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Abstract 
Background – Osteosarcoma (OS) is the most common malignant bone tumor in children. OS is 
characterized by a high degree of genomic instability, resulting in copy-number alterations and 
genomic rearrangements with no disease-defining recurrent mutations. Given the diverse genomic 
landscape of OS and the difficulty of identifying druggable therapeutic targets, use of immunotherapy 
techniques appears lucrative. However, clinical trials based on molecular characterization have failed 
to find new effective therapies, and outcomes have not improved over the last 40 years. 
 
Materials/Methods – We performed single-cell RNA sequencing (scRNA-seq) using the 10x 
Genomics Chromium platform on six fresh tumor biopsy samples from pediatric OS patients. Raw 
data was processed using 10x CellRanger to produce transcript read counts for each cell. After 
filtering low-quality cells and doublet removal, counts were normalized using Seurat, and cells were 
integrated across samples with Harmony. Data was combined with a previously-published OS 
scRNA-seq cohort of six samples (GSE162454). Two additional OS samples were profiled using 10x 
Genomics Visium spatial transcriptomics for validation of discovered subtypes and to add spatial 
context. 
 
Results – Clustering identified 16 major cell types based on expression of canonical cell markers. 
Several immunosuppressive cell types were identified via subclustering of major cell types, including 
neutrophil myeloid-derived suppressor cells (MDSCs), regulatory and exhausted T-cells, and 
LAMP3+ dendritic cells. Markers for the cell types found in OS were identified for further validation 
using imaging techniques, including Visium spatial transcriptomics. We performed deconvolution 
using the scRNA-seq cell identities to examine colocalization of discovered cell types. Overall, the 
discovered clusters were common between patients, showing consistent cell type proportions. 
However, we found patient-specific differences in the frequency of some cell types, with one sample 
showing a higher proportion of T-cells along with increased presence of colocalized IFN-stimulated 
macrophages, and the other with a greater presence of neutrophils/MDSCs. 
 
Conclusions – Using single-cell transcriptomics, we were able to discover the presence of multiple 
immunosuppressive cell subtypes of neutrophils, T-cells, and dendritic cells. Additionally, spatial 
transcriptomics revealed multiple similar clusters between samples, and common colocalization of the 
discovered cell types within those clusters. However, differences in T-cell presence and interferon 
induction may be indicative of patient-specific immunogenicity in osteosarcoma tumors. 
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Introduction: 
Osteosarcoma (OS) is the most common primary malignant bone tumor affecting children and young 
adults. Current treatment with chemotherapy and surgical resection results in a long-term overall 
survival rate of ~70% for patients with localized disease but only 20-30% for patients with metastatic 
disease [1]. No significant advances in treatment or overall survival rate have been made in the last 
four decades. 
 
Genomic profiling studies of OS tumors from predominantly pediatric populations have shown high 
levels of chromosomal structural variation, including massive rearrangements resulting from 
chromothripsis and hypermutation in localized regions (kataegis) that contribute to significant tumoral 
heterogeneity [2]. Because of their potential to generate novel rearrangements in protein-coding 
sequences, the genomic structural abnormalities observed in OS would be expected to express 
neoantigens that should serve as potent targets for immunotherapy (IT). Aligning with that, a study of 
48 OS patients demonstrated that PD-L1 expression was found in 25% of primary OS samples and 
correlated with immune cell infiltration and event-free survival [3]. Anti-PD-L1 and anti-CTLA4 
treatment also controlled OS tumor growth in a mouse model [4]. However, the clinical trials using 
anti-PD-L1 and anti-CTLA4 have not shown any efficacy in OS treatment [5, 6]. 
 
The tumor microenvironment (TME) of multiple cancers has been shown to play a critical role in 
tumor progression and treatment response [7]. Previous studies of the OS TME have revealed the 
presence of multiple immune cell types, e.g., dendritic cells (DCs), macrophages, neutrophils, and 
lymphoid cells, with a wide range of cell abundance across patient samples [8-10]. However, the role 
of these tumor-infiltrating immune cells in OS is not fully understood. With the recent advancements 
in single-cell technologies, several groups have applied single-cell RNA sequencing (scRNA-seq) 
analysis on limited populations of OS patient tumors, including biopsy, post-treatment surgical 
resection, and lung metastasis samples [11, 12]. Apart from the heterogeneous OS tumor cells, those 
studies also identified several molecular subtypes of immune cells, including TIGIT+ exhausted T 
cells, FOX3P+ regulatory T cells, and LAMP3+ mature regulatory DCs [11-13]. Taken together with 
the failure of the IT clinical trials, the complex TME within OS may serve an immunosuppressive 
function. Thus, a better understanding of the OS TME is urgently needed to improve the IT efficacy 
for OS patients. 
 
To advance our understanding of the OS TME naïve to chemotherapy-induced biological changes, 
we performed scRNA-seq analysis on six pre-treatment primary tumor biopsy samples of OS. We 
successfully combined our data with the previously-published six pre-treatment OS sample data [11] 
to increase our ability to detect rare cell types or subtypes. We described a number of immune cells 
that potentially contribute to the tumor progression and immunosuppressive TME using subclustering, 
differential gene expression, and pathway analysis. In addition, we evaluated the spatial distribution 
of those cell types of interest by spatial transcriptomics analysis on additional pre-treatment biopsy 
samples of OS. 
 
