

1

Version dated: October 30, 2023

2

Scalable gradients enable Hamiltonian Monte Carlo sampling for phylodynamic inference under episodic birth-death-sampling models

5

YUCAI SHAO¹, ANDREW F. MAGEE², TETYANA I. VASYLYEVA^{3,5} AND MARC
6
A. SUCHARD^{1,2,4}

7

¹*Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of
California, Los Angeles, United States*

8

²*Department of Biomathematics, David Geffen School of Medicine at UCLA, University of
California, Los Angeles, United States*

9

³*Department of Medicine, University of California San Diego, La Jolla, United States*

10

⁴*Department of Human Genetics, David Geffen School of Medicine at UCLA, University of
California, Los Angeles, United States*

11

⁵*Department of Population Health and Disease Prevention, University of California Irvine,
Irvine, United States*

12

16 Corresponding author: Marc A. Suchard, Departments of Biostatistics, Biomathematics,
17 and Human Genetics, University of California, Los Angeles, 695 Charles E. Young Dr.,
18 South, Los Angeles, CA 90095-7088, USA; E-mail: msuchard@ucla.edu

19 **Abstract** Birth-death models play a key role in phylodynamic analysis for their interpre-
20 tation in terms of key epidemiological parameters. In particular, models with piecewise-
21 constant rates varying at different epochs in time, to which we refer as episodic birth-
22 death-sampling (EBDS) models, are valuable for their reflection of changing transmission
23 dynamics over time. A challenge, however, that persists with current time-varying model
24 inference procedures is their lack of computational efficiency. This limitation hinders the
25 full utilization of these models in large-scale phylodynamic analyses, especially when dealing
26 with high-dimensional parameter vectors that exhibit strong correlations. We present here
27 a linear-time algorithm to compute the gradient of the birth-death model sampling den-
28 sity with respect to all time-varying parameters, and we implement this algorithm within
29 a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational
30 burden of conducting inference under a wide variety of structures of, as well as priors for,
31 EBDS processes. We assess this approach using three different real world data examples,
32 including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics
33 in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a
34 substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample
35 size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we
36 show the robustness of our implementation in both allowing for flexible prior choices and
37 in modeling the transmission dynamics of various pathogens by accurately capturing the
38 changing trend of viral effective reproductive number.

39 1 Introduction

40 Phylodynamic models constitute a sophisticated toolset employed to decipher the complex
41 interplay between epidemiological and evolutionary processes, providing valuable insights
42 into population dynamics (Lau et al. 2019). In this paper, our primary emphasis is directed
43 toward the inference of epidemiological dynamics, rather than estimation of the underlying
44 phylogeny through sequence analysis. Specifically, we start with a sample of molecular se-
45 quences, which can be used to reconstruct the evolutionary relationships between organisms,
46 often viral pathogens, and yield inference on dynamics of the larger pathogen population over
47 time while relegating the phylogeny the status of a nuisance parameter. To provide this link,
48 a vital component of phylodynamic analysis is the use of birth-death models, which belong
49 to an important subclass of continuous-time Markov chains (CTMCs). We use birth-death
50 models to define the probability distribution on time-calibrated phylogenies for reflecting the
51 fluctuations of the population size (MacPherson et al. 2022). In this context, birth-death
52 models posit three major types of events: birth, which refers to the creation of new lineages
53 through pathogen transmission between hosts; death, which represents host death/recovery
54 or other removal from the studied population, and sampling, which means the collection of
55 a sequence derived from the pathogen in a single infected host and included in the data set
56 under analysis (Crawford 2012).

57 The past few decades have delivered a wide range of birth-death models. These span
58 from a simple, constant-over-time formulation (Yang & Rannala 1997) to models that allow
59 both birth and death rates to vary over time (Stadler et al. 2013, Höhna 2014). Further
60 extensions incorporate additional processes, both statistical and biological, such as the col-
61 lection of samples in continuous time (Stadler 2010), migration (Barido-Sottani et al. 2020),
62 or the dependency of rates of birth and death on key biological traits (Maddison et al. 2007,
63 FitzJohn 2010, 2012). One powerful variant, the episodic birth-death-sampling (EBDS)
64 model (Lambert & Stadler 2013, Stadler et al. 2013, Gavryushkina et al. 2014, Du Plessis
65 2016) permits birth, death, and sampling rates to change in discrete epochs throughout time

66 to capture more complicated population dynamics. Recent inference based on EBDS models
67 has found its way already into many applications, especially on the understanding of the
68 spread of infectious disease (Novitsky et al. 2015, Vasylyeva et al. 2020, Minosse et al. 2021).

69 With increasingly rich and complex molecular sequence datasets across fields, improv-
70 ing the scalability of inference under EBDS models remains challenging both in terms of the
71 number of sequences and the number of epochs. The most commonly employed inference
72 methods based on Markov chain Monte Carlo (MCMC) (Hastings 1970, Morlon et al. 2011)
73 use random-walk transition kernels generally to propose new parameter values in a blind
74 fashion. Consequently, they lead to many birth-death model likelihood evaluations and slow
75 exploration across the state space, especially for high-dimensional problems. The potentially
76 complex correlation structure between epoch parameters can further exacerbate inference.
77 This is where gradient-based sampling methods, such as Hamiltonian Monte Carlo (HMC)
78 (Duane et al. 1987, Neal et al. 2011), are expected to shine. HMC has recently become
79 very popular as a MCMC algorithm that overcomes many of the limitations of random-walk
80 Metropolis-Hastings (MH) methods. Instead of making random proposals, HMC exploits
81 the gradient of the log posterior with respect to (wrt) its model parameters to propose new
82 states that are likely to be accepted and are far from the current state. Since HMC can make
83 large moves in the state space while still maintaining a high acceptance rate, it can lead to
84 faster convergence and better mixing than MH approaches, if one can efficiently evaluate not
85 only the log posterior (up to a constant) but also its gradient. Successful implementation
86 of HMC transition kernels has proved fruitful in terms of boosting sampling performance in
87 other phylogenetic inference frameworks, including for different clock models (which describe
88 how rates of molecular evolution vary among different organisms over time, Ji et al. 2020,
89 Fisher et al. 2021), divergence times (the internal-node heights of phylogenies, Ji et al. 2021)
90 and non-parametric coalescent models (which fall into another category of phylodynamic
91 models assuming effective population size as a piecewise-constant form of time, Baele et al.
92 2020).

93 In this paper, we incorporate gradient-based sampling methods into phylodynamic
94 analysis based on EBDS models, thereby enabling scalable inference within this framework.
95 First, we refactor the EBDS (log) likelihood to show explicitly that the computational com-
96 plexity scales linearly both in terms of the number of sequences and the number of epochs.
97 With this refactoring in hand, we deliver a novel linear-time algorithm to evaluate the gra-
98 dient of this (log-)likelihood wrt all epoch parameters simultaneously. Then we design and
99 deploy an efficient HMC sampler that enables us to fit a large class of EBDS models in a
100 Bayesian framework and provide an open-source implementation in the popular Bayesian
101 Evolutionary Analysis by Sampling Trees (BEAST) software ([Suchard et al. 2018](#)).

102 Current approaches to Bayesian inference for EBDS epoch parameters employ a variety
103 of prior assumptions to model the dependence structure between parameters across epochs.
104 Some priors assume that birth, death and sampling rates across epochs are independent
105 and identically distributed (iid) ([Stadler et al. 2013](#), [Gavryushkina et al. 2014](#), [Vasylyeva
et al. 2020](#)). To smooth rate variation over time, temporally-auto-correlated priors such
107 as Ornstein-Uhlenbeck smoothing prior ([Du Plessis 2016](#)), Gaussian Markov random fields
108 (GMRF) priors ([Condamine et al. 2018](#), [Silvestro et al. 2019](#)) and the horseshoe Markov
109 random field for EBDS models ([Magee et al. 2020](#)) have been considered. Conveniently,
110 both our linear-time gradients and our HMC approach generalize across all of these choices
111 of prior without the need to construct model-specific sampling techniques and allow us
112 to introduce the Bayesian bridge shrinkage prior to yield parsimonious time-varying rate
113 patterns.

114 Across three real-world infectious disease examples that vary in the number of se-
115 quences, model dimension, and prior specification, we demonstrate the performance gain
116 achieved by our implementation of an HMC transition kernel compared to random walk
117 transition kernels. Moreover, for each of these datasets we infer key epidemiological parame-
118 ters and demonstrate the utility of our scalable approach for providing reasonable estimates
119 of pathogen transmission dynamics over time.

120 2 Methods

121 2.1 Setup

122 In an infectious disease setting, suppose an infected individual initiates an epidemic at time
123 (measured backwards from the present day) $t_{or} > 0$, called the time of the origin. Then,
124 each currently and newly infected individual disseminates the pathogen to others at a time-
125 varying birth rate $\lambda(t)$ and transitions into a noninfectious state at a time-varying death
126 rate $\mu(t)$. At any given time, we may sample an infected individual with time-varying
127 sampling rate $\psi(t)$, at which point we add the time of sampling and a molecular sequence of
128 their infectious agent into our time-stamped molecular sequence alignment \mathbf{Y} . Further, we
129 may posit K fixed time-points at which we randomly sample all infected individuals with
130 associated vector of probabilities $\boldsymbol{\rho} = (\rho_1, \dots, \rho_K)$, adding the time and molecular sequence
131 to \mathbf{Y} . Note that this means that several individuals can be sampled at the same time point.
132 The choice of the time-points is dependent on the dataset at hand and will be discussed
133 later in this section. Every sampled infected individual may be treated and then become
134 noninfectious with time-varying probability $r(t)$ which we assume equal to one everywhere
135 for complete sampling.

136 The model defined above provides a forward in time portrayal of the epidemiological
137 process. Considering the N sampled and time-stamped sequences in \mathbf{Y} as tree tips, there
138 exists a (possibly unknown) phylogeny \mathcal{T} that depicts the evolutionary relationships among
139 these sequences. Specifically, \mathcal{T} is a rooted, bifurcating tree with N tip nodes that correspond
140 to the sampled sequences or their hosts from the population and $N - 1$ internal nodes that
141 represent transmission events between hosts. We define the height of the nodes as the length
142 of time between the time of the corresponding transmission/sampling events and the time
143 of the most recent sampled sequence, which we refer to the present time, 0. Each node of
144 \mathcal{T} is then associated with a node-height ≥ 0 relative to the present, such that the difference
145 between the parent node-height and its child node-height is a branch length measured in

146 the units of real time (e.g., years). We call the earliest internal node in \mathcal{T} the root and
147 its node-height corresponds to the time of the most recent common ancestor (TMRCA).
148 Therefore, we can further define the node heights of internal nodes to be bifurcation times
149 and that of leave nodes to be sampling times. Accordingly, for a vector of bifurcation times,
150 we have $\mathbf{v} = (v_1, v_2, \dots, v_{N-1})$ where $v_1 < \dots < v_{N-1}$. And we let $\mathbf{u} = (u_1, u_2, \dots, u_N)$ be a
151 vector of sampling times where $u_1 < \dots < u_N$.

152 For an episodic model, we make the assumption that all the rate parameters are piece-
153 wise constant across K different epochs with cut points $\mathbf{t} = (t_0, \dots, t_K)$, with $t_0 = 0 <$
154 $t_1 < \dots < t_{K-1} < t_K$. We also require $t_{or} \leq t_K$. Under this assumption, we can rewrite
155 the time dependent birth rate $\lambda(t)$ in terms of some unknown epoch-specific birth rate
156 $\boldsymbol{\lambda} = (\lambda_1, \dots, \lambda_K)$, where $\lambda(t) = \lambda_k$ for $t_{k-1} < t \leq t_k$. Similar parametrization applies to
157 other parameters, so that we can express $\mu(t)$ in terms of $\boldsymbol{\mu} = (\mu_1, \dots, \mu_K)$, $\psi(t)$ in terms
158 of $\boldsymbol{\psi} = (\psi_1, \dots, \psi_K)$ and $r(t)$ in terms of $\mathbf{r} = (r_1, \dots, r_K)$. Without loss of generality, we let
159 intensive sampling events happen at every time points in \mathbf{t} . Then we define $\boldsymbol{\rho} = (\rho_1, \dots, \rho_K)$,
160 where $\rho(t) = \rho_k$ for $t = t_{k-1}$. We can remove these intensive sampling events at the epoch
161 switching times from our model simply by setting $\boldsymbol{\rho} = \mathbf{0}$.

162 After reparametrizing the rates of the EBDS model, we can arrive at some key epi-
163 demiological quantities. For example, if we assume there are no intensive sampling events,
164 we can specify the effective reproductive number as $R_e(t) = \frac{\lambda(t)}{\mu(t) + \psi(t)r(t)}$. Other parameters
165 that are important include the total rate of becoming noninfectious, which is defined as
166 $\delta(t) = \mu(t) + \psi(t)r(t)$, and the sampling proportion, defined as $\zeta(t) = \frac{\psi(t)r(t)}{\mu(t) + \psi(t)r(t)}$. If we
167 also assume removal of lineages upon sampling, these formulas can be further simplified by
168 letting $r(t)$ be constant and always equal to 1.

169 2.2 Probability Density of a Sampled Phylogeny

170 Recall we break time into intervals with cut points $\mathbf{t} = (t_0, \dots, t_K)$ defined by epochs.
171 Within each epoch, we define a series of subintervals such that a new subinterval start at

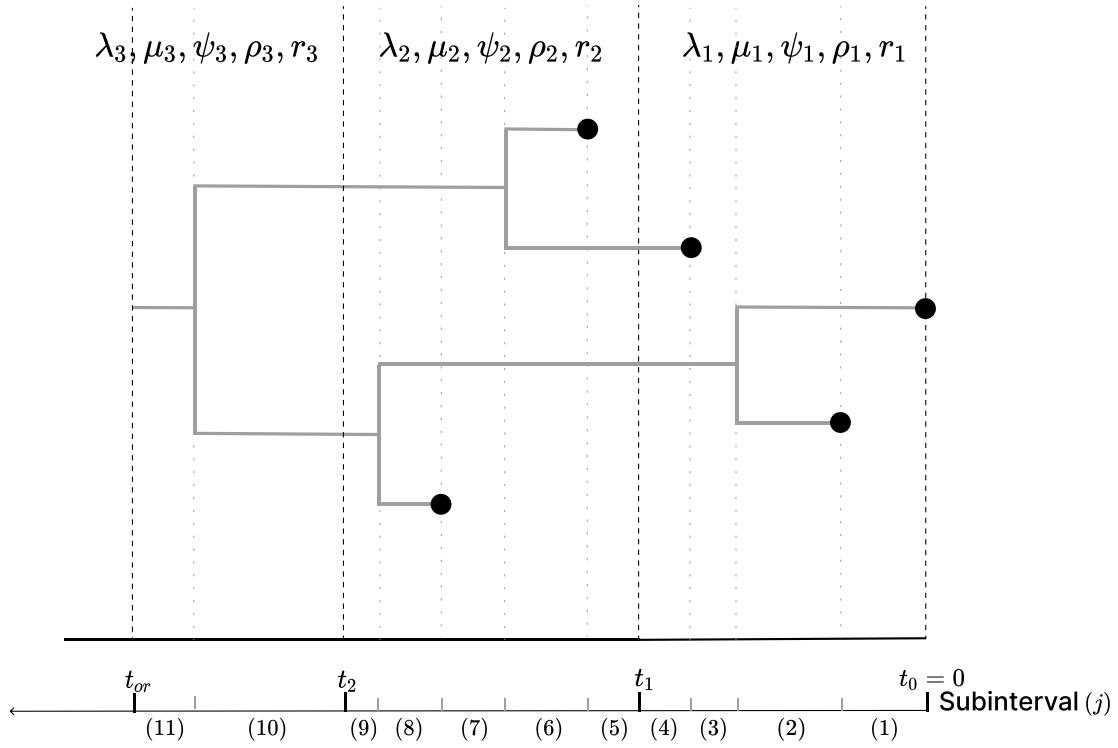


Figure 1: A phylogeny arising from an EBDS model. This sampled phylogeny has three epochs (with epoch switching time t_1, t_2) and thus three sets of model parameters including rates and probabilities. For every epoch, each branch is further divided into subinterval that starts at s_j and ends at time s_{j+1} so that no epoch switching, birth or sampling event occurs within it. Each subinterval within each epoch k is represented by a phylogeny segment index, j .

