

1 **BatCRISPRi: Bacillus titratable CRISPRi for dynamic control in *Bacillus subtilis***

2
3
4 Andrés F. Flórez^{1*}, Sebastian Castillo-Hair^{2,3}, Luis Gutierrez-Lopez^{1,4}, Daniel Eaton⁴, Johan⁴
5 Paulsson, Ethan C. Garner¹
6
7
8

9 ¹Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA.

10 ²Department of Electrical and Computer Engineering, University of Washington, Seattle, WA

11 ³eScience Institute, University of Washington, Seattle, Washington 98195, United States

12 ⁴Department of Systems Biology, Harvard Medical School, Boston, MA, USA.

13
14
15 Correspondence: egarner@g.harvard.edu

16 *Current affiliation: Department of Systems Biology, Harvard Medical School, Boston, MA,
17 USA.

18
19
20 **Abstract**

21
22 The discovery of new genes regulating essential biological processes has become increasingly
23 important, and CRISPRi has emerged as a powerful tool for achieving this goal. This method
24 has been used in many model organisms to decrease the expression of specific genes and
25 assess their impact on phenotype. Pooled CRISPRi libraries in bacteria have been particularly
26 useful in discovering new regulators of growth, division, and other biological processes.
27 However, these libraries rely on the induction of dCas9 via an inducible promoter, which can
28 be problematic due to promoter leakiness. This is a widespread phenomenon of any inducible
29 promoter that can result in the unwanted downregulation of genes and the emergence of
30 genetic suppressors when essential genes are knocked down. To overcome this issue, we
31 have developed a novel strategy that eliminates dCas9 leakiness and enables reversible
32 knockdown control using the rapamycin-dependent degron system in *Bacillus subtilis*. This
33 degron system causes rapid degradation of dCas9, resulting in an almost instant reset of the
34 system. Our results demonstrate that it is possible to achieve zero CRISPRi activity in the
35 uninduced state and full activity in the induced state. This improved CRISPRi system will
36 enable researchers to investigate phenotypic changes more effectively while reducing the
37 undesirable effects of leaky expression and noise in their phenotypic data. Moreover, a rapid
38 degradation system could serve as a tool for dynamic perturbation before compensation
39 mechanisms or stress responses kick in. Finally, this approach can be adapted to other
40 organisms and other promoter-inducible systems, potentially opening up strategies for tighter
41 control of gene expression.

42 **Introduction**
43

44 Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) has revolutionized the
45 field of molecular biology and genetics by enabling precise and efficient genome editing in
46 various organisms^{1,2}. The CRISPR system comprises a Cas9 nuclease and a guide RNA that
47 directs the Cas9 to the specific target sequence, which induces double-strand breaks (DSBs)
48 in the DNA³. However, the CRISPR system has also been adapted for transcriptional
49 regulation. In CRISPR interference (CRISPRi), the Cas9 nuclease is deactivated, and the
50 guide RNA (gRNA) directs it to the promoter region of the target gene, leading to transcriptional
51 repression⁴. The versatility and simplicity of this technique have made it a popular tool for gene
52 expression studies^{5,6}, metabolic engineering^{7,8}, and therapeutic applications⁹.
53

54 CRISPRi offers several advantages over traditional gene silencing techniques, such as RNA
55 interference (RNAi) and overexpression¹⁰. These advantages include specificity, efficiency,
56 and reversibility. However, CRISPRi systems expressing dCas9 from inducible promoters
57 have a fundamental problem: leakiness, resulting from an inherent limitation of inducible
58 promoters¹¹. Even a few molecules of dCas9 can cause transcriptional repression in the
59 absence of the inducer due to the high binding efficiency of dCas9¹². For *Bacillus subtilis*, this
60 resulted in 3-fold repression without dCas9 induction⁵. Several approaches have been used to
61 address this problem, mainly at the post-transcriptional level. These approaches include
62 promoter optimization¹³, mismatch gRNAs¹⁴, synthetic amino acids to control translation¹⁵,
63 optogenetic CRISPRi¹⁶, and split dCas9¹⁷. However, none of these approaches has completely
64 eliminated leakiness, and their engineering is complex or the presence of phototoxicity in the
65 case of the optogenetic system. For example, adding other genetic components may be
66 required to use synthetic amino acids, and a specific gRNA may be needed for each level of
67 repression, making the approaches cumbersome to implement¹⁵. Additionally, these
68 approaches do not provide full reversibility which is important because it allows the study of
69 the effect of gene expression on a particular phenotype in a temporal manner. Therefore, a
70 more robust and simple-to-implement solution is needed.
71

72 A potential strategy to solve this issue is the use of degrons. A degron is a small peptide
73 sequence that can be recognized by the cellular degradation machinery, leading to the rapid
74 degradation of the tagged protein^{18,19}. There is an existent system already developed in
75 *Bacillus subtilis* using the SsrA tag from *E.coli*²⁰. By fusing a degron sequence to dCas9, it is
76 possible to eliminate its leaky expression. Some attempts have been made in this direction²¹.
77 The reversible nature of this system is particularly important, as it enables the restoration of
78 gene expression upon removal of the degron inducer molecule. In this paper, we use a
79 rapamycin-inducible degron system (here named rapamycin system throughout the study),
2

80 reengineered from an existent system in *Escherichia coli*²², to eliminate CRISPRi leakiness
81 completely and allow for a rapid reversible deactivation. The system allowed for full repression
82 with low noise. We believe this system will be important for having a tight, reliable, reversible
83 CRISPRi system in *Bacillus subtilis* that could be extended to other organisms.

84

85

86 **Results**

87

88 **Fine-tuning CRISPRi for leakiness elimination**

89

90 We began by adapting the CRISPRi design previously used in *B. subtilis*⁵. In this design,
91 dCas9 is driven by the xylose inducible promoter (Pxyl), while the gRNA is constitutively
92 expressed using the constitutive P_{veg} promoter (in short, veg). We used mApple fluorescence
93 protein instead of RFP (to improve signal brightness) as a gene readout and tagged dCas9
94 with mNeonGreen to monitor its level. Essentially, the complex dCas9/gRNA forms close to
95 the 5' region of the mApple gene, preventing transcription as dCas9 is induced. A schematic
96 of these designs is presented in Fig. 1a. Consistent with previous reports of this system, this
97 initial design (without SsrA tag) resulted in high levels of basal knockdown in the absence of
98 dCas9 induction compared to the no gRNA control (Fig. 1b). The robust knockdown before
99 induction and the considerable variation in fluorescence distribution observed in the flow
100 cytometry data (Fig. 1b) are attributed to the leakiness of dCas9.

