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Abstract 

Quantifying whether and when signals are modulated by autonomous or external events is 

ubiquitous in the field of neuroscience. Existing statistical approaches, however, are not ideally 

suited to do this, especially when the signals under scrutiny show temporal autocorrelations. 

For example, a standard approach in the analysis of calcium imaging data is to use a t-test on 

predetermined time-windows to quantify whether neurons respond (differently) to an event of 

interest. While this is attractive because of its simplicity, only average signal differences can be 

detected. In practice, neurons often show complex response dynamics which are missed by 

conventional statistical tests. To solve this issue, we present an improved version of the recently 

developed ZETA-test which implements support for analysing time-series data. Furthermore, 

it includes a two-sample test to detect a difference in neural responses between two conditions. 

We show that our method has a statistical sensitivity superior to t-tests and ANOVAs and works 

well with temporally correlated data. Open-source code for implementations in MATLAB and 

Python is available on GitHub. 
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Introduction 

Neurophysiological studies depend on a reliable quantification of whether and when neural 

signals are modulated by autonomous or external events, such as the presentation of a sensory 

stimulus. In the analysis of calcium imaging data, a standard approach is to use a t-test on a 

predetermined time-window to include only the cells that are significantly modulated. While 

this approach is attractive because of its simplicity, statistical tests such as the t-test only detect 

differences in signal averages between the time windows of interest. On the other hand, more 

advanced model-based methods are rarely used, as they require fitting and manual 

hyperparameter tuning. These advanced methods can be very computation and/or labour 

intensive, and may not be feasible for large data sets. A middle ground between these 

approaches is two perhaps the bin-wise ANOVA, when used in combination with an automatic 

bin-width determining algorithm (Shimazaki & Shinomoto, 2007). While the ANOVA is an 

improvement over the t-test in many cases, it is ill suited to analysis of temporally-dependent 

signals, as we will show later. New recording techniques, such as wide-field and multi-plane 

imaging, yield increasingly large numbers of cells, and such data-sets may benefit from a test 

for neuronal responsiveness that requires no arbitrary parameters, binning, or manual curation, 

and is not negatively affected by temporally correlated signals.  

Recent work has proposed such a statistical test for electrophysiological spiking data: 

the ZETA-test (Montijn et al., 2021). Several studies have already been published that use this 

approach. It is particularly well suited to detecting whether cells are driven by optogenetic 

stimulation in opto-tagging experiments (Dudok et al., 2021; Schneider et al., 2023; 

Spyropoulos et al., 2023; Szadzinska et al., 2021). It has also been used to detect response onset 

latencies (Oude Lohuis et al., 2022), and quantify somatosensory and visual stimulus 

responsiveness (Burnett et al., 2023; Montijn et al., 2023; Qin et al., 2023; Ziegler et al., 2023). 

While the ZETA-test works well for spiking data, an important shortcoming is that it can only 

be applied to point events, such as spike times. Another limitation of the ZETA-test is that it 

cannot be used to determine differences between two conditions. 

To address these limitations, we developed three new statistical methods inspired by 

this previous work: 1) a ZETA-test that can be applied to time-series data, like from calcium 

imaging experiments. 2) A two-sample ZETA-test to determine whether there exists a 

difference in neuronal spiking activity between two conditions. 3) A two-sample ZETA-test for 

time-series data. We have tested the performance of these methods on real and synthetic data, 
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and found that it outperforms common approaches such as t-tests and ANOVAs. We expect 

that our procedures may be of interest to statisticians and theoreticians, but we have written this 

manuscript specifically with experimental neuroscientists in mind, who can use our open-

source code in MATLAB (https://github.com/JorritMontijn/zetatest) and Python 

(https://github.com/JorritMontijn/zetapy) to obtain higher yields and more reliable results from 

their neurophysiological data.  

 

Results 

The original ZETA-test and the addition of a data-stitching step 

The Zenith of Event-based Time-locked Anomalies test (ZETA-test) has been described in 

detail previously (Montijn et al., 2021) and in the Methods section, but we will concisely 

summarize its procedure here. First, we align all spikes to stimulus onsets, i.e. building a raster 

plot (fig. 1A). Pooling all spikes across trials, we obtain a single vector of spike times relative 

to stimulus onset, and calculate the cumulative distribution as a function of time (fig. 1B). The 

deviation of this curve from a linear baseline represents whether the neuron has a higher or 

lower spiking density than a non-modulated spiking rate (fig. 1C, blue curve). We compare this 

pattern to the likelihood of observing it by chance by running multiple randomized bootstraps. 

In each bootstrap iteration, we jitter all stimulus-onset times to generate a single null hypothesis 

sample (fig. 1C, grey curves). After scaling the experimentally observed curve to the variation 

in the null hypothesis distribution obtained from all bootstraps, we transform it into a p-value 

by using the direct quantile position, or by approximation with the Gumbel distribution. Low 

ZETA-test p-values indicate that the neuron’s firing pattern is statistically unlikely to be 

observed if the neuron is not modulated by the event of interest. 

 For all statistical benchmarking analyses hereafter, we will use a Receiver Operating 

Characteristic (ROC) analysis to quantify how well different statistical tests can discriminate 

whether a neuron is responsive to visual stimulation with drifting gratings. For the spike-based 

data sets, we recorded 1504 cells in the primary visual cortex (V1) of seven awake mice using 

Neuropixels (Montijn et al., 2023). To estimate the false positive rate, we randomly jittered the 

stimulus onset times and reran the procedure. In an ROC analysis, the true-positive rate 

(significantly responsive cells) is plotted on the y-axis, as a function of the false-positive rate 

(x-axis), with each point corresponding to one p-value threshold. The curve therefore follows 
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the ratio of true-positives/false-positives for various values of α, ranging from the very lowest 

to highest p-value in the combined set of both true and false positives. For a properly calibrated 

statistical test, the false positive rate is equal to the threshold value α. A perfect discriminator 

has an area under the curve (AUC) of 1.0, while a random discriminator has an AUC of 0.5.  