Material and Methods: 
Sample Collection and Tissue Dissociation 
Tumor tissue specimens of six OS patients were collected at Connecticut Children9s Medical Center 
(CCMC) or Children9s Hospital Colorado (CHCO). All specimen collection and experiments were 
reviewed and approved by the Institutional Review Board of CCMC or CHCO, respectively. Written 
informed consent was obtained prior to acquisition of tissue from patients. Diagnosis was confirmed 
by pathologist assessment. The specimens were stored in MACS tissue storage solution (Miltenyi 
Biotec, Bergisch Gladbach, Germany). The three CCMC samples were transferred to The Jackson 
Laboratory for Genomic Medicine for the tissue dissociation process. 
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For CCMC samples, the tissue specimens were minced and enzymatically dissociated in DMEM 
medium supplemented with Collagenase II (250U/ml, Gibco #17101-015, Waltham, Massachusetts, 
USA) and DNase (1μg/ml, Stemcell #07900, Cambridge, Massachusetts, USA) for up to 3 cycles of 
37 °C 15 minutes dissociation with agitation. After each cycle, undigested tissue pieces were settled 
down by gravity and supernatant was transferred to cold Buffer I solution (10% FBS/DMEM medium 
supplemented by EDTA (2mM) and 2% BSA (Lampire #7500854, Pipersville, Pennsylvania, USA). 
Fresh dissociation solution was applied to the undigested tissue for next digestion cycle. Cells 
collected from each cycle were merged, spun down and resuspended with ACK lysis buffer (Gibco 
#A1049201) to remove red blood cells. After 3 minutes on ice, lysis reaction was quenched by adding 
Buffer I solution. After centrifugation, cells were resuspended in Buffer I solution and strained through 
a 70-μm cell strainer. Cells were stained with propidium iodide (PI) and Calcein Violet (Thermo Fisehr 
Scientific). PI-negative and Calcien Violet-positive viable cells were sorted out using FACSAria 
Fusion system (BD Biosciences, Franklin Lakes, New Jersey, USA). 
 
For CHCO samples, tissue specimens were viably cryopreserved in 90% FBS 10%DMSO 
immediately after collection. Tissue specimens were thawed at 37 °C, then enzymatically dissociated 

in a 0.1% DNase and Liberase 400g/mL (Roche/Sigma-Aldrich, St. Louis, Missouri, USA) cocktail. 
Cells were then selected for viability using the FACSAria I cell sorter (BD Biosciences) in the Allergy 
and Clinical Immunology Flow Cytometry Facility at the Division of Allergy and Clinical Immunology, 
University of Colorado School of Medicine.  
 
Single-Cell Capture, Library Preparation and RNA-seq 
Cells were washed and resuspended in PBS containing 0.04% BSA. Cells were counted on Countess 
II automated cell counter (Thermo Fisher, Waltham, Massachusetts, USA), and up to 12,000 cells 
were loaded per lane on 10x Chromium microfluidic chips (10x Genomics, Pleasanton, California, 
USA). Single-cell capture, barcoding, and library preparation were performed using the 10x 
Chromium X version 3 chemistry [14], and according to the manufacturer9s protocol. cDNA and 
libraries were checked for quality on Agilent 4200 Tapestation and quantified by KAPA qPCR before 
sequencing using a Novaseq 6000 (Illumina, San Diego, California, USA) v1.5 cycle flow cell lane at 
100,000 reads per cell, with a 28-10-10-90 asymmetric read configuration. 
 
Single-Cell Data Processing and Quality Control 
10X Genomics Cell Ranger (3.0.2) was used for read alignment (version 3.0.0, GRCh37) and count 
matrix generation (https://support.10xgenomics.com/single-cell-gene-
expression/software/pipelines/latest/what-is-cell-ranger). Reads from each sample were initially 
filtered using multiple criteria: during FASTQ generation, reads with more than one mismatch in the 
8bp i7 index are excluded. Alignment using STAR [15] as performed, and only reads aligned to 
annotated transcripts with MAPQ scores greater than 255 are retained. Reads containing bases with 
Q30 scores below 3 are also excluded. 
 
Following alignment, cell barcodes were filtered against a whitelist of barcodes provided by 10X 
Genomics (<2 mismatches). Barcodes associated with cells are distinguished from those associated 
with ambient mRNA using an adaptively computed UMI threshold via Cell Ranger, and a digital 
counts matrix is generated for each sample. Single-cell RNA expression data from an additional 6 
samples described in Liu et al. [11] was downloaded from the Gene Expression Omnibus 
(GSE162454). 
 
For all samples, additional preprocessing was performed using Seurat (version 4.0.5) [16] in R 
(version 4.1.1) [17]. For each cell, the percentage of reads mapping to mitochondrial and ribosomal 
genes was calculated, and cells were filtered out according to the following criterion: >20% mtRNA, 
>50% rRNA, or <500 features expressed. Doublet detection and removal was performed using the R-
package DoubletFinder (default parameters) [18]. Read counts for each cell were log-normalized 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.01.565008doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565008
http://creativecommons.org/licenses/by-nc-nd/4.0/


(scale factor=1e6), and the top 2000 variable features (selection method=<vst=) in the data set were 
calculated. Data was scaled and corrected for cell cycle score and percentage of mitochondrial RNA 
(<CellCycleScoring= and <ScaleData= functions, vars.to.regress = c("percent.mt", "S.Score", 
"G2M.Score")) prior to principal component analysis (PCA). Harmony (version 0.1.0) [19] was used to 
correct the top 50 principal components for patient sex and sample source site prior to downstream 
clustering analyses. 
 
Clustering and Cell Type Determination 
Primary cell clustering was performed using Seurat9s <FindClusters= function (Harmony-correct PCs = 
40, res = 0.25). The <FindAllMarkers= function (only.pos=TRUE, min.pct = 0.25, logfc.threshold = 
0.25, test.use = <bimod= [20]) was utilized to detect markers for each cluster, with major cell types 
annotated using a known set of genes, specifically Macrophage/DC (MSR1, C1QC, FOLR2), 
Osteosarcoma (SATB2, IBSL, ALPL), NK/T-cell (CD3D, TRBC1, NKG7), Osteoclast (ACP5, CTSK, 
MMP9), Monocyte/Neutrophil (S100A8, S100A9, FCN1), Fibroblast (TAGLN, ACTA2, FAP), 
Endothelial (CLEC14A, PLVAP, VWF), B-cell (MS4A1, CD79A, BANK1), Plasma cell (IGHG1, IGLC2, 
IGHG4), and Mast cell (TPSB2, TPSAB1, CPA3), as well proliferation markers (MKI67, TOP2A, 
TYMS). 
 
