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19 Abstract Birth-death models play a key role in phylodynamic analysis for their interpre-
» tation in terms of key epidemiological parameters. In particular, models with piecewise-
a1 constant rates varying at different epochs in time, to which we refer as episodic birth-
» death-sampling (EBDS) models, are valuable for their reflection of changing transmission
23 dynamics over time. A challenge, however, that persists with current time-varying model
2 inference procedures is their lack of computational efficiency. This limitation hinders the
s full utilization of these models in large-scale phylodynamic analyses, especially when dealing
2 with high-dimensional parameter vectors that exhibit strong correlations. We present here
27 a linear-time algorithm to compute the gradient of the birth-death model sampling den-
s sity with respect to all time-varying parameters, and we implement this algorithm within
» a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational
s burden of conducting inference under a wide variety of structures of, as well as priors for,
a1 EBDS processes. We assess this approach using three different real world data examples,
» including the HIV epidemic in Odesa, Ukraine, seasonal influenza A /H3N2 virus dynamics
13 in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a
s substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample
3 Size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we
s show the robustness of our implementation in both allowing for flexible prior choices and
s in modeling the transmission dynamics of various pathogens by accurately capturing the

s changing trend of viral effective reproductive number.
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» 1 Introduction

» Phylodynamic models constitute a sophisticated toolset employed to decipher the complex
s interplay between epidemiological and evolutionary processes, providing valuable insights
2 into population dynamics (Lau et al. 2019). In this paper, our primary emphasis is directed
s toward the inference of epidemiological dynamics, rather than estimation of the underlying
s phylogeny through sequence analysis. Specifically, we start with a sample of molecular se-
55 quences, which can be used to reconstruct the evolutionary relationships between organisms,
s often viral pathogens, and yield inference on dynamics of the larger pathogen population over
s time while relegating the phylogeny the status of a nuisance parameter. To provide this link,
s a vital component of phylodynamic analysis is the use of birth-death models, which belong
» to an important subclass of continuous-time Markov chains (CTMCs). We use birth-death
so models to define the probability distribution on time-calibrated phylogenies for reflecting the
st fluctuations of the population size (MacPherson et al. 2022). In this context, birth-death
s models posit three major types of events: birth, which refers to the creation of new lineages
53 through pathogen transmission between hosts; death, which represents host death/recovery
saor other removal from the studied population, and sampling, which means the collection of
55 a sequence derived from the pathogen in a single infected host and included in the data set
ss under analysis (Crawford 2012).

57 The past few decades have delivered a wide range of birth-death models. These span
s from a simple, constant-over-time formulation (Yang & Rannala 1997) to models that allow
5o both birth and death rates to vary over time (Stadler et al. 2013, Hohna 2014). Further
s extensions incorporate additional processes, both statistical and biological, such as the col-
e lection of samples in continuous time (Stadler 2010), migration (Barido-Sottani et al. 2020),
s2 or the dependency of rates of birth and death on key biological traits (Maddison et al. 2007,
3 FitzJohn 2010, 2012). One powerful variant, the episodic birth-death-sampling (EBDS)
s« model (Lambert & Stadler 2013, Stadler et al. 2013, Gavryushkina et al. 2014, Du Plessis

s 2016) permits birth, death, and sampling rates to change in discrete epochs throughout time
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6 to capture more complicated population dynamics. Recent inference based on EBDS models
&7 has found its way already into many applications, especially on the understanding of the
¢ spread of infectious disease (Novitsky et al. 2015, Vasylyeva et al. 2020, Minosse et al. 2021).
69 With increasingly rich and complex molecular sequence datasets across fields, improv-
70 ing the scalability of inference under EBDS models remains challenging both in terms of the
n number of sequences and the number of epochs. The most commonly employed inference
2 methods based on Markov chain Monte Carlo (MCMC) (Hastings 1970, Morlon et al. 2011)
73 use random-walk transition kernels generally to propose new parameter values in a blind
7 fashion. Consequently, they lead to many birth-death model likelihood evaluations and slow
7 exploration across the state space, especially for high-dimensional problems. The potentially
7 complex correlation structure between epoch parameters can further exacerbate inference.
7 This is where gradient-based sampling methods, such as Hamiltonian Monte Carlo (HMC)
¢ (Duane et al. 1987, Neal et al. 2011), are expected to shine. HMC has recently become
70 very popular as a MCMC algorithm that overcomes many of the limitations of random-walk
so Metropolis-Hasting (MH) methods. Instead of making random proposals, HMC exploits
s the gradient of the log posterior with respect to (wrt) its model parameters to propose new
2 states that are likely to be accepted and are far from the current state. Since HMC can make
&3 large moves in the state space while still maintaining a high acceptance rate, it can lead to
s faster convergence and better mixing than MH approaches, if one can efficiently evaluate not
s only the log posterior (up to a constant) but also its gradient. Successful implementation
s of HMC transition kernels has proved fruitful in terms of boosting sampling performance in
&z other phylogenetic inference frameworks, including for different clock models (which describe
ss  how rates of molecular evolution vary among different organisms over time, Ji et al. 2020,
o Fisher et al. 2021), divergence times (the internal-node heights of phylogenies, Ji et al. 2021)
o and non-parametric coalescent models (which fall into another category of phylodynamic
a1 models assuming effective population size as a piecewise-constant form of time, Baele et al.

2 2020).
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03 In this paper, we incorporate gradient-based sampling methods into phylodynamic
w analysis based on EBDS models, thereby enabling scalable inference within this framework.
s First, we refactor the EBDS (log) likelihood to show explicitly that the computational com-
o Pplexity scales linearly both in terms of the number of sequences and the number of epochs.
o With this refactoring in hand, we deliver a novel linear-time algorithm to evaluate the gra-
¢ dient of this (log-)likelihood wrt all epoch parameters simultaneously. Then we design and
o deploy an efficient HMC sampler that enables us to fit a large class of EBDS models in a
wo  Bayesian framework and provide an open-source implementation in the popular Bayesian
1 Evolutionary Analysis by Sampling Trees (BEAST) software (Suchard et al. 2018).

102 Current approaches to Bayesian inference for EBDS epoch parameters employ a variety
w3 of prior assumptions to model the dependence structure between parameters across epochs.
s Some priors assume that birth, death and sampling rates across epochs are independent
s and identically distributed (iid) (Stadler et al. 2013, Gavryushkina et al. 2014, Vasylyeva
s et al. 2020). To smooth rate variation over time, temporally-auto-correlated priors such
107 as Ornstein-Uhlenbeck smoothing prior (Du Plessis 2016), Gaussian Markov random fields
s (GMRF) priors (Condamine et al. 2018, Silvestro et al. 2019) and the horseshoe Markov
o random field for EBDS models (Magee et al. 2020) have been considered. Conveniently,
o both our linear-time gradients and our HMC approach generalize across all of these choices
m  of prior without the need to construct model-specific sampling techniques and allow us
2 to introduce the Bayesian bridge shrinkage prior to yield parsimonious time-varying rate
usz  patterns.

114 Across three real-world infectious disease examples that vary in the number of se-
us quences, model dimension, and prior specification, we demonstrate the performance gain
ue achieved by our implementation of an HMC transition kernel compared to random walk
ur transition kernels. Moreover, for each of these datasets we infer key epidemiological parame-
us ters and demonstrate the utility of our scalable approach for providing reasonable estimates

e of pathogen transmission dynamics over time.


https://doi.org/10.1101/2023.10.31.564882
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.31.564882; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

2 2 Methods

m 2.1 Setup

122 In an infectious disease setting, suppose an infected individual initiates an epidemic at time
13 (measured backwards from the present day) t,. > 0, called the time of the origin. Then,
124 each currently and newly infected individual disseminates the pathogen to others at a time-
15 varying birth rate A(¢) and transitions into a noninfectious state at a time-varying death
s rate p(t). At any given time, we may sample an infected individual with time-varying
17 sampling rate ¢(t), at which point we add the time of sampling and a molecular sequence of
18 their infectious agent into our time-stamped molecular sequence alignment Y. Further, we
129 may posit K fixed time-points at which we randomly sample all infected individuals with
130 associated vector of probabilities p = (p1, ..., pk) , adding the time and molecular sequence
11 to Y. Note that this means that several individuals can be sampled at the same time point.
122 The choice of the time-points is dependent on the dataset at hand and will be discussed
133 later in this section. Every sampled infected individual may be treated and then become
13« noninfectious with time-varying probability r(¢) which we assume equal to one everywhere
135 for complete sampling.