The first topic we investigated was a shortcoming in the original ZETA-test. The ZETA-

test’s statistical model assumes that the real and null-hypothesis samples are taken from the 

same set of point events (spikes). While this holds true when stimulus events occur at fixed 

intervals, this will be false with heterogeneous inter-event durations, such as for self-generated 

behavioural events. In this latter case, jittering the onsets may lead to varying inclusion and 

exclusion of parts of the data (see Methods). We have therefore modified the ZETA-test to 

include an optional data-stitching step that ensures data conformity between the real and onset-

jittered procedures (fig. 1D). While this change may seem significant from a purely theoretical 

point of view, it had surprisingly little effect on the statistical sensitivity in real-world 

experimental data with mild heterogeneity of inter-event durations (fig. 1E). We found the 

following statistical sensitivies: ZETA-test with stitching AUC=0.897, ZETA-test without 

stitching AUC = 0.899, ANOVA AUC=0.867, T-test AUC=0.785. While the AUC of the 

ZETA-test was significantly higher than of the ANOVA (Mann-Whitney U-test, p=2.4 x 10-6) 

and the t-test (p= 7.4 x 10-54), there was no difference in AUC between the stitched and non-

stitched ZETA-tests (p=0.80). For the ANOVA, we used the Shimazaki&Shinomoto procedure 

to calculate the optimal binning size (Shimazaki & Shinomoto, 2007), while for the t-test we 

tested compared the mean firing rate between the stimulus period (0.0 – 1.0 s) and pre-stimulus 

inter-trial interval (-0.5 – 0.0 s). 

 Next, we tested the performance of these four tests under four different synthetic 

benchmarks using simulated neurons with exponential inter-spike intervals. For each trial, we 

varied the average inter-spike interval between stimulus and baseline (Biphasic neurons; fig. 

1F), or between onset, stimulus and baseline (Triphasic neurons; fig. 1G,H). Finally, we ran a 

worst-case scenario for the ZETA-test by sampling the number of spikes from a discretized 

Gaussian distribution and scattering the spike times following uniform random distribution 

across a 1-second window (fig. 1I). In simulations for fig. 1F,G, we varied the inter-trial 

intervals from 0.2 – 2.0 s to investigate the effect of the stitching procedure with heterogeneous 

inter-event durations. Under these conditions we found little difference between the stitching 

and non-stitching ZETA-tests: Biphasic, 0.645 vs 0.629 (p=2.7 x 10-5); Triphasic, 0.925 vs 
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0.919 (p=9.4 x 10-4) for with vs without stitching respectively. Next, we simulated a case where 

the window of interest (τ) was chosen such that it discarded the transitions into and out of 

baseline-level activity (fig. 1H). In this case, we found a large difference (p<10-100) in statistical 

sensitivity when comparing stitching (AUC=0.882) with no-stitching (AUC=0.694). This result 

shows that stitching can be a critical step under some specific circumstances, especially for 

relatively sparse events where the window of interest may be unclear (for example, the duration 

of the period following licking). Moreover, we found that the ZETA-test outperformed the 

optimal ANOVA in all cases, except for the Gaussian-noise model. Under these conditions, 

which we optimized for the ANOVA’s performance, and which are highly unlikely to occur in 

experimental neuroscience data, the difference between the ZETA-test and the optimal 

ANOVA was small (ZETA-test AUC=0.653, ANOVA AUC=0.674), but significant (p=1.6 x 

10-8).   

  

Time-series ZETA test 

The original formulation of the ZETA-test could be applied to any two sets of point events, 

such as spike times and stimulus onsets. While its application to electrophysiological data was 

therefore straightforward, many other methods produce time-series data, such as calcium 

imaging. We previously applied the ZETA-test to transient-detected calcium imaging data and 

found that it performed quite well (Montijn et al., 2021). Nevertheless, a better and more generic 

solution would be a ZETA-test for time-series data, as this could also be applied to data obtained 

with EEG, patch recordings, fMRI, etc. The Methods section describes an alternative 

formulation of such a time-series ZETA-test, which we applied to real data and various 

synthetic benchmarks to test its performance. In a nutshell, the modification is that we replace 

the cumulative distribution of spikes by a cumulative sum of data values and perform some 

extra steps, such as data scaling. An extra trick we employ is that if samples are acquired with 

varying latencies relative to the events of interest, this fact can be used to construct a super-

resolution time-series average over trials. This allows the time-series ZETA-test to also 

effectively deal with data sampled with heterogeneous intervals. 

We found the time-series ZETA-test outperformed t-tests and optimally-binned 

ANOVAs on both GCaMP6f (2430 cells) and OGB 1-AM data (1204 cells) (fig. 2). We ran a 

similar analysis as described above, using a receiver-operating characteristic (ROC) analysis. 

However, we found that including all 80 trials saturated the performance of the ZETA-test to 
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>0.99 for the OGB data. The results we present here are therefore from data sets where we used 

only the first 8 trials of each data set. We observed that the statistical sensitivity was higher for 

the time-series ZETA-test than the ANOVA (OGB data ZETA-test AUC=0.944 vs ANOVA 

AUC=0.924, p=6.4 x 10-5; GCaMP data ZETA-test AUC=0.818 vs ANOVA AUC=0.786, 

p=2.4 x 10-7). We also noticed a strong discrepancy in the false-alarm rate for ANOVAs that 

was absent in the ZETA-test. For relatively large values of alpha, the false positive rate was of 

the shuffle-control was close to the theoretical norm. Below an alpha of approximately 0.05, 

however, the ANOVA’s false positive rate started to diverge from the norm and became 

excessively liberal (fig. 2I-J). For example, to obtain an empirical false positive rate of 0.001 

using the ANOVA, one would require a p-value threshold of around 10-8 in OGB data and 10-

13 in GCaMP data rather than the expected 10-3 if p-value scaling had followed the theoretical 

norm. While some deviation in empirical thresholds from the theoretical norm is expected, a 

discrepancy of 10 orders of magnitude is excessive.  

We suspected this discrepancy is caused by the ANOVA’s model assuming statistical 

independence between adjacent bins of the peri-stimulus time histograms (PSTHs). As calcium 

indicators are low-pass filters, and even the underlying spiking rate itself is not temporally 

independent, this assumption is violated. To confirm that the aforementioned effect was not due 

to other, more complex properties of the experimental data, we ran a simulation with 10000 

quadriphasic cells. We generated spiking times as described in the previous section, and applied 

a Gaussian-filter on spike counts of 40-ms bins (25 Hz) to simulate the effect of the calcium 

indicator. The results of this simulation were similar to those we found in real data: the AUC 

of the T-ZETA and ANOVA were similar (fig. 2H), but the false-positive rate of the ANOVA 

was very high (fig. 2K). We therefore strongly advise against using the ANOVA, or other bin-

based analyses, when analyzing temporally-autocorrelated time-series data. We also note that 

the time-series ZETA-test was somewhat conservative, but it still yielded higher inclusion rates 

than the t-test owing to its superior sensitivity (GCaMP inclusion rate at α=0.05: T-ZETA-

test=0.325, t-test=0.251; OGB: T-ZETA-test=0.607, t-test=0.445). The AUC of the T-ZETA 

test was significantly higher than that of the t-test (GCaMP data T-ZETA-test AUC=0.819 vs 

t-test AUC=0.788, p=1.1x10-29; OGB data T-ZETA-test AUC=0.944 vs t-test AUC=0.842, 

p=3.5x10-60).  
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Two-sample ZETA test 

