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Abstract

Quantifying whether and when signals are modulated by autonomous or external events is
ubiquitous in the field of neuroscience. Existing statistical approaches, however, are not ideally
suited to do this, especially when the signals under scrutiny show temporal autocorrelations.
For example, a standard approach in the analysis of calcium imaging data is to use a t-test on
predetermined time-windows to quantify whether neurons respond (differently) to an event of
interest. While this is attractive because of its simplicity, only average signal differences can be
detected. In practice, neurons often show complex response dynamics which are missed by
conventional statistical tests. To solve this issue, we present an improved version of the recently
developed ZETA-test which implements support for analysing time-series data. Furthermore,
it includes a two-sample test to detect a difference in neural responses between two conditions.
We show that our method has a statistical sensitivity superior to t-tests and ANOV As and works
well with temporally correlated data. Open-source code for implementations in MATLAB and

Python is available on GitHub.
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Introduction

Neurophysiological studies depend on a reliable quantification of whether and when neural
signals are modulated by autonomous or external events, such as the presentation of a sensory
stimulus. In the analysis of calcium imaging data, a standard approach is to use a t-test on a
predetermined time-window to include only the cells that are significantly modulated. While
this approach is attractive because of its simplicity, statistical tests such as the t-test only detect
differences in signal averages between the time windows of interest. On the other hand, more
advanced model-based methods are rarely used, as they require fitting and manual
hyperparameter tuning. These advanced methods can be very computation and/or labour
intensive, and may not be feasible for large data sets. A middle ground between these
approaches is two perhaps the bin-wise ANOVA, when used in combination with an automatic
bin-width determining algorithm (Shimazaki & Shinomoto, 2007). While the ANOVA is an
improvement over the t-test in many cases, it is ill suited to analysis of temporally-dependent
signals, as we will show later. New recording techniques, such as wide-field and multi-plane
imaging, yield increasingly large numbers of cells, and such data-sets may benefit from a test
for neuronal responsiveness that requires no arbitrary parameters, binning, or manual curation,
and is not negatively affected by temporally correlated signals.

Recent work has proposed such a statistical test for electrophysiological spiking data:
the ZETA-test (Montijn et al., 2021). Several studies have already been published that use this
approach. It is particularly well suited to detecting whether cells are driven by optogenetic
stimulation in opto-tagging experiments (Dudok et al., 2021; Schneider et al., 2023;
Spyropoulos et al., 2023; Szadzinska et al., 2021). It has also been used to detect response onset
latencies (Oude Lohuis et al.,, 2022), and quantify somatosensory and visual stimulus
responsiveness (Burnett et al., 2023; Montijn et al., 2023; Qin et al., 2023; Ziegler et al., 2023).
While the ZETA-test works well for spiking data, an important shortcoming is that it can only
be applied to point events, such as spike times. Another limitation of the ZETA-test is that it
cannot be used to determine differences between two conditions.

To address these limitations, we developed three new statistical methods inspired by
this previous work: 1) a ZETA-test that can be applied to time-series data, like from calcium
imaging experiments. 2) A two-sample ZETA-test to determine whether there exists a
difference in neuronal spiking activity between two conditions. 3) A two-sample ZETA-test for

time-series data. We have tested the performance of these methods on real and synthetic data,
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and found that it outperforms common approaches such as t-tests and ANOVAs. We expect
that our procedures may be of interest to statisticians and theoreticians, but we have written this
manuscript specifically with experimental neuroscientists in mind, who can use our open-

source code in MATLAB (https:/github.com/JorritMontijn/zetatest) and Python

(https://github.com/JorritMontijn/zetapy) to obtain higher yields and more reliable results from

their neurophysiological data.

Results

The original ZET A-test and the addition of a data-stitching step

The Zenith of Event-based Time-locked Anomalies test (ZETA-test) has been described in
detail previously (Montijn et al., 2021) and in the Methods section, but we will concisely
summarize its procedure here. First, we align all spikes to stimulus onsets, i.e. building a raster
plot (fig. 1A). Pooling all spikes across trials, we obtain a single vector of spike times relative
to stimulus onset, and calculate the cumulative distribution as a function of time (fig. 1B). The
deviation of this curve from a linear baseline represents whether the neuron has a higher or
lower spiking density than a non-modulated spiking rate (fig. 1C, blue curve). We compare this
pattern to the likelihood of observing it by chance by running multiple randomized bootstraps.
In each bootstrap iteration, we jitter all stimulus-onset times to generate a single null hypothesis
sample (fig. 1C, grey curves). After scaling the experimentally observed curve to the variation
in the null hypothesis distribution obtained from all bootstraps, we transform it into a p-value
by using the direct quantile position, or by approximation with the Gumbel distribution. Low
ZETA-test p-values indicate that the neuron’s firing pattern is statistically unlikely to be
observed if the neuron is not modulated by the event of interest.

For all statistical benchmarking analyses hereafter, we will use a Receiver Operating
Characteristic (ROC) analysis to quantify how well different statistical tests can discriminate
whether a neuron is responsive to visual stimulation with drifting gratings. For the spike-based
data sets, we recorded 1504 cells in the primary visual cortex (V1) of seven awake mice using
Neuropixels (Montijn et al., 2023). To estimate the false positive rate, we randomly jittered the
stimulus onset times and reran the procedure. In an ROC analysis, the true-positive rate
(significantly responsive cells) is plotted on the y-axis, as a function of the false-positive rate

(x-axis), with each point corresponding to one p-value threshold. The curve therefore follows
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the ratio of true-positives/false-positives for various values of a, ranging from the very lowest
to highest p-value in the combined set of both true and false positives. For a properly calibrated
statistical test, the false positive rate is equal to the threshold value a. A perfect discriminator
has an area under the curve (AUC) of 1.0, while a random discriminator has an AUC of 0.5.

