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Abstract 

There is increasing evidence of shared genetic factors between psychiatric disorders and brain 

magnetic resonance imaging (MRI) phenotypes. However, deciphering the joint genetic architecture 

of these outcomes has proven challenging, and new approaches are needed to infer potential genetic 

structure underlying those phenotypes. Here, we demonstrate how multivariate analyses can help 

reveal links between MRI phenotypes and psychiatric disorders missed by univariate approaches. We 

first conducted univariate and multivariate genome-wide association studies (GWAS) for eight MRI-

derived brain volume phenotypes in 20K UK Biobank participants. We performed various enrichment 

analyses to assess whether and how univariate and multitrait approaches can distinguish disorder-

associated and non-disorder-associated variants from six psychiatric disorders: bipolarity, attention-

deficit/hyperactivity disorder (ADHD), autism, schizophrenia, obsessive-compulsive disorder, and 

major depressive disorder. Univariate MRI GWAS displayed only negligible genetic correlation with 

psychiatric disorders at all the levels we investigated. Multitrait GWAS identified multiple new 

associations and showed significant enrichment for variants related to both ADHD and schizophrenia. 

We further clustered top associated variants based on their MRI multitrait association using an 

optimized k-medoids approach and detected two clusters displaying not only enrichment for 

association with ADHD and schizophrenia, but also consistent direction of effects. Functional 

annotation analyses pointed to multiple potential mechanisms, suggesting in particular a role of 

neurotrophin pathways on both MRI and schizophrenia. Altogether our results show that multitrait 

association signature can be used to infer genetically-driven latent MRI variables associated with 

psychiatric disorders, opening paths for future biomarker development. 
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Introduction 

Psychiatric disorders present strong heterogeneity in their clinical presentation and identifying 

biomarkers remains a critical research area to facilitate diagnosis and implement more focused 

treatment options1. The study of neuroimaging phenotypes and their association with mental 

disorders has arisen as a major direction to develop robust and reliable biomarkers and pathological 

feature2. MRI phenotypes have the potential to capture endophenotypes related to the molecular and 

cellular mechanisms involved in the sources of the disorders, and thus improve our understanding of 

the underlying pathophysiology3. Thousands of studies have been published in the field, with 

approximately a third based on the analysis of structural MRI data (e.g. nuclei volumes and shapes, 

grey and white matter ratio, etc)4. These works have contributed to the identification of links between 

brain regions and psychiatric disorders, such as the increased ventricular size in schizophrenia5. 

However, other associations have not been consistently identified and remain controversial, with for 

example, both higher6 and lower7 putamen volume having been associated with higher risk for 

schizophrenia.  

Neuroimaging genomics is a recent field that offers new opportunities to address these questions 

through the integration of genomic and imaging data8. Regional volumetric phenotypes have a strong 

genetic component with estimated heritability (/2) commonly above 50%9–11. Many psychiatric 

disorders, such as schizophrenia (/2=80%)5, bipolar disorder (/2=80%)12,13, attention-

deficit/hyperactivity disorder (/2=74%)14, autism spectrum disorder (/2=64-91%)15, obsessive-

compulsive disorder (/2=27-65%)16 or major depressive disorder (/2=32-37%)17,18 also display high 

heritability. Over the past years there has been increasing evidences of genetic correlation between 

those disorders and MRI phenotypes, shedding new light on potential mechanisms between MRI 

phenotypes and mental disorders10,19–25. However, deciphering the joint genetic architecture of high-

dimensional neuroimaging outcomes and how they impact mental disorders has proven challenging, 

and new approaches are needed for inferring potential shared genetic structure underlying these 

disorders. 

Here, we investigated the potential of multivariate genetic approaches to infer links between MRI 

phenotypes and mental disorders. As a proof of concept, we considered eight MRI phenotypes already 

investigated in previous studies26 and six disorders: attention-deficit/hyperactivity disorder (ADHD), 

autism spectrum disorder (ASD), bipolar disorder (BIP), major depressive disorder (MDD), obsessive-

compulsive disorder (OCD) and schizophrenia (SCZ). We first conducted univariate and multivariate 

genome-wide association screenings (GWAS) of the eight MRI phenotypes and examined genetic 

correlation with each of the six disorders. We then investigated the utility of univariate and 

multivariate genetic results to improve detection of genetic variants associated with the disorders. 

Finally, we applied a clustering approach on the genetic results matrix and searched for latent MRI 

variables displaying consistent genetic signal with mental disorders. This analysis identified candidate 

latent variables for schizophrenia and ADHD, demonstrating the potential of multivariate MRI genetic 

analysis to infer potential biomarkers for mental disorders.  