172 every bifurcation time \mathbf{v} , sampling time \mathbf{u} and epoch switching time \mathbf{t} . We delineate the
 173 subinterval by indices j , which begins at s_j and terminates at s_{j+1} (where $s_j < s_{j+1}$). If
 174 $t_{or} = t_K$, then the grids $\mathbf{s} = (s_1, \dots, s_{2N-2+K})$ can be obtained by joining the time points in
 175 \mathbf{v} , \mathbf{u} and \mathbf{t} according to their ascending order when none of these times coincide with each
 176 other. If $t_{or} < t_K$, we have $s_{2N-2+K} = t_{or}$ instead of t_K .

177 Consequently, each subinterval, inclusive on the left, is partitioned in such a way that it
 178 precludes the occurrence of an epoch switching, birth or sampling event within its boundaries.
 179 Within the k th epoch, the first subinterval starts at $s_j = t_{k-1}$ and the last subinterval ends
 180 at $s_{m_k+1} = t_k$. (Note for the last epoch K , the last subinterval ends at t_{or} .) We assign $L(j)$
 181 to account for the number of lineages in \mathcal{T} that are extant in subinterval time $(s_j, s_{j+1}]$.

182 Our likelihood derivation falls into the common framework with [Stadler et al. \(2013\)](#),
 183 [Gavryushkina et al. \(2014\)](#) and [Magee & Höhna \(2021\)](#). However, instead of writing the
 184 likelihood in terms of the times of node and epochs, we write it in terms of the subintervals
 185 j . This representation highlights the fact that the likelihood can be computed in one pass,
 186 starting at the present and ending at the origin. The interval-based representation of the
 187 likelihood is as follows:

$$\mathbb{P}[\mathcal{T} \mid \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}] = N_1 \log \rho_1 + \underbrace{\sum_{k=1}^K \sum_{j=1}^{m_k}}_{\sum_{k=1}^K m_k \leq 2N+K-2^*} \left(\log I_k(E_j) + L(j) \log \left(\frac{q_k(s_{j+1})}{q_k(s_j)} \right) \right), \quad (1)$$

188 where m_k is the total number of subintervals in epoch k . (*: equality holds when no events
 189 happens at the exact same time except for the current).

190 The indicator function $I_k(E_j)$ is labelled by the index k . This implies that the function
 191 is concerned with events occurring within the time frame $(t_{k-1}, t_k]$. We have E_j represent
 192 the event that takes place at the termination of subinterval j within epoch k . In most
 193 phylodynamic studies, ancestral sampling scenarios are not taken into account; therefore,
 194 our model is based on the assumption of a strictly bifurcating phylogenetic tree and does
 195 not involve considerations of ancestral sampling cases, which is distinctive from the work of
 196 [Gavryushkina et al. \(2014\)](#). Nonetheless, incorporating ancestral sampling into our frame-
 197 work is relatively straightforward. This can be achieved by setting the treatment probability
 198 to be less than 1 and adding the term $\psi_k(1 - r_k)$ to our indicator function to account for
 199 events involving ancestral samples. Consequently, this indicator function takes the following

200 form:

$$I_k(E_j) = \begin{cases} 1, & E_j = \text{a epoch switching event happens on } s_{j+1} \\ \lambda_k, & E_j = \text{a birth event happens at } s_{j+1} \\ \psi_k((1 - r_k)p_k(s_{j+1}) + r_k), & E_j = \text{a tip sampling event happens at } s_{j+1} \\ \rho_k^{N_k}((1 - r_k)p_{k-1}(s_{j+1}) + r_k)^{N_k} \cdot (1 - \rho_k)^{L(j) - N_k}, & E_j = \text{an intensive sampling event happens at } s_{j+1} = t_{k-1}. \end{cases} \quad (2)$$

201 Note that $p_k(t)$ is the probability that an infected individual at time t has no sampled
 202 descendants when the process is stopped (i.e., at time t_0), and $q_k(t)$ is the probability density
 203 of an individual at time t giving rise to an edge between t and t_{k-1} (not t_k since we define
 204 time to flow backwards which is the reverse of the generative process) for $t_{k-1} < t < t_k$ in
 205 epoch k . We have $p_0(t_0 = 0) = 1$.

206 The intensive sampling probability at time t_{k-1} is ρ_k and the corresponding number of
 207 leaves sampled at that time is N_k . The index here is intentionally misaligned to reconcile
 208 the fact that we model the epoch as left inclusive in time.

209 The definitions of the underlying functions, $q_k(t)$ and $p_k(t)$, follow the work from [Stadler
 210 et al. \(2013\)](#) and the detailed formulas are included in Supplementary Material [S1](#). Note that
 211 our equation [1](#) does not condition the tree likelihood upon any particular properties, such
 212 as the presence of at least one sampled individual. Without loss of generality, additional
 213 conditioning schemes can be integrated by adding a factor to the log-likelihood; relevant
 214 discussions on this subject are available in Table S3 from the study by [MacPherson et al.
 215 \(2022\)](#).

216 As stated previously, our representation of the likelihood differs from the more standard
 217 nodewise representation (see for example [Stadler et al. 2013](#), [Gavryushkina et al. 2014](#), [Wu
 218 2014](#), [Magee & Höhna 2021](#)). Our representation makes it explicit that the likelihood com-
 219 putation can be accomplished in $\mathcal{O}(N+K)$ time (see Algorithm [1](#) for computational details).
 220 We demonstrate this behavior empirically in Supplementary Material [S6](#). On the other hand,
 221 as we show in Supplementary Material [S5](#), the conventional nodewise representation leads
 222 to ambiguities in the cost and a wide potentially range of computational complexities de-

223 pending on implementation decisions. In Supplementary Material S6 we show empirically
 224 that formulations based on the nodewise representation include both implementations which
 225 are of the same computational order as ours (namely BEAST2 (Bouckaert et al. 2019) and
 226 RevBayes (Höhna et al. 2016)) and which scale worse in the number of epochs (TreePar
 227 (Stadler et al. 2013)).

228 **2.3 Inference**

229 In a Bayesian inference procedure, as introduced in Section 2.1, we use a multiple sequence
 230 alignment with the sampling times, the time-stamped sequences, \mathbf{Y} , as the input data. Based
 231 on \mathbf{Y} , we can form the posterior distribution over the product space of trees and EBDS model
 232 parameters as follows. First, a phylogeny \mathcal{T} is generated from the EBDS process defined in
 233 Section 2. Then we specify a molecular clock model that controls the rate at which evolution
 234 occurs on each branch of \mathcal{T} . Under a molecular character-based CTMC substitution model,
 235 the columns in the sequence alignment evolve independently along the branches of the tree.
 236 Adoption of different substitution models is contingent upon the distinct attributes of the
 237 dataset under investigation (see Section 2.6.1). For the sake of notational convenience, we
 238 refer to the vector encompassing both substitution and clock model parameters as ω . We
 239 denote by $\mathbb{P}(\mathbf{Y} | \omega, \mathcal{T})$ the probability of the time-stamped sequences under the CTMC
 240 substitution model, known as the phylogenetic likelihood. Subsequently, we can factorize
 241 the posterior in the following manner:

$$\begin{aligned}
 \mathbb{P}[\mathcal{T}, \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}, \omega | \mathbf{Y}] &\propto \mathbb{P}(\mathbf{Y} | \omega, \mathcal{T}) \mathbb{P}[\mathcal{T} | \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}] \\
 &\quad \times \mathbb{P}[\boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}, \omega] \\
 &\propto \mathbb{P}(\mathbf{Y} | \omega, \mathcal{T}) \mathbb{P}(\omega) \mathbb{P}[\mathcal{T} | \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}] \\
 &\quad \times \mathbb{P}(\boldsymbol{\lambda}) \mathbb{P}(\boldsymbol{\mu}) \mathbb{P}(\boldsymbol{\psi}) \mathbb{P}(\boldsymbol{\rho}) \mathbb{P}(\mathbf{r}) \mathbb{P}(\mathbf{t}).
 \end{aligned} \tag{3}$$

242 In phylodynamic analyses, it is sometimes advantageous to streamline the model by

243 maintaining the death rate as constant. We can also presume the intensive sampling prob-
244 ability to be 0 and treatment probability to uniformly be 1 across all epochs. In handling
245 time-varying parameters, we choose either iid priors or Markov random field models based
246 on dataset-dependent assumptions pertaining to the patterns of change expected in rate pa-
247 rameters. In this paper, we specifically consider the GMRF and the Bayesian bridge Markov
248 random field model, the latter of which we describe below.

249 With increasing complexity of the existing EBDS models, we seek to integrate Bayesian
250 regularization methods to help manage the potentially vast quantity of model parameters.
251 Specifically, we consider Markov random field priors which specify distributions on the in-
252 cremental difference between the log-transformed rate parameters. By assigning a normal
253 distribution to the incremental changes, we arrive at the GMRF priors that induce a smooth-
254 ing effect on the change of rate parameters across contiguous epochs. This approach naturally
255 leads to adjacent epochs exhibiting similar rate values. However, a strong data signal indica-
256 tive of a rate change can still manifest in the resulting trajectory. By placing a heavy-tailed
257 Bayesian bridge prior (Piironen & Vehtari 2017) on these, we achieve a more generalized ex-
258 tension of the GMRF model. The key distinction resides in the specification of the standard
259 deviation arising from the normal priors on the increments. In this resulting Bayesian bridge
260 Markov random field framework, each epoch's increment is assigned an additional variable
261 to account for variation, thereby affording greater flexibility to the model.

262 Supposing we have varied birth rates, we define the birth rate on the log scale $\lambda_k^* =$
263 $\log(\lambda_k)$. Then we have the prior on increments, $\mathbb{P}(\lambda_k^* - \lambda_{k-1}^* | \tau) \propto \exp\left\{-\left|\frac{\lambda_k^* - \lambda_{k-1}^*}{\tau}\right|^\alpha\right\}$ for
264 $k > 1$, where τ is the global scale parameter that controls the overall degree of parameter
265 variation. As α diminishes, the function $\mathbb{P}(\lambda_k^* - \lambda_{k-1}^*)$ accrues an increased density close
266 to zero. For the purpose of our study, we establish $\alpha = 0.25$ to address a potent prior
267 assumption that $\lambda_k^* - \lambda_{k-1}^*$ is proximate to 0 without inducing any problems related to mixing
268 issues. In other words, we do not anticipate substantial fluctuations in the birth rates across
269 consecutive epochs (but allow for rapid rate shift, for example during the exponential growth

270 phase.) Another important parameter is the local scale, denoted as ν_k , which is specific to
271 an individual increment $\lambda_k^* - \lambda_{k-1}^*$. Its density regulates the magnitude of the spike and the
272 tail behavior of the above marginal $\lambda_k^* - \lambda_{k-1}^* | \tau$.

273 Note that the GMRF model can be perceived as a specific instance of the Bayesian
274 bridge MRF, where all the local scale parameters are equalized to 1 and α is fixed at 2. In
275 this case, the increment differences adhere to a normal distribution whose variance is solely
276 governed by a single global scale parameter.

277 To complete our model, a normal prior is assigned to λ_1^* in adherence with the method
278 outlined in [Magee et al. \(2020\)](#). We obtain the mean parameter of the prior using an empirical
279 Bayes method. This provides a crude estimate of the log rate parameter, coupled with a
280 standard deviation that is sufficiently large to encompass all possible values (See [S3](#)). We
281 apply a Gamma(1,1) prior to $\phi = \tau^{-\alpha}$. This selection is grounded on a combination of
282 theoretical considerations and empirical validation and allows for an efficient Gibbs sampler
283 for τ .

284 To regularize the tail behavior, we leverage the shrunken-shoulder version of the Bayesian
285 bridge prior and limit the bridge to have light tails past the slab width, ξ ([Piironen & Ve-
286 htari 2017](#), [Nishimura & Suchard 2023](#)). An efficient update of Markov random field models
287 global and local scale parameters (for Bayesian bridge priors) follows [Nishimura & Suchard
288 \(2023\)](#). In this framework, the prior on the increment space represented as a scale mixture
289 of normal distributions:

$$\mathbb{P}(\lambda_k^* - \lambda_{k-1}^* | \nu_k, \tau, \xi) = N\left(0, \left(\frac{1}{\xi^2} + \frac{1}{\nu_k^2 \tau^2}\right)^{-1}\right), \quad (4)$$

290 where ν_k is called the local scale parameter and τ is the global scale parameter. (Note
291 that ν_k has an exponentially tilted stable distribution with characteristic exponent $\alpha/2$.)
292 This mixture representation aids in clarifying the local adaptivity of the Bayesian bridge
293 prior as considerable changes in rates can be accommodated by an increase in ν_k without

294 necessitating a rise in τ . The inclusion of the slab width helps to bound the variance of
295 increments to ξ^2 . We set $\xi = 2$, which creates a reasonable upper limit on the variations in
296 birth rate between consecutive epochs.

297 In our study, we primarily focus on sampling $\mathbb{P}[\mathcal{T} | \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \mathbf{t}]$. With increasing numbers
298 of epochs, the parameter space of the EBDS model expands quickly, exhibiting substantial
299 correlation between adjacent epochs. To improve the sampling efficiency, we utilize HMC
300 method to concurrently sample the time varying model parameters and ensure a high accep-
301 tance rate.

302 2.4 Hamiltonian Monte Carlo Sampling

303 Hamiltonian Monte Carlo is a widely-used Markov chain Monte Carlo method to sample from
304 a target distribution effectively. Given a target parameter $\boldsymbol{\theta}$ with a posterior probability den-
305 sity $\pi(\boldsymbol{\theta})$, HMC iteratively generates samples from the target distribution by simulating the
306 dynamics of a physical system whose equilibrium distribution is equal to $\pi(\boldsymbol{\theta})$. In partic-
307 ular, HMC introduces an auxiliary momentum parameter \mathbf{d} , which is typically chosen to
308 follow a multivariate normal distribution with zero mean and covariance matrix \mathbf{M} , i.e.,
309 $\mathbf{d} \sim \mathcal{N}(0, \mathbf{M})$. \mathbf{M} is also known as the mass matrix, which serves as a hyperparameter. The
310 Hamiltonian function of the system is defined as:

$$H = U(\boldsymbol{\theta}) + K(\mathbf{d}), \quad (5)$$

311 where $U(\boldsymbol{\theta}) = -\log(\pi(\boldsymbol{\theta}))$ is the potential energy, and $K(\mathbf{d}) = \mathbf{d}^\top \mathbf{M} \mathbf{d}$ is the kinetic energy
312 of the system.