136 The model defined above provides a forward in time portrayal of the epidemiological
17 process. Considering the N sampled and time-stamped sequences in Y as tree tips, there
133 exists a (possibly unknown) phylogeny 7 that depicts the evolutionary relationships among
130 these sequences. Specifically, 7 is a rooted, bifurcating tree with /N tip nodes that correspond
1o to the sampled sequences or their hosts from the population and N — 1 internal nodes that
w1 represent transmission events between hosts. We define the height of the nodes as the length
12 of time between the time of the corresponding transmission/sampling events and the time
3 of the most recent sampled sequence, which we refer to the present time, 0. Each node of
us T is then associated with a node-height > 0 relative to the present, such that the difference

us  between the parent node-height and its child node-height is a branch length measured in
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s the units of real time (e.g., years). We call the earliest internal node in 7 the root and
w7 its node-height corresponds to the time of the most recent common ancestor (TMRCA).
us Therefore, we can further define the node heights of internal nodes to be bifurcation times
1o and that of leave nodes to be sampling times. Accordingly, for a vector of bifurcation times,
150 we have v = (vy,vg,...,vn_1) Where vy < -+ < wvy_1. And we let u = (uj,ug,...,uy) be a
151 vector of sampling times where u; < -+ < uy.

152 For an episodic model, we make the assumption that all the rate parameters are piece-
1535 wise constant across K different epochs with cut points t = (to,...,tx), with tp = 0 <
st < - < tg_q1 < tg. We also require t,. < tg. Under this assumption, we can rewrite
155 the time dependent birth rate A(f) in terms of some unknown epoch-specific birth rate
6 A = (A1,..., k), where A(f) = A\; for tx_; < t < tg. Similar parametrization applies to
157 other parameters, so that we can express p(t) in terms of g = (u1,..., k), ¥(t) in terms
s of ¢ = (¢1,...,¢k) and () in terms of » = (71, ...,7x). Without loss of generality, we let
150 intensive sampling events happen at every time points in . Then we define p = (py, . .., px),
w0 where p(t) = pg for t = tx_;. We can remove these intensive sampling events at the epoch
11 switching times from our model simply by setting p = 0.

162 After reparametrizing the rates of the EBDS model, we can arrive at some key epi-
13 demiological quantities. For example, if we assume there are no intensive sampling events,
e we can specify the effective reproductive number as R, (t) = m Other parameters
s that are important include the total rate of becoming noninfectious, which is defined as
s 0(t) = p(t) + ¥ (t)r(t), and the sampling proportion, defined as ((t) = % If we
17 also assume removal of lineages upon sampling, these formulas can be further simplified by

s letting r(¢) be constant and always equal to 1.

e 2.2 Probability Density of a Sampled Phylogeny

o Recall we break time into intervals with cut points ¢ = (¢o,...,tx) defined by epochs.

i1 Within each epoch, we define a series of subintervals such that a new subinterval start at
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Figure 1: A phylogeny arising from an EBDS model. This sampled phylogeny has three
epochs (with epoch switching time ¢;, t5) and thus three sets of model parameters including
rates and probabilities. For every epoch, each branch is further divided into subinterval that
starts at s; and ends at time s;41 so that no epoch switching, birth or sampling event occurs
within it. Each subinterval within each epoch k is represented by a phylogeny segment index,

yE

every bifurcation time v, sampling time uw and epoch switching time t. We delineate the
subinterval by indices j, which begins at s; and terminates at s;; (where s; < s;41). If
tor = tx, then the grids s = (s1,..., Say_24k) can be obtained by joining the time points in
v, u and t according to their ascending order when none of these times coincide with each
other. If t,. < tx, we have son_o,x = t,, instead of tx.

Consequently, each subinterval, inclusive on the left, is partitioned in such a way that it
precludes the occurrence of an epoch switching, birth or sampling event within its boundaries.
Within the kth epoch, the first subinterval starts at s; = ¢,_; and the last subinterval ends
at spm,+1 = tx. (Note for the last epoch K, the last subinterval ends at t,..) We assign L(j)

to account for the number of lineages in 7 that are extant in subinterval time (s;, s;41].
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182 Our likelihood derivation falls into the common framework with Stadler et al. (2013),
183 Gavryushkina et al. (2014) and Magee & Hohna (2021). However, instead of writing the
184 likelihood in terms of the times of node and epochs, we write it in terms of the subintervals
185 j. This representation highlights the fact that the likelihood can be computed in one pass,
16 starting at the present and ending at the origin. The interval-based representation of the

17 likelihood is as follows:

K myg

P[T| A7M7¢apar7t] :Nl 108;,01+ ZZ (log]k(E])+L(]) IOg (ql;<‘z;+)1))) ’
- k (55
k=1 j=1

YK mp<2N+K—2*

(1)

188 where my, is the total number of subintervals in epoch k. (*: equality holds when no events
180 happens at the exact same time except for the current).

190 The indicator function I (E;) is labelled by the index k. This implies that the function
101 is concerned with events occurring within the time frame (t4_1,¢;]. We have Ej represent
12 the event that takes place at the termination of subinterval j within epoch k. In most
13 phylodynamic studies, ancestral sampling scenarios are not taken into account; therefore,
104 our model is based on the assumption of a strictly bifurcating phylogenetic tree and does
15 not involve considerations of ancestral sampling cases, which is distinctive from the work of
s Gavryushkina et al. (2014). Nonetheless, incorporating ancestral sampling into our frame-
17 work is relatively straightforward. This can be achieved by setting the treatment probability
s to be less than 1 and adding the term (1 — 7%) to our indicator function to account for

199 events involving ancestral samples. Consequently, this indicator function takes the following
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200 form:
1, E; = a epoch switching event happens on s,
Ak E; = a birth event happens at s,
I(E;) = (2)
V(1 = r)pr(sj41) + 7)), E; = a tip sampling event happens at s;;1
pka((l — ) Pe—1(8j11) + )V (1= pk)L(”’N*', E; = an intensive sampling event happens at s;11 = tx_1.
201 Note that py(t) is the probability that an infected individual at time ¢ has no sampled

22 descendants when the process is stopped (i.e., at time ¢y), and gx(¢) is the probability density
203 of an individual at time ¢ giving rise to an edge between ¢ and t;_; (not t; since we define
204 time to flow backwards which is the reverse of the generative process) for tx_; < t < t in
205 epoch k. We have py(ty =0) = 1.

206 The intensive sampling probability at time t;_; is p, and the corresponding number of
207 leaves sampled at that time is Ni;. The index here is intentionally misaligned to reconcile
208 the fact that we model the epoch as left inclusive in time.

200 The definitions of the underlying functions, qx(t) and px(t), follow the work from Stadler
20 et al. (2013) and the detailed formulas are included in Supplementary Material S1. Note that
an our equation 1 does not condition the tree likelihood upon any particular properties, such
212 as the presence of at least one sampled individual. Without loss of generality, additional
213 conditioning schemes can be integrated by adding a factor to the log-likelihood; relevant
21 discussions on this subject are available in Table S3 from the study by MacPherson et al.
25 (2022).

216 As stated previously, our representation of the likelihood differs from the more standard
27 nodewise representation (see for example Stadler et al. 2013, Gavryushkina et al. 2014, Wu
28 2014, Magee & Hohna 2021). Our representation makes it explicit that the likelihood com-
210 putation can be accomplished in O(N + K) time (see Algorithm 1 for computational details).
220  We demonstrate this behavior empirically in Supplementary Material S6. On the other hand,
21 as we show in Supplementary Material S5, the conventional nodewise representation leads

22 to ambiguities in the cost and a wide potentially range of computational complexities de-

10
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223 pending on implementation decisions. In Supplementary Material S6 we show empirically
224 that formulations based on the nodewise representation include both implementations which
»s are of the same computational order as ours (namely BEAST2 (Bouckaert et al. 2019) and
»s RevBayes (Hohna et al. 2016)) and which scale worse in the number of epochs (TreePar

27 (Stadler et al. 2013)).