We developed the ZETA-test to detect whether a neuron’s activity was modulated by the 

occurrence of a set of events. This approach works especially well to, for example, determine 

the genetic subtype of neurons in an opto-tagging data set (Dudok et al., 2021; Schneider et al., 

2023; Szadzinska et al., 2021). Ideally, however, one would also be able to use a binless 

statistical test to determine whether two neurons behave differently in response to the same 

stimulus, or whether the same neuron differs in response between two stimuli. We have 

therefore developed a two-sample zeta-test which can be used to assess the difference in 

response between two conditions. In short, rather than comparing the response of a neuron to a 

linear baseline rate, we define a temporal spiking-density deviation vector as the difference in 

normalized cumulative spike rates between two conditions (fig. 3A-D). We compare the 

maximum absolute deviation to those we obtain using a trial-swapping procedure where we re-

generate a deviation vector in every shuffle-iteration in which we randomly assign trials to one 

or the other condition. The statistical significance of the test is then the likelihood to find the 

real data within the distribution of randomized shuffle controls. The one-sample ZETA-test can 

be seen as a special case of the two-sample ZETA-test where one of the two conditions is taken 

to be an infinite set of stimulus onsets over the same period as the real data. 

 We tested the performance of the two-sample ZETA-test (ZETA2-test) using multiple 

benchmarks. First, we used data from Neuropixels recordings in primary visual cortex (Montijn 

et al., 2023). We ran two comparisons on these data: first, instead of detecting whether a neuron 

was visually responsive to gratings drifting, we tested whether the response of two neurons to 

those stimuli differed (n=1000 randomly selected pairs of neurons) (fig. 3E). A possible use 

case for this type of comparison would for example be during pre-processing of 

electrophysiological data, when deciding to merge to two clusters of spikes. We compared the 

performance of the two-sample zeta-test to that of the two-sample t-test, and a two-way 

ANOVA. For the ANOVA, we took the p-value to be the lower of the two Bonferroni-corrected 

p-values for the main effect between conditions (i.e., whether there was a mean-rate difference) 

and the bin x condition interaction effect. We determined the optimal bin size for the ANOVA 

using the Shimazaki & Shinomoto procedure (Shimazaki & Shinomoto, 2007). Curiously, the 

ANOVA displayed the lowest AUC of the three types of tests (optimally-binned two-way 

ANOVA, AUC=0.926), with the t-test performing intermediately (two-sample t-test, 

AUC=0.968), and the ZETA2-test performing the best (ZETA2-test, AUC=0.980). All 
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differences in AUC were significant (Mann-Whitney U test: ZETA2 vs t-test, p=7.6x10-4, 

ZETA2 vs ANOVA, p=1.6x10-30; t-test vs ANOVA, p=3.7x10-15). Second, we compared how 

the tests fared when determining whether neurons responded differently to stimulus directions 

0 and 90 degrees (fig. 3F). Absolute AUCs were lower than before, but the ranking remained 

the same: the ZETA2-test performed best (AUC=0.687), followed closely by the t-test 

(AUC=0.677) and less closely by the ANOVA (AUC=0.622).  

Next, we simulated two cases to highlight the strong and weak points of the ZETA2-

test. We generated 1000 pairs of cells with a randomly assigned background spiking activity 

level (mean=1.0 Hz) following an exponential inter-spike interval distribution. Both cells 

always had the same average background spiking rate, but on top of these spikes we added a 

single spike in 25% of 240 trials for neuron 1 and 50% of 120 trials for neuron 2 (with a 

temporal delay of exactly 55 ms and a trial-to-trial jitter of 1 ms). The only way to discriminate 

these cells is therefore the difference in spike counts during the response peak. The optimal 

ANOVA could therefore select a bin width that maximized the spike-count differences and 

yielded an AUC of 0.931 (fig. 3G). The ZETA2-test followed with 0.860 and the t-test with 

0.802. Finally, we simulated a similar situation where there was no difference in peak height, 

but in peak time. For neuron 1 we set the peak time at 53 ms and for neuron 2 at 55 ms, with 

both cells receiving a single spike in 25% of all trials. Perhaps unsurprisingly, the ZETA2-test 

was well able to differentiate these cells with an AUC of 0.757 (fig. 3H). The optimal ANOVA 

was barely above chance with an AUC of 0.516, and the t-test gave an AUC of exactly 0.500.  

 

Two-sample time-series ZETA test 

The fourth member of the ZETA-family of tests is the two-sample version of the time-series 

ZETA-test (T-ZETA2-test). We benchmarked its performance by applying it to the same 

calcium imaging data sets as for the one-sample time-series ZETA-test, now calculating 

whether there is a difference in the response of one neuron to its preferred drifting grating 

direction and the stimulus orthogonal to it. First, we tested whether each neuron was direction- 

or orientation-tuned by fitting a double von Mises curve and selecting neurons for further 

analysis only if the R2 of the fit was significant (von Mises R2, p<0.05). We found 1713/2430  

(70%) GCaMP cells and 673/1204 (56%) OGB cells were significantly tuned. To compute the 

baseline false-positive rate, we split the preferred stimulus trials into two random sets of trials 

and calculated whether there was a difference in response between them. As for the spike-based 
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ZETA2-test, we compared the performance between a two-way ANOVA, two-sample t-test 

and T-ZETA2-test. First, we found that the AUC was highest for the T-ZETA2-test in both data 

sets (GCaMP, AUC=0.745; OGB, AUC=0.754). The AUC for the ANOVA and t-test were 

similar (ANOVA: GCaMP, AUC=0.701; OGB, AUC=0.689; t-test: GCaMP, AUC=0.688; 

OGB, AUC=0.712) (Fig. 6). However, the false positive rate (FPR) for the ANOVA was again 

exceptionally high: at an α=0.05 the FPR was 0.683 for GCaMP and 0.733 for OGB, whereas 

the FPRs for the T-ZETA2-test were 0.039 and 0.052 and for the t-test were 0.045 and 0.046 

(for GCaMP and OGB respectively). As we mentioned above, the ANOVA is the wrong 

statistical model for the analysis of time-series data due to the temporal autocorrelation of 

signals across bins. Overall, the performance of the two-sample time-series ZETA-test was 

excellent: it showed a false-positive rate close to the theoretical norm and a superior statistical 

sensitivity to both t-tests and ANOVAs. 

 

Discussion 

We created new members of the ZETA family of statistical tests that can be applied to two-

sample comparisons and time-series data. The family of ZETA-tests is built upon a statistical 

method for determining whether neuronal responses are modulated by the occurrence of events. 

The method is sensitive to arbitrarily complex response patterns and robust in the face of 

temporally autocorrelated signals. In all experimental data, the ZETA-test showed markedly 

improved statistical sensitivity compared to established and powerful statistical techniques, 

such as t-tests and optimally-binned ANOVAs. Moreover, the performance of all types of 

ZETA-tests was without exception equal or superior to those of t-tests, even in unrealistic 

synthetic benchmarks where there was only a mean-rate difference (for example fig. 3G). 