313 Starting from the current state $(\boldsymbol{\theta}_0, \mathbf{d}_0)$, HMC updates the state according to the fol-

³¹⁴ lowing differential equations:

$$\begin{aligned}\frac{d\mathbf{d}}{dt} &= -\nabla U(\boldsymbol{\theta}) = \nabla \log \pi(\boldsymbol{\theta}) \\ \frac{d\boldsymbol{\theta}}{dt} &= +\nabla K(\mathbf{d}) = \mathbf{M}^{-1}\mathbf{d}.\end{aligned}\tag{6}$$

³¹⁵ The simple and effective “leapfrog” method (Neal et al. 2011) approximates the solution
³¹⁶ to (6) numerically:

$$\begin{aligned}\mathbf{d}_{t+\epsilon/2} &= \mathbf{d}_t + \frac{\epsilon}{2} \nabla \log \pi(\boldsymbol{\theta}_t) \\ \boldsymbol{\theta}_{t+\epsilon} &= \boldsymbol{\theta}_t + \epsilon \mathbf{M}^{-1} \mathbf{d}_{t+\epsilon/2} \\ \mathbf{d}_{t+\epsilon} &= \mathbf{d}_{t+\epsilon/2} + \frac{\epsilon}{2} \nabla \log \pi(\boldsymbol{\theta}_{t+\epsilon}),\end{aligned}\tag{7}$$

³¹⁷ where ϵ is the size of each leapfrog step, and n steps are required to simulate the Hamiltonian
³¹⁸ dynamics from time $t = 0$ to $t = n\epsilon$. In practice, the “leapfrog” method has been shown to
³¹⁹ be stable and accurate for a wide range of step sizes (Neal et al. 2011).

³²⁰ The default choice of the mass matrix is the identity matrix. However, using a different
³²¹ \mathbf{M} , such as a log-posterior Hessian approximation can largely enhance the efficiency of HMC
³²² sampling. In this work, \mathbf{M} is adaptively tuned to estimate the expected (diagonal) Hes-
³²³ sian averaged over the prior distribution. This design choice alleviates some computational
³²⁴ burden, following the work of Ji et al. (2020).

³²⁵ 2.5 Gradient

³²⁶ HMC sampling of the model parameters requires the gradient of the log-likelihood derived
³²⁷ from (1) wrt the EBDS model rate parameters. The gradient is the collection of derivatives
³²⁸ wrt model parameters:

$$\nabla_{\boldsymbol{\theta}} \mathbb{P}[\mathcal{T} \mid \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}] = \left(\frac{\partial \mathbb{P}}{\partial \theta_1}, \dots, \frac{\partial \mathbb{P}}{\partial \theta_k}, \dots, \frac{\partial \mathbb{P}}{\partial \theta_K} \right)^\top,\tag{8}$$

³²⁹ where $\theta_k \in \{\lambda_k, \psi_k, \mu_k, \rho_k\}$ is a unified parameter to reduce notation clutter.

330 Given the piece-wise constant nature of the model, the likelihood assumes a consistent
 331 form across all epochs. Therefore, we can examine the gradient of the log-likelihood at each
 332 epoch separately. We denote the log-likelihood at epoch k and phylogeny segment j as:

$$\mathbb{P}_k(j) = \log I_k(E_j) + L(j) \log \left(\frac{q_k(s_{j+1})}{q_k(s_j)} \right). \quad (9)$$

333 We can further get individual terms in (8) by accumulating contributions from each epoch
 334 and the corresponding phylogeny segments:

$$\frac{\partial \mathbb{P}}{\partial \theta_k} = \sum_{a=k}^K \sum_{j=1}^{m_k} \frac{\partial \mathbb{P}_a(j)}{\partial \theta_k}, \quad \theta_k \in \{\lambda_k, \psi_k, \mu_k, \rho_k\}. \quad (10)$$

335 By examining the interdependency between epochs, we discern that a given epoch k
 336 exerts influence on the gradient of parameters pertaining to that and all preceding epochs.
 337 Consequently, it becomes necessary to consider $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_k}$ and $\frac{\partial \mathbb{P}_i(j)}{\partial \theta_k}$ respectively, where i is a
 338 positive integer ranging between 1 and $(k-1)$.

First, we consider the gradient contribution at epoch k wrt the current model parameters $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_k}$, where $\theta_k \in \{\lambda_k, \psi_k, \mu_k, \rho_k\}$.

Then we have the following cases:

$$\frac{\partial \mathbb{P}_k(j)}{\partial \theta_k} = \begin{cases} \text{If } E_j \text{ is a birth event happens at subinterval end } s_{j+1}: \\ \quad \mathbb{1}_{\theta_k=\lambda_k} \frac{1}{\theta_k} + L(j) \cdot \frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_k}, \\ \text{If } E_j \text{ is a serial sampling event happens at subinterval end } s_{j+1}: \\ \quad \mathbb{1}_{\theta_k=\psi_k} \frac{1}{\theta_k} + \frac{1-r_k}{(1-r_k)p_k(s_j) + r_k} \cdot \frac{\partial p_k(s_j)}{\partial \theta_k} + L(j) \cdot \frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_k}, \\ \text{If } E_j \text{ is an intensive sampling event happens at subinterval end } s_{j+1} = t_{k-1}: \\ \quad \mathbb{1}_{\theta_k=\rho_k} \left(\frac{N_k}{\theta_k} + \frac{L(j) - N_k}{(1-\theta_k)} \right) + \frac{1-r_k}{(1-r_k)p_{k-1}(s_j) + r_k} \cdot \frac{\partial p_{k-1}(s_j)}{\partial \theta_k}, \\ \text{If } E_j \text{ is a epoch switching event happens at subinterval end } s_{j+1}: \\ \quad L(j) \cdot \frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_k}. \end{cases}$$

³³⁹ Note that $\mathbb{1}$ is the indicator function. We leave the explicit expression of the shared terms
³⁴⁰ in (11)-(14) to Supplementary Material **S2**.

Second, we consider the gradient at epoch k wrt the previous model parameters $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_{k-i}}$,
where $\theta_{k-i} \in \{\lambda_{k-i}, \psi_{k-i}, \mu_{k-i}, \rho_{k-i}\}$:

$$\frac{\partial \mathbb{P}_k(j)}{\partial \theta_{k-i}} = \begin{cases} \text{If } E_j \text{ is a birth event or epoch switching event happens at subinterval end } s_{j+1}: \\ L(j) \cdot \frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_{k-i}}, \end{cases} \quad (15)$$

$$\begin{cases} \text{If } E_j \text{ is a serial sampling event happens at subinterval end } s_{j+1}: \\ \frac{1 - r_k}{(1 - r_k)p_k(s_j) + r_k} \cdot \frac{\partial p_k(s_j)}{\partial \theta_{k-i}} + L(j) \cdot \frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_{k-i}}. \end{cases} \quad (16)$$

³⁴¹ We also leave the explicit expression of the shared terms in (15)-(16) in Section **S2**.

Third, we discuss the gradient at epoch k wrt the treatment probability \mathbf{r} . In (1), the treatment probabilities at different epochs only affect the current epoch. Therefore, we only need to consider $\frac{\partial \mathbb{P}_k(j)}{\partial r_k}$ as follows:

$$\frac{\partial \mathbb{P}_k(j)}{\partial r_k} = \begin{cases} \text{If } E_j \text{ is a serial sampling event happens at subinterval end } s_{j+1}: \\ \frac{1 - p_k(s_j)}{(1 - r_k)p_k(s_j) + r_k}, \end{cases} \quad (17)$$

$$\begin{cases} \text{If } E_j \text{ is a intensive sampling event happens at subinterval end } s_{j+1} = t_{k-1}: \\ \frac{1 - p_{k-1}(s_j)}{(1 - r_k)p_{k-1}(s_j) + r_k}. \end{cases} \quad (18)$$

³⁴² The total gradient wrt \mathbf{r} can be obtained similar to (10).

³⁴³ To determine the computation complexity of gradient evaluation, we can assume the
³⁴⁴ gradient calculation for $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_k}$ takes constant time. The model has K epochs, where each
³⁴⁵ epoch has $\frac{(2N-1+K)}{K}$ phylogeny segments in average. According to (10), the total computation
³⁴⁶ complexity is $\mathcal{O}(K \cdot \frac{(2N-1+K)}{2}) \sim \mathcal{O}(NK)$, since $K \ll N$. We demonstrate this result
³⁴⁷ through a series of timing experiments presented in Supplementary Material **S6** where we also
³⁴⁸ compare the efficiency of gradients calculations with the automatic differentiation algorithm
³⁴⁹ implemented in the VBSKY (Ki & Terhorst 2022) package based on JAX library (Bradbury

350 et al. 2018). Figure S5 shows our analytical gradients implemented in BEAST significantly
351 outpace the VBSKY method.

352 2.6 Analysis

353 2.6.1 Examples

354 We evaluate the relative effectiveness of MH-MCMC and HMC transition kernels under
355 the EBDS model using three phylodynamic examples. The first example comprises 274
356 sequences of the Pol locus of HIV-1 subtype A sampled in Odesa, Ukraine from 2000 to 2020
357 that [Vasylyeva et al. \(2020\)](#) previously analyzed to assess the population-level impact of
358 the transmission reduction intervention project (TRIP) on HIV transmission ([Nikolopoulos](#)
359 [et al. 2016](#)). Following this previous analysis, we establish a cutoff point of 50 years for the
360 EBDS model. Within this period of time, we let the birth, death and sampling rates vary
361 across 10 epochs mirroring the grid points specified by [Vasylyeva et al. \(2020\)](#). Note that
362 for better comparability to the original work ([Vasylyeva et al. 2020](#)), we place iid lognormal
363 priors on the rate parameters. Both the previous and our analysis assume an HKY nucleotide
364 substitution ([Hasegawa et al. 1985](#)) model with discrete-gamma-distributed rate variation
365 among sites (HKY+G) ([Yang 1994](#)), and an uncorrelated lognormal relaxed molecular clock
366 model ([Drummond et al. 2006](#)) (UCLD), with a CTMC rate-reference prior ([Ferreira &](#)
367 [Suchard 2008](#)) on the clock-model mean, truncated between 1×10^{-3} - 3×10^{-3} , and a
368 normal prior (with mean = 5×10^{-4} and standard deviation = 5×10^{-4}) on the standard
369 deviation. We use a normal distribution prior (with mean = 35, standard deviation = 5) on
370 the time to the most recent common ancestor, in accordance with the previous study.

371 Second, we examine the transmission dynamics of 637 human influenza A/H3N2 HA
372 genes across 12 epidemic seasons sampled from New York state [Rambaut et al. \(2008\)](#) fol-
373 lowing the study of [Parag et al. \(2020\)](#). We set an EBDS model cutoff value of 13 years and
374 infer time-varying birth and sampling rates across 78 epochs, each representing 2 months
375 in time, and a constant-over-time death rate. Preceding studies focused on the evolution-

376 ary dynamics of influenza A/H1N1 virus mostly utilize the coalescent models. These studies
377 predominantly rely on Gaussian process smoothing (Karcher et al. 2020, Bhattacharjee et al.
378 2023). Following the same path, we seek to use GMRF prior distributions for the birth and
379 sampling rates. Our approach accommodates the considerable variability in the effective
380 reproductive number across different flu seasons from 1993 to 2005. We adopt the same
381 substitution and clock models from Rambaut et al. (2008). Specifically, to account for po-
382 tential differences in the rate of substitution between the first and second codon positions
383 compared to the third, we employ the SRD06 substitution model (Shapiro et al. 2006) and
384 apply an HKY nucleotide substitution model with discrete-gamma distributed rate hetero-
385 geneity for both codon-position partitions (1st + 2nd, and 3rd). We further assume a UCLD
386 clock model and employ the default priors from BEAST on the substitution and clock model
387 parameters.

388 Lastly, to demonstrate the potential our linear-time algorithms afford phylodynamic
389 analyses on larger data sets, we examine 1610 full Ebola virus (EBOV) genomes sampled
390 between 17 March 2014 and 24 October 2015 from West Africa (Dudas et al. 2017) to
391 explored the factors contributing to the spread of Ebola during the 2014-2016 epidemic. We
392 set a EBDS model cutoff value of 2 years and infer time-varying birth and sampling rates for
393 24 epochs, each corresponding to a month in time, and a constant death rate. For choosing
394 the priors on the rate parameters, we incorporate information from previous studies on the
395 transmission dynamics of Ebola virus disease in West Africa (Fang et al. 2016, Nyenswah
396 et al. 2016). The number of confirmed cases first persisted at a relatively low level and
397 started to soar in the mid-Summer of 2014, followed by a consistent peak and a dramatic
398 decrease after the initiation of some key intervention events. Considering the potential fast
399 shifts projected to the effective reproductive number, we apply the Bayesian bridge MRF
400 model as the prior for the incremental differences in the birth and sampling rates. Based
401 on Dudas et al. (2017), we assume a HKY+G substitution model independently across four
402 partitions (codon positions 1, 2, 3 and non-coding intergenic regions) and a log-normally-

403 distributed relaxed molecular clock model with a CTMC reference prior on the clock model
404 mean, and leave all other priors on substitution and clock model parameters at their BEAST
405 defaults.

406 2.6.2 Implementation

407 We conduct all analyses using extensions to BEAST 1.10 ([Suchard et al. 2018](#)) and the high-
408 performance BEAGLE 4.0 library ([Ayres et al. 2019](#)) for efficient computation on central
409 processing units (CPUs). We take the timing measurements using a Macbook Pro equipped
410 with an M1 Pro chip that features 8 CPU cores and 32GB of RAM. For all experiments
411 involving BEAST, we utilized the Azul Zulu Builds of OpenJDK version 18 on the ARM
412 architecture.

413 To compare the performance of the two transition kernels in estimating the EBDS
414 model parameters, we conduct efficiency comparison analyses that focused solely on the
415 estimation of the birth-death model's rate parameters. Specifically, we fix the phylogeny
416 to the maximum clade credibility (MCC) tree, a tree with the maximum product of the
417 posterior clade probabilities summarized from the Bayesian joint phylogeny inference. We
418 analyze all data sets using BEAST with logging performed every 1000 iterations. We run our
419 algorithm on the HIV example for 300 million iterations when using MH-MCMC transition
420 kernel and 30 million iterations for HMC transition kernel. Also, to obtain convergent results
421 for the influenza example, we run analyses using MH-MCMC and HMC transition kernels for
422 300 million and 50 million states, respectively. For the Ebola example, we run analyses using
423 MH-MCMC and HMC transition kernels for 100 million and 30 million states, respectively.
424 For all analyses, we discard 10% of the MCMC chain samples as burn-in.

425 We calculate the effective sample size (ESS) for each rate parameter of interest using
426 the coda package ([Plummer et al. 2006](#)) in CRAN ([R Core Team 2021](#)). ESS quantifies
427 the degree to which auto-correlation within MCMC iterations contributes to uncertainty in
428 estimates ([Ripley 2009](#)). We average ESS per compute-hour for each parameter across 10

429 independent runs to reduce Monte Carlo error in each estimate, aiming for a maximal Monte
430 Carlo error of 10%. We report the relative increase in ESS per hour of the HMC sampler
431 compared with the MH-MCMC sampler over all rate parameters.

432 We also conduct phylodynamic analysis for each of the three examples under a joint
433 phylogeny inference scheme to mitigate potential bias from the fixed phylogeny, following the
434 model specifications discussed in Section 2.6.1. Under these settings, we simulate MCMC
435 chains for all examples of 500 million iterations using HMC transition kernel with logging
436 performed every 1000 iterations.

