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Abstract 32 

There is a growing interest in incorporating white matter fibre-specific microstructural properties 33 

into structural connectomes to obtain a more quantitative assessment of brain connectivity. In a 34 

developmental sample aged 8-18 years, we studied age-related patterns of microstructure-35 

informed network properties locally and globally. First, we computed the diffusion-weighted signal 36 

fraction associated with each tractography-reconstructed streamline. Then, we generated 37 

microstructure-informed connectomes from diffusion MRI data using the convex optimization 38 

modelling for microstructure-informed tractography (COMMIT) approach. Finally, we estimated 39 

network characteristics in eight functionally defined networks (visual, somatomotor, dorsal 40 

attention, ventral attention, limbic, frontoparietal, default mode and subcortical networks). Our 41 

findings reveal that throughout child and adolescent development, global efficiency increases in 42 

the visual, somatomotor, and default mode networks, and mean strength increases in the 43 

somatomotor and visual networks. Nodes belonging to the dorsal and ventral visual pathways 44 

demonstrate the largest age-dependence in local efficiency, supporting previous evidence of 45 

protracted maturation of dorsal and ventral visual pathways. Our results provide compelling 46 

evidence that there is a prolonged development of visual association cortices.  47 
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1. Introduction 48 

 49 

The transition from childhood to adolescence is a period of profound neurobiological and cognitive 50 

development where the human brain undergoes significant changes to refine neural substrates 51 

prior to adulthood (Blakemore & Choudhury, 2006). Essential to this process are the white matter 52 

pathways that form a structural scaffold facilitating connections and communication between 53 

cortical regions. Their development follows a stereotypical pattern of myelination, which closely 54 

mirrors the functional capacity of neural systems. For example, primary sensory, motor and visual 55 

pathways typically complete myelination by the first two years of life (Deoni et al., 2015), whereas 56 

frontal and temporal association regions continue to develop well into adulthood, with peak 57 

myelination happening in the second decade of life (Bartzokis et al., 2012; Yakovlev & Lecours, 58 

1967). The process of axonal development is less clear, with early ex vivo studies indicating 59 

stabilization of corpus callosum axonal count by six months of age (LaMantia & Rakic, 1990) and 60 

further work indicating changes to axonal and myelin properties at pubertal onset (Genc et al., 61 

2023; Juraska & Willing, 2017; Paus, 2010).  62 

 63 

Developmental studies using magnetic resonance imaging (MRI) have revealed that white matter 64 

volume steadily increases over childhood and adolescence (Giedd et al., 1999; Lenroot & Giedd, 65 

2006), likely by way of coupled radial growth of the axon and myelin sheath. In tandem, functional 66 

MRI (fMRI) studies suggest a greater degree of temporal network connectivity, which remodels 67 

from infancy to early adulthood (Grayson & Fair, 2017). Early in childhood, sensorimotor systems 68 

become well integrated and coordinated, and show little change into adulthood (Gu et al., 2015). 69 

Later in adolescence, functional hubs such as fronto-parietal, attentional and salience networks 70 

become increasingly segregated, allowing for flexibility as the adolescent brain becomes more 71 

adaptable to increase performance and efficiency (Bassett et al., 2011). 72 

 73 

Diffusion magnetic resonance imaging (dMRI) has enabled novel discoveries in spatial and 74 

temporal patterns of white matter fibre development (Geeraert et al., 2019; Genc et al., 2018; 75 

Herting et al., 2017; Lebel & Beaulieu, 2011; Palmer et al., 2022; Tamnes et al., 2018). Structural 76 

connectivity has been studied using diffusion MRI tractography (Hagmann et al., 2007) to 77 

reconstruct white matter pathways or connections between nodes of interest (e.g., between 78 

distinct predefined cortical regions). Connection strength is commonly defined using white matter 79 

streamline count, i.e., the number of streamlines, derived from tractography, that run between 80 

nodes. However, this notion can be arbitrary, since streamline count is not biologically informative 81 

and can heavily depend on acquisition and processing parameters (Jones et al., 2013; Yeh et al., 82 

2021; Zhang et al., 2022). Recent studies have attempted to improve the status quo in 83 

determining biologically informative determinants of connection strength using diffusion MRI 84 

(Smith et al., 2020; Zhang et al., 2022), however, the question remains: which measures are 85 

optimally informative? 86 

 87 

To define more informative edge weights for the structural connectome, the ‘tractometry’ 88 

approach was introduced in (Bells et al., 2011; Jones et al., 2006; Kanaan et al., 2006) and 89 
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employed to study typical white matter development (Chamberland et al., 2019). This approach 90 

includes the mapping of microstructural measures along tractography-reconstructed pathways 91 

and computing average values for quantitative comparisons between measures. A challenge 92 

arises when multiple bundles pass through the same imaging voxel (an extremely prevalent 93 

phenomena; see Jeurissen et al. (2013); Schilling et al. (2022)) which leads to biased measures 94 

assigned to each constituent bundle (Schiavi et al., 2022). The Convex Optimization Modelling for 95 

