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Abstract

Head motion is a significant source of artifacts in resting-state fMRI (rsfMRI) studies and has been

shown to affect resting-state functional connectivity (rsFC) measurements. In many rsfMRI studies,

motion parameters estimated from volume registration are used to characterize head motion and to

mitigate motion artifacts in rsfMRI data. While prior task-based fMRI studies have shown that task-

evoked brain activations may induce temporally correlated bias in the motion estimates, resulting in

artificial activations after registration, relatively little is known about neural-related bias in rsfMRI motion

parameters. In this study, we demonstrate that neural-related bias exists in rsfMRI motion estimates and

characterize the potential effects of the bias on rsFC estimates. Using a public multi-echo rsfMRI dataset,

we use the differences between motion estimates from the first echo and second echo data as a measure of

neural-induced bias. We show that the resting-state global activity of the brain, as characterized with the

global signal (GS), induces bias in the motion estimates in the y- and z-translational axes. Furthermore,

we demonstrate that the GS-related bias reflects superior-inferior and anterior-posterior asymmetries in

the GS beta coefficient map. Finally, we demonstrate that regression with biased motion estimates can

negatively bias rsFC estimates and reduce rsFC differences between young and old subjects.
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1. Introduction

Head motion is a major source of artifacts in fMRI data, and motion estimates from data registration

are commonly used to characterize and mitigate motion-related artifacts (Friston et al., 1996; Power et al.,

2012; Satterthwaite et al., 2012; Dijk et al., 2012; Yan et al., 2013; Power et al., 2014, 2015). Prior task-

based fMRI studies demonstrated that task-evoked brain activations can induce bias in motion estimates5

that is temporally correlated with brain activations (Freire and Mangin, 2001; Freire et al., 2002). In

contrast, relatively little is known about neural-related bias in motion estimates from resting-state fMRI

(rsfMRI) data.

Detecting such bias is challenging due to the absence of ground truth head motion and neural

signals in rsfMRI studies. To first order, fMRI signal changes resulting from head motion and neural10

activity can be distinguished based on their dependence on echo time (TE): neural activity causes TE-

dependent blood-oxygen-level-dependent (BOLD) fluctuations, whereas head motion largely contributes

to TE-independent non-BOLD signal changes. Taking advantage of these differences, prior studies have

demonstrated that BOLD and non-BOLD signals can be distinguished using multi-echo fMRI (MEfMRI)

that acquires data at different TEs (Buur et al., 2009; Bright and Murphy, 2013; Kundu et al., 2012,15

2017). For example, Burr et al. effectively used the first echo data acquired at a short TE with minimal

BOLD-weighting to model and correct for the motion artifacts in the BOLD-weighted second echo data

(Buur et al., 2009).

Burr’s findings imply that it may be feasible to identify neural-related bias by comparing motion

estimates obtained from the first and second echo data. Since head motion primarily results in TE-20

independent signal changes, its effects should be captured in the motion estimates derived from both the

first and second echo data. In contrast, there is typically minimal BOLD weighting in the first echo data

but strong BOLD weighting in the second echo data. As prior work has shown that a higher level of brain

activation can lead to greater bias in motion estimates (Freire and Mangin, 2001; Freire et al., 2002),

potential neural-related bias should exhibit greater magnitude in the motion estimates from the second25

echo data as compared to those from the first echo data. Taken together, potential neural-related bias

may be isolated from head motion by examining the difference between the motion estimates obtained

from the first and second echo data.

Prior task-based fMRI studies have shown that brain activations with a larger spatial extent can

lead to a higher level of bias in the motion estimates (Freire and Mangin, 2001; Freire et al., 2002).30
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This finding motivates us to examine whether global brain activity in rsfMRI leads to bias in the motion

estimates. In this study, we used the global signal (GS), calculated as the mean fMRI signal over the

voxels within the brain, as a proxy for global brain activity. While the interpretation of the GS is still

controversial (reviewed in (Liu and Falahpour, 2020)), there is growing evidence suggesting that the GS

is linked to global neural activity (Wong et al., 2013, 2016; Falahpour et al., 2018; Liu et al., 2018; Gu35

et al., 2021).

In this work, we characterized the bias in rsfMRI motion parameters as estimated by AFNI 3dvolreg.

Furthermore, we investigated the consequences of using biased estimates as regressors in resting-state

functional connectivity (rsFC) analyses.

2. Methods40

2.1. Subjects and MEfMRI data acquisition

In this study, we used a public dataset (denoted as the Cornell-York dataset and described in (Setton

et al., 2022)) downloaded from OpenNeuro (dataset ds003592). The Cornell-York dataset includes multi-

echo fMRI data collected from 301 healthy subjects (181 younger and 120 older adults). The data from

238 subjects were acquired on a 3T GE Discovery MR750 MRI scanner with a 32-channel head coil. The45

data from the remaining 63 subjects were collected on a 3T Siemens Trio MRI scanner with a 32-channel

head coil. For each subject, two 10-min resting-state runs were acquired using an ME EPI sequence on

the GE scanner (204 volumes; TR=3000 ms; TE=13.7, 30, 47 ms; flip angle=83◦; FOV=210 mm; voxel

size=3×3×3 mm3; matrix size=72×72×46; 2.5×SENSE acceleration; phase encoding direction: A-P) or

on the Siemens scanner (200 volumes; TR=3000 ms; TE=14, 29.96, 45.92 ms; flip angle=83◦; FOV=21650

mm; voxel size=3.4× 3.4× 3 mm3; matrix size=64× 64× 43; 3×GRAPPA acceleration; phase encoding

direction: A-P). The subjects were instructed to stay awake and lie still with their eyes open during the

scans.

