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Abstract

There is a growing interest in incorporating white matter fibre-specific microstructural properties
into structural connectomes to obtain a more quantitative assessment of brain connectivity. In a
developmental sample aged 8-18 years, we studied age-related patterns of microstructure-
informed network properties locally and globally. First, we computed the diffusion-weighted signal
fraction associated with each tractography-reconstructed streamline. Then, we generated
microstructure-informed connectomes from diffusion MRI data using the convex optimization
modelling for microstructure-informed tractography (COMMIT) approach. Finally, we estimated
network characteristics in eight functionally defined networks (visual, somatomotor, dorsal
attention, ventral attention, limbic, frontoparietal, default mode and subcortical networks). Our
findings reveal that throughout child and adolescent development, global efficiency increases in
the visual, somatomotor, and default mode networks, and mean strength increases in the
somatomotor and visual networks. Nodes belonging to the dorsal and ventral visual pathways
demonstrate the largest age-dependence in local efficiency, supporting previous evidence of
protracted maturation of dorsal and ventral visual pathways. Our results provide compelling
evidence that there is a prolonged development of visual association cortices.
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1. Introduction

The transition from childhood to adolescence is a period of profound neurobiological and cognitive
development where the human brain undergoes significant changes to refine neural substrates
prior to adulthood (Blakemore & Choudhury, 2006). Essential to this process are the white matter
pathways that form a structural scaffold facilitating connections and communication between
cortical regions. Their development follows a stereotypical pattern of myelination, which closely
mirrors the functional capacity of neural systems. For example, primary sensory, motor and visual
pathways typically complete myelination by the first two years of life (Deoni et al., 2015), whereas
frontal and temporal association regions continue to develop well into adulthood, with peak
myelination happening in the second decade of life (Bartzokis et al., 2012; Yakovlev & Lecours,
1967). The process of axonal development is less clear, with early ex vivo studies indicating
stabilization of corpus callosum axonal count by six months of age (LaMantia & Rakic, 1990) and
further work indicating changes to axonal and myelin properties at pubertal onset (Genc et al.,
2023; Juraska & Willing, 2017; Paus, 2010).

Developmental studies using magnetic resonance imaging (MRI) have revealed that white matter
volume steadily increases over childhood and adolescence (Giedd et al., 1999; Lenroot & Giedd,
2006), likely by way of coupled radial growth of the axon and myelin sheath. In tandem, functional
MRI (fMRI) studies suggest a greater degree of temporal network connectivity, which remodels
from infancy to early adulthood (Grayson & Fair, 2017). Early in childhood, sensorimotor systems
become well integrated and coordinated, and show little change into adulthood (Gu et al., 2015).
Later in adolescence, functional hubs such as fronto-parietal, attentional and salience networks
become increasingly segregated, allowing for flexibility as the adolescent brain becomes more
adaptable to increase performance and efficiency (Bassett et al., 2011).

Diffusion magnetic resonance imaging (dMRI) has enabled novel discoveries in spatial and
temporal patterns of white matter fibre development (Geeraert et al., 2019; Genc et al., 2018;
Herting et al., 2017; Lebel & Beaulieu, 2011; Palmer et al., 2022; Tamnes et al., 2018). Structural
connectivity has been studied using diffusion MRI tractography (Hagmann et al., 2007) to
reconstruct white matter pathways or connections between nodes of interest (e.g., between
distinct predefined cortical regions). Connection strength is commonly defined using white matter
streamline count, i.e., the number of streamlines, derived from tractography, that run between
nodes. However, this notion can be arbitrary, since streamline count is not biologically informative
and can heavily depend on acquisition and processing parameters (Jones et al., 2013; Yeh et al,,
2021; Zhang et al., 2022). Recent studies have attempted to improve the status quoin
determining biologically informative determinants of connection strength using diffusion MRI
(Smith et al., 2020; Zhang et al., 2022), however, the question remains: which measures are
optimally informative?

