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Abstract1

Compound bioactivity plays an important role in di昀昀erent stages of drug development and2

discovery. Existing machine learning approaches have poor generalization ability in compound3

bioactivity prediction due to the small number of compounds in each assay and incompatible4

measurements among assays. Here, we propose ActFound, a foundation model for bioactivity5

prediction trained on 2.3 million experimentally-measured bioactivity compounds and 50, 869 as-6

says from ChEMBL and BindingDB. The key idea of ActFound is to employ pairwise learning to7

learn the relative value di昀昀erences between two compounds within the same assay to circumvent8

the incompatibility among assays. ActFound further exploits meta-learning to jointly optimize9

the model from all assays. On six real-world bioactivity datasets, ActFound demonstrates accu-10

rate in-domain prediction and strong generalization across datasets, assay types, and molecular11

sca昀昀olds. We also demonstrated that ActFound can be used as an accurate alternative to the12

leading computational chemistry software FEP+(OPLS4) by achieving comparable performance13

when only using a few data points for 昀椀ne-tuning. The promising results of ActFound indicate that14

ActFound can be an e昀昀ective foundation model for a wide range of tasks in compound bioactivity15

prediction, paving the path for machine learning-based drug development and discovery.16
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1 Introduction17

Compound bioactivity plays an important role in drug development and discovery due to its broad18

applicability in di昀昀erent stages of drug discovery, including hit identi昀椀cation,1–3 drug repurposing,419

and lead optimization.5,6 Bioactivity prediction aims to predict the activity of compounds in a speci昀椀c20

binding type, functional type, or pharmacokinetic type assay,7 allowing scientists to rapidly identify21

desired compounds from a large number of samples.8 Traditional computational chemistry approaches22

rely on 3D target-protein structure9 to predict bioactivity and su昀昀er from the inherent trade-o昀昀 be-23

tween accuracy and computational cost.10 For example, state-of-the-art methods, such as free energy24

perturbation (FEP),11 can provide accurate predictions for several binding type assays,12 but also25

require extensive computational resources that are often not a昀昀ordable for large-scale applications.926

In the past decade, deep learning methods have demonstrated great potential in bioactivity pre-27

diction by using fewer computational resources compared to computational chemistry approaches.1328

However, existing deep learning approaches have two limitations. First, only a few compounds (12.729

compounds in ChEMBL7 and 54.3 compounds in BindingDB14 on average) are measured in each as-30

say due to the expensive experimental cost. As a result, there is not enough training data to train an31

assay-speci昀椀c model. Second, although advanced machine learning techniques, such as transfer learn-32

ing,15–20 multi-task learning21 and meta-learning,22–28 can be used to jointly learn from all assays,33

these assays are often incompatible in terms of units (e.g., nMol, mg/kg/day, ug/ml), value ranges,34

and measurements (e.g., IC50, DC50). This leads to incorrect transfer between assays and hurts the35

prediction performance, especially for rare compounds and assay types.36

Recently, foundation models have achieved promising results in computer vision and natural lan-37

guage processing.29–31 Foundation models aim to learn a pre-trained model from large-scale and38

diverse datasets that serve as a foundation for a variety of downstream tasks. The key advantage of39

foundation models is that they are capable of few-shot learning, which means that they only need a40

few labeled data to be 昀椀ne-tuned for downstream tasks.32,33 Because of this label-efficient advantage,41

foundation models have also been applied to biomedicine, where labeled data are often expensive.3442

We hypothesize that a foundation model could also be e昀昀ective for bioactivity prediction because it43

presents large and diverse assays while each assay only contains a few compounds.44

In this work, we propose ActFound, a foundation model for bioactivity prediction. Our foundation45

model is developed based on two machine learning techniques: meta-learning and pairwise learning.46

Meta-learning is employed to jointly train the model from a large number of diverse assays, making it47

an initialization for new assays with limited data.22–24 Pairwise learning is used to address the inherent48

incompatibility among assays. Our intuition is that although compounds from di昀昀erent assays may49

have varying units, value ranges, or measurement metrics, those within the same assay are comparable.50

Instead of directly predicting absolute bioactivity values, we propose to learn the relative bioactivity51

di昀昀erence between two compounds within the same assay using pairwise learning.35,36 Speci昀椀cally, for52

each assay, we utilize a Siamese Network architecture to acquire the relative di昀昀erence in bioactivity53

values between two compounds. This approach allows us to reconstruct the bioactivity values for54

previously unseen compounds using the predicted relative bioactivities.55

We evaluated ActFound on four downstream bioactivity prediction tasks: in-domain bioactivity56

prediction, cross-domain bioactivity prediction, FEP prediction, and cancer drug response prediction.57

On in-domain bioactivity prediction, ActFound outperformed all nine competing methods on ChEMBL,58

BindingDB, FS-Mol, and pQSAR-ChEMBL. On cross-domain bioactivity prediction, where the model59
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is trained in one domain (e.g., ChEMBL) and tested on another domain (e.g., BindingDB), our model60

also achieved the best results, indicating that ActFound is agnostic to measurement units and can be61

applied to di昀昀erent types of assays, and we also provided practical guidance on when to use ActFound62

for researchers. Furthermore, we demonstrated that ActFound can be an alternative to FEP calcu-63

lation, a resource-intensive Relative Binding Free Energy (RBFE) computation chemistry method.64

Speci昀椀cally, we found that by using 40% of the compounds for 昀椀ne-tuning (12 compounds on average65

for each assay), our model can surpass FEP+(OPLS4),37 the leading commercial software for FEP66

calculation, by 9.5% in terms of RMSE on FEP benchmarks. Lastly, we showed that a cancer drug67

response regressor pre-trained using ActFound exhibited promising performance on zero-shot drug sen-68

sitivity prediction, underscoring the broad applicability of ActFound. Collectively, ActFound stands69

as a foundational model for bioactivity prediction developed through pairwise meta-learning, and can70

be broadly applied to a variety of applications in drug development and discovery.71

2 Results72

2.1 Overview of ActFound73

ActFound is a foundation model for bioactivity prediction. To e昀昀ectively utilize a large number of74

available assays and compounds, ActFound is developed to address two major challenges in bioactiv-75

ity prediction, the limited availability of labeled data for each assay and the incompatibility among76

di昀昀erent assays. With only a few compounds and their corresponding experimental bioactivity on a77

new assay, ActFound can accurately predict the bioactivity of new compounds in the assay. ActFound78

provides a pre-trained bioactivity model using meta-learning and pairwise learning (Fig. 1a). At the79

pre-training stage, diverse assays are used as “meta-training” datasets. The parameters of ActFound80

are interactively updated on these assays using a bi-level optimization process, which consists of an81

inner loop for 昀椀ne-tuning speci昀椀c assays, and an outer loop for updating model parameters based on82

the performance of 昀椀ne-tuned models. As a result, ActFound is more sensitive to the updates from83

various assays and can later quickly adapt to new assays. The backbone of ActFound is a Siamese84