2.2. Data preprocessing

AFNI was used for data preprocessing (Cox, 1996). The fMRI data from the first and second echoes55

were used and denoted as e1 and e2, respectively. The data were first reoriented to Right-Anterior-Inferior

(RAI) orientation (AFNI 3dresample -orient RAI ), and the first 6 TRs of the data were discarded to

allow magnetization to reach a steady state. For each run and each echo, the data were normalized so that
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the mean signal over all voxels and all volumes was equal to 100. Since the normalization is equivalent

to multiplication by a global scaling factor, the spatial and temporal information of the data in each run60

is preserved.

2.3. Calculation of the motion estimates and global signal

In this study, we examined the motion estimates from AFNI 3dvolreg (Cox and Jesmanowicz, 1999)

using the first volume as the reference volume. The default weights used in registration were disabled

by feeding an all-ones image to the -weight option. This approach weights all voxels equally during65

registration. For each run, the motion was estimated using both the e1 and e2 data. Then, the motion

parameters were multiplied by −1 to represent the movement of the volumes as compared to the reference

volume (see Appendix A).

For each run, the global signal (GS) was calculated from the unregistered e2 data. Before calculating

the GS, each voxel’s signal was converted to a percent change signal. Then, the GS was computed by70

averaging over all voxels within the brain (brain masks were formed by AFNI 3dAutomask). Finally, the

mean and the linear and quadratic trends were regressed out from the motion estimates and GS.

2.4. Identifying BOLD-weighted GS bias in the motion estimates

To characterize BOLD-weighted GS bias in the motion estimates, we considered a simple signal

model for the e1 and e2 motion estimates. Let me1 ∈ RK×1 and me2 ∈ RK×1 represent the motion

estimates of one motion axis each from e1 and e2, respectively, where K is the number of volumes. We

model the motion estimates as the weighted sum of head motion, BOLD-weighted GS bias and estimation

error,

me1 = αe1mh + βe1TE1gs + ϵe1

me2 = αe2mh + βe2TE2gs + ϵe2

(1)

where mh ∈ RK×1 represents head motion, αei is the regression weight corresponding to head motion for

the ith echo, gs ∈ RK×1 is the GS, TE1 and TE2 are the first and second echo times, respectively, βei is

the regression weight of the BOLD-weighted GS bias for the ith echo and ϵei ∈ RK×1 is the estimation

error for the ith echo. With the above model, subtracting me1 from me2 yields

∆m = me2 −me1 = (αe2 − αe1)mh + (βe2TE2 − βe1TE1)gs + ϵe2 − ϵe1 (2)
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Since prior findings suggest that head motion can be accurately estimated from both e1 and e2 data

(Buur et al., 2009; Speck and Hennig, 2001), we assume that αe1 = αe2, yielding

∆m = (βe2TE2 − βe1TE1)gs + ϵe2 − ϵe1 (3)

Note that ∆m isolates BOLD-weighted GS bias from head motion. Therefore, we can examine the

presence of potential bias by assessing the significance of the correlations between ∆m and the GS. For75

each run and motion axis, we calculated the correlation between ∆m and the GS (denoted as r(∆m,GS))

and assessed the statistical significance of r(∆m,GS) values on a per-run basis using empirical null

distributions. For each motion axis, a null distribution was formed by calculating r(∆m,GS) values

using all possible permutations across runs, i.e. pairing the GS from one run to ∆m from other runs and

looping over all runs. The resulting null distributions consisted of 361,802 samples. Then, for each motion80

axis, we used the null distribution to compute the two-sided p-value associated with the r(∆m,GS) value

calculated from each run’s measured data. A p-value threshold of 0.05 was divided by 602 (the number of

runs) to correct for multiple comparisons, and the Bonferroni corrected threshold was used to determine

the significant correlations. Finally, we calculated the percentage of runs that show significant r(∆m,GS)

values for each motion axis.85

In this study, we used the GS to represent the global activity of the brain. To reduce the potential

effect of motion artifacts in the GS, we repeated the above analysis after regressing out the e1 motion

regressors from both the GS and ∆m. The e1 motion regressors included the six motion parameters

estimated from the e1 data and their first derivatives.

2.5. Spatial maps underlying r(∆m,GS)90

To provide insight into the mechanisms underlying BOLD-weighted GS bias, we derived an empirical

approximation for r(∆m,GS). As shown in Appendix C,

r(∆m,GS) ≈ ∥gs∥
∥∆m∥

(
βT
gs,e2

de2

∥de2∥2
−

βT
gs,e1

de1

∥de1∥2

)
(4)

where βgs,ei
∈ RN×1 is the GS beta coefficient map for the ith echo, dei ∈ RN×1 is the spatial derivative

image with respect to (w.r.t.) one motion axis of the ith echo, N is the number of voxels and ∥ ·∥ denotes

the L2-norm. For each run, the GS beta coefficient map βgs,ei
=

Y eigs

∥gs∥2 was calculated from the linear

fit of the GS to the unregistered functional data Y ei ∈ RN×K of the ith echo.
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We calculated the spatial derivative images w.r.t. motion axes following the calculation in AFNI

3dvolreg. For each run and each echo, the spatial derivative images were calculated based on the reference

volume used in motion estimation. Denoting the reference image of the ith echo as yr,ei ∈ RN×1, the

spatial derivative image of the ith echo w.r.t the jth motion axis was calculated as

dei,j =
Tj(yr,ei, ϵj)− Tj(yr,ei,−ϵj)

2ϵj
, i = 1, 2, j ∈ {Rx, Ry, Rz, Tx, Ty, Tz} (5)

where Tj : RN×1 → RN×1 is the function that transforms the reference volume along the jth motion axis,95

ϵj is the transformation parameter, Rx, Ry and Rz represent x-, y- and z-rotation, respectively and Tx,

Ty, Tz represent x-, y- and z-translation, respectively. When calculating the spatial derivative images,

the transformation was performed with AFNI 3drotate -heptic. For the translational motion axes, ϵ was

set to 2.1 mm. For the rotational motion axes, ϵ was set to 0.4◦. The exact values were used in AFNI

3dvolreg when creating the derivative images and were calculated based on the spatial resolution of the100

functional data.

