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Abstract

Head motion is a significant source of artifacts in resting-state fMRI (rsfMRI) studies and has been
shown to affect resting-state functional connectivity (rsFC) measurements. In many rsfMRI studies,
motion parameters estimated from volume registration are used to characterize head motion and to
mitigate motion artifacts in rsfMRI data. While prior task-based fMRI studies have shown that task-
evoked brain activations may induce temporally correlated bias in the motion estimates, resulting in
artificial activations after registration, relatively little is known about neural-related bias in rsfMRI motion
parameters. In this study, we demonstrate that neural-related bias exists in rsfMRI motion estimates and
characterize the potential effects of the bias on rsFC estimates. Using a public multi-echo rsfMRI dataset,
we use the differences between motion estimates from the first echo and second echo data as a measure of
neural-induced bias. We show that the resting-state global activity of the brain, as characterized with the
global signal (GS), induces bias in the motion estimates in the y- and z-translational axes. Furthermore,
we demonstrate that the GS-related bias reflects superior-inferior and anterior-posterior asymmetries in
the GS beta coefficient map. Finally, we demonstrate that regression with biased motion estimates can
negatively bias rsFC estimates and reduce rsFC differences between young and old subjects.
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1. Introduction

Head motion is a major source of artifacts in fMRI data, and motion estimates from data registration

are commonly used to characterize and mitigate motion-related artifacts (Friston et al., 1996} Power et al.,

[2012} [Satterthwaite et al.,[2012; Dijk et al., 2012} [Yan et al. 2013; Power et al.,[2014} [2015]). Prior task-

s based IMRI studies demonstrated that task-evoked brain activations can induce bias in motion estimates

that is temporally correlated with brain activations (Freire and Mangin| 2001} [Freire et al. [2002). In

contrast, relatively little is known about neural-related bias in motion estimates from resting-state fMRI
(rsftMRI) data.

Detecting such bias is challenging due to the absence of ground truth head motion and neural

10 signals in rsfMRI studies. To first order, fMRI signal changes resulting from head motion and neural

activity can be distinguished based on their dependence on echo time (TE): neural activity causes TE-

dependent blood-oxygen-level-dependent (BOLD) fluctuations, whereas head motion largely contributes

to TE-independent non-BOLD signal changes. Taking advantage of these differences, prior studies have

demonstrated that BOLD and non-BOLD signals can be distinguished using multi-echo fMRI (MEfMRI)

15 that acquires data at different TEs (Buur et al., |2009; Bright and Murphy, 2013; Kundu et al. 2012,

. For example, Burr et al. effectively used the first echo data acquired at a short TE with minimal

BOLD-weighting to model and correct for the motion artifacts in the BOLD-weighted second echo data
(Buur et all, [2009).

Burr’s findings imply that it may be feasible to identify neural-related bias by comparing motion

2 estimates obtained from the first and second echo data. Since head motion primarily results in TE-
independent signal changes, its effects should be captured in the motion estimates derived from both the
first and second echo data. In contrast, there is typically minimal BOLD weighting in the first echo data
but strong BOLD weighting in the second echo data. As prior work has shown that a higher level of brain

activation can lead to greater bias in motion estimates (Freire and Mangin| [2001; [Freire et al., |2002),

»  potential neural-related bias should exhibit greater magnitude in the motion estimates from the second
echo data as compared to those from the first echo data. Taken together, potential neural-related bias
may be isolated from head motion by examining the difference between the motion estimates obtained
from the first and second echo data.

Prior task-based fMRI studies have shown that brain activations with a larger spatial extent can

» lead to a higher level of bias in the motion estimates (Freire and Mangin, 2001; [Freire et al., 2002).
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This finding motivates us to examine whether global brain activity in rsfMRI leads to bias in the motion

estimates. In this study, we used the global signal (GS), calculated as the mean fMRI signal over the

voxels within the brain, as a proxy for global brain activity. While the interpretation of the GS is still

controversial (reviewed in (Liu and Falahpour} |2020), there is growing evidence suggesting that the GS

s is linked to global neural activity (Wong et al.l 2013 [2016; [Falahpour et al., 2018} [Liu et al, [2018; (Gu
et al., 2021)).

In this work, we characterized the bias in rsfMRI motion parameters as estimated by AFNI Sdvolreg.

Furthermore, we investigated the consequences of using biased estimates as regressors in resting-state

functional connectivity (rsFC) analyses.

w0 2. Methods

2.1. Subjects and MEfMRI data acquisition

In this study, we used a public dataset (denoted as the Cornell-York dataset and described in (Setton
et al.| [2022))) downloaded from OpenNeuro (dataset |ds003592). The Cornell-York dataset includes multi-
echo fMRI data collected from 301 healthy subjects (181 younger and 120 older adults). The data from

s 238 subjects were acquired on a 3T GE Discovery MR750 MRI scanner with a 32-channel head coil. The
data from the remaining 63 subjects were collected on a 3T Siemens Trio MRI scanner with a 32-channel
head coil. For each subject, two 10-min resting-state runs were acquired using an ME EPI sequence on
the GE scanner (204 volumes; TR=3000 ms; TE=13.7, 30,47 ms; flip angle=83°; FOV=210 mm; voxel
size=3 x 3 x 3 mm?; matrix size=72 x 72 x 46; 2.5 x SENSE acceleration; phase encoding direction: A-P) or

5o on the Siemens scanner (200 volumes; TR=3000 ms; TE=14,29.96,45.92 ms; flip angle=83°; FOV=216
mm; voxel size=3.4 x 3.4 x 3 mm?; matrix size=64 x 64 x 43; 3x GRAPPA acceleration; phase encoding
direction: A-P). The subjects were instructed to stay awake and lie still with their eyes open during the

scans.