Network calculating the relative di昀昀erence in bioactivity values between two compounds, allowing us85

to circumvent the issue of incompatible bioactivity values across di昀昀erent assays and focus on the86

compatible relative activity. The 昀椀nal bioactivity values can be reconstructed based on the predicted87

relative bioactivity values (Fig. 1b). At the 昀椀ne-tuning stage, ActFound is 昀椀ne-tuned using a few88

compounds with experimental bioactivities in the new assay, and then predicts bioactivity predic-89

tions on unmeasured compounds (Fig. 1c). We demonstrated that ActFound can accurately perform90

in-domain bioactivity prediction and exhibit strong generalization ability across domains.91

2.2 Accurate in-domain bioactivity prediction92

We 昀椀rst sought to evaluate the performance of ActFound for bioactivity prediction in the in-domain93

setting (see Methods) on ChEMBL7 and BindingDB.14 Following previous work,22 we evaluated on94

the 16-shot setting, where 16 compounds in each assay were used to 昀椀ne-tune the model, and the95

remaining ones were held out for evaluation. We found that ActFound outperformed all competing96

methods on both datasets in terms of r2 (Fig. 2a, p-value < 10
−11) and RMSE (Fig. 2b, p-value <97

10
−20). First, ActFound substantially outperformed conventional meta-learning approaches MAML3898
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Figure 1. Overview of ActFound. a, ActFound is a foundation model for bioactivity prediction
pre-trained on a large number of assays. After pre-training, ActFound can be 昀椀ne-tuned on a test
assay with just a few measured compounds, and then predict bioactivity values for other unmeasured
compounds in this assay. The pre-training stage enables ActFound to project the compounds from
diverse assays to a shared embedding space. b, ActFound exploits pairwise meta-learning for pre-
training strategy. A Siamese Network is used to learn the relative bioactivity value di昀昀erences between
two compounds to address the incompatibility among assays. The 昀椀nal bioactivity value can be
calculated using the predicted relative bioactivity value di昀昀erence. c, ActFound employs a k-nearest
neighbor-based 昀椀ne-tuning strategy where the k-nearest assays are identi昀椀ed to jointly 昀椀ne-tune the test
assay. This makes the pre-trained model quickly adapt to the test assay, improving the generalizability
of ActFound.
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and ProtoNet,39 indicating the e昀昀ectiveness of using pairwise learning to learn the relative bioactivity99

values. Second, we found that ActFound is better than ActFound(transfer), a transfer learning based100

variant of our method, demonstrating the advantage of using meta-learning to train a foundation101

model from diverse assays. Although being worse than ActFound, MAML and ProtoNet are better102

than other non-meta-learning approaches, again indicating the e昀昀ectiveness of using meta-learning for103

this task. We found that the improvement of meta-learning-based approaches is larger on ChEMBL104

than BindingDB. Since ChEMBL has 35, 644 assays, more than twice the amount of assays compared105

to the 15, 225 assays on BindingDB, it can better exploit the advantage of meta-learning to quickly106

adapt the model to new assays, reassuring the prominence of using meta-learning to build a foundation107

model for bioactivity prediction.108

Next, we evaluated our method FS-Mol.22 FS-Mol is curated from ChEMBL by only retaining109

assays with molar concentration units (e.g., nMol), thus excluding many costly in vivo assays measured110

in dosing units (e.g., mg/kg/day). FS-Mol is substantially smaller and only contains 13.8% of assays111

and 30.8% of unique compounds compared to ChEMBL. We assessed the performance using di昀昀erent112

number of 昀椀ne-tuning compounds from 16 to 128 (Fig. 2c, Supplementary Figure 1,2) and113

found that ActFound achieved the best performance in the low-resource setting (16-shot, 32-shot) and114

comparable performance on 128-shot (p-value > 0.95). We attributed the improvement of our method115

to meta-learning, which is known to perform better when only limited labeled data are available. We116

further examined a more challenging sca昀昀old data splitting setting on pQSAR-ChEMBL,21 where the117

昀椀ne-tuning and the test compounds of an assay do not have any overlapping molecular sca昀昀olds. Since118

the molecular sca昀昀old is the core structure that di昀昀erent functional groups attach to, this setting can119

more rigorously evaluate the generalizability of our method. ActFound again performs the best in120

this setting (Fig. 2d,e, Supplementary Figure 3), demonstrating its generalizability to unseen121

molecular sca昀昀olds.122

To better understand the superior performance of learning the relative bioactivity di昀昀erence, we123

contrasted compound embeddings obtained by ActFound and MAML in Fig. 2f. Since most assays124

are developed for lead optimization, compounds in the same assay should have similar structures and125

thus be clustered together. Compared to MAML, embeddings from ActFound presented more visi-126

ble patterns, con昀椀rming the high-quality embeddings learned from ActFound. Among all assays, we127

found that the performance of ActFound is the least desirable on assays that have the percentage (%)128

unit, whereas the training assays are molar concentration unit, density unit (e.g., ug/mL) or dosing129

unit (Supplementary Figure 4). Nevertheless, ActFound still surpassed other transfer learning and130

meta-learning approaches (Fig. 2g,h), again suggesting that our approach possesses better general-131

ization capability across units. Collectively, the prominent performance of ActFound in the in-domain132

setting demonstrates the e昀昀ectiveness of using pairwise meta-learning to build a foundation model for133

bioactivity prediction, further motivating us to investigate its performance in the more challenging134

cross-domain setting.135

2.3 Improved generalization across domains136

A key advantage of foundation models is the ability to generalize the prediction to new domains and137

datasets. After observing ActFound’s strong generalizable performance on unseen molecular sca昀昀olds138

and units, we next systematically evaluated its generalization in the cross-domain setting, where the139

model is trained using all assays from one domain (e.g., ChEMBL) and 昀椀ne-tuned on all assays from140
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Figure 2. Evaluation of the in-domain bioactivity prediction. a,b, Bar plots comparing
ActFound and competing methods in 16-shot bioactivity prediction on ChEMBL and BindingDB in
terms of r2 (a) and RMSE (b). The asterisks indicate that ActFound outperforms the next best-
performing model in the metric, with t-test signi昀椀cance levels of p-value < 5 × 10−2 for *, p-value
< 5 × 10−3 for **, and p-value < 5 × 10−4 for ***. c, Bar plot comparing the 16, 32, 64, 128-shot
bioactivity prediction on FS-MOL using r2. d,e, Bar plots comparing bioactivity prediction using
sca昀昀old data splitting on pQSAR-ChEMBL in terms of r2 (d) and RMSE (e), 75% of the experimental
bioactivity is used for 昀椀ne-tuning. f, T-SNE plots comparing compound embeddings obtained by
ActFound (left) and MAML (middle). All compounds are from ChEMBL test set assays. Points are
colored according to the assay, and assays with the largest number of compounds are selected. Four
compounds which are denoted using red circles are illustrated (right). g,h, Bar plots comparing the
bioactivity prediction on ChEMBL-Activity assays (unit=%) in terms of r2 (g) and RMSE (h).