The first topic we investigated was a shortcoming in the original ZETA-test. The ZETA-
test’s statistical model assumes that the real and null-hypothesis samples are taken from the
same set of point events (spikes). While this holds true when stimulus events occur at fixed
intervals, this will be false with heterogeneous inter-event durations, such as for self-generated
behavioural events. In this latter case, jittering the onsets may lead to varying inclusion and
exclusion of parts of the data (see Methods). We have therefore modified the ZETA-test to
include an optional data-stitching step that ensures data conformity between the real and onset-
jittered procedures (fig. 1D). While this change may seem significant from a purely theoretical
point of view, it had surprisingly little effect on the statistical sensitivity in real-world
experimental data with mild heterogeneity of inter-event durations (fig. 1E). We found the
following statistical sensitivies: ZETA-test with stitching AUC=0.897, ZETA-test without
stitching AUC = 0.899, ANOVA AUC=0.867, T-test AUC=0.785. While the AUC of the
ZETA-test was significantly higher than of the ANOVA (Mann-Whitney U-test, p=2.4 x 10©)
and the t-test (p= 7.4 x 107%), there was no difference in AUC between the stitched and non-
stitched ZETA-tests (p=0.80). For the ANOVA, we used the Shimazaki&Shinomoto procedure
to calculate the optimal binning size (Shimazaki & Shinomoto, 2007), while for the t-test we
tested compared the mean firing rate between the stimulus period (0.0 — 1.0 s) and pre-stimulus
inter-trial interval (-0.5 — 0.0 s).

Next, we tested the performance of these four tests under four different synthetic
benchmarks using simulated neurons with exponential inter-spike intervals. For each trial, we
varied the average inter-spike interval between stimulus and baseline (Biphasic neurons; fig.
1F), or between onset, stimulus and baseline (Triphasic neurons; fig. 1G,H). Finally, we ran a
worst-case scenario for the ZETA-test by sampling the number of spikes from a discretized
Gaussian distribution and scattering the spike times following uniform random distribution
across a 1-second window (fig. 1I). In simulations for fig. 1F,G, we varied the inter-trial
intervals from 0.2 — 2.0 s to investigate the effect of the stitching procedure with heterogeneous
inter-event durations. Under these conditions we found little difference between the stitching

and non-stitching ZETA-tests: Biphasic, 0.645 vs 0.629 (p=2.7 x 107); Triphasic, 0.925 vs
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0.919 (p=9.4 x 10™*) for with vs without stitching respectively. Next, we simulated a case where
the window of interest (1) was chosen such that it discarded the transitions into and out of
baseline-level activity (fig. 1H). In this case, we found a large difference (p<107'%) in statistical
sensitivity when comparing stitching (AUC=0.882) with no-stitching (AUC=0.694). This result
shows that stitching can be a critical step under some specific circumstances, especially for
relatively sparse events where the window of interest may be unclear (for example, the duration
of the period following licking). Moreover, we found that the ZETA-test outperformed the
optimal ANOVA in all cases, except for the Gaussian-noise model. Under these conditions,
which we optimized for the ANOVA’s performance, and which are highly unlikely to occur in
experimental neuroscience data, the difference between the ZETA-test and the optimal
ANOVA was small (ZETA-test AUC=0.653, ANOVA AUC=0.674), but significant (p=1.6 x
10%).

Time-series ZETA test

The original formulation of the ZETA-test could be applied to any two sets of point events,
such as spike times and stimulus onsets. While its application to electrophysiological data was
therefore straightforward, many other methods produce time-series data, such as calcium
imaging. We previously applied the ZETA-test to transient-detected calcium imaging data and
found that it performed quite well (Montijn et al., 2021). Nevertheless, a better and more generic
solution would be a ZETA-test for time-series data, as this could also be applied to data obtained
with EEG, patch recordings, fMRI, etc. The Methods section describes an alternative
formulation of such a time-series ZETA-test, which we applied to real data and various
synthetic benchmarks to test its performance. In a nutshell, the modification is that we replace
the cumulative distribution of spikes by a cumulative sum of data values and perform some
extra steps, such as data scaling. An extra trick we employ is that if samples are acquired with
varying latencies relative to the events of interest, this fact can be used to construct a super-
resolution time-series average over trials. This allows the time-series ZETA-test to also
effectively deal with data sampled with heterogeneous intervals.

We found the time-series ZETA-test outperformed t-tests and optimally-binned
ANOVAs on both GCaMP6f (2430 cells) and OGB 1-AM data (1204 cells) (fig. 2). We ran a
similar analysis as described above, using a receiver-operating characteristic (ROC) analysis.
However, we found that including all 80 trials saturated the performance of the ZETA-test to
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>0.99 for the OGB data. The results we present here are therefore from data sets where we used
only the first 8 trials of each data set. We observed that the statistical sensitivity was higher for
the time-series ZETA-test than the ANOVA (OGB data ZETA-test AUC=0.944 vs ANOVA
AUC=0.924, p=6.4 x 107°; GCaMP data ZETA-test AUC=0.818 vs ANOVA AUC=0.786,
p=2.4 x 1077). We also noticed a strong discrepancy in the false-alarm rate for ANOVAs that
was absent in the ZETA-test. For relatively large values of alpha, the false positive rate was of
the shuffle-control was close to the theoretical norm. Below an alpha of approximately 0.05,
however, the ANOVA'’s false positive rate started to diverge from the norm and became
excessively liberal (fig. 2I-J). For example, to obtain an empirical false positive rate of 0.001
using the ANOVA, one would require a p-value threshold of around 10 in OGB data and 10
13 in GCaMP data rather than the expected 107 if p-value scaling had followed the theoretical
norm. While some deviation in empirical thresholds from the theoretical norm is expected, a
discrepancy of 10 orders of magnitude is excessive.