437 3 Results

438 3.1 Performance Improvements

439 Figure 2 shows the binned ESS per hour estimates of the EBDS model rates (λ, μ, ψ) that
440 the MH-MCMC and HMC samples generate for all three viral examples. Table 1 summarizes
441 the performance improvements by reporting the relative increase in the minimum ESS per
442 hour comparing both samplers across all rate parameters.

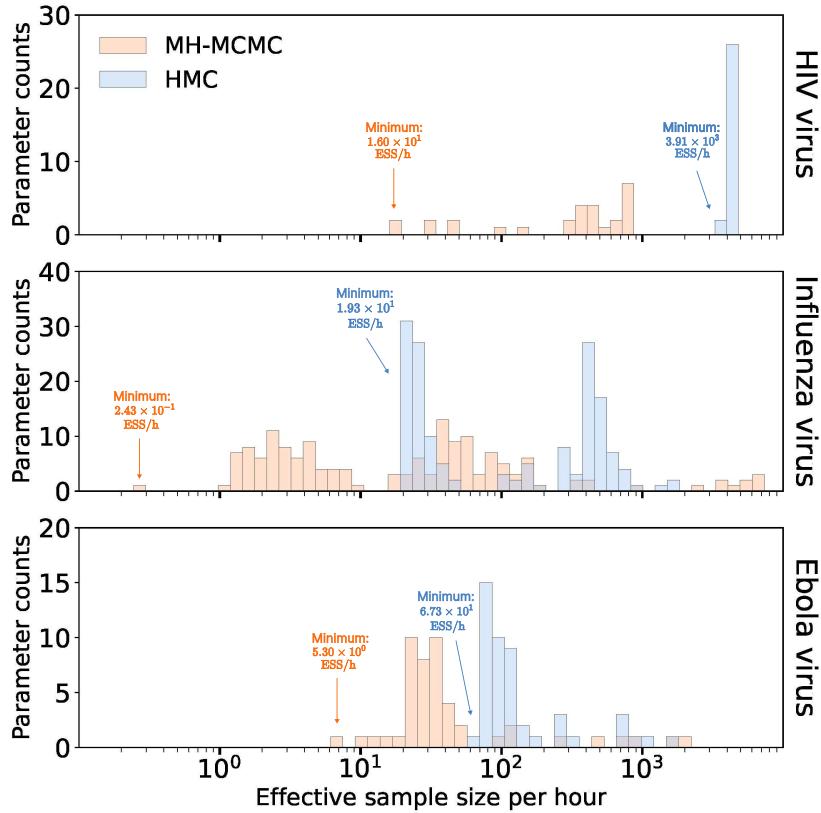


Figure 2: Efficiency Comparison between random walk Metropolis-Hastings (MH-MCMC) and Hamiltonian Monte Carlo (HMC) samplers. Bars correspond to the estimated effective sample size per hour averaged across 10 independent runs for all rate parameters. The height of each bar indicates the number of parameters that achieve the given ESS per hour value.

443 The HIV example assumes that time-varying rates are *a priori* independent across
 444 epochs and HMC demonstrates an approximate 245-fold acceleration relative to MH-MCMC.
 445 Likewise, the influenza example imposes a GMRF across epochs and returns an approximate
 446 79.4-fold speed-up. On the other hand, the EBOV example enforces heavier shrinkage, and
 447 hence higher *a priori* correlation between epochs, and yields a smaller yet computationally
 448 impactful (approximately 12.7-fold) performance increase.

Example	Minimum ESS/h		HMC Speedup
	MH-MCMC	HMC	
HIV (10 epochs)	1.60×10^1	3.91×10^3	2.45×10^2 times
Influenza (78 epochs)	2.43×10^{-1}	1.93×10^1	7.94×10^1 times
Ebola (24 epochs)	5.30×10^0	6.73×10^1	1.27×10^1 times

Table 1: Relative speedup in terms of effective sample size per hour (ESS/h) of HMC Over MH-MCMC for all three data Sets from fixed phylogeny analyses.

449 3.2 HIV dynamics in Odesa, Ukraine

450 In the context of conducting phylodynamic analyses using EBDS models, we are primarily
 451 interested in the value and trend of effective reproductive number over time $R_e(t)$ that is
 452 the average number of secondary cases per infectious case in a population made up of both
 453 susceptible and non-susceptible hosts. If $R_e > 1$, the number of cases is growing, such as
 454 at the start of an epidemic; if $R_e = 1$, the disease is endemic; and if $R_e < 1$, there is an
 455 expected decrease in transmission ([Nishiura & Chowell 2009](#)). Under the EBDS model, given
 456 the absence of intensive sampling events, if an individual becomes infected at time t , we can
 457 use the rate parameters at time t to obtain an estimated $R_e(t) = \frac{\lambda(t)}{\mu(t)+r(t)\psi(t)}$. Furthermore,
 458 in all our analyses for infectious disease phylodynamics, we maintain $r(t) = 1$ as constant.
 459 This assertion carries the assumption that upon diagnosis and sequencing, an individual
 460 ceases to be a source of infection. This could be due to treatment, death, or geographical
 461 relocation, rendering them incapable of onward transmission.

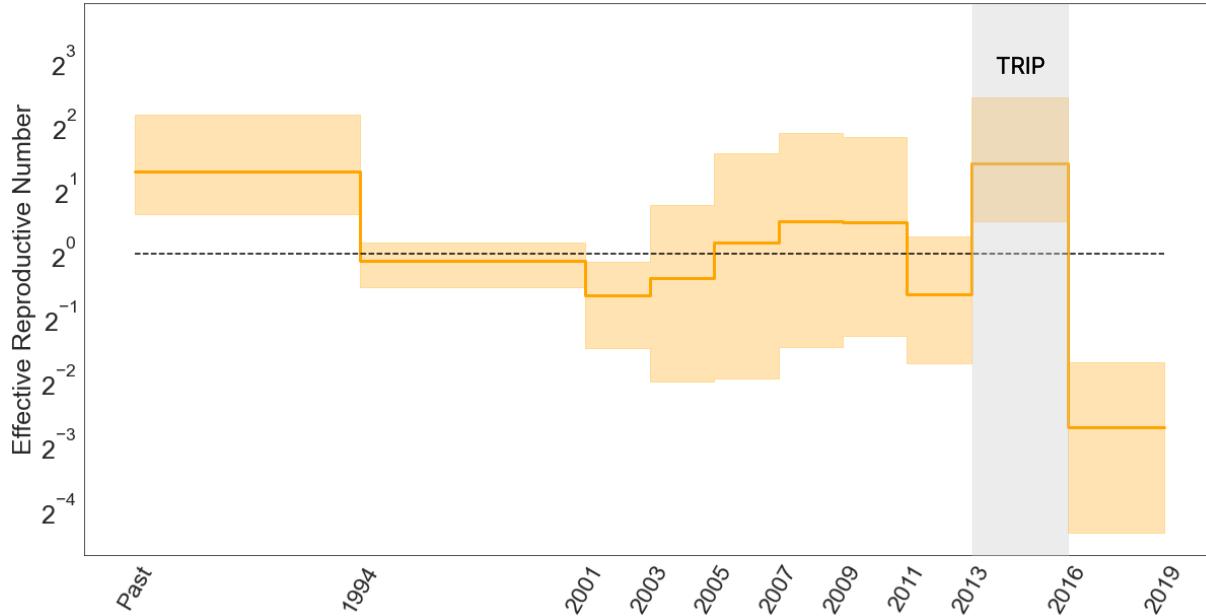


Figure 3: Posterior median (solid line) and 95% credible intervals (CI) indicated by the shaded areas of the effective reproductive number estimates (R_e) through time for HIV epidemic in Odesa, where the black dotted line represents the epidemiological threshold of $R_e(t) = 1$.

462 To assess the effects of TRIP for reducing the transmission of HIV in Odesa, we fit
 463 the EBDS model with varying birth, death and sampling rates and plot the resulting $R_e(t)$
 464 trend estimate in Figure 3. We apply iid lognormal priors on the rate parameters to stay
 465 consistent with the methods in previous study (Vasylyeva et al. 2020).

466 Estimates of $R_e(t)$ appear mostly to accord with previous findings that identify a drop
 467 in infection rate subsequent to the implementation of the TRIP intervention. Focusing on
 468 the period from 2013 to early 2016, when TRIP was enacted, our posterior mean estimate of
 469 R_e is 2.64 (95 % CI: 1.18 - 5.43); while post-intervention, the posterior mean reduces to 0.152
 470 (95 % CI: 0.03 - 0.32). This latter value, falling below the critical threshold of 1, signifies
 471 the potential deceleration of HIV transmission.

472 3.3 Seasonal Influenza in New York State

473 While influenza viruses circulate throughout the year, peak influenza outbreaks in the United
 474 States typically occurs between December and February. Rambaut et al. (2008) employed a

475 non-parametric coalescent model to elucidate the cyclical patterns of variation in the popu-
476 lation size, uncovering a notable increase in genetic diversity at the beginning of each winter
477 flu season. Subsequently, [Parag et al. \(2020\)](#) demonstrated that incorporating sampling in-
478 tensity into the otherwise sampling-naive non-parametric coalescent process improves the
479 precision of these inferred cycles. With a GMRF smoothing prior on increments, our model
480 also offers the potential for accurately inferring seasonal behaviour and achieving the preci-
481 sion of parameter estimations.

482 Figure 4 presents posterior estimates of the effective reproductive number $R_e(t)$ for the
483 alignment of 637 A/H3N2 HA sequences from New York state. As expected, the trajectory
484 is highly cyclic, and all peaks lie near the midpoint of the influenza seasons with estimated
485 R_e larger than 1. For the 2000/2001 and 2002/2003 seasons, where almost all infections
486 were attributed to other sub-types of influenza viruses as indicated by the surveillance data
487 and previous work ([Centers for Disease Control and Prevention n.d.](#), [Parag et al. 2020](#)), we
488 observe the 95% CI of the estimated peak cover values from 0.68 to 1.3 and from 0.48 to
489 1.4, respectively. This suggests that their true R_e values might have fallen below 1. Similar
490 to the results given by the non-parametric coalescent with sampling analysis ([Parag et al.](#)
491 [2020](#)), we capture a minor peak in the 1995/1996 season, where the inferred R_e is slightly
492 above one. This again echoes with the fact that the influenza case composition during the
493 1995/1996 season was characterized by a mix of A/H1N1 and A/H3N2 infections ([Ferguson](#)
494 [et al. 2003](#)). This diversity in infection types led to a less significant elevation in the effective
495 reproductive number for that specific year.

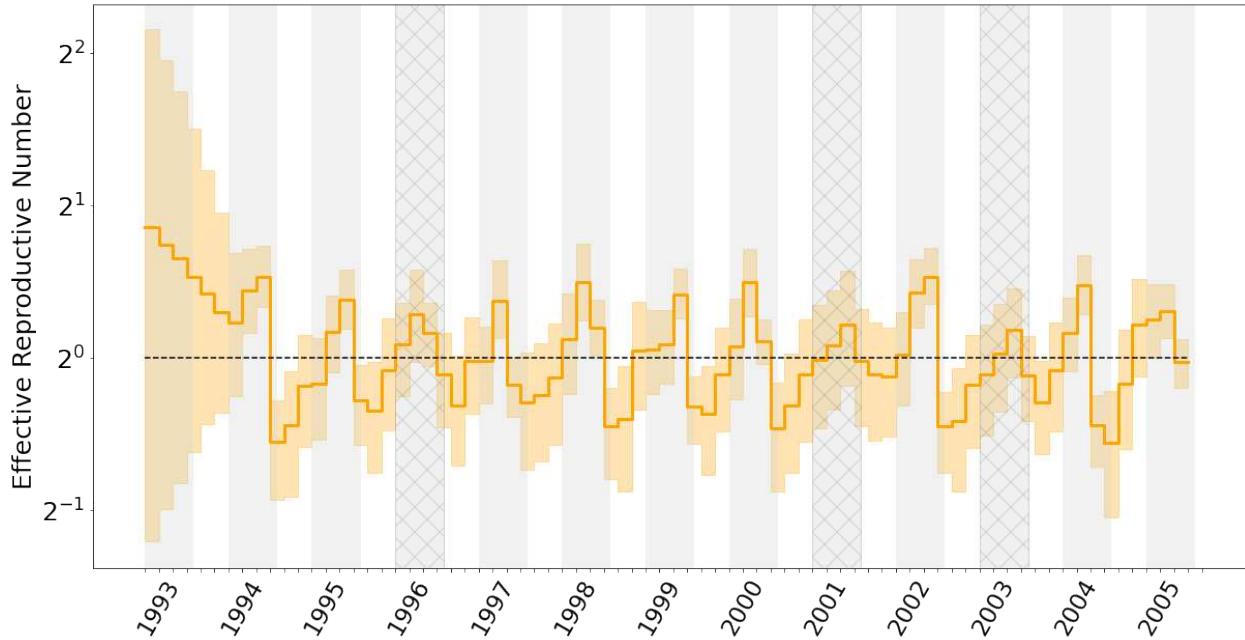


Figure 4: Median (solid orange line) and 95% credible intervals indicated by the shaded orange areas for the effective reproductive number estimates (R_e) through time. Gray shading in the graph represents the rough duration of influenza monitored in New York state for each season, spanning from epidemiological week 40 to week 20 of the following year. Seasons where A/H3N2 was not the dominant influenza virus subtype are cross-hatched.

496 3.4 Ebola epidemic in West Africa

497 Using EBDS model assisted by the HMC sampler, we are able to analyze the 2014 Ebola
498 epidemic in West Africa using the full 1610-sequence alignment and metadata of sampling
499 times taken from the work by [Dudas et al. \(2017\)](#). Previously, researchers have applied birth-
500 death models extensively for the phylodynamic analysis of the Ebola outbreak. [Stadler et al.](#)
501 ([2014](#)) adopted a series of birth death models to capture the early trend of the infection of
502 Ebola virus in Sierra-Leone. They used 72 Ebola samples from late May to mid June
503 2014 with three epochs, and estimated the corresponding effective reproductive number in
504 each period. [Zhukova et al. \(2022\)](#) applied the multi-type birth death models to the 1610
505 sequence data. However, their analysis was based on the maximum likelihood estimation. To
506 demonstrate the scalability of our method, we also take the 1610 sequence data and fit the
507 EBDS model with 24 epochs for a finer time resolution to provide more precise estimation

508 of the effective reproductive number. Here, we employ a Bayesian bridge MRF prior on rate
 509 increments to avoid spurious rate variations while capturing significant rate shifts.

