IGModel are cited from reference[46].

sets for the AlphaFold2 version, namely CASF-2016-AF2 and

unbias-2019-AF2, respectively[46].

We assessed the docking power of SFs on the three datasets

mentioned above. Table 5 shows the Pearson correlation

coefficient (PCC) and Spearman correlation coefficient (SCC)

between the scores of SFs and the true RMSD. It can be

clearly seen that, compared to other baseline SFs, IGModel

exhibits remarkably high accuracy. Especially on the unbias-

v2019-AF2 set, IGModel can still perform robustly. The Top1

success rate achieved by SFs with 2Å and 3Å as cutoffs is

shown in Table 6, and what is exciting is that IGModel still

significantly outperforms other SFs. This effectively verifies the

generalization ability and robustness of IGModel in different

situations. For CASF2016-AF2 and unbias-v2019-AF2, two

datasets based on the structures predicted by AlphaFold2, since

the poses generated by molecular docking have larger RMSDs

relative to the native poses, the overall top1 success rate is

lower.

Discussion

Different SFs were developed with various training data for

either pKd or RMSD predictions, and a single score (either a

traditional SF or a ML/DL-based SF) may perfectly address

the docking pose quality[44] regarding the pose selection

and virtual screening[28]. For pose selection, RMSD reflects

the difference between the docking pose and the native

conformation (thus solving the ”how it binds” problem), but

cannot represent the binding strength with the target protein;

while for virtual screening, pKd represents the binding strength

between the molecule and the target (regarding the ”how strong

it binds” problem), but cannot reflect the difference between

the docking pose and the native pose [65].

Early ML-based or DL-based SFs usually directly predict

protein-ligand binding affinity (pKd) given the native protein-

ligand complex structures [25, 34, 35, 36]. However, testing

shows that the scores of such models are difficult to distinguish

correct binding poses generated by docking tools [28], and

their accuracies on screening tasks are neither satisfied[37].

Later, researchers began to directly predict the RMSD of

the docking poses (such as Gnina [66], DeepRMSD[39] and

DeepBSP[38]), or use scores from other mathematical spaces

(such as DeepDock[40], RTMScore[41] and GenScore[43]) but

trained with docking poses. The distance likelihood potential

generated by DeepDock, RTMScore and Genscore is difficult to

intuitively describe RMSD and the binding strength and could

not provide an explicit and physical meaningful predictions for

computational chemists. Whereas, RMSD corrected pKd is also

used as training target to construct ML models, it could provide

direct estimate for both pose binding pattern and molecule

binding strength with a single score[62, 45].

To this end, we try to answer the two questions (RMSD

prediction for ”how it binds” and pKd prediction for ”how

strong it binds”) within one integrated framework, where

we characterize the protein-ligand interaction through two

geometric graph modules: the pocket graph module and the

protein-ligand atomic graph module, and then apply EdgeGAT

layers[50] to encode the interaction features. Tests under

different scenarios have shown that IGModel is good at

predicting the RMSD of the docking poses for both redocking,

cross-docking and AF2-based docking tasks, indicating that it

has a excellent generalization ability and robustness for pose

selection (Tables 3, 4 and 5).

In order to more clearly display the protein-ligand

interaction potential energy surface encoded by the graph

neural network, we visualized the ligand embedding output

by the last EdgeGAT layer in the protein-ligand graph branch

and the overall complex embedding. First, we cluster the latent

space and the ligand embedding of the samples in the validation

set through principal component analysis (PCA), and then

color them according to real RMSD, predicted RMSD, pKdlabel

and predicted pKd respectively. The distributions of RMSD

and pKd on the latent space are shown in Figure 5 A-D.

It can be clearly found that as the RMSD and pKd change,

obvious layering appears on the pattern. Similar trends can

also be observed in ligand embedding pattern (Figure 5 E-

H). However, there is a significant phenomenon that the latent

space image has a larger coverage area compared to the ligand

embedding, which means that the latent space is better able to

distinguish the differences between different clusters. This may

be attributed to the integration of protein pocket information

within the latent space, thus enhancing the representation of

protein-ligand interactions.