2.6. Effect of the bias on ROI-ROI FC via motion regression

In this work, we investigated the effect of regression with biased motion estimates on rsFC estimates

between nodes within the default mode network (DMN) and task positive network (TPN). The regions

of interest (ROIs) within these networks were defined in (Dijk et al., 2010), with four ROIs in the DMN105

(the posterior cingulate cortex (PCC), lateral parietal cortex (LatPar), medial prefrontal cortex (mPFC)

and Hippocampal formation (HF)) and three ROIS in the TPN (frontal eye field (FEF), intraparietal

cortex (IPS) and middle temporal area (MT+)). Seed ROIs were created using a sphere with a radius

of 12 mm centered about each seed coordinate. The left and right ROIs were combined to form bilateral

ROIs. Prior to averaging signals within each ROI, the e2 data after volume registration were transferred110

to MNI space and spatially smoothed with a 4mm FWHM Gaussian kernel.

To reduce the confounding effects of head motion, motion censoring was performed before motion

regression. For each run, framewise displacement (FD) was calculated based on six motion parameters

estimated from the e1 data (the calculation of FD follows the description in (Power et al., 2012)). Volumes

with FD values larger than 0.2 mm were censored. We showed in the supplementary materials (Fig. S4115

and S5) that motion censoring has little impact on the effect of regression with biased motion estimates

on rsFC.
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After motion censoring, we calculated and compared the ROI-ROI FC after e2 and e1 motion re-

gression to assess the effect of potential bias on FC analysis. For each ROI, the ROI-based seed signal

was calculated by averaging the percent change BOLD signal over the voxels in that ROI. Then, the120

motion regressors, including the six motion parameters and their first derivatives were regressed out

from the ROI signals. For each pair of ROIs, the ROI-ROI FC was computed as Pearson’s correlation

coefficients between the ROI average signals. Correlation values were converted to z-scores using the

Fisher-z transformation. The differences in the ROI-ROI FC calculated after e2 and e1 motion regression

were calculated to assess the effect of the bias on FC. The e2-e1 differences in r-values and z-scores were125

denoted as ∆r and ∆z, respectively.

Furthermore, we examined the effect of the bias on FC within four groups of runs based on levels

of head motion and GS. For each run, the level of head motion was measured by the mean FD value

calculated by averaging over the FD values across time. The level of the GS was measured by the GS

amplitude (aGS) computed as the standard deviation of the GS after motion censoring. All the runs130

were first divided into two groups based on their mean FD values. Runs with mean FD values larger

than the group median were classified as high motion runs and the remaining runs were classified as low

motion runs. Then, within each FD-based group, the runs were further divided into two groups based

on aGS. Runs with aGS values larger than the group median were classified as high aGS runs and the

remaining runs were classified as low aGS runs. Consequently, we formed four groups of runs: 1) low135

motion and high aGS runs, (2) low motion and low aGS runs, (3) high motion and high aGS runs and

(4) high motion and low aGS runs. A one-way ANOVA was calculated on mean ∆z over all ROI pairs

to assess whether there was a group effect. Post-hoc two-sample t-tests were calculated to characterize

the differences between pairs of groups.

Additionally, to verify that the effect of the bias on FC was dominated by the motion estimates from140

the axes where we found GS-induced bias, we evaluated the effect of two subsets of motion regressors.

One of the subsets included the motion estimates and their first derivatives from the Ty and Tz axes

(where we found GS-induced bias), while the other subset included the motion regressors from the other

four motion axes, where minimal GS-induced was observed.

2.7. Effect of the bias on young vs. old group-level FC analysis145

In this study, we used a public dataset consisting of young and old subjects (181 younger and 120

older adults as described in Setton et al. (2022)). We first examined whether the bias in motion estimates
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affects the ROI-ROI FC of the young and old subjects differently by comparing ∆r and ∆z between the

young and old runs. Furthermore, we investigated if the bias alters the group-level FC analysis between

the young and old subjects. For each pair of ROIs, the significance of the FC differences between the150

young and old subjects was assessed by a permutation test with 1 × 107 random permutations to allow

us to examine the commonly used p-values thresholds of 0.01, 1 × 10−3 and 1 × 10−6. Also, the effect

size of the differences was measured with Cohen’s d. The FC differences and the significance and effect

size of the differences calculated after e1 and e2 motion regression were compared.

3. Results155

3.1. Examples of the GS and motion estimates

Fig. 1 (a,b) show the motion estimates in the Tz axis, including me1 (blue), me2 (green) and ∆m

(red) from two example runs with (a) low and (b) high levels of motion. Note that for the high motion

run, me1 and me2 are plotted at 1/20th scale to facilitate comparison with me1 and me2 from the low

motion run. As shown in these subfigures, ∆m estimates from both runs fluctuate in a similar range160

from −0.05 to 0.05 mm (std(∆m) = 0.017 and 0.025 for the low and high motion runs, respectively).

In contrast, the standard deviations of me1 and me2 from the high motion run (std(me1) = 0.583,

std(me2) = 0.602) are an order of magnitude larger than the standard deviations of me1 and me2 from

the low motion run (std(me1) = 0.027, std(me2) = 0.034).

Fig. 1 (c) and (d) show the GS and ∆m from the low motion and high motion runs, respectively.165

For the low motion run, ∆m covaries with the GS throughout the run, leading to a strong r(∆m,GS) of

0.93. The high motion run shows a weaker r(∆m,GS) of 0.34 as compared to the low motion run, and

reflects motion artifacts in the GS. After motion regression (panels e and f), the r(∆m,GS) for the high

motion run increases to 0.62, while the r(∆m,GS) of the low motion run remains at a high value of 0.92,

suggesting that the relation between the GS and ∆m is enhanced when motion artifacts are minimized.170

3.2. Significance testing for r(∆m,GS) values

To examine the presence of BOLD-weighted GS bias over runs and motion axes, we assessed the

significance of r(∆m,GS) values on a per-run and per-axis basis using permutation-based empirical null

distributions. Fig. 2 shows two-sided violin plots of the distributions of r(∆m,GS) values (blue) and the

empirical null distributions (green) for all six motion axes (a) before and (b) after e1 motion regression.175
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The blue solid lines and circles represent the median values for each distribution of measured r(∆m,GS)

values. The dashed lines represent the r(∆m,GS) values corresponding to a Bonferroni corrected p-value

threshold of 0.05 (two-sided) assessed from the empirical null distributions. The dark red square markers

represent the percentages of runs showing r(∆m,GS) values that are significantly different from zero.

