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Abstract Birth-death models play a key role in phylodynamic analysis for their interpre-19

tation in terms of key epidemiological parameters. In particular, models with piecewise-20

constant rates varying at different epochs in time, to which we refer as episodic birth-21

death-sampling (EBDS) models, are valuable for their reflection of changing transmission22

dynamics over time. A challenge, however, that persists with current time-varying model23

inference procedures is their lack of computational efficiency. This limitation hinders the24

full utilization of these models in large-scale phylodynamic analyses, especially when dealing25

with high-dimensional parameter vectors that exhibit strong correlations. We present here26

a linear-time algorithm to compute the gradient of the birth-death model sampling den-27

sity with respect to all time-varying parameters, and we implement this algorithm within28

a gradient-based Hamiltonian Monte Carlo (HMC) sampler to alleviate the computational29

burden of conducting inference under a wide variety of structures of, as well as priors for,30

EBDS processes. We assess this approach using three different real world data examples,31

including the HIV epidemic in Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics32

in New York state, America, and Ebola outbreak in West Africa. HMC sampling exhibits a33

substantial efficiency boost, delivering a 10- to 200-fold increase in minimum effective sample34

size per unit-time, in comparison to a Metropolis-Hastings-based approach. Additionally, we35

show the robustness of our implementation in both allowing for flexible prior choices and36

in modeling the transmission dynamics of various pathogens by accurately capturing the37

changing trend of viral effective reproductive number.38
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1 Introduction39

Phylodynamic models constitute a sophisticated toolset employed to decipher the complex40

interplay between epidemiological and evolutionary processes, providing valuable insights41

into population dynamics (Lau et al. 2019). In this paper, our primary emphasis is directed42

toward the inference of epidemiological dynamics, rather than estimation of the underlying43

phylogeny through sequence analysis. Specifically, we start with a sample of molecular se-44

quences, which can be used to reconstruct the evolutionary relationships between organisms,45

often viral pathogens, and yield inference on dynamics of the larger pathogen population over46

time while relegating the phylogeny the status of a nuisance parameter. To provide this link,47

a vital component of phylodynamic analysis is the use of birth-death models, which belong48

to an important subclass of continuous-time Markov chains (CTMCs). We use birth-death49

models to define the probability distribution on time-calibrated phylogenies for reflecting the50

fluctuations of the population size (MacPherson et al. 2022). In this context, birth-death51

models posit three major types of events: birth, which refers to the creation of new lineages52

through pathogen transmission between hosts; death, which represents host death/recovery53

or other removal from the studied population, and sampling, which means the collection of54

a sequence derived from the pathogen in a single infected host and included in the data set55

under analysis (Crawford 2012).56

The past few decades have delivered a wide range of birth-death models. These span57

from a simple, constant-over-time formulation (Yang & Rannala 1997) to models that allow58

both birth and death rates to vary over time (Stadler et al. 2013, Höhna 2014). Further59

extensions incorporate additional processes, both statistical and biological, such as the col-60

lection of samples in continuous time (Stadler 2010), migration (Barido-Sottani et al. 2020),61

or the dependency of rates of birth and death on key biological traits (Maddison et al. 2007,62

FitzJohn 2010, 2012). One powerful variant, the episodic birth-death-sampling (EBDS)63

model (Lambert & Stadler 2013, Stadler et al. 2013, Gavryushkina et al. 2014, Du Plessis64

2016) permits birth, death, and sampling rates to change in discrete epochs throughout time65
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to capture more complicated population dynamics. Recent inference based on EBDS models66

has found its way already into many applications, especially on the understanding of the67

spread of infectious disease (Novitsky et al. 2015, Vasylyeva et al. 2020, Minosse et al. 2021).68

With increasingly rich and complex molecular sequence datasets across fields, improv-69

ing the scalability of inference under EBDS models remains challenging both in terms of the70

number of sequences and the number of epochs. The most commonly employed inference71

methods based on Markov chain Monte Carlo (MCMC) (Hastings 1970, Morlon et al. 2011)72

use random-walk transition kernels generally to propose new parameter values in a blind73

fashion. Consequently, they lead to many birth-death model likelihood evaluations and slow74

exploration across the state space, especially for high-dimensional problems. The potentially75

complex correlation structure between epoch parameters can further exacerbate inference.76

This is where gradient-based sampling methods, such as Hamiltonian Monte Carlo (HMC)77

(Duane et al. 1987, Neal et al. 2011), are expected to shine. HMC has recently become78

very popular as a MCMC algorithm that overcomes many of the limitations of random-walk79

Metropolis-Hasting (MH) methods. Instead of making random proposals, HMC exploits80

the gradient of the log posterior with respect to (wrt) its model parameters to propose new81

states that are likely to be accepted and are far from the current state. Since HMC can make82

large moves in the state space while still maintaining a high acceptance rate, it can lead to83

faster convergence and better mixing than MH approaches, if one can efficiently evaluate not84

only the log posterior (up to a constant) but also its gradient. Successful implementation85

of HMC transition kernels has proved fruitful in terms of boosting sampling performance in86

other phylogenetic inference frameworks, including for different clock models (which describe87

how rates of molecular evolution vary among different organisms over time, Ji et al. 2020,88

Fisher et al. 2021), divergence times (the internal-node heights of phylogenies, Ji et al. 2021)89

and non-parametric coalescent models (which fall into another category of phylodynamic90

models assuming effective population size as a piecewise-constant form of time, Baele et al.91

2020).92
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In this paper, we incorporate gradient-based sampling methods into phylodynamic93

analysis based on EBDS models, thereby enabling scalable inference within this framework.94

First, we refactor the EBDS (log) likelihood to show explicitly that the computational com-95

plexity scales linearly both in terms of the number of sequences and the number of epochs.96

With this refactoring in hand, we deliver a novel linear-time algorithm to evaluate the gra-97

dient of this (log-)likelihood wrt all epoch parameters simultaneously. Then we design and98

deploy an efficient HMC sampler that enables us to fit a large class of EBDS models in a99

Bayesian framework and provide an open-source implementation in the popular Bayesian100

Evolutionary Analysis by Sampling Trees (BEAST) software (Suchard et al. 2018).101

Current approaches to Bayesian inference for EBDS epoch parameters employ a variety102

of prior assumptions to model the dependence structure between parameters across epochs.103

Some priors assume that birth, death and sampling rates across epochs are independent104

and identically distributed (iid) (Stadler et al. 2013, Gavryushkina et al. 2014, Vasylyeva105

et al. 2020). To smooth rate variation over time, temporally-auto-correlated priors such106

as Ornstein-Uhlenbeck smoothing prior (Du Plessis 2016), Gaussian Markov random fields107

(GMRF) priors (Condamine et al. 2018, Silvestro et al. 2019) and the horseshoe Markov108

random field for EBDS models (Magee et al. 2020) have been considered. Conveniently,109

both our linear-time gradients and our HMC approach generalize across all of these choices110

of prior without the need to construct model-specific sampling techniques and allow us111

to introduce the Bayesian bridge shrinkage prior to yield parsimonious time-varying rate112

patterns.113

Across three real-world infectious disease examples that vary in the number of se-114

quences, model dimension, and prior specification, we demonstrate the performance gain115

achieved by our implementation of an HMC transition kernel compared to random walk116

transition kernels. Moreover, for each of these datasets we infer key epidemiological parame-117

ters and demonstrate the utility of our scalable approach for providing reasonable estimates118

of pathogen transmission dynamics over time.119
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2 Methods120

2.1 Setup121

In an infectious disease setting, suppose an infected individual initiates an epidemic at time122

(measured backwards from the present day) tor > 0, called the time of the origin. Then,123

each currently and newly infected individual disseminates the pathogen to others at a time-124

varying birth rate ¼(t) and transitions into a noninfectious state at a time-varying death125

rate µ(t). At any given time, we may sample an infected individual with time-varying126

sampling rate È(t), at which point we add the time of sampling and a molecular sequence of127

their infectious agent into our time-stamped molecular sequence alignment Y. Further, we128

may posit K fixed time-points at which we randomly sample all infected individuals with129

associated vector of probabilities ρ = (Ä1, . . . , ÄK) , adding the time and molecular sequence130

to Y. Note that this means that several individuals can be sampled at the same time point.131

The choice of the time-points is dependent on the dataset at hand and will be discussed132

later in this section. Every sampled infected individual may be treated and then become133

noninfectious with time-varying probability r(t) which we assume equal to one everywhere134

for complete sampling.135

The model defined above provides a forward in time portrayal of the epidemiological136

process. Considering the N sampled and time-stamped sequences in Y as tree tips, there137

exists a (possibly unknown) phylogeny T that depicts the evolutionary relationships among138

these sequences. Specifically, T is a rooted, bifurcating tree withN tip nodes that correspond139

to the sampled sequences or their hosts from the population and N − 1 internal nodes that140

represent transmission events between hosts. We define the height of the nodes as the length141

of time between the time of the corresponding transmission/sampling events and the time142

of the most recent sampled sequence, which we refer to the present time, 0. Each node of143