  

Results  

Univariate and multitrait GWAS of MRI phenotypes 

We first assessed the potential gain of using multivariate versus univariate association tests for the 

analysis of eight MRI phenotypes: volume of the nucleus accumbens, amygdala, caudate nucleus, 

pallidum, putamen, thalamus, hippocampus and intracranial volume (ICV). We conducted univariate 

GWAS on 11,993,198 variants using Plink227 (Fig. S1) in 20,744 unrelated participants from the UK 

Biobank28. The multivariate analysis was conducted using an omnibus test applied to the univariate 
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summary statistics, as implemented in the JASS software29. The univariate GWAS detected a total of 

41 genome-wide significant phenotype-locus associations (P < 6.25 x 10-9 after accounting for the eight 

GWAS conducted), involving 34 loci, and with six loci displaying significant association for at least two 

phenotypes (Table S1). We compared these results against previous GWAS of the same phenotypes 

conducted in independent samples as part of the ENIGMA consortium30. Five out of the eight 

associations reported in the ENIGMA study were also genome-wide significant in our analysis, the 

three remaining being within the threshold of replicability (P < 6.2 x 10-3, Table S2). Out of the 41 

associations detected only in the present analysis, we observed a strong enrichment for association in 

ENIGMA, with 40% (16 out of 41) of the closest top variants being nominally significant (P < 0.05) (Table 

S1).    

Multitrait analysis detected a total of 49 loci associated at genome-wide significance level (P < 5 

x10-8), corresponding to a 44% increase in power as compared to univariate analysis. This included 22 

out of the 34 loci identified with the univariate analysis, and 25 new associations not identified by the 

univariate screening (Table S3, Fig. S2). Minimum univariate p-value at these new signals ranged from 

0.003 to 1.8 x 10-8 highlighting the ability of the multitrait test to detect association with limited single-

trait signal. The univariate association pattern varied substantially across these new signals, with some 

variants displaying modest association with multiple traits, and other displaying strong association 

with only one or two traits. Notably, we observed enrichment for association with caudate and 

putamen volumes with almost two third (15 out of 25) of univariate p-values being nominally 

significant. Out of the 25 new associated variants, half of them could be mapped with genes using data 

available on the NCBI website31. GeneCards32 search showed that seven of them are associated with 

brain or psychiatric disorders (Table S3).  

 

Shared genetic factors between neuroanatomical traits and psychiatric disorders 

We estimated the genetic correlation between the MRI phenotypes and six disorders, attention-

deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar disorder (BIP), major 

depressive disorder (MDD), obsessive-compulsive disorder (OCD) and schizophrenia (SCZ) (Table S4), 

using both genome-wide variants based on the LDscore regression33,34 and top associated variants from 

the multitrait test. Genome-wide correlations between disorders were all significant, ranging from 0.27 

to 0.71 (schizophrenia and bipolar disorder) (Fig. 1a). Similar genetic correlation estimates between 

these two disorders were obtained by Ruderfer et al35, Bulik-Sullivan et al34 and others23. We observed 

similarly high correlation across MRI phenotypes, ranging from 0.22 to 0.67 26. Conversely, there was 

low or no correlations between the MRI phenotypes and the disorders, with few significative 

correlations ranging from -0.17 (between ADHD and ICV) to 0.24 (between obsessive-compulsive 

disorder and accumbens volume). Correlation between disorders based on top variants were 

qualitatively similar (Fig. 1b) or slightly lower, with an exception for autism spectrum disorder and 

attention-deficit hyperactivity disorder, being more significant than genome-wide correlation (ÿ= 0.77, 

P < 1 x 10-16). Correlations between phenotypes at top associated variants were substantially larger 

than those measured at the genome-wide level, and highly significant, ranging from 0.71 to 0.94 (P < 

1 x 10-16). Few significant correlations were detected between disorders and phenotypes, with the 

maximum correlation observed between hippocampal volume and ADHD (ÿ = -0.09, P = 1.7 x 10-4). 

Correlation analyses are based on signed statistics. However, some variants might be associated 

with both mental disorder and MRI without displaying concordant effect across the genome. To 

address this question, we assessed whether genetic associations p-value with MRI phenotype can 

inform associations with mental disorders. For each univariate MRI GWAS and for the multitrait 

analysis, we conducted a stepwise filtering of associated loci based on the strength of significance and 

tested the enrichment of the top variant per locus with each of the six psychiatric disorders. Note that 
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the size of the disorder9s GWASs implies an overall enrichment of signal for any random set of variants, 

and simple enrichment analysis method was therefore not applicable. Instead, we used an empirical 

approach, estimating the probability of enrichment from the selected variants as compared to a null 

distribution derived through permutation (see methods). Except for hippocampus and autism 

spectrum disorder, which displayed an enrichment just above the significance threshold after 

correction for multiple testing (Pthreshold = 5.4 x 10-6), variants selected through univariate 

neuroanatomical GWAS results did not show significant association with disorders (Fig. 2). Conversely, 

the variants selected through the multivariate analysis displayed highly significant associations with 

ADHD and schizophrenia (P < 10-7, the smallest p-value achievable in our permutation-based analysis). 

For ADHD, enrichment became significant when including variants with P < 1.5 x 10-4 but was not 

significant anymore when including only the top associated JASS variants (P < 1.5 x 10-8), likely because 

of a limited number of variants in this category (N < 40). For schizophrenia, enrichment became 

significant when including variants with P < 2.9 x 10-3 and remained significant under the smallest p-

value we can detect. 

As a complementary analysis, we investigated whether this significant enrichment for signal could 

be translated into improved polygenic risk models using the multitrait results, and schizophrenia as a 

case study. We derived two polygenic risk scores (PRS), one using a standard approach applied to the 

schizophrenia GWAS only, and a weighted PRS as implemented in SBayesRC36 using the JASS 

association signal as weight (see methods). We applied both PRSs to an independent set of 585 

schizophrenia cases and 9,396 controls from the UK biobank, and measured prediction using the area 

under the receiver operating curve (AUC). The standard model produced an AUC of 0.603 (SD=0.013), 

and the JASS weighted PRS produced and AUC of 0.621 (SD=0.013). Although the difference between 

both approaches was small (P = 0.095), it still suggests that neuroanatomical GWAS results could not 

only help identifying disorder associated variants but might also improve the predictive accuracy of 

mental disorder PRS. 