In the Tz axis, 61.1% and 69.3% of the runs show significant positive r(∆m,GS) values before and180

after e1 motion regression, respectively. The group median r(∆m,GS) value increases from 0.55 to 0.58

after e1 motion regression. Remarkably, 96 out of 602 total runs show r(∆m,GS) values larger than

0.8 after e1 motion regression. In the Ty axis, 30.6% and 38.2% of the runs show significant r(∆m,GS)

values before and after e1 motion regression, respectively. The group median r(∆m,GS) value increases

from 0.29 to 0.34 after e1 motion regression. Fig. S1 and S2 show examples of the GS and the motion185

estimates, including me1, me2 and ∆m in the Tz and Ty axes, respectively. Together, these findings

indicate the presence of BOLD-weighted GS bias in the Tz and Ty motion estimates.

For the other motion axes (Rx, Ry, Rz and Tx), the percent of significant r(∆m,GS) values fluctuates

around 5%, ranging from 1.2% to 6.6%, indicating minimal BOLD-weighted GS bias for these axes.

3.3. Visualizing the spatial maps underlying r(∆m,GS) values190

In the previous section, BOLD-weighted GS bias in the motion estimates was identified by examining

the temporal correlations between the GS and ∆m. Furthermore, as described in Eq. 4, r(∆m,GS) can

be approximated as multiplying the difference of
βT

gs
d

∥d∥2
from e2 and e1 by a scaling factor

∥gs∥
∥∆m∥ . The

approximation provides us a unique angle to interpret the GS bias by looking at the relation of the βgs

and d spatial maps. Fig. 3 visualizes βgs
, d

∥d∥2
,
βgs

⊙d

∥d∥2
, and the

βgs
⊙d

∥d∥2
difference maps in the Tz and195

Tx axes from an example run, where ⊙ represents element-wise multiplication.

In the Tz axis, d
∥d∥2

exhibits high positive and negative values at the superior and inferior edges of

the brain, respectively, whereas βgs
exhibits positive values across the cortex, including the superior edge

of the brain but exhibits relatively low values (approaching zero) along the inferior edge. As a result,

most of the high values in
βgs

⊙d

∥d∥2
are positive with greater amplitudes for e2, resulting in high positive200

values in the
βgs

⊙d

∥d∥2
difference map. Consequently, summing up the

βgs
⊙d

∥d∥2
difference map leads to a

high r(∆m,GS) value. In contrast, for the Tx axis, d
∥d∥2

shows high positive and negative values on

the left and right edges, respectively, whereas βgs
shows high positive values across the cortex, including

both the left and right edges. The resulting high positive and negative values observed in the
βgs

⊙d

∥d∥2

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.565023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.565023
http://creativecommons.org/licenses/by-nc-nd/4.0/


difference map tend to cancel out, resulting in a lower r(∆m,GS) value. Together, these observations205

suggest that the GS bias in the Tz motion estimates is a result of βgs
and d sharing a relatively similar

top-bottom asymmetric spatial pattern.

In the Ty axis, as shown in Fig. S3, d
∥d∥2

exhibits negative and positive values at the anterior and

posterior edges of the brain, respectively, whereas βgs
exhibits positive values across the cortex, including

the posterior edge of the brain but exhibits relatively low values (approaching zero) along the anterior210

edge. As a result, the positive values in the
βgs

⊙d

∥d∥2
difference show relatively greater amplitudes as

compared to the negative values, resulting in a high r(∆m,GS) value.

Taken together, the GS-induced bias in the Ty and Tz motion estimates relfect the asymmetries in

βgs
maps, which show higher values at the superior and posterior parts of the brain as compared to the

inferior and anterior parts of the brain.215

3.4. Effect of the bias on ROI-ROI FC via motion regression

In this section, we investigate how the presence of the GS-induced bias in the motion estimates

affects the ROI-ROI FC by examining the differences in the ROI-ROI FC calculated after e2 and e1

motion regression. The e2-e1 differences in r-values and z-scores are denoted as ∆r and ∆z, respectively.

Note that motion censoring was applied before motion regression. Fig. 4 shows ∆r and ∆z for all pairs220

of ROIs averaged over four groups of runs: (a) low motion and high aGS runs, (b) low motion and low

aGS runs, (c) high motion and high aGS runs, and (d) high motion and low aGS runs. All four groups

demonstrate negative ∆r and ∆z values for all pairs of ROIs, suggesting that the bias in the motion

estimates can reduce FC estimates via motion regression. Comparing groups, we observed that the runs

with low motion and high aGS exhibit the most negative ∆r and ∆z values (∆r ranging from -0.02 to225

-0.09 and ∆z ranging from -0.63 to -1.41), while the runs with high motion and low aGS show ∆r and

∆z values close to zero (∆r ranging from -0.00 to -0.02 and ∆z ranging from -0.05 to -0.33).

Furthermore, a one-way ANOVA on the mean ∆z values calculated over ROI pairs showed that there

is a significant (p < 1 × 10−6, F3,598 = 40.53) difference among groups. The results from the post-hoc

t-tests indicate that the low motion and high aGS runs exhibit significantly (p < 1×10−4) more negative230

mean ∆z values as compared to the other three groups, whereas the high motion and low aGS runs

exhibit significantly (p < 1× 10−6) less negative mean ∆z values as compared to the other three groups.