Finally, the family of ZETA-tests is even easier to use than established methods, as it can be 

applied directly to raw spike times or time-series data and stimulus onsets, and the lack of 

parameter selection naturally lends itself to the bulk-analysis of large numbers of cells. 

 We described the procedure of data-stitching to deal with heterogeneous inter-event 

durations. While this procedure is in most cases as good as, or better than, using the unstitched 

data, there are exceptions. In the situation where events with heterogeneous inter-event 

durations lead to short responses in an otherwise stationary background activity, data stitching 

may reduce the statistical sensitivity of the ZETA-test. Extending the jittered data into periods 

of stationary inter-event epochs means the variance of the jittered data is reduced, compared to 
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stitched data where larger jitter magnitudes can include the response of the preceding or 

following event. However, when a set of control data exists where the only difference from the 

experimental data is the presence of the events of interest, it might be preferable to instead use 

the two-sample ZETA-test and directly compare these two conditions with surrogate events for 

the control condition.  

The T-ZETA-test described in this paper may superficially resemble the Kolmogorov-

Smirnov (KS) test, so one could wonder how these approaches differ. In our original derivation 

of ZETA, we perform an in-depth comparison between the KS-test and ZETA-test, so we refer 

to the reader to this earlier work for more details (Montijn et al., 2021). In short, the main 

difference between ZETA and KS is that the KS-test is very sensitive to any difference in the 

cumulative distribution between two conditions, even if that difference is not time-locked to a 

stimulus but results from intrinsic differences in the distribution of neuronal activity. This 

makes the KS-test unsuitable for application to neuronal activity, as it generates many false 

positives. The ZETA method takes only the maximum deviation as a metric for “differentness”, 

and as a result becomes less sensitive to the exact shape of the cumulative distribution. 

The ZETA2 test is also much more sensitive than the two-sample Kolmogorov-Smirnov 

test for data with multiple trials, as the Kolmogorov-Smirnov test does not consider the 

variability across trials. The ZETA2 test also shows some similarities to a standard permutation 

test over binned data. Here, the main difference is that each null hypothesis sample in the case 

of the ZETA2 test is the maximum deviation over all time points rather than a value for each 

sample time, permuted over trials. The ZETA2 test therefore circumvents the multiple-

comparison problem that would arise if one would, for example, perform a permutation test for 

each sample time. Because of this invariance to the number of sample points, we were also able 

to use some other tricks, such as creating a super-resolution reference time vector to allow for 

its application to data with heterogeneous sampling intervals.  

In conclusion, the family of ZETA-tests are simpler, more statistically powerful, and 

less error-prone tools than bin-based PSTHs, t-tests and ANOVAs. ANOVAs can be powerful 

tools when combined with optimal-binning algorithms, but assume statistical independence 

between bins. As our results have shown, this causes the ANOVA to output misleading p-values 

in the case of calcium imaging data. The expanded utility of the ZETA-test to two-sample 

comparisons and time-series data can therefore provide an attractive, more robust, and more 

statistically sensitive alternative to other approaches. Implementations of the four ZETA-tests 
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described in this paper are available in MATLAB (https://github.com/JorritMontijn/zetatest) 

and Python (https://github.com/JorritMontijn/zetapy).  

 

Methods 

A summary of the ZETA-test 

The Zenith of Event-based Time-locked Anomalies (ZETA) test has been described in detail 

previously (Montijn et al., 2021), but for completeness we will describe it below. In the 

paragraphs thereafter, we will present a modification that addresses a potential shortcoming of 

the original ZETA-test, explain how we constructed a test for time-series data, and present 

statistical procedures to perform two-sample comparisons for both spike-based and time-series 

data. 

The metric ζ is computed on a vector of i = [1 … n] spike times x, and a vector of k = 

[1 … q] event times w. First, we make a vector v of the spike times in x relative to the most 

recent stimulus onset, as when making a raster plot of spike times: 

 

 끫毆끫殬 = 끫毊끫殬 − 끫毈끫殰 1 

Where k is chosen such that 

 끫毈끫殰 < 끫毊끫殬 ≤ 끫毈끫殰+1 2 

Next, we remove all spike times that are larger than a cut-off value τ, for example the trial-to-

trial duration, and add two artificial spikes at t=0 and t=τ to ensure coverage of the full epoch. 

We sort the n spike times in v such that vi < vi+1, and calculate the fractional position gi, ranging 

from 1/n to 1, of each spike time in v: 

 끫殨끫殬 = 끫殬/끫殶 3 

Therefore, g represents a neuron’s cumulative density function sampled at the spike times in v. 

In order to quantify whether this distribution is different from our null hypothesis – i.e., that the 

neuron’s firing rate is not modulated with respect to the stimulus onset – we compare this vector 

to a linear baseline density vector b. If a neuron’s spiking rate is constant, the cumulative density 

function is linear over time, and therefore the expected fractional position of spike i at time vi 

converges to the spike time divided by the trial duration τ as the number of events q increases: 

 lim끫殼→∞끫殞끫殬 = 끫毆끫殬/끫欞 4 
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The difference δi between gi and bi therefore gives a neuron’s deviation from a temporally non-

modulated spiking rate at time point vi: 

 끫毾끫殬 = 끫殨끫殬 − 끫殞끫殬 5 

As shown previously, using δi to compute ZETA would make it dependent on the choice of 

onset times (Montijn et al., 2021). Therefore, we create d, a time-invariant mean-normalized 

version of δ: 

 끫殢끫殬 = 끫毾끫殬 − 끫毾̅ 6 

Where  

 끫毾̅ = 1끫殶�끫毾끫殬끫殶
끫殬=1  

7 

We then define the Zenith of Event-based Time-locked Anomalies (ZETA, or ζr) as the most 

extreme value, i.e. the maximum of the absolute values: 

 끫欂끫殾 ≡ max (|끫權|) 8 

Having calculated ZETA from the temporal deviation vector d, we wish to quantify its statistical 

significance. We therefore construct a null hypothesis distribution by repeating the above 

procedure M times with shifted event-times w’, where for each jitter iteration m and event k, we 

move each event time by a random amount sampled from the interval [-τ, τ]: 

 끫毈끫殴,끫殰′ = 끫毈끫殰 + 끫欀 9 

Where each ε is independently drawn from a uniform distribution U: 

 끫欀 ~ 끫殐(−끫欞, 끫欞) 10 

We repeat this process M times; where for each jitter iteration m, we calculate δ’(m): 