Microstructure Informed Tractography (COMMIT) (Daducci et al., 2015; Daducci et al., 2013) 96 

approach address this problem by deconvolving specific microstructural features on each 97 

streamline to recover individual contributions to the measured signal. By replacing the commonly 98 

used streamline count with intra-axonal signal fraction (IASF), it offers a quantitative and more 99 

biologically informative assessment of brain connectivity (Bergamino et al., 2022; Gabusi et al., 100 

2022; Schiavi et al., 2022; Schiavi, Ocampo-Pineda, et al., 2020; Schiavi, Petracca, et al., 2020). 101 

 102 

To investigate age-related differences in structural connectivity among various canonical or 103 

domain-specific networks, graph theory provides a powerful analytical tool (Fornito et al., 2016; 104 

Zhang et al., 2022). Graph theoretical analysis permits the computation of networks at different 105 

levels of organization (Fornito et al., 2016; Yeh et al., 2021), using measures classified as (i) local 106 

(quantifying properties of individual nodes), (ii) mesoscale (describing interconnected clusters of 107 

nodes); and (iii) global (describing whole-brain connectivity properties) (Fornito et al., 2016; 108 

Rubinov & Sporns, 2010). At the global scale, graph measures reveal how the brain’s structural 109 

wiring facilitates information communication between distant regions and cognitive systems. 110 

While structurally connected regions can communicate directly, signal propagation between 111 

unconnected nodes requires a sequence of one or more intermediate connections (Zhang et al., 112 

2022). Thus, investigating these measures across and between predefined cognitive systems 113 

during development can shed light on the structural mechanisms behind functional expression 114 

(Seguin et al., 2019). 115 

 116 

In this study, we construct microstructure-informed connectomes and study age-related patterns 117 

of local and global structural brain network properties in a typically developing sample aged 8-18 118 

years.  119 

 120 

2. Materials and methods 121 

2.1. Participants 122 

 123 

We enrolled a sample of typically developing children and adolescents aged 8-18 years recruited 124 

as part of the Cardiff University Brain Research Imaging Centre (CUBRIC) Kids study, with ethical 125 

approval from the School of Psychology ethics committee at Cardiff University. Participants and 126 

their parents/guardians were recruited via public outreach events, and written informed consent 127 

was obtained from the primary caregiver of each child participating in the study. Adolescents aged 128 

16-18 years additionally provided written consent. Children were excluded from the study if they 129 

had non-removable metal implants, or a reported history of a major head injury or epilepsy. All 130 
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procedures were conducted in accordance with the Declaration of Helsinki. A total of 88 children 131 

(Mean age = 12.6, SD = 2.9 years) were included in the current study (46 female). 132 

 133 

2.2. MRI acquisition 134 

 135 

Images were acquired on a 3T Siemens Connectom system with ultra-strong (300 mT/m) 136 

gradients. As described in (Genc et al., 2020), the protocol comprised: (a) a 3D Magnetization 137 

Prepared Rapid Gradient Echo (MPRAGE) for structural segmentation (TE/TR = 2/2300ms; voxel 138 

size 1×1×1mm3); (b) multi-shell dMRI acquisition (TE/TR = 59/3000)ms; voxel size = 2×2×2mm3) 139 

with bÎ[500, 1200, 2400, 4000, 6000] s/mm2 in 30, 30, 60, 60, 60 directions respectively and 140 

additional 14 b = 0 s/mm2 volumes. Diffusion MRI data were acquired in an anterior-posterior 141 

phase-encoding direction, with one additional posterior-anterior volume. 142 

 143 

2.3. MRI processing 144 

 145 

A summary of image processing steps is illustrated in Figure 1. T1-weighted data were processed 146 

using FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu) to derive a white matter mask 147 

and parcellate the cortical grey matter according to the Destrieux atlas (Destrieux et al., 2010). 148 

Next, we registered the Yeo functional atlas (Yeo et al., 2011) in MNI space to each individual 149 

subject’s space using a non-linear transformation as implemented in FNIRT of FSL (Smith et al., 150 

2004). This allowed us to obtain eight functionally relevant cortical canonical networks (herein 151 

referred to as “Yeo7”) for further interrogation (visual, somatomotor, dorsal attention, ventral 152 

attention, limbic, frontoparietal, default mode network, subcortical). Subsequently, we grouped 153 

regions of interest (ROIs) from the Destrieux atlas into the eight Yeo atlas networks. To merge the 154 

two atlases within each subject, we employed a data-driven approach (see Baum et al. (2017)). 155 

Briefly, each parcellated brain region was assigned to one of eight canonical functional brain 156 

networks (Yeo et al., 2011) by considering the maximum number of voxels in the intersection 157 

between the masks. We ensured that the same overlap was confirmed in the homologous ROIs 158 

and for at least 80% of the enrolled subjects, discarding any Destrieux ROIs that did not meet 159 

these criteria. The final subdivision can be seen in Figure 2 and Table S2. Finally, we linearly-160 

registered the T1-weighted images and the corresponding parcellations on dMRI data using 161 

FLIRT (Jenkinson et al., 2002) with boundary-based optimization (Greve & Fischl, 2009). 162 

 163 

Diffusion MRI data were pre-processed as detailed in Genc et al. (2020). Briefly the preprocessing 164 

pipeline involved FSL (Smith et al., 2004), MRtrix3 (Tournier et al., 2019), and ANTs (Avants et al., 165 