There is no significant (p > 0.01) difference between the group of low motion and low aGS runs and the

group of high motion and high aGS runs. The distributions of the mean ∆z values over ROI pairs for
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the four groups can be found in Fig. S5.235

Fig. S6 and S7 demonstrate that the observed effect of the bias is dominated by the motion estimates

in the Ty and Tz axes. In Fig. S6, when including only the Ty and Tz motion regressors, the results are

similar to those shown in Fig. 4. In contrast, when excluding the Ty and Tz motion regressors (Fig. S7),

we observed minimal differences between the FC estimates obtained with e1 and e2 motion regression.

Together, these results indicate that regressing out the motion estimates with GS-induced bias may lead240

to reductions in FC estimates, and there is a stronger effect for runs with higher aGS and lower head

motion.

3.4.1. Effect of the bias on young vs. old group-level analysis

As shown in Fig. 5 (a) and (b), young subjects show significantly (p < 1 × 10−6) higher aGS and

lower mean FD values as compared to the old subjects. Consequently, as shown in Fig. 5 (c), the young245

subjects show significantly (p < 1 × 10−6) more negative mean ∆z values over ROI pairs as compared

to the old subjects. The mean ∆z values over runs and ROI pairs are -0.69 and -0.17 for the young and

old subjects, respectively. Furthermore, Fig. 5 (d) and (e) visualize the mean ∆r and ∆z values over the

young and old subjects for all ROI pairs. We observed that for all ROI pairs, the young subjects show

more negative ∆r and ∆z values as compared to the old subjects. Since ∆z and ∆r reflect the effect250

of the bias when performing motion regression, these results suggest a greater impact of the bias on the

young subjects as compared to the old subjects.

Moreover, we examined whether the bias affects the group-level analysis between the young and

the old subjects. Fig. 6 (a) shows the differences in ROI-ROI FC between the young and old subjects

calculated after motion censoring and e1 motion regression. We observed that the young subjects show255

significantly (p < 1×10−3) higher FC than the old subjects for all ROI pairs, except for the pair between

IPS and LatPar. However, after e2 motion regression, as shown in Fig. 6 (b), the significant differences

for five pairs of ROIs become insignificant (p > 0.01), including the pairs between (1) PCC and FEF, (2)

PCC and IPS, (3) LatPar and FEF, (4) LatPar and MT+ and (5) FEF and IPS. Additionally, Fig. 6 (c)

and (d) show that e2 motion regression reduces the FC differences between young and old for all pairs260

of ROIs as compared to e1 motion regression. Furthermore, as shown in Fig. S8 and S9, we verified that

the observed effect is dominated by regressing out the Ty and Tz motion regressors. Together, these

results demonstrate that motion regression with biased motion estimates can lead to underestimation of

FC differences between the young and old subjects.
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4. Discussion265

In this study, we used a public resting-state MEfMRI dataset to examine whether global brain

activity can lead to bias in rsfMRI motion estimates and to characterize the potential impact on rsFC

estimates. By examining the correlation between the GS and the difference in the motion estimates from

the first and second echoes, we found evidence for GS-related bias in the Tz and Ty motion estimates.

We also demonstrated that the GS-induced bias can lead to underestimation of rsFC estimates when270

using motion regression, with low motion and high aGS runs exhibiting the greatest reductions in FC

due to the bias and high motion and low aGS runs showing minimal reductions in FC. Finally, we showed

that regression with biased motion estimates can reduce rsFC differences between groups of young and

old subjects, due in part to different levels of aGS and head motion between the groups.

Extending prior studies that examined bias in task-based fMRI motion estimates, we identified275

BOLD-weighted bias in rsfMRI motion estimates and investigated its effect on rsFC. Moreover, utilizing

multi-echo fMRI data, we proposed a novel method to detect the BOLD-weighted bias in real motion

estimates over a large sample of runs with rigorous statistical tests. In contrast, in (Freire and Mangin,

2001; Freire et al., 2002), the existence of the bias in task-based fMRI is primarily illustrated using

simulation with experimental data limited to one scan. Moreoever, to investigate the underlying cause of280

the observed bias, we proposed an empirical approximation to r(∆m,GS) and used this approximation

to demonstrate how the presence of the GS-induced bias in the motion estimates may be attributed to

the superior-inferior and posterior-anterior asymmetric spatial patterns in the GS beta coefficient map

βgs
.

While the interpretation of the GS is still controversial (reviewed in (Liu and Falahpour, 2020)), there285

is growing evidence suggesting that the GS is linked to vigilance (also known as arousal level) (Wong

et al., 2013, 2016; Falahpour et al., 2016, 2018; Liu et al., 2018; Gu et al., 2021). For example, Falahpour

et al. (2016) found that the GS is negatively correlated with the EEG vigilance. Furthermore, studies have

shown that the vigilance templates, calculated as voxel-wise correlations between the EEG vigilance and

the fMRI signal, can be used to estimate the EEG vigilance fluctuations during the fMRI scans (Chang290

et al., 2016; Falahpour et al., 2018; Goodale et al., 2021). To investigate whether the asymmetric spatial

patterns in βgs
are associated with the vigilance, Fig. S10 compares βgs

from the example run shown in

Fig. 3 to the eyes-open vigilance template estimated in (Falahpour et al., 2018) (both spatial maps were

transferred to the MNI152 standard space). As shown in Fig. S10 (b), the estimated vigilance template
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exhibits similar superior-inferior and posterior-anterior asymmetric spatial patterns to the example βgs
295

map, resulting in a strong negative correlation (r = −0.38, p < 1× 10−6) between βgs
and the vigilance

template. Hence, the asymmetric spatial patterns in βgs
may be attributed to resting-state global brain

activity linked to vigilance changes.