101

102 Existing strategies for controlling leakiness in promoter constructs typically involve designing
103 tighter promoters. While this approach can reduce leakiness, it may also limit the dynamic
104 range of the promoter since tighter promoters are often weaker. We attempted an alternative
105 strategy to achieve leakiness reduction by using protein degradation (Fig. 1a). The advantage
106 of this strategy is that basal leaky degradation could eliminate leaky expressed dCas9
107 molecules while also allowing for reversible CRISPRi, where the gene can be reactivated after
108 dCas9 is degraded. To achieve this, we added an SsrA (LGG) tag (abbreviated as SsrA*) to
109 dCas9 (Fig. 1a) and monitored the levels of basal CRISPRi. The SsrA* tag binds to the SspB
110 adaptor and promotes fast degradation of SsrA* protein fusions in *B. subtilis*²⁰. Because there
111 is leaky degradation in the absence of SspB, we hypothesized that adding SspB under a leaky
112 inducible promoter might improve CRISPRi leakiness further by reducing free unwanted dCas9
113 resulting from leaky promoter expression. Adding only the SsrA tag slightly improved leakiness,
114 while adding the P_{spank}*-SspB-driven system reduced leakiness even further compared to
115 the no gRNA control (Fig. 1c). These results indicate that leaky degradation could counteract
116 CRISPRi leakiness.

117

118 As depicted in Fig. 1d, the use of the SsrA* tag on dCas9 and the introduction of the inducible
119 SspB construct led to a significant reduction in dCas9 leakiness. Nonetheless, we observed
120 almost no dCas9 induction upon addition of the ligand, suggesting that the strength of the Pxyl
121 promoter alone was insufficient to overcome the basal degradation rate (Fig. 1d). This made it
122 challenging to silence highly expressed genes that required higher dCas9 occupancy. Since
123 we encountered either persistent CRISPRi leakiness and lack of dCas9 inducibility, we
124 explored alternative strategies. In *E. coli*, LacI-T7 promoters are frequently utilized for high
125 protein production and are often less leaky than other promoters¹¹. Recently, a LacI-T7
126 promoter was engineered in *B. subtilis* that exhibited a 2.7x higher expression with IPTG-
127 relative to maximal induction of Phy-spank, but 31x lower expression without IPTG, exhibiting
128 a significant improvement in leakiness²³. Therefore, we reasoned that using a tighter promoter
129 with a higher dynamic range could help address the issues we encountered with the Pxyl
130 promoter. Hence, we used the LacI-T7 promoter to drive dCas9 and included Phy-spank, in
131 addition to Pxyl, for comparison purposes. For a schematic representation of the design see
132 Fig. 1e. In brief, LacI is expressed under a constitutive promoter (PpenP), while the T7 RNA
133 polymerase is under the control of the Phy-spank promoter. Upon IPTG induction, T7 RNA
134 polymerase is expressed, which then leads to the expression of dCas9.

135
136 We conducted experiments to assess the effect of different constructs on the leakiness of the
137 CRISPRi system, using mApple signal as a readout. The main goal of our experiment was to
138 identify which promoter from SspB was leaky enough to eliminate the dCas9 leakiness and
139 whether inducing or not inducing the gRNA influenced dCas9 leakiness. Additionally, we aimed
140 to identify a promoter that was strong enough to overcome the degradation rate and provide
141 an appropriate dynamic range of dCas9 expression. For that purpose, we used three different
142 constructs: (1) promoters driving dCas9 (PT7, Pxyl, or Phy-spank), (2) whether gRNA is driven
143 by T7 (inducible) or Pveg (constitutive), and (3) which promoter was used to drive SspB
144 expression (Pxyl, Rapamycin-inducible, Phy-spank T35C (discovered in this study and
145 explained in the degron section), Phy-spank, Pspank*). We then combined a dCas9, gRNA,
146 and SspB construct, ensuring that the inducers were compatible when combining the different
147 constructs. To measure leakiness, we normalized the fluorescence intensity relative to the
148 control (no gRNA), such that 100% intensity indicates no leakiness in the absence of the
149 inducer.

150
151 We then assayed the leakiness of each construct by flow cytometry measurements. (Fig. 1f).
152 The leakiest construct was Phy-spank as expected, and the promoters driving SspB weren't
153 leaky enough to significantly counteract the leakiness of Phy-spank. The Pxyl promoter retains
154 some leakiness even with the degron system present. This implies that the promoter leakiness

155 is strong even when suppressing it with degradation. Using very leaky promoters like Phy-
156 spank for driving SspB expression only partially reduces Pxyl leakiness. However, stronger
157 SspB leakiness with either Phy-srank or Pspank* reduced the overall CRISPRi leakiness.
158 Using the T7 promoter strongly reduced the leakiness since this promoter is tighter than Phy-
159 spank and Pxyl. When we add the gRNA as an inducible element (using the PT7 promoter),
160 we surprisingly observed a reduction in leakiness to zero in the presence of the rapamycin-
161 inducible system (which will be discussed in the next section). This result was similarly
162 observed during live microscopy, where a heterogeneous mix of bright and dim cells was
163 evident under Pxyl conditions, contrasting with the uniform fluorescence observed in the T7-
164 T7 gRNA-Rapamycin construct (Fig. 1g). Hence, the combination of inducing gRNA only when
165 needed, along with a very tight dCas9 promoter, outperforms the use of a tight dCas9 promoter
166 alone. Based on these results, we conclude that by using a strong and tight promoter, in
167 combination with inducible gRNA (also tightly regulated) and moderate degradation, we can
168 achieve a perfect system with zero leakiness. This is achieved on the PT7-dCas9, PT7-gRNA
169 and Rapamycin-SspB system.

170

171 We then tested whether sequences around the gRNA were crucial for its proper expression
172 under the T7 promoter. We retained the strong RBS (MF001) originally present in the system,
173 which should not be necessary for a gRNA. However, a study has shown that the absence of
174 an RBS can affect RNA stability²⁴ and thus may influence expression of our gRNA. We
175 compared this to using RiboJ, a ribozyme that self-cleaves, thereby removing upstream
176 sequences and eliminating promoter-associated elements. We also compared it to gRNA
177 without any additional sequences. When assessing leakiness in comparison to full CRISPRi
178 knockdown (15 μ M IPTG), we did not observe any substantial differences. All constructs
179 exhibited similar behavior, as illustrated in Fig. 1h. This finding implies that to reduce leakiness,
180 no specific sequence is necessary upstream of the gRNA, so we opted to use the RBS version
181 for the remaining experiments.