2011) tools using the following steps: denoising (Veraart et al., 2016); slice-wise outlier detection 166 

(Sairanen et al., 2018); and correction for drift (Vos et al., 2017); motion, eddy, and susceptibility-167 

induced distortions (Andersson et al., 2003; Andersson & Sotiropoulos, 2016); Gibbs ringing 168 

artefact (Kellner et al., 2016); bias field (Tustison et al., 2010); and gradient non-uniformities 169 

(Glasser et al., 2013; Rudrapatna et al., 2021). We performed multi-shell multi-tissue constrained 170 

spherical deconvolution (MSMT-CSD; Jeurissen et al. (2014)) and generated a whole-brain 171 
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probabilistic tractogram seeding from the white matter comprising 3 million streamlines (Tournier 172 

et al., 2010). 173 

 174 

We then applied COMMIT (Daducci et al., 2015, 2013) using a stick-zeppelin-ball model 175 

(Panagiotaki et al., 2012) to effectively filter out implausible connections while obtaining the intra-176 

axonal signal fraction for each streamline, as described in Schiavi, Petracca, et al. (2020). For a set 177 

of fixed intra- and extra- axonal diffusivities, we assume that the IASF is constant along the 178 

streamline. To set the diffusivity parameters in COMMIT, we performed voxel-wise estimations in 179 

one younger participant (8-year-old female) and one older participant (17-year-old female). In the 180 

white matter, diffusivities had minimal variation between the younger and older participant (Table 181 

S1). As a result, for all subjects we set the following diffusivities dpar=dpar_zep=1.7×10-3 mm2/s, 182 

dperp=0.61×10-3 mm2/s, diso in [1.7,3.0]x10-3 mm2/s for all participants. 183 

 184 

For each subject, the connectomes were built using nodes from the individual T1-based Destrieux 185 

parcellation by assigning the total IASF associated to each bundle as edge-weights as in Schiavi, 186 

Petracca, et al. (2020) and Gabusi et al. (2022). Briefly, for each subject, the microstructure-187 

informed connectomes (i.e., obtained using COMMIT weights reflecting IASF associated to each 188 

streamline as entries) were built using the GM parcellation described above and computing the 189 

weighted average intra-axonal signal contribution of each bundle: 190 

 191 

�!" =
3 �!"

# ; �# 			
$!"

#%&

3 �#
$!"

#%&

�!"

 192 

 193 

where �, � are the indices of ROIs connected by the bundle, �!"  is bundle’s number of streamlines, 194 

�!"
#  is the weight of the streamline, �, obtained by COMMIT, and �# , its length. In this way, each 195 

entry contained the total IASF associated to the bundle given by the weighted average of the 196 

streamline contribution multiplied by its length and divided by the average length of the bundle. 197 

 198 

2.4. Network analysis  199 

 200 

To investigate the relationship between network characteristics and age, we used the Brain 201 

Connectivity Toolbox for Python (Rubinov & Sporns, 2010) to compute the following network 202 

measures:  203 

 204 

• modularity (reflecting network segregation); 205 

• global efficiency (corresponding to the average inverse shortest weighted-path length and 206 

inversely related to the characteristic path length); 207 

• clustering coefficient (reflecting the degree to which the nodes tend to cluster together); 208 

and 209 
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• mean strength (corresponding to the average of all the nodal strengths, where the nodal 210 

strength is the sum of the weights of links connected to the node). 211 

 212 

We computed these global network measures for the entire connectome, as well as within each 213 

subnetwork identified within the Yeo7 atlas. 214 

 215 

2.5. Age-relationships 216 

To investigate age-related patterns of network characteristics across the Yeo7 networks, we 217 

applied linear mixed effects modelling using lme4 (Bates et al., 2015) in R (RStudio v3.4.3). We 218 

built a linear model which included age (linear term), sex and Yeo7 network as predictors, with 219 

intracranial volume (ICV) included as a covariate. We examined four network characteristics 220 

(modularity, global efficiency, clustering coefficient, mean strength) and compared the fit of the 221 

standard linear model with alternative models that incorporated interaction terms. To identify the 222 

most appropriate model, we used the Akaike Information Criterion (AIC) (Akaike, 1974), selecting 223 

the model with the lowest AIC as the most parsimonious. Individual general linear models were 224 

run to determine age-related differences in specific network characteristics in all eight Yeo7 225 

networks. Evidence for an association was deemed statistically significant when p < .005 226 

(Benjamin et al., 2018).  227 

 228 

2.6. Feature importance 229 

 230 

To identify locally important nodes that contribute to developmental patterns within networks 231 