To define more informative edge weights for the structural connectome, the ‘tractometry’
approach was introduced in (Bells et al., 2011; Jones et al., 2006; Kanaan et al., 2006) and
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90  employed to study typical white matter development (Chamberland et al., 2019). This approach
91 includes the mapping of microstructural measures along tractography-reconstructed pathways
92  and computing average values for quantitative comparisons between measures. A challenge
93  arises when multiple bundles pass through the same imaging voxel (an extremely prevalent
94  phenomena; see Jeurissen et al. (2013); Schilling et al. (2022)) which leads to biased measures
95 assigned to each constituent bundle (Schiavi et al., 2022). The Convex Optimization Modelling for
96  Microstructure Informed Tractography (COMMIT) (Daducci et al., 2015; Daducci et al., 2013)
97  approach address this problem by deconvolving specific microstructural features on each
98  streamline to recover individual contributions to the measured signal. By replacing the commonly
99 used streamline count with intra-axonal signal fraction (IASF), it offers a quantitative and more
100 biologically informative assessment of brain connectivity (Bergamino et al., 2022; Gabusi et al.,
101 2022; Schiavi et al., 2022; Schiavi, Ocampo-Pineda, et al., 2020; Schiavi, Petracca, et al., 2020).
102
103 Toinvestigate age-related differences in structural connectivity among various canonical or
104 domain-specific networks, graph theory provides a powerful analytical tool (Fornito et al., 2016;
105  Zhang et al., 2022). Graph theoretical analysis permits the computation of networks at different
106 levels of organization (Fornito et al., 2016; Yeh et al., 2021), using measures classified as (i) local
107  (quantifying properties of individual nodes), (i) mesoscale (describing interconnected clusters of
108  nodes); and (iii) global (describing whole-brain connectivity properties) (Fornito et al., 2016;
109 Rubinov & Sporns, 2010). At the global scale, graph measures reveal how the brain’s structural
110 wiring facilitates information communication between distant regions and cognitive systems.
111 While structurally connected regions can communicate directly, signal propagation between
112 unconnected nodes requires a sequence of one or more intermediate connections (Zhang et al.,
113 2022). Thus, investigating these measures across and between predefined cognitive systems
114 during development can shed light on the structural mechanisms behind functional expression
115  (Seguinetal., 2019).
116
117 Inthis study, we construct microstructure-informed connectomes and study age-related patterns
118  oflocal and global structural brain network properties in a typically developing sample aged 8-18
119  vyears.
120

121 2. Materials and methods

122 2.1. Participants

123

124 We enrolled a sample of typically developing children and adolescents aged 8-18 years recruited
125  as part of the Cardiff University Brain Research Imaging Centre (CUBRIC) Kids study, with ethical
126  approval from the School of Psychology ethics committee at Cardiff University. Participants and
127  their parents/guardians were recruited via public outreach events, and written informed consent
128  was obtained from the primary caregiver of each child participating in the study. Adolescents aged
129  16-18 years additionally provided written consent. Children were excluded from the study if they
130 had non-removable metal implants, or a reported history of a major head injury or epilepsy. All
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131 procedures were conducted in accordance with the Declaration of Helsinki. A total of 88 children
132 (Mean age = 12.6, SD = 2.9 years) were included in the current study (46 female).

133

134 2.2. MRI acquisition

135

136  Images were acquired on a 3T Siemens Connectom system with ultra-strong (300 mT/m)

137  gradients. As described in (Genc et al., 2020), the protocol comprised: (a) a 3D Magnetization
138 Prepared Rapid Gradient Echo (MPRAGE) for structural segmentation (TE/TR = 2/2300ms; voxel
139  size 1x1x1mm?); (b) multi-shell dMRI acquisition (TE/TR = 59/3000 ms; voxel size = 2x2x2mm?®)
140  with be[500, 1200, 2400, 4000, 6000] s/mm?in 30, 30, 60, 60, 60 directions respectively and

141 additional 14 b = 0 s/mm? volumes. Diffusion MRI data were acquired in an anterior-posterior

142 phase-encoding direction, with one additional posterior-anterior volume.

143

144 2.3. MRI processing

145

146 A summary of image processing steps is illustrated in Figure 1. T+1-weighted data were processed
147  using FreeSurfer version 6.0 (http://surfer.nmr.mgh.harvard.edu) to derive a white matter mask

148 and parcellate the cortical grey matter according to the Destrieux atlas (Destrieux et al., 2010).
149 Next, we registered the Yeo functional atlas (Yeo et al., 2011) in MNI space to each individual

150 subject’s space using a non-linear transformation as implemented in FNIRT of FSL (Smith et al.,
151 2004). This allowed us to obtain eight functionally relevant cortical canonical networks (herein
152 referred to as “Yeo7”) for further interrogation (visual, somatomotor, dorsal attention, ventral

153 attention, limbic, frontoparietal, default mode network, subcortical). Subsequently, we grouped
154  regions of interest (ROIs) from the Destrieux atlas into the eight Yeo atlas networks. To merge the
155  two atlases within each subject, we employed a data-driven approach (see Baum et al. (2017)).
156  Briefly, each parcellated brain region was assigned to one of eight canonical functional brain

157 networks (Yeo et al., 2011) by considering the maximum number of voxels in the intersection

158  between the masks. We ensured that the same overlap was confirmed in the homologous ROls
159  and for at least 80% of the enrolled subjects, discarding any Destrieux ROls that did not meet

160  these criteria. The final subdivision can be seen in Figure 2 and Table S2. Finally, we linearly-

161  registered the T+-weighted images and the corresponding parcellations on dMRI data using