We also found that the posterior-anterior asymmetry pattern in βgs
may be associated with the

spatial intensity inhomogeneity in the fMRI data, a slow and smooth variation related to a combination300

of radio-frequency coil homogeneity, the pulse sequences used and the imaged object itself (Belaroussi

et al., 2006). To illustrate the effect of the intensity inhomogeneity, Fig. S11 shows the reference images

and estimated bias field maps from two low motion example runs, one with a high Ty r(∆m,GS) value of

0.87 (the example run shown in Fig. S3) and one with a low Ty r(∆m,GS) value of 0.07 (an example run

has not shown before). For the example run with a strong r(∆m,GS) in the Ty axis shown in Fig. S11305

(a), its reference image and estimated bias field map exhibit higher values at the posterior part of the

brain and lower values at the anterior part of the brain. Whereas, for the run with r(∆m,GS) close to

zero (shown in Fig. S11 (b)), its reference image and estimated bias field map show comparable values

at the anterior and posterior parts of the brain.

While this work primarily focused on motion estimates from AFNI 3dvolreg, we also performed a310

supplementary examination of the r(∆m,GS) values calculated with motion estimates from different al-

gorithms, including FSL (Jenkinson and Smith, 2001; Jenkinson et al., 2002), ANTS (Avants et al., 2011,

2014) and SPM (Friston et al., 1995) and cost functions, including the least-squares (LS), normalized

correlation (NC) and mutual information (MI) cost functions. (See sections S1.1 and S2.2 in the sup-

plementary materials for details). In conclusion, both the algorithms and cost functions affect the level315

of the bias in the Ty and Tz axes, with the algorithms having a greater impact than the cost functions.

Specifically, AFNI (LS) and SPM (LS) show a relatively greater level of the bias, FSL with different cost

functions (LS, NC and MI) shows a moderate level of the bias, and ANTS (MI) shows the lowest level of

the bias. Future work is needed to thoroughly examine how different algorithms and cost functions affect

the level of the bias in the motion estimates.320

In this study, we demonstrated that regression with biased motion estimates can reduce rsFC dif-

ferences between the young and old subjects with the DMN and TPN ROIs. Importantly, we showed

in Fig. 6 that the significant rsFC differences for five pairs of ROIs became insignificant (p > 0.01) due

to regression with the biased motion estimates. Among these five pairs of ROIs, four of them are con-

nections between DMN and TPN. These findings suggest that regression with biased motion estimates325
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may impede the detection of rsFC differences between the young and old groups. Because rsFC of the

DMN plays a key role in understanding the aged brain (reviewed in (Ferreira and Busatto, 2013)), it

can be important for future aging studies to minimize the effect of the bias on rsFC analyses. Based

on our results, investigators can use motion estimates from the first echo data (if available) or consider

excluding the Ty and Tz motion estimates from the motion regression. Moreover, our findings indicate330

that the biased motion estimates may lead to discrepancies in rsFC results via regression. Therefore,

when comparing results from existing aging studies with different processing methodologies, the potential

effect of the bias needs to be considered. Concerning this matter, future work that thoroughly examines

the effect of the bias on the young vs. old rsFC analysis would be helpful.

Our findings revealed that the effect of the bias on the young vs. old rsFC analysis may be caused by335

different levels of aGS and head motion between the groups, with the old subjects showing a lower level

of aGS and a higher level of head motion than the young subjects. It has been reported that old subjects

tend to have greater head motion during rsfMRI scans (Saccà et al., 2021; Hausman et al., 2022), which

reflects declined executive functioning with aging (Hausman et al., 2022). On the other hand, a direct

comparison of aGS between young and old groups appears to be outside of prior studies. Nevertheless,340

previous studies have reported that old subjects show lower rsFC and BOLD variability (measured as the

standard deviation of BOLD timeseries) in large-scale brain networks, including the DMN, compared to

young subjects (Ferreira and Busatto, 2013; Grady and Garrett, 2018; Nomi et al., 2017; Kumral et al.,

2020), supporting the observed lower aGS in the old subjects.

In conclusion, we found that resting-state global brain activity can lead to bias in Ty and Tz motion345

estimates obtained with a widely used motion correction algorithm. Furthermore, the bias in the motion

estimates can lead to reductions in the ROI-ROI rsFC obtained after motion regression, with an increasing

level of effect for runs showing higher aGS and lower head motion. Moreover, our results show that the

bias can reduce group-level FC differences between young and old subjects. To minimize the effect of the

bias, investigators can use motion estimates from the first echo data (if available) or consider excluding350

the Ty and Tz motion estimates from the motion regression. Future work is needed to investigate the

dependence of the bias on the registration algorithm and scan parameters. In addition, future work

focused on developing registration algorithms with minimal bias would be helpful.
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(a) Motion estimates (Tz) from low motion run

(c) GS and 𝚫𝒎 (Tz) from low motion run (d) GS and 𝚫𝒎 (Tz) from high motion run 

(b) Motion estimates (Tz) from high motion run

at 1/20th scale

(e) GS and 𝚫𝒎 (Tz) after e1 motion 
regression from low motion run 

(f) GS and 𝚫𝒎 (Tz) after e1 motion regression 
from high motion run 

Figure 1: Motion estimates in the Tz axis, including me1 (blue), me2 (green) and ∆m (red) from (a) low and (b) high

motion runs. Panels (c) and (d) show the GS (blue) and ∆m (red) from the low and high motion runs, respectively.

Panels (e) and (f) show the GS (blue) and ∆m (red) after motion regression (MotReg) from the low and high motion runs,

respectively.