Subsequently, major cell types were subclustered in order to detect cell subtypes. We used the 
<subset= function for major cell clusters, reperformed normalization (<CellCycleScoring= and 
<ScaleData= functions, vars.to.regress = c("percent.mt", "CC.Difference")), and Harmony correction of 
PCs. Subclustered cell types include macrophage/DCs (PCs=30, res=0.2), osteosarcoma/fibroblasts 
(PCs=40, res=0.15), osteoclasts (PCs=30, res=0.1), neutrophils (PCs=30, res=0.1), and proliferative 
macrophages/DCs (PCs=30, res=0.3). For the NK/T-cell cluster, subtypes were identified using 
Azimuth [16]. Cells within the NK/T-cell cluster were mapped to NK/T-cell L1 annotations within the 
reference proliferating blood mononuclear cell (PBMC) dataset [21], and cells with a confidence score 
>0.75 were retained for downstream analysis. 
 
Copy Number Analysis 
In order to characterize overall copy number changes between the identified osteosarcoma 
populations, as well as to detect subclones within each major cluster, inferCNV (version 1.10.0) [22] 
as implemented on a sample-specific basis (cutoff=0.1, HMM=T, denoise=T, 
analysis_mode=<subclusters=, hclust_method=<ward.D2=, cluster_by_groups=TRUE). All normal cell 
populations were used for comparison. 
 
Cell-cell interactions 
iTALK (version 0.1.0) [23] was utilized for the determination of cell-cell interactions. Briefly, positively 
differentially expressed genes (Seurat9s <FindAllMarkers= function, options: BH-adjusted p < 0.05, 
min.pct = 0.25,  logfc.threshold = 0.25, test.use = <bimod"[20]) of previously-annotated selected cell 
types (osteosarcoma, macrophage, CD4+ T-cell, CD8+ T-cell, exhausted T-cell, regulatory T-cell, 
myeloid-derived suppressor cell) were queried for known ligand-receptor pairs using the curated 
iTALK database, with interacting pairs were separated by category (<growth factor=, <cytokine=, 
<checkpoint=, <other=) for downstream analysis. For each cell type, ligand-role interactions were 
determined for each other receptor-role subtype. 
 
Visium Spatial Gene Expression Analysis 
Formalin-fixed, paraffin-embedded (FFPE) samples of two primary OS pre-treatment biopsy tissue 
samples (Patients A and B) were obtained from CCMC and stored at 4 °C in the dark. Prior to Visium 
transcriptomics, RNA quality of FFPE samples was determined by DV200 score using Agilent (Santa 
Clara, California) TapeStation 4200 High Sensitivity DNA ScreenTape. Tissue blocks with DV200 
scores above 50% were used for downstream processing.  Briefly, FFPE sections were placed on a 
10x Visium FFPE Gene Expression slide, deparaffinized, H&E stained, then imaged in brightfield 
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using a NanoZoomer SQ (Hamamatsu Photonics, Shizuoka, Japan) slide scanner, followed by 
incubation with human-specific probe sets provided by the manufacturer for subsequent mRNA 
labeling and library generation per the manufacturer's protocol (10x Genomics, CG000407).  Library 
concentration was quantified using a Tapestation High Sensitivity DNA ScreenTape (Agilent) and 
fluorometry (Thermofisher Qubit) and verified via KAPA qPCR.  Libraries were pooled for sequencing 
on an Illumina NovaSeq 6000 200-cycle S4 flow cell using a 28-10-10-90 read configuration, targeting 
100,000 read pairs per spot covered by tissue. 
 
Illumina base call files for all libraries were converted to FASTQs using bcl2fastq v2.20.0.422 
(Illumina). Whole Visium slide images were uploaded to a local OMERO server.  For each capture 
area of the Visium slide, a rectangular region of interest (ROI) containing just the capture area was 
drawn on the whole slide image via OMERO.web, and OMETIFF images of each ROI were 
programmatically generated using the OMERO Python API.  FASTQ files and associated OMETIFF 
corresponding to each capture area were aligned to the GRCh38-specific filtered probe set (10x 
Genomics Human Probeset v1.0.0) using the version 2.1.0 Space Ranger count pipeline (10x 
Genomics). 
 
Seurat (version 4.3.0) [16] was used for normalization, filtering, dimensional reduction, and 
visualization of the resulting gene expression data. Each section was processed independently. Spots 
with fewer than 1500 UMIs and 500 genes were removed. Normalization was performed using the 
<SCTransform= function in Seurat, with batch correction performed using Harmony (version 0.1.1) 
[19]. Unsupervised clustering was performed in Seurat using Leiden clustering (<FindClusters=) [24]. 
Cell type fractions within spots were estimated using Robust Cell Type Decomposition (RCTD, 
spacexr package version 2.1) [25] and the single cell RNA-seq data as the reference. Sixteen cell 
types identified above were used, including three major cell classes (Osteosarcoma, Endothelial, and 
Osteoclast) and 13 immune cell subtypes. The <Immune= fraction shown was the sum of all the 
individual subtype contributions. Differences in cell type composition between clusters were 
determined via a one-sided Wilcoxon rank sum test [26] for positive enrichment. Differences in 
pathway activity were calculated using PROGENy (version 1.14) [27]. 
 
Results: 
Single-cell transcriptomic analysis of treatment-naïve osteosarcoma 
The tumor microenvironment (TME) plays a critical role in tumor progression and treatment response 
[28-30]. Chemotherapy, as the standard treatment regimen for OS, will change the composition of the 
TME. To identify the TME cellular composition and understand the role of different cell types on tumor 
progression and treatment response without the influence of treatment, we aimed to investigate the 
TME of treatment-naïve OS tumors. We carried out scRNA-seq of six treatment-naïve OS tumors 
(Supplementary Table S1) using the 10X Genomics Chromium platform. After quality control and 
doublet removal, we obtained a dataset of 22,035 cells from six OS tumors (Supplementary Table 
S1). The number of detected UMIs ranged from 694 to 155,389 per cell, with the number of detected 
genes ranging from 500 to 8,709. To increase our power to identify rare cell types or subtypes, we 
leveraged the published scRNA-seq dataset from another six treatment-naïve tumors (GSE162454). A 
total of 40,588 additional cells passed our internal quality control filters and were subsequently 
integrated with our dataset using the Harmony package. A combined dataset with a total 62,623 cells 
from 12 treatment-naïve OS tumors was generated. New data generated from our scRNA-seq cohort 
contributes 35.19% of cells to the combined dataset (Supplementary Table S1, Supplementary Table 
S2). 
 