another domain (e.g., BindingDB). The results are summarized in Fig. 3. We 昀椀rst noticed that141

ActFound yielded a slight performance degradation in the cross-domain setting compared to the in-142

domain setting, demonstrating that this is a more challenging setting. Nevertheless, ActFound still143
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outperformed all comparison approaches under both metrics on both datasets. For example, ActFound144

obtained 0.33 r2, which is 18% higher than the best-competing method MAML on the cross-domain145

prediction between ChEMBL and BindingDB (Fig. 3a,b). We found that the performance of Act-146

Found is better on ChEMBL-to-BindingDB than BindingDB-to-ChEMBL in terms of performance147

drops compared to the in-domain setting. Similar to our observation in the in-domain setting, we148

again attributed this to the larger number of assays in ChEMBL compared to BindingDB, which149

provides more tasks for our pairwise meta-learning framework.150

Since BindingDB and ChEMBL are both collected from diverse sources, there might exist over-151

lapping assays that cause data leakage. In addition to our e昀昀orts to exclude these related assays152

(see Methods), we exploited two independent kinase inhibitor datasets KIBA40 and Davis41 to eval-153

uate the cross-domain prediction performance. We 昀椀rst noticed that the performance on these two154

datasets is substantially worse than the performance on BindingDB and ChEMBL, suggesting them155

to be more challenging tasks. Our method achieved the overall best performance on both datasets156

(Fig. 3c-f, Supplementary Figure 5,6), reassuring the superiority of pairwise learning and meta-157

learning. Moreover, the performance enhancement of ActFound relative to MAML is larger on KIBA158

than Davis. In contrast to David, measurement units in KIBA do not exist in ChEMBL or BindingDB,159

again demonstrating that ActFound is agnostic to measurement units and can be better generalized160

to assays with never-before-seen measurement units.161

Because the performance of our method and competing approaches all dropped in the cross-domain162

setting compared to the in-domain setting, it is bene昀椀cial to let end users know which test assays our163

method can perform well. We found that the test performance of the test assay is strongly correlated164

with the loss value for the 昀椀rst optimization step (ρP = −0.88) compared to other steps (Fig. 3g,h,165

Supplementary Figure 7-9). Intuitively, this strong correlation re昀氀ects how likely this test assay166

can bene昀椀t from meta-learning since a smaller loss means the model needs less e昀昀ort to 昀椀t this new167

assay, allowing end users to identify the assays that can be better improved using ActFound.168

2.4 A machine learning alternative to FEP calculation169

To further illustrate the practical usage of ActFound in drug design, we applied it to two benchmarks170

for Free Energy Perturbation (FEP) calculation.37,42 FEP calculation is an important computational171

chemistry approach for real-world drug design by providing the Relative Binding Free Energy (RBFE)172

between two similar compounds. RBFE reveals how small structure modi昀椀cation impacts the bioac-173

tivity of a target protein, guiding the optimization of the drug structure to increase bioactivity.12174

Nevertheless, FEP calculation is resource-intensive, requiring approximately 24 to 48 GPU hours for175

computing a single RBFE between two compounds9,37 and is limited to assays with known 3D protein176

target structure. We hypothesized that RBFE can be approximated by the bioactivity di昀昀erence in177

our framework using pairwise learning. To validate this, we collected two benchmarks for FEP from178

Schrödinger37 and Merck.42 These benchmarks contain 16 assays and each has 29 compounds on av-179

erage. Since ChEMBL and BindingDB are collected from diverse sources including scienti昀椀c articles,180

there might be data leakage for evaluating FEP benchmarks. To address this, we excluded assays that181

might lead to data leakage from the training set (see Methods), and 58.3% of the compounds on both182

datasets are unseen in the ChEMBL training set after this processing. We compared the performance183

of all methods using di昀昀erent proportions of data for 昀椀ne-tuning ranging from 20% to 80% (Fig. 4a,b,184

Supplementary Figure 10-13). We 昀椀rst observed that our method consistently outperforms com-185
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Figure 3. Evaluation of the cross-domain bioactivity prediction. a,b, Bar plots comparing
the cross-domain bioactivity prediction between ChEMBL and BindingDB in terms of r2 (a) and
RMSE (b). ChE, BDB are abbreviations for ChEMBL and BindingDB respectively. c-f, Bar plots
comparing the bioactivity prediction on KIBA and Davis in terms of r2 and RMSE, and Dav is an
abbreviation of Davis. g,h, Scatter plots comparing the loss for the 昀椀rst step and the test performance
in terms of r2 on KIBA (g) and Davis (h).

peting methods on both datasets using di昀昀erent proportions of 昀椀ne-tuning data. The improvement186

over competing methods is larger when fewer data are used, suggesting that our method can more187

efficiently utilize labeled data in new assays. More importantly, we found that by using 40% of the188

data for 昀椀ne-tuning (12 compounds on average for each assay), our model can surpass the performance189

of FEP calculation tool FEP+(OPLS4),37 which is the latest release of the leading commercial soft-190

ware developed by Schrödinger using state-of-the-art OPLS4 force 昀椀eld.11,43 We also compared with191

the state-of-the-art structure-based methods PBCNet19 following their experimental settings, and we192

found that ActFound outperforms PBCNet even without using any given target protein information193

(Supplementary Figure 14). The promising performance on two FEP benchmarks indicates that194

our foundation model can serve as a machine-leaning-based alternative to FEP calculations by only195

requiring a few labeled data points for 昀椀ne-tuning.196

When experimentally measured data are not available, ActFound can alternatively use the data197

from FEP+(OPLS4) calculation to 昀椀ne-tune the model. We evaluated this in Fig. 4c,d, where we used198

the results of FEP+(OPLS4) calculation for the 昀椀ne-tuning compounds and did not incorporate any199

experimentally measured 昀椀ne-tuning data. We 昀椀rst observed that the performance of all approaches200

dropped, indicating that this setting is more challenging than utilizing experimentally measured 昀椀ne-201

tuning data. Nevertheless, ActFound still outperformed all comparison approaches. In contrast to202

FEP+(OPLS4), we observed that the r2 of our method is nearly equivalent to that of FEP+(OPLS4)203

when the 昀椀ne-tuning compounds contain 80% of the compounds in that assay, and the RMSE value even204
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Figure 4. Evaluation of FEP benchmarks and cancer drug response prediction. a,b, Bar
plots comparing the bioactivity prediction on FEP benchmarks in terms of r2 (a) and RMSE (b) when
20%, 40%, 60%, 80% of the experimental bioactivity is used for 昀椀ne-tuning. All models are trained
on ChEMBL. c,d, Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of r2