We suspected this discrepancy is caused by the ANOVA’s model assuming statistical
independence between adjacent bins of the peri-stimulus time histograms (PSTHs). As calcium
indicators are low-pass filters, and even the underlying spiking rate itself is not temporally
independent, this assumption is violated. To confirm that the aforementioned effect was not due
to other, more complex properties of the experimental data, we ran a simulation with 10000
quadriphasic cells. We generated spiking times as described in the previous section, and applied
a Gaussian-filter on spike counts of 40-ms bins (25 Hz) to simulate the effect of the calcium
indicator. The results of this simulation were similar to those we found in real data: the AUC
of the T-ZETA and ANOVA were similar (fig. 2H), but the false-positive rate of the ANOVA
was very high (fig. 2K). We therefore strongly advise against using the ANOVA, or other bin-
based analyses, when analyzing temporally-autocorrelated time-series data. We also note that
the time-series ZETA-test was somewhat conservative, but it still yielded higher inclusion rates
than the t-test owing to its superior sensitivity (GCaMP inclusion rate at a=0.05: T-ZETA-
test=0.325, t-test=0.251; OGB: T-ZETA-test=0.607, t-test=0.445). The AUC of the T-ZETA
test was significantly higher than that of the t-test (GCaMP data T-ZETA-test AUC=0.819 vs
t-test AUC=0.788, p=1.1x10%’; OGB data T-ZETA-test AUC=0.944 vs t-test AUC=0.842,
p=3.5x10"Y),
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Two-sample ZETA test

We developed the ZETA-test to detect whether a neuron’s activity was modulated by the
occurrence of a set of events. This approach works especially well to, for example, determine
the genetic subtype of neurons in an opto-tagging data set (Dudok et al., 2021; Schneider et al.,
2023; Szadzinska et al., 2021). Ideally, however, one would also be able to use a binless
statistical test to determine whether two neurons behave differently in response to the same
stimulus, or whether the same neuron differs in response between two stimuli. We have
therefore developed a two-sample zeta-test which can be used to assess the difference in
response between two conditions. In short, rather than comparing the response of a neuron to a
linear baseline rate, we define a temporal spiking-density deviation vector as the difference in
normalized cumulative spike rates between two conditions (fig. 3A-D). We compare the
maximum absolute deviation to those we obtain using a trial-swapping procedure where we re-
generate a deviation vector in every shuffle-iteration in which we randomly assign trials to one
or the other condition. The statistical significance of the test is then the likelihood to find the
real data within the distribution of randomized shuffle controls. The one-sample ZETA-test can
be seen as a special case of the two-sample ZET A-test where one of the two conditions is taken
to be an infinite set of stimulus onsets over the same period as the real data.

We tested the performance of the two-sample ZETA-test (ZETA2-test) using multiple
benchmarks. First, we used data from Neuropixels recordings in primary visual cortex (Montijn
etal., 2023). We ran two comparisons on these data: first, instead of detecting whether a neuron
was visually responsive to gratings drifting, we tested whether the response of two neurons to
those stimuli differed (n=1000 randomly selected pairs of neurons) (fig. 3E). A possible use
case for this type of comparison would for example be during pre-processing of
electrophysiological data, when deciding to merge to two clusters of spikes. We compared the
performance of the two-sample zeta-test to that of the two-sample t-test, and a two-way
ANOVA. For the ANOVA, we took the p-value to be the lower of the two Bonferroni-corrected
p-values for the main effect between conditions (i.e., whether there was a mean-rate difference)
and the bin x condition interaction effect. We determined the optimal bin size for the ANOVA
using the Shimazaki & Shinomoto procedure (Shimazaki & Shinomoto, 2007). Curiously, the
ANOVA displayed the lowest AUC of the three types of tests (optimally-binned two-way
ANOVA, AUC=0.926), with the t-test performing intermediately (two-sample t-test,
AUC=0.968), and the ZETA2-test performing the best (ZETA2-test, AUC=0.980). All
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differences in AUC were significant (Mann-Whitney U test: ZETA2 vs t-test, p=7.6x10%,
ZETA2 vs ANOVA, p=1.6x1077; t-test vs ANOVA, p=3.7x10""). Second, we compared how
the tests fared when determining whether neurons responded differently to stimulus directions
0 and 90 degrees (fig. 3F). Absolute AUCs were lower than before, but the ranking remained
the same: the ZETA2-test performed best (AUC=0.687), followed closely by the t-test
(AUC=0.677) and less closely by the ANOVA (AUC=0.622).

Next, we simulated two cases to highlight the strong and weak points of the ZETA2-
test. We generated 1000 pairs of cells with a randomly assigned background spiking activity
level (mean=1.0 Hz) following an exponential inter-spike interval distribution. Both cells
always had the same average background spiking rate, but on top of these spikes we added a
single spike in 25% of 240 trials for neuron 1 and 50% of 120 trials for neuron 2 (with a
temporal delay of exactly 55 ms and a trial-to-trial jitter of 1 ms). The only way to discriminate
these cells is therefore the difference in spike counts during the response peak. The optimal
ANOVA could therefore select a bin width that maximized the spike-count differences and
yielded an AUC of 0.931 (fig. 3G). The ZETA2-test followed with 0.860 and the t-test with
0.802. Finally, we simulated a similar situation where there was no difference in peak height,
but in peak time. For neuron 1 we set the peak time at 53 ms and for neuron 2 at 55 ms, with
both cells receiving a single spike in 25% of all trials. Perhaps unsurprisingly, the ZETA2-test
was well able to differentiate these cells with an AUC of 0.757 (fig. 3H). The optimal ANOVA
was barely above chance with an AUC of 0.516, and the t-test gave an AUC of exactly 0.500.

Two-sample time-series ZETA test

The fourth member of the ZETA-family of tests is the two-sample version of the time-series
ZETA-test (T-ZETA2-test). We benchmarked its performance by applying it to the same
calcium imaging data sets as for the one-sample time-series ZETA-test, now calculating
whether there is a difference in the response of one neuron to its preferred drifting grating
direction and the stimulus orthogonal to it. First, we tested whether each neuron was direction-
or orientation-tuned by fitting a double von Mises curve and selecting neurons for further
analysis only if the R? of the fit was significant (von Mises R?, p<0.05). We found 1713/2430
(70%) GCaMP cells and 673/1204 (56%) OGB cells were significantly tuned. To compute the
baseline false-positive rate, we split the preferred stimulus trials into two random sets of trials
and calculated whether there was a difference in response between them. As for the spike-based
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ZETA2-test, we compared the performance between a two-way ANOVA, two-sample t-test
and T-ZETA2-test. First, we found that the AUC was highest for the T-ZETA2-test in both data
sets (GCaMP, AUC=0.745; OGB, AUC=0.754). The AUC for the ANOVA and t-test were
similar (ANOVA: GCaMP, AUC=0.701; OGB, AUC=0.689; t-test: GCaMP, AUC=0.688;
OGB, AUC=0.712) (Fig. 6). However, the false positive rate (FPR) for the ANOVA was again
exceptionally high: at an 0=0.05 the FPR was 0.683 for GCaMP and 0.733 for OGB, whereas
the FPRs for the T-ZETA2-test were 0.039 and 0.052 and for the t-test were 0.045 and 0.046
(for GCaMP and OGB respectively). As we mentioned above, the ANOVA is the wrong
statistical model for the analysis of time-series data due to the temporal autocorrelation of
signals across bins. Overall, the performance of the two-sample time-series ZETA-test was
excellent: it showed a false-positive rate close to the theoretical norm and a superior statistical

sensitivity to both t-tests and ANOVAs.