182

183 We next assessed the dose-response CRISPRi effect. To investigate this, we conducted a
184 titration curve experiment comparing two systems: T7-dCas9, T7-gRNA, and Rapamycin-
185 SspB versus the same system with Pveg-gRNA. The goal was to observe any differences
186 when using an inducible gRNA. Both systems exhibited similar behavior; however, the system
187 with Pveg-gRNA reached a state of CRISPRi saturation, indicating that further knockdown was
188 not achievable (Fig. 1i,j). This observation is intriguing, as the *B. subtilis* CRISPRi study
189 demonstrated that Pxyl was sufficient to induce full knockdown⁵. It is possible that due to the
190 system's leakiness and the potentially low expression of the readout gene, this level of
191 knockdown was attainable. In our system, mApple is highly expressed, necessitating higher

192 levels of dCas9 and gRNA to achieve complete knockdown. While knowing the specific
193 stoichiometry of dCas9-gRNA required for full knockdown at very high expression levels is
194 beyond the scope of this paper, it is noteworthy that at the highest inducer levels the CRISPRi
195 effect was abolished (Fig1.j), regardless of gRNA levels. Upon examination of dCas9 levels,
196 we observed exceptionally high expression at an IPTG dose of 20 μ M (Fig. 1k). It is
197 conceivable that at these elevated levels, some form of phase separation may hinder dCas9
198 from binding to its target due to the formation of non-functional protein aggregates. However,
199 further experiments are necessary to test this hypothesis, as other systems typically do not
200 employ such high dCas9 levels. The possibility of phase separation-induced effects on dCas9
201 functionality warrants further investigation.

202

203 **Building a rapid degradation system through dimerization in *Bacillus subtilis***

204

205 As stated before, we used a rapamycin-inducible system to degrade dCas9, eliminate
206 leakiness, and make the system reversible by degrading dCas9 and re-activating the gene
207 after the knockdown. The rapamycin system was developed in *Bacillus subtilis* in this study.
208 The system, which was first described in *E. coli*²², involved using the rapamycin-binding
209 domain from mTOR called FRB and the FKBP12 protein, which is a subunit of the TGF- β 1
210 receptor. These subunits dimerize in the presence of rapamycin with high affinity, yielding a
211 functional SspB adapter that can target tagged proteins for degradation. The system worked
212 perfectly to induce rapid degradation in *E. coli*, and we thought this could be a great tool for
213 dynamic control in *Bacillus subtilis*. A rapid degradation system could be useful for achieving
214 more precise temporal control of perturbations to protein levels, allowing for complex
215 perturbations like oscillations during the bacterial cell cycle, as previously done with inducible
216 promoters²⁵. This could enable the investigation of molecular pathways and their dynamics,
217 assess rapid responses to prevent adaptation or masking effects of the stress response, and
218 thereby lead to new mechanistic insights.

219

220 We then re-engineered the system to be functional in *Bacillus subtilis*. As depicted in Fig. 2a,
221 the system comprises a split version of SspB fused to the rapamycin-binding domains FKBP12
222 and FRB. Constitutive promoters of different strengths drive these domains to maintain the
223 proper ratios. Insulators were added to prevent transcriptional readthrough²⁶. We shuffled the
224 PV promoters²⁶ for ones with different strengths but always preserved the FRB/FKBP12
225 expression ratio to find the minimum strength that would result in a functional system without
226 overburdening the cell with excess protein. As a comparison, we used the traditional degron
227 system with an inducible promoter expressing SspB. We employed all the different inducible
228 promoters available for *B. subtilis* with varying levels of leakiness. In addition, we engineered

229 a new, very tight promoter by combining the Phy-spank promoter with the T53C mutation from
230 Pspank*. This promoter has a low dynamic range but is sufficient for degron activation and has
231 zero leakiness. This promoter is referred to here as Phy-spank T35C. This promoter is useful
232 when degrading proteins susceptible to degron leakiness, such as essential genes with low
233 expression. However, it would not have been useful for the CRISPRi system due to its low
234 induction for dCas9.

235

236 Two degradation modes are depicted in Fig. 2b. In the promoter-inducible system, degradation
237 only occurs when the full SspB protein is expressed. As soon as it becomes expressed, it binds
238 to the SsrA tag and brings the protein to ClpX for degradation. On the other hand, the
239 rapamycin system works through dimerization. The SspB subunits tagged with the rapamycin
240 binding domains are constitutively expressed. Once rapamycin enters the system, it serves as
241 a bridge to dimerize SspB subunits, making it functional. SspB can then bring the SsrA tag to
242 ClpX and initiate degradation. The main difference between both systems is that one requires
243 complete transcription and translation of SspB before it can act on the protein. In contrast, the
244 other only requires dimerization, which is a very fast process.

245

246 We conducted flow cytometry tests of the different promoters driving SspB and the rapamycin-
247 engineered version with different constitutive promoters of increasing strength (v1, v2, v3).
248 Protein degradation of mNeonGreen as readout occurred in all promoters, successfully
249 eliminating the fluorescent protein (Fig. 2c). For this initial test, we used the SsrA tag LGG,
250 which had been previously chosen as an effective tag in *Bacillus subtilis*²⁰. The promoters
251 exhibited different degrees of leakiness when not induced. Of particular interest is the Phy-
252 spank T35C, which had virtually zero leakiness, and was discovered in this study. Phy-spank
253 and Pspank*²⁰, thought to have low leakiness, exhibited the highest activity when uninduced,
254 with essentially no protein available in the non-induced state. The Pxyl promoter had relatively
255 similar levels of leakiness to the rapamycin-inducible system. We did not observe any
256 differences in leakiness or degradation when using different constitutive promoters in the
257 rapamycin system. Therefore, we have chosen version 1 as the finalized version, (Fig. 2a).

258

259 We then asked whether we could find an alternative SsrA tag with lower leakiness. The LGG
260 tag was initially suggested as the SsrA tag that could provide clear, all-or-none degradation
261 when inducing SspB. However, the previous study that identified LGG as having the least
262 leakiness relied on Western blot experiments²⁰. Still, the level of leakiness for LGG is quite
263 significant, making it challenging to tag low-expressed proteins, as it could almost mimic a
264 knockout effect without inducing SspB. We reasoned that by reassessing the tags using a

265 more sensitive technique like flow cytometry, we could quantify the leakiness and potentially
266 observe differences, ultimately identifying a less leaky tag.