T is then associated with a node-height g 0 relative to the present, such that the difference144

between the parent node-height and its child node-height is a branch length measured in145

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.564882doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564882
http://creativecommons.org/licenses/by/4.0/


the units of real time (e.g., years). We call the earliest internal node in T the root and146

its node-height corresponds to the time of the most recent common ancestor (TMRCA).147

Therefore, we can further define the node heights of internal nodes to be bifurcation times148

and that of leave nodes to be sampling times. Accordingly, for a vector of bifurcation times,149

we have v = (v1, v2, . . . , vN−1) where v1 < · · · < vN−1. And we let u = (u1, u2, . . . , uN) be a150

vector of sampling times where u1 < · · · < uN .151

For an episodic model, we make the assumption that all the rate parameters are piece-152

wise constant across K different epochs with cut points t = (t0, . . . , tK), with t0 = 0 <153

t1 < · · · < tK−1 < tK . We also require tor f tK . Under this assumption, we can rewrite154

the time dependent birth rate ¼(t) in terms of some unknown epoch-specific birth rate155

λ = (¼1, . . . , ¼K), where ¼(t) = ¼k for tk−1 < t f tk. Similar parametrization applies to156

other parameters, so that we can express µ(t) in terms of µ = (µ1, . . . , µK), È(t) in terms157

of ψ = (È1, . . . , ÈK) and r(t) in terms of r = (r1, . . . , rK). Without loss of generality, we let158

intensive sampling events happen at every time points in t. Then we define ρ = (Ä1, . . . , ÄK),159

where Ä(t) = Äk for t = tk−1. We can remove these intensive sampling events at the epoch160

switching times from our model simply by setting ρ = 0.161

After reparametrizing the rates of the EBDS model, we can arrive at some key epi-162

demiological quantities. For example, if we assume there are no intensive sampling events,163

we can specify the effective reproductive number as Re(t) =
¼(t)

µ(t)+È(t)r(t)
. Other parameters164

that are important include the total rate of becoming noninfectious, which is defined as165

¶(t) = µ(t) + È(t)r(t), and the sampling proportion, defined as ·(t) = È(t)r(t)
µ(t)+È(t)r(t)

. If we166

also assume removal of lineages upon sampling, these formulas can be further simplified by167

letting r(t) be constant and always equal to 1.168

2.2 Probability Density of a Sampled Phylogeny169

Recall we break time into intervals with cut points t = (t0, . . . , tK) defined by epochs.170

Within each epoch, we define a series of subintervals such that a new subinterval start at171
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Subinterval

Figure 1: A phylogeny arising from an EBDS model. This sampled phylogeny has three
epochs (with epoch switching time t1, t2) and thus three sets of model parameters including
rates and probabilities. For every epoch, each branch is further divided into subinterval that
starts at sj and ends at time sj+1 so that no epoch switching, birth or sampling event occurs
within it. Each subinterval within each epoch k is represented by a phylogeny segment index,
j.

every bifurcation time v, sampling time u and epoch switching time t. We delineate the172

subinterval by indices j, which begins at sj and terminates at sj+1 (where sj < sj+1). If173

tor = tK , then the grids s = (s1, . . . , s2N−2+K) can be obtained by joining the time points in174

v, u and t according to their ascending order when none of these times coincide with each175

other. If tor < tK , we have s2N−2+K = tor instead of tK .176

Consequently, each subinterval, inclusive on the left, is partitioned in such a way that it177

precludes the occurrence of an epoch switching, birth or sampling event within its boundaries.178

Within the kth epoch, the first subinterval starts at sj = tk−1 and the last subinterval ends179

at smk+1 = tk. (Note for the last epoch K, the last subinterval ends at tor.) We assign L(j)180

to account for the number of lineages in T that are extant in subinterval time (sj, sj+1].181
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Our likelihood derivation falls into the common framework with Stadler et al. (2013),182

Gavryushkina et al. (2014) and Magee & Höhna (2021). However, instead of writing the183

likelihood in terms of the times of node and epochs, we write it in terms of the subintervals184

j. This representation highlights the fact that the likelihood can be computed in one pass,185

starting at the present and ending at the origin. The interval-based representation of the186

likelihood is as follows:187

P[T | λ,µ,ψ,ρ, r, t] = N1 log Ä1 +
K∑

k=1

mk∑

j=1
︸ ︷︷ ︸

∑K
k=1

mkf2N+K−2∗

(

log Ik(Ej) + L(j) log

(
qk (sj+1)

qk (sj)

))

,

(1)

where mk is the total number of subintervals in epoch k. (*: equality holds when no events188

happens at the exact same time except for the current).189

The indicator function Ik(Ej) is labelled by the index k. This implies that the function190

is concerned with events occurring within the time frame (tk−1, tk]. We have Ej represent191

the event that takes place at the termination of subinterval j within epoch k. In most192

phylodynamic studies, ancestral sampling scenarios are not taken into account; therefore,193

our model is based on the assumption of a strictly bifurcating phylogenetic tree and does194

not involve considerations of ancestral sampling cases, which is distinctive from the work of195

Gavryushkina et al. (2014). Nonetheless, incorporating ancestral sampling into our frame-196

work is relatively straightforward. This can be achieved by setting the treatment probability197

to be less than 1 and adding the term Èk(1 − rk) to our indicator function to account for198

events involving ancestral samples. Consequently, this indicator function takes the following199
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form:200

Ik(Ej) =







1, Ej = a epoch switching event happens on sj+1

¼k, Ej = a birth event happens at sj+1

Èk((1− rk)pk(sj+1) + rk), Ej = a tip sampling event happens at sj+1

ÄNk

k ((1− rk)pk−1(sj+1) + rk)
Nk · (1− Äk)

L(j)−Nk , Ej = an intensive sampling event happens at sj+1 = tk−1.

(2)

Note that pk(t) is the probability that an infected individual at time t has no sampled201

descendants when the process is stopped (i.e., at time t0), and qk(t) is the probability density202

of an individual at time t giving rise to an edge between t and tk−1 (not tk since we define203

time to flow backwards which is the reverse of the generative process) for tk−1 < t < tk in204

epoch k. We have p0(t0 = 0) = 1.205

The intensive sampling probability at time tk−1 is Äk and the corresponding number of206

leaves sampled at that time is Nk. The index here is intentionally misaligned to reconcile207

the fact that we model the epoch as left inclusive in time.208

The definitions of the underlying functions, qk(t) and pk(t), follow the work from Stadler209

et al. (2013) and the detailed formulas are included in Supplementary Material S1. Note that210

our equation 1 does not condition the tree likelihood upon any particular properties, such211

as the presence of at least one sampled individual. Without loss of generality, additional212

conditioning schemes can be integrated by adding a factor to the log-likelihood; relevant213

discussions on this subject are available in Table S3 from the study by MacPherson et al.214

(2022).215

As stated previously, our representation of the likelihood differs from the more standard216

nodewise representation (see for example Stadler et al. 2013, Gavryushkina et al. 2014, Wu217

2014, Magee & Höhna 2021). Our representation makes it explicit that the likelihood com-218

putation can be accomplished in O(N+K) time (see Algorithm 1 for computational details).219

We demonstrate this behavior empirically in Supplementary Material S6. On the other hand,220

as we show in Supplementary Material S5, the conventional nodewise representation leads221

to ambiguities in the cost and a wide potentially range of computational complexities de-222
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pending on implementation decisions. In Supplementary Material S6 we show empirically223

that formulations based on the nodewise representation include both implementations which224

are of the same computational order as ours (namely BEAST2 (Bouckaert et al. 2019) and225

RevBayes (Höhna et al. 2016)) and which scale worse in the number of epochs (TreePar226

(Stadler et al. 2013)).227

2.3 Inference228

In a Bayesan inference procedure, as introduced in Section 2.1, we use a multiple sequence229

alignment with the sampling times, the time-stamped sequences, Y, as the input data. Based230

onY, we can form the posterior distribution over the product space of trees and EBDS model231

parameters as follows. First, a phylogeny T is generated from the EBDS process defined in232

Section 2. Then we specify a molecular clock model that controls the rate at which evolution233

occurs on each branch of T . Under a molecular character-based CTMC substitution model,234

the columns in the sequence alignment evolve independently along the branches of the tree.235

Adoption of different substitution models is contingent upon the distinct attributes of the236

dataset under investigation (see Section 2.6.1). For the sake of notational convenience, we237

refer to the vector encompassing both substitution and clock model parameters as ω. We238

denote by P(Y | ω, T ) the probability of the time-stamped sequences under the CTMC239

substitution model, known as the phylogenetic likelihood. Subsequently, we can factorize240

the posterior in the following manner:241

P[T ,λ,µ,ψ,ρ, r, t,ω | Y ] ∝ P(Y | ω, T )P[T | λ,µ,ψ,ρ, r, t]

× P[λ,µ,ψ,ρ, r, t,ω]

∝ P(Y | ω, T )P(ω)P[T | λ,µ,ψ,ρ, r, t]

× P(λ)P(µ)P(ψ)P(ρ)P(r)P(t).