15

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.565023doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.565023
http://creativecommons.org/licenses/by-nc-nd/4.0/


pitch (Rx)

yaw (Ry)
roll (R

z)

x-trans (T
x)

y-trans (T
y)

z-trans (T
z)

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

co
rr

el
at

io
ns

 (r
)

0

10

20

30

40

50

60

70

80

%
 o

f s
ig

ni
fic

an
t r

un
s

2.7 3.5
6.6

2.8

38.2

69.3

Data
Data med.
Null

p<0.05/602=8.31e-5
% of significant runs

pitch (Rx)

yaw (Ry)
roll (R

z)

x-trans (T
x)

y-trans (T
y)

z-trans (T
z)

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

co
rr

el
at

io
ns

 (r
)

0

10

20

30

40

50

60

70

80

%
 o

f s
ig

ni
fic

an
t r

un
s

1.2 1.3 3.0

1.8

30.6

61.1

Data
Data med.
Null

p<0.05/602=8.31e-5
% of significant runs

(a) 𝒓(𝜟𝒎,𝒈𝒔) before e1 motion regression (b) 𝒓(𝜟𝒎,𝒈𝒔) after e1 motion regression

Figure 2: Two-sided violin plots showing the distributions of r(∆m,GS) values (blue) and the empirical null distributions

(green) for all six motion axes (a) before and (b) after e1 motion regression. The blue solid lines and circles represent

the median values for each data distribution. For each motion axis, a run-wise p-value threshold of 0.05 was used and the

p-value threshold was divided by the number of runs to correct for multiple comparisons. The black dashed lines show

r(∆m,GS) values that correspond to the p-value thresholds (two-sided) assessed from the empirical null distributions. The

dark red dashed lines and square markers represent the percent of the runs with significant r(∆m,GS) values.
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Figure 3: Visualization of the spatial maps underlying r(∆m,GS) in the Tz and Tx axes from an example run. For each

map, three representative slices (one axial, one sagittal and one coronal) are plotted. From top to bottom, rows 1 through

3 show the βgs
, d

∥d∥2 , and
βgs

⊙d

∥d∥2 maps from e1 and e2, where ⊙ represents element-wise multiplication. Row 4 shows

βgs
⊙d

∥d∥2 difference (e2-e1) maps. From left to right in rows 2 and 3, the first and second columns show the e1 and e2 maps

in the Tz axis, and the third and fourth columns show the e1 and e2 maps in the Tx axis. The red and blue arrows point

to brain regions showing high positive and negative values in the maps, respectively.
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Figure 4: Differences (e2-e1) in ROI-ROI FC calculated after e2 and e1 motion regression. The differences were averaged

across runs within each of four groups: (a) low motion and high aGS runs, (b) low motion and low aGS runs, (c) high

motion and high aGS runs and (d) high motion and low aGS runs. Each subplot is divided into an upper right triangle

showing the averaged differences in r-values and a lower left triangle showing the the averaged differences in z-scores.
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Figure 5: (a-c) Two-sided violin plots showing the distributions of (a) aGS, (b) mean FD and (c) mean ∆z (e2-e1) over ROI

pairs for the young (green) and old (purple) subjects. Two-sided permutation tests were calculated to assess the significance

thresholds for the differences between the young and old subjects. Young subjects show significantly (p < 1× 10−6) larger

aGS, smaller mean FD and more negative mean ∆z as compared to the old subjects. Panels (d-e) show the mean ∆z and

∆r over (d) young and (e) old subjects for all ROI pairs. Each subplot is divided into an upper right triangle showing the

averaged differences in r-values and a lower left triangle showing the the averaged differences in z-scores.
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Figure 6: (a-b) ROI-ROI FC differences (young-old) between young and old subjects calculated after (a) e1 and (b) e2

motion regression. Each subplot is divided into an upper right triangle showing the averaged differences in z-scores between

young and old subjects and a lower left triangle showing the effect size of the differences. The black asterisks indicate the

statistical significance of the differences assessed by permutation tests (*: p < 0.01, **: p < 1× 10−3, ***: p < 1× 10−6).

A positive value (red color) indicates that the young subjects show higher connectivity as compared to the old subjects.

(c) Scatter plot comparing the differences in ROI-ROI FC between the young and the old subjects calculated after e1 and

e2 motion regression for all pairs of ROIs. (d) Scatter plot comparing the effect sizes of the differences in ROI-ROI FC

between the young and the old subjects calculated after e1 and e2 motion regression for all pairs of ROIs. e1 MotReg: e1

motion regression; e2 MotReg: e2 motion regression.
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Appendix A. Motion estimation in AFNI 3dvolreg355

In this section, we review the theory and implementation of AFNI 3dvolreg. Let Y = [y1,y2, ...,yK ] ∈

RN×K be the functional data, where N is the number of voxels, K is the number of volumes and

yk ∈ RN×1 is the kth column of Y , i.e. the kth volume of the data with k = 1, 2, ...,K. Let yr ∈ RN×1

be the reference image used in the registration. To align yk to yr, the algorithm first estimates the motion

parameters ak ∈ R6×1 (consisting of 3 rotational and 3 translational motion parameters) by iteratively

minimizing the weighted least square cost function:

ak = argmin
a

||W
1
2 (yk − T (yr,a))||22 (A.1)

where W is a diagonal weight matrix and T : RN×1 → RN×1 is the function that performs rigid body

transformation. Because we disabled the weights, we have W = I, where I is the identity matrix.

After obtaining ak, the algorithm then transforms yk with −ak, which can be written as T (yk,−ak), to

register yk to yr. To solve the minimization problem in Eq. A.1, the algorithm linearizes the rigid body

transformation with a first-order Taylor approximation, which can be written as

T (yr,a) ≈ yr +
6∑
j

aj
∂T (yr,a)

∂aj
(A.2)

where aj is the jth element of a. Furthermore, the partial derivatives in Eq. A.2 are approximated with

finite differences:

dj ≜
∂T (yr,a)

∂ai
≈ T (yr, ϵsj)− T (yr,−ϵsj)

2ϵ
, j = 1, 2, ..., 6 (A.3)

where ϵ is a scalar with small magnitude and sj is a 6×1 vector whose jth element is one while the other

elements are zeros. Here, we use dj ∈ RN×1 to represent the partial derivative with respect to (w.r.t.)

aj and refer to it as the spatial derivative image w.r.t. the jth motion axis. The linearization of the

transformation can then be written as

T (yr,a) ≈ yr +Da (A.4)

where D = [d1,d2, ...,d6] ∈ RN×6. With the above linearization and W = I, the minimization problem

in Eq. A.1 can be written as

ak = argmin
a

||yk − yr −Da||22 (A.5)
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In AFNI 3dvolreg, the motion parameters are estimated by iteratively minimizing the cost function in