267

268 We selected the most promising tags proposed in the original study²⁰ and compared them to
269 LGG. As a normalizing control, we used the construct without the degradation tag. When
270 measuring the fluorescence with flow cytometry we confirmed that the LGG tag was highly
271 destructive (Fig. 2d). After adding the LGG tag, mNeonGreen levels were reduced to only 20%
272 of the untagged protein levels. For genes with low expression, this could almost eliminate the
273 gene, resulting in lethality or generation of suppressor mutants. This finding may explain why
274 the degron system did not gain popularity in *B. subtilis*. Intriguingly, some of the other tags
275 were equally or even more destructive than LGG, confirming the findings from the previous
276 paper. However, one tag stood out as an exception—the ADAT tag exhibited a basal
277 degradation rate of 50%, preserving almost 30% more protein compared to the LGG tag (Fig.
278 2d). As a result, we selected the ADAT tag for further testing to assess its potential as a
279 replacement for the standard LGG tag in protein degradation studies.

280

281 We then tested whether the ADAT tag was functional in the rapamycin system. When
282 compared to LGG, the ADAT tag performed identically with both the Phy-spank T35C and the
283 rapamycin-inducible system, achieving full degradation from 100% to 0%. Next, we measured
284 degradation dynamics in bulk using plate reader measurements. Since fluorescence increases
285 with increasing cell density, we also measured OD600 for normalization (Fig. f). We observed
286 that the addition of rapamycin did not affect growth. We also found that LGG-tagged
287 mNeonGreen degraded within 5 minutes (Fig. 2g), while ADAT-tagged mNeonGreen
288 degraded within 30 minutes with respect to basal autofluorescence (Fig. 2h). In comparison,
289 IPTG-induced SspB led to tagged mNeonGreen degradation in 30 minutes and 2 hours for the
290 LGG, and ADAT tags, respectively (Fig. 2g, h). This indicates that the ADAT tag leads to slower
291 degradation compared to the LGG tag but it is faster in the rapamycin system compared to the
292 IPTG-induced system. One possible explanation for the slower degradation of the ADAT tag
293 is that it has slower degradation kinetics compared to LGG tag, therefore requiring more time
294 to reach complete degradation. However, it is worth noting that degradation starts almost
295 immediately in the rapamycin system for both tags. In summary, the ADAT tag shares the rapid
296 and complete degradation characteristics of the LGG tag when induced with rapamycin. It
297 proves optimal for degrading genes with low basal expression due to its minimal leaky
298 degradation. Future research could leverage the ADAT tag as a starting point for screening
299 even more efficient tags that maintain higher protein levels with similar response profiles and
300 dynamics.

301

302 We conducted a rapamycin titration to determine the minimal dose required for degradation.
303 This information could prove valuable for long live-cell imaging experiments or easier
304 rapamycin wash-out where smaller doses may be necessary. We observed a dose-dependent
305 effect of rapamycin (Fig. 2i) as previously observed in other rapamycin systems^{27,28}. This
306 discovery renders the degron system titratable, which adds another advantage to the system.
307 We then investigated the dynamics at the single-cell level. We tested strains with the ADAT
308 tag, and either the rapamycin, or the Phy-spank T35C system in a mother-machine microfluidic
309 device. The mother machine allows for continuous growth, rapid ligand exchange, and the
310 observation of reactions over time²⁹, making it ideal for performing complex perturbations like
311 oscillating gene levels²⁵. We observed similar temporal responses at the single-cell level, with
312 rapamycin induction resulting in degradation at 30 minutes and IPTG-induced degradation
313 occurring at 2 hours.

314

315 Interestingly, we noticed that rapamycin-induced degradation was highly uniform, leading to a
316 sharp decrease in protein levels across all cells in a very fast manner. In contrast, IPTG-
317 induced degradation exhibited more variability, with some cells maintaining mild fluorescence
318 for longer periods, creating greater cell-to-cell variation in degradation. This demonstrates that
319 the rapamycin-inducible system can achieve a precise and rapid knockout of the target gene
320 without residual protein noise. This characteristic could be advantageous for screens, as it
321 provides a clean tool for the targeted destruction of a protein of interest³⁰.

322

323 **Discussion**

324

325 In this study, we present a dual system for controlling gene and protein expression in *Bacillus*
326 *subtilis*. We have addressed the issue of CRISPRi leakiness, which has long been a challenge
327 in the field. We accomplished this by utilizing a highly inducible and tighter promoter coupled
328 with a degron system that regulates the leakiness of the dCas9 inducible promoter by
329 degrading unwanted dCas9 molecules. We discovered that inducible gRNA allows for the
330 complete elimination of leakiness while also enhancing the CRISPRi effect on highly
331 expressed genes. Additionally, we engineered a fast, low-noise, reversible degradation system
332 through rapamycin-inducible dimerization, enabling rapid resetting of the CRISPRi system
333 without introducing noise. We identified a tight promoter suitable for gene expression studies
334 and a degron tag that preserves protein levels more effectively than previously published tags,
335 particularly for highly sensitive genes. Furthermore, we found that rapamycin titration permits
336 precise control of protein levels through controlled degradation. Collectively, our work
337 represents significant advancements in synthetic biology for CRISPRi and degron systems in
338 *Bacillus*, opening new avenues for their application in dynamic environments, including

339 microfluidic devices like the mother machine. We anticipate that these engineering tools will
340 facilitate the development of tighter regulatory systems in other organisms, effectively
341 addressing the issue of leakiness and rendering degron systems more versatile. By further
342 optimizing the recently rediscovered tag, it may be possible to minimize degron leakiness,
343 creating a system with zero degradation-related leakiness suitable for genes with very low
344 expression levels. We hope this strategy will enhance and enable better reversible screens in
345 more dynamic environments, ultimately overcoming major limitations associated with these
346 tools.

347

348 **Methods**

349

350 **Culture growth**

351 *B. subtilis* was grown in S750 minimal media supplemented with 1% glucose (except for mother
352 machine experiments). Where indicated, xylose, isopropyl thiogalactoside (IPTG) or
353 Rapamycin was added. Cells were grown at 37 °C to an optical density (OD)₆₀₀ of ~0.4–0.6
354 unless otherwise noted.