(c) and RMSE (d) when the FEP+(OPLS4) calculation results are known for 20%, 40%, 60%, 80% of
the 昀椀ne-tuning compounds. All models are trained on ChEMBL. e, Case study on TNKS2, fragments
(colored in red) forming non-bonded interactions with the target protein (TNKS2) are removed from
the best bioactivity compound. The bioactivity change is predicted using ActFound. f-h, Bar plots
comparing the performance in terms of r2 (f), RMSE (g) and Spearman correlation (h) using model
pre-trained on BindingDB, model pre-trained on ChEMBL, and randomly initialized model. ρs denotes
Spearman correlation.
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surpassed FEP+(OPLS4) by 10.4%. Collectively, ActFound can accurately predict bioactivity values205

in FEP benchmarks when either using experimentally measured data or FEP+(OPLS4) calculated206

data for 昀椀ne-tuning, o昀昀ering a less costly machine learning approach to binding free energy prediction.207

Finally, to further understand the prominent performance of ActFound, we presented a case study208

that illustrates the predicted bioactivity change of di昀昀erent modi昀椀cations on a given compound. We209

focused on the compound that has the best bioactivity when TNKS2 is the target protein. In particular,210

we 昀椀rst identi昀椀ed several potential interactions using Proteins Plus,44 then we modi昀椀ed the compound211

by removing a fragment and predicted the bioactivity value change caused by that modi昀椀cation (Fig.212

4e). A larger change indicates that the modi昀椀cation is more important. We found that the third213

compound resulted in the largest bioactivity change (−1.95 pK). This matches the prior chemical214

knowledge that large non-polar group tends to have strong hydrophobic interactions. We further215

examined other key interactions by changing the chemical sca昀昀old, which is unseen in the TNKS2216

target assay. As the 2D interaction in Fig. 4e shows, the best compound forms hydrogen bonds with217

Gly1032A and Ser1068A, and it also forms pai-pai stacking with Tyr1071A. In the fourth and 昀椀fth218

compounds, the hydrogen bonds and pai-pai stacking are partially eliminated, resulting in a relatively219

large bioactivity change of −1.36 pK and −1.47 pK respectively, consistent with our expectation.220

Collectively, this case study reveals how ActFound utilizes pairwise learning to capture the structure221

di昀昀erence in functional groups and sca昀昀old, and further enhances bioactivity value prediction.222

2.5 Cancer drug response prediction223

The promising results of ActFound on few-shot bioactivity prediction further motivate us to apply224

this foundation model to other domains. To this end, we investigated whether ActFound can be used225

to predict cancer drug response, where the goal is to predict drug sensitivity on new cell lines. Since226

we can use gene expression values as features for cell lines, it is now possible to test our method in227

a zero-shot setting where we have never seen any training cell lines for the test drug. We evaluated228

ActFound on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset.45 GDSC contains 969229

cell lines, and each cell line has been tested on 207 drugs on average. We concatenated drug features230

and cell line features to train a supervised model for predicting the sensitivity of the drug to the231

given input cell line. We compared the performance of using ChEMBL or BindingDB to initialize the232

drug features against a random initialization (Fig. 4f-h). We observed that the ActFound model233

pre-trained with ChEMBL demonstrated better performance than random initialization on all metrics234

(p-value < 2×10−5), re昀氀ecting how ActFound enables the model to learn better compound embeddings.235

Collectively, the promising result demonstrates the broad applicability of ActFound to drug sensitivity236

prediction on unseen cancer cell lines.237

3 Discussion238

We have proposed ActFound, a foundation model for compound bioactivity prediction on all assays.239

ActFound combines meta-learning with pairwise learning to leverage the abundant information in240

diverse assays and improve the performance on few-shot bioactivity predictions. In particular, we have241

demonstrated the outstanding performance of ActFound on in-domain bioactivity prediction and cross-242

domain bioactivity prediction. We also showed the practical usage of ActFound on FEP benchmarks243

and drug sensitivity prediction for new cell lines. ActFound can serve as the foundation for bioactivity244
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prediction to further promote drug discovery.245

ActFound has two limitations that we would like to address in the future. First, although the246

compound bioactivity prediction approach we developed can be applied to di昀昀erent types of biology247

assays, it currently cannot consider the meta-data for each assay, such as the sequence of the protein248

target46 or the text assay description47 for that assay. We plan to exploit this information to enhance249

the representation of each assay. Second, ActFound is currently developed using simple molecular250

昀椀ngerprint features without leveraging any pre-trained model for molecular structures. Based on the251

prominent results of ActFound on all settings we have evaluated, we hypothesize that it can be further252

improved by incorporating other pre-trained methods. We plan to incorporate pre-trained methods,253

such as KPGT,48 GROVER49 and MOLFORMER50 to further improve ActFound.254

There are a few existing target-free few-shot bioactivity prediction approaches.20–25 Compared255

to these approaches, ActFound has at least two key di昀昀erences. First, these approaches mainly study256

bioactivity prediction on assays with molar concentration unit, while ActFound is agnostic to measure-257

ment units and is trained on assays of di昀昀erent units. This allows ActFound to generalize to assays with258

di昀昀erent units. Second, existing approaches predict the absolute value of bioactivity. In contrast, Act-259

Found exploits pairwise learning to predict the relative bioactivity values, which e昀昀ectively leverages260

the correlation between bioactivity value rankings of di昀昀erent assays. Pairwise learning has been used261

for uncertainty quanti昀椀cation on QSAR task,35,36 but has not been applied to few-shot bioactivity pre-262

diction. Compared to existing structure-based few-shot binding free energy prediction methods,17–19263

ActFound also has three key di昀昀erences. First, these structure-based methods rely on accurate protein-264

ligand 3D binding pose, which is hard to acquire because of the lack of accurate docking methods. In265

contrast, ActFound only requires compound information. Second, ActFound exploits meta-learning266

to enhance the performance on few-shot settings, while existing structure-based methods were mainly267

based on transfer learning. We showed in our experiments that ActFound outperforms its transfer268

learning variant. Third, existing structure-based methods were designed speci昀椀cally for assays with a269

speci昀椀c protein target, while ActFound is a general foundation model for compound bioactivity on all270

assays, which can utilize the large-scale public databases (e.g., ChEMBL, BindingDB) and be applied271

to assays without any speci昀椀c protein target, demonstrating the broad applicability of ActFound.272

4 Method273

4.1 Problem Setting274

We aim to build bioactivity prediction models for di昀昀erent assays in the few-shot setting. Given a lim-275

ited number of example compounds with known experimental bioactivity for a given assay, ActFound276

predicts the bioactivity of unseen compounds in that speci昀椀c assay. We consider bioactivity prediction277

as a regression task. In our setting, each separate assay serves as an individual task. For the rest of278

the paper, p(T ) denotes the assay distribution, Ti denotes the i-th assay to be trained, T tune
i and T test

i279

stands for the 昀椀ne-tuning compounds and test compounds of assay Ti, respectively.280