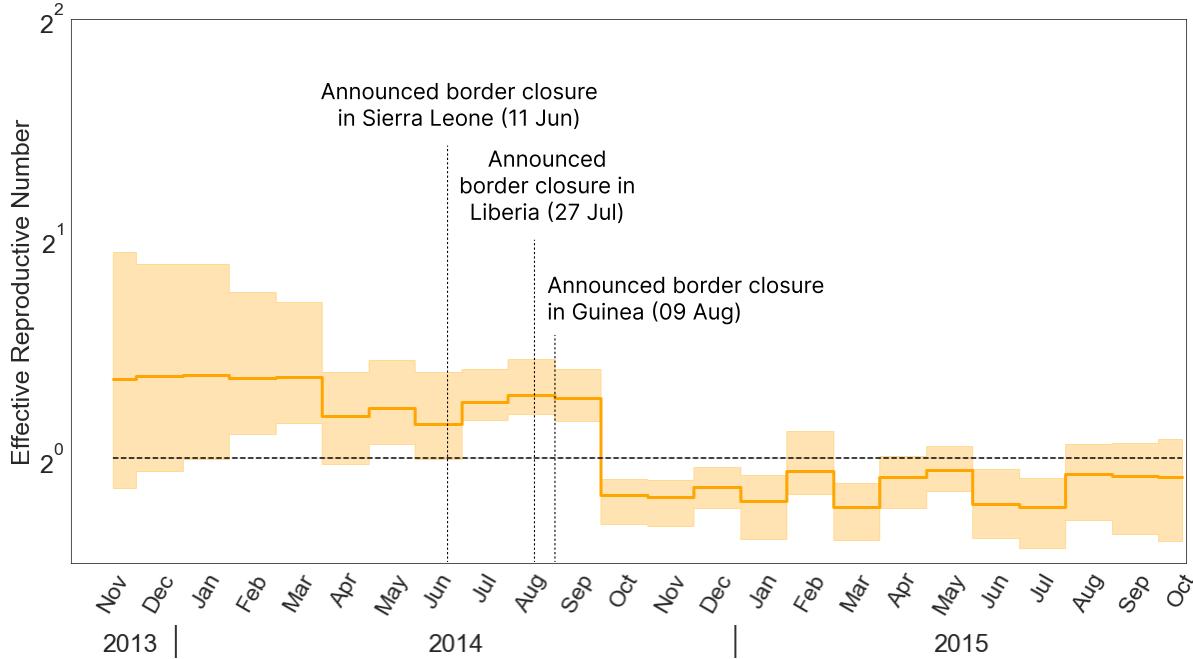


Figure 5: Median (solid line) and 95% credible intervals indicated by the shaded areas of the effective reproductive number estimates (R_e) through time for Ebola outbreak in west Africa. The black dotted line represents the epidemiological threshold of $R_e = 1$.

510 Our inference results give an estimated posterior mean effective reproductive number
 511 at the beginning of the epidemic before December 2013 as 1.65 (95 % CI: 0.41 - 3.05). Dudas
 512 et al. (2017) show that after the international border closure of Sierra Leone on 11 June 2014,
 513 followed by Liberia on 27 July 2014, and Guinea on 9 August 2014, the relative contribution
 514 of international border to overall viral migration is significantly lower. The change-point
 515 probability is the highest from August to September. This finding stands clearly compatible
 516 with our EBDS inference that demonstrates a drop of R_e from 1.3 (posterior mean, 95 %
 517 CI: 1.01 - 1.59) to 0.79 (95 % CI: 0.62 - 0.91) after September 2014 when the international
 518 travel restrictions are in place across the three countries.

519 4 Discussion

520 Birth-death models serve as fundamental tools for modeling the temporal progression of
521 epidemics. In extending the work of [Stadler et al. \(2013\)](#), [Gavryushkina et al. \(2014\)](#),
522 we have provided a systematic representation of the EBDS model for phylodynamics that
523 promotes scalability. Our general re-formalization of the EBDS likelihood identifies that its
524 computation is simply $\mathcal{O}(N + K)$, foreshadowing an $\mathcal{O}(NK)$ algorithm to deliver its gradient
525 wrt time-varying birth, death or sampling rates across K epochs. This optimal scaling
526 enables HMC sampling to more efficiently explore the high-dimensional joint distribution of
527 rates as we increase the number of sequences and the number of model epochs to learn these
528 processes at a finer time-resolution. HMC also emits an agnostic approach to incorporate a
529 variety of prior assumptions about these time-varying trends, without the need to hand-craft
530 specialized transitions kernels for specific priors. Moreover, as suggested by [Ji et al. \(2020\)](#),
531 we take measures to enhance the efficiency of our HMC sampler by preconditioning the mass
532 matrix based on the Hessian of the log-prior.

533 Through three viral epidemic examples, we show that our HMC-assisted approach
534 considerably accelerates Bayesian inference across three very different choices of prior models.
535 Our preconditioned HMC sampler achieves roughly 10- to 200-fold increase over the widely
536 used MH-MCMC sampler in terms of the minimum ESS per unit-time. The enhanced
537 efficiency gains are particularly beneficial given the increasing use of phylodynamic inference
538 techniques in conducting real-time evaluations of outbreak patterns.

539 For applying our model in phylodynamic analyses of disease epidemics, we first exam-
540 ine our EBDS model on the effects of TRIP for reducing the transmission of HIV in Ukraine,
541 and our inference results support a decreased rate of transmission following the TRIP in-
542 tervention. Applied to seasonal Influenza in New York city, our model is able to accurately
543 capture the complex pattern of variation in R_e during each influenza season. Applied to
544 the Ebola outbreak in West Africa, our model supports the effect of international travel
545 restrictions characterized as a noticeable decrease in R_e following the border closure of the

546 three countries in West Africa.

547 In the EBDS model, Stadler and colleagues ([Stadler et al. 2013](#)) have indicated that
548 the three rate parameters, λ, μ , and ψ , cannot be simultaneously identified. This issue
549 of unidentifiability in complex birth-death processes has also been recently discussed by
550 [Louca & Pennell \(2020\)](#). In our own empirical analysis, problems related to unidentifiability
551 seldom manifest when we restrict ourselves to estimating no more than two time-varying
552 rate parameters. Instead, the primary challenge appears to be the multimodal nature of
553 the posterior distribution. [Legried & Terhorst \(2022\)](#) have demonstrated that, under certain
554 conditions, piecewise constant birth-death models can be reliably inferred and differentiated.
555 Furthermore, [Kopperud et al. \(2023\)](#) showed that rapidly changing speciation or extinction
556 rates can be accurately estimated. This lends credence to the identifiability of patterns we
557 observed in our phylodynamic analysis of pandemics such as the seasonal influenza and the
558 Ebola outbreaks.

559 Current methods to estimate the expected Hessian averaged over the posterior dis-
560 tribution improves upon the previous work ([Girolami & Calderhead 2011](#)) by avoiding ex-
561 cessive computational burden. However, it relies on numerical approximations to compute
562 the Hessian, leaving room for potential performance enhancements. To further optimize the
563 methodology, we can advance beyond analytical solutions solely for gradients and extend
564 them to encompass the analytical Hessian. This would smooth the path of updating the
565 adaptive mass matrix, offering opportunities for better outcomes in terms of both efficiency
566 and accuracy.

567 In many scenarios, the examination of EBDS models is contingent upon having some
568 preliminary understanding of how to identify the epoch switching time and the length of
569 duration of each epoch. However, it is possible that information available through epidemi-
570 logical surveillance is insufficient. Moreover, the choice of epoch duration can be related to
571 the uncertainty in the timing of the rate shifts ([Magee et al. 2020](#)). In this study, our strategy
572 aims to increase the number of epochs and leverage regularizing priors, striving to achieve a

573 refined grid of timelines. Nevertheless, constraints persist on the maximum epochs feasible
574 with our HMC algorithm, particularly when confronted with computational limitations or
575 models exhibiting multimodality challenges. One possible solution entails simultaneously in-
576 ferring epoch duration, epoch switching times, and rate parameters via the reversible-jump
577 MCMC method (Wu 2014). However, this method requires one to integrate across models
578 with differing dimension, which demands substantial effort and might be impractical for
579 large datasets.

580 Considering these cases, if the piece-wise constant model assumptions can be lifted
581 so that we can obtain a smoothly differentiable likelihood function, it would inherently aid
582 in deriving gradients concerning node ages and epoch switching times. This advancement
583 would, in turn, improve our current implementation, empowering us to infer, rather than
584 presuppose, epoch switching times, with enhanced scalability prospects. It would also en-
585 hance the sampling efficiency from joint phylogeny posterior distributions, by enabling us to
586 take advantage of recent work by Ji et al. (2021), yielding a pronounced improvement in the
587 analytical capacity of our models.

588 In anticipation of future advancements that will improve upon standard HMC methods
589 and broaden the applicability of the current EBDS model, we present a comprehensive
590 framework in this manuscript. This framework facilitates phylodynamic analysis on large-
591 scale sequence data and employs regularization techniques to yield a finely-resolved, regular
592 grid that effectively aids in our understanding of the impact of the pandemics.

593 5 Acknowledgements

594 This work was supported through National Institutes of Health grants U19 AI135995, R01
595 AI153044 and R01 AI162611. We gratefully acknowledge support from Advanced Micro
596 Devices, Inc. with the donation of parallel computing resources used for this research.

597 **Bibliography**

598 Ayres, D. L., Cummings, M. P., Baele, G., Darling, A. E., Lewis, P. O., Swofford, D. L.,
599 Huelsenbeck, J. P., Lemey, P., Rambaut, A. & Suchard, M. A. (2019), 'BEAGLE 3:
600 improved performance, scaling, and usability for a high-performance computing library
601 for statistical phylogenetics', *Systematic Biology* **68**, 1052–1061.

602 Baele, G., Gill, M. S., Lemey, P. & Suchard, M. A. (2020), 'Hamiltonian Monte Carlo
603 sampling to estimate past population dynamics using the skygrid coalescent model in a
604 Bayesian phylogenetics framework', *Wellcome Open Research* **5**, 53.

605 Barido-Sottani, J., Vaughan, T. G. & Stadler, T. (2020), 'A multitype birth–death model for
606 Bayesian inference of lineage-specific birth and death rates', *Systematic Biology* **69**, 973–
607 986.

608 Bhattacharjee, U., Chakrabarti, A. K., Kanungo, S. & Dutta, S. (2023), 'Evolutionary
609 dynamics of influenza A/H1N1 virus circulating in India from 2011 to 2021', *Infection,*
610 *Genetics and Evolution* **110**, 105424.

611 Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina,
612 A., Heled, J., Jones, G., Kühnert, D., De Maio, N. et al. (2019), 'BEAST 2.5: An ad-
613 vanced software platform for Bayesian evolutionary analysis', *PLoS computational biology*
614 **15**, e1006650.

615 Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G.,
616 Paszke, A., VanderPlas, J., Wanderman-Milne, S. et al. (2018), 'JAX: Composable trans-
617 formations of python+ numPy programs (v0. 2.5)', *Software available from https://github.*
618 *com/google/jax* .

619 Centers for Disease Control and Prevention (n.d.), 'Key facts about influenza (flu)', <https://www.cdc.gov/flu/about/keyfacts.html>. Accessed: 2023-05-31.

621 Condamine, F. L., Rolland, J., Höhna, S., Sperling, F. A. & Sanmartín, I. (2018), 'Testing
622 the role of the Red Queen and Court Jester as drivers of the macroevolution of Apollo
623 butterflies', *Systematic Biology* **67**, 940–964.

624 Crawford, F. W. (2012), General birth-death processes: probabilities, inference, and appli-
625 cations, PhD thesis, UCLA.

626 Drummond, A. J., Ho, S. Y. W., Phillips, M. J. & Rambaut, A. (2006), 'Relaxed phyloge-
627 netics and dating with confidence', *PLoS Biology* **4**, e88.

628 Du Plessis, L. (2016), Understanding the spread and adaptation of infectious diseases using
629 genomic sequencing data, PhD thesis, ETH Zurich.

630 Duane, S., Kennedy, A. D., Pendleton, B. J. & Roweth, D. (1987), 'Hybrid Monte Carlo',
631 *Physics Letters B* **195**, 216–222.

632 Dudas, G., Carvalho, L. M., Bedford, T., Tatem, A. J., Baele, G., Faria, N. R., Park, D. J.,
633 Ladner, J. T., Arias, A., Asogun, D. et al. (2017), 'Virus genomes reveal factors that
634 spread and sustained the Ebola epidemic', *Nature* **544**, 309–315.

635 Fang, L.-Q., Yang, Y., Jiang, J.-F., Yao, H.-W., Kargbo, D., Li, X.-L., Jiang, B.-G., Kargbo,
636 B., Tong, Y.-G., Wang, Y.-W. et al. (2016), 'Transmission dynamics of Ebola virus disease
637 and intervention effectiveness in Sierra Leone', *Proceedings of the National Academy of
638 Sciences* **113**, 4488–4493.

639 Ferguson, N. M., Galvani, A. P. & Bush, R. M. (2003), 'Ecological and immunological
640 determinants of influenza evolution', *Nature* **422**, 428–433.

641 Ferreira, M. A. & Suchard, M. A. (2008), 'Bayesian analysis of elapsed times in continuous-
642 time Markov chains', *Canadian Journal of Statistics* **36**, 355–368.

643 Fisher, A. A., Ji, X., Nishimura, A., Lemey, P. & Suchard, M. A. (2021), 'Shrinkage-based
644 random local clocks with scalable inference', *arXiv preprint arXiv:2105.07119* .

645 FitzJohn, R. G. (2010), 'Quantitative traits and diversification', *Systematic biology* **59**, 619–
646 633.

647 FitzJohn, R. G. (2012), 'Diversitree: comparative phylogenetic analyses of diversification in
648 R', *Methods in Ecology and Evolution* **3**, 1084–1092.

649 Gavryushkina, A., Welch, D., Stadler, T. & Drummond, A. J. (2014), 'Bayesian inference
650 of sampled ancestor trees for epidemiology and fossil calibration', *PLoS Computational
651 Biology* **10**, e1003919.

652 Girolami, M. & Calderhead, B. (2011), 'Riemann manifold Langevin and Hamiltonian
653 Monte Carlo methods', *Journal of the Royal Statistical Society: Series B (Statistical
654 Methodology)* **73**, 123–214.

655 Hasegawa, M., Kishino, H. & Yano, T.-a. (1985), 'Dating of the human-ape splitting by a
656 molecular clock of mitochondrial DNA', *Journal of Molecular Evolution* **22**, 160–174.

657 Hastings, W. K. (1970), 'Monte Carlo sampling methods using Markov chains and their
658 applications', *Biometrika* **57**, 97–109.

659 Höhna, S. (2014), 'Likelihood inference of non-constant diversification rates with incomplete
660 taxon sampling', *PLoS one* **9**, e84184.

661 Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., Huelsenbeck,
662 J. P. & Ronquist, F. (2016), 'RevBayes: Bayesian phylogenetic inference using graphical
663 models and an interactive model-specification language', *Systematic biology* **65**, 726–736.

664 Ji, X., Fisher, A. A., Su, S., Thorne, J. L., Potter, B., Lemey, P., Baele, G. & Suchard,
665 M. A. (2021), 'Scalable Bayesian divergence time estimation with ratio transformations',
666 *arXiv preprint arXiv:2110.13298*.

667 Ji, X., Zhang, Z., Holbrook, A., Nishimura, A., Baele, G., Rambaut, A., Lemey, P. &

668 Suchard, M. A. (2020), 'Gradients do grow on trees: a linear-time $O(N)$ -dimensional
669 gradient for statistical phylogenetics', *Molecular Biology and Evolution* **37**, 3047–3060.

670 Karcher, M. D., Carvalho, L. M., Suchard, M. A., Dudas, G. & Minin, V. N. (2020), 'Es-
671 timating effective population size changes from preferentially sampled genetic sequences',
672 *PLoS Computational Biology* **16**, e1007774.

673 Ki, C. & Terhorst, J. (2022), 'Variational phylodynamic inference using pandemic-scale data',
674 *Molecular Biology and Evolution* **39**, msac154.

675 Kopperud, B. T., Magee, A. F. & Höhna, S. (2023), 'Rapidly changing speciation and
676 extinction rates can be inferred in spite of nonidentifiability', *Proceedings of the National
677 Academy of Sciences* **120**, e2208851120.