 

Supervised learning of disorder genetic risk based on MRI association 

The strong enrichment of associations with ADHD and schizophrenia for variants significant in the 

multitrait MRI analysis confirmed some shared genetic factors between neuroanatomical traits and 

mental disorders. However, this enrichment was not informative regarding potential latent biomarkers 

involved in the genetics of these two outcomes. Indeed, the omnibus multitrait test is an eight degree 

of freedom test, whose significance is independent of the direction of the effects across the eight traits. 

That is, the multitrait test can capture equally a range of heterogeneous associations with the MRI 

phenotypes. In parallel, univariate MRI GWAS show neither concordant association with the disorder, 

nor enrichment for association (Figs. 1-2). Given these two results, we wondered whether a naïve 

supervised learning approach applied to the entire genome could recover potential linear 

combinations of the MRI phenotypes association statistics which could explain the enrichment for 

association with ADHD and schizophrenia. In practice, we performed a multiple regression where the 

Z-score of the disease was treated as the outcome and the Z-score of the eight MRI phenotypes at the 

same variants was use as predictor: þĂÿĉąĈĂăĈ = ∑ Āÿþýā�ÿÿ=1&8 . We applied this approach using the 

top associated variant per locus and considered a range of threshold Pt on the p-value with the disorder 

(see methods). As showed in Table S5, we did not identify any significant linear combination able to 

predict the disorder genetic association after accounting for multiple testing. The adjusted r-square 

was very low for most of threshold considered (r-square < 0.004 for Pt = 5 x 10-4), although one subset 

showed nominal significance and slightly larger r-square for schizophrenia (r-square < 0.069, P = 0.028, 

for Pt = 5 x 10-4).  
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Unsupervised learning to identify latent genetic pathways 

The null result from the supervised learning suggested that the genetic relationship between 

mental disorder and MRI phenotypes could not be summarized at the genome-wide level and might 

instead be heterogenous across the genome. One possibility is that the neuroanatomical phenotypes 

depend on multiple genetic pathways with various effects on the disorders. Given the strong genetic 

correlation across MRI phenotypes (Fig. 1), we considered using an unsupervised learning approach, 

where variants were first grouped based on the clustering of the multitrait matrix of variants-trait 

association, and then tested jointly for association with the disorders. Intuitively, this approach 

assumes that there exist subsets of variants with similar multitrait association pattern (e.g., variants 

positively associated with two traits, and negatively associated with other traits), that encode distinct 

biological functions associated with mental disorders. Figure 3 illustrates the clustering approach we 

implemented. In brief, we applied a spherical k-medoids clustering algorithm to the MRI association 

matrix, assuming a number of clusters between 2 to 12, resulting in a total of 77 possible clusters. For 

each cluster, we tested the association of a genetic risk score derived as þ = ∑ Āÿ� þÿ, where Āÿ and þÿ  are a pre-specified weight and the Z-score of variant ÿ in the disorder GWAS, and � is a set of variants 

within the cluster. The weight of each variant was defined so that variants close to the centroid of the 

cluster had large positive weight and those distant from the centroid had null or negative weights 

(Figure 3 and methods).  

Figure 4 presents the association between the top cluster and each of the six disorders, while 

filtering out variants based on their multitrait association p-value. We observed significant associations 

for the two disorders also identified in the JASS enrichment analyses. One cluster was significantly 

associated with ADHD (min P = 3.0 x 10-9) and another one with schizophrenia (min P = 2.0 x 10-9). 

There was no significant association with the other disorders. The top ADHD associated cluster was 

observed for a two-cluster model and included 939 independent variants (Table S6). The strongest 

association was observed when using a JASS p-value threshold of 1.0 x 10-5 resulting in a subset of 104 

variants. The top schizophrenia associated cluster was observed when using an eight-clusters model 

and included 349 independent variants (Table S7). The strongest association was observed when using 

a JASS p-value threshold of 3.1 x 10-5 resulting in a subset of 60 variants. Note that there is substantial 

overlap of variants across the 77 clusters (e.g., cluster 1 from the two-clusters model necessarily 

overlap with some of the clusters from the three and more-clusters models, see Fig. 3). As showed in 

Figures S3, clusters overlapping with the best schizophrenia and ADHD clusters display enrichment 

approximately proportional to the overlap, confirming that these top clusters capture most of the 

association with the disorders. Finally, in line with the correlation analyses (Fig. 1), the application of 

the þ test on subsets of variants selected based on univariate MRI association signal did not identify 

any association (Figure 4), except for Pallidum volume and ADHD (P = 8.19 x 10-7), that just reach the 

Bonferroni corrected significance threshold.  

 

Characteristics of the latent neuroanatomical phenotypes 

We mapped variants within each of the two clusters to their nearest genes and conducted a 

functional annotation overrepresentation analysis using DAVID37 (Table S10). The ADHD associated 

cluster was poorly specific, including a large number of variants all over the genome (Fig. S3). It showed 

highly significant overrepresentation of annotations but with low fold-enrichment (Fig. S4, Table S8). 