To determine the cellular composition of the tumors, we performed unsupervised clustering via Seurat's 
graph-based clustering method. Seventeen major clusters were identified (Figure 1A). Cell type 
identification of each cluster was made based on the cluster-specific differential gene expression 
(Supplementary Table S3) and literature-based cell type markers. The expression of each marker 
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gene was shown in Figure 1D. We identified two clusters of macrophages/DCs (MSR1, C1QC, 
FOLR2), six clusters of osteoblastic tumor cells (SATB2, IBSL, ALPL), one cluster of natural killer (NK) 
and T-cells (CD3D, NKG7 and TRBC1), osteoclasts (ACP5, CTSK, MMP9), monocytes/neutrophils 
(S100A8, S100A9, FCN1), fibroblasts (TAGLN, ACTA2, FAP), B-cells (MS4A1, CD79A, BANK1), 
plasma cells (IGHG1, IGLC2, IGHG4), mast cells (TPSB2, TPSAB1, CPA3) and endothelial cells 
(CLEC14A, PLVAP, VWF). The smallest cluster contained only 36 cells (0.06% of total cells) with no 
known cell type marker identified, and poor total gene and UMI counts compared to the other clusters. 
It was assigned as a cluster comprised of low-quality cells and removed prior to downstream analyses. 
Except for the low-quality cluster and one osteoblastic tumor cell cluster, each cluster consisted of cells 
from both published and our new datasets (Figure 1B, Supplementary Figure 1). The proportion of 
each cell type and distribution of cells in UMAP is similar between the published and new datasets 
(Figure 1B and 1C). Since the cells in each significant cluster also expressed well-known, cell-type-
specific genes, merging the two datasets was successful. 
 
Macrophages and dendritic cells 
The roles of different immune cells in the TME can be diverse and highly dependent on their phenotypic 
status. To understand the role of different subtypes of immune cells in OS, we looked further into the 
phenotypic subtypes of various immune cells. First, we investigate the most abundant cell lineage – 
myeloid cells. Two major myeloid cell clusters were identified in the present dataset – a predominantly 
macrophage cluster and a macrophage/DC cluster that expressed proliferative markers. While both 
clusters have strong expression of macrophage markers (MSR1, C1QC, FOLR2), the proliferative 
macrophage/DC cluster also has expression of cell proliferation genes (MKI67, TOP2A, TYMS) (Figure 
1D). Further unsupervised clustering of the macrophage cluster revealed seven sub-clusters with 
distinct differentially expressed genes (Supplementary Table S4). We were able to detect classically 
activated macrophages (NR4A3, IL1B, CCL3/4, APOE, TXNIP), LYVE+ macrophages, interferon-
stimulated macrophages (CXCL10, ISG15, IFIT1), angiogenic macrophages (SPP1, ADAM8, VIM, 
VCAN) and one macrophage cluster expressing T-cell maker genes (IL32, NKG7, TRAC) (Figure 2A 
and 2B). 
 
Although the role of various phenotypic macrophages in OS is not fully elucidated yet, their contribution 
to the anti-inflammatory and immunosuppressive TME in OS has been suggested based on literature. 
The LYVE+ macrophage subpopulation has been found in multiple human tissues as tissue-resident 
macrophages and has been demonstrated to support angiogenesis in different tissues [31-35]. In 
cancer, they have been shown to cooperate with mesenchymal cells in the TME and support tumor 
growth in a mammary adenocarcinoma model [36]. Two subtypes of macrophages with angiogenesis 
signatures (SPP1+, ADAM8+, and VIM+, or VCAN+, respectively) were also detected. SPP1+ and 
VCAN+ angiogenic macrophages have been associated with worse clinical outcomes in multiple types 
of epithelial cancers [37]. The SPP1+ macrophage cluster also expressed HMOX1, which has been 
shown to play a role in the immunosuppressive program of tumor-associated macrophages (TAM) [38]. 
The VCAN+ angiogenic macrophages have high expression of epidermal growth factor (EGF) family 
genes, including EREG and AREG. M2-like TAM-secreted EGF has been shown to promote metastasis 
in ovarian cancer [39]. Interestingly, this population of macrophages also has higher expression of 
OLR1, a marker of myeloid-derived suppressor cells (MDSC) in other tumors [40]. Macrophages 
expressing T-cell marker genes have been previously found in inflammatory diseases and head and 
neck squamous cell carcinoma [41, 42], however, their role in the OS TME is unclear. 
 
Subclustering of the proliferative macrophage/DC cluster revealed seven subpopulations, including 
three subclusters of dendritic cells and four macrophage subgroups (Supplementary Table S5). 
Classic dendritic cells 1 (cDC1s) and cDC2s were identified based on the expression of CLEC9A, IRF8 
and IDO1 and CD1C and CLEC10A, respectively (Figure 2C and 2D). We also detected another 
distinct type of dendritic cells based on high expression of LAMP3, CCR7, and IDO1. The cDC2 
population was found to be more abundant than cDC1 and LAMP3+ DCs in the tumors studied. The 
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presence of LAMP3+ dendritic cells (LAMP3+ cDCs) or mature regulatory dendritic cells (mregDCs) 
has also been reported recently in various cancer types, including osteosarcoma [13, 37]. One possible 
mechanism of mregDCs in immunosuppression in OS TME has been suggested through interaction 
with regulatory T-cells (T-regs) via CD274-PDCD1 and PVR-TIGIT signaling [13].  
 
Among proliferative macrophages, similar macrophage subtypes were found as discussed previously, 
including CCL3-4+/IL1B+ classically-activated macrophages, SSP1+/LYVE1+ angiogenic 
macrophages, and macrophages expressing T-cell associated genes (IL32+, NKG7+, TRAC+). A 
population of MMP9+/IL7R+ macrophages was found only within the proliferative macrophage cluster. 
 