(3)

In phylodynamic analyses, it is sometimes advantageous to streamline the model by242
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maintaining the death rate as constant. We can also presume the intensive sampling prob-243

ability to be 0 and treatment probability to uniformly be 1 across all epochs. In handling244

time-varying parameters, we choose either iid priors or Markov random field models based245

on dataset-dependent assumptions pertaining to the patterns of change expected in rate pa-246

rameters. In this paper, we specifically consider the GMRF and the Bayesian bridge Markov247

random field model, the latter of which we describe below.248

With increasing complexity of the existing EBDS models, we seek to integrate Bayesian249

regularization methods to help manage the potentially vast quantity of model parameters.250

Specifically, we consider Markov random field priors which specify distributions on the in-251

cremental difference between the log-transformed rate parameters. By assigning a normal252

distribution to the incremental changes, we arrive at the GMRF priors that induce a smooth-253

ing effect on the change of rate parameters across contiguous epochs. This approach naturally254

leads to adjacent epochs exhibiting similar rate values. However, a strong data signal indica-255

tive of a rate change can still manifest in the resulting trajectory. By placing a heavy-tailed256

Bayesian bridge prior (Piironen & Vehtari 2017) on these, we achieve a more generalized ex-257

tension of the GMRF model. The key distinction resides in the specification of the standard258

deviation arising from the normal priors on the increments. In this resulting Bayesian bridge259

Markov random field framework, each epoch’s increment is assigned an additional variable260

to account for variation, thereby affording greater flexibility to the model.261

Supposing we have varied birth rates, we define the birth rate on the log scale ¼∗k =262

log(¼k). Then we have the prior on increments, P
(
¼∗k − ¼∗k−1 | Ä

)
∝ exp

{

−
∣
∣
∣
¼∗
k
−¼∗

k−1

Ä

∣
∣
∣

³}

for263

k > 1, where Ä is the global scale parameter that controls the overall degree of parameter264

variation. As ³ diminishes, the function P
(
¼∗k − ¼∗k−1

)
accrues an increased density close265

to zero. For the purpose of our study, we establish ³ = 0.25 to address a potent prior266

assumption that ¼∗k−¼
∗
k−1 is proximate to 0 without inducing any problems related to mixing267

issues. In other words, we do not anticipate substantial fluctuations in the birth rates across268

consecutive epochs (but allow for rapid rate shift, for example during the exponential growth269
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phase.) Another important parameter is the local scale, denoted as ¿k, which is specific to270

an individual increment ¼∗k − ¼∗k−1. Its density regulates the magnitude of the spike and the271

tail behavior of the above marginal ¼∗k − ¼∗k−1 | Ä .272

Note that the GMRF model can be perceived as a specific instance of the Bayesian273

bridge MRF, where all the local scale parameters are equalized to 1 and ³ is fixed at 2. In274

this case, the increment differences adhere to a normal distribution whose variance is solely275

governed by a single global scale parameter.276

To complete our model, a normal prior is assigned to ¼∗1 in adherence with the method277

outlined in Magee et al. (2020). We obtain the mean parameter of the prior using an empirical278

Bayes method. This provides a crude estimate of the log rate parameter, coupled with a279

standard deviation that is sufficiently large to encompass all possible values (See S3). We280

apply a Gamma(1,1) prior to ϕ = Ä−³. This selection is grounded on a combination of281

theoretical considerations and empirical validation and allows for an efficient Gibbs sampler282

for Ä .283

To regularize the tail behavior, we leverage the shrunken-shoulder version of the Bayesian284

bridge prior and limit the bridge to have light tails past the slab width, À (Piironen & Ve-285

htari 2017, Nishimura & Suchard 2023). An efficient update of Markov random field models286

global and local scale parameters (for Bayesian bridge priors) follows Nishimura & Suchard287

(2023). In this framework, the prior on the increment space represented as a scale mixture288

of normal distributions:289

P
(
¼∗k − ¼∗k−1 | ¿k, Ä, À

)
= N

(

0,

(
1

À2
+

1

¿2kÄ
2

)−1
)

, (4)

where ¿k is called the local scale parameter and Ä is the global scale parameter. (Note290

that ¿k has an exponentially tilted stable distribution with characteristic exponent ³/2.)291

This mixture representation aids in clarifying the local adaptivity of the Bayesian bridge292

prior as considerable changes in rates can be accommodated by an increase in ¿k without293
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necessitating a rise in Ä . The inclusion of the slab width helps to bound the variance of294

increments to À2. We set À = 2, which creates a reasonable upper limit on the variations in295

birth rate between consecutive epochs.296

In our study, we primarily focus on sampling P[T | λ,µ,ψ, t]. With increasing numbers297

of epochs, the parameter space of the EBDS model expands quickly, exhibiting substantial298

correlation between adjacent epochs. To improve the sampling efficiency, we utilize HMC299

method to concurrently sample the time varying model parameters and ensure a high accep-300

tance rate.301

2.4 Hamiltonian Monte Carlo Sampling302

Hamiltonian Monte Carlo is a widely-used Markov chain Monte Carlo method to sample from303

a target distribution effectively. Given a target parameter θ with a posterior probability den-304

sity Ã(θ), HMC iteratively generates samples from the target distribution by simulating the305

dynamics of a physical system whose equilibrium distribution is equal to Ã(θ). In partic-306

ular, HMC introduces an auxiliary momentum parameter d, which is typically chosen to307

follow a multivariate normal distribution with zero mean and covariance matrix M , i.e.,308

d ∼ N (0,M ). M is also known as the mass matrix, which serves as a hyperparameter. The309

Hamiltonian function of the system is defined as:310

H = U(θ) +K(d), (5)

where U(θ) = − log(Ã(θ)) is the potential energy, and K(d) = d¦Md is the kinetic energy311

of the system.312

Starting from the current state (θ0,d0), HMC updates the state according to the fol-313
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lowing differential equations:314

dd

dt
= −∇U(θ) = ∇ log Ã(θ)

dθ

dt
= +∇K(d) =M−1d.

(6)

The simple and effective “leapfrog” method (Neal et al. 2011) approximates the solution315

to (6) numerically:316

dt+ϵ/2 = dt +
ϵ

2
∇ log Ã (θt)

θt+ϵ = θt + ϵM−1dt+ϵ/2

dt+ϵ = dt+ϵ/2 +
ϵ

2
∇ log Ã (θt+ϵ) ,

(7)

where ϵ is the size of each leapfrog step, and n steps are required to simulate the Hamiltonian317

dynamics from time t = 0 to t = nϵ. In practice, the “leapfrog” method has been shown to318

be stable and accurate for a wide range of step sizes (Neal et al. 2011).319

The default choice of the mass matrix is the identity matrix. However, using a different320

M , such as a log-posterior Hessian approximation can largely enhance the efficiency of HMC321

sampling. In this work, M is adaptively tuned to estimate the expected (diagongal) Hes-322

sian averaged over the prior distribution. This design choice alleviates some computational323

burden, following the work of Ji et al. (2020).324

2.5 Gradient325

HMC sampling of the model parameters requires the gradient of the log-likelihood derived326

from (1) wrt the EBDS model rate parameters. The gradient is the collection of derivatives327

wrt model parameters:328

∇θP[T | λ,µ,ψ,ρ, r, t] =

(
∂P

∂¹1
, · · · ,

∂P

∂¹k
, · · · ,

∂P

∂¹K

)¦

, (8)

where ¹k ∈ {¼k, Èk, µk, Äk} is a unified parameter to reduce notation clutter.329
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Given the piece-wise constant nature of the model, the likelihood assumes a consistent330

form across all epochs. Therefore, we can examine the gradient of the log-likelihood at each331

epoch separately. We denote the log-likelihood at epoch k and phylogeny segment j as:332

Pk(j) = log Ik(Ej) + L(j) log

(
qk (sj+1)

qk (sj)

)

. (9)

We can further get individual terms in (8) by accumulating contributions from each epoch333

and the corresponding phylogeny segments:334

∂P

∂¹k
=

K∑

a=k

mk∑

j=1

∂Pa(j)

∂¹k
, ¹k ∈ {¼k, Èk, µk, Äk}. (10)

By examining the interdependency between epochs, we discern that a given epoch k335

exerts influence on the gradient of parameters pertaining to that and all preceding epochs.336

Consequently, it becomes necessary to consider ∂Pk(j)
∂¹k

and ∂Pk(j)
∂¹k−i

respectively, where i is a337

positive integer ranging between 1 and (k − 1).338

First, we consider the gradient contribution at epoch k wrt the current model param-

eters ∂Pk(j)
∂¹k

, where ¹k ∈ {¼k, Èk, µk, Äk}.