162  FLIRT (Jenkinson et al., 2002) with boundary-based optimization (Greve & Fischl, 2009).

163

164  Diffusion MRI data were pre-processed as detailed in Genc et al. (2020). Briefly the preprocessing
165  pipeline involved FSL (Smith et al., 2004), MRtrix3 (Tournier et al., 2019), and ANTs (Avants et al.,
166 2011) tools using the following steps: denoising (Veraart et al., 2016); slice-wise outlier detection
167  (Sairanen et al., 2018); and correction for drift (Vos et al., 2017); motion, eddy, and susceptibility-
168 induced distortions (Andersson et al., 2003; Andersson & Sotiropoulos, 2016); Gibbs ringing

169  artefact (Kellner et al., 2016); bias field (Tustison et al., 2010); and gradient non-uniformities

170 (Glasser et al., 2013; Rudrapatna et al., 2021). We performed multi-shell multi-tissue constrained
171  spherical deconvolution (MSMT-CSD; Jeurissen et al. (2014)) and generated a whole-brain
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172 probabilistic tractogram seeding from the white matter comprising 3 million streamlines (Tournier
173  etal, 2010).

174

175 We then applied COMMIT (Daducci et al., 2015, 2013) using a stick-zeppelin-ball model

176 (Panagiotaki et al., 2012) to effectively filter out implausible connections while obtaining the intra-
177 axonal signal fraction for each streamline, as described in Schiavi, Petracca, et al. (2020). For a set
178 of fixed intra- and extra- axonal diffusivities, we assume that the IASF is constant along the

179  streamline. To set the diffusivity parameters in COMMIT, we performed voxel-wise estimations in
180 one younger participant (8-year-old female) and one older participant (17-year-old female). In the
181 white matter, diffusivities had minimal variation between the younger and older participant (Table
182  S1). As aresult, for all subjects we set the following diffusivities dpar=dpar zep=1.7%10° mm?/s,

183  dperp=0.61x10°mm?/s, dis, in [1.7,3.0]x10° mm?/s for all participants.

184

185  For each subject, the connectomes were built using nodes from the individual T1-based Destrieux
186  parcellation by assigning the total IASF associated to each bundle as edge-weights as in Schiavi,
187  Petracca, et al. (2020) and Gabusi et al. (2022). Briefly, for each subject, the microstructure-

188  informed connectomes (i.e., obtained using COMMIT weights reflecting IASF associated to each
189  streamline as entries) were built using the GM parcellation described above and computing the
190  weighted average intra-axonal signal contribution of each bundle:

191
Nij &
xi e 1
192 aij =Zk:1N.—l.]k
T
k=1"k
193

194 where i, j are the indices of ROls connected by the bundle, N;; is bundle’s number of streamlines,
195 x{‘j is the weight of the streamline, k, obtained by COMMIT, and [, its length. In this way, each
196  entry contained the total IASF associated to the bundle given by the weighted average of the
197  streamline contribution multiplied by its length and divided by the average length of the bundle.
198

199 2.4. Network analysis

200

201  Toinvestigate the relationship between network characteristics and age, we used the Brain

202 Connectivity Toolbox for Python (Rubinov & Sporns, 2010) to compute the following network
203  measures:

204

205 e modularity (reflecting network segregation);

206 e global efficiency (corresponding to the average inverse shortest weighted-path length and
207 inversely related to the characteristic path length);

208 e clustering coefficient (reflecting the degree to which the nodes tend to cluster together);
209 and
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210 e mean strength (corresponding to the average of all the nodal strengths, where the nodal
211 strength is the sum of the weights of links connected to the node).
212

213 We computed these global network measures for the entire connectome, as well as within each
214  subnetwork identified within the Yeo7 atlas.
215

216 2.5. Age-relationships

217  Toinvestigate age-related patterns of network characteristics across the Yeo7 networks, we
218  applied linear mixed effects modelling using Ime4 (Bates et al., 2015) in R (RStudio v3.4.3). We
219 built a linear model which included age (linear term), sex and Yeo7 network as predictors, with
220 intracranial volume (ICV) included as a covariate. We examined four network characteristics

221 (modularity, global efficiency, clustering coefficient, mean strength) and compared the fit of the
222 standard linear model with alternative models that incorporated interaction terms. To identify the
223 most appropriate model, we used the Akaike Information Criterion (AIC) (Akaike, 1974), selecting
224 the model with the lowest AIC as the most parsimonious. Individual general linear models were
225  runto determine age-related differences in specific network characteristics in all eight Yeo7

226  networks. Evidence for an association was deemed statistically significant when p <.005

227  (Benjamin et al., 2018).