Immunosuppressive neutrophils/Myeloid-derived suppressor cells (MDSC)  
Neutrophils have been known to promote tumor growth, angiogenesis, metastasis and inhibit anti-
cancer T-cell activity [43]. To investigate the potential immunosuppressive features of neutrophils in 
OS, subclustering of the monocyte/neutrophil cluster was carried out, which revealed four different cell 
types, including two populations of S100A8/9/12+ neutrophils, and one population of each of 
CDKN1C+/FCGR3A+ non-classical monocytes and FN1+/SPP1+ monocyte-like cells (Figure 3A and 
3B, Supplemental Table S6). Of note, among the two neutrophil populations, the larger population of 
neutrophils expressed higher levels of S100A8/9/12, and genes previously identified as markers of 
myeloid-derived suppressor cells (MDSC), including VCAN, CLEC4E, and CSF3R (Figure 3C) [44]. 
These findings suggest the presence of immunosuppressive neutrophils or MDSC in OS TME and 
could be one of the major contributors to immunosuppression in OS. In addition, monocyte-like cells 
are a possible precursor of TAM and can contribute to the accumulation of MDSCs in cancer [45]. 
 
Regulatory and Exhausted T-cells 
T-cells are essential for the immune anti-tumor response and for the successful administration of 
immunotherapy [46]. Negative regulation of T-cells, leading to hypofunctional or exhausted T-cells, is 
a hallmark of many cancers, and understanding the mechanisms that lead to this exhaustion can 
provide potential targets for immunotherapy development [47, 48]. In order to better understand the 
T-cell and NK cell subtypes present within the TME of OS, we mapped cells of the NK/T cell cluster 
(C02) to the peripheral blood mononuclear cell (PBMC) reference dataset [21] using Azimuth [16]. We 
separated populations of NK cells (NKG7, KLRD1, TYROBP, GNLY, FCER1G, PRF1, CD247, 
KLRF1, CST7 and GZMB), helper CD4+ T-cells (IL7R, MAL, LTB, CD4, LDHB, TPT1, TRAC, 
TMSB10, CD3D and CD3G) and cytotoxic CD8+ T-cells (CD8B, CD8A, CD3D, TMSB10, HCST, 
CD3G, LINC02446, CTSW, CD3E and TRAC) (Figure 4A and 4B, Supplementary Table S7). 
 
We subdivided these categories further using Azimuth to detect the major subtypes of NK-cell and T-
cell populations (Figure 4A). Notably, amongst the CD4+ T-cells was a robust population of 
regulatory T-cells (RTKN2, FOXP3, AC133644.2, CD4, IL2RA, TIGIT, CTLA4, FCRL3, LAIR2 and 
IKZF2) (Figure 4B and 4C). This population represented over 10% (227/2126) of the detected CD4+ 
T-cells. Since the PBMC reference does not include exhausted T-cells, to detect this subpopulation, 
we performed subclustering of the CD8+ effector memory T-cells (CD8TEM), and looked at the 
expression of traditional exhaustion markers, specifically PDCD1, LAG3, and TOX (Figure 4D and 
4E). We found that the largest subpopulation of CD8TEM cells had higher expression of all three 
marker genes, indicating the robust presence of the exhausted T-cell population. Given that CD8TEM 
also represents the majority of CD8+ T-cells within the OS samples, T-cell exhaustion within 
osteosarcoma appears to be prevalent (1249/2610, 48%). Taken together, the significant population 
of regulatory and exhausted T-cells could be one of the major contributors to the immunosuppressive 
TME in OS. 
 
Osteosarcoma 
Leveraging the large-scale copy number alterations that serve as the signature of osteosarcoma, we 
utilized inferCNV [22] to detect relevant subclones of OS cells with distinct copy number alterations. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 3, 2023. ; https://doi.org/10.1101/2023.11.01.565008doi: bioRxiv preprint 

https://doi.org/10.1101/2023.11.01.565008
http://creativecommons.org/licenses/by-nc-nd/4.0/


We observed several subpopulations with normal arm-level copy number profiles, indicating that 
normal fibroblast or mesenchymal cells likely existed within our osteosarcoma clusters. In order to 
remove these, we combined all six OS cell clusters potentially containing normal cells derived from 
the primary clustering analysis shown in Figure 1, and then subclustered the OS cells as a whole 
(Supplementary Table S8) prior to sample-specific inferCNV analysis. Subclustering results in 8 
subclusters, including two subclusters of normal cells (subclusters 6 and 8) (Supplementary Figure 
2). After removal of normal cell population, inferCNV analysis was carried out on individual patient 
basis. Between 3 and 8 subclones were observed in patients, with one sample having too few 
detected osteosarcoma cells to perform inferCNV. Several arm level copy number alterations were 
found recurrently in subclones of OS cells across samples, including CNVs previously reported in 
osteosarcoma. These CNVs include amplifications of chromosome arms 1p [49], 1q [49-53], 7p [54], 
8q [49, 52, 55-60], and 20p [61-63], as well as deletions of 6q [64, 65]. 
 
Cell-cell interactions 
Next, we sought to investigate how various cell types identified in scRNA-seq analysis interact within 
the TME to determine their possible role in immunosuppression in OS TME. We utilized iTALK [23] to 
examine ligand-receptor interactions using a curated database of known interacting pairs. We 
calculated differentially-expressed genes (BH-adj. p-value < 0.05) for selected cell types of interest, 
and queried iTALK9s database for interactions based on this list (Figure 5A, Supplementary Table 
S3). We looked specifically at signaling interactions originating from OS, exhausted T-cells, T-regs, 
and MDSCs in order to determine how this signaling may contribute to immunosuppression within the 
tumor (Figure 5B, 5C and 5D). 
 
We found robust interaction between osteosarcoma with macrophages, MDSCs, and exhausted T-
cells (Figure 5B), including multiple previously-identified interactions known to be involved in 
immunosuppression. For example, CSF1 (also known as macrophage colony-stimulating factor) was 
highly expressed in osteosarcoma, and its receptor CSF1R was highly expressed in macrophages 
(Figure 5E, Supplementary Table S9). This interaction was shown to contribute to pathological 
immune activation and MDSC activation/recruitment [66, 67], and has been previously tested as a 
target for cancer therapy [68]. Regulatory T-cell signaling to exhausted T-cells was also observed. We 
identified SELPLG (PSGL-1) overexpression in regulatory T-cells, which interacts as a ligand with 
ITGB2, which was highly expressed in exhausted T-cells. PSGL-1 expression is an established 
immune checkpoint regulator whose ligation on exhausted T-cells is associated with upregulated PD-
1 and cell death [69]. 
 