(identified in section 2.5), we performed age-prediction using linear regression and ElasticNet 232 

regularization in scikit-learn (i.e., L1 and L2 penalties). We investigated feature importance using 233 

the ROIs comprised in each network for age-prediction of local efficiency. First, we randomly split 234 

the data into training and validation sets using an 80-20 ratio, resulting in 80% of the data being 235 

allocated for training purposes and the remaining 20% for model evaluation (total N=88: 70 236 

training; 18 testing). Then, we performed feature scaling to ensure that all variables were on a 237 

similar scale. To assess the generalization performance of the ElasticNet model and to prevent 238 

overfitting, we employed a 5-fold cross-validation approach. We performed a grid search to 239 

determine the optimal values for the L1 ratio ([0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1]) based on the 240 

regression coefficient (R2).  241 

 242 

The performance of the model was assessed using the validation dataset. Finally, the features with 243 

the largest weight coefficients were extracted to identify specific cortical regions driving age-244 

relationships in local network efficiency. 245 

 246 

 247 

 248 

 249 
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 250 

Figure 1: Workflow for constructing structural connectivity networks based on COMMIT derived 251 

streamline weights: a) MRI data were acquired in 88 children and adolescents aged 8-18 years; b) 252 

T1 and dMRI data were pre-processed; c) canonical cortical networks derived from a functional 253 

atlas (Yeo et al., 2011) were co-registered to individual subject space; d) COMMIT (Daducci et al., 254 

2015, 2013) was applied using a stick-zeppelin-ball model to filter out implausible connections, 255 

where computed weights reflect the intra-axonal signal fraction of each connection (brighter 256 

values = higher IASF); e) interconnected nodes coloured by canonical cortical network; f) 257 

connectivity matrix demonstrating connection strength between nodes within in each network 258 

(brighter values = higher IASF).  259 

 260 

3. Results 261 

 262 

3.1. Global network characteristics 263 

 264 

Linear models revealed a positive relationship between age and modularity (R2 = .08, p = .002), 265 

global efficiency (R2 = 0.31, p < 0.001) and mean strength (R2 = .38, p < .001) (Figure 2b). The 266 

relationship between age and clustering coefficient was not statistically significant (R2 = .16, p = 267 

.02). As shown in the circle plot in Figure 2a, we also noted strong intra-regional connectivity and 268 

strength within the visual and somatomotor networks, indicating robust interactions among 269 

regions within these networks. 270 

 271 

To test if specific networks were driving these developmental patterns of network properties, we 272 

tested age-by-network interactions using a linear mixed effects model. The various models tested, 273 

and the model selection results are summarised in Table S3. The best fitting model for all four 274 

graph measures included an age by network by sex interaction term. We observed significant age-275 

by-network interactions in modularity (F = 6.6, p < .001), global efficiency (F = 6.7, p < .001), 276 

acquisition processing atlas registration

microstructure-informed tractography (COMMIT) connectivity analysis

a. b. c.

d. e. f.

streamlines extra components

v
o

x
e

ls
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clustering coefficient (F = 3.3, p = .002), and mean strength (F = 23.9, p < .001). As these results 277 

indicated that there were age-related differences in network properties between the networks, we 278 

performed subsequent analyses to test for age associations within networks, to discern whether 279 

developmental patterns differed regionally. The various networks tested and their corresponding 280 

anatomical tractography depictions are illustrated in Figure 2c. 281 

 282 

 283 

Figure 2: Relationship between age and global network measures computed for the whole 284 

connectome realized with Destrieux parcellation. a) The circle plot indicates the connection 285 
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strength between and within distinct networks obtained using the intra-axonal signal fraction 286 

estimated with COMMIT; b) Association between age and network characteristics between 287 

networks (R2 and p-value); c) Depiction of atlas-derived cortical functional networks and 288 

representative white matter tracts traversing these networks, for an 8-year-old female participant.  289 

 290 

3.2. Sub-network characteristics 291 

 292 

We identified regional differences in the age-related development of specific sub-networks (Table 293 

1 and Figure 3). Through linear regression analyses within individual networks, we found 294 

statistically significant relationships between age and global efficiency in the default mode (R2 = 295 

.38, p = .001), somatomotor (R2 = .28, p < .001) and visual networks (R2 = .43, p < .001). Clustering 296 

coefficient was positively associated with age in the visual network (R2 = .37, p < .001). Moreover, 297 

age exhibited a positive association with mean strength in the somatomotor network (R2 = .33, p < 298 

.001) and the visual network (R2 = .46, p < .001). We also observed a negative association between 299 

age and modularity in the ventral attention network (R2 = .13, p < .001). Overall, our results 300 

highlight the distinct age-related developmental patterns in the visual and somatomotor networks. 301 

 302 

To confirm that the age-dependence of visual network properties were significantly different from 303 

other networks, we performed linear mixed-effects modelling to discern whether age-by-network 304 

interactions were significantly different between the visual network and the seven remaining sub-305 

networks. Where the age-relationship in the visual network was significantly stronger than each 306 

subsequent network, this is summarised in Table S4 and annotated in Table 1. In summary, the 307 

most marked observations were in network strength, where the visual network had a significantly 308 

stronger age-dependency compared to each individual network, apart from the somatomotor 309 

network which also had a positive relationship with age.  310 

 311 

Table 1: Summary statistics for the relationship between age and global sub-network 312 