2.2. Data preprocessing

55 AFNI was used for data preprocessing (Coxl, [1996|). The fMRI data from the first and second echoes
were used and denoted as el and e2, respectively. The data were first reoriented to Right-Anterior-Inferior
(RAI) orientation (AFNI Sdresample -orient RAI), and the first 6 TRs of the data were discarded to

allow magnetization to reach a steady state. For each run and each echo, the data were normalized so that
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the mean signal over all voxels and all volumes was equal to 100. Since the normalization is equivalent
6 to multiplication by a global scaling factor, the spatial and temporal information of the data in each run

is preserved.

2.3. Calculation of the motion estimates and global signal

In this study, we examined the motion estimates from AFNI 3dvolreg (Cox and Jesmanowiczl {1999)

using the first volume as the reference volume. The default weights used in registration were disabled

e by feeding an all-ones image to the -weight option. This approach weights all voxels equally during

registration. For each run, the motion was estimated using both the el and e2 data. Then, the motion

parameters were multiplied by —1 to represent the movement of the volumes as compared to the reference
volume (see [Appendix_A)).

For each run, the global signal (GS) was calculated from the unregistered e2 data. Before calculating

o the GS, each voxel’s signal was converted to a percent change signal. Then, the GS was computed by

averaging over all voxels within the brain (brain masks were formed by AFNI 8dAutomask). Finally, the

mean and the linear and quadratic trends were regressed out from the motion estimates and GS.

2.4. Identifying BOLD-weighted GS bias in the motion estimates

To characterize BOLD-weighted GS bias in the motion estimates, we considered a simple signal
model for the el and e2 motion estimates. Let m. € R¥*! and m., € R¥*! represent the motion
estimates of one motion axis each from el and e2, respectively, where K is the number of volumes. We
model the motion estimates as the weighted sum of head motion, BOLD-weighted GS bias and estimation

error,

Mel = Qe1Mp + 661TE195 + €c1 (1)
Mey = QeaMp + 562TE295 + €e2
where mj, € REX! represents head motion, a; is the regression weight corresponding to head motion for
the ith echo, g, € REX! is the GS, TE; and TE, are the first and second echo times, respectively, B.; is
the regression weight of the BOLD-weighted GS bias for the ith echo and €.; € RE*! is the estimation

error for the ith echo. With the above model, subtracting m,; from m.o yields

Am = mes — Mer = (e2 — ae1)Mp + (Be2TE2 — Be1TE ) g, + €c2 — €1 (2)
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Since prior findings suggest that head motion can be accurately estimated from both el and e2 data

(Buur et al.| [2009; |[Speck and Hennig}, [2001)), we assume that a1 = a2, yielding
Am = (/BeQTEQ - BelTEl)gs + €c2 — €c1 (3)

Note that Am isolates BOLD-weighted GS bias from head motion. Therefore, we can examine the
7 presence of potential bias by assessing the significance of the correlations between Am and the GS. For
each run and motion axis, we calculated the correlation between Am and the GS (denoted as r(Am, GS))
and assessed the statistical significance of r(Am,GS) values on a per-run basis using empirical null
distributions. For each motion axis, a null distribution was formed by calculating r(Am, GS) values
using all possible permutations across runs, i.e. pairing the GS from one run to Am from other runs and
s looping over all runs. The resulting null distributions consisted of 361,802 samples. Then, for each motion
axis, we used the null distribution to compute the two-sided p-value associated with the r(Am, GS) value
calculated from each run’s measured data. A p-value threshold of 0.05 was divided by 602 (the number of
runs) to correct for multiple comparisons, and the Bonferroni corrected threshold was used to determine
the significant correlations. Finally, we calculated the percentage of runs that show significant r(Am, GS)

s values for each motion axis.
In this study, we used the GS to represent the global activity of the brain. To reduce the potential
effect of motion artifacts in the GS, we repeated the above analysis after regressing out the el motion
regressors from both the GS and Am. The el motion regressors included the six motion parameters

estimated from the el data and their first derivatives.

w 2.5. Spatial maps underlying r(Am, GS)

To provide insight into the mechanisms underlying BOLD-weighted GS bias, we derived an empirical

approximation for r(Am, GS). As shown in

T T
g, BQ,,e2de2 ﬂg,,adel
A ~ s s _ s 4
7’( m,GS) ||Am|| ||d62H2 ||del||2 ()

where ﬂg i € RN*1 is the GS beta coefficient map for the ith echo, d.; € RV*! is the spatial derivative
image with respect to (w.r.t.) one motion axis of the ith echo, N is the number of voxels and || - || denotes
the L2-norm. For each run, the GS beta coefficient map ,6'9 i = 1”;7”92 was calculated from the linear

fit of the GS to the unregistered functional data Y.; € RV*¥ of the ith echo.
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We calculated the spatial derivative images w.r.t. motion axes following the calculation in AFNI
3dvolreg. For each run and each echo, the spatial derivative images were calculated based on the reference
volume used in motion estimation. Denoting the reference image of the ith echo as y, .; € RNV>1 the
spatial derivative image of the ith echo w.r.t the jth motion axis was calculated as

Tj (yr,ei’ Ej) - Tj (yr,eiv *ej)

dei j =
) 2€j

, 1= 1727j € {RX7 RY7 RZa TX7 TYa TZ} (5)

os  where Tj : RN*1 5 RN*1 is the function that transforms the reference volume along the jth motion axis,
¢; is the transformation parameter, Rx, Ry and Rz represent x-, y- and z-rotation, respectively and Tx,
Ty, Tz represent x-, y- and z-translation, respectively. When calculating the spatial derivative images,
the transformation was performed with AFNI 3drotate -heptic. For the translational motion axes, € was
set to 2.1 mm. For the rotational motion axes, € was set to 0.4°. The exact values were used in AFNI
w0 ddvolreg when creating the derivative images and were calculated based on the spatial resolution of the

functional data.