IGModel, as the first deep learning model capable of

simultaneously predicting the RMSD of ligand docking poses

relative to the native conformation and the binding strength

to the target, is founded on the assumption of the negative

correlation between binding strength and RMSDs of docking
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Fig. 5. Visualization of the complex embedding, ligand embedding and the decay factor W. A-D (E-H) show the visualization of the complex embedding

(ligand embedding) of samples in the validation set after PCA clustering, colored according to real RMSD, predicted RMSD, pKdlabel and predicted

pKd, respectively. I-K present visualization of the decay weight of binding strength with respect to RMSD variations, organized according to pKdnat-real

RMSD, pKdlabel-real RMSD and predicted pKd-Predicted RMSD, respectively. Where pKdnat refers to the binding affinity of the native protein-ligand

complex.

poses. However, the decay weight of binding strength with

respect to the RMSDs of docking poses is unknown. Previously,

researchers have empirically set functions for the variation

of binding strength with RMSD[62, 45], but such manual

interventions may introduce systematic errors. Therefore, we

hope that the model can obtain the corresponding decay

weights based on different protein-ligand complexes (as shown

in Figure 1). We display the decay weights according to pKdnat-

real RMSD (Figure 5I), pKdlabel-real RMSD (Figure 5J) and

predicted pKd-predicted RMSD (Figure 5K) respectively. One

clear trend is that as the RMSD increases, the decay weight

W also increases. This aligns with the initial assumption

that poses closer to the native conformation have the stronger

binding strength.

Next we also explore the ability of the model to learning

physical protein-ligand interactions. It is assumed that protein-

ligand binding is majorly driven by non-bonded interactions

[67], solvation effects [68] and entropic effects [69]. For non-

bonded interactions, in particular, short-range interactions

such as hydrophobic interactions, cation-π interactions, salt

bridges, hydrogen bonds and π-π stacking usually provide

favorable binding free energies for the protein-ligand complex

[70, 71, 67]. However, most current ML/DL-based SFs fail

to explicitly or implicitly emphasize or highlight the direct

non-bonded interactions between the protein and the ligand.

Atoms located in different residue side chains, and

even those at different positions within the same residue,

often exhibit distinct physicochemical properties. Therefore,

comprehensively considering multiple features such as residue

type, element type, main chain/side chain, polar/non-polar

and aromaticity, effectively assigns physiologically relevant

identifiers to protein atoms. This makes it possible for

IGModel to capture key non-bonded interactions such as

hydrogen bonding (Figure 6). We extracted the attention values

generated by IGModel for each protein-ligand atom pair in

the protein-ligand complexes from CASF-2016 docking poses

to examine whether the physical interactions are highlighted

or have been paid enough ”attentions”. The importance of

a protein atom is defined as the sum of attention values

of the protein-ligand interaction edges in which this protein

atom participates. For example, if a protein atom forms

edges with five ligand atoms, the importance of the protein

atom is represented by the sum of these five attention values.

Subsequently, the importance of all protein atom types was

counted, with top 20 ranked types displayed in Figure 6 A.

We can clearly find that seven of top eight most important

protein atoms are polar atoms, which implies the significant role
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Fig. 6. Explainability and case study. A. Ranking of importance of protein atoms at the binding pocket (only the top 20 protein atom types are shown).

B and C show two cases (1QF1 and 2QE4) where IGModel identifies key interactions, including hydrogen bonding and π-π stacking. In the two pictures

located on the right, the distances between key atoms are shown (black), and the names and importance values of key atoms in the protein are colored

in blue.

of polar interactions in protein-ligand binding[70] for binding

strength and binding specificity. In addition, certain non-polar

atoms, such as ILE-CD1 and PHE-CZ, also play a crucial

role. This is because alpha carbon atoms and aromatic rings

typically participate in the hydrophobic interactions, while it is

the most frequently occurring interaction type in protein-ligand

binding. Figure 6B shows that the protein atoms involved in

hydrogen bonding have higher importance values, which shows

that IGModel is capable of recognizing hydrogen bonds and

assigning them greater attention. In Figure 6C, the periphery

of the benzene ring in phenylalanine that is close to the benzene

ring of the small molecule also has a high importance value,

which indicates that IGModel has the ability to detect π-π

stacking.

Conclusion

In this work, we propose a new scoring framework called

IGModel for protein-ligand interaction prediction, which can

simultaneously predicts the RMSD of the ligand binding pose

and the binding strength with the target. IGModel applies

EdgeGAT layer to encode the two input graphs into the

latent space characterizing the protein-ligand interaction, and

then decodes the latent space into RMSD and pKd through

two decoders respectively. The results show that it achieves

SOTA performance in almost all docking power test sets.