characteristics.  313 

Network 	 Modularity 	 
Global 

efficiency  

Clustering 

coefficient  
Mean strength 

	  R2 p-value  R2 p-value  R2 p-value  R2 p-value 

Default mode .04 .55  .38 .001  .10 .59   .43 .13  

Dorsal attention -.03 .81  .06 .41   .09 .20  .06 .23  

Fronto-parietal .07 .66  .03 .58  -.01 .96  .07 .51  

Limbic .07 .14  .19 .92  .14 .81  .21 .53  

Somatomotor .01 .75  .28 < .001  .30 .20  .33 < .001 

Subcortical  .08 .27  .03 .26  .01 .72  .02 .47  

Ventral attention .13 < .001  .19 .006  .11 .47   .22 .12  

Visual .11 .17 	 .43 < .001 	 .37 < .001 	 .46 < .001 

Note: Adjusted R2 determined using a linear model including age, sex and total intracranial 314 

volume. Bold values indicate p<.005.   denotes a significant difference in the slope of the age 315 

relationship compared with the visual network. 316 
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 317 

 318 

Figure 3: Association between age and network properties within sub-networks. Significant age 319 

relationships are annotated (***: p<.005). Top panel represents circle plots of within-network 320 

nodes, with brighter yellow connections indicative of higher mean strength. 321 

 322 

3.3. Feature importance of local efficiency 323 

 324 

Age prediction of local efficiency in the visual network yielded a regression coefficient of 0.45 325 

(RMSE: 2.2, p=.001, Figure 4a) on the validation set (optimal value for L1=0.1). Feature 326 

importance in the visual network identified specific nodes (Figure 4) driving age-related increases 327 

in local efficiency. The 10 most sensitive nodes were balanced between hemispheres (5 nodes in 328 

right hemisphere, and 5 in the left) and accounted for 75% of variation in total weights (of a total of 329 

26 nodes). Figure 4b summarises the regions ranked by weight, and Figure 4c depicts these 330 

regions in axial, sagittal and coronal views in 3D. Nodes with high feature importance for age 331 

clustered together, including nodes which form the dorsal (left superior occipital gyrus and middle 332 

occipital gyrus and sulcus) and the ventral (right medial occipito-temporal sulcus and gyrus, and 333 

right lingual gyrus) visual pathways.  334 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.30.564863doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564863
http://creativecommons.org/licenses/by-nc/4.0/


Genc et al. 2023 Developmental differences in microstructure-informed brain networks 12 

 335 

Age prediction for local efficiency of the somatomotor network yielded a weaker regression 336 

coefficient of 0.10 which was not statistically significant (p=.10). Feature importance identified 337 

specific regions driving age-related increases in local efficiency. Six nodes balanced between 338 

hemispheres (3 nodes in right hemisphere, and 3 in the left) accounted for 70% of the variation in 339 

total weights (of a total of 16 nodes). Nodes with high feature importance for age included the 340 

bilateral precentral gyrus, right postcentral gyrus, bilateral central sulcus, and left transverse 341 

temporal gyrus.   342 

 343 

 344 

 345 

 346 

Figure 4: Feature importance for age-prediction of local network efficiency in the visual cortex. A) 347 

predicted age was significantly associated with actual age; B) top 10 ranking regions that 348 

contributed most to age-related patterns displayed on C) axial, sagittal, and coronal glass brain 349 

views, where nodes are scaled and color-coded by weight. Nodes with high feature importance 350 

included left superior and middle occipital gyrus and right medial occipito-temporal gyrus. 351 

 352 

4. Discussion 353 

 354 

We used microstructure-informed tractography to investigate global and local network 355 

characteristics in canonical cortical networks among a group of typically developing children and 356 

adolescents. Our study revealed three main findings: 357 

 358 

First, whole-brain network-based measures of modularity, global efficiency and mean strength 359 

increased with age. This indicates that as children move through adolescence, the shortest path 360 

between nodes (in this case, regions from the Destrieux parcellation) decreases, resulting in a 361 

more efficient transfer of information. As a result, the nodes tend to cluster together to form hubs, 362 

and the strength of each connection increases with age. These findings align with known age-363 

related increases in global efficiency during adolescent development (Baker et al., 2015; 364 

Khundrakpam et al., 2013; Koenis et al., 2018; Van den Heuvel & Sporns, 2013). Additionally, 365 

previous white matter studies have shown substantial increases in intra-axonal signal fraction with 366 
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age (Chang et al., 2015; Genc et al., 2020; Palmer et al., 2022), aligning with our observations of 367 

age-related increases in mean strength. 368 

 369 

Second, sub-network analyses revealed specific networks with substantial age-related differences 370 

occurring from childhood to adolescence. In the default mode, somatomotor, and visual networks, 371 

global efficiency was higher with older age. Additionally, clustering coefficient was higher with age 372 

in the visual network, and mean strength was higher with age in the somatomotor and visual 373 

networks. Notably, brain structures, such as the primary visual and somatomotor cortex have 374 

highly organized and specialized structures that are closely related to their function, such as 375 

discriminating visual features (Wandell, 1999) and performing specific motor functions (Gordon et 376 

al., 2023). Together, our findings of age-related maturation of network efficiency and strength 377 

suggests a high degree of integration and communication within motor and visual processing 378 

regions, potentially reflecting the ongoing maturation of visual information processing and motor 379 

coordination capabilities during development. Our specific findings in the visual network align with 380 

previously observed temporal patterns of white matter microstructural maturation in the visual 381 

cortex (Colby et al., 2011; Genc et al., 2017) which are likely to be closely linked to age-related 382 

increases in axon density in humans (Genc et al., 2020) and rodents (Juraska & Willing, 2017).  383 