2 2.3 Inference

20 In a Bayesan inference procedure, as introduced in Section 2.1, we use a multiple sequence
230 alignment with the sampling times, the time-stamped sequences, Y, as the input data. Based
21 on Y, we can form the posterior distribution over the product space of trees and EBDS model
2 parameters as follows. First, a phylogeny T is generated from the EBDS process defined in
213 Section 2. Then we specify a molecular clock model that controls the rate at which evolution
234 occurs on each branch of 7. Under a molecular character-based CTMC substitution model,
235 the columns in the sequence alignment evolve independently along the branches of the tree.
236 Adoption of different substitution models is contingent upon the distinct attributes of the
27 dataset under investigation (see Section 2.6.1). For the sake of notational convenience, we
28 refer to the vector encompassing both substitution and clock model parameters as w. We
20 denote by P(Y | w,7T) the probability of the time-stamped sequences under the CTMC
20 substitution model, known as the phylogenetic likelihood. Subsequently, we can factorize

2 the posterior in the following manner:

]P)[T’A7I‘L71l)7p’r’t7w | Y] OCIP(Y | w7T>IP>|:T| A?l‘l”’l#)p?r?t}
x P\, p, %, p, 7, t, W]
< P(Y [w, T)P(W)P[T | A\, .9, p,7. ¢

X PA)P(p)P()P(p)P(r)P(2).

212 In phylodynamic analyses, it is sometimes advantageous to streamline the model by

11
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23 maintaining the death rate as constant. We can also presume the intensive sampling prob-
s ability to be 0 and treatment probability to uniformly be 1 across all epochs. In handling
25 time-varying parameters, we choose either iid priors or Markov random field models based
2s on dataset-dependent assumptions pertaining to the patterns of change expected in rate pa-
27 rameters. In this paper, we specifically consider the GMRF and the Bayesian bridge Markov
2s  random field model, the latter of which we describe below.

249 With increasing complexity of the existing EBDS models, we seek to integrate Bayesian
0 regularization methods to help manage the potentially vast quantity of model parameters.
51 Specifically, we consider Markov random field priors which specify distributions on the in-
2 cremental difference between the log-transformed rate parameters. By assigning a normal
253 distribution to the incremental changes, we arrive at the GMRF priors that induce a smooth-
4 ing effect on the change of rate parameters across contiguous epochs. This approach naturally
»ss  leads to adjacent epochs exhibiting similar rate values. However, a strong data signal indica-
6 tive of a rate change can still manifest in the resulting trajectory. By placing a heavy-tailed
»7  Bayesian bridge prior (Piironen & Vehtari 2017) on these, we achieve a more generalized ex-
»s  tension of the GMRF model. The key distinction resides in the specification of the standard
0 deviation arising from the normal priors on the increments. In this resulting Bayesian bridge
%0  Markov random field framework, each epoch’s increment is assigned an additional variable
1 to account for variation, thereby affording greater flexibility to the model.

262 Supposing we have varied birth rates, we define the birth rate on the log scale A\ =

a} for

sk > 1, where 7 is the global scale parameter that controls the overall degree of parameter

265 log(A). Then we have the prior on increments, P (A}, — Aj_; | 7) o exp {— AN

*

»s variation. As « diminishes, the function P ()\,*; — k—l) accrues an increased density close
x%6 to zero. For the purpose of our study, we establish o = 0.25 to address a potent prior
267 assumption that \; —A7_, is proximate to 0 without inducing any problems related to mixing
xs issues. In other words, we do not anticipate substantial fluctuations in the birth rates across

260 consecutive epochs (but allow for rapid rate shift, for example during the exponential growth

12
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20 phase.) Another important parameter is the local scale, denoted as 1, which is specific to
an - an individual increment A; — A\;_;. Its density regulates the magnitude of the spike and the
2z tail behavior of the above marginal A\ — A\;_, | 7.

273 Note that the GMRF model can be perceived as a specific instance of the Bayesian
o bridge MRF, where all the local scale parameters are equalized to 1 and « is fixed at 2. In
s this case, the increment differences adhere to a normal distribution whose variance is solely
s governed by a single global scale parameter.

217 To complete our model, a normal prior is assigned to A} in adherence with the method
s outlined in Magee et al. (2020). We obtain the mean parameter of the prior using an empirical
a0 Bayes method. This provides a crude estimate of the log rate parameter, coupled with a
20 standard deviation that is sufficiently large to encompass all possible values (See S3). We

. This selection is grounded on a combination of

21 apply a Gamma(1,1) prior to ¢ = 7
22 theoretical considerations and empirical validation and allows for an efficient Gibbs sampler
23 for 7.

284 To regularize the tail behavior, we leverage the shrunken-shoulder version of the Bayesian
285 bridge prior and limit the bridge to have light tails past the slab width, ¢ (Piironen & Ve-
26 htari 2017, Nishimura & Suchard 2023). An efficient update of Markov random field models
27 global and local scale parameters (for Bayesian bridge priors) follows Nishimura & Suchard

288 (2023). In this framework, the prior on the increment space represented as a scale mixture

280 of normal distributions:

2
vt

P(Ak_)\k71|yka7-;€):N 0,(§+2—) 5 (4)

20 where vy is called the local scale parameter and 7 is the global scale parameter. (Note
21 that v, has an exponentially tilted stable distribution with characteristic exponent a/2.)
202 'This mixture representation aids in clarifying the local adaptivity of the Bayesian bridge

203 prior as considerable changes in rates can be accommodated by an increase in v, without
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24 mecessitating a rise in 7. The inclusion of the slab width helps to bound the variance of
25 increments to £2. We set ¢ = 2, which creates a reasonable upper limit on the variations in
206 birth rate between consecutive epochs.

207 In our study, we primarily focus on sampling P[T | A, &, 0, t]. With increasing numbers
28 Of epochs, the parameter space of the EBDS model expands quickly, exhibiting substantial
200 correlation between adjacent epochs. To improve the sampling efficiency, we utilize HMC
s0 method to concurrently sample the time varying model parameters and ensure a high accep-

301 tance rate.

w2 2.4 Hamiltonian Monte Carlo Sampling

53 Hamiltonian Monte Carlo is a widely-used Markov chain Monte Carlo method to sample from
s a target distribution effectively. Given a target parameter 8 with a posterior probability den-
ws  sity 7(0), HMC iteratively generates samples from the target distribution by simulating the
26 dynamics of a physical system whose equilibrium distribution is equal to 7(8). In partic-
s7 ular, HMC introduces an auxiliary momentum parameter d, which is typically chosen to
w8 follow a multivariate normal distribution with zero mean and covariance matrix M, i.e.,
200 d~ N(0,M). M is also known as the mass matrix, which serves as a hyperparameter. The

s Hamiltonian function of the system is defined as:

H=U(6)+ K(d), (5)

s where U(0) = —log(m(0)) is the potential energy, and K(d) = d' Md is the kinetic energy
sz of the system.

313 Starting from the current state (68, dy), HMC updates the state according to the fol-

14
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s lowing differential equations:

% =—-VU(0) = Vlogn(0)

(6)
% — +VK(d) = M'd.

us The simple and effective “leapfrog” method (Neal et al. 2011) approximates the solution
s6 to (6) numerically:
diyeyp =di + %Vlogﬂ (0y)

0 =0, + EM_ldtJre/Q (7)

diye =direp2 + %VIOQ}W (Or1e)
siz - where € is the size of each leapfrog step, and n steps are required to simulate the Hamiltonian
s dynamics from time ¢ = 0 to ¢t = ne. In practice, the “leapfrog” method has been shown to
s0 be stable and accurate for a wide range of step sizes (Neal et al. 2011).
320 The default choice of the mass matrix is the identity matrix. However, using a different
;1 M, such as a log-posterior Hessian approximation can largely enhance the efficiency of HMC
2 sampling. In this work, M is adaptively tuned to estimate the expected (diagongal) Hes-
23 sian averaged over the prior distribution. This design choice alleviates some computational

s burden, following the work of Ji et al. (2020).