228

229 2.6. Feature importance

230

231 To identify locally important nodes that contribute to developmental patterns within networks
232 (identified in section 2.5), we performed age-prediction using linear regression and ElasticNet
233 regularization in scikit-learn (i.e., L1 and L2 penalties). We investigated feature importance using
234 the ROIs comprised in each network for age-prediction of local efficiency. First, we randomly split
235  the datainto training and validation sets using an 80-20 ratio, resulting in 80% of the data being
236  allocated for training purposes and the remaining 20% for model evaluation (total N=88: 70

237 training; 18 testing). Then, we performed feature scaling to ensure that all variables were on a
238  similar scale. To assess the generalization performance of the ElasticNet model and to prevent
239  overfitting, we employed a 5-fold cross-validation approach. We performed a grid search to

240  determine the optimal values for the L1 ratio ([0.1, 0.5, 0.7, 0.9, 0.95, 0.99, 1]) based on the

241  regression coefficient (R?).

242

243 The performance of the model was assessed using the validation dataset. Finally, the features with
244 the largest weight coefficients were extracted to identify specific cortical regions driving age-
245  relationships in local network efficiency.

246

247

248

249
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a. acquisition [ atlas registration
d. microstructure-informed tractography (COMMIT) e. f.

streamlines extra components

subcortical

visual

250

251 Figure 1: Workflow for constructing structural connectivity networks based on COMMIT derived
252 streamline weights: a) MRI data were acquired in 88 children and adolescents aged 8-18 years; b)
253 T1 and dMRI data were pre-processed; ¢) canonical cortical networks derived from a functional
254  atlas (Yeo et al., 2011) were co-registered to individual subject space; d) COMMIT (Daducci et al.,
255  2015,2013) was applied using a stick-zeppelin-ball model to filter out implausible connections,
256  where computed weights reflect the intra-axonal signal fraction of each connection (brighter

257 values = higher IASF); e) interconnected nodes coloured by canonical cortical network; f)

258  connectivity matrix demonstrating connection strength between nodes within in each network
259  (brighter values = higher IASF).

260

261 3. Results

262

263 3.1. Global network characteristics

264

265 Linear models revealed a positive relationship between age and modularity (R*=.08, p =.002),
266  global efficiency (R?=0.31, p < 0.001) and mean strength (R?= .38, p <.001) (Figure 2b). The
267  relationship between age and clustering coefficient was not statistically significant (R?=.16,p =
268  .02). Asshown in the circle plot in Figure 2a, we also noted strong intra-regional connectivity and
269  strength within the visual and somatomotor networks, indicating robust interactions among

270  regions within these networks.

271

272 Totest if specific networks were driving these developmental patterns of network properties, we
273  tested age-by-network interactions using a linear mixed effects model. The various models tested,
274  and the model selection results are summarised in Table S3. The best fitting model for all four
275  graph measures included an age by network by sex interaction term. We observed significant age-
276  by-network interactions in modularity (F = 6.6, p <.001), global efficiency (F = 6.7, p <.001),
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277  clustering coefficient (F = 3.3, p =.002), and mean strength (F = 23.9, p <.001). As these results
278 indicated that there were age-related differences in network properties between the networks, we
279  performed subsequent analyses to test for age associations within networks, to discern whether
280  developmental patterns differed regionally. The various networks tested and their corresponding
281  anatomical tractography depictions are illustrated in Figure 2c.

282
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284  Figure 2: Relationship between age and global network measures computed for the whole
285  connectome realized with Destrieux parcellation. a) The circle plot indicates the connection
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286  strength between and within distinct networks obtained using the intra-axonal signal fraction

287 estimated with COMMIT; b) Association between age and network characteristics between

288 networks (R? and p-value); ¢) Depiction of atlas-derived cortical functional networks and

289  representative white matter tracts traversing these networks, for an 8-year-old female participant.

290
291 3.2. Sub-network characteristics

292

293  We identified regional differences in the age-related development of specific sub-networks (Table
294 1 and Figure 3). Through linear regression analyses within individual networks, we found

295  statistically significant relationships between age and global efficiency in the default mode (R?=
296  .38,p =.001), somatomotor (R* = .28, p <.001) and visual networks (R* = .43, p <.001). Clustering
297 coefficient was positively associated with age in the visual network (R*> = .37, p <.001). Moreover,
298 age exhibited a positive association with mean strength in the somatomotor network (R? = .33, p <
299 .001) and the visual network (R? = .46, p <.001). We also observed a negative association between
300 age and modularity in the ventral attention network (R* = .13, p <.001). Overall, our results

301  highlight the distinct age-related developmental patterns in the visual and somatomotor networks.
302

303  To confirm that the age-dependence of visual network properties were significantly different from
304  other networks, we performed linear mixed-effects modelling to discern whether age-by-network
305 interactions were significantly different between the visual network and the seven remaining sub-
306  networks. Where the age-relationship in the visual network was significantly stronger than each
307 subsequent network, this is summarised in Table S4 and annotated in Table 1. In summary, the
308  most marked observations were in network strength, where the visual network had a significantly
309  stronger age-dependency compared to each individual network, apart from the somatomotor

310  network which also had a positive relationship with age.

311

312 Table 1: Summary statistics for the relationship between age and global sub-network

313  characteristics.