2.6. Effect of the bias on ROI-ROI FC via motion regression

In this work, we investigated the effect of regression with biased motion estimates on rsFC estimates

between nodes within the default mode network (DMN) and task positive network (TPN). The regions

s of interest (ROIs) within these networks were defined in (Dijk et all [2010]), with four ROIs in the DMN
(the posterior cingulate cortex (PCC), lateral parietal cortex (LatPar), medial prefrontal cortex (mPFC)
and Hippocampal formation (HF)) and three ROIS in the TPN (frontal eye field (FEF), intraparietal
cortex (IPS) and middle temporal area (MT+)). Seed ROIs were created using a sphere with a radius
of 12 mm centered about each seed coordinate. The left and right ROIs were combined to form bilateral

uno  ROIs. Prior to averaging signals within each ROI, the e2 data after volume registration were transferred
to MNI space and spatially smoothed with a 4mm FWHM Gaussian kernel.

To reduce the confounding effects of head motion, motion censoring was performed before motion
regression. For each run, framewise displacement (FD) was calculated based on six motion parameters
estimated from the el data (the calculation of FD follows the description in (Power et al.,|2012))). Volumes

us  with FD values larger than 0.2 mm were censored. We showed in the supplementary materials (Fig.
and that motion censoring has little impact on the effect of regression with biased motion estimates

on rsFC.
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After motion censoring, we calculated and compared the ROI-ROI FC after e2 and el motion re-
gression to assess the effect of potential bias on FC analysis. For each ROI, the ROI-based seed signal

1o was calculated by averaging the percent change BOLD signal over the voxels in that ROI. Then, the
motion regressors, including the six motion parameters and their first derivatives were regressed out
from the ROI signals. For each pair of ROIs, the ROI-ROI FC was computed as Pearson’s correlation
coefficients between the ROI average signals. Correlation values were converted to z-scores using the
Fisher-z transformation. The differences in the ROI-ROI FC calculated after e2 and el motion regression

125 were calculated to assess the effect of the bias on FC. The e2-el differences in r-values and z-scores were
denoted as Ar and Az, respectively.

Furthermore, we examined the effect of the bias on FC within four groups of runs based on levels
of head motion and GS. For each run, the level of head motion was measured by the mean FD value
calculated by averaging over the FD values across time. The level of the GS was measured by the GS

130 amplitude (aGS) computed as the standard deviation of the GS after motion censoring. All the runs
were first divided into two groups based on their mean FD values. Runs with mean FD values larger
than the group median were classified as high motion runs and the remaining runs were classified as low
motion runs. Then, within each FD-based group, the runs were further divided into two groups based
on aGS. Runs with aGS values larger than the group median were classified as high aGS runs and the

135 remaining runs were classified as low aGS runs. Consequently, we formed four groups of runs: 1) low
motion and high aGS runs, (2) low motion and low aGS runs, (3) high motion and high aGS runs and
(4) high motion and low aGS runs. A one-way ANOVA was calculated on mean Az over all ROI pairs
to assess whether there was a group effect. Post-hoc two-sample t-tests were calculated to characterize
the differences between pairs of groups.

140 Additionally, to verify that the effect of the bias on FC was dominated by the motion estimates from
the axes where we found GS-induced bias, we evaluated the effect of two subsets of motion regressors.
One of the subsets included the motion estimates and their first derivatives from the Ty and Tz axes
(where we found GS-induced bias), while the other subset included the motion regressors from the other

four motion axes, where minimal GS-induced was observed.

us  2.7. Effect of the bias on young vs. old group-level FC analysis

In this study, we used a public dataset consisting of young and old subjects (181 younger and 120

older adults as described in |Setton et al.[(2022])). We first examined whether the bias in motion estimates
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affects the ROI-ROI FC of the young and old subjects differently by comparing Ar and Az between the
young and old runs. Furthermore, we investigated if the bias alters the group-level FC analysis between
10 the young and old subjects. For each pair of ROIs, the significance of the FC differences between the
young and old subjects was assessed by a permutation test with 1 x 107 random permutations to allow
us to examine the commonly used p-values thresholds of 0.01, 1 x 1073 and 1 x 1075, Also, the effect
size of the differences was measured with Cohen’s d. The FC differences and the significance and effect

size of the differences calculated after el and e2 motion regression were compared.

15 3. Results

3.1. Ezxamples of the GS and motion estimates

Fig. [1] (a,b) show the motion estimates in the Tz axis, including m.; (blue), meo (green) and Am
(red) from two example runs with (a) low and (b) high levels of motion. Note that for the high motion
run, me; and meo are plotted at 1/20th scale to facilitate comparison with m.; and mey from the low
w0 motion run. As shown in these subfigures, Am estimates from both runs fluctuate in a similar range
from —0.05 to 0.05 mm (std(Am) = 0.017 and 0.025 for the low and high motion runs, respectively).
In contrast, the standard deviations of m.; and mes from the high motion run (std(m.;) = 0.583,
std(mez) = 0.602) are an order of magnitude larger than the standard deviations of me; and m.o from

the low motion run (std(m.;) = 0.027, std(m.2) = 0.034).