355

356 **Strain construction**

357 dCas9 strains were generated upon transformation of PY79 with a 4-5 piece Gibson assembly
358 reaction, amplifying dCas9 from pJMP1 and varying promoters and using mNeonGreen as a
359 fluorescent tag. gRNAs were designed using the software published elsewhere³¹ targeting the
360 mApple gene. The T7 promoter was obtained from the Bacillus Genetic Stock Center item:
361 1A1613; strain name: LacI-T7-LacZ through an MTA agreement with Rice University. The
362 rapamycin construct was provided as a gift from Joey Davis at MIT. Further optimization of the
363 rapamycin construct to adapt it to *Bacillus subtilis* was done by using genetic parts published
364 previously²⁶. When parts were not available from a source, a gBlock was ordered from the
365 sequence. All the genetic designs are available upon request.

366

367 **Flow Cytometry**

368 Cells were seeded in 96-well plates, and ligands (xylose, IPTG) were added overnight. On the
369 following day, fresh media was introduced, including ligands if required. Cells were analyzed
370 while in their respective media using an LSRII flow cytometer equipped with laser lines at 488
371 nm and 561 nm. Post-collection, the cells were subjected to analysis using FlowJo™ v10.9
372 Software (BD Life Sciences) and gated based on forward scatter/side scatter density in
373 logarithmic scale. The fluorescence levels were quantified as the median of the gated events.
374 Finally, the reported fluorescence values were obtained by subtracting the total cellular
375 fluorescence of a wild-type PY79 strain and normalizing to the control as a percentage.

376

377 **Microscopy**

378 For live cell snapshots, cells were grown up to 0.4 OD, pellet and spotted (1 μ l) in 1.5% agar
379 pads onto a No. 1.5 glass-bottomed dish (MatTek). Images were collected using a Nikon
380 Eclipse Ti equipped with a Nikon Plan Apo \times 60/1.4NA objective and an Andor Clara CCD
381 camera. The light source was ColLED-p300 ultra MB using the 450 nm LED and the 555 nm
382 for green and red fluorescent proteins. We use 200 and 500 msec exposure, respectively.

383

384 **Plate reader assays**

385 Cells were seeded in 96-well plates at varying densities and incubated overnight. The following
386 day, the cells were diluted to an optical density of 0.05 at 600 nm (OD600) and subsequently
387 subjected to OD600 measurements and Green fluorescence readings using a Synergy Neo2
388 plate reader equipped with a filter set configured for Excitation at 479 nm with a 20 nm
389 bandwidth and Emission at 520 nm with a 20 nm bandwidth. Ligands were introduced after 2
390 hours of growth. To ensure data accuracy, the initial hour of data was omitted due to observed
391 lag time. Data analysis was performed using Matlab.

392

393 **Mother machine experiments**

394 MOPS-based minimal media supplemented with 0.2% glucose and 0.05% F108 was used in
395 all stages of this experiment. 5 mL Cultures of bAF739 (Rapamycin-inducible degron), and
396 bAF737 (IPTG-inducible degron) were grown to early stationary phase, then cells were
397 concentrated 10-fold by centrifugation and resuspension in fresh media, and each strain was
398 loaded into separate lanes of a Mother Machine device by centrifugation. Media was then flown
399 through both lanes using different syringe pumps. Once cells grew exponentially (~3 h after
400 loading) we started imaging them every 1 minute. After 3 hours (at t = 0 in the figure) we
401 switched the media in the lane having bAF739 by media supplemented with 5 uM Rapamycin,
402 and the media in the lane having bAF737 by media supplemented with 100 uM IPTG.

403

404 **Imaging analysis**

405 Snapshots were visualized and processed in Fiji. Mother machine image analysis was
406 performed with custom-made software³². Briefly, individual lineages were automatically
407 detected and cropped. For each lineage and timepoint, the overall mean fluorescence intensity
408 was computed. This produced a time series of fluorescence intensity per lineage, which was
409 then aggregated over all identified lineages.

410

411

412

413 **Supplemental tables**

414 Table S1:

415 *B. subtilis* strains used in this study.

416

417 **Author Contributions**

418 A.F.F. designed the experiments, performed genetic cloning, flow cytometry assays, imaging,
419 data analysis and wrote the paper. S.C.H provided intellectual support in genetic design. L.G
420 performed mother machine experiments and analysis and D.E wrote the mother machine
421 analysis code. J.P and E.G provided guidance and helped write the manuscript. All authors
422 approved the final version of the manuscript.

423

424

References

425
426
427 1 Hsu, P. D., Lander, E. S. & Zhang, F. Development and applications of CRISPR-
428 Cas9 for genome engineering. *Cell* **157**, 1262-1278 (2014).
<https://doi.org/10.1016/j.cell.2014.05.010>

429 2 Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and
430 beyond. *Nat Biotechnol* **34**, 933-941 (2016). <https://doi.org/10.1038/nbt.3659>

431 3 Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and
432 targeting genomes. *Nat Biotechnol* **32**, 347-355 (2014).
<https://doi.org/10.1038/nbt.2842>

433 4 Qi, L. S. *et al.* Repurposing CRISPR as an RNA-guided platform for sequence-
434 specific control of gene expression. *Cell* **152**, 1173-1183 (2013).
<https://doi.org/10.1016/j.cell.2013.02.022>

435 5 Peters, J. M. *et al.* A Comprehensive, CRISPR-based Functional Analysis of
436 Essential Genes in Bacteria. *Cell* **165**, 1493-1506 (2016).
<https://doi.org/10.1016/j.cell.2016.05.003>

437 6 Gilbert, L. A. *et al.* Genome-Scale CRISPR-Mediated Control of Gene Repression
438 and Activation. *Cell* **159**, 647-661 (2014). <https://doi.org/10.1016/j.cell.2014.09.029>

439 7 Li, Y. *et al.* Metabolic engineering of *Escherichia coli* using CRISPR-Cas9 mediated
440 genome editing. *Metab Eng* **31**, 13-21 (2015).
<https://doi.org/10.1016/j.ymben.2015.06.006>

441 8 Utomo, J. C., Hodgins, C. L. & Ro, D. K. Multiplex Genome Editing in Yeast by
442 CRISPR/Cas9 - A Potent and Agile Tool to Reconstruct Complex Metabolic
443 Pathways. *Front Plant Sci* **12**, 719148 (2021).
<https://doi.org/10.3389/fpls.2021.719148>