Network Modularity G_'k_)bal Clust.erlng Mean strength
efficiency coefficient

R?  p-value R?  p-value R? p-value R? p-value
Default mode .04 55 .38 .001 10 59+ 43 A3+
Dorsal attention -03 .81 .06 A1t .09 .20 .06 23F
Fronto-parietal .07 .66 .03 58 -.01 .96 .07 SF
Limbic .07 A4 19 92 A4 81 21 53+
Somatomotor .01 75 28 <.001 .30 .20 .33 <.001
Subcortical .08 27 .03 .26 .01 72 .02 AT
Ventral attention A3 <.001 A9 .006 A AT 22 A27
Visual A1 A7 43  <.001 37 <.001 46 <.001

314  Note: Adjusted R? determined using a linear model including age, sex and total intracranial
315  volume. Bold values indicate p<.005. T denotes a significant difference in the slope of the age
316 relationship compared with the visual network.
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Figure 3: Association between age and network properties within sub-networks. Significant age
relationships are annotated (***: p<.005). Top panel represents circle plots of within-network
nodes, with brighter yellow connections indicative of higher mean strength.

3.3. Feature importance of local efficiency

Age prediction of local efficiency in the visual network yielded a regression coefficient of 0.45
(RMSE: 2.2, p=.001, Figure 4a) on the validation set (optimal value for L1=0.1). Feature
importance in the visual network identified specific nodes (Figure 4) driving age-related increases
in local efficiency. The 10 most sensitive nodes were balanced between hemispheres (5 nodes in
right hemisphere, and 5 in the left) and accounted for 75% of variation in total weights (of a total of
26 nodes). Figure 4b summarises the regions ranked by weight, and Figure 4c depicts these
regions in axial, sagittal and coronal views in 3D. Nodes with high feature importance for age
clustered together, including nodes which form the dorsal (left superior occipital gyrus and middle
occipital gyrus and sulcus) and the ventral (right medial occipito-temporal sulcus and gyrus, and
right lingual gyrus) visual pathways.
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335

336  Age prediction for local efficiency of the somatomotor network yielded a weaker regression

337 coefficient of 0.10 which was not statistically significant (p=.10). Feature importance identified
338  specific regions driving age-related increases in local efficiency. Six nodes balanced between
339  hemispheres (3 nodes in right hemisphere, and 3 in the left) accounted for 70% of the variation in
340  total weights (of a total of 16 nodes). Nodes with high feature importance for age included the
341  bilateral precentral gyrus, right postcentral gyrus, bilateral central sulcus, and left transverse

342 temporal gyrus.
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347  Figure 4: Feature importance for age-prediction of local network efficiency in the visual cortex. A)
348  predicted age was significantly associated with actual age; B) top 10 ranking regions that

349  contributed most to age-related patterns displayed on C) axial, sagittal, and coronal glass brain
350  views, where nodes are scaled and color-coded by weight. Nodes with high feature importance
351  included left superior and middle occipital gyrus and right medial occipito-temporal gyrus.

352

353 4. Discussion

354

355  We used microstructure-informed tractography to investigate global and local network

356  characteristics in canonical cortical networks among a group of typically developing children and
357  adolescents. Our study revealed three main findings:

358

359  First, whole-brain network-based measures of modularity, global efficiency and mean strength
360 increased with age. This indicates that as children move through adolescence, the shortest path
361 between nodes (in this case, regions from the Destrieux parcellation) decreases, resulting in a
362 more efficient transfer of information. As a result, the nodes tend to cluster together to form hubs,
363  and the strength of each connection increases with age. These findings align with known age-
364 related increases in global efficiency during adolescent development (Baker et al., 2015;

365 Khundrakpam et al., 2013; Koenis et al., 2018; Van den Heuvel & Sporns, 2013). Additionally,
366  previous white matter studies have shown substantial increases in intra-axonal signal fraction with
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367 age (Chang et al., 2015; Genc et al.,, 2020; Palmer et al., 2022), aligning with our observations of
368  age-related increases in mean strength.

369

370  Second, sub-network analyses revealed specific networks with substantial age-related differences
371 occurring from childhood to adolescence. In the default mode, somatomotor, and visual networks,
372  global efficiency was higher with older age. Additionally, clustering coefficient was higher with age
373  inthe visual network, and mean strength was higher with age in the somatomotor and visual

374  networks. Notably, brain structures, such as the primary visual and somatomotor cortex have

375  highly organized and specialized structures that are closely related to their function, such as

376  discriminating visual features (Wandell, 1999) and performing specific motor functions (Gordon et
377  al,2023). Together, our findings of age-related maturation of network efficiency and strength

378  suggests a high degree of integration and communication within motor and visual processing