Discussion

We created new members of the ZETA family of statistical tests that can be applied to two-
sample comparisons and time-series data. The family of ZETA-tests is built upon a statistical
method for determining whether neuronal responses are modulated by the occurrence of events.
The method is sensitive to arbitrarily complex response patterns and robust in the face of
temporally autocorrelated signals. In all experimental data, the ZETA-test showed markedly
improved statistical sensitivity compared to established and powerful statistical techniques,
such as t-tests and optimally-binned ANOVAs. Moreover, the performance of all types of
ZETA-tests was without exception equal or superior to those of t-tests, even in unrealistic
synthetic benchmarks where there was only a mean-rate difference (for example fig. 3G).
Finally, the family of ZETA-tests is even easier to use than established methods, as it can be
applied directly to raw spike times or time-series data and stimulus onsets, and the lack of
parameter selection naturally lends itself to the bulk-analysis of large numbers of cells.

We described the procedure of data-stitching to deal with heterogeneous inter-event
durations. While this procedure is in most cases as good as, or better than, using the unstitched
data, there are exceptions. In the situation where events with heterogeneous inter-event
durations lead to short responses in an otherwise stationary background activity, data stitching
may reduce the statistical sensitivity of the ZETA-test. Extending the jittered data into periods

of stationary inter-event epochs means the variance of the jittered data is reduced, compared to
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stitched data where larger jitter magnitudes can include the response of the preceding or
following event. However, when a set of control data exists where the only difference from the
experimental data is the presence of the events of interest, it might be preferable to instead use
the two-sample ZETA-test and directly compare these two conditions with surrogate events for
the control condition.

The T-ZETA-test described in this paper may superficially resemble the Kolmogorov-
Smirnov (KS) test, so one could wonder how these approaches differ. In our original derivation
of ZETA, we perform an in-depth comparison between the KS-test and ZETA-test, so we refer
to the reader to this earlier work for more details (Montijn et al., 2021). In short, the main
difference between ZETA and KS is that the KS-test is very sensitive to any difference in the
cumulative distribution between two conditions, even if that difference is not time-locked to a
stimulus but results from intrinsic differences in the distribution of neuronal activity. This
makes the KS-test unsuitable for application to neuronal activity, as it generates many false
positives. The ZETA method takes only the maximum deviation as a metric for “differentness”,
and as a result becomes less sensitive to the exact shape of the cumulative distribution.

The ZETAZ2 test is also much more sensitive than the two-sample Kolmogorov-Smirnov
test for data with multiple trials, as the Kolmogorov-Smirnov test does not consider the
variability across trials. The ZETA?2 test also shows some similarities to a standard permutation
test over binned data. Here, the main difference is that each null hypothesis sample in the case
of the ZETAZ2 test is the maximum deviation over all time points rather than a value for each
sample time, permuted over trials. The ZETA2 test therefore circumvents the multiple-
comparison problem that would arise if one would, for example, perform a permutation test for
each sample time. Because of this invariance to the number of sample points, we were also able
to use some other tricks, such as creating a super-resolution reference time vector to allow for
its application to data with heterogeneous sampling intervals.

In conclusion, the family of ZETA-tests are simpler, more statistically powerful, and
less error-prone tools than bin-based PSTHs, t-tests and ANOVAs. ANOVAs can be powerful
tools when combined with optimal-binning algorithms, but assume statistical independence
between bins. As our results have shown, this causes the ANOVA to output misleading p-values
in the case of calcium imaging data. The expanded utility of the ZETA-test to two-sample
comparisons and time-series data can therefore provide an attractive, more robust, and more

statistically sensitive alternative to other approaches. Implementations of the four ZETA-tests
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described in this paper are available in MATLAB (https://github.com/JorritMontijn/zetatest)

and Python (https://github.com/JorritMontijn/zetapy).

Methods

A summary of the ZETA-test

The Zenith of Event-based Time-locked Anomalies (ZETA) test has been described in detail
previously (Montijn et al., 2021), but for completeness we will describe it below. In the
paragraphs thereafter, we will present a modification that addresses a potential shortcoming of
the original ZETA-test, explain how we constructed a test for time-series data, and present
statistical procedures to perform two-sample comparisons for both spike-based and time-series
data.

The metric ¢ is computed on a vector of i = /1 ... n] spike times x, and a vector of k =
[1 ... q] event times w. First, we make a vector v of the spike times in x relative to the most

recent stimulus onset, as when making a raster plot of spike times:

V=X — Wy 1
Where £ is chosen such that
Wi < Xj < Wgyq 2
Next, we remove all spike times that are larger than a cut-off value 7, for example the trial-to-
trial duration, and add two artificial spikes at t=0 and t=z to ensure coverage of the full epoch.
We sort the 7 spike times in v such that vi < vi+s, and calculate the fractional position gi, ranging
from 1/n to 1, of each spike time in v:
gi=1i/n 3
Therefore, g represents a neuron’s cumulative density function sampled at the spike times in v.
In order to quantify whether this distribution is different from our null hypothesis —i.e., that the
neuron’s firing rate is not modulated with respect to the stimulus onset — we compare this vector
to a linear baseline density vector b. If a neuron’s spiking rate is constant, the cumulative density
function is linear over time, and therefore the expected fractional position of spike i at time v;
converges to the spike time divided by the trial duration 7 as the number of events g increases:

limb; = v;/t 4

q—o
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The difference J:; between g; and b; therefore gives a neuron’s deviation from a temporally non-
modulated spiking rate at time point v;:

6 =9 — b 5
As shown previously, using d; to compute ZETA would make it dependent on the choice of
onset times (Montijn et al., 2021). Therefore, we create d, a time-invariant mean-normalized
version of d:

d=06-6 6
Where

S|

n
5= 5;
i=1
We then define the Zenith of Event-based Time-locked Anomalies (ZETA, or {;) as the most
extreme value, i.e. the maximum of the absolute values:
¢r = max (|d|) 8
Having calculated ZETA from the temporal deviation vector d, we wish to quantify its statistical
significance. We therefore construct a null hypothesis distribution by repeating the above
procedure M times with shifted event-times w’, where for each jitter iteration m and event k, we
move each event time by a random amount sampled from the interval [-t, 1]:
Wik = Wi + € 9
Where each ¢ is independently drawn from a uniform distribution U:
e~U(-1,7) 10
We repeat this process M times; where for each jitter iteration m, we calculate o '(m):
&'(m) = g’'(m) — b'(m) 11
As before, we mean-normalize ¢°(m) and define a null-hypothesis ZETA sample m as:
{'(m) = max (|8'(m) — §'(m))) 12
Having a way to generate null-hypothesis samples, we can now calculate the significance of {-
either directly, using the quantile position of ¢ in {”, or we can approximate it using the Gumbel
distribution (Montijn et al., 2021). Either way, we obtain an estimate that asymptotically
converges to a deterministic value as the number of jitter iterations M grows. We then use the

standard normal’s quantile function @~! to obtain a corrected ZETA metric { that is

¢r
{=—-07! <l—1 {'(x) dx) .

interpretable as a z-score:
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With its corresponding p-value defined by:
p=2-29() 14
Where @ is the cumulative normal distribution. Note that when we refer to ZETA or ( in the

rest of the manuscript, we mean the corrected version and its p-value as defined above.

Data-stitching to ensure conformity between the real data and random bootstraps

An important step that was not present in the original description and implementation of the
ZETA-test, was to discard any data that was outside all event-window bounds (wx, wk + 7) for
all events k=1... g. In the original definition, a spike time x; for which wx + 7 < x; < wi+; holds
true, was not included in the calculation of the real zeta metric, but could be included in the
random resamplings if also wk + 7 < xi < wk + 27 or wk+1 - 7 < xi < wk+1. Note that this will only
occur if 7 is chosen to be shorter than the longest inter-event duration. In the original definition
of ZETA, we implicitly assumed a fixed inter-event duration equal to z, but this does not always
hold true. For example, when applying the zeta-test to self-generated behavioural events such
as licking, inter-event durations will be highly variable.

Following the original ZETA definition, this means that in this case the population of
spikes on which the deviation vectors are calculated, differs between the real zeta and random
resamplings. Luckily, a simple remedy exists. We can perform “data-stitching” prior to running
the random bootstrapping procedure. Specifically, between trial k and £+ 1/, we remove all data
for which

W+ 7T <X < Wipq 15

To correct for the removed time, we redefine v as

v =X, — wy 16
With
k-1 17
Xi=x;— ) g
j=1
And
k-1 18
W = Wi — ) €
j=1
Where
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e: =

_{Wj+1_Wj_T if wizi>w;+7 19
j

0 otherwise

This way, jittering w can no longer introduce new spikes that were not also used in the
calculation of ¢, and our assumptions in the derivation of the zeta-test, and specifically its time-

invariance, hold (Montijn et al., 2021).

Time-series ZETA to obtain super-sample time resolution

In contrast to the original ZETA-test, where all variables relate to point events v;, time-series
data consist of scalar values y; sampled at time points # relative to some set of events, such as
stimulus onsets. Therefore, in order to adapt the ZETA-test for use on time-series data, we first
need to construct a reference sample time vector with respect to stimulus onset. In many time-
series data sets, the sample times are not strictly synchronized to the event times of interest; for
example, one may be recording calcium imaging data at some frequency (e.g., 15.01 Hz) while
the screen that presents visual stimuli updates at 59.97 Hz. This means that the delay between
the sample acquisitions and the event onsets can be variable across trials. We therefore define
the reference time as the set of unique sample times over all ¢ trials, where for each trial & the
sample times are relative to the most recent stimulus onset wx, and we set the tolerance for
“uniqueness” to 1/100"™ of the median inter-sample duration. Note that this “super-resolution”
is redundant in the case of slow signals, like calcium imaging, that are recorded at a constant
acquisition rate. However, using this approach, the test can also easily be applied to data with
a variable acquisition rate. Moreover, it can allow a finer determination of response onsets in
cases where the time-limiting factor is the acquisition rate rather than the temporal dynamics of
the signal (for example voltage imaging with fast sensors).

We start the time-series ZETA-test by defining a reference time vector T as the set of
sample times # between the £’th event and the £’th event +

T, ={t;t,...t,} —wy 20
With
W St Swe+T 21

Therefore, for each event, we obtain a set of sample times, and we define the reference sample-
time vector as the union over these sets:
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For a single trial with sample times 7 and values v, we linearly interpolate the data to the

reference time r:

yi =1 —=w)vj_1 + wy; 23
Where
o — Tj—l 24
wW=——F
Ty =Tj
With j chosen such that
’1}‘_1 < T < ’1} 25

We repeat this for each of the ¢ trials, obtaining a [¢g by n] matrix ¥ of data values, with n=|r|
denoting the cardinality of r. Taking the mean over trials to obtain y and rescaling the range to
[0 1], we reduce this to a scaled vector # with n elements:
_ $i-min(@) 26
"~ max(y) — min ()
Now we replace the fractional spike position in g (Eq. 3) with a cumulative sum s over u:

G = j=1(w) 27

b Zhai(wn)

Furthermore, in the time-series case, if the values would be independent of time, the expected

U;

value at any time point is identical and equal to the average value of u. Then the linear baseline
density vector b (Eq. 4) corresponding to a non-modulated cumulative sum s, is simply

i 28

Therefore, for the time-series ZETA (T-ZETA), the temporal deviation é is given by:
61' =S — bi 29
The remaining steps are identical to the original ZETA calculation (Egs. 6 - 13).