444 9 Li, H. *et al.* Applications of genome editing technology in the targeted therapy of
445 human diseases: mechanisms, advances and prospects. *Signal Transduct Target*
446 *Ther* **5**, 1 (2020). <https://doi.org/10.1038/s41392-019-0089-y>

447 10 Larson, M. H. *et al.* CRISPR interference (CRISPRi) for sequence-specific control of
448 gene expression. *Nat Protoc* **8**, 2180-2196 (2013).
<https://doi.org/10.1038/nprot.2013.132>

449 11 Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in *Escherichia coli*:
450 advances and challenges. *Front Microbiol* **5**, 172 (2014).
<https://doi.org/10.3389/fmicb.2014.00172>

451 12 Martens, K. J. A. *et al.* Visualisation of dCas9 target search *in vivo* using an open-
452 microscopy framework. *Nat Commun* **10**, 3552 (2019).
<https://doi.org/10.1038/s41467-019-11514-0>

453 13 Li, X. T. *et al.* tCRISPRi: tunable and reversible, one-step control of gene expression.
454 *Sci Rep* **6**, 39076 (2016). <https://doi.org/10.1038/srep39076>

455 14 Hawkins, J. S. *et al.* Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness
456 Relationships of Essential Genes in *Escherichia coli* and *Bacillus subtilis*. *Cell Syst*
457 **11**, 523-535 e529 (2020). <https://doi.org/10.1016/j.cels.2020.09.009>

458 15 Koopal, B., Kruis, A. J., Claassens, N. J., Nobrega, F. L. & van der Oost, J.
459 Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene
460 Silencing. *ACS Synth Biol* **8**, 216-222 (2019).
<https://doi.org/10.1021/acssynbio.8b00347>

461 16 Chen, K. N. & Ma, B. G. OptoCRISPRi-HD: Engineering a Bacterial Green-Light-
462 Activated CRISPRi System with a High Dynamic Range. *ACS Synth Biol* **12**, 1708-
463 1715 (2023). <https://doi.org/10.1021/acssynbio.3c00035>

464 17 Zetsche, B., Volz, S. E. & Zhang, F. A split-Cas9 architecture for inducible genome
465 editing and transcription modulation. *Nat Biotechnol* **33**, 139-142 (2015).
<https://doi.org/10.1038/nbt.3149>

466 18 Roth, S., Fulcher, L. J. & Sapkota, G. P. Advances in targeted degradation of
467 endogenous proteins. *Cell Mol Life Sci* **76**, 2761-2777 (2019).
<https://doi.org/10.1007/s00018-019-03112-6>

480 19 Izert, M. A., Klimecka, M. M. & Gorna, M. W. Applications of Bacterial Degrons and
481 Degraders - Toward Targeted Protein Degradation in Bacteria. *Front Mol Biosci* **8**,
482 669762 (2021). <https://doi.org/10.3389/fmolb.2021.669762>

483 20 Griffith, K. L. & Grossman, A. D. Inducible protein degradation in *Bacillus subtilis*
484 using heterologous peptide tags and adaptor proteins to target substrates to the
485 protease ClpXP. *Mol Microbiol* **70**, 1012-1025 (2008). <https://doi.org/10.1111/j.1365-2958.2008.06467.x>

487 21 Wiktor, J., Lesterlin, C., Sherratt, D. J. & Dekker, C. CRISPR-mediated control of the
488 bacterial initiation of replication. *Nucleic Acids Res* **44**, 3801-3810 (2016).
489 <https://doi.org/10.1093/nar/gkw214>

490 22 Davis, J. H., Baker, T. A. & Sauer, R. T. Small-molecule control of protein
491 degradation using split adaptors. *ACS Chem Biol* **6**, 1205-1213 (2011).
492 <https://doi.org/10.1021/cb2001389>

493 23 Castillo-Hair, S. M., Fujita, M., Igoshin, O. A. & Tabor, J. J. An Engineered *B. subtilis*
494 Inducible Promoter System with over 10 000-Fold Dynamic Range. *ACS Synth Biol* **8**,
495 1673-1678 (2019). <https://doi.org/10.1021/acssynbio.8b00469>

496 24 Hambraeus, G., Karhumaa, K. & Rutberg, B. A 5' stem-loop and ribosome binding but
497 not translation are important for the stability of *Bacillus subtilis* aprE leader mRNA.
498 *Microbiology (Reading)* **148**, 1795-1803 (2002). <https://doi.org/10.1099/00221287-148-6-1795>

500 25 Si, F. *et al.* Mechanistic Origin of Cell-Size Control and Homeostasis in Bacteria. *Curr
501 Biol* **29**, 1760-1770 e1767 (2019). <https://doi.org/10.1016/j.cub.2019.04.062>

502 26 Guiziou, S. *et al.* A part toolbox to tune genetic expression in *Bacillus subtilis*. *Nucleic
503 Acids Res* **44**, 7495-7508 (2016). <https://doi.org/10.1093/nar/gkw624>