Then we have the following cases:

∂Pk(j)

∂¹k
=







If Ej is a birth event happens at subinterval end sj+1:

1¹k=¼k

1

¹k
+ L(j) ·

∂Qk(sj+1, sj)

∂¹k
, (11)

If Ej is a serial sampling event happens at subinterval end sj+1:

1¹k=Èk

1

¹k
+

1− rk
(1− rk)pk (sj) + rk

·
∂pk(sj)

∂¹k
+ L(j) ·

∂Qk(sj+1, sj)

∂¹k
, (12)

If Ej is an intensive sampling event happens at subinterval end sj+1 = tk−1:

1¹k=Äk

(
Nk

¹k
+
L(j)−Nk

(1− ¹k)

)

+
1− rk

(1− rk)pk−1 (sj) + rk
·
∂pk−1(sj)

∂¹k
, (13)

If Ej is a epoch switching event happens at subinterval end sj+1:

L(j) ·
∂Qk(sj+1, sj)

∂¹k
. (14)
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Note that 1 is the indicator function. We leave the explicit expression of the shared terms339

in (11)-(14) to Supplementary Material S2.340

Second, we consider the gradient at epoch k wrt the previous model parameters ∂Pk(j)
∂¹k−i

,

where ¹k−i ∈ {¼k−i, Èk−i, µk−i, Äk−i}:

∂Pk(j)

∂¹k−i
=







If Ej is a birth event or epoch switching event happens at subinterval end sj+1:

L(j) ·
∂Qk(sj+1, sj)

∂¹k−i
, (15)

If Ej is a serial sampling event happens at subinterval end sj+1:

1− rk
(1− rk)pk (sj) + rk

·
∂pk(sj)

∂¹k−i
+ L(j) ·

∂Qk(sj+1, sj)

∂¹k−i
. (16)

We also leave the explicit expression of the shared terms in (15)-(16) in Section S2.341

Third, we discuss the gradient at epoch k wrt the treatment probability r. In (1), the

treatment probabilities at different epochs only affect the current epoch. Therefore, we only

need to consider
lk,j
∂rk

as follows:

∂Pk(j)

∂rk
=







If Ej is a serial sampling event happens at subinterval end sj+1:

1− pk (sj)

(1− rk)pk (sj) + rk
, (17)

If Ej is a intensive sampling event happens at subinterval end sj+1 = tk−1:

1− pk−1 (sj)

(1− rk)pk−1 (sj) + rk
. (18)

The total gradient wrt r can be obtained similar to (10).342

To determine the computation complexity of gradient evaluation, we can assume the343

gradient calculation for ∂Pk(j)
∂¹k

takes constant time. The model has K epochs, where each344

epoch has (2N−1+K)
K

phylogeny segments in average. According to (10), the total computation345

complexity is O(K · (2N−1+K)
2

) ∼ O(NK), since K j N . We demonstrate this result346

through a series of timing experiments presented in Supplementary Material S6 where we also347

compare the efficiency of gradients calculations with the automatic differentiation algorithm348

implemented in the VBSKY (Ki & Terhorst 2022) package based on JAX library (Bradbury349
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et al. 2018). Figure S5 shows our analytical gradients implemented in BEAST significantly350

outpace the VBSKY method.351

2.6 Analysis352

2.6.1 Examples353

We evaluate the relative effectiveness of MH-MCMC and HMC transition kernels under354

the EBDS model using three phylodynamic examples. The first example comprises 274355

sequences of the Pol locus of HIV-1 subtype A sampled in Odesa, Ukraine from 2000 to 2020356

that Vasylyeva et al. (2020) previously analyzed to assess the population-level impact of357

the transmission reduction intervention project (TRIP) on HIV transmission (Nikolopoulos358

et al. 2016). Following this previous analysis, we establish a cutoff point of 50 years for the359

EBDS model. Within this period of time, we let the birth, death and sampling rates vary360

across 10 epochs mirroring the grid points specified by Vasylyeva et al. (2020). Note that361

for better comparability to the original work (Vasylyeva et al. 2020), we place iid lognormal362

priors on the rate parameters. Both the previous and our analysis assume an HKY nucleotide363

substitution (Hasegawa et al. 1985) model with discrete-gamma-distributed rate variation364

among sites (HKY+G) (Yang 1994), and an uncorrelated lognormal relaxed molecular clock365

model (Drummond et al. 2006) (UCLD), with a CTMC rate-reference prior (Ferreira &366

Suchard 2008) on the clock-model mean, truncated between 1 × 10−3 - 3 × 10−3, and a367

normal prior (with mean = 5 × 10−4 and standard deviation = 5 × 10−4) on the standard368

deviation. We use a normal distribution prior (with mean = 35, standard deviation = 5) on369

the time to the most recent common ancestor, in accordance with the previous study.370

Second, we examine the transmission dynamics of 637 human influenza A/H3N2 HA371

genes across 12 epidemic seasons sampled from New York state Rambaut et al. (2008) fol-372

lowing the study of Parag et al. (2020). We set an EBDS model cutoff value of 13 years and373

infer time-varying birth and sampling rates across 78 epochs, each representing 2 months374

in time, and a constant-over-time death rate. Preceding studies focused on the evolution-375
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ary dynamics of influenza A/H1N1 virus mostly utilize the coalescent models. These studies376

predominantly rely on Gaussian process smoothing (Karcher et al. 2020, Bhattacharjee et al.377

2023). Following the same path, we seek to use GMRF prior distributions for the birth and378

sampling rates. Our approach accommodates the considerable variability in the effective379

reproductive number across different flu seasons from 1993 to 2005. We adopt the same380

substitution and clock models from Rambaut et al. (2008). Specifically, to account for po-381

tential differences in the rate of substitution between the first and second codon positions382

compared to the third, we employ the SRD06 substitution model (Shapiro et al. 2006) and383

apply an HKY nucleotide substitution model with discrete-gamma distributed rate hetero-384

geneity for both codon-position partitions (1st + 2nd, and 3rd). We further assume a UCLD385

clock model and employ the default priors from BEAST on the substitution and clock model386

parameters.387

Lastly, to demonstrate the potential our linear-time algorithms afford phylodynamic388

analyses on larger data sets, we examine 1610 full Ebola virus (EBOV) genomes sampled389

between 17 March 2014 and 24 October 2015 from West Africa (Dudas et al. 2017) to390

explored the factors contributing to the spread of Ebola during the 2014-2016 epidemic. We391

set a EBDS model cutoff value of 2 years and infer time-varying birth and sampling rates for392

24 epochs, each corresponding to a month in time, and a constant death rate. For choosing393

the priors on the rate parameters, we incorporate information from previous studies on the394

transmission dynamics of Ebola virus disease in West Africa (Fang et al. 2016, Nyenswah395

et al. 2016). The number of confirmed cases first persisted at a relatively low level and396

started to soar in the mid-Summer of 2014, followed by a consistent peak and a dramatic397

decrease after the initiation of some key intervention events. Considering the potential fast398

shifts projected to the effective reproductive number, we apply the Bayesian bridge MRF399

model as the prior for the incremental differences in the birth and sampling rates. Based400

on Dudas et al. (2017), we assume a HKY+G substitution model independently across four401

partitions (codon positions 1, 2, 3 and non-coding intergenic regions) and a log-normally-402
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distributed relaxed molecular clock model with a CTMC reference prior on the clock model403

mean, and leave all other priors on substitution and clock model parameters at their BEAST404

defaults.405

2.6.2 Implementation406

We conduct all analyses using extensions to BEAST 1.10 (Suchard et al. 2018) and the high-407

performance BEAGLE 4.0 library (Ayres et al. 2019) for efficient computation on central408

processing units (CPUs). We take the timing measurements using a Macbook Pro equipped409

with an M1 Pro chip that features 8 CPU cores and 32GB of RAM. For all experiments410

involving BEAST, we utilized the Azul Zulu Builds of OpenJDK version 18 on the ARM411

architecture.412

To compare the performance of the two transition kernels in estimating the EBDS413

model parameters, we conduct efficiency comparison analyses that focused solely on the414

estimation of the birth-death model’s rate parameters. Specifically, we fix the phylogeny415

to the maximum clade credibility (MCC) tree, a tree with the maximum product of the416

posterior clade probabilities summarized from the Bayesian joint phylogeny inference. We417

analyze all data sets using BEAST with logging performed every 1000 iterations. We run our418

algorithm on the HIV example for 300 million iterations when using MH-MCMC transition419

kernel and 30 million iterations for HMC transition kernel. Also, to obtain convergent results420

for the influenza example, we run analyses using MH-MCMC and HMC transition kernels for421