165 Fig. 1] (¢) and (d) show the GS and Am from the low motion and high motion runs, respectively.
For the low motion run, Am covaries with the GS throughout the run, leading to a strong r(Am, GS) of
0.93. The high motion run shows a weaker r(Am, GS) of 0.34 as compared to the low motion run, and
reflects motion artifacts in the GS. After motion regression (panels e and f), the r(Am, GS) for the high
motion run increases to 0.62, while the r(Am, GS) of the low motion run remains at a high value of 0.92,

o suggesting that the relation between the GS and Am is enhanced when motion artifacts are minimized.

3.2. Significance testing for r(Am, GS) values

To examine the presence of BOLD-weighted GS bias over runs and motion axes, we assessed the
significance of r(Am, GS) values on a per-run and per-axis basis using permutation-based empirical null
distributions. Fig.[2|shows two-sided violin plots of the distributions of r(Am, GS) values (blue) and the

ws empirical null distributions (green) for all six motion axes (a) before and (b) after el motion regression.
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The blue solid lines and circles represent the median values for each distribution of measured r(Am, GS)
values. The dashed lines represent the r(Am, GS) values corresponding to a Bonferroni corrected p-value
threshold of 0.05 (two-sided) assessed from the empirical null distributions. The dark red square markers
represent the percentages of runs showing r(Am, GS) values that are significantly different from zero.
180 In the Tz axis, 61.1% and 69.3% of the runs show significant positive r(Am, GS) values before and
after el motion regression, respectively. The group median r(Am, GS) value increases from 0.55 to 0.58
after el motion regression. Remarkably, 96 out of 602 total runs show r(Am,GS) values larger than
0.8 after el motion regression. In the Ty axis, 30.6% and 38.2% of the runs show significant r(Am, GS)
values before and after el motion regression, respectively. The group median r(Am, GS) value increases
15 from 0.29 to 0.34 after el motion regression. Fig. [S1] and [S2] show examples of the GS and the motion
estimates, including m.;, mes and Am in the Tz and Ty axes, respectively. Together, these findings
indicate the presence of BOLD-weighted GS bias in the Tz and Ty motion estimates.
For the other motion axes (Rx, Ry, Rz and Tx), the percent of significant r(Am, GS) values fluctuates
around 5%, ranging from 1.2% to 6.6%, indicating minimal BOLD-weighted GS bias for these axes.

wo 8.8, Visualizing the spatial maps underlying r(Am, GS) values

In the previous section, BOLD-weighted GS bias in the motion estimates was identified by examining

the temporal correlations between the GS and Am. Furthermore, as described in Eq. 4, 7(Am, GS) can
T
d
be approximated as multiplying the difference of ﬁcngZ from e2 and el by a scaling factor ngﬁlll”. The

approximation provides us a unique angle to interpret the GS bias by looking at the relation of the ﬁg,

. . o d Bg. od Bg od .
s and d spatial maps. Fig. [3| visualizes ﬁg T TER HCiIP , and the HCiIP difference maps in the Tz and

Tx axes from an example run, where ® represents element-wise multiplication.
In the Tz axis, # exhibits high positive and negative values at the superior and inferior edges of
the brain, respectively, whereas ﬁg exhibits positive values across the cortex, including the superior edge

of the brain but exhibits relatively low values (approaching zero) along the inferior edge. As a result,

Bg od
200 most of the high values in \qu ci||2 are positive with greater amplitudes for e2, resulting in high positive
. ﬁg od . /Bg od
values in the T ds|\2 difference map. Consequently, summing up the T (i”? difference map leads to a

high r(Am,GS) value. In contrast, for the Tx axis, ﬁ shows high positive and negative values on

the left and right edges, respectively, whereas ,Bg shows high positive values across the cortex, including

od
both the left and right edges. The resulting high positive and negative values observed in the 'BHQ Ci\|2
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25 difference map tend to cancel out, resulting in a lower r(Am, GS) value. Together, these observations
suggest that the GS bias in the Tz motion estimates is a result of ’893 and d sharing a relatively similar
top-bottom asymmetric spatial pattern.

In the Ty axis, as shown in Fig. ﬁ exhibits negative and positive values at the anterior and
posterior edges of the brain, respectively, whereas ,Bgs exhibits positive values across the cortex, including
a0 the posterior edge of the brain but exhibits relatively low values (approaching zero) along the anterior

od
edge. As a result, the positive values in the IBI? sz difference show relatively greater amplitudes as

compared to the negative values, resulting in a high r(Am, GS) value.
Taken together, the GS-induced bias in the Ty and Tz motion estimates relfect the asymmetries in
Bg maps, which show higher values at the superior and posterior parts of the brain as compared to the

a5 inferior and anterior parts of the brain.

3.4. Effect of the bias on ROI-ROI FC via motion regression

In this section, we investigate how the presence of the GS-induced bias in the motion estimates
affects the ROI-ROI FC by examining the differences in the ROI-ROI FC calculated after e2 and el
motion regression. The e2-el differences in r-values and z-scores are denoted as Ar and Az, respectively.

20 Note that motion censoring was applied before motion regression. Fig. 4] shows Ar and Az for all pairs
of ROIs averaged over four groups of runs: (a) low motion and high aGS runs, (b) low motion and low
aGS runs, (c) high motion and high aGS runs, and (d) high motion and low aGS runs. All four groups
demonstrate negative Ar and Az values for all pairs of ROIs, suggesting that the bias in the motion
estimates can reduce FC estimates via motion regression. Comparing groups, we observed that the runs

25 with low motion and high aGS exhibit the most negative Ar and Az values (Ar ranging from -0.02 to
-0.09 and Az ranging from -0.63 to -1.41), while the runs with high motion and low aGS show Ar and
Az values close to zero (Ar ranging from -0.00 to -0.02 and Az ranging from -0.05 to -0.33).