»s 2.5  Gradient

2 HMC sampling of the model parameters requires the gradient of the log-likelihood derived
27 from (1) wrt the EBDS model rate parameters. The gradient is the collection of derivatives

s wrt model parameters:

op op op)T
00, 00,  T00x)

VOJP)[T| )\7H7¢7pvrat] = <

20 where 0 € { A, ¥, 1k, pr } is a unified parameter to reduce notation clutter.
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330 Given the piece-wise constant nature of the model, the likelihood assumes a consistent
s form across all epochs. Therefore, we can examine the gradient of the log-likelihood at each

sz epoch separately. We denote the log-likelihood at epoch k£ and phylogeny segment j as:

Po(j) = log Iu(E;) + L(j) log (ﬁ) (©)

333 We can further get individual terms in (8) by accumulating contributions from each epoch
s and the corresponding phylogeny segments:

K mg

89k

335 By examining the interdependency between epochs, we discern that a given epoch k

1 exerts influence on the gradient of parameters pertaining to that and all preceding epochs.

. . OP(j . L.
;37 Consequently, it becomes necessary to consider 8’;’ and ’“(3_ respectively, where i is a
—1

18 positive integer ranging between 1 and (k — 1).

First, we consider the gradient contribution at epoch k& wrt the current model param-

Pk (5)

eters 5t , where 0y, € {\g, Ur, i, pr}-

Then we have the following cases:

(If £} is a birth event happens at subinterval end s;1:
1 IQx (8511, 55)
lg,—n,— + L — 11
9k*>\k9 + ( ) aek ? ( )
If £ is a serial sampling event happens at subinterval end s;;1:
1 1 -7y Opr(s;) o OQk(5541,85)
Lo, =y, — + . + L) ————, 12
8Pk<]) - B =ts (gk (1 — Tk)pk (Sj) + i 69k (j) 89k ( )
00 If £ is an intensive sampling event happens at subinterval end s;41 = t5_;:
Nk L(j) —Nk) 1—7"k 8pk,1(5j)
Too=p, | — + + . , 13
Or=pr < ek (1 — Hk) (1 — Tk)pk,l (8]') + Tk aﬁk ( )
If E; is a epoch switching event happens at subinterval end s;:
1) - 2l (14
\ 00y,
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Note that 1 is the indicator function. We leave the explicit expression of the shared terms

in (11)-(14) to Supplementary Material S2.

Second, we consider the gradient at epoch k wrt the previous model parameters %(j),

where 0;_; € {Ne—i, Yr—s, fh—i, Pr—i}:

(If E; is a birth event or epoch switching event happens at subinterval end s;,;:
LG) - OQk (8541, 55)
OPL(7) _ 00y, 7
00, _; If E; is a serial sampling event happens at subinterval end s;1:
L=y Opi(s;) LG - an(SjHaSj)'
\ (1 — Tk)pk (Sj) -+ Tk 89k_z 89k_i

We also leave the explicit expression of the shared terms in (15)-(16) in Section S2.
Third, we discuss the gradient at epoch k wrt the treatment probability r. In (1), the
treatment probabilities at different epochs only affect the current epoch. Therefore, we only

. Ly -
need to consider ak_#,i as follows:

(If I is a serial sampling event happens at subinterval end s;;:
1 — :
‘ pels) a7)
OPe(j) (1 —7i)pk (55) + 7
or, ) If E; is a intensive sampling event happens at subinterval end s;41 = t;_1:
1 — o 1 (s
Pro(s) (18)
C (L= 7g)pr—1 (85) + 74

The total gradient wrt r can be obtained similar to (10).

To determine the computation complexity of gradient evaluation, we can assume the

gradient calculation for a]g’“Tij) takes constant time. The model has K epochs, where each
epoch has W phylogeny segments in average. According to (10), the total computation

complexity is O(K - M) ~ O(NK), since K < N. We demonstrate this result
through a series of timing experiments presented in Supplementary Material S6 where we also

compare the efficiency of gradients calculations with the automatic differentiation algorithm

implemented in the VBSKY (Ki & Terhorst 2022) package based on JAX library (Bradbury

17
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30 et al. 2018). Figure S5 shows our analytical gradients implemented in BEAST significantly
;1 outpace the VBSKY method.

w2 2.0 Analysis
3 2.6.1 Examples

s« We evaluate the relative effectiveness of MH-MCMC and HMC transition kernels under
5 the EBDS model using three phylodynamic examples. The first example comprises 274
36 sequences of the Pol locus of HIV-1 subtype A sampled in Odesa, Ukraine from 2000 to 2020
»7 that Vasylyeva et al. (2020) previously analyzed to assess the population-level impact of
353 the transmission reduction intervention project (TRIP) on HIV transmission (Nikolopoulos
10 et al. 2016). Following this previous analysis, we establish a cutoff point of 50 years for the
0 EBDS model. Within this period of time, we let the birth, death and sampling rates vary
31 across 10 epochs mirroring the grid points specified by Vasylyeva et al. (2020). Note that
32 for better comparability to the original work (Vasylyeva et al. 2020), we place iid lognormal
33 priors on the rate parameters. Both the previous and our analysis assume an HKY nucleotide
3 substitution (Hasegawa et al. 1985) model with discrete-gamma-distributed rate variation
s among sites (HKY+G) (Yang 1994), and an uncorrelated lognormal relaxed molecular clock
3 model (Drummond et al. 2006) (UCLD), with a CTMC rate-reference prior (Ferreira &
57 Suchard 2008) on the clock-model mean, truncated between 1 x 1073 - 3 x 1073, and a
s normal prior (with mean = 5 x 107* and standard deviation = 5 x 10™*) on the standard
30 deviation. We use a normal distribution prior (with mean = 35, standard deviation = 5) on
s the time to the most recent common ancestor, in accordance with the previous study.

371 Second, we examine the transmission dynamics of 637 human influenza A/H3N2 HA
w2 genes across 12 epidemic seasons sampled from New York state Rambaut et al. (2008) fol-
w3 lowing the study of Parag et al. (2020). We set an EBDS model cutoff value of 13 years and
s infer time-varying birth and sampling rates across 78 epochs, each representing 2 months

w5 in time, and a constant-over-time death rate. Preceding studies focused on the evolution-
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ws ary dynamics of influenza A /HINT virus mostly utilize the coalescent models. These studies
w7 predominantly rely on Gaussian process smoothing (Karcher et al. 2020, Bhattacharjee et al.
s 2023). Following the same path, we seek to use GMRF prior distributions for the birth and
a0 sampling rates. Our approach accommodates the considerable variability in the effective
;0 reproductive number across different flu seasons from 1993 to 2005. We adopt the same
31 substitution and clock models from Rambaut et al. (2008). Specifically, to account for po-
;2 tential differences in the rate of substitution between the first and second codon positions
33 compared to the third, we employ the SRD06 substitution model (Shapiro et al. 2006) and
;s apply an HKY nucleotide substitution model with discrete-gamma distributed rate hetero-
s geneity for both codon-position partitions (1st + 2nd, and 3rd). We further assume a UCLD
6 clock model and employ the default priors from BEAST on the substitution and clock model
7 parameters.

388 Lastly, to demonstrate the potential our linear-time algorithms afford phylodynamic
10 analyses on larger data sets, we examine 1610 full Ebola virus (EBOV) genomes sampled
10 between 17 March 2014 and 24 October 2015 from West Africa (Dudas et al. 2017) to
;1 explored the factors contributing to the spread of Ebola during the 2014-2016 epidemic. We
52 set a EBDS model cutoff value of 2 years and infer time-varying birth and sampling rates for
33 24 epochs, each corresponding to a month in time, and a constant death rate. For choosing
s the priors on the rate parameters, we incorporate information from previous studies on the
5 transmission dynamics of Ebola virus disease in West Africa (Fang et al. 2016, Nyenswah
26 et al. 2016). The number of confirmed cases first persisted at a relatively low level and
;7 started to soar in the mid-Summer of 2014, followed by a consistent peak and a dramatic
w8 decrease after the initiation of some key intervention events. Considering the potential fast
w00 shifts projected to the effective reproductive number, we apply the Bayesian bridge MRF
wo model as the prior for the incremental differences in the birth and sampling rates. Based
s on Dudas et al. (2017), we assume a HKY+G substitution model independently across four

w2 partitions (codon positions 1, 2, 3 and non-coding intergenic regions) and a log-normally-
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a3 distributed relaxed molecular clock model with a CTMC reference prior on the clock model
w0 mean, and leave all other priors on substitution and clock model parameters at their BEAST

a5 defaults.