Ti =
{(

X(i)
k , y

(i)
k

)}Ni

k=1
,

where X(i)
k denotes the k-th compound in the assay Ti and y

(i)
k denote its respective bioactivity, Ni281

stands for the number of compounds in the assay Ti. In our experiments, we used 2048-dim Morgan-282

Fingerprint51 extracted by RDKit to represent the compounds X.283
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4.2 Review of meta-learning284

Meta-learning is a machine learning framework targeting quick adaptation to new tasks. Meta-learning285

comprises two primary processes: meta-training (also referred to as pre-training) and meta-testing.286

The model learns a “meta-learner” shared across tasks in the meta-training stage and adapts it to287

new tasks with a few samples in the meta-testing stage. It is particularly well-suited for bioactivity288

prediction tasks since there’s a severe shortage of labeled data due to the high costs of laboratory289

experiments. For instance, only 12.7 compounds are measured for each assay in ChEMBL7 on average.290

We adopt MAML, a widely-used meta-learning framework, for the training of our bioactivity291

prediction model ActFound. MAML aims to obtain optimal initial parameters θ∗ shared across all292

assays. It achieves this through an iterative bi-level optimization process during the meta-training293

phase, consisting of an inner loop and an outer loop. In the inner loop, the model is rapidly adapted294

to the 昀椀ne-tuning compounds T tune
i over a small number of iterations, to make the model’s parameters295

suitable for the particular assay Ti. In the outer loop, the model’s parameters are updated based on296

the performance of the adapted model in the test compounds of the assay T test
i , which aims to make297

the model’s initial parameters more suitable for fast adaptation across various assays.298

Speci昀椀cally, in the inner loop stage, MAML samples a set of assays Ti ∼ p(T ) and adapts model299

parameters θ to obtain assay-speci昀椀c parameters θ′i using the following equation:300

θ′i = θ − α∇θLinner(θ, Ti), (1)

where α is the inner loop learning rate hyper-parameter, and Linner(θ, Ti) is the the inner loop loss.301

In the outer loop stage, MAML obtains the outer loop loss Louter (θ
′
i, Ti) in the test compounds T test

i302

for each training assay Ti ∼ p(T ). It then updates the model parameters θ using the outer loop loss303

based on the following equation:304

θ = θ − β∇θ

∑

Ti∼p(T )

Louter (θ
′
i, Ti) (2)

where β is the outer loop learning rate hyper-parameter.305

After the meta-training stage, we get optimal initial parameters θ∗ suitable for fast adaptation on306

various assays. In the meta-testing stage, MAML only takes the inner loop stage for an unseen test307

assay Tj following Equation 1. Subsequently, MAML provides predictions for the test assay Tj using308

the model parameters θ∗j , which is 昀椀ne-tuned from θ∗ on the test assay’s 昀椀ne-tuning compounds T tune
j .309

4.3 Pairwise learning310

Since there are many types of assays with varying units (e.g., nMol, mg/kg/day, ug/ml), value ranges,311

and measurements, directly learning the absolute bioactivity among assays may encounter issues of312

incompatibility among assays, which can subsequently result in poor transferability to unseen assay313

types and harm overall performance. ActFound aims to predict the relative bioactivity di昀昀erence314

between compounds’ pairs and then construct the predicted bioactivity for the test compounds of an315

assay, which makes the model agnostic to assay units and value ranges. It adopts the Siamese Network316

architecture,18 where the input is a pair of compounds, and the prediction is the bioactivity di昀昀erence317

between them.318
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Speci昀椀cally, for the k-th compounds X(i)
k and the j-th compounds X(i)

j (k ̸= j) in the i-th assay319

Ti ∼ p(T ), the predicted bioactivity di昀昀erence ∆ŷ
(i)
kj between the two compounds is computed as:320

∆ŷkj = (ek − ej)W = (Encoder(Xk, θE)− Encoder(Xj , θE))W

where ek, ej are the embeddings of the two compounds. θE is the parameters for the compound encoder,321

which is implemented as a 2-layer MLP with the hidden size of 2, 048. W ∈ R
2048×1 is the weight322

matrix for the last linear layer, and the model parameters of ActFound can be de昀椀ned as θ = (θE,W).323

For reduced computation consideration, we followed ANIL52 to take the fast adaptation method, which324

only optimizes the last linear layer parameters W in the inner loop. So the assay-speci昀椀c parameter325

θ′i adapted for assay Ti after inner loop should be equal to (θE,W′
i).326

As the Siamese Network model only outputs the relative bioactivity di昀昀erence between two com-327

pounds, we further need to construct the absolute bioactivity of the test compounds T test
i in the assay328

Ti. For each 昀椀ne-tuning compound X(i)
j ∼ T tune

i , we can get a constructed bioactivity for X(i)
k using329

the equation ŷ
(i)
kj = y

(i)
j +∆ŷ

(i)
kj , where y

(i)
j is the experimental bioactivity of X(i)

j . So there is at most330

|T tune
i | constructed absolute bioactivity for X(i)

k . After this, we utilized the attention mechanism53331

with the Tanimoto mask to fusion them together. Our intuition is that similar compounds usually332

have similar bioactivities (this is why KNN works for bioactivity prediction54), thus lowering the ab-333

solute error of the constructed bioactivity. So similar compounds should contribute more to the 昀椀nal334

prediction ŷ
(i)
k . The equation for the 昀椀nal prediction ŷ

(i)
k of X(i)

k is given as follows:335

ŷ
(i)
k =

∑

j∈T tune
i

,j ̸=k

akj ŷ
(i)
kj , ŷ

(i)
kj = y

(i)
j +∆ŷ

(i)
kj

where akj =
mkje

cos(ek,ej)/τ
∑

mkjecos(ek,∗)/τ

where mkj =

{

1 TanimotoSim(Xj ,Xk) >= δ

0 TanimotoSim(Xj ,Xk) < δ

where cos(ek, ej) is the cosine similarity between embeddings of the compound X(i)
j and X(i)

k , τ is336

the temperature hyper-parameter for attention, and δ is a threshold hyperparameter, which is imple-337

mented as the median of Tanimoto Similarity values between X(i)
k and all other 昀椀ne-tuning compounds338

T tune
i . The Tanimoto mask mkj e昀昀ectively 昀椀lters out the in昀氀uence of dissimilar compound pairs, which339

typically exhibit large absolute errors. This 昀椀ltering mechanism has been demonstrated to enhance340

the overall performance of ActFound.341

The training objective for ActFound, both in the inner loop and the outer loop, encompasses two342

key components: pairwise loss and absolute loss. For the pairwise loss, it is characterized as the mean343

square loss, which is calculated between the predicted relative bioactivity ∆ŷ
(i)
kj and the experimental344

relative bioactivity ∆y
(i)
kj = y

(i)
k − y

(i)
j . On the other hand, the absolute loss is simply the mean345

square loss between the constructed bioactivity ŷ
(i)
k and the experimental bioactivity y