Furthermore, a one-way ANOVA on the mean Az values calculated over ROI pairs showed that there
is a significant (p < 1 x 107, F3 593 = 40.53) difference among groups. The results from the post-hoc

20 t-tests indicate that the low motion and high aGS runs exhibit significantly (p < 1 x 10~%) more negative
mean Az values as compared to the other three groups, whereas the high motion and low aGS runs
exhibit significantly (p < 1 x 1079) less negative mean Az values as compared to the other three groups.
There is no significant (p > 0.01) difference between the group of low motion and low aGS runs and the

group of high motion and high aGS runs. The distributions of the mean Az values over ROI pairs for

10
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255 the four groups can be found in Fig.

Fig. [S6] and [S7] demonstrate that the observed effect of the bias is dominated by the motion estimates
in the Ty and Tz axes. In Fig. [S6] when including only the Ty and Tz motion regressors, the results are
similar to those shown in Fig. 4 In contrast, when excluding the Ty and Tz motion regressors (Fig. [S7]),
we observed minimal differences between the FC estimates obtained with el and e2 motion regression.

20 Together, these results indicate that regressing out the motion estimates with GS-induced bias may lead
to reductions in FC estimates, and there is a stronger effect for runs with higher aGS and lower head

motion.

3.4.1. Effect of the bias on young vs. old group-level analysis
As shown in Fig. 5| (a) and (b), young subjects show significantly (p < 1 x 107%) higher aGS and
25 lower mean FD values as compared to the old subjects. Consequently, as shown in Fig. [5[ (¢), the young
subjects show significantly (p < 1 x 107%) more negative mean Az values over ROI pairs as compared
to the old subjects. The mean Az values over runs and ROI pairs are -0.69 and -0.17 for the young and
old subjects, respectively. Furthermore, Fig. [5| (d) and (e) visualize the mean Ar and Az values over the
young and old subjects for all ROI pairs. We observed that for all ROI pairs, the young subjects show
0 more negative Ar and Az values as compared to the old subjects. Since Az and Ar reflect the effect
of the bias when performing motion regression, these results suggest a greater impact of the bias on the
young subjects as compared to the old subjects.
Moreover, we examined whether the bias affects the group-level analysis between the young and
the old subjects. Fig. |§| (a) shows the differences in ROI-ROI FC between the young and old subjects
x5 calculated after motion censoring and el motion regression. We observed that the young subjects show
significantly (p < 1x 10~2) higher FC than the old subjects for all ROI pairs, except for the pair between
IPS and LatPar. However, after e2 motion regression, as shown in Fig. |§| (b), the significant differences
for five pairs of ROIs become insignificant (p > 0.01), including the pairs between (1) PCC and FEF, (2)
PCC and IPS, (3) LatPar and FEF, (4) LatPar and MT+ and (5) FEF and IPS. Additionally, Fig. [] (c)
w0 and (d) show that e2 motion regression reduces the FC differences between young and old for all pairs
of ROIs as compared to el motion regression. Furthermore, as shown in Fig. [S§ and [S9} we verified that
the observed effect is dominated by regressing out the Ty and Tz motion regressors. Together, these
results demonstrate that motion regression with biased motion estimates can lead to underestimation of

FC differences between the young and old subjects.
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s 4. Discussion

In this study, we used a public resting-state MEfMRI dataset to examine whether global brain
activity can lead to bias in rsfMRI motion estimates and to characterize the potential impact on rsFC
estimates. By examining the correlation between the GS and the difference in the motion estimates from
the first and second echoes, we found evidence for GS-related bias in the Tz and Ty motion estimates.

oo We also demonstrated that the GS-induced bias can lead to underestimation of rsFC estimates when
using motion regression, with low motion and high aGS runs exhibiting the greatest reductions in FC
due to the bias and high motion and low aGS runs showing minimal reductions in FC. Finally, we showed
that regression with biased motion estimates can reduce rsFC differences between groups of young and
old subjects, due in part to different levels of aGS and head motion between the groups.

275 Extending prior studies that examined bias in task-based fMRI motion estimates, we identified
BOLD-weighted bias in rsfMRI motion estimates and investigated its effect on rsFC. Moreover, utilizing
multi-echo fMRI data, we proposed a novel method to detect the BOLD-weighted bias in real motion
estimates over a large sample of runs with rigorous statistical tests. In contrast, in (Freire and Mangin,
2001; |Freire et all |2002), the existence of the bias in task-based fMRI is primarily illustrated using

20 simulation with experimental data limited to one scan. Moreoever, to investigate the underlying cause of
the observed bias, we proposed an empirical approximation to r(Am, GS) and used this approximation
to demonstrate how the presence of the GS-induced bias in the motion estimates may be attributed to

the superior-inferior and posterior-anterior asymmetric spatial patterns in the GS beta coefficient map
Bg.:
285 While the interpretation of the GS is still controversial (reviewed in (Liu and Falahpour| [2020))), there
is growing evidence suggesting that the GS is linked to vigilance (also known as arousal level) (Wong
et al., 2013}, |2016; [Falahpour et al.l 2016, 2018}, |Liu et al, |2018; |Gu et al., |2021). For example, [Falahpour,
et al.[(2016) found that the GS is negatively correlated with the EEG vigilance. Furthermore, studies have
shown that the vigilance templates, calculated as voxel-wise correlations between the EEG vigilance and
20 the fMRI signal, can be used to estimate the EEG vigilance fluctuations during the fMRI scans (Chang
et al., |2016; Falahpour et al.| [2018; |Goodale et al., |2021). To investigate whether the asymmetric spatial
patterns in ﬂgs are associated with the vigilance, Fig. compares ’695 from the example run shown in
Fig. |3| to the eyes-open vigilance template estimated in (Falahpour et al., [2018)) (both spatial maps were

transferred to the MNI152 standard space). As shown in Fig. [S10[ (b), the estimated vigilance template
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205 exhibits similar superior-inferior and posterior-anterior asymmetric spatial patterns to the example ﬁgs
map, resulting in a strong negative correlation (r = —0.38, p < 1 x 107°) between ,Bgs and the vigilance
template. Hence, the asymmetric spatial patterns in '395 may be attributed to resting-state global brain
activity linked to vigilance changes.