A two-sample ZETA-test

The ZETA-test can be used to detect whether the response of a neuron is modulated by sensory,
optogenetic, or behavioural events. But in many cases, researchers might be interested in
whether two sets of stimuli lead to a different modulation of the same neuron; or whether two
neurons respond differently to the same stimulus. We therefore developed a two-sample version
of the ZETA-test. In the following paragraph we will refer to condition « and condition £ as

two sets of data we are comparing, which can be the response of one neuron to two sets of
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events, the response of two neurons to the same set of events, or the response of two neurons
during two different sets of events. The only requirement we place on the data is that the
temporal window 7 is the same for both conditions. We will therefore be working with the event
times and event-relative spike times w* and v* of condition a, and w” and v/ of condition . Note
that here, and in the rest of the manuscript, we use the o and f superscripts as condition
indicators and not as an exponent.

A first intuitive approach to constructing a two-sample ZETA-test might be to compare
the temporal deviations d (Eq. 6) between the two conditions, but this will fail when the two
conditions only differ in absolute spiking rates. Since d is based on normalized spiking position
g, the absolute number of spikes is discarded in Equation 3. However, collapsing all spikes
across trials without normalization would lead to differences in total spiking numbers when
there is a difference in number of trials, but not spiking rate. We therefore construct a
cumulative spiking vector for each condition based on the average number of spikes per event-
window:

ci=1i/q 30
With ¢ being the number of events and # the total number of spikes, this means that c.=n/g, the
average number of spikes per event. Note that dividing c» by 7 would therefore yield the average
spiking rate per second. We perform this calculation for both conditions, obtaining ¢* and c”.
To compare these two vectors, we first create a reference time-vector p that contains the spike

times of both v* and v*:

p = (v* UvF} 31
Then we linearly interpolate ¢ to p for condition a:
c® =1 —-w)ly +wef 32
With
pi — v 33
W="a _ a

And we repeat the same procedure for ¢/*. Now we can compute the difference in cumulative
spike counts by simply taking the difference between the two ¢” vectors:

A= c* —cP* 34
We then obtain our raw two-sample ZETA metric Z;:

Z, = max (|4 — 4|) 35
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Similar to the one-sample ZETA-test, we now need to normalize Z: to the intrinsic variability
of v* and . Jittering works well for one-sample comparisons, but this does not satisfy the
assumptions of our null hypothesis in the case of two-sample comparisons: we do not wish to
know if the difference between condition o and f§ is larger than if they were both unmodulated.
Rather, we wish to know if one modulation pattern is different from the other.

Therefore, to construct a null-hypothesis distribution of ZETA values in the two-sample
test, we take random trials from the unified set of a and f. First we separate all spikes into
distinct sets for each event &, such that

a, = b, —wy 36
Where
by = {x;|lwy <x; < Wyiq} 37
Therefore, each of the ¢* and ¢ events correspond to a set of event times a, constituting a
unified set A from which we will randomly select trials to generate our null-hypothesis samples:
A = {a* U aP} 38
To create a random null-hypothesis sample m for condition a, we will take ¢g* random sets from
A with replacement and recombine them to create a null-hypothesis version of v:
v’ ={A, 1yUAs; VU ..UA; o} 39
Here, o is a vector containing the ¢* random integers in the range [1, ¢* + ¢”]. We repeat the
procedure for condition S, and for each random sample m, we obtain two shuffle-randomized
spike vectors v and v . We then plug these into Equations 30 - 35 to generate a null-hypothesis
ZETA sample Z’, and use Equations 13 - 14 to transform these values into a statistical metric

and corresponding p-value.

The one-sample ZET A-test is a special case of the two-sample ZETA-test

One can find an equivalence between the one- and two-sample tests in the case where condition
a is a set of events, and condition £ represents the linear baseline. This linear baseline can be
approximated by an infinite set of events occurring over the same time window as the events in
condition a. This means that all temporal modulation is averaged out, and the resulting
cumulative spike count of condition S becomes identical to linear baseline density vector b from
Equation 4 if sampled at v*, and divided by 7. Randomly selecting ¢* sets from A4 (Eq. 38), when
g” = oo, therefore means selecting g* random event-times, which is identical to jittering event

onsets with an infinite jittering window. For condition £ we take infinite samples from infinite
17


https://doi.org/10.1101/2023.10.30.564780
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564780; this version posted November 2, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

events, so ¥ will remain identical to linear baseline density vector b. Subtracting these vectors
yields 0’ (Eq. 11). The steps thereafter (Eq. 12-14) are the same for the one-sample and two-
sample tests, so they are therefore equivalent under these conditions.

Note that sampling at v* is only strictly necessary to make the one-sample test
computationally tractable, but this does not influence its mathematical behaviour. Moreover, a
division by 7 can be added to the two-sample test without affecting its statistical properties — it
merely scales the values in 4. The only real difference between the one-sample-equivalent
version of the two-sample test, and the actual one-sample test is therefore the width of the
jittering window. In data sets that are non-stationary across event repetitions, the local jittering
of the one-sample test ensures uniform sampling over the signal’s non-stationarity, but this is
absent from the two-sample zeta-test. On the other hand, when signals are stationary across
events, the one-sample-equivalent two-sample test and the one-sample test are truly

mathematically equivalent.

Two-sample time-series ZETA-test

Having described the time-series ZETA-test and the two-sample ZETA-test, the two-sample
time-series ZETA-test is a straightforward combination of these procedures. Rather than
calculating the deviation vector ¢ between the cumulative sum s and linear baseline vector b,

we calculate a cumulative sum for both condition o and condition . We replace Eqgs. 24-26

with
a _ Z;.':l(yja) 40
l h=1(V1)
i B 41
S.ﬁ = —;=1(y] )
ﬁ:l(Yf)

Then the two-sample deviation vector 4 becomes:

A; =sf — siﬁ 42
Now our raw two-sample time-series ZETA metric Z- can be calculated as before by taking the
maximum of the absolute of the mean-normalized deviations. To generate null-hypothesis
samples, we repeat the above steps, but construct a [¢ by n] matrix ¥ for both conditions by

randomly selecting g* or ¢” trials from the unified set of g* + ¢# possible trials for each random

sample. Finally, we obtain the statistical metric using Eq. 13 - 14.
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Experimental data