Largest fold-enrichment (5.28, Bonferroni corrected P=6.7 x 10-5) was observed for protein 

phosphorylation. The most significant one was for Polar residues (min P = 1.1 x 10-10), but enrichment 

was very modest (average = 1.7). The top significant annotation for the schizophrenia associated 

cluster was neurotrophins signaling pathway (Bonferroni corrected P = 2.2 x 10-3), which displays a very 

strong enrichment (up to 27.06, Fig. S5, Table S9), and was the best candidate mechanism underlying 
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the shared genetics between MRI phenotypes and schizophrenia. Peack significance for that pathway 

strongly coincides with the association with schizophrenia. Moreover, recent meta-analysis suggests 

that neurotrophins might play a role in the pathophysiology of schizophrenia38–40 and it has been 

reported as a potential biomarker for brain function, structure and cognition41. The neurotrophins 

pathway overrepresentation was highly specific to this cluster, and we found no similar enrichment 

from top MRI variants after excluding those within that cluster. Overrepresented annotations from the 

two clusters, on top of those previously cited, included kinase, EGFR tyrosine kinase inhibitor 

resistance, and Serine/threonine-protein kinase. Several of these annotations have also been discussed 

in schizophrenia studies42–44, suggesting that other mechanisms might be at play. Figure 5a summarizes 

the annotation mapped to the two clusters along potential evidence for association with schizophrenia 

and ADHD extracted from a quantitative literature search. 

By construction, clusters inferred from the spherical k-medoids capture association effects in a 

specific direction in the multidimensional MRI space. The weights on each phenotype from each cluster 

can therefore be used to form a composite latent variable associated with the genetics variants (Fig. 

5b-c). We computed this latent variable for the cluster associated with schizophrenia using the 20,744 

UKB participants. A GWAS analysis of this variable identified 12 associated loci (Figure S6 and Table 

S11), five of them not identified by the univariate MRI GWAS: rs9874537 (P = 4.5 x 10-8, min PMRI = 3.4 

x 10-5), rs768519054 (P = 4.6 x 10-8, min PMRI = 3.4 x 10-5), rs298619 (P = 4.7 x 10-10, min PMRI = 3.3 x 10-

7), rs12762089 (P = 7.0 x 10-9, min PMRI = 2.8 x 10-4), and rs28678082 (P = 3.4 x 10-8, min PMRI = 4.8 x 10-

7). Although several of these variants can be mapped to genes related to schizophrenia (e.g. AUTS245,46 

and ABCC547), there was limited direct association with the disorder. Moreover, repeating the DAVID37 

analysis on the top associated variants at various threshold did not point toward any significant 

annotation enrichment, including neurotrophins in particular. This is in agreement with the supervised 

clustering analysis that did no identified linear combination of phenotype relevant for the genetic of 

any of the disorder studied. It suggests that the MRI phenotypes studied were more likely influenced 

by specific genetic mechanisms shared with schizophrenia, two of them identified in our clustering 

analysis, rather than on a mediation path of the disorder (Fig. 5d).  

 

Discussion  

Neuroimaging technologies hold great promise to link specific symptoms of mental health disorders 

to abnormal patterns of brain activity. Characterizing these links can help understanding the disorder 

etiology and ultimately improve diagnostic and suggest new classifications of patients to implement 

more personalized treatments. However, as other candidate biomarkers, neuroimaging data can suffer 

from multiple issues, including confounding48 and reverse causation49. In this study we showed that 

multivariate neuroimaging genomics approaches can provide a compelling framework to circumvent 

these limitations. Using a set of eight MRI phenotypes and six common mental disorders, we showed 

that a simple multitrait genetic analysis of MRI phenotypes can be much more informative on the 

genetics of disorder than any single univariate analysis. The proposed screening identified more MRI 

associated variants and identified enrichment for association with ADHD and Schizophrenia, when 

univariate MRI convey no information on the genetic risk of any of the six disorders considered. Our 

investigation of potential latent genetic variables underlying MRI phenotypes associated with the 

disorders did not find any compelling evidence when using a supervised genome-wide based 

approaches. Conversely, more advance modeling based on multitrait association clustering identified 

sets of variants underlying MRI phenotypes that were relevant for both outcomes. Our in silico 

functional annotation analysis further suggested the presence of a latent genetically-driven variable 

involved in the neurotrophins pathway influencing both the brain volume studied and 
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schizophrenia38,39,41. This result opens paths for the inference of latent MRI variables, and ultimately 

for biomarker development and mediation-effects analyses.  

This study has also some limitations. First, we used a set of eight MRI phenotypes without prior 

evaluation of their relevance towards the disorders considered. Future work using an optimal set of 

univariate phenotypes for a given disorder, or simply a much larger set of brain phenotypes, might 

maximize the detection of new association and help inferring more refined latent variables. The 

proposed framework might also be used along other approaches, including for example machine 

learning to extract MRI features of interest50. Second, we used an omnibus test to conduct our 

multitrait test. We previously showed that this fairly simple and standard approach performs well in 

multitrait GWAS analyses51. However, many alternatives have been proposed for the analysis of brain 

imaging data8. Comparing multivariate methods is out of the scope of this work, but we appreciate 

that other methods might further boost detection in new associations. Third, there exists hundreds of 

methods to perform data clustering. Here we used a spherical k-means as we believe its properties 

fitted well with the objective of identifying variants displaying similar multitrait association direction. 