(i)
k . It’s worth346

noting that the di昀昀erence between the inner loop loss Linner and the outer loop loss Louter is minimal.347

For the inner loop loss, the pairwise loss is de昀椀ned on the compound pairs within the 昀椀ne-tuning348

compounds T tune
i , and the absolute loss is similarly de昀椀ned on T tune

i . For the outer loop loss, the349

pairwise loss is de昀椀ned on the compound pairs formed between the 昀椀ne-tuning compounds T tune
i and350

the test compounds T test
i along with that formed within the test compounds, while the absolute loss351
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is solely de昀椀ned on T test
i .352

Linner = Labs
inner + γinnerL

pair
inner

=

∑

k∈T tune
i

(ŷ
(i)
k − y

(i)
k )2

|T tune
i |

+ γinner

∑

k∈T tune
i

∑

j∈T tune
i

,j ̸=k(∆ŷ
(i)
kj −∆y

(i)
kj )

2

|T tune
i |(|T tune

i | − 1)

Louter = Labs
outer + γouterL

pair
outer

=

∑

k∈T test
i

(

ŷ
(i)
k − y

(i)
k

)2

|T test
i |

+ γouter

∑

k∈T test
i

∑

j∈Ti,j ̸=k

(

∆ŷ
(i)
jk −∆y

(i)
jk

)2

|T test
i |(|Ti| − 1)

where γinner, γouter are two hyper-parameters for the pairwise loss weight. Note that Linner can be writ-353

ten in Linner (θ, Ti) = Linner (θE,W, Ti), and Louter can be written in Louter (θ
′
i, Ti) = Louter (θE,W′

i, Ti).354

4.4 KNN-MAML and fusion method355

Many bioactivity assays exhibit similarities, such as those assessing the binding affinity to both the356

wild type and mutant forms of a speci昀椀c target protein. This observation inspired us to leverage the357

information from similar assays in the training set to improve testing on previously unseen assays.358

We proposed a novel algorithm called k-Nearest Neighbors MAML (KNN-MAML), which dynamically359

identi昀椀es similar assays during the meta-testing process and utilizes them to aid the adaptation of360

unseen assays.361

In the inner loop of ActFound for each test assay, we searched for k-similar assays from the training362

set, and adapted the trained initial parameters θ∗ to the assay-speci昀椀c parameters θ∗i , using the data363

from these k assays.364

θ∗i = θ∗ − α∇θ∗ [Linner(θ
∗, Ti) +

∑

Ts∈KNN(Ti)

γsLinner(θ
∗, Ts)]

where γs = γKNNmax(AssaySim(i, s)− δKNN, 0)

where AssaySim(i, s) = cos(Zi,Zs)

where Zi = −α∇W∗Linner(θE,W∗, Ti)

(3)

where γs is the weight of the assay Ts in k-similar assays KNN(Ti), AssaySim(i, s) is the assay similarity365

between Ti and Ts, Zi is the assay feature for Ti, and γKNN, δKNN are two hyper-parameters controlling366

the contribution of each k-similar assays. As stated above, we employed the fast adaptation method,52367

which only optimizes the last linear layer parameters W∗ in the inner loop. As we assume that similar368

assays should have similar assay-speci昀椀c model parameters, we can straightforwardly de昀椀ne the assay369

feature Zi as the gradient of the parameters W∗ with respect to the inner loop loss, which is also370

identical to W∗
i − W∗. With this de昀椀nition in place, we measure the similarity between assays as the371

cosine similarity between two assay features cos(Zi,Zs).372

In addition to the KNN-MAML method, we also developed a straightforward ensemble approach373

for combining ActFound and its transfer learning variant ActFound(transfer). We observed a signi昀椀cant374

correlation between the inner loop loss for the 昀椀rst optimization step Linner(θ, Ti) (we performed 5 inner375

loop optimization steps) and the test performance of the test assay (Fig. 3g,h, Supplementary376

Figure. 7-9). Building on this insight, we propose to fusion ActFound and ActFound(transfer)377

based on the loss of the 昀椀rst inner loop step. Speci昀椀cally, we calculated the 昀椀rst-step loss for both378

ActFound and ActFound(transfer) on the test assay. When the loss di昀昀erence between ActFound and379
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ActFound(transfer) exceeds a threshold (typically −0.1), we combine the results of the two methods;380

otherwise, we solely employ ActFound. This straightforward approach has demonstrated improved381

performance across most tests, providing end users with a robust strategy for determining when to382

utilize ActFound.383

4.5 Implementation details384

The training strategy of ActFound mainly follows MAML++,55 and the details are listed as follows.385

In the meta-training (pre-training) stage, ActFound are trained for 60 epochs on ChEMBL and Bind-386

ingDB, and 80 epochs for FS-MOL and pQSAR-ChEMBL. For the inner loop, we utilized a simple387

stochastic gradient descent (SGD) optimizer, we performed 5 steps with separate batch normalization388

parameters for each step. The learning rates for each step of the inner loop are also learnable param-389

eters, which means that the model will update the learning rate parameters during the meta-training390

stage. For the outer loop, we used the Adam optimizer with a cosine annealing learning rate scheduler,391

with the maximum learning rate to be 0.00015 and the minimum to be 0.0001. The remaining param-392

eters for the Adam optimizer were con昀椀gured with the default settings of PyTorch. We applied early393

stopping for all methods and utilized the best validation epoch for testing. We set the meta-batch size394

to 16 for all methods, which means each meta-batch contains 16 assays.395

4.6 Comparative methods and evaluation metrics396

In our experiment, we implemented several transfer learning and meta-learning comparative methods,397

including ActFound(transfer) (transfer learning variant of ActFound), MAML,38 DKT (Deep kernel398

transfer),56 CNP (Conditional neural processes),57 ProtoNet39 and TransferQSAR (transfer learning399

variant of MAML), and the transfer learning variant means that we didn’t take the inner loop during400

training. When testing on new assays, we 昀椀ne-tuned the last linear layer of transfer learning meth-401

ods (ActFound(transfer) and TransferQSAR) on the test assay, which is implemented as a 5 steps402

optimization using the SGD optimizer. The 昀椀ne-tuning learning rate was 0.004, which is the opti-403

mal setting determined in our grid search on the validation assays. For fairness consideration, We404

applied an early stopping strategy for all methods on the validation assays, and they have the same405

hyper-parameter settings. All methods share the backbone model (3-layer MLP) and the same in-406

puts (2048-dim Morgan 昀椀ngerprint) which is identical to ActFound. The hyper-parameters (including407

learning rate and its scheduler, training epoch, meta-batch-size, and inner loop and outer loop opti-408

mizer parameter) are also identical to ActFound. Except for the ADKF-IFT23 model on the in-domain409

experiment of FS-MOl, we directly used the released checkpoints for testing. The ADKF-IFT model is410

a combination of 昀椀ngerprint-based and GNN-based models, which takes the input of 2048-dim Morgan411