300 million and 50 million states, respectively. For the Ebola example, we run analyses using422

MH-MCMC and HMC transition kernels for 100 million and 30 million states, respectively.423

For all analyses, we discard 10% of the MCMC chain samples as burn-in.424

We calculate the effective sample size (ESS) for each rate parameter of interest using425

the coda package (Plummer et al. 2006) in CRAN (R Core Team 2021). ESS quantifies426

the degree to which auto-correlation within MCMC iterations contributes to uncertainty in427

estimates (Ripley 2009). We average ESS per compute-hour for each parameter across 10428
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independent runs to reduce Monte Carlo error in each estimate, aiming for a maximal Monte429

Carlo error of 10%. We report the relative increase in ESS per hour of the HMC sampler430

compared with the MH-MCMC sampler over all rate parameters.431

We also conduct phylodynamic analysis for each of the three examples under a joint432

phylogeny inference scheme to mitigate potential bias from the fixed phylogeny, following the433

model specifications discussed in Section 2.6.1. Under these settings, we simulate MCMC434

chains for all examples of‘ 500 million iterations using HMC transition kernel with logging435

performed every 1000 iterations.436

3 Results437

3.1 Performance Improvements438

Figure 2 shows the binned ESS per hour estimates of the EBDS model rates (¼, µ, È) that439

the MH-MCMC and HMC samples generate for all three viral examples. Table 1 summarizes440

the performance improvements by reporting the relative increase in the minimum ESS per441

hour comparing both samplers across all rate parameters.442
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 Minimum:

 Minimum:

 Minimum:  Minimum:

 Minimum:

 Minimum:

Figure 2: Efficiency Comparison between random walk Metropolis-Hastings (MH-MCMC) and
Hamiltonian Monte Carlo (HMC) samplers. Bars correspond to the estimated effective sample
size per hour averaged across 10 independent runs for all rate parameters. The height of each bar
indicates the number of parameters that achieve the given ESS per hour value.

The HIV example assumes that time-varying rates are a priori independent across443

epochs and HMC demonstrates an approximate 245-fold acceleration relative to MH-MCMC.444

Likewise, the influenza example imposes a GMRF across epochs and returns an approximate445

79.4-fold speed-up. On the other hand, the EBOV example enforces heavier shrinkage, and446

hence higher a priori correlation between epochs, and yields a smaller yet computationally447

impactful (approximately 12.7-fold) performance increase.448
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Minimum ESS/h HMC
Example MH-MCMC HMC Speedup

HIV (10 epochs) 1.60× 101 3.91× 103 2.45× 102 times
Influenza (78 epochs) 2.43× 10-1 1.93× 101 7.94× 101 times
Ebola (24 epochs) 5.30× 100 6.73× 101 1.27× 101 times

Table 1: Relative speedup in terms of effective sample size per hour (ESS/h) of HMC Over
MH-MCMC for all three data Sets from fixed phylogeny analyses.

3.2 HIV dynamics in Odesa, Ukraine449

In the context of conducting phylodynamic analyses using EBDS models, we are primarily450

interested in the value and trend of effective reproductive number over time Re(t) that is451

the average number of secondary cases per infectious case in a population made up of both452

susceptible and non-susceptible hosts. If Re > 1, the number of cases is growing, such as453

at the start of an epidemic; if Re = 1, the disease is endemic; and if Re < 1, there is an454

expected decrease in transmission (Nishiura & Chowell 2009). Under the EBDS model, given455

the absence of intensive sampling events, if an individual becomes infected at time t, we can456

use the rate parameters at time t to obtain an estimated Re(t) =
¼(t)

µ(t)+r(t)È(t)
. Furthermore,457

in all our analyses for infectious disease phylodynamics, we maintain r(t) = 1 as constant.458

This assertion carries the assumption that upon diagnosis and sequencing, an individual459

ceases to be a source of infection. This could be due to treatment, death, or geographical460

relocation, rendering them incapable of onward transmission.461
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TRIP

Figure 3: Posterior median (solid line) and 95% credible intervals (CI) indicated by the shaded
areas of the effective reproductive number estimates (Re) through time for HIV epidemic in Odesa,
where the black dotted line represents the epidemiological threshold of Re(t) = 1.

To assess the effects of TRIP for reducing the transmission of HIV in Odesa, we fit462

the EBDS model with varying birth, death and sampling rates and plot the resulting Re(t)463

trend estimate in Figure 3. We apply iid lognormal priors on the rate parameters to stay464

consistent with the methods in previous study (Vasylyeva et al. 2020).465

Estimates of Re(t) appear mostly to accord with previous findings that identify a drop466

in infection rate subsequent to the implementation of the TRIP intervention. Focusing on467

the period from 2013 to early 2016, when TRIP was enacted, our posterior mean estimate of468

Re is 2.64 (95 % CI: 1.18 - 5.43); while post-intervention, the posterior mean reduces to 0.152469

(95 % CI: 0.03 - 0.32). This latter value, falling below the critical threshold of 1, signifies470

the potential deceleration of HIV transmission.471

3.3 Seasonal Influenza in New York State472

While influenza viruses circulate throughout the year, peak influenza outbreaks in the United473

States typically occurs between December and February. Rambaut et al. (2008) employed a474
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non-parametric coalescent model to elucidate the cyclical patterns of variation in the popu-475

lation size, uncovering a notable increase in genetic diversity at the beginning of each winter476

flu season. Subsequently, Parag et al. (2020) demonstrated that incorporating sampling in-477

tensity into the otherwise sampling-naive non-parametric coalescent process improves the478

precision of these inferred cycles. With a GMRF smoothing prior on increments, our model479

also offers the potential for accurately inferring seasonal behaviour and achieving the preci-480

sion of parameter estimations.481

Figure 4 presents posterior estimates of the effective reproductive number Re(t) for the482

alignment of 637 A/H3N2 HA sequences from New York state. As expected, the trajectory483

is highly cyclic, and all peaks lie near the midpoint of the influenza seasons with estimated484

Re larger than 1. For the 2000/2001 and 2002/2003 seasons, where almost all infections485

were attributed to other sub-types of influenza viruses as indicated by the surveillance data486

and previous work (Centers for Disease Control and Prevention n.d., Parag et al. 2020), we487

observe the 95% CI of the estimated peak cover values from 0.68 to 1.3 and from 0.48 to488

1.4, respectively. This suggests that their true Re values might have fallen below 1. Similar489

to the results given by the non-parametric coalescent with sampling analysis (Parag et al.490

2020), we capture a minor peak in the 1995/1996 season, where the inferred Re is slightly491

above one. This again echoes with the fact that the influenza case composition during the492

1995/1996 season was characterized by a mix of A/H1N1 and A/H3N2 infections (Ferguson493

et al. 2003). This diversity in infection types led to a less significant elevation in the effective494

reproductive number for that specific year.495
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Figure 4: Median (solid orange line) and 95% credible intervals indicated by the shaded orange
areas for the effective reproductive number estimates (Re) through time. Gray shading in the graph
represents the rough duration of influenza monitored in New York state for each season, spanning
from epidemiological week 40 to week 20 of the following year. Seasons where A/H3N2 was not the
dominant influenza virus subtype are cross-hatched.

3.4 Ebola epidemic in West Africa496

Using EBDS model assisted by the HMC sampler, we are able to analyze the 2014 Ebola497

epidemic in West Africa using the full 1610-sequence alignment and metadata of sampling498

times taken from the work by Dudas et al. (2017). Previously, researchers have applied birth-499

death models extensively for the phylodynamic analysis of the Ebola outbreak. Stadler et al.500

(2014) adopted a series of birth death models to capture the early trend of the infection of501

Ebola virus in Sierra-Leone. They used 72 Ebola samples from late May to mid June502

2014 with three epochs, and estimated the corresponding effective reproductive number in503

each period. Zhukova et al. (2022) applied the multi-type birth death models to the 1610504

sequence data. However, their analysis was based on the maximum likelihood estimation. To505

demonstrate the scalability of our method, we also take the 1610 sequence data and fit the506

EBDS model with 24 epochs for a finer time resolution to provide more precise estimation507
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of the effective reproductive number. Here, we employ a Bayesian bridge MRF prior on rate508

increments to avoid spurious rate variations while capturing significant rate shifts.509

Announced border closure 
in Guinea (09 Aug)

Announced border closure 
in Sierra Leone (11 Jun)

Announced 
border closure in 
Liberia (27 Jul)

Figure 5: Median (solid line) and 95% credible intervals indicated by the shaded areas of the
effective reproductive number estimates (Re) through time for Ebola outbreak in west Africa. The
black dotted line represents the epidemiological threshold of Re = 1.