We also found that the posterior-anterior asymmetry pattern in '695 may be associated with the

a0 spatial intensity inhomogeneity in the fMRI data, a slow and smooth variation related to a combination
of radio-frequency coil homogeneity, the pulse sequences used and the imaged object itself (Belaroussi
et al.l |2006]). To illustrate the effect of the intensity inhomogeneity, Fig. shows the reference images
and estimated bias field maps from two low motion example runs, one with a high Ty r(Am, GS) value of
0.87 (the example run shown in Fig. and one with a low Ty r(Am, GS) value of 0.07 (an example run

w05 has not shown before). For the example run with a strong r(Am, GS) in the Ty axis shown in Fig. [S11
(a), its reference image and estimated bias field map exhibit higher values at the posterior part of the
brain and lower values at the anterior part of the brain. Whereas, for the run with r(Am, GS) close to
zero (shown in Fig. |[S11| (b)), its reference image and estimated bias field map show comparable values
at the anterior and posterior parts of the brain.

310 While this work primarily focused on motion estimates from AFNI 3dvolreg, we also performed a
supplementary examination of the r(Am, GS) values calculated with motion estimates from different al-
gorithms, including FSL (Jenkinson and Smith} [2001; |Jenkinson et al. [2002), ANTS (Avants et al.l 2011}
2014) and SPM (Friston et al. [1995) and cost functions, including the least-squares (LS), normalized
correlation (NC) and mutual information (MI) cost functions. (See sections and in the sup-

a5 plementary materials for details). In conclusion, both the algorithms and cost functions affect the level
of the bias in the Ty and Tz axes, with the algorithms having a greater impact than the cost functions.
Specifically, AFNI (LS) and SPM (LS) show a relatively greater level of the bias, FSL with different cost
functions (LS, NC and MI) shows a moderate level of the bias, and ANTS (MI) shows the lowest level of
the bias. Future work is needed to thoroughly examine how different algorithms and cost functions affect

20 the level of the bias in the motion estimates.

In this study, we demonstrated that regression with biased motion estimates can reduce rsFC dif-
ferences between the young and old subjects with the DMN and TPN ROIs. Importantly, we showed
in Fig. |§| that the significant rsFC differences for five pairs of ROIs became insignificant (p > 0.01) due
to regression with the biased motion estimates. Among these five pairs of ROIs, four of them are con-

s nections between DMN and TPN. These findings suggest that regression with biased motion estimates
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may impede the detection of rsFC differences between the young and old groups. Because rsFC of the
DMN plays a key role in understanding the aged brain (reviewed in (Ferreira and Busattol [2013)), it
can be important for future aging studies to minimize the effect of the bias on rsFC analyses. Based
on our results, investigators can use motion estimates from the first echo data (if available) or consider

a0 excluding the Ty and Tz motion estimates from the motion regression. Moreover, our findings indicate
that the biased motion estimates may lead to discrepancies in rsFC results via regression. Therefore,
when comparing results from existing aging studies with different processing methodologies, the potential
effect of the bias needs to be considered. Concerning this matter, future work that thoroughly examines
the effect of the bias on the young vs. old rsFC analysis would be helpful.

335 Our findings revealed that the effect of the bias on the young vs. old rsFC analysis may be caused by
different levels of aGS and head motion between the groups, with the old subjects showing a lower level
of aGS and a higher level of head motion than the young subjects. It has been reported that old subjects
tend to have greater head motion during rsfMRI scans (Sacca et al., |2021; Hausman et al., [2022), which
reflects declined executive functioning with aging (Hausman et all [2022)). On the other hand, a direct

s comparison of aGS between young and old groups appears to be outside of prior studies. Nevertheless,
previous studies have reported that old subjects show lower rsFC and BOLD variability (measured as the
standard deviation of BOLD timeseries) in large-scale brain networks, including the DMN, compared to
young subjects (Ferreira and Busatto, 2013} |Grady and Garrett] 2018; Nomi et al., |2017; [Kumral et al.
2020)), supporting the observed lower aGS in the old subjects.

s In conclusion, we found that resting-state global brain activity can lead to bias in Ty and Tz motion
estimates obtained with a widely used motion correction algorithm. Furthermore, the bias in the motion
estimates can lead to reductions in the ROI-ROI rsFC obtained after motion regression, with an increasing
level of effect for runs showing higher aGS and lower head motion. Moreover, our results show that the
bias can reduce group-level FC differences between young and old subjects. To minimize the effect of the

0 bias, investigators can use motion estimates from the first echo data (if available) or consider excluding
the Ty and Tz motion estimates from the motion regression. Future work is needed to investigate the
dependence of the bias on the registration algorithm and scan parameters. In addition, future work

focused on developing registration algorithms with minimal bias would be helpful.
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Figure 1: Motion estimates in the Tz axis, including me1 (blue), me2 (green) and Am (red) from (a) low and (b) high
motion runs. Panels (c) and (d) show the GS (blue) and Am (red) from the low and high motion runs, respectively.
Panels (e) and (f) show the GS (blue) and Am (red) after motion regression (MotReg) from the low and high motion runs,

respectively.