678 Lambert, A. & Stadler, T. (2013), 'Birth–death models and coalescent point processes:
679 The shape and probability of reconstructed phylogenies', *Theoretical Population Biology*
680 **90**, 113–128.

681 Lau, M. S., Grenfell, B. T., Worby, C. J. & Gibson, G. J. (2019), 'Model diagnostics and
682 refinement for phylodynamic models', *PLoS Computational Biology* **15**, e1006955.

683 Legried, B. & Terhorst, J. (2022), 'A class of identifiable phylogenetic birth–death models',
684 *Proceedings of the National Academy of Sciences* **119**, e2119513119.

685 Louca, S. & Pennell, M. W. (2020), 'Extant timetrees are consistent with a myriad of diver-
686 sification histories', *Nature* **580**, 502–505.

687 MacPherson, A., Louca, S., McLaughlin, A., Joy, J. B. & Pennell, M. W. (2022), 'Unifying
688 phylogenetic birth–death models in epidemiology and macroevolution', *Systematic Biology*
689 **71**, 172–189.

690 Maddison, W. P., Midford, P. E. & Otto, S. P. (2007), 'Estimating a binary character's effect
691 on speciation and extinction', *Systematic biology* **56**, 701–710.

692 Magee, A. F. & Höhna, S. (2021), 'Impact of K-Pg mass extinction event on crocodylomorpha
693 inferred from phylogeny of extinct and extant taxa', bioRxiv pp. 2021–01.

694 Magee, A. F., Höhna, S., Vasylyeva, T. I., Leaché, A. D. & Minin, V. N. (2020), 'Locally
695 adaptive Bayesian birth-death model successfully detects slow and rapid rate shifts', PLoS
696 Computational Biology **16**, e1007999.

697 Minosse, C., Salichos, L., Taibi, C., Luzzitelli, I., Nardozi, D., Capobianchi, M. R., D'Offizi,
698 G., McPhee, F. & Garbuglia, A. R. (2021), 'Phylogenetic and phylodynamic analy-
699 ses of HCV strains circulating among patients using injectable drugs in central Italy',
700 Microorganisms **9**, 1432.

701 Morlon, H., Parsons, T. L. & Plotkin, J. B. (2011), 'Reconciling molecular phylogenies with
702 the fossil record', Proceedings of the National Academy of Sciences **108**, 16327–16332.

703 Neal, R. M. et al. (2011), 'MCMC using Hamiltonian dynamics', Handbook of Markov Chain
704 Monte Carlo **2**, 2.

705 Nikolopoulos, G. K., Pavlitina, E., Muth, S. Q., Schneider, J., Psichogiou, M., Williams,
706 L. D., Paraskevis, D., Sypsa, V., Magiorkinis, G., Smyrnov, P. et al. (2016), 'A network
707 intervention that locates and intervenes with recently hiv-infected persons: The transmis-
708 sion reduction intervention project (TRIP)', Scientific reports **6**, 38100.

709 Nishimura, A. & Suchard, M. A. (2023), 'Shrinkage with shrunken shoulders: Gibbs sampling
710 shrinkage model posteriors with guaranteed convergence rates', Bayesian Analysis **18**, 367–
711 390.

712 Nishiura, H. & Chowell, G. (2009), 'The effective reproduction number as a prelude to
713 statistical estimation of time-dependent epidemic trends', Mathematical and Statistical
714 Estimation Approaches in Epidemiology pp. 103–121.

715 Novitsky, V., Kühnert, D., Moyo, S., Widenfelt, E., Okui, L. & Essex, M. (2015), 'Phylodynamic analysis of HIV sub-epidemics in Mochudi, Botswana', *Epidemics* **13**, 44–55.

716

717 Nyenswah, T. G., Kateh, F., Bawo, L., Massaquoi, M., Gbanyan, M., Fallah, M., Nagbe, T. K., Karsor, K. K., Wesseh, C. S., Sieh, S. et al. (2016), 'Ebola and its control in Liberia, 2014–2015', *Emerging Infectious Diseases* **22**, 169.

718

719

720 Parag, K. V., du Plessis, L. & Pybus, O. G. (2020), 'Jointly inferring the dynamics of population size and sampling intensity from molecular sequences', *Molecular Biology and Evolution* **37**, 2414–2429.

721

722

723 Piironen, J. & Vehtari, A. (2017), 'Sparsity information and regularization in the horseshoe and other shrinkage priors'.

724

725 Plummer, M., Best, N., Cowles, K. & Vines, K. (2006), 'CODA: Convergence diagnosis and output analysis for MCMC', *R News* **6**, 7–11.

726

727 **URL:** <https://journal.r-project.org/archive/>

728

729 R Core Team (2021), *R: A Language and Environment for Statistical Computing*, R Foundation for Statistical Computing, Vienna, Austria.

730 **URL:** <https://www.R-project.org/>

731 Rambaut, A., Pybus, O. G., Nelson, M. I., Viboud, C., Taubenberger, J. K. & Holmes, E. C. (2008), 'The genomic and epidemiological dynamics of human influenza A virus', *Nature* **453**, 615–619.

732

733

734 Ripley, B. D. (2009), *Stochastic simulation*, John Wiley & Sons.

735 Shapiro, B., Rambaut, A. & Drummond, A. J. (2006), 'Choosing appropriate substitution models for the phylogenetic analysis of protein-coding sequences', *Molecular Biology and Evolution* **23**, 7–9.

736

737

738 Silvestro, D., Tejedor, M. F., Serrano-Serrano, M. L., Loiseau, O., Rossier, V., Rol-
739 land, J., Zizka, A., Höhna, S., Antonelli, A. & Salamin, N. (2019), 'Early arrival and
740 climatically-linked geographic expansion of New World monkeys from tiny African ances-
741 tors', *Systematic Biology* **68**, 78–92.

742 Stadler, T. (2010), 'Sampling-through-time in birth–death trees', *Journal of Theoretical
743 Biology* **267**, 396–404.

744 Stadler, T., Kühnert, D., Bonhoeffer, S. & Drummond, A. J. (2013), 'Birth–death skyline
745 plot reveals temporal changes of epidemic spread in HIV and hepatitis C virus (HCV)',
746 *Proceedings of the National Academy of Sciences* **110**, 228–233.

747 Stadler, T., Kühnert, D., Rasmussen, D. A. & du Plessis, L. (2014), 'Insights into the early
748 epidemic spread of Ebola in Sierra Leone provided by viral sequence data', *PLoS Currents
749* **6**.

750 Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J. & Rambaut, A.
751 (2018), 'Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10',
752 *Virus Evolution* **4**, vey016.

753 Vasylyeva, T. I., Zarebski, A., Smyrnov, P., Williams, L. D., Korobchuk, A., Liulchuk, M.,
754 Zadorozhna, V., Nikolopoulos, G., Paraskevis, D., Schneider, J. et al. (2020), 'Phylody-
755 namics helps to evaluate the impact of an HIV prevention intervention', *Viruses* **12**, 469.

756 Velásquez, G. E., Aibana, O., Ling, E. J., Diakite, I., Mooring, E. Q. & Murray, M. B. (2015),
757 'Time from infection to disease and infectiousness for Ebola virus disease, a systematic
758 review', *Clinical Infectious Diseases* **61**, 1135–1140.

759 Wu, C.-H. (2014), Bayesian approaches to model uncertainty in phylogenetics, Ph.d. thesis,
760 University of Auckland.

761 Yang, Z. (1994), 'Maximum likelihood phylogenetic estimation from DNA sequences with
762 variable rates over sites: approximate methods', Journal of Molecular Evolution **39**, 306–
763 314.

764 Yang, Z. & Rannala, B. (1997), 'Bayesian phylogenetic inference using DNA sequences: a
765 Markov Chain Monte Carlo method.', Molecular biology and evolution **14**, 717–724.

766 Zhukova, A., Hecht, F., Maday, Y. & Gascuel, O. (2022), 'Fast and accurate maximum-
767 likelihood estimation of multi-type birth-death epidemiological models from phylogenetic
768 trees', medRxiv pp. 2022–08.

769 **Supplementary Material**

770 **S1 Likelihood Derivation**

771 **S1.1 Formulas for Likelihood Related Functions**

$$A_k = \sqrt{(\lambda_k - \mu_k - \psi_k)^2 + 4\lambda_k\psi_k}, \quad (19)$$

$$B_k = \frac{(1 - 2(1 - \rho_k)P_{k-1}(t_{k-1}))\lambda_k + \mu_k + \psi_k}{A_k} \quad (20)$$

$$p_k(t) = \frac{\lambda_k + \mu_k + \psi_k - A_k \frac{e^{A_k(t-t_{k-1})}(1+B_k)-(1-B_k)}{e^{A_k(t-t_{k-1})}(1+B_k)+(1-B_k)}}{2\lambda_k} \quad (21)$$

$$q_k(t) = \frac{4e^{A_k(t-t_{k-1})}}{(e^{A_k(t-t_{k-1})}(1+B_k)+(1-B_k))^2} \quad (22)$$

$$g_1 = e^{A_k(t-t_{k-1})} \cdot (1+B_k) + (1-B_k) \quad (23)$$

$$g_2 = A_k \left(1 - \frac{2(1-B_k)}{g_1}\right) \quad (24)$$

$$g_3 = 1 - 2(1 - \rho_k)P_{k-1}(t_{k-1}) \quad (25)$$

772 S1.2 Implementation Algorithm:

773 Detailed algorithm for likelihood calculation is shown below based on the equations listed in
774 Section 2.2 of the main text and from the section above.

Algorithm 1: Likelihood Calculation

```
1 Initialize:  $p_0(t_0) = 1$ 
2 for  $k = 0, \dots, K - 1$  do
    /* Intermediate quantities */
    3 Load the value of  $p_k(t_k)$ 
    4 Calculate  $A_{k+1}$ ,  $B_{k+1}$  via Equation (19), (20)
    5 for  $j = 0, \dots, m_{k+1} - 1$  do
        6 Calculate  $q_{k+1}(s_{j+1})$  via Equation (22)
        7 if  $s_{j+1}$  is a serial sampling event then
            8 | Calculate  $p_{k+1}(s_{j+1})$  via Equation (21)
            9 end
        10 if  $j \geq 1$  then
            11 | Calculate  $I_k(E_j)$  via Equation (2)
            12 end
        13 end
    14 Calculate and store  $p_{k+1}(t_{k+1})$  via Equation (21)
15 end
/* Likelihood */
16 Calculate  $\mathbb{P}[\mathcal{T} | \lambda, \mu, \psi, \rho, r, t]$  via Equation (1)
```

775 S2 Gradient Derivation

776 S2.1 For $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_k}$:

$$\frac{\partial q_k(t)}{\partial \theta_k} = \frac{8e^{A_k(t-t_{k-1})}((t-t_{k-1})\frac{\partial A_k}{\partial \theta_k}(\frac{1}{2} \cdot g_1 - e^{A_k(t-t_{k-1})} \cdot (1 + B_k))}{g_1^3} - \frac{\frac{\partial B_k}{\partial \theta_k}(e^{A_k(t-t_{k-1})} - 1))}{g_1^3} \quad (26)$$

$$\frac{\partial A_k}{\partial \theta_k} = \begin{cases} \frac{\lambda_k - \mu_k + \psi_k}{A_k}, & \text{If } \theta = \lambda \\ \frac{-\lambda_k + \mu_k + \psi_k}{A_k}, & \text{If } \theta = \mu \\ \frac{\lambda_k + \mu_k + \psi_k}{A_k}, & \text{If } \theta = \psi \\ 0, & \text{If } \theta = \rho \end{cases} \quad (27)$$

$$\frac{\partial B_k}{\partial \theta_k} = \begin{cases} \frac{2\lambda_k p_{k-1}(t_{k-1})}{A_k}, & \text{If } \theta = \rho \\ \frac{\partial B_k}{\partial \theta_k} = \frac{A_k \cdot \text{temp} - \frac{\partial A_k}{\partial \theta_k} \cdot (g_3 \cdot \lambda_k + \mu_k + \psi_k)}{A_k^2}, & \text{Otherwise} \end{cases} \quad (28)$$

$$\frac{\partial p_k(t)}{\partial \theta_k} = \begin{cases} \frac{1}{2\lambda_k^2}(-\mu_k - \psi_k - \lambda_k \frac{\partial g_2}{\partial \lambda_k} + g_2), & \text{If } \theta = \lambda \\ -\frac{A_k}{\lambda_k} \frac{((1-B_k)(e^{A_k(t-t_{k-1})} - 1) + g_1) \frac{\partial B_k}{\partial \theta_k}}{g_1^2}, & \text{If } \theta = \rho \\ \frac{1}{2\theta_k} \left(1 - \frac{\partial g_2}{\partial \theta_k}\right), & \text{Otherwise} \end{cases} \quad (29)$$

$$\frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_k} = \frac{1}{q_k(s_{j+1})} \frac{\partial q_k(s_{j+1})}{\partial \theta_k} - \frac{1}{q_k(s_j)} \frac{\partial q_k(s_j)}{\partial \theta_k} \quad (30)$$

$$\begin{aligned} \frac{\partial g_2}{\partial \theta_k} &= \frac{dA_k}{d\theta_k} - \frac{2}{g_1^2} \cdot \left(g_1 \left\{ \frac{dA_k}{d\theta_k} (1 - B_k) - \frac{dB_k}{d\theta_k} \cdot A_k \right\} \right. \\ &\quad \left. - \left(e^{A_k(t-t_{k-1})} \frac{\partial A_k}{\partial \theta_k} (1 + B_k) \cdot (t - t_{k-1}) + (e^{A_k(t-t_{k-1})} - 1) \frac{\partial B_k}{\partial \theta_k} \right) \cdot A_k (1 - B_k) \right) \end{aligned} \quad (31)$$

777 S2.2 For $\frac{\partial \mathbb{P}_k(j)}{\partial \theta_{k-i}}$ (i is an integer smaller than k):

$$\frac{\partial q_k(t)}{\partial \theta_{k-i}} = -\frac{8e^{A_k(t-t_{k-1})} \frac{\partial B_k}{\partial \theta_{k-i}} (e^{A_k(t-t_{k-1})} - 1)}{g_1^3} \quad (32)$$

$$\frac{\partial B_k}{\partial \theta_{k-i}} = \frac{\partial B_k}{\partial p_{k-1}(t_{k-1})} \cdot \frac{\partial p_{k-1}(t_{k-1})}{\partial \theta_{k-i}} = \frac{-2(1-\rho_k)\lambda_k}{A_k} \frac{\partial p_{k-1}(t_{k-1})}{\partial \theta_{k-i}} \quad (33)$$

$$\frac{\partial p_k(t)}{\partial \theta_{k-i}} = -\frac{A_k}{\lambda_k} \frac{((1-B_k)(e^{A_k(t-t_{k-1})} - 1) + g_1) \frac{\partial B_k}{\partial \theta_{k-i}}}{g_1^2} \quad (34)$$

$$\frac{\partial Q_k(s_{j+1}, s_j)}{\partial \theta_{k-i}} = \frac{1}{q_k(s_{j+1})} \frac{\partial q_k(s_{j+1})}{\partial \theta_{k-i}} - \frac{1}{q_k(s_j)} \frac{\partial q_k(s_j)}{\partial \theta_{k-i}} \quad (35)$$

778 **S2.3 Implementation Algorithm:**

779 We implement a recursive algorithm to compute the necessary gradient of the log-likelihood
780 within our rate parameter space. Intermediate quantities are stored in between epochs to
781 alleviate computational burden. Detailed algorithm is shown below based on the equations
782 listed in 2.5 and previous sections in the supplement.