ws 2.6.2 Implementation

w7 We conduct all analyses using extensions to BEAST 1.10 (Suchard et al. 2018) and the high-
ws performance BEAGLE 4.0 library (Ayres et al. 2019) for efficient computation on central
w0 processing units (CPUs). We take the timing measurements using a Macbook Pro equipped
a0 with an M1 Pro chip that features 8 CPU cores and 32GB of RAM. For all experiments
a1 involving BEAST, we utilized the Azul Zulu Builds of OpenJDK version 18 on the ARM
a2 architecture.

a13 To compare the performance of the two transition kernels in estimating the EBDS
as model parameters, we conduct efficiency comparison analyses that focused solely on the
a5 estimation of the birth-death model’s rate parameters. Specifically, we fix the phylogeny
a6 to the maximum clade credibility (MCC) tree, a tree with the maximum product of the
a7 posterior clade probabilities summarized from the Bayesian joint phylogeny inference. We
ss  analyze all data sets using BEAST with logging performed every 1000 iterations. We run our
a0 algorithm on the HIV example for 300 million iterations when using MH-MCMC transition
a0 kernel and 30 million iterations for HMC transition kernel. Also, to obtain convergent results
a1 for the influenza example, we run analyses using MH-MCMC and HMC transition kernels for
222 300 million and 50 million states, respectively. For the Ebola example, we run analyses using
23 MH-MCMC and HMC transition kernels for 100 million and 30 million states, respectively.
w24 For all analyses, we discard 10% of the MCMC chain samples as burn-in.

425 We calculate the effective sample size (ESS) for each rate parameter of interest using
»s the coda package (Plummer et al. 2006) in CRAN (R Core Team 2021). ESS quantifies
w27 the degree to which auto-correlation within MCMC iterations contributes to uncertainty in

w2 estimates (Ripley 2009). We average ESS per compute-hour for each parameter across 10
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220 independent runs to reduce Monte Carlo error in each estimate, aiming for a maximal Monte
s0  Carlo error of 10%. We report the relative increase in ESS per hour of the HMC sampler
a1 compared with the MH-MCMC sampler over all rate parameters.

43 We also conduct phylodynamic analysis for each of the three examples under a joint
a3 phylogeny inference scheme to mitigate potential bias from the fixed phylogeny, following the
a2 model specifications discussed in Section 2.6.1. Under these settings, we simulate MCMC
s chains for all examples of* 500 million iterations using HMC transition kernel with logging

16 performed every 1000 iterations.

« 3 Results

= 3.1 Performance Improvements

a0 Figure 2 shows the binned ESS per hour estimates of the EBDS model rates (A, i, 1) that
w0 the MH-MCMC and HMC samples generate for all three viral examples. Table 1 summarizes
a1 the performance improvements by reporting the relative increase in the minimum ESS per

a2 hour comparing both samplers across all rate parameters.
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Figure 2: Efficiency Comparison between random walk Metropolis-Hastings (MH-MCMC) and
Hamiltonian Monte Carlo (HMC) samplers. Bars correspond to the estimated effective sample
size per hour averaged across 10 independent runs for all rate parameters. The height of each bar
indicates the number of parameters that achieve the given ESS per hour value.

The HIV example assumes that time-varying rates are a priori independent across
epochs and HMC demonstrates an approximate 245-fold acceleration relative to MH-MCMC.
Likewise, the influenza example imposes a GMRF across epochs and returns an approximate
79.4-fold speed-up. On the other hand, the EBOV example enforces heavier shrinkage, and
hence higher a prior: correlation between epochs, and yields a smaller yet computationally

impactful (approximately 12.7-fold) performance increase.
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Minimum ESS/h HMC
Example MH-MCMC HMC Speedup
HIV (10 epochs) 1.60 x 10* 3.91 x 103 2.45 x 10? times
Influenza (78 epochs) ~ 2.43 x 107 1.93 x 10! 7.94 x 10! times
Ebola (24 epochs) 5.30 x 10°  6.73 x 10* 1.27 x 10* times

Table 1: Relative speedup in terms of effective sample size per hour (ESS/h) of HMC Over
MH-MCMC for all three data Sets from fixed phylogeny analyses.

3.2 HIV dynamics in Odesa, Ukraine

In the context of conducting phylodynamic analyses using EBDS models, we are primarily
interested in the value and trend of effective reproductive number over time R.(t) that is
the average number of secondary cases per infectious case in a population made up of both
susceptible and non-susceptible hosts. If R, > 1, the number of cases is growing, such as
at the start of an epidemic; if R, = 1, the disease is endemic; and if R, < 1, there is an
expected decrease in transmission (Nishiura & Chowell 2009). Under the EBDS model, given
the absence of intensive sampling events, if an individual becomes infected at time ¢, we can

use the rate parameters at time ¢ to obtain an estimated R.(t) = A Furthermore,

T O+
in all our analyses for infectious disease phylodynamics, we maintain r(¢) = 1 as constant.
This assertion carries the assumption that upon diagnosis and sequencing, an individual

ceases to be a source of infection. This could be due to treatment, death, or geographical

relocation, rendering them incapable of onward transmission.
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Figure 3: Posterior median (solid line) and 95% credible intervals (CI) indicated by the shaded
areas of the effective reproductive number estimates (R.) through time for HIV epidemic in Odesa,
where the black dotted line represents the epidemiological threshold of R.(t) = 1.

To assess the effects of TRIP for reducing the transmission of HIV in Odesa, we fit
the EBDS model with varying birth, death and sampling rates and plot the resulting R, (t)
trend estimate in Figure 3. We apply iid lognormal priors on the rate parameters to stay
consistent with the methods in previous study (Vasylyeva et al. 2020).

Estimates of R.(t) appear mostly to accord with previous findings that identify a drop
in infection rate subsequent to the implementation of the TRIP intervention. Focusing on
the period from 2013 to early 2016, when TRIP was enacted, our posterior mean estimate of
R, is 2.64 (95 % CI: 1.18 - 5.43); while post-intervention, the posterior mean reduces to 0.152
(95 % CI: 0.03 - 0.32). This latter value, falling below the critical threshold of 1, signifies

the potential deceleration of HIV transmission.

3.3 Seasonal Influenza in New York State

While influenza viruses circulate throughout the year, peak influenza outbreaks in the United

States typically occurs between December and February. Rambaut et al. (2008) employed a
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a5 non-parametric coalescent model to elucidate the cyclical patterns of variation in the popu-
as lation size, uncovering a notable increase in genetic diversity at the beginning of each winter
a7 flu season. Subsequently, Parag et al. (2020) demonstrated that incorporating sampling in-
as tensity into the otherwise sampling-naive non-parametric coalescent process improves the
a0 precision of these inferred cycles. With a GMRF smoothing prior on increments, our model
a0 also offers the potential for accurately inferring seasonal behaviour and achieving the preci-
w1 sion of parameter estimations.

a8 Figure 4 presents posterior estimates of the effective reproductive number R, (t) for the
w3 alignment of 637 A/H3N2 HA sequences from New York state. As expected, the trajectory
sss 18 highly cyclic, and all peaks lie near the midpoint of the influenza seasons with estimated
w5 R, larger than 1. For the 2000/2001 and 2002/2003 seasons, where almost all infections
s were attributed to other sub-types of influenza viruses as indicated by the surveillance data
ser and previous work (Centers for Disease Control and Prevention n.d., Parag et al. 2020), we
w8 observe the 95% CI of the estimated peak cover values from 0.68 to 1.3 and from 0.48 to
w0 1.4, respectively. This suggests that their true R, values might have fallen below 1. Similar
w0 to the results given by the non-parametric coalescent with sampling analysis (Parag et al.
w1 2020), we capture a minor peak in the 1995/1996 season, where the inferred R, is slightly
w2 above one. This again echoes with the fact that the influenza case composition during the
w93 1995/1996 season was characterized by a mix of A/HIN1 and A/H3N2 infections (Ferguson
s0a et al. 2003). This diversity in infection types led to a less significant elevation in the effective

w5 reproductive number for that specific year.
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Figure 4: Median (solid orange line) and 95% credible intervals indicated by the shaded orange
areas for the effective reproductive number estimates (Re) through time. Gray shading in the graph
represents the rough duration of influenza monitored in New York state for each season, spanning
from epidemiological week 40 to week 20 of the following year. Seasons where A /H3N2 was not the
dominant influenza virus subtype are cross-hatched.