Our inference results give an estimated posterior mean effective reproductive number510

at the beginning of the epidemic before December 2013 as 1.65 (95 % CI: 0.41 - 3.05). Dudas511

et al. (2017) show that after the international border closure of Sierra Leone on 11 June 2014,512

followed by Liberia on 27 July 2014, and Guinea on 9 August 2014, the relative contribution513

of international border to overall viral migration is significantly lower. The change-point514

probability is the highest from August to September. This finding stands clearly compatible515

with our EBDS inference that demonstrates a drop of Re from 1.3 (posterior mean, 95 %516

CI: 1.01 - 1.59) to 0.79 (95 % CI: 0.62 - 0.91) after September 2014 when the international517

travel restrictions are in place across the three countries.518
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4 Discussion519

Birth-death models serve as fundamental tools for modeling the temporal progression of520

epidemics. In extending the work of Stadler et al. (2013), Gavryushkina et al. (2014),521

we have provided a systematic representation of the EBDS model for phylodynamics that522

promotes scalability. Our general re-formalization of the EBDS likelihood identifies that its523

computation is simplyO(N +K), foreshadowing anO(NK) algorithm to deliver its gradient524

wrt time-varying birth, death or sampling rates across K epochs. This optimal scaling525

enables HMC sampling to more efficiently explore the high-dimensional joint distribution of526

rates as we increase the number of sequences and the number of model epochs to learn these527

processes at a finer time-resolution. HMC also emits an agnostic approach to incorporate a528

variety of prior assumptions about these time-varying trends, without the need to hand-craft529

specialized transitions kernels for specific priors. Moreover, as suggested by Ji et al. (2020),530

we take measures to enhance the efficiency of our HMC sampler by preconditioning the mass531

matrix based on the Hessian of the log-prior.532

Through three viral epidemic examples, we show that our HMC-assisted approach533

considerably accelerates Bayesian inference across three very different choices of prior models.534

Our preconditioned HMC sampler achieves roughly 10- to 200-fold increase over the widely535

used MH-MCMC sampler in terms of the minimum ESS per unit-time. The enhanced536

efficiency gains are particularly beneficial given the increasing use of phylodynamic inference537

techniques in conducting real-time evaluations of outbreak patterns.538

For applying our model in phylodynamic analyses of disease epidemics, we first exam-539

ine our EBDS model on the effects of TRIP for reducing the transmission of HIV in Ukraine,540

and our inference results support a decreased rate of transmission following the TRIP in-541

tervention. Applied to seasonal Influenza in New York city, our model is able to accurately542

capture the complex pattern of variation in Re during each influenza season. Applied to543

the Ebola outbreak in West Africa, our model supports the effect of international travel544

restrictions characterized as a noticeable decrease in Re following the border closure of the545
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three countries in West Africa.546

In the EBDS model, Stadler and colleagues (Stadler et al. 2013) have indicated that547

the three rate parameters, ¼, µ, and È, cannot be simultaneously identified. This issue548

of unidentifiability in complex birth-death processes has also been recently discussed by549

Louca & Pennell (2020). In our own empirical analysis, problems related to unidentifiability550

seldom manifest when we restrict ourselves to estimating no more than two time-varying551

rate parameters. Instead, the primary challenge appears to be the multimodal nature of552

the posterior distribution. Legried & Terhorst (2022) have demonstrated that, under certain553

conditions, piecewise constant birth-death models can be reliably inferred and differentiated.554

Furthermore, Kopperud et al. (2023) showed that rapidly changing speciation or extinction555

rates can be accurately estimated. This lends credence to the identifiability of patterns we556

observed in our phylodynamic analysis of pandemics such as the seasonal influenza and the557

Ebola outbreaks.558

Current methods to estimate the expected Hessian averaged over the posterior dis-559

tribution improves upon the previous work (Girolami & Calderhead 2011) by avoiding ex-560

cessive computational burden. However, it relies on numerical approximations to compute561

the Hessian, leaving room for potential performance enhancements. To further optimize the562

methodology, we can advance beyond analytical solutions solely for gradients and extend563

them to encompass the analytical Hessian. This would smooth the path of updating the564

adaptive mass matrix, offering opportunities for better outcomes in terms of both efficiency565

and accuracy.566

In many scenarios, the examination of EBDS models is contingent upon having some567

preliminary understanding of how to identify the epoch switching time and the length of568

duration of each epoch. However, it is possible that information available through epidemi-569

ological surveillance is insufficient. Moreover, the choice of epoch duration can be related to570

the uncertainty in the timing of the rate shifts (Magee et al. 2020). In this study, our strategy571

aims to increase the number of epochs and leverage regularizing priors, striving to achieve a572
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refined grid of timelines. Nevertheless, constraints persist on the maximum epochs feasible573

with our HMC algorithm, particularly when confronted with computational limitations or574

models exhibiting multimodality challenges. One possible solution entails simultaneously in-575

ferring epoch duration, epoch switching times, and rate parameters via the reversible-jump576

MCMC method (Wu 2014). However, this method requires one to integrate across models577

with differing dimension, which demands substantial effort and might be impractical for578

large datasets.579

Considering these cases, if the piece-wise constant model assumptions can be lifted580

so that we can obtain a smoothly differentiable likelihood function, it would inherently aid581

in deriving gradients concerning node ages and epoch switching times. This advancement582

would, in turn, improve our current implementation, empowering us to infer, rather than583

presuppose, epoch switching times, with enhanced scalability prospects. It would also en-584

hance the sampling efficiency from joint phylogeny posterior distributions, by enabling us to585

take advantage of recent work by Ji et al. (2021), yielding a pronounced improvement in the586

analytical capacity of our models.587

In anticipation of future advancements that will improve upon standard HMC methods588

and broaden the applicability of the current EBDS model, we present a comprehensive589

framework in this manuscript. This framework facilitates phylodynamic analysis on large-590

scale sequence data and employs regularization techniques to yield a finely-resolved, regular591

grid that effectively aids in our understanding of the impact of the pandemics.592
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Höhna, S., Landis, M. J., Heath, T. A., Boussau, B., Lartillot, N., Moore, B. R., Huelsenbeck,661

J. P. & Ronquist, F. (2016), ‘RevBayes: Bayesian phylogenetic inference using graphical662

models and an interactive model-specification language’, Systematic biology 65, 726–736.663

Ji, X., Fisher, A. A., Su, S., Thorne, J. L., Potter, B., Lemey, P., Baele, G. & Suchard,664

M. A. (2021), ‘Scalable Bayesian divergence time estimation with ratio transformations’,665

arXiv preprint arXiv:2110.13298 .666

Ji, X., Zhang, Z., Holbrook, A., Nishimura, A., Baele, G., Rambaut, A., Lemey, P. &667

33

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.31.564882doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.31.564882
http://creativecommons.org/licenses/by/4.0/


Suchard, M. A. (2020), ‘Gradients do grow on trees: a linear-time O(N)-dimensional668

gradient for statistical phylogenetics’, Molecular Biology and Evolution 37, 3047–3060.669

Karcher, M. D., Carvalho, L. M., Suchard, M. A., Dudas, G. & Minin, V. N. (2020), ‘Es-670

timating effective population size changes from preferentially sampled genetic sequences’,671

PLoS Computational Biology 16, e1007774.672

Ki, C. & Terhorst, J. (2022), ‘Variational phylodynamic inference using pandemic-scale data’,673

Molecular Biology and Evolution 39, msac154.674
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Magee, A. F. & Höhna, S. (2021), ‘Impact of K-Pg mass extinction event on crocodylomorpha692

inferred from phylogeny of extinct and extant taxa’, bioRxiv pp. 2021–01.693
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Supplementary Material769

S1 Likelihood Derivation770

S1.1 Formulas for Likelihood Related Functions771

Ak =

√

(¼k − µk − Èk)
2 + 4¼kÈk, (19)

Bk =
(1− 2 (1− Äk) pk−1(tk−1))¼k + µk + Èk

Ak
(20)

pk(t) =
¼k + µk + Èk − Ak

eAk(t−tk−1)(1+Bk)−(1−Bk)

eAk(t−ti−1)(1+Bk)+(1−Bk)

2¼k
(21)

qk(t) =
4eAk(t−tk−1)

(eAk(t−tk−1)(1 + Bk) + (1− Bk))
2 (22)

g1 = eAk(t−tk−1) · (1 + Bk) + (1− Bk) (23)

g2 = Ak(1−
2(1− Bk)

g1
) (24)

g3 = 1− 2 (1− Äk))Pk−1(tk−1) (25)
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S1.2 Implementation Algorithm:772

Detailed algorithm for likelihood calculation is shown below based on the equations listed in773