The calcium imaging data analysed in this paper are the same as previously described for both
the GCaMP6f (Montijn, Meijer, et al., 2016) and OGB-1 AM recordings (Montijn, Goltstein,
et al., 2016). We used GCaMP data from 15 recordings in four C57BL/6 mice, and OGB data
from 8 recordings in 8 C57BL/6 mice. Cell bodies were detected semi-automatically using an

open-source toolbox (https://github.com/JorritMontijn/Preprocessing_Toolbox) and cells were

only included for further analysis if their somata were clearly distinguishable from the
background neuropil. The electrophysiological data used here are also previously described
elsewhere (Montijn et al., 2023). In short, we performed 21 repeated-insertion recordings in
seven C57BL/6 mice with Neuropixels. All 19 mice were housed in a 12 h/12 h dark/light cycle
with ad libitum access to food and water and were awake during recording. The recording setup
presented drifting gratings of 24 directions (spaced in 15-degree steps) and was controlled using
Acquipix (Montijn, 2022). Spikes were sorted post-hoc using Kilosort 2.5 (Pachitariu et al.,
2023), and electrode location was determined by aligning histological slices and
neurophysiological landmarks to the AllenCCF mouse brain atlas (https://github.com/cortex-

lab/allenCCF) using the UniversalProbeFinder (Montijn & Heimel, 2022). All code used in the

Neuropixels data acquisition and pre-processing is available online in the Acquipix and

UniversalProbeFinder repositories on https://github.com/JorritMontijn. We included only

clusters of sufficient quality, as quantified by their spike contamination ratio and non-
stationarity, for further analysis. For more detailed information, see (Montijn et al., 2023). All
experiments were approved by the animal ethics committee of the Royal Netherlands Academy

of Arts and Sciences, in compliance with all relevant ethical regulations.

Experimental benchmarks one-sample tests

We verified the statistical performance of the one-sample ZETA test and one-sample time-
series ZETA test tests by calculating the p-value for stimulus responsiveness for all neurons.
The false positive rate was computed by repeating the procedure after jittering the stimulus

onset times.

Experimental benchmarks two-sample tests
For the two-sample ZETA test we calculated whether random pairs of neurons differed in their

response (n=1000 pairs) to the presentation of a drifting grating (figure 3E) or whether the same
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neuron differed in response between two random directions of drifting gratings (figure 3F). In
both cases, we used a randomly selected 50% of spikes from either neuron, so we could
calculate the false positive rate by instead comparing the same 50% of spikes from the first
neuron to the remaining 50% of spikes from the same neuron.

For the time-series-based two-sample tests, we used a similar comparison, except we
took 50% of trials rather than spikes (as selecting 50% of samples would run into various
difficulties). The false positive rate was then computed by repeating the procedure but

comparing half of the trial responses of the first neuron to the remaining half.

Synthetic benchmarks one-sample ZETA-test

We quantified the effect of the data-stitching procedure by generating spiking responses of four
types of synthetic neurons. All types of synthetic neurons used exponential inter-spike intervals
as firing distributions. For the first type of neuron, its baseline firing rate was determined
randomly by sampling from an exponential distribution with a mean of 5.0 Hz. The neuron was
assigned a random preferred orientation and preferred stimulus spiking rate (Apref = Abase +
Exp(A=5)). At its non-preferred stimuli, the neuron’s firing rate was equal to its baseline rate,
and it was equal to Apref for a stimulus of its preferred orientation, with intermediate values
following a von Mises curve with random tuning bandwidth (x=5-10). We generated 20
repetitions of 8 stimulus directions and created heterogeneous inter-stimulus durations by
varying these durations from 200ms to 2 seconds. The stimulus-on period was fixed to 1 second,
however, leading to both overlapping responses and varying inter-trial intervals.

The second type of simulation was a tri-phasic neuron, for which we generated 160 trials
of varying and partially overlapping duration, ranging from 0.5 to 10 seconds. Each trial
consisted of an onset period of 100 ms, followed by a 900 ms sustained period, after which the
neuron returned to its baseline rate. For each neuron the baseline rate was chosen to be
Abase=Exp(0.1), the onset rate Aonset= Abase+Exp(1)+0.2, and the sustained rate Asust=
Abase+Exp(0.1).

The third type was a tri-phasic neuron we constructed to illustrate the effect that
stitching versus no-stitching can have. Again, we used 160 trials, all of 1 second in duration,
with a 3 second inter-trial period. The base rate of this neuron during inter-trial intervals was
Exp(0.1)+0.1, the onset rate (100 ms) was Exp(4)+4, and the sustained rate (900 ms) was
Exp(2)+2. Note that by setting the trial duration to 1 second, ZETA’s real deviation does not
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cover the transition into and out of the baseline firing rate, while the jittered deviations will
include either of these transitions.

To illustrate the worst-case scenario for the ZETA-test, we simulated a (rather
unrealistic) neuron that had a two-phase firing distribution, where the spike counts were chosen
in blocks of 1 second from an i.i.d. Gaussian distribution with a mean of 3 (for 3 out of 4
seconds), or an i.i.d. Gaussian distribution with a mean of 3.1+ Exp(1) (for 1 out of 4 seconds).
We dispersed the resulting number of spikes randomly thoroughly the 1-second block following
a uniform distribution. This procedure generates statistics that satisfy the assumptions of the

ANOVA’s model.