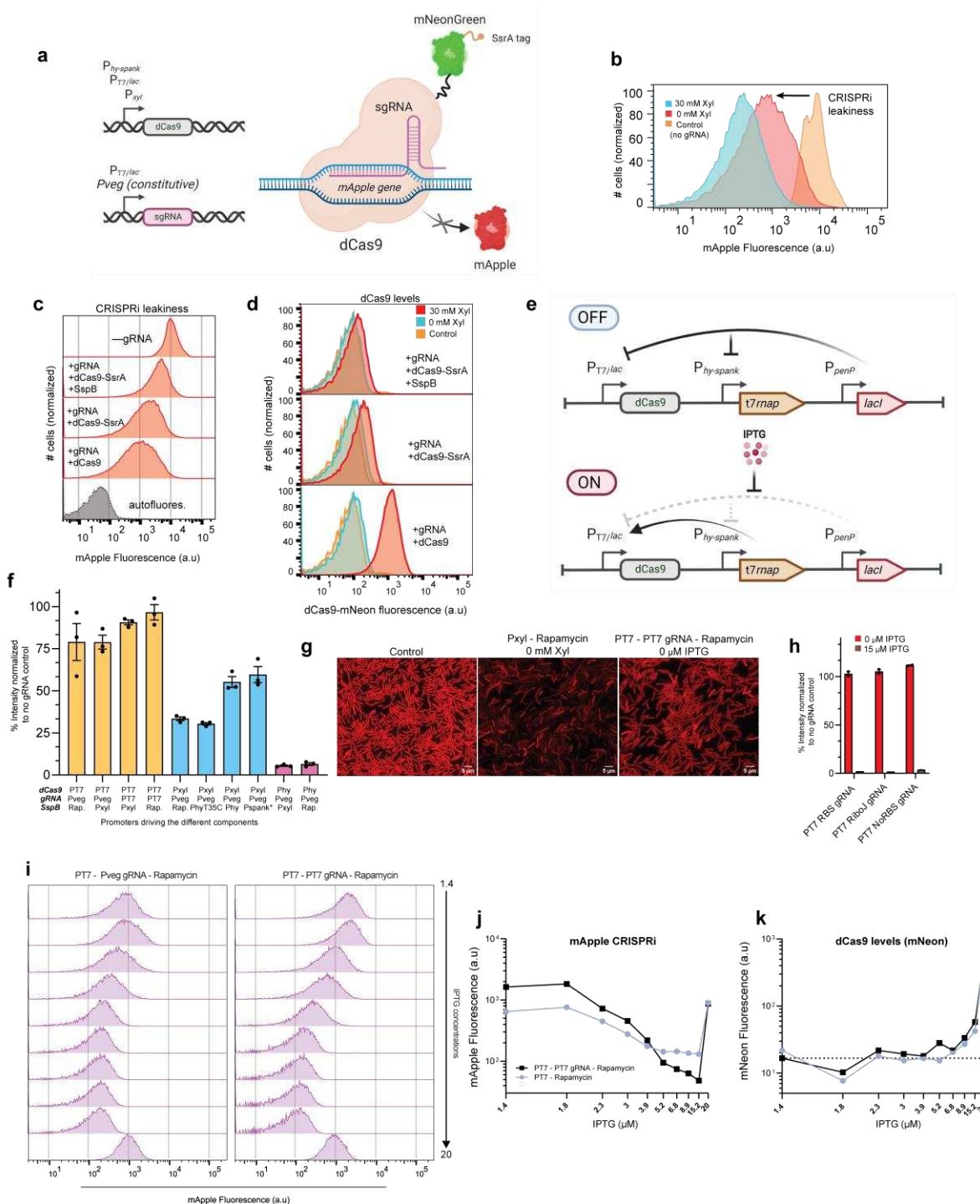
504 27 Mootz, H. D., Blum, E. S., Tyszkiewicz, A. B. & Muir, T. W. Conditional protein
505 splicing: a new tool to control protein structure and function in vitro and in vivo. *J Am
506 Chem Soc* **125**, 10561-10569 (2003). <https://doi.org/10.1021/ja0362813>

507 28 Wilmington, S. R. & Matouschek, A. An Inducible System for Rapid Degradation of
508 Specific Cellular Proteins Using Proteasome Adaptors. *PLoS One* **11**, e0152679
509 (2016). <https://doi.org/10.1371/journal.pone.0152679>

510 29 Potvin-Trottier, L., Luro, S. & Paulsson, J. Microfluidics and single-cell microscopy to
511 study stochastic processes in bacteria. *Curr Opin Microbiol* **43**, 186-192 (2018).
512 <https://doi.org/10.1016/j.mib.2017.12.004>

513 30 Chassin, H. *et al.* A modular degron library for synthetic circuits in mammalian cells.
514 *Nat Commun* **10**, 2013 (2019). <https://doi.org/10.1038/s41467-019-09974-5>

515 31 Wang, T. *et al.* Pooled CRISPR interference screening enables genome-scale
516 functional genomics study in bacteria with superior performance. *Nat Commun* **9**,
517 2475 (2018). <https://doi.org/10.1038/s41467-018-04899-x>


518 32 Eaton D. *et al.* Essentialome-wide Multiplex Imaging Maps Coupling of the Divisome,
519 Cell Envelope and Proteome. (2023 (In preparation)).

520

521

522 **Figure 1**

523

524

525

526

527 **Figure 1. Fine-tuning CRISPRi for leakiness elimination**

528

529 **a**, Schematic diagram of the CRISPRi system. dCas9 expression is driven by three different promoters
530 (described in detail in the text). gRNA is driven by either a constitutive (veg) or inducible (T7) promoter.
531 dCas9 blocks the expression of mApple and is tagged with mNeonGreen for intensity measurements,
532 also displaying the SsrA tag. (Figure generated with BioRender). **b**, Flow cytometry measurements of
533 Pxy1-dCas9 in the presence or absence of Xylose using a strain without gRNA as a control to assess

15

534 leakiness; a representative experiment is shown. **c**, Leakiness measurement in different strains when
535 adding an SsrA tag and SspB compared to the no gRNA control. mApple fluorescence recovery
536 indicates a reduction in leakiness throughout the study. **d**, Fluorescence measurements of dCas9 levels
537 measured simultaneously in **c**. Higher mNeon fluorescence indicates higher dCas9 levels. **e**, Schematic
538 diagram of the T7 promoter and the new design including dCas9 and the switching mechanism upon
539 addition of IPTG. dCas9 was replaced by gRNA when appropriate (Figure generated with BioRender).
540 **f**, Quantification of leakiness from flow cytometry measurements with all the different genetic constructs,
541 mixing a dCas9, gRNA, and SspB construct with the promoters listed in **a**. A 100% value means no
542 leakiness. The first promoter is driving dCas9 and the second promoter drives SspB unless T7 gRNA is
543 indicated, which means T7 is driving the gRNA expression (n= 3 biological replicates). **g**, Live cell
544 snapshots on agar pads of the least leaky construct vs. control and Pxyl constructs. T7-T7 gRNA-
545 Rapamycin exhibits high fluorescence homogeneity, indicating less leakiness compared to the Pxyl
546 construct. **h**, Quantification via flow cytometry of leakiness of the T7 – T7 gRNA - Rapamycin construct
547 while keeping the RBS, deleting it or replacing it by RiboJ (n= 3 biological replicates). **i**, IPTG titration of
548 T7 – Rapamycin and T7- T7 gRNA- Rapamycin constructs looking at cell distributions in flow cytometry.
549 **j**, Quantification of median mApple fluorescence from **i** and the corresponding dCas9 levels in **k**
550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