 384 

Age-prediction in the visual cortex pointed to a smaller cluster of five regions per hemisphere that 385 

contributed to >75% of the observed age-related differences in local network efficiency. Our data 386 

driven approach suggests that nodes in the left dorsal (middle and superior occipital) visual 387 

pathway and the right ventral (middle occipito-temporal) visual pathway are driving developmental 388 

improvements in local network efficiency. The visual system undergoes early establishment during 389 

prenatal development and continues to mature through life (Gogtay et al., 2004; Knudsen, 2004). 390 

While myelination in the visual cortex is largely completed by the first year of life (Deoni et al., 391 

2015), recent research indicates that myelination follows a protracted course in ventral temporal 392 

cortices (Natu et al., 2019). Ongoing intra-cortical myelination of the ventral temporal cortex may 393 

underlie MRI-derived estimates of cortical thinning, previously attributed to synaptic pruning 394 

(Gomez et al., 2017; Natu et al., 2019). 395 

 396 

The maturation of association visual cortices supports higher level visual processing (e.g. 397 

recognising and discriminating objects, motion perception etc.) (Gomez et al., 2018). Our findings 398 

align with task-based fMRI studies involving object and shape recognition tasks, which 399 

demonstrate protracted development of dorsal and ventral visual pathways (Freud et al., 2019; 400 

Ward et al., 2023). These developmental improvements in shape-processing mechanisms likely 401 

contribute to microstructure-specific strengthening of global network efficiency and connection 402 

strength within the visual network through child and adolescent brain development. The age-403 

related increases in local network efficiency in lateral temporo-occipital cortices may facilitate 404 

improvements in visual processing and function in these association cortices. 405 

 406 

The myelination of these visual pathways may help to refine and optimize the neural connections 407 

and improve visual processing capabilities. Whilst we did not directly study myelination here, the 408 
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intra-axonal signal fraction explains a significant proportion of the age-related variance in network 409 

efficiency and connection strength. Taken together, our findings suggest that the visual cortex 410 

undergoes protracted development through childhood and adolescence. While our study primarily 411 

focuses on white matter microstructure for exploring graph-based measures, our observations of 412 

higher efficiency and connection strength with older age is predominantly due to ongoing 413 

microstructural maturation in the visual cortex. 414 

 415 

4.1. Methodological advantages of the current approach 416 

 417 

We employed a data-driven approach to establish correspondence between a structural 418 

parcellation and functional atlas in each participant (Baum et al., 2017). This involved selecting 419 

the maximum number of voxels in the intersection between a smaller cortical region with its 420 

corresponding larger functional network. By ensuring that this overlap was consistent with the 421 

homologous ROIs and in at least 80% of the participants, we generated canonical cortical 422 

networks for the basis of regional graph-based analyses. 423 

 424 

One of the significant advantages of the COMMIT framework is its ability to assign specific 425 

microstructural properties to individual tractography-reconstructed streamlines, which sets it apart 426 

from conventional (voxel-wise or vertex-wise) approaches where complex intra-voxel 427 

heterogeneity can bias estimates (Schilling et al., 2022). By allowing a distribution of 428 

microstructural values to be assigned to a voxel, i.e., the number of values is equal to the number 429 

of unique streamlines passing through the voxel and retained for analysis, COMMIT offers a more 430 

complete estimation of microstructural properties. In the context of graph theory, we are better 431 

equipped to capture the dynamic strengthening and weakening of connections with maturation 432 

over childhood and adolescence. Overall, the COMMIT framework offers a more nuanced and 433 

detailed characterization of microstructural properties along individual streamlines, countering 434 

complex intra-voxel heterogeneity, making it a powerful tool for a more meaningful assessment of 435 

brain connectivity (Gabusi et al., 2022; Schiavi et al., 2022; Schiavi, Ocampo-Pineda, et al., 2020; 436 

Schiavi, Petracca, et al., 2020). 437 

 438 

4.2. Limitations and future directions 439 

 440 

It is important to acknowledge that certain functional networks utilised in our study here contain 441 

fewer nodes than others, potentially influencing our interpretations. Although we adopted a robust 442 

method to generate reproducible cortical nodes for each functional network, it resulted in some 443 

networks having a small number of nodes.  444 

 445 

While there is a certain relationship between brain structure and function, structure-function 446 

coupling occurs in a spatially-dependent hierarchical manner (Baum et al., 2020). The brain is a 447 

complex and dynamic organ, with function influenced by a variety of factors, including structural 448 

organisation (Chamberland et al., 2017) and neural activity. Whilst the aforementioned factors 449 
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may help explain why we did not observe an age dependence of network-based measures of brain 450 

connectivity in regions known to remodel in adolescence (e.g. the fronto-parietal network), it is 451 

known that functional networks that are in close range demonstrate stronger white matter 452 

connectivity (Hermundstad et al., 2013), which may explain why our findings of global efficiency 453 

and mean strength were confined to the somatomotor and visual networks. On the note of the 454 

fronto-parietal network, despite running a ‘gold-standard’ dMRI pre-processing pipeline, 455 

susceptibility-induced distortion artefacts may introduce an additional source of variance into the 456 

diffusion MRI data, especially in fronto-parietal regions with an air/bone interface such as the nasal 457 

cavity. 458 

 459 

Future work characterising the developing connectome using biologically meaningful 460 

mathematical models of brain connections are promising (Akarca et al., 2023; Seguin et al., 2023). 461 