Since the immunosuppressive role of MDSC has been reported in cancers and serves as an 
attractive target to improve immunotherapies, we took a deeper look into the MDSC signaling to T-
regs and exhausted T-cells. The iTalk results suggested four major interactions, LGALS9-HAVCR2, 
ICAM1/3-ITG receptors (ITGB2, IL2RG and ITGAL), CD86-CTLA4 and TGFB signaling-CXCR4 
(Figure 5E, Supplementary Table S9). Firstly, high expression of the LGALS9 (GAL9) on MDSCs 
and its receptor HAVCR2 (TIM3) on exhausted T-cells. This interaction is known to suppress anti-
tumor immunity [70], and the upregulation of GAL9 in tumors is associated with the expansion of 
MDSCs [71]. Furthermore, overexpression of GAL9 in MDSCs has been shown to contribute to the 
exhaustion and apoptosis of CD8+ T-cells through its interaction with TIM3 in myelodysplastic 
syndrome patients [72]. Secondly, we saw high ICAM1/3 ligand expression in MDSCs, which binds 
with several highly-expressed ITG receptors (ITGB2, IL2RG, ITGAL) in exhausted T-cells. This 
interaction was shown to be important for the immunosuppressive function of MDSCs on T-cells [73], 
independent of other mechanisms such as the production of reactive oxygen species (ROS), and was 
targetable using blocking antibodies against ICAM-1 [73]. Thirdly, MDSCs had high expression of 
CD86, which could serve as a ligand for CTLA4 in regulatory T-cells. Antigen-presenting cells 
expressing CD86 can support the homeostasis of regulatory T-cells through interaction with their cell-
type-specific high expression of CTLA4 [74]. Fourthly, we found TGFB signaling originating from 
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MDSCs and interacting with CXCR4 on all tested T-cell subtypes. TGFB expression in MDSCs has 
been shown to be immunosuppressive in murine cancer models [75-77]. 
 
Spatial transcriptomics 
Like other solid tumors, osteosarcoma has complex tissue structure and heterogenous cellular 
organization. In order to understand the potential immunosuppression from the spatial perspective in 
the OS TME, we sought to study the cellular organization and architecture of the tissue using spatial 
transcriptomics analyses with the 10X Genomics Visium platform on two pre-treatment primary tumor 
biopsy tissue samples. After quality control filtering, normalization, and data integration using Seurat 
[16] and Harmony [19], we used Robust Cell Type Decomposition (RCTD) [25] to infer spot-level cell 
composition and compare the overall cell type frequencies in the two samples. Similar to the scRNA-
seq data, these samples primarily consisted of OS cells and immune cells, with populations of 
endothelial cells and osteoclasts (Figure 6A). Among immune cells, we observed sample-specific 
abundance and many subtypes were uncommon between two samples (Figure 6B). For instance, 
activated macrophages, angiogenic macrophages, and neutrophils/monocytes were more prevalent 
in Patient A, whereas CD8+ T-cells, CD4+ T-cells, and IFN-stimulated macrophages were observed 
more in Patient B.   
 
To better understand the cellular distribution of various cell types, eight clusters with unique gene 
expression patterns were identified by unsupervised clustering of spots (Figure 6C and 6D). Four 
clusters (0-3) defined the largest area of the tumor samples and were common to both samples, 
whereas other five clusters showed tumor-specific localizations (Figure 6C and D). Cell composition 
contributed to these regional identities based on the enrichment of estimated cell type fractions with 
each cluster (Figure 6E). Both tumors had comparable regions enriched in MDSCs (cluster 0), OS 
cells (with fewer immune cells, cluster 1), LYVE+ macrophages (cluster 2), or endothelial cells 
(cluster 3). Patient A had a region marked by neutrophils/monocytes and angiogenic macrophages 
(cluster 5) and another enriched in activated macrophages and B cells (cluster 7), and Patient B had 
a region enriched in CD8+ T-cells, CD4+ T-cells, and IFN-stimulated macrophages (cluster 4). Thus, 
the differences in immune cell composition between samples noted above were largely attributable to 
localized phenomena.   
 
To understand the biological significance and phenotypes of different regions within the samples, we 
ran signaling pathway activity analysis – PROGENy. Different clusters showed distinguished gene 
expression patterns associated with cancer-relevant signaling pathways (Figure 6F). Common to 
both tumors, relatively large areas showed gene expression patterns associated with EGFR (cluster 
0) and TGFB (cluster 3) signaling pathway activity. Both pathways have been associated with 
immunosuppression in cancer and response to immunotherapy [78, 79]. Consistent with this, these 
areas contained immunosuppressive cells like MDSCs (cluster 0) and generally lacked enrichment of 
anti-tumor cells, like CD8+ T cells. In one sample, we observed a hypoxia-associated gene 
expression pattern (cluster 5), which also had its own distinct enrichment of immune cell types, 
including angiogenic macrophages and neutrophils/monocytes clustered with osteoclasts. Finally, the 
region with the clearest enrichment of CD8+ T cells (cluster 4) lacked enrichment of the EGFR, 
TGFB, and hypoxia-associated gene expression signatures. Overall, these data, for the first time, 
showed the spatial distribution of different cell types and cell states, particularly in macrophages, in 
OS TME. It also suggests that the TME of OS is largely immunosuppressive and its architecture 
consists of potentially distinct immunosuppressive milieus. 
 