3.4 Ebola epidemic in West Africa

Using EBDS model assisted by the HMC sampler, we are able to analyze the 2014 Ebola
epidemic in West Africa using the full 1610-sequence alignment and metadata of sampling
times taken from the work by Dudas et al. (2017). Previously, researchers have applied birth-
death models extensively for the phylodynamic analysis of the Ebola outbreak. Stadler et al.
(2014) adopted a series of birth death models to capture the early trend of the infection of
Ebola virus in Sierra-Leone. They used 72 Ebola samples from late May to mid June
2014 with three epochs, and estimated the corresponding effective reproductive number in
each period. Zhukova et al. (2022) applied the multi-type birth death models to the 1610
sequence data. However, their analysis was based on the maximum likelihood estimation. To
demonstrate the scalability of our method, we also take the 1610 sequence data and fit the

EBDS model with 24 epochs for a finer time resolution to provide more precise estimation
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sos Of the effective reproductive number. Here, we employ a Bayesian bridge MRF prior on rate

s00 increments to avoid spurious rate variations while capturing significant rate shifts.

Announced border closure
in Sierra Leone (11 Jun)

Announced
border closure in
Liberia (27 Jul)

Announced border closure
in Guinea (09 Aug)

Effective Reproductive Number

2 o 9 & & A& O Q9 F A £ & 90 & 5 A S I O 9y
LI T ECIFTITIFTHLITLISTEIRCES T ECS
2013 | 2014 | 2015

Figure 5: Median (solid line) and 95% credible intervals indicated by the shaded areas of the
effective reproductive number estimates (R.) through time for Ebola outbreak in west Africa. The
black dotted line represents the epidemiological threshold of R, = 1.

510 Our inference results give an estimated posterior mean effective reproductive number
su  at the beginning of the epidemic before December 2013 as 1.65 (95 % CI: 0.41 - 3.05). Dudas
sz et al. (2017) show that after the international border closure of Sierra Leone on 11 June 2014,
si3 followed by Liberia on 27 July 2014, and Guinea on 9 August 2014, the relative contribution
s of international border to overall viral migration is significantly lower. The change-point
sis probability is the highest from August to September. This finding stands clearly compatible
sis with our EBDS inference that demonstrates a drop of R, from 1.3 (posterior mean, 95 %
sz CI: 1.01 - 1.59) to 0.79 (95 % CI: 0.62 - 0.91) after September 2014 when the international

sis  travel restrictions are in place across the three countries.
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a0 4 Discussion

s20 Birth-death models serve as fundamental tools for modeling the temporal progression of
sz epidemics. In extending the work of Stadler et al. (2013), Gavryushkina et al. (2014),
s2 we have provided a systematic representation of the EBDS model for phylodynamics that
523 promotes scalability. Our general re-formalization of the EBDS likelihood identifies that its
s computation is simply O (N + K), foreshadowing an O (N K) algorithm to deliver its gradient
s wrt time-varying birth, death or sampling rates across K epochs. This optimal scaling
s2 enables HMC sampling to more efficiently explore the high-dimensional joint distribution of
s27  rates as we increase the number of sequences and the number of model epochs to learn these
s28 processes at a finer time-resolution. HMC also emits an agnostic approach to incorporate a
s20  variety of prior assumptions about these time-varying trends, without the need to hand-craft
s specialized transitions kernels for specific priors. Moreover, as suggested by Ji et al. (2020),
sn we take measures to enhance the efficiency of our HMC sampler by preconditioning the mass
s matrix based on the Hessian of the log-prior.

533 Through three viral epidemic examples, we show that our HMC-assisted approach
s considerably accelerates Bayesian inference across three very different choices of prior models.
s Our preconditioned HMC sampler achieves roughly 10- to 200-fold increase over the widely
s used MH-MCMC sampler in terms of the minimum ESS per unit-time. The enhanced
s37  efficiency gains are particularly beneficial given the increasing use of phylodynamic inference
s techniques in conducting real-time evaluations of outbreak patterns.

539 For applying our model in phylodynamic analyses of disease epidemics, we first exam-
ss0 ine our EBDS model on the effects of TRIP for reducing the transmission of HIV in Ukraine,
sa.and our inference results support a decreased rate of transmission following the TRIP in-
se2  tervention. Applied to seasonal Influenza in New York city, our model is able to accurately
si3  capture the complex pattern of variation in R, during each influenza season. Applied to
saa the Ebola outbreak in West Africa, our model supports the effect of international travel

sss restrictions characterized as a noticeable decrease in R, following the border closure of the
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sas  three countries in West Africa.

547 In the EBDS model, Stadler and colleagues (Stadler et al. 2013) have indicated that
sis the three rate parameters, A\, u, and v, cannot be simultaneously identified. This issue
ss0  of unidentifiability in complex birth-death processes has also been recently discussed by
50 Louca & Pennell (2020). In our own empirical analysis, problems related to unidentifiability
ss1 seldom manifest when we restrict ourselves to estimating no more than two time-varying
ss2 rate parameters. Instead, the primary challenge appears to be the multimodal nature of
ss3 the posterior distribution. Legried & Terhorst (2022) have demonstrated that, under certain
s« conditions, piecewise constant birth-death models can be reliably inferred and differentiated.
55 Furthermore, Kopperud et al. (2023) showed that rapidly changing speciation or extinction
ss6  rates can be accurately estimated. This lends credence to the identifiability of patterns we
ss7 - observed in our phylodynamic analysis of pandemics such as the seasonal influenza and the
sss  ibola outbreaks.

559 Current methods to estimate the expected Hessian averaged over the posterior dis-
s0 tribution improves upon the previous work (Girolami & Calderhead 2011) by avoiding ex-
ss1  cessive computational burden. However, it relies on numerical approximations to compute
ss2 the Hessian, leaving room for potential performance enhancements. To further optimize the
sss  methodology, we can advance beyond analytical solutions solely for gradients and extend
se«  them to encompass the analytical Hessian. This would smooth the path of updating the
ses adaptive mass matrix, offering opportunities for better outcomes in terms of both efficiency
ss6 and accuracy.

567 In many scenarios, the examination of EBDS models is contingent upon having some
sss  preliminary understanding of how to identify the epoch switching time and the length of
seo duration of each epoch. However, it is possible that information available through epidemi-
s ological surveillance is insufficient. Moreover, the choice of epoch duration can be related to
sn the uncertainty in the timing of the rate shifts (Magee et al. 2020). In this study, our strategy

sz aims to increase the number of epochs and leverage regularizing priors, striving to achieve a
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si3 refined grid of timelines. Nevertheless, constraints persist on the maximum epochs feasible
sz with our HMC algorithm, particularly when confronted with computational limitations or
s models exhibiting multimodality challenges. One possible solution entails simultaneously in-
st ferring epoch duration, epoch switching times, and rate parameters via the reversible-jump
sz MCMC method (Wu 2014). However, this method requires one to integrate across models
sts with differing dimension, which demands substantial effort and might be impractical for
sto  large datasets.

580 Considering these cases, if the piece-wise constant model assumptions can be lifted
ss1 S0 that we can obtain a smoothly differentiable likelihood function, it would inherently aid
ss2 in deriving gradients concerning node ages and epoch switching times. This advancement
553 would, in turn, improve our current implementation, empowering us to infer, rather than
ssa  presuppose, epoch switching times, with enhanced scalability prospects. It would also en-
sss  hance the sampling efficiency from joint phylogeny posterior distributions, by enabling us to
s¢5 take advantage of recent work by Ji et al. (2021), yielding a pronounced improvement in the
se7  analytical capacity of our models.