 끫歲′(끫殴) = 끫欐′(끫殴) − 끫欆′(끫殴) 11 

As before, we mean-normalize δ’(m) and define a null-hypothesis ZETA sample m as: 

 끫欂′(끫殴)  ≡ max (�끫歲′(끫殴) − 끫毾′�(끫殴)�) 12 

Having a way to generate null-hypothesis samples, we can now calculate the significance of ζr 

either directly, using the quantile position of ζr in ζ’, or we can approximate it using the Gumbel 

distribution (Montijn et al., 2021). Either way, we obtain an estimate that asymptotically 

converges to a deterministic value as the number of jitter iterations M grows. We then use the 

standard normal’s quantile function 끫毮−1 to obtain a corrected ZETA metric ζ that is 

interpretable as a z-score: 

 끫欂 = −끫毮−1 �1

2
− 1

2
� 끫欂′(끫毊) 끫殢끫毊끫歶끫欦−∞  � 

13 
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With its corresponding p-value defined by: 

 끫殺 = 2 − 2 끫毮(끫欂 ) 14 

Where Φ is the cumulative normal distribution. Note that when we refer to ZETA or ζ in the 

rest of the manuscript, we mean the corrected version and its p-value as defined above. 

 

Data-stitching to ensure conformity between the real data and random bootstraps 

An important step that was not present in the original description and implementation of the 

ZETA-test, was to discard any data that was outside all event-window bounds (wk, wk + τ) for 

all events k=1… q. In the original definition, a spike time xi for which wk + τ < xi < wk+1 holds 

true, was not included in the calculation of the real zeta metric, but could be included in the 

random resamplings if also wk + τ < xi < wk + 2τ or wk+1 - τ < xi < wk+1. Note that this will only 

occur if τ is chosen to be shorter than the longest inter-event duration. In the original definition 

of ZETA, we implicitly assumed a fixed inter-event duration equal to τ, but this does not always 

hold true. For example, when applying the zeta-test to self-generated behavioural events such 

as licking, inter-event durations will be highly variable.  

Following the original ZETA definition, this means that in this case the population of 

spikes on which the deviation vectors are calculated, differs between the real zeta and random 

resamplings. Luckily, a simple remedy exists. We can perform “data-stitching” prior to running 

the random bootstrapping procedure. Specifically, between trial k and k+1, we remove all data 

for which 

 끫毈끫殰 + 끫欞 < 끫毊끫殬 ≤ 끫毈끫殰+1 15 

To correct for the removed time, we redefine v as 

 끫毆끫殬 = 끫毊끫殬∗ − 끫毈끫殰∗ 16 

With 

 끫毊끫殬∗ = 끫毊끫殬 −�끫殤끫殮끫殰−1
끫殮=1  

17 

And 

 끫毈끫殰∗ = 끫毈끫殰 −�끫殤끫殮끫殰−1
끫殮=1  

18 

Where 
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 끫殤끫殮 = � 
끫毈끫殮+1 − 끫毈끫殮 − 끫欞
0

     
if   끫毈끫殮+1 > 끫毈끫殮 + 끫欞
otherwise
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This way, jittering w can no longer introduce new spikes that were not also used in the 

calculation of ζr, and our assumptions in the derivation of the zeta-test, and specifically its time-

invariance, hold (Montijn et al., 2021).  

 

Time-series ZETA to obtain super-sample time resolution 

In contrast to the original ZETA-test, where all variables relate to point events vi, time-series 

data consist of scalar values yi sampled at time points ti relative to some set of events, such as 

stimulus onsets. Therefore, in order to adapt the ZETA-test for use on time-series data, we first 

need to construct a reference sample time vector with respect to stimulus onset. In many time-

series data sets, the sample times are not strictly synchronized to the event times of interest; for 

example, one may be recording calcium imaging data at some frequency (e.g., 15.01 Hz) while 

the screen that presents visual stimuli updates at 59.97 Hz. This means that the delay between 

the sample acquisitions and the event onsets can be variable across trials. We therefore define 

the reference time as the set of unique sample times over all q trials, where for each trial k the 

sample times are relative to the most recent stimulus onset wk, and we set the tolerance for 

“uniqueness” to 1/100th of the median inter-sample duration. Note that this “super-resolution” 

is redundant in the case of slow signals, like calcium imaging, that are recorded at a constant 

acquisition rate. However, using this approach, the test can also easily be applied to data with 

a variable acquisition rate. Moreover, it can allow a finer determination of response onsets in 

cases where the time-limiting factor is the acquisition rate rather than the temporal dynamics of 

the signal (for example voltage imaging with fast sensors).  

We start the time-series ZETA-test by defining a reference time vector Tk as the set of 

sample times ti between the k’th event and the k’th event + τ: 

 끫毶끫殰 = {끫毂1 끫毂2 … 끫毂끫殶} − 끫毈끫殰 20 

With 

 끫毈끫殰 ≤ 끫毂끫殬 ≤ 끫毈끫殰 + 끫欞 21 

Therefore, for each event, we obtain a set of sample times, and we define the reference sample-

time vector as the union over these sets: 

 끫欦 = {끫毶1 ∪ 끫毶2 ∪ …∪ 끫毶끫殼} 22 
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For a single trial with sample times T and values v, we linearly interpolate the data to the 

reference time r: 

 끫毌끫殬 = (1 − 끫毈)끫毆끫殮−1 + 끫毈끫毆끫殮 23 

Where 

 끫毈 =
끫殾끫殬 − 끫殎끫殮−1끫殎끫殮 − 끫殎끫殮−1 

24 

With j chosen such that 

 끫殎끫殮−1 ≤ 끫殾끫殬 ≤ 끫殎끫殮 25 

We repeat this for each of the q trials, obtaining a [q by n] matrix Y of data values, with n=|r| 

denoting the cardinality of r. Taking the mean over trials to obtain 끫欴� and rescaling the range to 

[0 1], we reduce this to a scaled vector u with n elements: 

 끫毄끫殬 =
끫毌�i − min (끫欴�)

max(끫欴�) − min (끫欴�)
  

26 

Now we replace the fractional spike position in g (Eq. 3) with a cumulative sum s over u: 

 끫毀끫殬 =
∑ �끫毄끫殮�끫殬끫殮=1∑ (끫毄ℎ)끫殶ℎ=1  

27 

Furthermore, in the time-series case, if the values would be independent of time, the expected 

value at any time point is identical and equal to the average value of u. Then the linear baseline 

density vector b (Eq. 4) corresponding to a non-modulated cumulative sum s, is simply 

 끫殞끫殬 =
끫殬끫殶 

28 

Therefore, for the time-series ZETA (T-ZETA), the temporal deviation δ is given by: 

 끫毾끫殬 = 끫毀끫殬 − 끫殞끫殬 29 

The remaining steps are identical to the original ZETA calculation (Eqs. 6 - 13).  