The identification of two clusters of interest confirms the relevance of this approach. However, future 

work might consider alternative clustering methods. Fourth, we used mental disorder GWASs that 

typically use a broad disorder definition to maximize sample size. It is well accepted that mental 

disorders such as schizophrenia52 are hard to diagnose and even if the disorder is diagnosed, it can be 

divided into subtypes. Studying those subtypes might help refining potential links with MRI 

phenotypes. Large-scale GWAS of such disorder subtypes remain very sparse, but the proposed 

approach can easily be applied to those data as they become available. 

Overall, the results of this study suggest that studying MRI phenotypes using a multivariate analysis 

approach can enhance the understanding of the links between these phenotypes and psychiatric 

disorders. The use of genetic variants identified through multivariate analysis and latent genetic 

variables derived from these variants can improve the detection of concordant signals for psychiatric 

disorders and opens paths for the development of biomarkers for the disorders. 
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 Method 

Neuroanatomical brain phenotypes and mental disorder GWAS 

We conducted genome-wide association studies (GWAS) of eight regional brain volumes: intra-

cranial, accumbens, amygdala, caudate, hippocampus, pallidum, putamen and thalamus, on a subset 

of 20,744 unrelated UK Biobank participants (10,861 females, 9,883 males). Brain phenotypes were 

derived from raw MRI (magnetic resonance imaging) data using the Freesurfer software53. The 

phenotypes were selected based on a recent study from our group26. The GWAS included 11,993,198 

variants either genotyped or imputed and was conducted using Plink227 and standard quality control 

parametrization. We filtered out variants with imputation info score smaller than 0.8, missing rate 

above 0.05, minor allele frequency (MAF) below 0.1%, or Hardy-Weinberg equilibrium test below 1.0 

x 10-6. We also removed individuals with missing rate larger than 0.1, or kinship relatedness larger than 

0.025. Genomic control value (���) ranged from 1.058 (putamen volume GWAS) to 1.070 (thalamus 

volume GWAS) (Fig. S1). For comparison purposes, we also used publicly available GWAS results for 

the same phenotypes from the ENIGMA consortium30. ENIGMA discovery sample included 13,171 

individuals and approximately 7.5 million variants, with 6 million variants overlapping with the UK 

Biobank GWAS. Genetic association with brain phenotype were compared with GWASs of six mental 

disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolar 

disorder (BIP), major depressive disorder (MDD), obsessive-compulsive disorder (OCD) and 

schizophrenia (SCZ). GWAS from these disorders were conducted by the Psychiatric Genomic 

Consortium (PGC)54–59 and did not include UK Biobank participants (Table S4).  

 

Genetic correlation 

Genome-wide correlations between brain phenotypes and psychiatric disorders were estimated 

using the LD-score python package33,34. Correlations based on top associated variants were done 

following the approach used by Pickrell et al60. Briefly, for each GWAS Ā, we selected the top associated 

variants per independent locus (see the next section for the definition of independent loci), extracted 

the association coefficient at those variants for the other GWAS Ă b Ā, and derived the correlation 

between coefficient ÿĀĂ = �Āă(ÿĀ, ÿĂ≠Ā) with ÿĀ the vector of genetic variants effect on phenotype j. 

Note that this result in an asymmetric matrix with ÿĀĂ  potentially different from ÿĂĀ, as the variants 

selected for the index GWAS Ā might differ from the variants selected for GWAS Ă. In the case of 

phenotype to phenotype correlation using independent variants, we accounted for bias introduced by 

phenotypic correlation and sample overlap using the following formula51: ÿÿ,Ā = ÿÿăÿĀý = ÿÿ̂ăÿĀ̂ý 2 ÿĉÿ�ÿÿÿĀ  

With ÿÿ,Ā the corrected phenotypic covariance, ÿÿ and ÿĀ the vector of genetic effects for the pair of 

phenotypes i and j, ÿÿ̂ and ÿĀ̂ their respective estimates, ý the number of variants, ÿÿ and ÿĀ the 

respective sample size for phenotypes ÿ and Ā, ÿĉ the sample overlap and ÿ� the genome-wide 

phenotypic covariance. 

 

LD-region based comparison 

Except if specified otherwise, comparisons across GWAS results were done using the top associated 

variants from independent loci defined based on linkage disequilibrium (LD) blocks61. Briefly, the 

genome was split into 1,703 loci using 1000 Genomes Phase 1 dataset as a reference panel. Overall, 

1668 loci had GWAS summary statistics for at least one phenotype. Focusing on the 7,099,802 variants 

with data on both MRI and disorders, loci included 4256 variants on average, with a maximum of 9,859 

and a minimum of 16. Using those independent loci for comparison purpose avoid overcounting 

association signals for correlated variants and addresses the issue of missing summary statistics (e.g., 

when the top associated variant for one phenotype is not available for another phenotype).         
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Multitrait GWAS analysis 

Multitrait analyses were performed using JASS29, a polyvalent Python package that allows for the 

computation of various joint test from GWAS summary statistics. Here, we applied an omnibus test, 

where a joint statistic ÿąăĄÿ  is derived as: ÿąăĄÿ = �ă�21�, where � = (�1, �2, & , �ā) is a vector of ā 

Z-scores (for ā GWAS results), derived from the summary statistics as �ÿ = ÿÿ̂ ÿÿ̂⁄  where ÿÿ̂ and ÿÿ̂ are 

the estimated regression coefficient and its standard error for study ÿ ; and � is the covariance matrix 

between the Z-scores under the null. The latter covariance, �, is approximated by the intercept 

covariance matrix from multitrait LDscore regression33,34 applied to the GWAS summary statistics. 