379  regions, potentially reflecting the ongoing maturation of visual information processing and motor
380  coordination capabilities during development. Our specific findings in the visual network align with
381 previously observed temporal patterns of white matter microstructural maturation in the visual
382  cortex (Colby et al., 2011; Genc et al., 2017) which are likely to be closely linked to age-related
383 increases in axon density in humans (Genc et al., 2020) and rodents (Juraska & Willing, 2017).
384

385  Age-prediction in the visual cortex pointed to a smaller cluster of five regions per hemisphere that
386  contributed to >75% of the observed age-related differences in local network efficiency. Our data
387  driven approach suggests that nodes in the left dorsal (middle and superior occipital) visual

388  pathway and the right ventral (middle occipito-temporal) visual pathway are driving developmental
389  improvements in local network efficiency. The visual system undergoes early establishment during
390 prenatal development and continues to mature through life (Gogtay et al., 2004; Knudsen, 2004).
391  While myelination in the visual cortex is largely completed by the first year of life (Deoni et al.,

392 2015), recent research indicates that myelination follows a protracted course in ventral temporal
393  cortices (Natu et al., 2019). Ongoing intra-cortical myelination of the ventral temporal cortex may
394  underlie MRI-derived estimates of cortical thinning, previously attributed to synaptic pruning

395 (Gomezet al., 2017; Natu et al., 2019).

396

397  The maturation of association visual cortices supports higher level visual processing (e.g.

398  recognising and discriminating objects, motion perception etc.) (Gomez et al., 2018). Our findings
399  align with task-based fMRI studies involving object and shape recognition tasks, which

400 demonstrate protracted development of dorsal and ventral visual pathways (Freud et al., 2019;
401 Ward et al.,, 2023). These developmental improvements in shape-processing mechanisms likely
402  contribute to microstructure-specific strengthening of global network efficiency and connection
403  strength within the visual network through child and adolescent brain development. The age-

404  related increases in local network efficiency in lateral temporo-occipital cortices may facilitate
405  improvements in visual processing and function in these association cortices.

406

407  The myelination of these visual pathways may help to refine and optimize the neural connections
408  and improve visual processing capabilities. Whilst we did not directly study myelination here, the
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409 intra-axonal signal fraction explains a significant proportion of the age-related variance in network
410 efficiency and connection strength. Taken together, our findings suggest that the visual cortex
411  undergoes protracted development through childhood and adolescence. While our study primarily
412  focuses on white matter microstructure for exploring graph-based measures, our observations of
413  higher efficiency and connection strength with older age is predominantly due to ongoing

414  microstructural maturation in the visual cortex.

415

416 4.1. Methodological advantages of the current approach

417
418  We employed a data-driven approach to establish correspondence between a structural

419 parcellation and functional atlas in each participant (Baum et al., 2017). This involved selecting
420  the maximum number of voxels in the intersection between a smaller cortical region with its
421  corresponding larger functional network. By ensuring that this overlap was consistent with the
422 homologous ROls and in at least 80% of the participants, we generated canonical cortical

423 networks for the basis of regional graph-based analyses.

424
425  One of the significant advantages of the COMMIT framework is its ability to assign specific

426  microstructural properties to individual tractography-reconstructed streamlines, which sets it apart
427  from conventional (voxel-wise or vertex-wise) approaches where complex intra-voxel

428  heterogeneity can bias estimates (Schilling et al., 2022). By allowing a distribution of

429 microstructural values to be assigned to a voxel, i.e., the number of values is equal to the number
430  of unique streamlines passing through the voxel and retained for analysis, COMMIT offers a more
431 complete estimation of microstructural properties. In the context of graph theory, we are better
432 equipped to capture the dynamic strengthening and weakening of connections with maturation
433  over childhood and adolescence. Overall, the COMMIT framework offers a more nuanced and
434  detailed characterization of microstructural properties along individual streamlines, countering
435  complex intra-voxel heterogeneity, making it a powerful tool for a more meaningful assessment of
436  brain connectivity (Gabusi et al., 2022; Schiavi et al., 2022; Schiavi, Ocampo-Pineda, et al., 2020;
437  Schiavi, Petracca, et al., 2020).

438

439 4.2. Limitations and future directions

440

441 It is important to acknowledge that certain functional networks utilised in our study here contain
442  fewer nodes than others, potentially influencing our interpretations. Although we adopted a robust
443 method to generate reproducible cortical nodes for each functional network; it resulted in some
444  networks having a small number of nodes.

445

446 While there is a certain relationship between brain structure and function, structure-function
447 coupling occurs in a spatially-dependent hierarchical manner (Baum et al., 2020). The brain is a
448  complex and dynamic organ, with function influenced by a variety of factors, including structural
449  organisation (Chamberland et al., 2017) and neural activity. Whilst the aforementioned factors
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450  may help explain why we did not observe an age dependence of network-based measures of brain
451 connectivity in regions known to remodel in adolescence (e.g. the fronto-parietal network), it is
452 known that functional networks that are in close range demonstrate stronger white matter

453  connectivity (Hermundstad et al., 2013), which may explain why our findings of global efficiency
454  and mean strength were confined to the somatomotor and visual networks. On the note of the

455  fronto-parietal network, despite running a ‘gold-standard’ dMRI pre-processing pipeline,

456  susceptibility-induced distortion artefacts may introduce an additional source of variance into the
457  diffusion MRI data, especially in fronto-parietal regions with an air/bone interface such as the nasal
458  cavity.