 

A two-sample ZETA-test 

The ZETA-test can be used to detect whether the response of a neuron is modulated by sensory, 

optogenetic, or behavioural events. But in many cases, researchers might be interested in 

whether two sets of stimuli lead to a different modulation of the same neuron; or whether two 

neurons respond differently to the same stimulus. We therefore developed a two-sample version 

of the ZETA-test. In the following paragraph we will refer to condition α and condition β as 

two sets of data we are comparing, which can be the response of one neuron to two sets of 
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events, the response of two neurons to the same set of events, or the response of two neurons 

during two different sets of events. The only requirement we place on the data is that the 

temporal window τ is the same for both conditions. We will therefore be working with the event 

times and event-relative spike times wα and vα of condition α, and wβ
 and vβ

 of condition β. Note 

that here, and in the rest of the manuscript, we use the α and β superscripts as condition 

indicators and not as an exponent. 

A first intuitive approach to constructing a two-sample ZETA-test might be to compare 

the temporal deviations d (Eq. 6) between the two conditions, but this will fail when the two 

conditions only differ in absolute spiking rates. Since d is based on normalized spiking position 

g, the absolute number of spikes is discarded in Equation 3. However, collapsing all spikes 

across trials without normalization would lead to differences in total spiking numbers when 

there is a difference in number of trials, but not spiking rate. We therefore construct a 

cumulative spiking vector for each condition based on the average number of spikes per event-

window:  

 끫殠끫殬 = 끫殬/끫殼 30 

With q being the number of events and n the total number of spikes, this means that cn=n/q, the 

average number of spikes per event. Note that dividing cn by τ would therefore yield the average 

spiking rate per second. We perform this calculation for both conditions, obtaining cα and cβ. 

To compare these two vectors, we first create a reference time-vector ρ that contains the spike 

times of both vα and vβ:  

 끫殌 = {끫欮끫毸 ∪ 끫欮끫毺} 31 

Then we linearly interpolate c to ρ for condition α: 

 끫殠끫毸∗ = (1 − 끫毈)끫殠끫殮−1끫毸 + 끫毈끫殠끫殮끫毸 32 

With 

 끫毈 =
끫欘끫殬 − 끫毆끫殮끫毸끫毆끫殮−1끫毸 − 끫毆끫殮끫毸 

33 

And we repeat the same procedure for cβ*. Now we can compute the difference in cumulative 

spike counts by simply taking the difference between the two c* vectors: 

 끫款 = 끫欈끫毸∗ − 끫欈끫毺∗ 34 

We then obtain our raw two-sample ZETA metric Ζr: 

 Ζ끫殾 ≡ max (|끫款 − 끫款�|) 35 
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Similar to the one-sample ZETA-test, we now need to normalize Ζr to the intrinsic variability 

of vα and vβ. Jittering works well for one-sample comparisons, but this does not satisfy the 

assumptions of our null hypothesis in the case of two-sample comparisons: we do not wish to 

know if the difference between condition α and β is larger than if they were both unmodulated. 

Rather, we wish to know if one modulation pattern is different from the other. 

Therefore, to construct a null-hypothesis distribution of ZETA values in the two-sample 

test, we take random trials from the unified set of α and β. First we separate all spikes into 

distinct sets for each event k, such that 끫欄끫殰 = 끫欆끫殰 − 끫毈끫殰 36 

Where 

 끫欆끫殰 = {끫毊끫殬|끫毈끫殰 < 끫毊끫殬 ≤ 끫毈끫殰+1} 37 

Therefore, each of the qα and qβ events correspond to a set of event times a, constituting a 

unified set A from which we will randomly select trials to generate our null-hypothesis samples: 

 끫毐 = {끫欄끫毸 ∪ 끫欄끫毺} 38 

To create a random null-hypothesis sample m for condition α, we will take qα random sets from 

A with replacement and recombine them to create a null-hypothesis version of v:  

 끫欮′끫毸,끫殴 = {끫毐끫欜끫殴(1) ∪ 끫毐끫欜끫殴(2) ∪ …∪ 끫毐끫欜끫殴(끫殼끫毸)} 39 

Here, σm is a vector containing the qα random integers in the range [1, qα + qβ]. We repeat the 

procedure for condition β, and for each random sample m, we obtain two shuffle-randomized 

spike vectors v’α and v’β. We then plug these into Equations 30 - 35 to generate a null-hypothesis 

ZETA sample Ζ’, and use Equations 13 - 14 to transform these values into a statistical metric 

and corresponding p-value. 

 

The one-sample ZETA-test is a special case of the two-sample ZETA-test 

One can find an equivalence between the one- and two-sample tests in the case where condition 

α is a set of events, and condition β represents the linear baseline. This linear baseline can be 

approximated by an infinite set of events occurring over the same time window as the events in 

condition α. This means that all temporal modulation is averaged out, and the resulting 

cumulative spike count of condition β becomes identical to linear baseline density vector b from 

Equation 4 if sampled at vα, and divided by τ. Randomly selecting qα sets from A (Eq. 38), when 

qβ = ∞, therefore means selecting qα random event-times, which is identical to jittering event 

onsets with an infinite jittering window. For condition β we take infinite samples from infinite 
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events, so vβ will remain identical to linear baseline density vector b. Subtracting these vectors 

yields δ’ (Eq. 11). The steps thereafter (Eq. 12-14) are the same for the one-sample and two-

sample tests, so they are therefore equivalent under these conditions.  

Note that sampling at vα is only strictly necessary to make the one-sample test 

computationally tractable, but this does not influence its mathematical behaviour. Moreover, a 

division by τ can be added to the two-sample test without affecting its statistical properties – it 

merely scales the values in A. The only real difference between the one-sample-equivalent 

version of the two-sample test, and the actual one-sample test is therefore the width of the 

jittering window. In data sets that are non-stationary across event repetitions, the local jittering 

of the one-sample test ensures uniform sampling over the signal’s non-stationarity, but this is 

absent from the two-sample zeta-test. On the other hand, when signals are stationary across 

events, the one-sample-equivalent two-sample test and the one-sample test are truly 

mathematically equivalent. 