Algorithm 2: Gradient Calculation

```
1 Initialize:  $p_0(t_0) = 1$ 
2 for  $k = 0, \dots, K - 1$  do
3   /* Intermediate quantities */
4   if  $k == 0$  then
5     | Calculate  $\frac{\partial A_1}{\partial \theta_1}, \frac{\partial B_1}{\partial \theta_1}$  using  $p_0(t_0)$  via Equation (27), (28)
6   end
7   else if  $k \geq 1$  then
8     | Load the values of  $\{\frac{\partial p_k(t_k)}{\partial \theta_i}\}_{i=1}^k$ 
9     | Calculate  $\frac{\partial A_{k+1}}{\partial \theta_{k+1}}, \{\frac{\partial B_{k+1}}{\partial \theta_i}\}_{i=1}^{k+1}$  using  $\{\frac{\partial p_k(t_k)}{\partial \theta_i}\}_{i=1}^k$  via Equation (27), (28), (33)
10    end
11    Calculate and store  $\{\frac{\partial p_{k+1}(t_{k+1})}{\partial \theta_i}\}_{i=1}^{k+1}$  using  $\{\frac{\partial B_{k+1}}{\partial \theta_i}\}_{i=1}^k$  via Equation (29), (34)
12    /* Gradient */
13    Calculate  $\{\frac{\partial \mathbb{P}_k(j)}{\partial \theta_i}\}_{i=1}^k$  via Equations (11)-(18) in Section 2.5
14 end
```

783 **S3 Prior distributions for EBDS models**

784 **S3.1 HIV dynamics in Odesa, Ukraine**

785 We refer to the prior settings on the compound parameters from previous work (Vasylyeva
786 et al. 2020), and try to roughly match their priors by adopting the following prior distri-
787 butions on each of the rate parameters. Note that the sampling proportion was fixed to 0
788 before the first sampling date in their study, so we also set the sampling rate to 0 for the
789 last two epochs for consistency.

Parameter	Prior	Role
λ	Lognormal (Mean = 0.85, SD = 1.0)	Birth rate
μ	Lognormal (Mean = -0.25, SD = 1.0)	Death rate
ψ	Lognormal (Mean = -9.0, SD = 0.50)	Serial sampling rate
t_{or}	Uniform (Lower = 19, Upper = 60)	Age of phylogeny

Table S1: Prior specifications for the EBDS model in HIV virus analysis

790 **S3.2 Seasonal Influenza in New York State**

791 We follow the same framework for setting the priors for the GMRF-based model as in Section
 792 **S3.3**. Similarly, the prior distribution for the constant death rate is acquired by estimating
 793 the credible range for the duration of the infectious period according to reports by [Centers](#)
 794 [for Disease Control and Prevention \(n.d.\)](#), with 95% confidence intervals encompassing 6 to
 795 11 days. Comprehensive information regarding the specific prior distributions is shown in
 796 the following table:

Parameter	Prior	Role
λ_1^*	Normal (Mean = 3.08, SD = 1.17)	Log-scale birth rate at present
μ_k^*	Normal (Mean = 3.82, SD = 0.16)	Log-scale death rate for all epochs
ψ_1^*	Normal (Mean = -0.77, SD = 1.17)	Log-scale sampling rate at present
t_{or}	Normal (Mean = 12.5, SD = 15.0)	Age of phylogeny
α	Fixed to 2.0	Exponent of the MRF
ϕ	Gamma (Shape = 1.0, Scale = 1.0)	Transformed global scale of the MRF
ν_k	Fixed to 1.0	Local scale of MRF

Table S2: Prior specifications for the EBDS model in Influenza virus analysis

797 **S3.3 Ebola epidemic in West Africa**

798 We assume a constant death rate, μ for this data set, and we employ an empirical Bayes
 799 approach proposed by [Magee et al. \(2020\)](#) to set the prior on the first log-birth-rate and log-
 800 sampling-rate in our Bayesian bridge MRF models. The prior for the constant death rate is
 801 obtained from an estimation of the plausible duration of infectious period with 95% confi-
 802 dence intervals covering 8 to 40 days ([Velásquez et al. 2015](#)). The detailed prior distributions

803 can be found in the table below:

Parameter	Prior	Role
λ_1^*	Normal (Mean = 1.26, SD = 0.58)	Log-scale birth rate at present
μ_k^*	Normal (Mean = 3.02, SD = 0.41)	Log-scale death rate for all epochs
ψ_1^*	Normal (Mean = 1.27, SD = 0.58)	Log-scale sampling rate at present
t_{or}	Normal (Mean = 1.89, SD = 15.0)	Age of phylogeny
α	Fixed to 0.25	Exponent of the MRF
ϕ	Gamma (Shape = 1.0, Scale = 1.0)	Transformed global scale of the MRF
ν_k	Exponentially tilted stable distributions	Local scale of Bayesian bridge MRF
ξ	Fixed to 2.0	Slab width of Bayesian bridge MRF

Table S3: Prior specifications for the EBDS model in Ebola virus analysis

804 S4 Inferred trajectories for birth/death/sampling rates

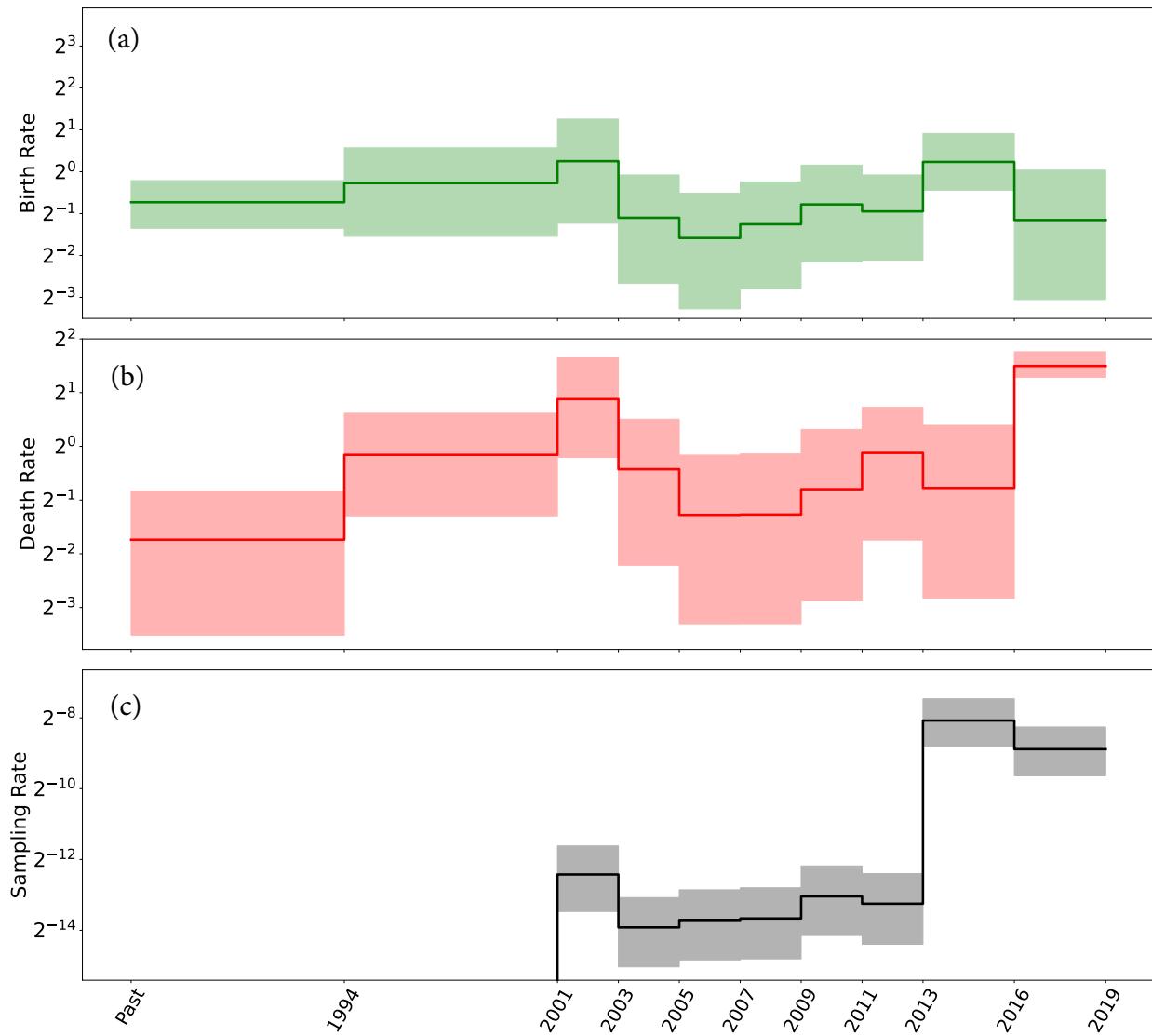


Figure S1: HIV virus: Median (solid line) and 95% credible intervals indicated by the shaded areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.

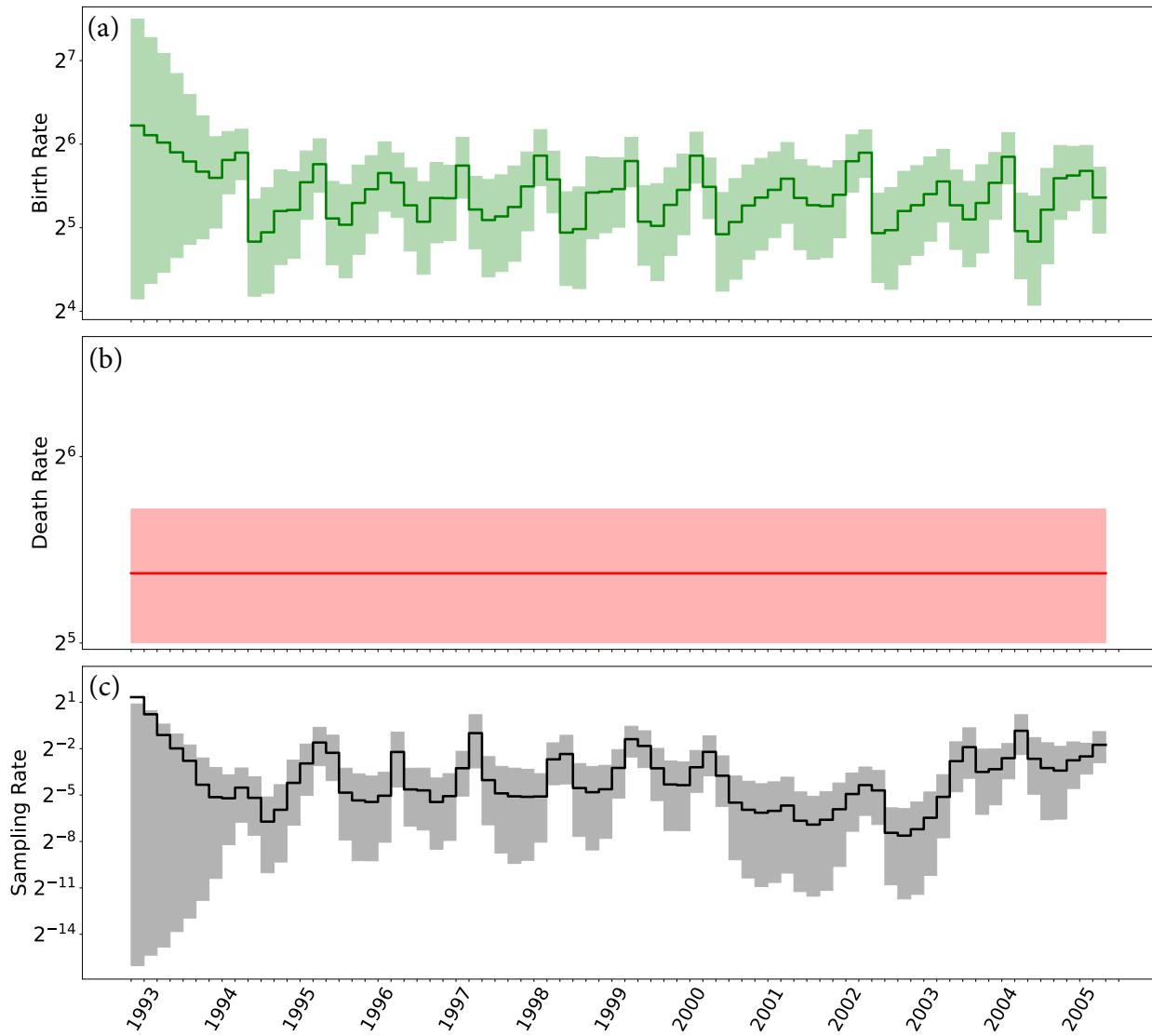


Figure S2: Influenza virus: Median (solid line) and 95% credible intervals indicated by the shaded areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.

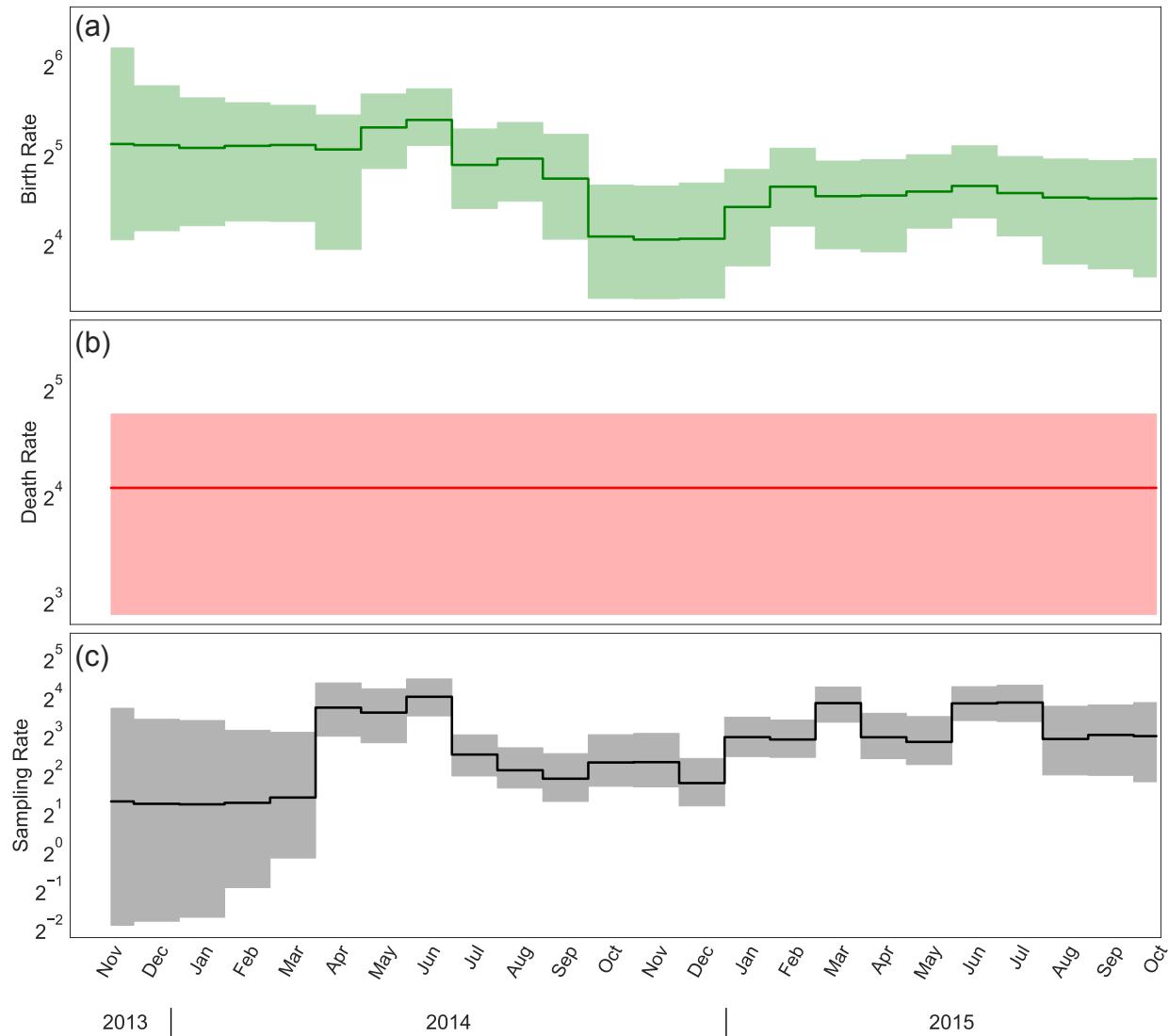


Figure S3: Ebola virus: Median (solid line) and 95% credible intervals indicated by the shaded areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.