昀椀ngerprint and 2D molecular graph. Three single-task methods, including RF (Random Forest),58412

KNN (k-Nearest Neighbors)59 and GPST (single-task GP with Tanimoto kernel)60 also take 2048-dim413

Morgan 昀椀ngerprint as an input.414

We employed two metrics for evaluation, r2 and RMSE. r2 is de昀椀ned as max(ρP , 0)
2, where ρP415

is the Pearson correlation between the predicted and experimental bioactivities. RMSE means the416

root mean square error between the predicted and experimental bioactivities on the test compounds417

of the test assay. Unless otherwise speci昀椀ed, all test experiments were repeated for 10 times, and the418

昀椀ne-tuning compounds of the test assay were uniformly split at random.419
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4.7 Training data curation420

Our data were curated from two publicly available datasets: ChEMBL7 and BindingDB.14 For ChEMBL421

dataset curation, we downloaded the ChEMBL32 dataset from the official website. The original422

ChEMBL32 dataset contains 2.4 million unique molecules and 1.6 million manually curated assays423

which come from scienti昀椀c literature, patents, and other sources. All assays in ChEMBL32 are metic-424

ulously categorized, encompassing various aspects of the real-world drug design. After careful curation,425

our processed ChEMBL dataset contains 35, 644 assays, 1.4 million tested bioactivities, and 0.7 million426

unique compounds, with each assay containing 39.3 compounds on average. All assays have either a427

molar concentration unit (e.g. nMol), density unit (e.g. ug/mL), or dosing unit (e.g. mg/kg/day).428

We hypothesize that this choice could maximize the assay diversity while ensuring the quality.429

The curation pipeline for ChEMBL mainly contains three stages. First, all candidate assays with430

the required number of tested bioactivities (≥ 20) and desirable BAO (Bio-Assay-Ontology) format431

are collected from ChEMBL32, and we kept all bioactivities with molar, density, or dosing unit. As we432

aim to predict bioactivity for drug-like small molecules, in the second step, we cleaned all compounds433

in our curated data by removing all inorganic and large molecules with molecular weights larger than434

1, 000. Third, further cleaning of test bioactivity data for all assays was implemented. Speci昀椀cally,435

we removed duplicate tested bioactivity measurements of one compound by simply taking the results’436

average. We removed all bioactivity with the standard relation not equal to “=”, which means that its437

accurate value is unknown and might contain some noise. We also removed all “orphan compounds”438

that are dissimilar to all other compounds in this assay, which means that all other compounds have439

Tanimoto similarity smaller than 0.2 with it.440

For BindingDB dataset curation, the original BindingDB version 2022m7 was downloaded from441

https://www.bindingdb.org, which contains 1.2 million compounds and 9.2 thousand targets. Our442

curated BindingDB dataset contains 15, 225 assays, 0.9 million tested bioactivities, and 0.4 million443

unique compounds, and each assay contains 60.9 compounds on average. The curation pipeline for444

BindingDB is almost identical to ChEMBL’s curation. However, since all assays in BindingDB had445

IC50, Ki, Kd, or EC50 measurements which already met our requirement, we didn’t implement the 昀椀rst446

curation stage for BindingDB. The BindingDB dataset only contains assays with molar concentration447

units, which means that the model trained on BindingDB might have a relatively poor transfer ability448

to assays of other units.449

4.8 In-domain experiment setting450

For all in-domain experimental settings, we 昀椀rst trained models on the training assays for each dataset451

and then tested them on the test assays of the corresponding dataset. All in-domain test experiments452

were repeated for 10 times, and the 昀椀ne-tuning compounds of each test assay were uniformly split at453

random. However, the in-domain experimental on pQSAR-ChEMBL is only conducted once because454

assays on pQSAR-ChEMBL follow a 昀椀xed sca昀昀old split. We implemented in-domain experiments455

for four datasets: our curated ChEMBL and BindingDB datasets (see Section 4.7 for more details),456

together with two other public datasets: FS-Mol22 and pQSAR-ChEMBL,21 which is curated from the457

earlier version of ChEMBL. The FS-Mol dataset contains 4, 938 assays, 0.4 million tested bioactivities,458

and 0.2 million unique compounds, each assay contains 86.3 compounds on average. The pQSAR-459

ChEMBL dataset contains 4, 276 assays and 0.5 million unique compounds, and the average number460

of compounds in each assay is 320.0.461
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For the in-domain experiment on ChEMBL and BindingDB datasets, we split out a total of 1000462

assays uniformly at random to prepare our validation and test assays (500 assays as validation and463

500 assays as validation respectively). We performed few-shot (16-shot) testing on the test assays of464

these two datasets, which means that the model is 昀椀ne-tuned on the 16 昀椀ne-tuning compounds of the465

test assay, and subsequently tested on the remaining test compounds.466

For the in-domain experiment on FS-Mol, assay split is referenced from the setting of Chen et467

al,23 which has 40 assays for validation and 111 assays for test respectively. We performed 16, 32, 64,468

128 shot testing for all 111 test assays on FS-Mol.469

For the in-domain experiment on pQSAR-ChEMBL, we adopted the assay split con昀椀guration of470

Yao et al.61 This setup consists of 76 assays for validation and 100 assays for testing. The assays on471

pQSAR-ChEMBL follow the sca昀昀old split setting,21 where the 昀椀ne-tuning and the test compounds of472

an assay don’t have any overlapping chemical sca昀昀old. For each assay in pQSAR-ChEMBL, roughly473

75% of the compounds are used for 昀椀ne-tuning, with the remaining compounds assigned to the test474

compounds.475

For Activity-ChEMBL testing, we manually curated 178 assays with the assay type equal to476

“Activity” and percentage unit (%). Each assay has 32.6 compounds on average. The Activity-477

ChEMBL set can also be viewed as an out-of-domain set, as all bioactivities have percentage units,478

which is not included in our curated ChEMBL dataset. However, unlike other datasets, we don’t479

know whether a higher raw value corresponds to better or worse bioactivity for assays in the Activity-480

ChEMBL dataset. To solve this problem, we ran ActFound and ActFound(transfer) two times during481

testing, which means that the model is 昀椀ne-tuned twice to predict the positive and the negative relative482

bioactivity respectively. After that, we took a simple fusion approach to select one of those two483

independent running results, and we employed the 昀椀rst step loss for selection, which again utilized our484

observation of the high correlation between loss for the 昀椀rst 昀椀ne-tuning step and the test performance485