 

Two-sample time-series ZETA-test 

Having described the time-series ZETA-test and the two-sample ZETA-test, the two-sample 

time-series ZETA-test is a straightforward combination of these procedures. Rather than 

calculating the deviation vector δ between the cumulative sum s and linear baseline vector b, 

we calculate a cumulative sum for both condition α and condition β. We replace Eqs. 24-26 

with 

 끫毀끫殬끫毸 =
∑ �끫毌끫殮끫毸�끫殬끫殮=1∑ (끫毌ℎ끫毸)끫殶ℎ=1  

40 

 끫毀끫殬끫毺 =
∑ �끫毌끫殮끫毺�끫殬끫殮=1∑ �끫毌ℎ끫毺�끫殶ℎ=1  

41 

Then the two-sample deviation vector Δ becomes: 

 끫毊끫殬 = 끫毀끫殬끫毸 − 끫毀끫殬끫毺 42 

Now our raw two-sample time-series ZETA metric Ζr can be calculated as before by taking the 

maximum of the absolute of the mean-normalized deviations. To generate null-hypothesis 

samples, we repeat the above steps, but construct a [q by n] matrix Y for both conditions by 

randomly selecting qα or qβ trials from the unified set of qα + qβ possible trials for each random 

sample. Finally, we obtain the statistical metric using Eq. 13 - 14. 
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Experimental data 

The calcium imaging data analysed in this paper are the same as previously described for both 

the GCaMP6f (Montijn, Meijer, et al., 2016) and OGB-1 AM recordings (Montijn, Goltstein, 

et al., 2016). We used GCaMP data from 15 recordings in four C57BL/6 mice, and OGB data 

from 8 recordings in 8 C57BL/6 mice. Cell bodies were detected semi-automatically using an 

open-source toolbox (https://github.com/JorritMontijn/Preprocessing_Toolbox) and cells were 

only included for further analysis if their somata were clearly distinguishable from the 

background neuropil. The electrophysiological data used here are also previously described 

elsewhere (Montijn et al., 2023). In short, we performed 21 repeated-insertion recordings in 

seven C57BL/6 mice with Neuropixels. All 19 mice were housed in a 12 h/12 h dark/light cycle 

with ad libitum access to food and water and were awake during recording. The recording setup 

presented drifting gratings of 24 directions (spaced in 15-degree steps) and was controlled using 

Acquipix (Montijn, 2022). Spikes were sorted post-hoc using Kilosort 2.5 (Pachitariu et al., 

2023), and electrode location was determined by aligning histological slices and 

neurophysiological landmarks to the AllenCCF mouse brain atlas (https://github.com/cortex-

lab/allenCCF) using the UniversalProbeFinder (Montijn & Heimel, 2022). All code used in the 

Neuropixels data acquisition and pre-processing is available online in the Acquipix and 

UniversalProbeFinder repositories on  https://github.com/JorritMontijn. We included only 

clusters of sufficient quality, as quantified by their spike contamination ratio and non-

stationarity, for further analysis. For more detailed information, see (Montijn et al., 2023). All 

experiments were approved by the animal ethics committee of the Royal Netherlands Academy 

of Arts and Sciences, in compliance with all relevant ethical regulations. 

 

Experimental benchmarks one-sample tests 

We verified the statistical performance of the one-sample ZETA test and one-sample time-

series ZETA test tests by calculating the p-value for stimulus responsiveness for all neurons. 

The false positive rate was computed by repeating the procedure after jittering the stimulus 

onset times. 

 

Experimental benchmarks two-sample tests 

For the two-sample ZETA test we calculated whether random pairs of neurons differed in their 

response (n=1000 pairs) to the presentation of a drifting grating (figure 3E) or whether the same 
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neuron differed in response between two random directions of drifting gratings (figure 3F). In 

both cases, we used a randomly selected 50% of spikes from either neuron, so we could 

calculate the false positive rate by instead comparing the same 50% of spikes from the first 

neuron to the remaining 50% of spikes from the same neuron.  

For the time-series-based two-sample tests, we used a similar comparison, except we 

took 50% of trials rather than spikes (as selecting 50% of samples would run into various 

difficulties). The false positive rate was then computed by repeating the procedure but 

comparing half of the trial responses of the first neuron to the remaining half. 

 

Synthetic benchmarks one-sample ZETA-test 

We quantified the effect of the data-stitching procedure by generating spiking responses of four 

types of synthetic neurons. All types of synthetic neurons used exponential inter-spike intervals 

as firing distributions. For the first type of neuron, its baseline firing rate was determined 

randomly by sampling from an exponential distribution with a mean of 5.0 Hz. The neuron was 

assigned a random preferred orientation and preferred stimulus spiking rate (λpref = λbase + 

Exp(λ=5)). At its non-preferred stimuli, the neuron’s firing rate was equal to its baseline rate, 

and it was equal to λpref for a stimulus of its preferred orientation, with intermediate values 

following a von Mises curve with random tuning bandwidth (κ=5-10). We generated 20 

repetitions of 8 stimulus directions and created heterogeneous inter-stimulus durations by 

varying these durations from 200ms to 2 seconds. The stimulus-on period was fixed to 1 second, 

however, leading to both overlapping responses and varying inter-trial intervals. 

 The second type of simulation was a tri-phasic neuron, for which we generated 160 trials 

of varying and partially overlapping duration, ranging from 0.5 to 10 seconds. Each trial 

consisted of an onset period of 100 ms, followed by a 900 ms sustained period, after which the 

neuron returned to its baseline rate. For each neuron the baseline rate was chosen to be 

λbase=Exp(0.1), the onset rate λonset= λbase+Exp(1)+0.2, and the sustained rate λsust= 

λbase+Exp(0.1). 

 The third type was a tri-phasic neuron we constructed to illustrate the effect that 

stitching versus no-stitching can have. Again, we used 160 trials, all of 1 second in duration, 

with a 3 second inter-trial period. The base rate of this neuron during inter-trial intervals was 

Exp(0.1)+0.1, the onset rate (100 ms) was Exp(4)+4, and the sustained rate (900 ms) was 

Exp(2)+2. Note that by setting the trial duration to 1 second, ZETA’s real deviation does not 
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cover the transition into and out of the baseline firing rate, while the jittered deviations will 

include either of these transitions. 

 To illustrate the worst-case scenario for the ZETA-test, we simulated a (rather 

unrealistic) neuron that had a two-phase firing distribution, where the spike counts were chosen 

in blocks of 1 second from an i.i.d. Gaussian distribution with a mean of 3 (for 3 out of 4 

seconds), or an i.i.d. Gaussian distribution with a mean of 3.1+ Exp(1) (for 1 out of 4 seconds). 

We dispersed the resulting number of spikes randomly thoroughly the 1-second block following 

a uniform distribution. This procedure generates statistics that satisfy the assumptions of the 

ANOVA’s model. 

 

Synthetic benchmarks two-sample tests 

To further investigate the statistical properties of our methods, we also used two types of 

generated synthetic data sets. In both cases, we generated neurons with a baseline rate as 

described above; an exponential inter-spike interval model with a rate randomly chosen from 

λ~ Exp(1). Furthermore, one additional spike was added to half of all trials on top of these 

baseline spikes. The timing of these spikes followed a Gaussian distribution with a mean of 55 

ms and a standard deviation of 1 ms. This therefore simulates a cell with a sharp onset peak. 