459

460  Future work characterising the developing connectome using biologically meaningful

461 mathematical models of brain connections are promising (Akarca et al., 2023; Seguin et al., 2023).
462  Combining task-based or resting-state fMRI with microstructure-informed connectomes may

463 better elucidate structure-function coupling across the developing brain (Suarez et al., 2020).

464  Recent updates to the COMMIT framework offer the opportunity to incorporate additional imaging
465  contrasts, such as myelin-sensitive contrasts, leading to improved delineation of anatomically

466  accurate whole-brain tractography (Leppert et al., 2023; Schiavi et al., 2022).

467

468 5. Conclusion

469

470  Incorporating microstructural information into network analyses has shed light on distinct regional
471  age-related development of brain networks. Notably, we observed unique characteristics within
472 the visual network throughout development, supporting its ongoing maturation, reaffirming

473  previously reported patterns of protracted development in the dorsal and ventral visual pathways.
474  Overall, our study demonstrates the power of microstructure-informed tractography to decipher
475  intricate developmental patterns, reinforcing the potential for deepening our understanding of
476  brain connectivity and development.
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817 8. Supplementary

818 8.1. Tables

819

820

821  Table S1: Diffusivity parameters estimated in a white matter mask for one younger (8-year-old)
822  and one older (17-year-old) participant. Values are reported as mean (SD).

823

da doar dperp
Younger 2.27 (0.71) 2.01(0.57) 0.61(0.28)
Older 2.35(0.62) 1.71(0.58) 0.62 (0.27)
824
825
826

827  Table S2: Regions from the Destrieux parcellation assigned to each canonical cortical network.
828  Results for left hemisphere shown (equivalent in right hemisphere). Only nodes overlapping the
829  same network in >80% of participants were included in the analysis.

830
Region Name X Y p4 C Yeo7_name N

2 G_and_S_occipital_inf 23 60 180 255 visual 88

3 G_and_S_paracentral 63 100 60 255 somatomotor 87

4 G_and_S_subcentral 63 20 220 255 somatomotor 88

5 G_and_S_transv_frontopol 13 0 250 255 dmn 88

6 G_and_S_cingul-Ant 26 60 0 255 dmn 88

7 G_and_S_cingul-Mid-Ant 26 60 75 255 ventralattention 88

9 G_cingul-Post-dorsal 25 60 250 255 dmn 88
10 G_cingul-Post-ventral 60 25 25 255 dmn 88
11 G_cuneus 180 20 20 255 visual 88
12 G_front_inf-Opercular 220 20 100 255 ventralattention 86
13 G_front_inf-Orbital 140 60 60 255 dmn 88
15  G_front_middle 140 100 180 255 frontoparietal 84
16 G_front_sup 180 20 140 255 dmn 88
17 G_Ins_lg_and_S_cent_ins 23 10 10 255 ventralattention 88
18 G_insular_short 225 140 140 255 ventralattention 88
19 G_occipital_middle 180 60 180 255 visual 88
20 G_occipital_sup 20 220 60 255 visual 88
21 G_oc-temp_lat-fusifor 60 20 140 255 visual 88
22 G_oc-temp_med-Lingual 220 180 140 255 visual 88
23 G_oc-temp_med-Parahip 65 100 20 255 limbic 88
24 G_orbital 220 60 20 255 limbic 80
25 G_pariet_inf-Angular 20 60 220 255 dmn 88
26 G_pariet_inf-Supramar 100 100 60 255 ventralattention 84
27 G_parietal_sup 220 180 220 255 dorsalattention 88
28 G_postcentral 20 180 140 255 somatomotor 87
29 G_precentral 60 140 180 255 somatomotor 88
31 G _rectus 20 60 100 255 limbic 88
32 G_subcallosal 60 220 20 255 limbic 88
33 G_temp_sup-G_T_transv 60 60 220 255 somatomotor 88
35 G_temp_sup-Plan_polar 65 220 60 255 limbic 88
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38 G_temporal_middle 180 60 60 255 dmn 88
41 Lat_Fis-post 61 60 100 255 somatomotor 88
42 Pole_occipital 140 20 60 255 visual 88
43 Pole_temporal 220 180 20 255 limbic 88
44 S_calcarine 63 180 180 255 visual 88
45 S_central 221 20 10 255 somatomotor 87
46 S_cingul-Marginalis 221 20 100 255 ventralattention 84
48 S_circular_insula_inf 221 20 220 255 ventralattention 86
49 S_circular_insula_sup 61 220 220 255 ventralattention 88
50 S_collat_transv_ant 100 200 200 255 limbic 88
51 S_collat_transv_post 10 200 200 255 visual 88
52 S_front_inf 221 220 20 255 frontoparietal 88
56 S_intrapariet_and_P_trans 143 20 220 255 dorsalattention 84
57 S_oc_middle_and_Lunatus 101 60 220 255 visual 88
58 S_oc_sup_and_transversal 21 20 140 255 visual 88
60 S_oc-temp_lat 221 140 20 255 dorsalattention 87
61 S_oc-temp_med_and_Lingual 141 100 220 255 visual 88
62 S_orbital_lateral 221 100 20 255 frontoparietal 77
63 S_orbital_med-olfact 181 200 20 255 limbic 88
65 S_parieto_occipital 101 100 180 255 visual 85
69 S_precentral-sup-part 21 20 200 255 dorsalattention 86
71 S_subparietal 101 60 60 255 dmn 88
73 S_temporal_sup 223 220 60 255 dmn 88
74 S_temporal_transverse 221 60 60 255 somatomotor 88
76 Left-Thalamus-Proper 0 118 14 255 subcortical 88
77 Left-Caudate 122 186 220 255 subcortical 88
78 Left-Putamen 236 13 176 255 subcortical 88
79 Left-Pallidum 12 48 255 255 subcortical 88
80 Left-Hippocampus 220 216 20 255 subcortical 88
81 Left-Amygdala 103 255 255 255 subcortical 88
82 Left-Accumbens-area 255 165 0 255 subcortical 88
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Table S3: Results of mixed-effect model selection for first level global graph network analysis.
Values reported are Akaike Information Criterion (AIC) of each model fit.