Synthetic benchmarks two-sample tests
To further investigate the statistical properties of our methods, we also used two types of
generated synthetic data sets. In both cases, we generated neurons with a baseline rate as
described above; an exponential inter-spike interval model with a rate randomly chosen from
A~ Exp(1). Furthermore, one additional spike was added to half of all trials on top of these
baseline spikes. The timing of these spikes followed a Gaussian distribution with a mean of 55
ms and a standard deviation of 1 ms. This therefore simulates a cell with a sharp onset peak.
For the first benchmark, we then generated a neuron with the same baseline firing rate,
but which had an onset spike in all trials — it therefore differed in both peak height and total
number of spikes (owing to the higher peak). For the second benchmark, we instead generated
a neuron with the same baseline firing rate and same amount of onset spikes, but whose onset
peak was instead shifted by 2 ms — this means the neurons differed in onset peak latency but
not in total number of spikes. In both cases, the two-sample tests (ZETA, ANOVA, t-test) were
then applied to obtain a p-value. False positive rates were calculated by generating the second
neuron with the exact same parameters as the first neuron: the same number of onset spikes

occurring at the same peak time.
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Figure 1. Improvements to the ZETA-test. A) Raster plot of an example neuron. B) Calculating
the statistical metric for the ZETA-test depends on the difference between the real fractional
spike positions (blue) and the null-hypothesis expectation from a constant, stimulus-
unmodulated rate (grey). C) The Zenith of Event-based Time-locked Anomalies (ZETA, red
cross) defines the significance after normalizing for the neuron’s intrinsic variability (grey
curves). D) Overview of the new data-stitching procedure, where time periods are removed if
they were not used for the calculation of the real deviation curve in panel B. E-I) Under specific
conditions data stitching can dramatically improve ZETA’s performance. E) Experimental
Neuropixels data shows the ZETA-test is superior to an optimal ANOVA and t-test, but
stitching has little effect. ZETA indicates test with stitching, ZETA-ns without stitching. F,G)
Two neuron models responding to stimuli with heterogeneous inter-trial intervals all show the
ZETA-test performs excellently, and the ZETA-test with data-stitching shows a small, but
significant improvement. H) If the window of interest (t) is chosen such that it discards
transitions into and out of baseline activity, the sensitivity of the ZETA-test with no stitching is
mediocre. Performing Data-stitching improves the sensitivity of the ZETA-test to be superior
to the ANOVA. I) Even under statistical conditions optimized for the ANOVA, the ZETA-

test’s sensitivity remains high.
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Figure 2. The time-series ZETA-test outperforms the t-test and ANOVA on statistical
sensitivity, while the ANOVA applied to calcium data is excessively liberal. A) The time-series
ZETA-test can be applied to data recorded with calcium imaging. B) An example cell’s calcium
activity (dF/F0) recorded with OGB in response to drifting gratings. C) This cell shows a clear
onset response to the stimulus (period indicated by the blue bar), but also displays variable
spontaneous activity and a lack of a sustained response. D) These factors reduce the difference
in mean dF/FO between the 3 s pre-stimulus baseline and 3 s stimulus periods, leading a t-test
to erroneously classify this cell as non-responsive (paired t-test, n = 80 trials, p=0.23). E) Our
alternative method (T-ZETA) does not use window-averages and that detects any time-locked
deviations in neural activity. The blue curve shows the true deviation from a static level, and
the grey curves show 100 bootstraps of deviations obtained by randomly jittering the stimulus
onsets. F-K) ROC analyses to benchmark the statistical sensitivity under different conditions.
F) Performance benchmark on OGB data showing the statistical sensitivity of the T-ZETA test
(blue), an optimally binned ANOVA (red), and a t-test of 3s pre- vs 3s post- stimulus onset
activity (black). G) Same as F, but for GCaMP6f data. H) Same as F, but for simulated quadri-
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phasic neurons with distinct baseline, onset, sustained, and offset responses where we filtered
generated spike times with an exponential filter to simulate the effect of the slow dynamics of
a calcium indicator. I-K) Control analyses show the false positive rate (FPR) as a function of
the threshold value alpha. L,J) In real data, the T-ZETA test is somewhat conservative, as lies
above the theoretical norm (dotted line), but owing to its higher statistical sensitivity, it still
shows higher inclusion rates than a t-test for all alphas. On the other hand, the ANOVA is a
poor statistical model when data points are not statistically independent: it is too liberal by many
orders of magnitude, as the filtering properties of the calcium indicators induce temporal
dependencies in the signal. K) Simulations confirm the cause of the ANOVA’s poor
performance is unrelated to particulars of real data. Here, the T-ZETA and t-test are close to
the theoretical norm, but the ANOVA is still overly liberal by a factor of 10!! in the case of an
alpha of 0.001.
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Figure 3. The two-sample ZETA-test quantifies response differences between two conditions.
A) Example spike raster plots of two neurons responding drifting grating stimuli. B) The
statistical metric for the two-sample ZETA-test depends on the difference in the cumulative
sum of the spikes per trial for the two conditions. C) The real difference (blue) is compared to
the difference obtained using resamplings where trials are randomly assigned to condition 1
(here neuron 1) or 2. D) The two-sample ZETA-test (ZETA2) detects a difference between
these two example neurons (p=2.7 x 10°), but a two-sample t-test does not (p=0.158). E-H)
Various benchmarks to compare the performance of the ZETA2-test to an optimally-binned
two-way ANOVA and t-test. E) Discrimination of 1000 pairs of V1 neurons recorded with
Neuropixels in response to the same stimuli; the ZETA2-test performs best, followed by the t-
test and ANOVA. F) Discrimination between the responses to drifting gratings in the 0 and 90
degree directions for all 1504 experimentally recorded cells; the ZETA2-test performs best,
followed by the t-test and ANOVA. G) Simulation of the best-case scenario for the ANOVA,
where the difference between two conditions is defined only by the number of spikes in a short
response peak. H) Worst-case scenario for the ANOVA, where the difference between two

conditions is defined only by a 2 ms difference in peak time.
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Figure 4. The two-sample time-series ZETA-test (T-ZETA2) can discriminate neural activity
in calcium imaging data. A) Heat maps of one example V1 neuron’s response to drifting
gratings moving in its preferred and orthogonal direction. B) The T-ZETA2-test uses the
cumulative sum of rescaled neural activity (here dF/F0). C) The deviation in cumulative sum
defines the ZETA-metric and is compared to deviation curves obtained after randomly
combining trials from either condition, similar to the spike-based ZETA2-test. D) In this
example, the T-ZETA2-test detected a significant difference in responses between the two
conditions (p=2.8 x 107) but a t-test did not (p=0.189). E) Benchmark discriminating between
the preferred and orthogonal stimulus responses of all GCAMP neurons. The T-ZETA2
performed best, followed by the ANOVA and t-test. F) The false-positive rate of the T-ZETA2
and t-test were close to the theoretical norm, but the ANOVA was excessively liberal, showing
the ANOVA is unsuitable for time-series data with temporal correlations. G,H) As E,F, but for

OGB data, showing almost identical results.
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