Combining task-based or resting-state fMRI with microstructure-informed connectomes may 462 

better elucidate structure-function coupling across the developing brain (Suárez et al., 2020). 463 

Recent updates to the COMMIT framework offer the opportunity to incorporate additional imaging 464 

contrasts, such as myelin-sensitive contrasts, leading to improved delineation of anatomically 465 

accurate whole-brain tractography (Leppert et al., 2023; Schiavi et al., 2022).  466 

 467 

5. Conclusion 468 

 469 

Incorporating microstructural information into network analyses has shed light on distinct regional 470 

age-related development of brain networks. Notably, we observed unique characteristics within 471 

the visual network throughout development, supporting its ongoing maturation, reaffirming 472 

previously reported patterns of protracted development in the dorsal and ventral visual pathways. 473 

Overall, our study demonstrates the power of microstructure-informed tractography to decipher 474 

intricate developmental patterns, reinforcing the potential for deepening our understanding of 475 

brain connectivity and development.   476 
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8. Supplementary  817 

8.1. Tables 818 

 819 

 820 

Table S1: Diffusivity parameters estimated in a white matter mask for one younger (8-year-old) 821 

and one older (17-year-old) participant. Values are reported as mean (SD). 822 

 823 

 da dpar dperp 

Younger  2.27 (0.71) 2.01 (0.57) 0.61 (0.28) 

Older 2.35 (0.62) 1.71 (0.58) 0.62 (0.27) 

 824 

 825 

 826 

Table S2: Regions from the Destrieux parcellation assigned to each canonical cortical network. 827 

Results for left hemisphere shown (equivalent in right hemisphere). Only nodes overlapping the 828 

same network in >80% of participants were included in the analysis. 829 

 830 

Region Name X Y Z C Yeo7_name N 

2 G_and_S_occipital_inf 23 60 180 255 visual 88 

3 G_and_S_paracentral 63 100 60 255 somatomotor 87 

4 G_and_S_subcentral 63 20 220 255 somatomotor 88 

5 G_and_S_transv_frontopol 13 0 250 255 dmn 88 

6 G_and_S_cingul-Ant 26 60 0 255 dmn 88 

7 G_and_S_cingul-Mid-Ant 26 60 75 255 ventralattention 88 

9 G_cingul-Post-dorsal 25 60 250 255 dmn 88 

10 G_cingul-Post-ventral 60 25 25 255 dmn 88 

11 G_cuneus 180 20 20 255 visual 88 

12 G_front_inf-Opercular 220 20 100 255 ventralattention 86 

13 G_front_inf-Orbital 140 60 60 255 dmn 88 

15 G_front_middle 140 100 180 255 frontoparietal 84 

16 G_front_sup 180 20 140 255 dmn 88 

17 G_Ins_lg_and_S_cent_ins 23 10 10 255 ventralattention 88 

18 G_insular_short 225 140 140 255 ventralattention 88 

19 G_occipital_middle 180 60 180 255 visual 88 

20 G_occipital_sup 20 220 60 255 visual 88 

21 G_oc-temp_lat-fusifor 60 20 140 255 visual 88 

22 G_oc-temp_med-Lingual 220 180 140 255 visual 88 

23 G_oc-temp_med-Parahip 65 100 20 255 limbic 88 

24 G_orbital 220 60 20 255 limbic 80 

25 G_pariet_inf-Angular 20 60 220 255 dmn 88 

26 G_pariet_inf-Supramar 100 100 60 255 ventralattention 84 

27 G_parietal_sup 220 180 220 255 dorsalattention 88 

28 G_postcentral 20 180 140 255 somatomotor 87 

29 G_precentral 60 140 180 255 somatomotor 88 

31 G_rectus 20 60 100 255 limbic 88 

32 G_subcallosal 60 220 20 255 limbic 88 

33 G_temp_sup-G_T_transv 60 60 220 255 somatomotor 88 

35 G_temp_sup-Plan_polar 65 220 60 255 limbic 88 
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38 G_temporal_middle 180 60 60 255 dmn 88 