For the first benchmark, we then generated a neuron with the same baseline firing rate, 

but which had an onset spike in all trials – it therefore differed in both peak height and total 

number of spikes (owing to the higher peak). For the second benchmark, we instead generated 

a neuron with the same baseline firing rate and same amount of onset spikes, but whose onset 

peak was instead shifted by 2 ms – this means the neurons differed in onset peak latency but 

not in total number of spikes. In both cases, the two-sample tests (ZETA, ANOVA, t-test) were 

then applied to obtain a p-value. False positive rates were calculated by generating the second 

neuron with the exact same parameters as the first neuron: the same number of onset spikes 

occurring at the same peak time. 
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Figures 

 

Figure 1. Improvements to the ZETA-test. A) Raster plot of an example neuron. B) Calculating 

the statistical metric for the ZETA-test depends on the difference between the real fractional 

spike positions (blue) and the null-hypothesis expectation from a constant, stimulus-

unmodulated rate (grey). C) The Zenith of Event-based Time-locked Anomalies (ZETA, red 

cross) defines the significance after normalizing for the neuron’s intrinsic variability (grey 

curves). D) Overview of the new data-stitching procedure, where time periods are removed if 

they were not used for the calculation of the real deviation curve in panel B. E-I) Under specific 

conditions data stitching can dramatically improve ZETA’s performance. E) Experimental 

Neuropixels data shows the ZETA-test is superior to an optimal ANOVA and t-test, but 

stitching has little effect. ZETA indicates test with stitching, ZETA-ns without stitching. F,G) 

Two neuron models responding to stimuli with heterogeneous inter-trial intervals all show the 

ZETA-test performs excellently, and the ZETA-test with data-stitching shows a small, but 

significant improvement. H) If the window of interest (τ) is chosen such that it discards 

transitions into and out of baseline activity, the sensitivity of the ZETA-test with no stitching is 

mediocre. Performing Data-stitching improves the sensitivity of the ZETA-test to be superior 

to the ANOVA. I) Even under statistical conditions optimized for the ANOVA, the ZETA-

test’s sensitivity remains high.  
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Figure 2. The time-series ZETA-test outperforms the t-test and ANOVA on statistical 

sensitivity, while the ANOVA applied to calcium data is excessively liberal. A) The time-series 

ZETA-test can be applied to data recorded with calcium imaging. B) An example cell’s calcium 

activity (dF/F0) recorded with OGB in response to drifting gratings. C) This cell shows a clear 

onset response to the stimulus (period indicated by the blue bar), but also displays variable 

spontaneous activity and a lack of a sustained response. D) These factors reduce the difference 

in mean dF/F0 between the 3 s pre-stimulus baseline and 3 s stimulus periods, leading a t-test 

to erroneously classify this cell as non-responsive (paired t-test, n = 80 trials, p=0.23). E) Our 

alternative method (T-ZETA) does not use window-averages and that detects any time-locked 

deviations in neural activity. The blue curve shows the true deviation from a static level, and 

the grey curves show 100 bootstraps of deviations obtained by randomly jittering the stimulus 

onsets. F-K) ROC analyses to benchmark the statistical sensitivity under different conditions. 

F) Performance benchmark on OGB data showing the statistical sensitivity of the T-ZETA test 

(blue), an optimally binned ANOVA (red), and a t-test of 3s pre- vs 3s post- stimulus onset 

activity (black). G) Same as F, but for GCaMP6f data. H) Same as F, but for simulated quadri-
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phasic neurons with distinct baseline, onset, sustained, and offset responses where we filtered 

generated spike times with an exponential filter to simulate the effect of the slow dynamics of 

a calcium indicator. I-K) Control analyses show the false positive rate (FPR) as a function of 

the threshold value alpha. I,J) In real data, the T-ZETA test is somewhat conservative, as lies 

above the theoretical norm (dotted line), but owing to its higher statistical sensitivity, it still 

shows higher inclusion rates than a t-test for all alphas. On the other hand, the ANOVA is a 

poor statistical model when data points are not statistically independent: it is too liberal by many 

orders of magnitude, as the filtering properties of the calcium indicators induce temporal 

dependencies in the signal. K) Simulations confirm the cause of the ANOVA’s poor 

performance is unrelated to particulars of real data. Here, the T-ZETA and t-test are close to 

the theoretical norm, but the ANOVA is still overly liberal by a factor of 1011 in the case of an 

alpha of 0.001. 
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Figure 3. The two-sample ZETA-test quantifies response differences between two conditions. 

A) Example spike raster plots of two neurons responding drifting grating stimuli. B) The 

statistical metric for the two-sample ZETA-test depends on the difference in the cumulative 

sum of the spikes per trial for the two conditions. C) The real difference (blue) is compared to 

the difference obtained using resamplings where trials are randomly assigned to condition 1 

(here neuron 1) or 2. D) The two-sample ZETA-test (ZETA2) detects a difference between 

these two example neurons (p=2.7 x 10-6), but a two-sample t-test does not (p=0.158). E-H) 

Various benchmarks to compare the performance of the ZETA2-test to an optimally-binned 

two-way ANOVA and t-test. E) Discrimination of 1000 pairs of V1 neurons recorded with 

Neuropixels in response to the same stimuli; the ZETA2-test performs best, followed by the t-

test and ANOVA. F) Discrimination between the responses to drifting gratings in the 0 and 90 

degree directions for all 1504 experimentally recorded cells; the ZETA2-test performs best, 

followed by the t-test and ANOVA. G) Simulation of the best-case scenario for the ANOVA, 

where the difference between two conditions is defined only by the number of spikes in a short 

response peak. H) Worst-case scenario for the ANOVA, where the difference between two 

conditions is defined only by a 2 ms difference in peak time. 
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Figure 4. The two-sample time-series ZETA-test (T-ZETA2) can discriminate neural activity 

in calcium imaging data. A) Heat maps of one example V1 neuron’s response to drifting 

gratings moving in its preferred and orthogonal direction. B) The T-ZETA2-test uses the 

cumulative sum of rescaled neural activity (here dF/F0). C) The deviation in cumulative sum 

defines the ZETA-metric and is compared to deviation curves obtained after randomly 

combining trials from either condition, similar to the spike-based ZETA2-test. D) In this 

example, the T-ZETA2-test detected a significant difference in responses between the two 

conditions (p=2.8 x 10-3) but a t-test did not (p=0.189). E) Benchmark discriminating between 

the preferred and orthogonal stimulus responses of all GCAMP neurons. The T-ZETA2 

performed best, followed by the ANOVA and t-test. F) The false-positive rate of the T-ZETA2 

and t-test were close to the theoretical norm, but the ANOVA was excessively liberal, showing 

the ANOVA is unsuitable for time-series data with temporal correlations. G,H)  As E,F, but for 

OGB data, showing almost identical results. 
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