Under the null hypothesis of no association between the variant tested and any of the ā phenotypes 

tested jointly, ÿąăĄÿ follows a χ² distribution with ā degrees of freedom. As for univariate GWAS 

analyses, results comparisons were conducted using the top associated variants from predefined 

independent loci. 

 

Enrichment for association with psychiatric disorders 

We estimated whether genetic variants selected based on univariate and multivariate association 

results with the MRI phenotypes were enriched for association signal with the psychiatric disorders. 

Enrichment was conducted for each brain phenotype-psychiatric disorder pair using the top associated 

variants per locus, starting with 1,668 top variants with the lowest p-values, then 1660 and iteratively 

removing 10 variants, going down to the top 10 independent variants with the lowest p-value. We 

tested the enrichment using a joint association statistic between selected variants and each disorder 

and derived as: þċ = ∑ �2ÿÿ=1&Ą , where �2ÿ = (�21, & , �2Ą) is a vector of ÿ chi-squared (for ÿ 

variants). Under the null hypothesis of no association, þċ is expected to follow a chi-squared 

distribution with ÿ degrees of freedom. However, this test itself is not necessarily a good indicator of 

potential enrichment. Indeed, because of the large sample size of the disorder GWAS and polygenicity, 

the association Z-scores do not follow a standardized normal distribution, but instead display a 

variance larger than 1. As a result, random sets of variants display more significant association with 

the outcome than expected by chance from null data. Modeling the null distribution of þċ from a 

simple polygenic model based on the estimated variance of the Z-score was unsuccessful (data not 

shown). Instead, we derived þċ.ĄċĂĂ, an empirical distribution of þċ under the null based on the random 

sampling of þĈ  variants. This distribution was then used to derive the p-value for enrichment as: �Ă� =∑ (þċ.ąĀĉ > þċ.ĄċĂĂ.ÿ)ÿ=1&þ� þĈ⁄ . Due to computational cost, we limited the number of samplings, þĈ  

to 10,000,000, so that the minimum p-value that can be derived equals 1 x10-7.  

 

Polygenic risk score 

We investigated the potential of using association results from the multitrait brain phenotypes 

analysis to improve the predictive power of schizophrenia polygenic risk models. As multitrait analysis 

does not produce a signed statistic, it cannot be used to directly produce PRS weights. Instead, we 

relied on a the SbayesRC36 approach, a polyvalent method that allow to select the variants for polygenic 

risk score analyses using binary and continuous annotations. We applied SbayesRC to select variants 

from the Schizophrenia GWAS with and without the multitrait signal annotation. Those variants were 

passed to PRSice62 to compute the PRS for both models. For the annotated PRS, we generated a 

continuous annotation from the eight degree of freedom chi-square statistic from the multi-trait 

analysis. To limit the impact of extreme statistics, we set the maximum value of the annotation to the 

value of the 99.9% highest percentile (�2 = 40). 

The two sets of weights for ý variants, Ā = (Ā1 & Āý), were used to compute a polygenic score 

defined as �ýþ = ∑ Āÿ�ÿý  in a 585 Schizophrenia cases and 9,396 controls from the UK Biobank. The 

performance of each PRS was evaluated using the area under the receiver operating curve (AUC), and 
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compared using a one-sided Z-score test: þ = (�Ā�ÿĄĄąĊ 2 �Ā�ĉĊÿĄĂÿĈĂ) √þ�ÿĄĄąĊ2 + þ�ĉĊÿĄĂÿĈĂ2⁄ , 

where �Ā�ÿĄĄąĊ and �Ā�ĉĊÿĄĂÿĈĂ are the AUC from the standard and annotated PRS, and þ�ÿĄĄąĊ2  

and þ�ĉĊÿĄĂÿĈĂ2  are their respective variance. Under the null,  þ is expected to follow a standard normal 

distribution. 

 

Supervised learning of disorder genetic risk based on MRI association 

We performed a supervised learning of the disorder GWAS summary statistics using MRI GWAS as 

predictors. The goal was to determine whether association of variants with the disorder can be 

predicted based on a linear combination of the MRI association statistics. In practice, we used a 

multiple regression model as : þĂÿĉąĈĂăĈ =  ∑ Āÿþýā�ÿÿ=1&8  where the outcome þĂÿĉąĈĂăĈ  is the vector 

of disorder variants Z-score and þýā�ÿ  is the vector Z-score for MRI phenotypeÿ for those same variants. 

The regression was applied for ADHD and schizophrenia using the top associated variant per locus from 

each disorder, including variants significant over a p-value threshold we varied from 1 to 2.5 x 10-10. 

For each variant set, we derived the R-squared and the model p-value.  