Clustering
Model Modularity Global Efficiency Coefficient Mean Strength
M1a -2816.78 -2549.70 -3792.68 244.49
M2a -2821.03 -2553.69 -3796.30 237.85
M3a -2832.02 -2565.74 -3795.91 167.79
M4a -2860.55 -2575.29 -3814.42 90.46
M1b -2825.11 -2569.99 -3801.41 215.66
M2b -2826.42 -2570.17 -3802.19 214.00
M3b -2840.35 -2586.03 -3804.65 138.97
M4b -2865.94* -2591.77* -3820.31* 66.60*

Note: Bold indicates lowest AIC for each graph measure; * indicates if the age by network term
was significant at p<.005

Footnote: Models tested are as follows:
M1a <- Imer(measure ~ age + sex + network +
M2a <- Imer(measure ~ age * sex + network +
M3a <- Imer(measure ~ age * network + sex + (1|ID), REML=FALSE, data=data
M4a <- Imer(measure ~ age * sex * network + (1/ID), REML=FALSE, data=data)
M1b <- Imer(measure ~ age + sex + network + ICV + (1]ID), REML=FALSE, data=data)
(
(
(

—_

1[ID), REML=FALSE, data=data)

1|ID), REML=FALSE, data=data)
), )

N~ o~

M2b <- Imer(measure ~ age * sex + network + ICV + (1/ID), REML=FALSE, data=data)
M3b <- Imer(measure ~ age * network + sex + ICV + (1/ID), REML=FALSE, data=data)
M4b <- Imer(measure ~ age * sex * network + ICV + (1|ID), REML=FALSE, data=data)
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847  Table S4: Results from comparison of age-associations of graph measures with reference to the
848  visual network. Bold values indicate networks which have significantly different slopes to the age-
849  relationship in the visual network, generated using linear mixed efforts models.

850

Network Global efficiency Clustering coefficient Mean strength
t p-value t p-value t p-value
Visual (reference)
Default mode -1.65 .10 -2.91 .004 -4.08 5E-05
Dorsal attention -2.96 .003 -1.17 24 -5.25 2E-07
Fronto-parietal -1.64 0 -1.66 0 -3.91 1E-04
Limbic -2.04 .04 -1.87 .06 -4.01 7E-05
Somatomotor -0.60 55 -1.16 25 -1.78 .08
Subcortical -2.19 .03 -2.19 .03 -4.55 6E-06
Ventral attention -1.93 .05 -3.05 .002 -4.34 2E-05
Somatomotor
(reference)
Default mode -1.05 29 -1.05 29 -2.30 .02
Dorsal attention -2.36 .02 -2.36 .02 -3.48 <.001
Fronto-parietal -1.04 .30 -1.04 .30 -213 .03
Limbic -1.45 15 -1.45 15 -2.23 .03
Subcortical -1.60 A1 -1.60 A1 -2.78 .006
Ventral attention -1.33 .18 -1.33 .18 -2.56 011
Visual 0.60 55 0.60 55 1.78 .08

851 Note: model used was the best fitting model deduced from Table S3.
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