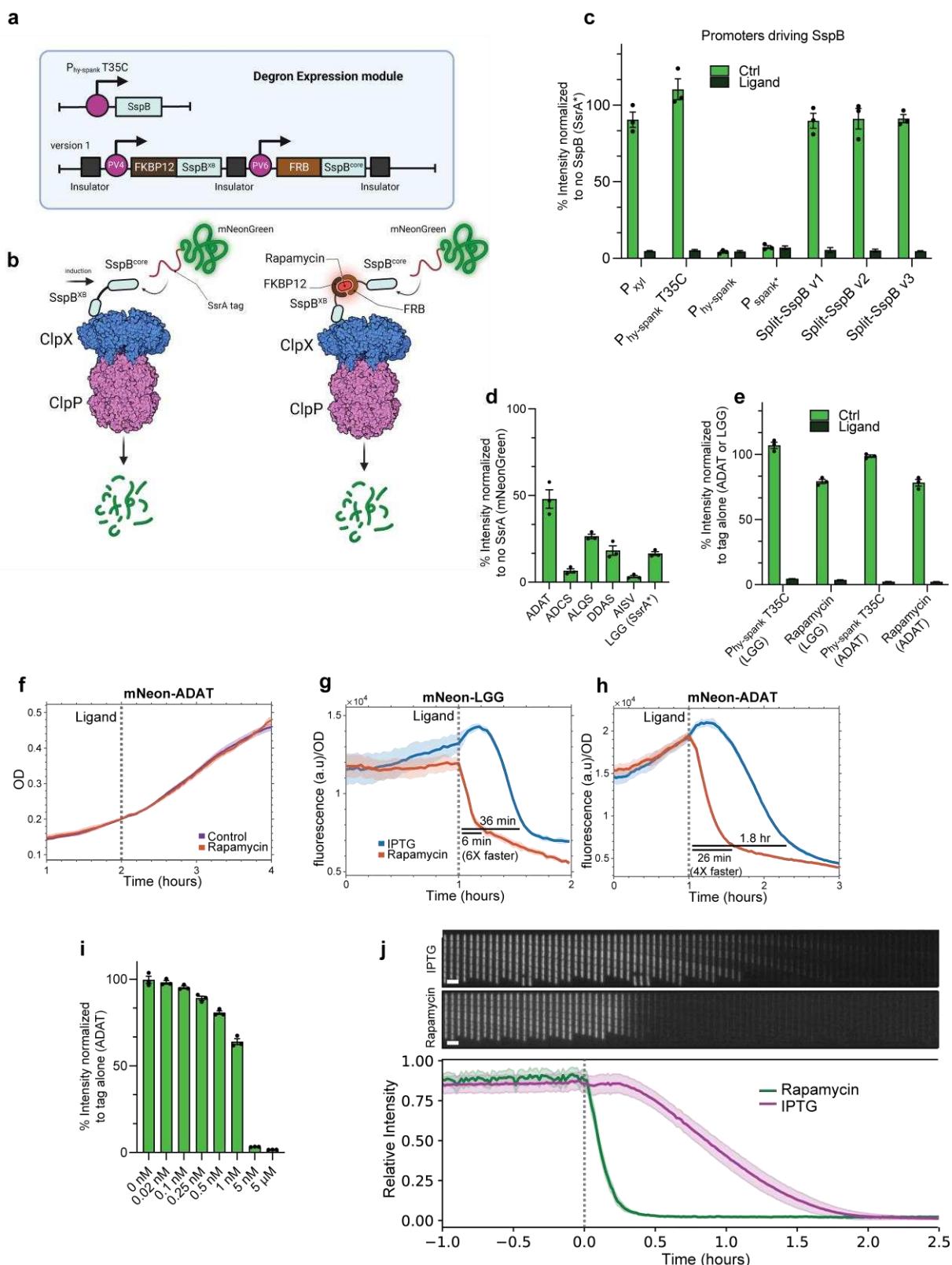
570

571

572

573

574


575

576

577

578 **Figure 2**

579

580

581

582 **a**, Schematic diagram of the two degron modalities. The inducible promoter version utilizes Phy-spank
583 T35C to drive full-length SspB expression upon IPTG induction. The rapamycin-induced dimerization
584 construct has been re-engineered for *B. subtilis*, comprising two constitutive promoters, PV4 and PV6,

585 driving the expression of FKBP12-SspB^{XB} subunit and FRB-SspB^{core} along with genetic insulators. **b**,
586 Diagram representing the molecular mechanism of degradation depending on the construct. In the
587 promoter-inducible version, the protein tagged with SsrA binds to the SspB^{core} subunit and is
588 subsequently carried to ClpX for degradation. In the rapamycin-inducible version, SspB undergoes
589 dimerization in the presence of rapamycin, further binding to the SsrA tag and targeting the protein of
590 interest for degradation. **c**, Flow cytometry quantification of degron fluorescence under different SspB
591 constructs. Ligands (Xylose, IPTG, or Rapamycin) were added accordingly. Rapamycin constructs with
592 different promoter pairs were assessed: v1 = PV4/PV6, v2 = PV5/PV7, v3 = PV3/PV5, where a higher
593 number corresponds to lower expression strength. Results were normalized to mNeon expression
594 without the SsrA tag as a control (n=3 biological replicates). **d**, SsrA tag leakiness screen. Intensities
595 were normalized to mNeon expression without the SsrA tag (n=3 biological replicates). **e**, Comparison
596 of ADAT leakiness and full degradation in Phy-spank T35C and rapamycin constructs versus LGG tag
597 (n=3 biological replicates). **f**, OD600 measurements of control versus rapamycin-treated cells (n=12
598 technical replicates). **g**, Fluorescence measurements in plate reader format of LGG and **h**, ADAT tagged
599 mNeon green cells. The interval is 2 minutes, and data from the first hour were removed due to low cell
600 density. The dotted line indicates the addition of rapamycin/IPTG. The fluorescence values were
601 normalized by the OD measured simultaneously (n=12 technical replicates). **i**, Fluorescence
602 quantification by flow cytometry of rapamycin titration (n=3 biological replicates). **j**, (Top) Kymographs
603 of a representative Mother Machine lineage of IPTG-inducible degron ADAT and Rapamycin-inducible
604 degron ADAT during the course of a time-lapse experiment. There is a time difference of 3 minutes
605 between each slice of the kymographs. (Bottom) Median of the mean fluorescence intensity per lineage
606 aggregated over all the lineages analyzed under each condition for Rapamycin (green) and IPTG
607 (magenta), normalized with respect to the maximum and minimum mean fluorescence intensities per
608 lineage. The shades represent the mean absolute deviation. At t = 0, we supplemented the media with
609 5 uM Rapamycin and 100 uM IPTG. The dotted line indicates the time when ligands were added.

610

611

612

613