 

Assessing concordant associations between psychiatric disorders and brain phenotypes  

We assessed the concordance of effect9s directions between brain phenotypes and each disorder, 

that is, whether the alleles associated with an increase in phenotypic value were consistently 

associated with either a decrease or an increased risk of the disorders. As for the enrichment analysis, 

we used independent genetic variants selected based on their p-value for association with the brain 

phenotypes, using the most associated variant per LD-locus. Concordance was tested sequentially 

starting with the top 1,668 associated variants from each of the 1,668 LD-regions and decreasing that 

initial set, then the 1660 most associated variants, then decreasing by incrementally removing the 10 

less significant variants, thus testing a total of 170 sets. There are various approaches to test for 

concordance of effect. Here we used a weighted sum of Z-scores statistics defined as þĉ =∑ þć × Āćć=1&Ā  with þć the Z-score of variant Ă for the disorder and Āć the Z-score for the phenotype 

tested. Under the null, the variance of þĉ is ÿÿă(þĉ) = ∑ Āć2ć=1&Ā , and a test for concordance of 

effect can be derived as ÿĉ = þĉ2 ∑ Āć2ć=1&Ā⁄ . Under the null, ÿĉ follow a one degree-of-freedom chi-

square distribution. 

 

Enrichment for concordant associations after clustering of variants based on multitrait association 

We conducted a clustering analysis to examine whether subsets of variants selected based on multi-

trait association similarity display concordant association with disorders. The clustering was performed 

on variants with an association p-value under 5x10-5 for either the multitrait test or the univariate brain 

phenotype test using a spherical k-medoids method, where the clustering is applied to the absolute 

Cosine distance between data points. The cosine distance is defined as 
�1.�2‖�1‖.‖�2‖ with �ÿ  a vector 

containing the coordinates of SNP ÿ. These coordinates are the first five principal components 

computed from a principal component analysis we conducted on the suggestive variants we selected. 

Briefly, the absolute cosine distance between two points measures whether the two associated 

multidimensional vectors are pointing in the same direction. 

The k-medoids clustering was conducted using the R Cluster63 package. The k-medoids requires to 

pre-specify the number of clusters. As the number of relevant clusters is unknown, we used a 

systematic screening approach, applying the clustering while assuming 2 to 12 clusters, resulting in a 

total of 77 (overlapping) clusters. All variants not used in the clustering (i.e., with a p-value above 5 

x10-5) were assigned a posteriori to the closest cluster using again the absolute Cosine distance to the 

closest medoids (a specific variant output by the k-medoid analysis representing the center of each 
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cluster along). However, to further increase the homogeneity of multitrait effect across variants, within 

clusters, we filtered out variants displaying an absolute cosine distance to the medoid above 0.5. 

For each cluster, we computed the enrichment for association with each disorder with prior on the 

direction of effects using the same approach as for the concordant enrichment of brain phenotypes 

with a psychiatric disorder, that is: þā = ∑ þÿĀÿÿ∈Ą  where þÿ  is the Z-score for a disorder for variant ÿ. 

The weight Āÿ was defined as followed: Āÿ = ∑ (þĆÿ^ × ĀĆā)Ć∈ÿ  with þĆÿ^  the Z-score of variant ÿ for 

phenotype ā, � the number of phenotypes and ĀĆā the Z-score of the medoid of cluster � for 

phenotype ā. Under the null hypothesis of no enrichment, 
Ă�2∑ (��2)�∈�  �21ĂĄ. For a threshold from 0 to 

10 with increments of 0.5, we tested each cluster using SNPs with a -log10(minimum p-value) above 

the threshold and we kept the most associated cluster for each threshold. To avoid clusters with a 

signal led by a few SNPs, we applied two additional conditions. First, we only considered clusters with 

at least five SNPs above the threshold. Second, when a cluster is significant, we remove the three 

variants with the highest |Z-score| within the cluster and compute a second þĉÿąĄăĂ value. If it is not 

significant, it is removed from the analysis.  

 

Functional annotation overrepresentation analysis 

We conducted a functional annotation overrepresentation analysis using DAVID37. First, each 

independent variant considered was mapped to its closest gene using the closest function in 

BEDtools64, and the gencode release 44 annotation database65 (Table S6-7). Genes were submitted to 

DAVID as a gene list and fold enrichment was derived over the complete DAVID Knowledge-base. 

Overrepresentation analysis was applied to subset of variants from the ADHD and schizophrenia 

associated cluster which multitrait association p-value threshold. For each cluster, we report the top 

10 annotation pathways showing overrepresentation significant after Bonferroni correction (Table S8-

9). To assess the relevance of the enrichment we observed with the neurotrophins signaling pathway 

results in the schizophrenia cluster, we ran two other analyses using top independent variants of the 

cluster analysis without the variants of the cluster of interest, i) without threshold on the multivariate 

p-value and ii) with a multivariate p-value threshold of 5 x 10-5. Finally, we conducted a quantitative 

PMC (PubMed Central) search for publications for each annotation term and the corresponding 

disorder. PMC search was conducted using the disorder in the [Abstract/Title], and the annotation 

term in the [Body-Key Term] (Table S10 and Figure 5a). 