Section 2.2 of the main text and from the section above.774

Algorithm 1: Likelihood Calculation

1 Initialize: p0(t0) = 1
2 for k = 0, . . . , K − 1 do

/* Intermediate quantities */

3 Load the value of pk(tk)
4 Calculate Ak+1, Bk+1 via Equation (19), (20)
5 for j = 0, . . . ,mk+1 − 1 do
6 Calculate qk+1(sj+1) via Equation (22)
7 if sj+1 is a serial sampling event then
8 Calculate pk+1(sj+1) via Equation (21)
9 end

10 if j g 1 then
11 Calculate Ik(Ej) via Equation (2)
12 end

13 end
14 Calculate and store pk+1(tk+1) via Equation (21)

15 end
/* Likelihood */

16 Calculate P[T | λ,µ,ψ,ρ, r, t] via Equation (1)
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S2 Gradient Derivation775

S2.1 For ∂Pk(j)
∂θk

:776

∂qk(t)

∂¹k
=

8eAk(t−tk−1)((t− tk−1)
∂Ak

∂¹k
(1
2
· g1 − eAk(t−tk−1) · (1 + Bk))

g31

−
∂Bk

∂¹k
(eAk(t−tk−1) − 1))

g31

(26)

∂Ak
∂¹k

=















































¼k−µk+Èk

Ak
, If ¹ = ¼

−¼k+µk+Èk

Ak
, If ¹ = µ

¼k+µk+Èk

Ak
, If ¹ = È

0, If ¹ = Ä

(27)

∂Bk

∂¹k
=















2¼kpk−1(tk−1)

Ak
, If ¹ = Ä

∂Bk

∂¹k
=

Ak·temp−
∂Ak
∂θk

·(g3·¼k+µk+Èk)

A2
k

, Otherwise

(28)

∂pk(t)

∂¹k
=































1
2¼2

k

(−µk − Èk − ¼k
∂g2
∂¼k

+ g2), If ¹ = ¼

−Ak

¼k

((1−Bk)(e
Ak(t−tk−1)−1)+g1) ∂Bk

∂ρk

g21
, If ¹ = Ä

1
2¹k

(1− ∂g2
∂¹k

), Otherwise

(29)

∂Qk(sj+1, sj)

∂¹k
=

1

qk (sj+1)

∂qk (sj+1)

∂¹k
−

1

qk(sj)

∂qk(sj)

∂¹k
(30)

∂g2
∂¹k

=
dAk
d¹k

−
2

g21
·

(

g1

{

dAk
d¹k

(1− Bk)−
dBk

d¹k
· Ak

}

−
(

eAk(t−tk−1)
∂Ak
∂¹k

(1 + Bk) · (t− tk−1) + (eAk(t−tk−1) − 1)
∂Bk

∂¹k

)

· Ak(1− Bk)

)

(31)
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S2.2 For ∂Pk(j)
∂θk−i

(i is an integer smaller than k):777

∂qk(t)

∂¹k−i
= −

8eAk(t−tk−1) ∂Bk

∂¹k−i
(eAk(t−tk−1) − 1)

g31
(32)

∂Bk

∂¹k−i
=

∂Bk

∂pk−1 (tk−1)
·
∂pk−1 (tk−1)

∂¹k−i
=

−2 (1− Äk)¼k
Ak

∂pk−1 (tk−1)

∂¹k−i
(33)

∂pk(t)

∂¹k−i
= −

Ak
¼k

(

(1− Bk)(e
Ak(t−tk−1) − 1) + g1

)

∂Bk

∂¹k−i

g21
(34)

∂Qk(sj+1, sj)

∂¹k−i
=

1

qk (sj+1)

∂qk (sj+1)

∂¹k−i
−

1

qk(sj)

∂qk(sj)

∂¹k−i
(35)
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S2.3 Implementation Algorithm:778

We implement a recursive algorithm to compute the necessary gradient of the log-likelihood779

within our rate parameter space. Intermediate quantities are stored in between epochs to780

alleviate computational burden. Detailed algorithm is shown below based on the equations781

listed in 2.5 and previous sections in the supplement.782

Algorithm 2: Gradient Calculation

1 Initialize: p0(t0) = 1
2 for k = 0, . . . , K − 1 do

/* Intermediate quantities */

3 if k == 0 then
4 Calculate ∂A1

∂¹1
, ∂B1

∂¹1
using p0(t0) via Equation (27), (28)

5 end
6 else if k g 1 then

7 Load the values of {∂pk(tk)
∂¹i

}ki=1

8 Calculate ∂Ak+1

∂¹k+1
, {∂Bk+1

∂¹i
}k+1
i=1 using {∂pk(tk)

∂¹i
}ki=1 via Equation (27), (28), (33)

9 end

10 Calculate and store {∂pk+1(tk+1)

∂¹i
}k+1
i=1 using {∂Bk+1

∂¹i
}ki=1 via Equation (29), (34)

/* Gradient */

11 Calculate {∂Pk(j)
∂¹i

}ki=1 via Equations (11)-(18) in Section 2.5

12 end

S3 Prior distributions for EBDS models783

S3.1 HIV dynamics in Odesa, Ukraine784

We refer to the prior settings on the compound parameters from previous work (Vasylyeva785

et al. 2020), and try to roughly match their priors by adopting the following prior distri-786

butions on each of the rate parameters. Note that the sampling proportion was fixed to 0787

before the first sampling date in their study, so we also set the sampling rate to 0 for the788

last two epochs for consistency.789
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Parameter Prior Role
¼ Lognormal (Mean = 0.85, SD = 1.0) Birth rate
µ Lognormal (Mean = −0.25, SD = 1.0) Death rate
È Lognormal (Mean = −9.0, SD = 0.50) Serial sampling rate
tor Uniform (Lower = 19, Upper = 60) Age of phylogeny

Table S1: Prior specifications for the EBDS model in HIV virus analysis

S3.2 Seasonal Influenza in New York State790

We follow the same framework for setting the priors for the GMRF-based model as in Section791

S3.3. Similarly, the prior distribution for the constant death rate is acquired by estimating792

the credible range for the duration of the infectious period according to reports by Centers793

for Disease Control and Prevention (n.d.), with 95% confidence intervals encompassing 6 to794

11 days. Comprehensive information regarding the specific prior distributions is shown in795

the following table:796

Parameter Prior Role
¼∗1 Normal (Mean = 3.08, SD = 1.17) Log-scale birth rate at present
µ∗
k Normal (Mean = 3.82, SD = 0.16) Log-scale death rate for all epochs
È∗
1 Normal (Mean = −0.77, SD = 1.17) Log-scale sampling rate at present

tor Normal (Mean = 12.5, SD = 15.0) Age of phylogeny
³ Fixed to 2.0 Exponent of the MRF
ϕ Gamma (Shape = 1.0, Scale = 1.0) Transformed global scale of the MRF
¿k Fixed to 1.0 Local scale of MRF

Table S2: Prior specifications for the EBDS model in Influenza virus analysis

S3.3 Ebola epidemic in West Africa797

We assume a constant death rate, µ for this data set, and we employ an empirical Bayes798

approach proposed by Magee et al. (2020) to set the prior on the first log-birth-rate and log-799

sampling-rate in our Bayesian bridge MRF models. The prior for the constant death rate is800

obtained from an estimation of the plausible duration of infectious period with 95% confi-801

dence intervals covering 8 to 40 days (Velásquez et al. 2015). The detailed prior distributions802
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can be found in the table below:803

Parameter Prior Role
¼∗1 Normal (Mean = 1.26, SD = 0.58) Log-scale birth rate at present
µ∗
k Normal (Mean = 3.02, SD = 0.41) Log-scale death rate for all epochs
È∗
1 Normal (Mean = 1.27, SD = 0.58) Log-scale sampling rate at present

tor Normal (Mean = 1.89, SD = 15.0) Age of phylogeny
³ Fixed to 0.25 Exponent of the MRF
ϕ Gamma (Shape = 1.0, Scale = 1.0) Transformed global scale of the MRF
¿k Exponentially tilted stable distributions Local scale of Bayesian bridge MRF
À Fixed to 2.0 Slab width of Bayesian bridge MRF

Table S3: Prior specifications for the EBDS model in Ebola virus analysis
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S4 Inferred trajectories for birth/death/sampling rates804

2 3

2 2

2 1

20

21

22

23

Bi
rth

 R
at

e

2 3

2 2

2 1

20

21

22

De
at

h 
Ra

te

Pa
st

19
94

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
16

20
19

2 14

2 12

2 10

2 8

Sa
m

pl
in

g 
Ra

te

(a)

(b)

(c)

Figure S1: HIV virus: Median (solid line) and 95% credible intervals indicated by the shaded areas
of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure S2: Influenza virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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Figure S3: Ebola virus: Median (solid line) and 95% credible intervals indicated by the shaded
areas of the (a) birth rate, (b) death rate, and (c) sampling rate estimates through time.
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S5 Computational complexity of the nodewise likelihood805