15


https://doi.org/10.1101/2023.10.31.565023
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.31.565023; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(a) r(Am, g;) before el motion regression (b) r(4Am, g,) after el motion regression
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Figure 2: Two-sided violin plots showing the distributions of r(Am, GS) values (blue) and the empirical null distributions
(green) for all six motion axes (a) before and (b) after el motion regression. The blue solid lines and circles represent
the median values for each data distribution. For each motion axis, a run-wise p-value threshold of 0.05 was used and the
p-value threshold was divided by the number of runs to correct for multiple comparisons. The black dashed lines show
r(Am, GS) values that correspond to the p-value thresholds (two-sided) assessed from the empirical null distributions. The

dark red dashed lines and square markers represent the percent of the runs with significant r(Am, GS) values.
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Figure 3: Visualization of the spatial maps underlying »(Am, GS) in the Tz and Tx axes from an example run. For each
map, three representative slices (one axial, one sagittal and one coronal) are plotted. From top to bottom, rows 1 through

Bg ©
3 show the Bg , ﬁ, and ”gd# maps from el and e2, where ® represents element-wise multiplication. Row 4 shows
:39 ) od

W difference (e2-el) maps. From left to right in rows 2 and 3, the first and second columns show the el and e2 maps
in the Tz axis, and the third and fourth columns show the el and e2 maps in the Tx axis. The red and blue arrows point

to brain regions showing high positive and negative values in the maps, respectively.
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Figure 4: Differences (e2-el) in ROI-ROI FC calculated after €2 and el motion regression.

The differences were averaged

across runs within each of four groups: (a) low motion and high aGS runs, (b) low motion and low aGS runs, (c) high

motion and high aGS runs and (d) high motion and low aGS runs. Each subplot is divided into an upper right triangle

showing the averaged differences in r-values and a lower left triangle showing the the averaged differences in z-scores.
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Figure 5: (a-c) Two-sided violin plots showing the distributions of (a) aGS, (b) mean FD and (c¢) mean Az (e2-el) over ROI
pairs for the young (green) and old (purple) subjects. Two-sided permutation tests were calculated to assess the significance
thresholds for the differences between the young and old subjects. Young subjects show significantly (p < 1 x 10~%) larger
aGS, smaller mean FD and more negative mean Az as compared to the old subjects. Panels (d-e) show the mean Az and
Ar over (d) young and (e) old subjects for all ROI pairs. Each subplot is divided into an upper right triangle showing the

averaged differences in r-values and a lower left triangle showing the the averaged differences in z-scores.
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(a) ROI-ROI FC: young vs. old (el MotReg) (b) ROI-ROI FC: young vs. old (e2 MotReg)
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(d) Effect sizes of the differences in ROI-ROI FC:
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Figure 6: (a-b) ROI-ROI FC differences (young-old) between young and old subjects calculated after (a) el and (b) e2
motion regression. Each subplot is divided into an upper right triangle showing the averaged differences in z-scores between
young and old subjects and a lower left triangle showing the effect size of the differences. The black asterisks indicate the
statistical significance of the differences assessed by permutation tests (*: p < 0.01, **: p < 1 x 1073, **¥*; p < 1 x 1076).
A positive value (red color) indicates that the young subjects show higher connectivity as compared to the old subjects.
(c) Scatter plot comparing the differences in ROI-ROI FC between the young and the old subjects calculated after el and
€2 motion regression for all pairs of ROIs. (d) Scatter plot comparing the effect sizes of the differences in ROI-ROI FC
between the young and the old subjects calculated after el and e2 motion regression for all pairs of ROIs. el MotReg: el

motion regression; e2 MotReg: e2 motion regression.
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5 Appendix A. Motion estimation in AFNI 3dvolreg

In this section, we review the theory and implementation of AFNI &dvolreg. Let Y = [y1, Yy, .., Y] €
RN*K he the functional data, where N is the number of voxels, K is the number of volumes and
Y, € RV*! is the kth column of Y, i.e. the kth volume of the data with k = 1,2,..., K. Let y, € RV*!
be the reference image used in the registration. To align y,, to y,., the algorithm first estimates the motion
parameters a; € R6*! (consisting of 3 rotational and 3 translational motion parameters) by iteratively

minimizing the weighted least square cost function:
. 1
a; = arg min [[W= (y;, — T(y,, a))ll3 (A1)

where W is a diagonal weight matrix and 7 : RV*! — RN¥*1 ig the function that performs rigid body
transformation. Because we disabled the weights, we have W = I, where I is the identity matrix.
After obtaining ay, the algorithm then transforms y, with —ay, which can be written as T'(y;,, —ax), to
register y,, to y,.. To solve the minimization problem in Eq. the algorithm linearizes the rigid body
transformation with a first-order Taylor approximation, which can be written as

6

T (y,,a
T(y,.a)~y, + 3 a0, 0 (A2)
j J

where a; is the jth element of a. Furthermore, the partial derivatives in Eq. are approximated with

finite differences:
2 0T (y,, a) ~ T(y,,es;) —T(y,,—€s;)

d.
7 Oa; 2¢ ’

j=12,..6 (A.3)

where € is a scalar with small magnitude and s; is a 6 x 1 vector whose jth element is one while the other
elements are zeros. Here, we use d; € RV*! to represent the partial derivative with respect to (w.r.t.)
a; and refer to it as the spatial derivative image w.r.t. the jth motion axis. The linearization of the

transformation can then be written as
T(y,,a) =y, + Da (A.4)

where D = [d,ds, ...,ds] € RVN*6. With the above linearization and W = I, the minimization problem
in Eq. can be written as
a; = arg min ||y, — y, - Dall3 (A5)
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In AFNI 3dvolreg, the motion parameters are estimated by iteratively minimizing the cost function in