588 In anticipation of future advancements that will improve upon standard HMC methods
ss0  and broaden the applicability of the current EBDS model, we present a comprehensive
so0 framework in this manuscript. This framework facilitates phylodynamic analysis on large-
so1  scale sequence data and employs regularization techniques to yield a finely-resolved, regular

so  grid that effectively aids in our understanding of the impact of the pandemics.
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w Supplementary Material

» S1 Likelihood Derivation

= S1.1 Formulas for Likelihood Related Functions

A = \/O\k — e — ) + Ay, (19)
B, = (1-2(1- pk)pk—;l(tk—l)) Ao + i + Ve (20)
k

R I) (14 By - (1-By)
e W (14 By ) +(1-By)

2k

Ak A+ i 4 Y — Ay

pe(t) = (21)

deAr(t—tr-1)

a(t) = (@11 B+ (1 By (22)

g = eAk(t—tk—l) . (1 + Bk) + (1 _ Bk) (23)
g2 = Auf1 - 208 (24
93=1-2(1—pp))Pe1(tr1) (25)
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7 S1.2  Implementation Algorithm:

73 Detailed algorithm for likelihood calculation is shown below based on the equations listed in

72 Section 2.2 of the main text and from the section above.

Algorithm 1: Likelihood Calculation

1 Initialize: po(tp) =1
2 fork=0,..., K—1do
/* Intermediate quantities */

3 Load the value of py(ty)

4 Calculate Agi1, Byy1 via Equation (19), (20)
5 for j=0,...,m;y; —1do

6 Calculate gx11(sj+1) via Equation (22)

7 if 5,4, is a serial sampling event then

8 ‘ Calculate py41(sj11) via Equation (21)
9 end

10 if j > 1 then

11 | Calculate I;(E;) via Equation (2)

12 end

13 end

14 Calculate and store pyy1(tg11) via Equation (21)
15 end

/* Likelihood */

16 Calculate P[T | A, pu, 9, p, 7, t| via Equation (1)

=]
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S2 Gradient Derivation

776 521 For i (j) .
Oqi(t) B 86Ak(t*t’“*1)((t — Tp— 1)8Ak (2 - gy — et (1+ By))
80, i
26
- %%(eAk(t_tk—l) _ 1)) ( )
9t
)
At f ) = A
DA, - _Ak‘;Hkk+¢k’ If0=pu
0. = (27)
k )\kJrZ}ZJr’lpk’ If 0 =1
0, fo=p
\
(
2o pi—1 (b
o, _ ) PR Ho=r (28)
00 N Ap-tem
k K %_E: _ A “temp — A(293 Akﬂuﬁrwk)’ Otherwise
(
( ﬂk—wk—)\ka)\z‘f‘%) If 6 = A
Ipx(t) 4, (A=BR) (O h=1 1) 4, ) 2k
= P — 29
26, — = EoIf0=p (29)
\ 5o (1 — ggi) Otherwise
OQr(sj+1,8;) 1 Oqe(sj) 1 Oqe(s;) (30)
00y, QG (8j41) 00 qr(sj) 00
gy dA, 2 dAy dB;,
== . — (1—=B)— —-A
00, — dor ¢ \ 7'\ a6, (1= By) = o= A
0A;, 0B
_ | JARG—tr_1) TR _ Ap(t—tg—1) _ k _
(c G (LBt = ti) + (e )aek> A1 Bk)>
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= S52.2 For %H;’Z(i) (¢ is an integer smaller than k):

8qk(t) 8€Ak(t_tk—1)(%ﬁ(eAk(t_tk—l) _ 1)

k—i
i e (32)
9By, _ 9By ) Op—1 (ti-1) _ —2(1 = pp) A Opr—1 (tr—1) (33)
00i—i  Opr—1 (tk—1) 00_; Ay 00r_;
oput)  Ap (1= B)(eM ) —1) 4 g)) (34)
00y, Ak g3
0Qk(Sj+1,55) _ 1 Oqi(sj+1) 1 Oai(sy) (35)
O0p—; @ (8j41) Ok Qr(s5) 00—
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7 52.3  Implementation Algorithm:

779 We implement a recursive algorithm to compute the necessary gradient of the log-likelihood
70 within our rate parameter space. Intermediate quantities are stored in between epochs to
71 alleviate computational burden. Detailed algorithm is shown below based on the equations

72 listed in 2.5 and previous sections in the supplement.

Algorithm 2: Gradient Calculation
Initialize: py(ty) =1

=

2 for k=0,..., K —1do
/* Intermediate quantities */

3 if £ == 0 then

4 ‘ Calculate %’31, %ng using po(to) via Equation (27), (28)

5 end

6 else if £ > 1 then

7 Load the values of {ap elbe) Yo

8 Calculate M’““ {63’“’“1 k“ using {8”(““) ", via Equation (27), (28), (33)

9 end

10 Calculate and store {M(gf’“m M1 using {2 89“ ¥ | via Equation (29), (34)
/* Gradient */

11 Calculate a]g’“e( 1k via Equations (11)-(18) in Section 2.5

12 end

= 93 Prior distributions for EBDS models

w 53.1 HIV dynamics in Odesa, Ukraine

75 We refer to the prior settings on the compound parameters from previous work (Vasylyeva
s et al. 2020), and try to roughly match their priors by adopting the following prior distri-
77 butions on each of the rate parameters. Note that the sampling proportion was fixed to 0
7ss  before the first sampling date in their study, so we also set the sampling rate to 0 for the

780 last two epochs for consistency.
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Parameter | Prior Role

A Lognormal (Mean = 0.85, SD = 1.0) | Birth rate

i Lognormal (Mean = —0.25, SD = 1.0) | Death rate

P Lognormal (Mean = —9.0, SD = 0.50) | Serial sampling rate
tor Uniform (Lower = 19, Upper = 60) Age of phylogeny

Table S1: Prior specifications for the EBDS model in HIV virus analysis

S3.2 Seasonal Influenza in New York State

We follow the same framework for setting the priors for the GMRF-based model as in Section
53.3. Similarly, the prior distribution for the constant death rate is acquired by estimating
the credible range for the duration of the infectious period according to reports by Centers
for Disease Control and Prevention (n.d.), with 95% confidence intervals encompassing 6 to
11 days. Comprehensive information regarding the specific prior distributions is shown in

the following table:

Parameter | Prior Role

™ Normal (Mean = 3.08, SD = 1.17) | Log-scale birth rate at present

i Normal (Mean = 3.82, SD = 0.16) Log-scale death rate for all epochs
(M Normal (Mean = —0.77, SD = 1.17) | Log-scale sampling rate at present
tor Normal (Mean = 12.5, SD = 15.0) Age of phylogeny

Q@ Fixed to 2.0 Exponent of the MRF

) Gamma (Shape = 1.0, Scale = 1.0) | Transformed global scale of the MRF
Uy, Fixed to 1.0 Local scale of MRF

Table S2: Prior specifications for the EBDS model in Influenza virus analysis

S3.3 Ebola epidemic in West Africa

We assume a constant death rate, p for this data set, and we employ an empirical Bayes
approach proposed by Magee et al. (2020) to set the prior on the first log-birth-rate and log-
sampling-rate in our Bayesian bridge MRF models. The prior for the constant death rate is
obtained from an estimation of the plausible duration of infectious period with 95% confi-

dence intervals covering 8 to 40 days (Veldsquez et al. 2015). The detailed prior distributions
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s3 can be found in the table below:

Parameter | Prior Role

™ Normal (Mean = 1.26, SD = 0.58) Log-scale birth rate at present

i Normal (Mean = 3.02, SD = 0.41) Log-scale death rate for all epochs
ik Normal (Mean = 1.27, SD = 0.58) Log-scale sampling rate at present
tor Normal (Mean = 1.89, SD = 15.0) Age of phylogeny

« Fixed to 0.25 Exponent of the MRF

) Gamma (Shape = 1.0, Scale = 1.0) Transformed global scale of the MRF
Vg Exponentially tilted stable distributions | Local scale of Bayesian bridge MRF
19 Fixed to 2.0 Slab width of Bayesian bridge MRF

Table S3: Prior specifications for the EBDS model in Ebola virus analysis
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w S4 Inferred trajectories for birth/death/sampling rates
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Figure S1: HIV virus: Median (solid line) and 95% credible intervals indicated by the shaded areas
of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure S2: Influenza virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure S3: Ebola virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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«s 95 Computational complexity of the nodewise likelihood

sos ' The computational complexity of evaluating node-based representations of the likelihood is
sor much less explicit. First, we need to write out an equivalent expression for the likelihood
ss  of Equation 1 node-wise. It will be helpful to distinguish different types of samples. In
s0 particular, let us denote serially-sampled tips @,, with a particular serially-sampled tip being
s0 Uy;. With a slight abuse of notation, let us denote intensively-sampled tips 4,, with @,
s denoting the vector of intensively-sampled tips at the ith intensive-sampling event. Then we

g2 can write

|[v]]