   

Latent brain phenotype inference from multitrait clustering for the GWAS and MR study 

We conducted genome-wide association studies (GWAS) of the latent variables on the 20,744 UK 

Biobank participants used in the univariate MRI GWAS. For each participant Ā, a latent variable was 

computed as the cosine distance similarity between a vector ýĀ = {ý Ā,1, & , ý Ā,Ć} and Āā ={Ā1,ā , & , ĀĆā}with ý Ā,Ć the standardized phenotype ā of participant Ā and ĀĆāthe Z-score of the 

medoid of cluster � for phenotype ā. This medoid is computed as the medoid of the subgroup of 

variants with the highest association, i.e. the top cluster for schizophrenia using only variants with  

a -log10(multivariate p-value) over 4.5 (Figure 4). Values of ĀĆā are displayed in Figure 5b-c.  
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Figures 

 

Figure1. Genome-wide and independent variants correlation  

Correlation between eight neuroanatomical phenotypes (accumbens, amygdala, caudate, 

hippocampus, intracranial volume (ICV), pallidum, putamen, and thalamus) and six disorders: 

attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), bipolarity (BIP), 

major depressive disorder (MDD), obsessive-compulsive disorder (OCD) and schizophrenia (SCZ). 

Correlation was estimated genome-wide using the LDscore regression (a) and using independent 

genome-wide significant variants (P < 5 x10-8, b). For independent variants correlation, the correlation 

matrix is asymmetrical, and variants have been selected based on their association with the phenotype 

displayed on the line name. 
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Figure 2. Enrichment for genetic association with disorders conditional on brain phenotype 

association. 

We estimated to what extent genetic signal observed with each of the eight neuroanatomical 

phenotypes were enriched for genetic association with six disorders: attention-deficit/hyperactivity 

disorder (ADHD), autism spectrum disorder (ASD), bipolarity (BIP), major depressive disorder (MDD), 

obsessive-compulsive disorder (OCD) and schizophrenia (SCZ).  Each panel presents the -log10(p-value) 

for enrichment for a given disorder for 170 subsets of independent genetic variants selected based on 

their association with the neuroanatomical phenotype. We applied the same approach using the p-

value from the multitrait association test (JASS, red curve). p-value for enrichment were derived using 

a permutation approach, which limited the minimum P that could be reach. Dash red lines represent 

this maximum, indicating that the empirical p-value is smaller than 10-7. The dash blue line represent 

a stringent Bonferroni corrected significant threshold. 
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Figure 3. Clustering approach  

We used univariate brain phenotypes association signal to build cluster of variants displaying similar 

multitrait association pattern. Panel a) illustrates the clustering pipeline. Top independent associated 

variants are selected based on their univariate and multivariate association (P < 5 x 10-5). A dissimilarity 

matrix is derived based on the absolute cosine distance. K-medoids clustering is applied on this 

distance matrix which minimize a cost function depending on the distance between each point ā and 

a medoids Ā. Finally, independent non-significant variants (P > 5 x 10-5) are assigned to cluster a 

posteriori. Panel b) displays the real absolute cosine dissimilarity matrix derived from the top 479 

variants. The K-medoids clustering was applied to this matrix assuming two and 12 clusters. Variants 

from each cluster are then selected based on their p-value for association with the brain phenotypes, 

and the resulting sets evaluated for enrichment in concordant effects with each of the six disorders 

using a weighted Z-score approach. 
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Figure 4. Concordance of effect between brain phenotypes and psychiatric disorders 

Enrichment for concordant genetic associations signal between MRI phenotypes and each of the six 

psychiatric disorders: attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder 

(ASD), bipolarity (BIP), major depressive disorder (MDD), obsessive-compulsive disorder (OCD) and 

schizophrenia (SCZ). Concordant association for a set of variants corresponds to a case where, given 

the coded allele are defined as the increasing phenotype allele, the association with the disorder for 

those variants are consistently positive or consistently negative. For univariate MRI phenotypes, 

concordance was derived over subsets of independent variants selected based on their univariate 

association p-value. For clusters, we selected variants based on their multivariate MRI p-value. The X 

axis displays the p-value threshold. The Y axis represent the -log10(p-value) of the concordance 

obtained from a test of the weighted sum of disorder9s Z-score. The dash blue line shows the 

Bonferroni corrected significance threshold. The green line shows the enrichment for the most 

associated cluster. 
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Figure 5. Overview of ADHD and schizophrenia associated clusters. 

a) Summary of the functional annotation analysis for the ADHD and schizophrenia clusters. Edge 

thickness and vertex size of the annotation are proportional to the fold enrichment. Colors of the 

vertex indicates potential evidence for a role in schizophrenia and ADHD from PMC search. Panels b) 

and c) present the weights of the cluster with the highest concordant signal for ADHD and 

schizophrenia (SCZ), respectively. Left panels present the absolute value of the weights with a radar 

plot.  Right panels present the weights plotted on the corresponding brain area. These weights are the 

standardized Z-scores of the medoid for each MRI phenotypes: accumbens volume (Acc), amygdala 

volume (Amy), caudate volume (Ca), hippocampus volume (Hip), intracranial volume (ICV), pallidum 

volume (Pa), putamen volume (Pu) and thalamus volume (Th). d) Visual representation of the 

hypothetical mechanisms. The genetic component of MRI phenotypes involves multiple biological 

pathways, some of which being associated with an increased risk of mental disorders.  
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Online resources  

JASS : https://gitlab.pasteur.fr/statistical-genetics/jass_suite_pipeline 
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