Eq. Let ay, ,, denote the motion parameters estimated at the nth iteration,
_(pTP\-1pT _
Ak,n = (D D) D (yk,n - yr) n= 17 27 ) Ng (AG)

where Ny is the total number of iterations for the kth volume and y, ,, can be written as

T L (A7)
T(Ypn—1,—Ckn-1), n=2,3,..Ng

The algorithm stops the iterative process if ay, ,, is smaller than some fixed thresholds (for the used dataset,
the translational and rotational thresholds are 0.03 mm and 0.02 degree, respectively) or Nj exceeds the
maximum number of iterations, denoted as N,,q;. The algorithm uses this iterative process to deal with
the approximation error in the linearization of the rigid transformation described in Eq[A-4] In practice,
for most volumes, the iterative process stops at the second iteration, suggesting that the parameters
estimated in the second iteration are smaller than the thresholds and Eq[A.4is a valid approximation.

After the iterative estimation process stops, the motion parameters of the kth volume are calculated by

summing the estimated parameters over all iterations:

N
ap = Z akyn (A8)
n=1
Stacking the motion parameters over volumes yields
M = [a{;a3;..;ak] (A.9)

Here, the jth column of M represents the time series of the motion parameters of the jth motion axis
(denoted as m;). Furthermore, in order to explicitly show the relation between M and the functional
data Y, we define Yen = Yr for N < n < Ny so that ay, = 0 for N < n < Nyqz. Therefore, the

motion parameters can be written as

Nmaz Nmaz Numaz
M=[D, aln ) azniei ) ail
n=1 n=1 n=1

Nmaz

= Z [(yl,n - yr)T; (yQ,n - yr)T; ees (yK,n - yr)T]D(DTD)_l (AlO)
n=1
Nmaz

= 3 (T~ 144"\ D(D" D)
n=1
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where Y, = (Y1, Y2.0> - Y] and 1 is a K by 1 all-one vector. Here, YE —1xy?)D(D" D) ?
represents the parameters estimated at the nth iteration.

In practice, the algorithm directly estimates and outputs the transformation parameters used to align
y, to y, (i.e., —ax) by using —D. Therefore, in this work, the transformation parameters generated by

w0 AFNI &dvolreg were multiplied by —1 to represent the motion parameters ay.

Appendix B. Empirical approximations to the motion estimates

To explore the key terms underlying r(Am, GS), we derived the following empirical approximations

to the motion estimates:

N’VYLG/I
M =" -1xy/)D(D"D)"' + Y (Y} - 1xy;)D(D" D)}
1st iteration n=2
other iterations B.1
~My = (Y —1xyTYD(D"D)! (Approx. 1) (B-1)
~ My =Y"D(D"D)? (Approx. 2)
~ M 43 = YT D(diag(diag(DT D)))~* (Approx. 3)

where 1x € RE*! is an all-one vector and diag() denotes the Matlab function diag(). The first ap-
proximation of the motion estimates, denoted as M 41, are the motion parameters estimated at the first
iteration. This approximation is valid when Eq[A.4] shows minimal approximation error. Then, because

w5 the reference image is almost orthogonal to the derivative images (i.e., DTyT ~ 0), we made the second
approximation, denoted as M 4o, as the motion parameters estimated without subtracting the reference
image from the functional data. The third approximation of the motion estimates, denoted as M 43, are
the motion parameters estimated after zeroing out the off-diagonal terms in D D, reflecting the fact
that the covariance between the derivative images in different axes is relatively small compared to the

s variance of the derivative images. To evaluate the approximations, the temporal correlations between M
and the approximated motion estimates were calculated for each motion axis. As shown in Fig. M
is highly correlated with M 41 (mean r = 0.99), M 42 (mean r = 0.99), and M 43 (mean r = 0.91)).
Fig. [S14] displays the motion estimates before and after the approximations in the Tz and Ty axes from
three example runs.

With the third approximation, the motion estimates of one motion axis, denoted as m 43 € R¥*!
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can be written as

YTd

M3 = ——
SaTIE

s where d € RV*! is the spatial derivative image w.r.t. that motion axis.

Appendix C. The approximation to r(Am, GS)

To interpret r(Am, GS), we derived a mathematical approximation that reveals the key factors. We

begin with the expression

T(g ,Am) _ ngm — QZ(mGQ — m@1)
[Am|lllg,|l [Am|lllg,ll

where g, € REX1 Am = m.y — m.; € REX! represent the GS and the difference between the e2 and

(C.1)

el motion estimates, respectively, and m.; € R¥*! represents the motion estimates from the ith echo.

Then, using the approximation described in Eq[B.2] we can write

_ gz(me2 B mel)

r(Am,GS) =
( 1amilg]
T Yz;de2 _ Y:1del
9 G )
[amllg,| ©2)

g, ( g'Yhds  gTYlda

- - )
[Am["[|g 7 llde2lI*  [lgsll*[[der]]?
T T

_ ||gsH (ﬂgy@?de? ﬁgs,eldel

= Tam] daP T dal?

T
where Bg .; = }H;ii'% is the GS beta coefficient map calculated from the linear fit of the GS to the

unregistered functional data of the ith echo.
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