PIT | A %, o7, 8] =108 (it (tor)) + | D 108(Akwr)) + 108 gk, (v:)) | +

=1
[y ||
Z log(wk(ﬁwz)) + log(rk(ﬁwi) + (1 - Tk(ﬁwi))pk(ﬂm))) - log(qk(ﬁwi)(ﬂlpi)) +
=1

(Z |pil| +log(pi) + (L(tior) = ||l ]) log((1 = pi)gir (ti-1))+

+|[@p|[log(1 = 7:)gi (ti)| |l | log(r; + (1 — n)pil(tm)))

(36)

813 The complexity here is not immediately apparent for a number of reasons. For one,
sie  the complexity appears to depend on the relative proportion of samples of different types,
a5 which affects the number of values of py(t) and ¢, (¢) which must be computed. Importantly,
sis  the complexity of computing those pi(t) and gx(t) is not immediately apparent either, and
sz that these costs are somewhat hard to disentangle, as py(t;) builds recursively on pg_;(%;)

s and gx(t) depends on py(t).
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a0 55.1 Node lookups

s20 Regardless of such ambiguities, all nodes in the tree require an interval lookup. For births, the
g21 lookup is required to find the correct Ay term to use. For samples, the lookup is either to find
g2 the appropriate sampling rate, for serial samples, or to determine to which intensive-sampling
23 event a sample belongs, for intensive samples. The time requirement here depends on the

s algorithm, for a binary search it is O(log(K)), making the total lookup cost O(N log(K)).

= S55.2  How many computations of ¢(t) are required?

226 In the worst, but most common, case, there are no intensive-sampling events and g (t) must
gz be computed for the times of all samples, all births, and all epoch times (note that even when
22 p; is 0, there is a term L(t;) log(g;—1(¢;)) which must be computed in the final summation).
220 In the best case, all samples are at intensive-sampling events, and ¢ (t) only needs to be
s0 computed for the times of all births and all epoch times. These are both O(N + K), though
sn  there is a factor of two’s worth of variation in front of the N depending on which side of this
s spectrum a tree falls in. Calling the cost of computing gx(t) @, this makes the contribution

s to the complexity here O(Q(N + K)).

= 55.3 How many computations of py(t) are required?

g3 The likelihood contains a number of explicit computations of py(t) in the terms pertaining to
s (both serially- and intensively-)sampled tips. When all samples are serial samples, there are
g7 O(N) direct computations of pg(t), while when all samples are intensive samples, there are
s O(K). Taking the cost of computing py(t) to be P, the addition to the cost here is between

g9 O(PN) and O(PK).
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# Sb.4  What is the cost of computing pi(t) and ¢(¢)?

s We have thus far shown that the cost of computing the nodewise likelihood appears to be
sz between O(N log(K) + Q(N + K) + PN) and O(N log(K) + Q(N + K) + PK). But this is
a3 not particularly revealing without considering P and Q).

844 While g (t) depends on py;x(t) through A and B, once A and By, have been computed,
sss let us assume (as we did when evaluating the cost of the interval-wise likelihood) that the
sss  cost of gx(t) is O(1). In other words, let us assume that O(Q(N+ K)) = O(P(N +K)). This
s makes the implied cost of the nodewise likelihood between O(N log(K) + P(N + K)+ PN)
ss and O(Nlog(K) + P(N + K) + PK), which both simplify to O(N log(K) + P(N + K)).
ss Naively, we might choose to compute py(t) recursively every time we need it, which is O(K?).

o In this case, the implied cost of the nodewise likelihood is O(N log(K) + NK + K?)).

s 95.5  Precomputing A and B

ss2  One can instead choose to pre-compute A, By, as once these are computed the cost to
3  compute pi(t) and ¢i(t) becomes O(1). Working backwards from the present allows re-
s« computation to be avoided. As we did when we approximated the cost of the interval-wise
sss likelihood, we will take the cost of the update (computing (A, Bg) from (Ayx_1, Bx_1)) to
sss be O(1). Thus, the cost of the precomputation is O(K). This puts the implied cost of

7 computing the nodewise likelihood between O(N log(K) + N + K).

s 595.0 Counting lineages at epoch times

0 Regardless of whether the model includes intensive-sampling (that is, regardless of whether
soo o = 0), one must compute L(¢;) for all epoch times. This can be solved essentially the same
s way as the subintervals are obtained, at a cost of O(N + Nlog(N)). Alternately, it can be
s> obtained by counting the number of births and sampled tips older (or younger) than each

g3 epoch time, at a cost of O(KN). This makes the lower end of the computational cost once
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se¢ again a range, from O(NK + Nlog(K)+ N + K) to O(Nlog(K) 4+ Nlog(N) + N + K).

865 In practice, the constants in front of all the sorting and node-lookup terms appear to be
sss SO small as to be unnoticeable in real-world computation. We demonstrate this in our timing
g7 experiments in the next section. Thus, for all practical purposes, the likelihood appears to

ss be O(N + K) regardless of representation, as long as one avoids recursive computation of

869 Pk (t)
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w0 96 Timing Experiments

s With the reformulation of the likelihood and derivation of the analytical gradients, our
sz method notably gains in speed, as we highlight in this section. For a comprehensive as-
73 sessment, we compare our approach with four other specialized packages for EBDS model
e inference concerning likelihood calculations. These include the BDSKY (Stadler et al. 2013)
s package within BEAST2 (Bouckaert et al. 2019), TreePar (Stadler et al. 2013) package in R
ss (R Core Team 2021) and RevBayes (Hohna et al. 2016). Furthermore, we present a bench-
sz mark comparing the gradient calculation efficiency of automatic differentiation implemented
ss in VBSKY (Ki & Terhorst 2022)package using JAX library (Bradbury et al. 2018) isolated
sro  from the variational inference procedure against our algorithm based analytical gradients
sso implemented in BEAST.

881 To assess the scalability of the aforementioned methods in terms of likelihood /gradient
sz calculation, we simulated a set of trees under the EBDS model with increasing number of
sz tips. To investigate the scalability of different methods wrt the number of sequences, we fix
s« the number of epochs to 5 for both likelihood and gradient calculation.

885 Regarding scalability with respect to the number of epochs, we adjust the model by
sss  progressively increasing the number of epochs. To keep other variables constant, we maintain
g7 the tree topology and set the number of tips at 12 (in scenarios where K >> N, this allows us
sss 0 negate the effect of N in O(N + K)) for likelihood computation. For gradient calculations,
s we set the number of tips to 8198 (to minimize the impact of K? in O(NK + K?)).

890 For methods that employ just-in-time (JIT) compilation, including BEAST, BEAST2
g1 and VBSKY, we run a short MCMC chain or variational inference algorithm to compute

sz likelihood or gradient across 100,000 iterations and take the average run time.
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Figure S4: Speed of implementations for the likelihood calculations of increasing number of se-
quences (left plot) or number of epochs (right plot) for EBDS model. Note the time and number
of sequences/epochs are laid out according to a logarithmic scale with base 2.

In our analysis, we observe that for likelihood computations, the implementations in
BEAST, BEAST2, and RevBayes offer similar speed performance when adjusting both the
number of sequences and epochs. In contrast, the TreePar package consistently lags, being
several hundred times slower than its counterparts across all tested scenarios. It is also
the sole implementation that exhibits a quadratic scaling with the number of epochs. The
algorithms of BEAST, BEAST2, and RevBayes seem to demonstrate approximately linear
scaling relative to both tree size and model epochs. It’s worth noting that RevBayes delivers
the quickest calculation speed, which might be attributed to the inherent speed advantages
of precompiled codes, particularly for quick likelihood calculations in our context. Result for
TreePar with epochs exceeding than 512 is not not included as TreePar fail to process such

large models.
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Figure S5: Speed of implementations for and gradient calculations of increasing number of se-
quences (left plot) or number of epochs (right plot) for EBDS model.

In terms of gradient calculations, our analytical gradients deployed within BEAST
is remarkably faster than VBSKY approach using automatic differentiation. The gradient
computation scales approximately linearly with the number of sequences for both BEAST
and VBSKY. However, wrt the number of epochs, the scaling remains linear for BEAST
but seems quadratic for VBSKY. We further confirm that the runtime slowness exhibited in
VBSKY is not due to memory issues or JIT compilation difficulty. Therefore, our analysis
demonstrates that analytically calculating the gradients of the EBDS likelihood is critical

for improving the running time of gradient based methods.
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