Discussion: 
The suboptimal result of recent immunotherapy clinical trials suggested that OS has a complex 
immune TME. To improve the efficacy of treatment, particularly of immunotherapy, better 
understanding of OS immune landscape is urgently needed. To address this, we performed scRNA-
seq analysis of six treatment naïve OS samples and combined with the published scRNA-seq data of 
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other six treatment naïve OS samples to generate the largest scRNA-seq data so far. We aimed to 
better understand the potential immunosuppressive TME in OS by focusing on immune cells 
identified in OS TME. With the combined dataset, we identified similar immune cell types reported in 
previous OS scRNA-seq studies [11, 12], including immunosuppressive related cell types, e.g., CD4+ 
regulatory T cells and CD8+ exhausted T cells. Regulatory and exhausted T-cells have well-
established roles in the microenvironment of multiple tumors, including osteosarcoma [11-13]. T-cell 
exhaustion is a hallmark of immune evasion in many cancers, and overcoming this phenomenon in 
solid tumors is essential for the efficacy of emerging treatments such as CAR-T therapy [80, 81].  
 
Notably, although previous studies showed the presence of neutrophils in OS, we identified two 
subtypes of neutrophils including a major subtype expressing previous identified myeloid-derived 
suppressor cell (MDSC) markers. MDSCs contribute to the pathological immune response in cancer 
and may be potent targets for immunotherapy development [82]. In addition, Zhou et al. [12] noted an 
increased presence of neutrophils in primary tumors as compared to recurrent tumors using a 
chemotherapy-treated cohort. Our treatment-naïve cohort of primary tumors also showed a robust 
population of neutrophils, and given that the majority were immunosuppressive, this likely represents 
an important axis of immune evasion particularly for primary osteosarcoma and worthy of further 
investigation. 
 
We also found a population of LAMP3+ cDCs within our internal cohort, which had been previously 
detected in osteosarcoma and interact with regulatory T cells to perform their immunosuppressive 
functions [13, 37]. Liu et al. [13] highlighted the interaction between LAMP3+ mregDCs  and 
regulatory T-cells through the interaction of CD274 and PVR with PDCD1 and TIGIT, respectively. 
This interaction was specific to tumors, indicating the importance of mregDCs in mitigating antitumor 
immunity in osteosarcoma. Our findings show that the presence of mregDCs is common in 
osteosarcoma, and emphasizes the importance of further study of this immunosuppressive cell type.  
 
The presence of immunosuppressive and angiogenic TAMs in osteosarcoma was also found in our 
dataset. Expanding on the previous analyses of macrophages in osterosarcoma [11, 12],  we 
attempted to examine M1-M2 macrophage polarity amongst our macrophage subclusters using the 
markers from those studies, and we also saw no evidence of MKI67+ tissue resident macrophages 
(Supplementary Figure S4). However, we did not observe strong evidence of M1 and M2 
macrophage polarity in our dataset which aligns with the argument that macrophages have more 
complex phenotype than M1 and M2 polarity. In our analysis, distinct phenotypic macrophages were 
found, including classic activated macrophages, angiogenic macrophages, and interferon-stimulated 
macrophages, based on distinct markers for each subcluster. Additionally, subclustering revealed a 
distinct population of LYVE+ angiogenic macrophages previously found in several cancer subtypes 
[31-35]. Although the exact role of each macrophage subtype in OS TME is largely unknown, as the 
most abundant immune cell types with distinct phenotypes, macrophages are attractive targets for 
future immunotherapy development. 
 
Previous analysis by Liu et al. [11] found four major subpopulations of osteoclast. Specifically, they 
noted populations of mature osteoclasts (CTSK, ACP5, MMP9), proliferative progenitor osteoclasts 
(CD74, CD14, HLA-DRA, MKI67, CTSKlower, ACP5lower, MMP9lower) and non/hypofunctional 
osteoclasts with low expression of such markers. Although not a focus of this study, subclustering of 
osteoclasts revealed a population of progenitor osteoclasts positive for progenitor markers CD74, 
CD14, HLA-DRA and MKI67, as well as the proliferation marker TOP2A, matching the previous 
results (Supplementary Figure S3). However, the other four populations of osteoclasts seemed to 
closely match the more mature osteoclasts subtypes with few distinctive differentially expressed 
genes, and there weren9t strong indications of separate hypofunctional or nonfunctional osteoclast 
subtypes. Further analysis of the four mature osteoclast subtypes may reveal unique phenotypes. 
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Finally, we examine spatial transcriptomics on two pre-treatment biopsy samples to verify the 
presence of these immunosuppressive cell types and to examine how they colocalize within 
osteosarcoma and therefore indicating potential interactions. We found distinctions between those 
samples in their immune cell population prevalence, which broadly indicate differences in interferon 
stimulation and macrophage subtypes. Osteosarcoma cells, MDSCs, and LYVE+ macrophages were 
comparable between the two samples, indicating some commonality between the tumors. However, 
given the importance of the different immune cell population frequencies between these two tumors, 
which also showed differences in pathway expression related to growth factor expression, more 
spatial transcriptomics data is needed to further explore cellular heterogeneity in osteosarcoma and 
how this may affect treatment and survival outcomes. Taken together, our findings suggest a broad 
network of pathological immunosuppression within osteosarcoma. Although we should be careful to 
avoid inferring too much from our observations without further orthogonal validation and functional 
studies to confirm our findings, it would be prudent to explore the incorporation of treatment strategies 
aimed at addressing the observed immunosuppressive signaling within osteosarcoma. 
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Figures 
Figure 1: Primary clustering identifies major cell types in pre-treatment osteosarcoma tumors. (A) 
UMAP visualization of Harmony-corrected principal components, with cell type clusters separated by 
color. (B) Cell type proportions of each sample cohort. Macrophages and osteosarcoma were the 
most abundant cell types in both cohorts. (C) UMAP visualization of Harmony-corrected principal 
components in each cohort. (D) Expression of selected cell-type-specific markers in major cell 
clusters. Markers were chosen from the differentially expressed genes in Supplemental Table 2 
based on fold-change, cell cluster specificity, and their prior published use as cell type markers. 
 