The computational complexity of evaluating node-based representations of the likelihood is806

much less explicit. First, we need to write out an equivalent expression for the likelihood807

of Equation 1 node-wise. It will be helpful to distinguish different types of samples. In808

particular, let us denote serially-sampled tips ūÈ with a particular serially-sampled tip being809

ūÈi. With a slight abuse of notation, let us denote intensively-sampled tips ūÄ, with ūÄi810

denoting the vector of intensively-sampled tips at the ith intensive-sampling event. Then we811

can write812

P[T | λ,µ,ψ,ρ, r, t] = log(qk(tor)(tor)) +





||v||
∑

i=1

log(¼k(vi)) + log(qk(vi)(vi))



+





||ūψ ||
∑

i=1

log(Èk(ūψi)) + log(rk(ūψi) + (1− rk(ūψi))pk(ūψi)))− log(qk(ūψi)(ūÈi))



+

(

K
∑

i=1

||ūÄi||+ log(Äi) + (L(ti−1)− ||ūÄi||) log((1− Äi)qi−1(ti−1))+

+ ||ũÄi|| log(1− ri)qi−1(ti−1)||ūÄi|| log(ri + (1− ri)pi−1(ti−1))

)

(36)

The complexity here is not immediately apparent for a number of reasons. For one,813

the complexity appears to depend on the relative proportion of samples of different types,814

which affects the number of values of pk(t) and qk(t) which must be computed. Importantly,815

the complexity of computing those pk(t) and qk(t) is not immediately apparent either, and816

that these costs are somewhat hard to disentangle, as pk(ti) builds recursively on pk−1(ti)817

and qk(t) depends on pk(t).818
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S5.1 Node lookups819

Regardless of such ambiguities, all nodes in the tree require an interval lookup. For births, the820

lookup is required to find the correct ¼k term to use. For samples, the lookup is either to find821

the appropriate sampling rate, for serial samples, or to determine to which intensive-sampling822

event a sample belongs, for intensive samples. The time requirement here depends on the823

algorithm, for a binary search it is O(log(K)), making the total lookup cost O(N log(K)).824

S5.2 How many computations of qk(t) are required?825

In the worst, but most common, case, there are no intensive-sampling events and qk(t) must826

be computed for the times of all samples, all births, and all epoch times (note that even when827

Äi is 0, there is a term L(ti) log(qi−1(ti)) which must be computed in the final summation).828

In the best case, all samples are at intensive-sampling events, and qk(t) only needs to be829

computed for the times of all births and all epoch times. These are both O(N +K), though830

there is a factor of two’s worth of variation in front of the N depending on which side of this831

spectrum a tree falls in. Calling the cost of computing qk(t) Q, this makes the contribution832

to the complexity here O(Q(N +K)).833

S5.3 How many computations of pk(t) are required?834

The likelihood contains a number of explicit computations of pk(t) in the terms pertaining to835

(both serially- and intensively-)sampled tips. When all samples are serial samples, there are836

O(N) direct computations of pk(t), while when all samples are intensive samples, there are837

O(K). Taking the cost of computing pk(t) to be P , the addition to the cost here is between838

O(PN) and O(PK).839
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S5.4 What is the cost of computing pk(t) and qk(t)?840

We have thus far shown that the cost of computing the nodewise likelihood appears to be841

between O(N log(K) +Q(N +K) + PN) and O(N log(K) +Q(N +K) + PK). But this is842

not particularly revealing without considering P and Q.843

While qk(t) depends on pl:l<k(t) throughA andB, once Ak and Bk have been computed,844

let us assume (as we did when evaluating the cost of the interval-wise likelihood) that the845

cost of qk(t) is O(1). In other words, let us assume that O(Q(N+K)) = O(P (N+K)). This846

makes the implied cost of the nodewise likelihood between O(N log(K) +P (N +K) +PN)847

and O(N log(K) + P (N + K) + PK), which both simplify to O(N log(K) + P (N + K)).848

Näıvely, we might choose to compute pk(t) recursively every time we need it, which is O(K2).849

In this case, the implied cost of the nodewise likelihood is O(N log(K) +NK +K2)).850

S5.5 Precomputing A and B851

One can instead choose to pre-compute Ak, Bk, as once these are computed the cost to852

compute pk(t) and qk(t) becomes O(1). Working backwards from the present allows re-853

computation to be avoided. As we did when we approximated the cost of the interval-wise854

likelihood, we will take the cost of the update (computing (Ak, Bk) from (Ak−1, Bk−1)) to855

be O(1). Thus, the cost of the precomputation is O(K). This puts the implied cost of856

computing the nodewise likelihood between O(N log(K) +N +K).857

S5.6 Counting lineages at epoch times858

Regardless of whether the model includes intensive-sampling (that is, regardless of whether859

ρ = 0), one must compute L(ti) for all epoch times. This can be solved essentially the same860

way as the subintervals are obtained, at a cost of O(N +N log(N)). Alternately, it can be861

obtained by counting the number of births and sampled tips older (or younger) than each862

epoch time, at a cost of O(KN). This makes the lower end of the computational cost once863
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again a range, from O(NK +N log(K) +N +K) to O(N log(K) +N log(N) +N +K).864

In practice, the constants in front of all the sorting and node-lookup terms appear to be865

so small as to be unnoticeable in real-world computation. We demonstrate this in our timing866

experiments in the next section. Thus, for all practical purposes, the likelihood appears to867

be O(N + K) regardless of representation, as long as one avoids recursive computation of868

pk(t).869
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S6 Timing Experiments870

With the reformulation of the likelihood and derivation of the analytical gradients, our871

method notably gains in speed, as we highlight in this section. For a comprehensive as-872

sessment, we compare our approach with four other specialized packages for EBDS model873

inference concerning likelihood calculations. These include the BDSKY (Stadler et al. 2013)874

package within BEAST2 (Bouckaert et al. 2019), TreePar (Stadler et al. 2013) package in R875

(R Core Team 2021) and RevBayes (Höhna et al. 2016). Furthermore, we present a bench-876

mark comparing the gradient calculation efficiency of automatic differentiation implemented877

in VBSKY (Ki & Terhorst 2022)package using JAX library (Bradbury et al. 2018) isolated878

from the variational inference procedure against our algorithm based analytical gradients879

implemented in BEAST.880

To assess the scalability of the aforementioned methods in terms of likelihood/gradient881

calculation, we simulated a set of trees under the EBDS model with increasing number of882

tips. To investigate the scalability of different methods wrt the number of sequences, we fix883

the number of epochs to 5 for both likelihood and gradient calculation.884

Regarding scalability with respect to the number of epochs, we adjust the model by885

progressively increasing the number of epochs. To keep other variables constant, we maintain886

the tree topology and set the number of tips at 12 (in scenarios whereK >> N , this allows us887

to negate the effect of N in O(N+K)) for likelihood computation. For gradient calculations,888

we set the number of tips to 8198 (to minimize the impact of K2 in O(NK +K2)).889

For methods that employ just-in-time (JIT) compilation, including BEAST, BEAST2890

and VBSKY, we run a short MCMC chain or variational inference algorithm to compute891

likelihood or gradient across 100,000 iterations and take the average run time.892
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Figure S4: Speed of implementations for the likelihood calculations of increasing number of se-
quences (left plot) or number of epochs (right plot) for EBDS model. Note the time and number
of sequences/epochs are laid out according to a logarithmic scale with base 2.

In our analysis, we observe that for likelihood computations, the implementations in893

BEAST, BEAST2, and RevBayes offer similar speed performance when adjusting both the894

number of sequences and epochs. In contrast, the TreePar package consistently lags, being895

several hundred times slower than its counterparts across all tested scenarios. It is also896

the sole implementation that exhibits a quadratic scaling with the number of epochs. The897

algorithms of BEAST, BEAST2, and RevBayes seem to demonstrate approximately linear898

scaling relative to both tree size and model epochs. It’s worth noting that RevBayes delivers899

the quickest calculation speed, which might be attributed to the inherent speed advantages900

of precompiled codes, particularly for quick likelihood calculations in our context. Result for901

TreePar with epochs exceeding than 512 is not not included as TreePar fail to process such902

large models.903
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Figure S5: Speed of implementations for and gradient calculations of increasing number of se-
quences (left plot) or number of epochs (right plot) for EBDS model.

In terms of gradient calculations, our analytical gradients deployed within BEAST904

is remarkably faster than VBSKY approach using automatic differentiation. The gradient905

computation scales approximately linearly with the number of sequences for both BEAST906

and VBSKY. However, wrt the number of epochs, the scaling remains linear for BEAST907

but seems quadratic for VBSKY. We further confirm that the runtime slowness exhibited in908

VBSKY is not due to memory issues or JIT compilation difficulty. Therefore, our analysis909

demonstrates that analytically calculating the gradients of the EBDS likelihood is critical910

for improving the running time of gradient based methods.911
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