Although IGModel aims to provide a more comprehensive

quality assessment for docking poses, it still performs well

on the CASF-2016 scoring power and ranking power test,

which is comparable or even better to the other models. For

screening power, out model is also ahead of most baseline

SFs. Furthermore, IGModel is also evaluated on the more

challenging unbiased set unbias-v2019 and data set containing

target structure predicted by AlphaFold2, proving its strong

generalization capabilities. We also visualized the latent space

encoded by IGModel, providing an intuitive representation of

the energy space describing the RMSD and binding strength of

the docking pose. Through case studies, it was observed that

IGModel is capable of identifying critical interactions, such as

hydrogen bonding and π-π stacking.

It is undeniable that one SF is difficult to perform perfectly

in all tasks, but IGModel can achieve a relatively balanced

performance. The most importance is that IGModel is a new

framework for predicting protein-ligand interactions, which

breaks the tradition that the SFs only output a single score,

and ensures that the output values have intuitive physical

meanings. We believe that this framework is valuable for

molecular docking and even the modification and optimization

of lead compounds in drug design. In summary, our research

proposes a new paradigm for the design of SFs in the future,

along withe new challenges.
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Supporting Materials

Part 1. Details of docking poses in the training set

In this work, docking poses were generated by AutoDock Vina and ledock, where the search space is a 15Å*15Å*15Å cubic, the

maximum number generated is set to 10, and other parameters are used by default. The RMSD distribution of docking poses and

the pKd distribution of the native conformations corresponding to these docking poses are shown in Figure S1.

Fig. S1. The RMSD (A) and pKd (B) distributions of docking poses in the training set.

Part 2. Performance of IGModel and some representative scoring functions in CASF-2016 benchmark

The Pearson correlation coefficient (PCC) and root-mean-squared error (RMSE) achieved by IGModelpkd on CASF-2016 core set

are 0.831 and 1.254, respectivily, as shown in Figure S2A. Figure S2B shows the results of IGModelpkd on the validation set,

including crystal structures and decoys. The performance of IGModelpkd and several recently published representative models on

CASF-2016 scoring power in Table S1.

Table S1. The scoring power of IGModelpkd and other representative scoring functions in CASF-2016 benchmark

Year SFs PCC RMSE Training set

2023 IGModelpkd 0.831 1.254 PDBbind v2019 (general set)

2023 GatedGCN ft 1.0 0.834 PDBbind v2020 (general set)

2023 GT ft 1.0 0.802 PDBbind v2020 (general set)

2023 PLANET 0.824 1.247 PDBbind v2020 (general set)

2022 RTMScore 0.455 PDBbind v2020 (general set)

2022 MPNN 0.813 1.511 PDBbind v2016 (general set)

Part 3. The ablation study of IGModel

As shown in Table S2, when removing Angle 1, Angle 2, dihedral angle formed between the protein atoms and the ligand atoms in

the protein-ligand interaction graph, or removing the pocket graph, the performance of IGModel shows varying degrees of decrease.
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Fig. S2. A. The correlation between the pKd predicted by IGModelpkd and the experimental pKd for 285 native protein-ligand complexes in the

CASF-2016 core set. B. The scatter plot of pKd predicted by IGModelpkd against the pKd labels on the validation set.

Table S2. The ablation experiment of IGModel on the validation set and CASF-2016 docking power

Validation set CASF-2016

RMSD pKd RMSD (Top 1 success rate) pKd (Top 1 success rate)

PCC RMSE PCC RMSE including

crystal

poses

excluding

crystal

poses

including

crystal

poses

excluding

crystal

poses

IGModel W/O Angle 1 0.917 0.815 0.896 1.216 96.1% 94.0% 92.3% 88.4%

IGModel W/O Angle 2 0.923 0.787 0.902 1.247 97.9% 94.4% 93.7% 90.5%

IGModel W/O

dihedral angle

0.923 0.792 0.898 1.276 95.1% 91.9% 92.3% 87.4%

IGModel W/O pocket

graph

0.894 0.914 0.895 1.281 94.7% 91.2% 86.3% 84.4%

IGModel 0.927 0.768 0.905 1.220 97.5% 95.1% 93.3% 90.9%
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