Figure 2: Subclustering of macrophage/DC clusters (A) UMAP visualization of Harmony-corrected 
principal components of the macrophage cluster. Cell subtypes separated by color. (B) Expression of 
selected cell-subtype-specific markers amongst macrophage subclusters. Several subtypes of 
activated, interferon (IFN)-stimulated, and angiogenic macrophages were identified. (C) UMAP 
visualization of Harmony-corrected principal components of the proliferative macrophage/DC cluster. 
Cell subtypes separated by color. (D) Expression of selected cell-subtype-specific markers amongst 
macrophage/DC subclusters. LYVE+ macrophages were detected, along with populations of cDC1 
and cDC2, in addition to a putative LAMP3+ mregDC population. 
 
Figure 3: Identification of MDSCs amongst neutrophil/monocyte population (A) UMAP visualization of 
Harmony-corrected principal components of major neutrophil/monocyte cluster. Cell subtypes 
separated by color. (B) Dotplot expression of selected markers amongst neutrophil and monocyte 
subclusters (<N-CM= = non-classical monocyte). (C) Visualization of MDSC feature expression. 
Seurat9s <AddModuleScore= function was used to create an S100A gene expression score in the 
leftmost plot. Expression of other MDSC signature genes (VCAN, CLEC4E and CSF3R) is also 
shown. 
 
Figure 4: Identification of NK/T-cell subtypes using Azimuth (A) Identified NK/T-cells and their 
subtypes. Cells identified with >0.75 confidence score were mapped to Azimuth9s <L1= identities 
(8Major Cell Cluster9) from the reference <PBMC= dataset. Further annotation using the <L2= cell 
identities (8Specific Cell Type9) is also shown, along with a subset of the signature genes that define 
those cell subtypes. (B) UMAP visualization of Harmony-corrected principal components of identified 
NK/T-cell populations, colored by L1 identities. (C) NK cell, CD4+ T-cell, and CD8+ T-cell scores 
were created using Seurat9s <AddModuleScore= function from the Azimuth-defined cell type markers. 
(D) UMAP visualization of Harmony-corrected principal components of identified CD8 T-effector-
memory (CD8TEM) cell subpopulations. (E) Dotplot expression of exhaustion markers amongst 
CD8TEM subpopulations. Exhaustion markers were overexpressed in the largest subcluster of 
CD8TEMs. 
 
Figure 5: iTALK ligand-receptor interactions by subtype. (A) Overall ligand-receptor interactions 
across tested cell types. Arrow indicates ligand-reception directionality, line thickness corresponds to 
the number of interactions. Only interactions where significant differential expression of the ligand or 
receptor in the corresponding cell type are shown (B) Network plot showing significant osteosarcoma 
signaling (ligand only) interactions with other cell types. (C) Network plot showing significant 
regulatory T-cell signaling (ligand only) interactions with other cell types. (D) Network plot showing 
significant neutrophil/MDSC signaling (ligand only) interactions with other cell types. (E) Cartoon 
displaying selected significant ligand/receptor interactions with prior literature information. 
 
Figure 6: Spatial transcriptomics analysis of osteosarcoma (A) Estimated fractions of major classes of 
cell types per spot as determined by deconvolution using RCTD and the single cell reference dataset.  
The Immune class was aggregated from values inferred for 12 subtypes of immune cells.  
Osteosarcoma, Endothelial, and Osteoclast were calculated directly.  (B) Estimated fractions of 13 
immune cell subtypes per spot inferred by deconvolution showed variability between patients. (C) 
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H&E images overlayed with spot cluster membership determined by unsupervised clustering of gene 
expression defining regional patterning. (D) Cluster membership information depicted as a UMAP plot 
(left) and as a percent of total spots for each patient (right). (E) Heatmap with z-scores based on the 
median cell type fraction per cluster. (F) Heatmap with z-scores based on the median PROGENy 
scores per cluster. These scores of relative pathway activity based on weighted gene expression 
levels were calculated per spot.  Asterisks indicate the adjusted significance level for enrichment 
determined by one-sided Wilcoxon rank sum test. Spots in a single cluster were compared to all other 
spots. *, P<0.05; **, P<0.01; ***, P<0.001. 
 
Supplementary Figures 
Supplementary Figure S1: Major cell type proportions of each sample. 
Supplementary Figure S2: inferCNV plots for each sample. 
Supplementary Figure S3: Osteoclast subtype markers used by Liu et al. [11] plotted across our 
identified osteoclast subclusters. 
Supplementary Figure S4: M1/M2/tissue-resident macrophage (TRM) subtype markers used by Liu et 
al. [11] and Zhou et al. [12] and plotted across our identified osteoclast subclusters. 
 
Supplementary Tables 
Supplementary Table S1: Patient and sample characteristics. 
Supplementary Table S2: Frequency table of the contribution to the primary clusters by (a) sample, 
(b) patient sex, and (c) cohort. (d) Major cluster membership of each cell. 
Supplementary Table S3: Full gene list showing markers for each primary cluster. 
Supplementary Table S4: (a) Frequency table of the contribution to the macrophage subclusters by 
sample. (b) Macrophage subcluster membership of each cell. (c) Cell markers of each macrophage 
subcluster. 
Supplementary Table S5: (a) Frequency table of the contribution to the proliferative macrophage/DC 
subclusters by sample. (b) Proliferative macrophage/DC subcluster membership of each cell. (c) Cell 
markers of each proliferative macrophage/DC subcluster. 
Supplementary Table S6: (a) Frequency table of the contribution to the monocyte/neutrophil 
subclusters by sample. (b) Monocyte/neutrophil subcluster membership of each cell. (c) Cell markers 
of each monocyte/neutrophil subcluster. 
Supplementary Table S7: (a) Azimuth output showing the predicted cell types/subtypes of the NK/T 
cluster cells after mapping to the PBMC data. Cells that mapped to NK or T-cell clusters by Azimuth 
with a confidence score > 0.75 were retained for downstream analysis (b) Frequency table of the 
contribution to the NK/T-cell L2 subtypes by sample. 
Supplementary Table S8: (a) Frequency table of the contribution to the osteosarcoma/normal 
fibroblast subclusters by sample. (b) Osteosarcoma/normal fibroblast subcluster membership of each 
cell. (c) Cell markers of each osteosarcoma/normal fibroblast subcluster. 
Supplementary Table S9: iTALK output table, showing significant ligand/receptor interactions 
between selected cell types. 
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