41 Lat_Fis-post 61 60 100 255 somatomotor 88 

42 Pole_occipital 140 20 60 255 visual 88 

43 Pole_temporal 220 180 20 255 limbic 88 

44 S_calcarine 63 180 180 255 visual 88 

45 S_central 221 20 10 255 somatomotor 87 

46 S_cingul-Marginalis 221 20 100 255 ventralattention 84 

48 S_circular_insula_inf 221 20 220 255 ventralattention 86 

49 S_circular_insula_sup 61 220 220 255 ventralattention 88 

50 S_collat_transv_ant 100 200 200 255 limbic 88 

51 S_collat_transv_post 10 200 200 255 visual 88 

52 S_front_inf 221 220 20 255 frontoparietal 88 

56 S_intrapariet_and_P_trans 143 20 220 255 dorsalattention 84 

57 S_oc_middle_and_Lunatus 101 60 220 255 visual 88 

58 S_oc_sup_and_transversal 21 20 140 255 visual 88 

60 S_oc-temp_lat 221 140 20 255 dorsalattention 87 

61 S_oc-temp_med_and_Lingual 141 100 220 255 visual 88 

62 S_orbital_lateral 221 100 20 255 frontoparietal 77 

63 S_orbital_med-olfact 181 200 20 255 limbic 88 

65 S_parieto_occipital 101 100 180 255 visual 85 

69 S_precentral-sup-part 21 20 200 255 dorsalattention 86 

71 S_subparietal 101 60 60 255 dmn 88 

73 S_temporal_sup 223 220 60 255 dmn 88 

74 S_temporal_transverse 221 60 60 255 somatomotor 88 

76 Left-Thalamus-Proper 0 118 14 255 subcortical 88 

77 Left-Caudate 122 186 220 255 subcortical 88 

78 Left-Putamen 236 13 176 255 subcortical 88 

79 Left-Pallidum 12 48 255 255 subcortical 88 

80 Left-Hippocampus 220 216 20 255 subcortical 88 

81 Left-Amygdala 103 255 255 255 subcortical 88 

82 Left-Accumbens-area 255 165 0 255 subcortical 88 

  831 
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Table S3: Results of mixed-effect model selection for first level global graph network analysis. 832 

Values reported are Akaike Information Criterion (AIC) of each model fit. 833 

 834 

Note: Bold indicates lowest AIC for each graph measure; * indicates if the age by network term 835 

was significant at p<.005 836 

 837 

Footnote: Models tested are as follows: 838 

M1a <- lmer(measure ~ age + sex + network + (1|ID), REML=FALSE, data=data) 839 

M2a <- lmer(measure ~ age * sex + network + (1|ID), REML=FALSE, data=data) 840 

M3a <- lmer(measure ~ age * network + sex + (1|ID), REML=FALSE, data=data) 841 

M4a <- lmer(measure ~ age * sex * network + (1|ID), REML=FALSE, data=data) 842 

M1b <- lmer(measure ~ age + sex + network + ICV + (1|ID), REML=FALSE, data=data) 843 

M2b <- lmer(measure ~ age * sex + network + ICV + (1|ID), REML=FALSE, data=data) 844 

M3b <- lmer(measure ~ age * network + sex + ICV + (1|ID), REML=FALSE, data=data) 845 

M4b <- lmer(measure ~ age * sex * network + ICV + (1|ID), REML=FALSE, data=data) 846 

Model Modularity Global Efficiency 

Clustering 

Coefficient Mean Strength 

M1a -2816.78 -2549.70 -3792.68 244.49 

M2a -2821.03 -2553.69 -3796.30 237.85 

M3a -2832.02 -2565.74 -3795.91 167.79 

M4a -2860.55 -2575.29 -3814.42 90.46 

M1b -2825.11 -2569.99 -3801.41 215.66 

M2b -2826.42 -2570.17 -3802.19 214.00 

M3b -2840.35 -2586.03 -3804.65 138.97 

M4b -2865.94* -2591.77* -3820.31* 66.60* 
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Table S4: Results from comparison of age-associations of graph measures with reference to the 847 

visual network. Bold values indicate networks which have significantly different slopes to the age-848 

relationship in the visual network, generated using linear mixed efforts models. 849 

 850 

Network 	 Global efficiency 
 

Clustering coefficient 
 

Mean strength 

  t p-value 
 

t p-value 
 

t p-value 

  Visual (reference)      
 

  

Default mode -1.65 .10  -2.91 .004  -4.08 5E-05 

Dorsal attention -2.96 .003  -1.17 .24  -5.25 2E-07 

Fronto-parietal -1.64 .10  -1.66 .10  -3.91 1E-04 

Limbic -2.04 .04  -1.87 .06  -4.01 7E-05 

Somatomotor -0.60 .55  -1.16 .25  -1.78 .08 

Subcortical  -2.19 .03  -2.19 .03  -4.55 6E-06 

Ventral attention -1.93 .05 	 -3.05 .002 	 -4.34 2E-05 

  Somatomotor 
(reference)         
Default mode -1.05 .29  -1.05 .29  -2.30 .02 

Dorsal attention -2.36 .02  -2.36 .02  -3.48 < .001 

Fronto-parietal -1.04 .30  -1.04 .30  -2.13 .03 

Limbic -1.45 .15  -1.45 .15  -2.23 .03 

Subcortical  -1.60 .11  -1.60 .11  -2.78 .006 

Ventral attention -1.33 .18  -1.33 .18  -2.56 .011 

Visual 0.60 .55 	 0.60 .55 	 1.78 .08 

Note: model used was the best fitting model deduced from Table S3. 851 

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 2, 2023. ; https://doi.org/10.1101/2023.10.30.564863doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564863
http://creativecommons.org/licenses/by-nc/4.0/