Eq. A.5. Let ak,n denote the motion parameters estimated at the nth iteration,

ak,n = (DTD)−1DT (yk,n − yr) n = 1, 2, ..., Nk (A.6)

where Nk is the total number of iterations for the kth volume and yk,n can be written as

yk,n =

yk, n = 1

T (yk,n−1,−ak,n−1), n = 2, 3, ...Nk

(A.7)

The algorithm stops the iterative process if ak,n is smaller than some fixed thresholds (for the used dataset,

the translational and rotational thresholds are 0.03 mm and 0.02 degree, respectively) or Nk exceeds the

maximum number of iterations, denoted as Nmax. The algorithm uses this iterative process to deal with

the approximation error in the linearization of the rigid transformation described in Eq.A.4. In practice,

for most volumes, the iterative process stops at the second iteration, suggesting that the parameters

estimated in the second iteration are smaller than the thresholds and Eq.A.4 is a valid approximation.

After the iterative estimation process stops, the motion parameters of the kth volume are calculated by

summing the estimated parameters over all iterations:

ak =

Nk∑
n=1

ak,n (A.8)

Stacking the motion parameters over volumes yields

M = [aT
1 ;a

T
2 ; ...;a

T
K ] (A.9)

Here, the jth column of M represents the time series of the motion parameters of the jth motion axis

(denoted as mj). Furthermore, in order to explicitly show the relation between M and the functional

data Y , we define yk,n = yr for Nk < n ≤ Nmax so that ak,n = 0 for Nk < n ≤ Nmax. Therefore, the

motion parameters can be written as

M = [

Nmax∑
n=1

aT
1,n;

Nmax∑
n=1

a2,n; ...;

Nmax∑
n=1

aT
K,n]

=

Nmax∑
n=1

[(y1,n − yr)
T ; (y2,n − yr)

T ; ...; (yK,n − yr)
T ]D(DTD)−1

=

Nmax∑
n=1

(Y T
n − 1KyT

r )D(DTD)−1

(A.10)
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where Y n = [y1,n,y2,n, ...,yK,n] and 1K is a K by 1 all-one vector. Here, (Y T
n − 1KyT

r )D(DTD)−1

represents the parameters estimated at the nth iteration.

In practice, the algorithm directly estimates and outputs the transformation parameters used to align

yk to yr (i.e., −ak) by using −D. Therefore, in this work, the transformation parameters generated by

AFNI 3dvolreg were multiplied by −1 to represent the motion parameters ak.360

Appendix B. Empirical approximations to the motion estimates

To explore the key terms underlying r(∆m,GS), we derived the following empirical approximations

to the motion estimates:

M = (Y T − 1KyT
r )D(DTD)−1︸ ︷︷ ︸

1st iteration

+

Nmax∑
n=2

(Y T
n − 1KyT

r )D(DTD)−1

︸ ︷︷ ︸
other iterations

≈ MA1 = (Y T − 1KyT
r )D(DTD)−1 (Approx. 1)

≈ MA2 = Y TD(DTD)−1 (Approx. 2)

≈ MA3 = Y TD(diag(diag(DTD)))−1 (Approx. 3)

(B.1)

where 1K ∈ RK×1 is an all-one vector and diag() denotes the Matlab function diag(). The first ap-

proximation of the motion estimates, denoted as MA1, are the motion parameters estimated at the first

iteration. This approximation is valid when Eq.A.4 shows minimal approximation error. Then, because

the reference image is almost orthogonal to the derivative images (i.e., DTyr ≈ 0), we made the second365

approximation, denoted as MA2, as the motion parameters estimated without subtracting the reference

image from the functional data. The third approximation of the motion estimates, denoted as MA3, are

the motion parameters estimated after zeroing out the off-diagonal terms in DTD, reflecting the fact

that the covariance between the derivative images in different axes is relatively small compared to the

variance of the derivative images. To evaluate the approximations, the temporal correlations between M370

and the approximated motion estimates were calculated for each motion axis. As shown in Fig. S13, M

is highly correlated with MA1 (mean r = 0.99), MA2 (mean r = 0.99), and MA3 (mean r = 0.91)).

Fig. S14 displays the motion estimates before and after the approximations in the Tz and Ty axes from

three example runs.

With the third approximation, the motion estimates of one motion axis, denoted as mA3 ∈ RK×1
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can be written as

mA3 =
Y Td

∥d∥2
(B.2)

where d ∈ RN×1 is the spatial derivative image w.r.t. that motion axis.375

Appendix C. The approximation to r(∆m,GS)

To interpret r(∆m,GS), we derived a mathematical approximation that reveals the key factors. We

begin with the expression

r(gs,∆m) =
gT
s ∆m

∥∆m∥∥gs∥
=

gT
s (me2 −me1)

∥∆m∥∥gs∥
(C.1)

where gs ∈ RK×1, ∆m = me2 −me1 ∈ RK×1 represent the GS and the difference between the e2 and

e1 motion estimates, respectively, and mei ∈ RK×1 represents the motion estimates from the ith echo.

Then, using the approximation described in Eq.B.2, we can write

r(∆m,GS) =
gT
s (me2 −me1)

∥∆m∥∥gs∥

≈
gT
s (

Y T

e2de2

∥de2∥2
− Y T

e1de1

∥de1∥2
)

∥∆m∥∥gs∥

=
∥gs∥
∥∆m∥

(
gT
s Y

T
e2de2

∥gs∥2∥de2∥2
− gT

s Y
T
e1de1

∥gs∥2∥de1∥2
)

=
∥gs∥
∥∆m∥

(
βT
gs,e2

de2

∥de2∥2
−

βT
gs,e1

de1

∥de1∥2
)

(C.2)

where βgs,ei
=

Y T

eigs

∥gs∥2 is the GS beta coefficient map calculated from the linear fit of the GS to the

unregistered functional data of the ith echo.
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