805 S5 Computational complexity of the nodewise likelihood

806 The computational complexity of evaluating node-based representations of the likelihood is
 807 much less explicit. First, we need to write out an equivalent expression for the likelihood
 808 of Equation 1 node-wise. It will be helpful to distinguish different types of samples. In
 809 particular, let us denote serially-sampled tips $\bar{\mathbf{u}}_\psi$ with a particular serially-sampled tip being
 810 $\bar{\mathbf{u}}_{\psi i}$. With a slight abuse of notation, let us denote intensively-sampled tips $\bar{\mathbf{u}}_\rho$, with $\bar{\mathbf{u}}_{\rho i}$
 811 denoting the *vector* of intensively-sampled tips at the i th intensive-sampling event. Then we
 812 can write

$$\begin{aligned} \mathbb{P}[\mathcal{T} \mid \boldsymbol{\lambda}, \boldsymbol{\mu}, \boldsymbol{\psi}, \boldsymbol{\rho}, \mathbf{r}, \mathbf{t}] = & \log(q_{k(t_{or})}(t_{or})) + \left(\sum_{i=1}^{|\mathbf{v}|} \log(\lambda_{k(v_i)}) + \log(q_{k(v_i)}(v_i)) \right) + \\ & \left(\sum_{i=1}^{||\bar{\mathbf{u}}_\psi||} \log(\psi_{k(\bar{\mathbf{u}}_{\psi i})}) + \log(r_{k(\bar{\mathbf{u}}_{\psi i})} + (1 - r_{k(\bar{\mathbf{u}}_{\psi i})})p_{k(\bar{\mathbf{u}}_{\psi i})})) - \log(q_{k(\bar{\mathbf{u}}_{\psi i})}(\bar{\mathbf{u}}_{\psi i})) \right) + \\ & \left(\sum_{i=1}^K ||\bar{\mathbf{u}}_{\rho i}|| + \log(\rho_i) + (L(t_{i-1}) - ||\bar{\mathbf{u}}_{\rho i}||) \log((1 - \rho_i)q_{i-1}(t_{i-1})) + \right. \\ & \left. + ||\tilde{\mathbf{u}}_{\rho i}|| \log(1 - r_i)q_{i-1}(t_{i-1})||\bar{\mathbf{u}}_{\rho i}|| \log(r_i + (1 - r_i)p_{i-1}(t_{i-1})) \right) \end{aligned} \quad (36)$$

813 The complexity here is not immediately apparent for a number of reasons. For one,
 814 the complexity appears to depend on the relative proportion of samples of different types,
 815 which affects the number of values of $p_k(t)$ and $q_k(t)$ which must be computed. Importantly,
 816 the complexity of computing those $p_k(t)$ and $q_k(t)$ is not immediately apparent either, and
 817 that these costs are somewhat hard to disentangle, as $p_k(t_i)$ builds recursively on $p_{k-1}(t_i)$
 818 and $q_k(t)$ depends on $p_k(t)$.

819 **S5.1 Node lookups**

820 Regardless of such ambiguities, all nodes in the tree require an interval lookup. For births, the
821 lookup is required to find the correct λ_k term to use. For samples, the lookup is either to find
822 the appropriate sampling rate, for serial samples, or to determine to which intensive-sampling
823 event a sample belongs, for intensive samples. The time requirement here depends on the
824 algorithm, for a binary search it is $\mathcal{O}(\log(K))$, making the total lookup cost $\mathcal{O}(N \log(K))$.

825 **S5.2 How many computations of $q_k(t)$ are required?**

826 In the worst, but most common, case, there are no intensive-sampling events and $q_k(t)$ must
827 be computed for the times of all samples, all births, and all epoch times (note that even when
828 ρ_i is 0, there is a term $L(t_i) \log(q_{i-1}(t_i))$ which must be computed in the final summation).
829 In the best case, all samples are at intensive-sampling events, and $q_k(t)$ only needs to be
830 computed for the times of all births and all epoch times. These are both $\mathcal{O}(N + K)$, though
831 there is a factor of two's worth of variation in front of the N depending on which side of this
832 spectrum a tree falls in. Calling the cost of computing $q_k(t)$ Q , this makes the contribution
833 to the complexity here $\mathcal{O}(Q(N + K))$.

834 **S5.3 How many computations of $p_k(t)$ are required?**

835 The likelihood contains a number of explicit computations of $p_k(t)$ in the terms pertaining to
836 (both serially- and intensively-)sampled tips. When all samples are serial samples, there are
837 $\mathcal{O}(N)$ direct computations of $p_k(t)$, while when all samples are intensive samples, there are
838 $\mathcal{O}(K)$. Taking the cost of computing $p_k(t)$ to be P , the addition to the cost here is between
839 $\mathcal{O}(PN)$ and $\mathcal{O}(PK)$.

840 S5.4 What is the cost of computing $p_k(t)$ and $q_k(t)$?

841 We have thus far shown that the cost of computing the nodewise likelihood appears to be
842 between $\mathcal{O}(N \log(K) + Q(N + K) + PN)$ and $\mathcal{O}(N \log(K) + Q(N + K) + PK)$. But this is
843 not particularly revealing without considering P and Q .

844 While $q_k(t)$ depends on $p_{l:l < k}(t)$ through \mathbf{A} and \mathbf{B} , once A_k and B_k have been computed,
845 let us assume (as we did when evaluating the cost of the interval-wise likelihood) that the
846 cost of $q_k(t)$ is $\mathcal{O}(1)$. In other words, let us assume that $\mathcal{O}(Q(N + K)) = \mathcal{O}(P(N + K))$. This
847 makes the implied cost of the nodewise likelihood between $\mathcal{O}(N \log(K) + P(N + K) + PN)$
848 and $\mathcal{O}(N \log(K) + P(N + K) + PK)$, which both simplify to $\mathcal{O}(N \log(K) + P(N + K))$.
849 Naïvely, we might choose to compute $p_k(t)$ recursively every time we need it, which is $\mathcal{O}(K^2)$.
850 In this case, the implied cost of the nodewise likelihood is $\mathcal{O}(N \log(K) + NK + K^2)$.

851 S5.5 Precomputing \mathbf{A} and \mathbf{B}

852 One can instead choose to pre-compute A_k , B_k , as once these are computed the cost to
853 compute $p_k(t)$ and $q_k(t)$ becomes $\mathcal{O}(1)$. Working backwards from the present allows re-
854 computation to be avoided. As we did when we approximated the cost of the interval-wise
855 likelihood, we will take the cost of the update (computing (A_k, B_k) from (A_{k-1}, B_{k-1})) to
856 be $\mathcal{O}(1)$. Thus, the cost of the precomputation is $\mathcal{O}(K)$. This puts the implied cost of
857 computing the nodewise likelihood between $\mathcal{O}(N \log(K) + N + K)$.

858 S5.6 Counting lineages at epoch times

859 Regardless of whether the model includes intensive-sampling (that is, regardless of whether
860 $\rho = 0$), one must compute $L(t_i)$ for all epoch times. This can be solved essentially the same
861 way as the subintervals are obtained, at a cost of $\mathcal{O}(N + N \log(N))$. Alternately, it can be
862 obtained by counting the number of births and sampled tips older (or younger) than each
863 epoch time, at a cost of $\mathcal{O}(KN)$. This makes the lower end of the computational cost once

864 again a range, from $\mathcal{O}(NK + N \log(K) + N + K)$ to $\mathcal{O}(N \log(K) + N \log(N) + N + K)$.

865 In practice, the constants in front of all the sorting and node-lookup terms appear to be
866 so small as to be unnoticeable in real-world computation. We demonstrate this in our timing
867 experiments in the next section. Thus, for all practical purposes, the likelihood appears to
868 be $\mathcal{O}(N + K)$ regardless of representation, as long as one avoids recursive computation of
869 $p_k(t)$.

870 S6 Timing Experiments

871 With the reformulation of the likelihood and derivation of the analytical gradients, our
872 method notably gains in speed, as we highlight in this section. For a comprehensive as-
873 sessment, we compare our approach with four other specialized packages for EBDS model
874 inference concerning likelihood calculations. These include the BDSKY (Stadler et al. 2013)
875 package within BEAST2 (Bouckaert et al. 2019), TreePar (Stadler et al. 2013) package in R
876 (R Core Team 2021) and RevBayes (Höhna et al. 2016). Furthermore, we present a bench-
877 mark comparing the gradient calculation efficiency of automatic differentiation implemented
878 in VBSKY (Ki & Terhorst 2022) package using JAX library (Bradbury et al. 2018) isolated
879 from the variational inference procedure against our algorithm based analytical gradients
880 implemented in BEAST.

881 To assess the scalability of the aforementioned methods in terms of likelihood/gradient
882 calculation, we simulated a set of trees under the EBDS model with increasing number of
883 tips. To investigate the scalability of different methods wrt the number of sequences, we fix
884 the number of epochs to 5 for both likelihood and gradient calculation.

885 Regarding scalability with respect to the number of epochs, we adjust the model by
886 progressively increasing the number of epochs. To keep other variables constant, we maintain
887 the tree topology and set the number of tips at 12 (in scenarios where $K \gg N$, this allows us
888 to negate the effect of N in $\mathcal{O}(N+K)$) for likelihood computation. For gradient calculations,
889 we set the number of tips to 8198 (to minimize the impact of K^2 in $\mathcal{O}(NK + K^2)$).

890 For methods that employ just-in-time (JIT) compilation, including BEAST, BEAST2
891 and VBSKY, we run a short MCMC chain or variational inference algorithm to compute
892 likelihood or gradient across 100,000 iterations and take the average run time.

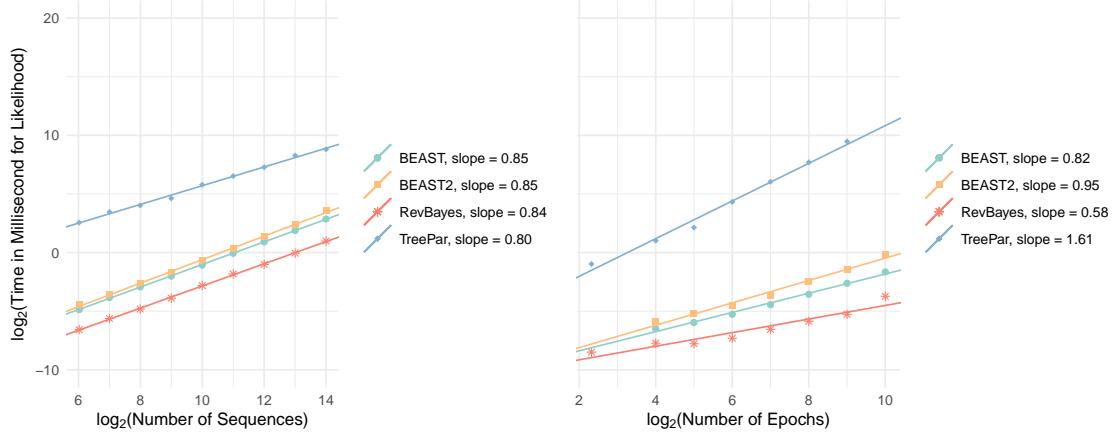


Figure S4: Speed of implementations for the likelihood calculations of increasing number of sequences (left plot) or number of epochs (right plot) for EBDS model. Note the time and number of sequences/epochs are laid out according to a logarithmic scale with base 2.

893 In our analysis, we observe that for likelihood computations, the implementations in
 894 BEAST, BEAST2, and RevBayes offer similar speed performance when adjusting both the
 895 number of sequences and epochs. In contrast, the TreePar package consistently lags, being
 896 several hundred times slower than its counterparts across all tested scenarios. It is also
 897 the sole implementation that exhibits a quadratic scaling with the number of epochs. The
 898 algorithms of BEAST, BEAST2, and RevBayes seem to demonstrate approximately linear
 899 scaling relative to both tree size and model epochs. It's worth noting that RevBayes delivers
 900 the quickest calculation speed, which might be attributed to the inherent speed advantages
 901 of precompiled codes, particularly for quick likelihood calculations in our context. Result for
 902 TreePar with epochs exceeding than 512 is not included as TreePar fail to process such
 903 large models.

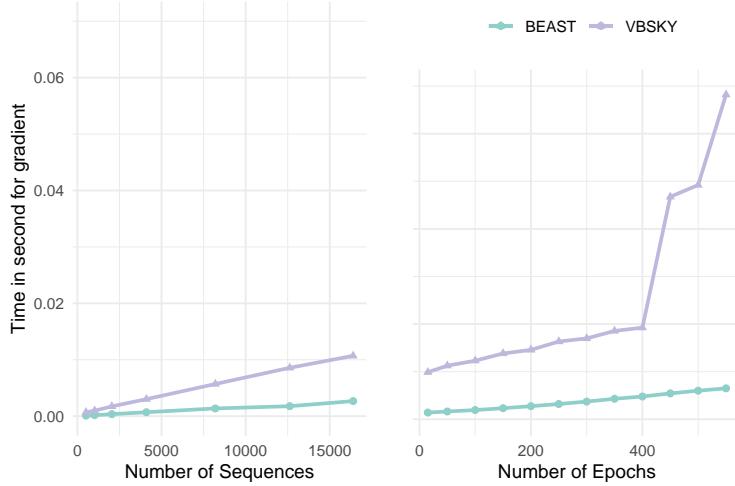


Figure S5: Speed of implementations for and gradient calculations of increasing number of sequences (left plot) or number of epochs (right plot) for EBDS model.

904 In terms of gradient calculations, our analytical gradients deployed within BEAST
905 is remarkably faster than VBSKY approach using automatic differentiation. The gradient
906 computation scales approximately linearly with the number of sequences for both BEAST
907 and VBSKY. However, wrt the number of epochs, the scaling remains linear for BEAST
908 but seems quadratic for VBSKY. We further confirm that the runtime slowness exhibited in
909 VBSKY is not due to memory issues or JIT compilation difficulty. Therefore, our analysis
910 demonstrates that analytically calculating the gradients of the EBDS likelihood is critical
911 for improving the running time of gradient based methods.