(Fig. 3g,h, Supplementary Figure. 7-9).486

4.9 Cross-domain experiment setting487

In cross-domain experiments, we initially trained models on the ChEMBL and BindingDB datasets488

and subsequently applied them for testing on other datasets. The cross-domain test experiments were489

repeated 10 times. Similar to in-domain experiments, the 昀椀ne-tuning compounds of a test assay were490

also uniformly split at random.491

We 昀椀rst performed ChEMBL-to-BindingDB and BindingDB-to-ChEMBL experiments. However,492

as ChEMBL and BindingDB are both collected from sharing sources (including public journals, patents,493

and other databases), they may have lots of overlapping assays. Given that both the test assays of494

ChEMBL and BindingDB are uniformly split at random, there is a risk that assays in the BindingDB495

test set may have already appeared in the ChEMBL training set. To mitigate the risk of data leakage496

caused by these overlapping assays in the ChEMBL-to-BindingDB and BindingDB-to-ChEMBL cross-497

domain test, we adopted the approach outlined in pQSAR-ChEMBL21 to 昀椀nd identical assays and then498

remove them from the test assays. Speci昀椀cally, if the bioactivity Pearson correlation (ρP ) between the499

shared compounds of two assays exceeded 0.99, we considered those two assays as identical. For each500

assay in the BindingDB test set, if we found an identical assay in ChEMBL, we removed the speci昀椀c501

test assay from the test set. Following this data leakage prevention procedure, we retained 203 assays502

for the ChEMBL-to-BindingDB test and 351 assays for the BindingDB-to-ChEMBL test.503
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We also studied the transfer ability of the models on two kinase inhibitor datasets: KIBA40 and504

Davis,41 here we performed 16-shot testing for Davis, and 16, 32, 64, 128-shot testing for KIBA. Both505

datasets are directly downloaded from https://github.com/thinng/GraphDTA.62 The Davis dataset506

contains 30, 056 Kd measured binding affinities (one kind of bioactivity) of 68 compounds and 442507

kinases, and the KIBA dataset contains 118, 254 KIBA scores of 2, 111 compounds and 229 kinases508

(each kinase can be roughly considered as an assay). The KIBA dataset was initially created by509

merging diverse assays with IC50, Ki, and Kd measurements, ultimately consolidating them into a510

uni昀椀ed KIBA score, and higher KIBA scores indicate better bioactivity. Notably, the KIBA score is511

not present in the ChEMBL and BindingDB datasets, which is the main di昀昀erence between KIBA and512

Davis. Similar to the in-domain experiments, we only retained assays with more than 20 compounds513

for testing in the KIBA and Davis datasets. After this data preprocessing, the 昀椀nal KIBA dataset514

contains 165 kinases and 2,068 unique compounds, with an average of 617.3 compounds per target.515

The Davis dataset contained 212 kinases, 68 unique compounds, and an average of 29.6 compounds516

per target.517

As Davis may share common data sources with ChEMBL and BindingDB, there also might be518

a data leakage problem in Davis. To address this potential data leakage issue in the Davis dataset,519

we carefully removed any assays that could lead to data leakage from the ChEMBL and BindingDB520

training sets. To achieve this, we detected all assays in ChEMBL and BindingDB which have at least521

one identical assay in Davis, and then we removed them from the training set. We again followed522

pQSAR-ChEMBL21 for detecting identical assays.523

4.10 FEP benchmark experimental setting524

We evaluated the performance of trained models on two well-known FEP calculation benchmarks525

from Schrödinger37 and Merck.42 The FEP benchmark contains 16 assays, with an average of 28.8526

compounds for each assay. Given the relatively small number of assays in the FEP set, we conducted527

test experiments for 40 times, and the 昀椀ne-tuning compounds for test assays were randomly and528

uniformly split.529

Since the ChEMBL and BindingDB datasets both contain data sources from public journals,530

there’s a possibility that assays in the FEP set overlap with those in ChEMBL or BindingDB. To531

address this data leakage issue, we systematically identi昀椀ed all assays in ChEMBL and BindingDB that532

had at least one identical assay in the FEP set. Subsequently, we manually removed these overlapping533

assays from the training sets. Similar to the approach used in cross-domain experiments, the method534

for detecting identical assays was adopted from pQSAR-ChEMBL.21 After data leakage processing,535

58.3% of the compounds in the FEP set are unseen in ChEMBL. Data for the FEP set assays and536

the FEP+(OPLS4)37 calculated results were downloaded from https://github.com/schrodinger/537

public_binding_free_energy_benchmark,43 we directly read the compounds’ smiles from the SDF538

昀椀les, and manually deleted all formal charges.539

For our case study on the TNKS2 target assay, we 昀椀rst 昀椀ne-tuned ActFound on nearly all com-540

pounds in the assay and then predicted the bioactivity of modi昀椀ed compounds. Note that we removed541

all modi昀椀ed compounds from 昀椀ne-tuning compounds, to avoid the potential data leakage problem542

in this study. The protein structure for detecting the interaction graph is taken from Protein Data543

Bank(PDB) using PDB id 4UI5, and the interaction graph is created using Proteins Plus.44544
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4.11 Cancer drug response experimental setting545

For experiments on the GDSC dataset, we downloaded the Genomics of Drug Sensitivity in Cancer546

(GDSC)45 dataset from the official website. The dataset contains 621 drugs, 969 cell lines, and 243, 464547

drug-cell-IC50 triplets. We obtained the SMILES of drugs using PubChemPy and Rdkit packages and548

ignored all drugs that failed to get valid SMILES. Following these preprocessing steps, the re昀椀ned549

GDSC dataset included 969 cell lines, with an average of 206.5 drugs per cell line. We employed a550

425-dimensional mutation feature as the representation for cell lines. The cell line branch model is a551

simple 2-layer MLP with the hidden size set to 64 and the output dimension set to 2,048. The output552

vector from the cell line branch is further processed through a sigmoid layer, followed by fusion with553

the compound embedding ek using a dot product operation. This fused representation is ultimately554

passed through a linear layer to predict drug sensitivity. In the GDSC experiment, we split 100 cell555

lines for training from the GDSC dataset, and the other 869 cell lines for testing. We simply trained556

all models for 80 epochs and then reported the best test result among all epochs. During the testing557

stage, we took the zero-shot setting, which means that we simply predicted the drug sensitivity of558

compounds to the input cell line without any 昀椀ne-tuning.559

4.12 Bioactivity de昀椀nition560

The de昀椀nition of bioactivity varies depending on the type of assay being used. For all assays with561

molar concentration unit (e.g. nMol), density unit (e.g. ug/mL), dosing unit (e.g. mg/kg/day), and562

percentage unit (%), the bioactivity is de昀椀ned as the negative log of the raw value pX = − log10 X,563

where X is the raw value in the original dataset. The bioactivity in most of the dataset we used are564

de昀椀ned in this way (including ChEMBL, ChEMBL-Activity, BindingDB, FS-MOL, pQSAR-ChEMBL,565

Davis, GDSC). For assays on KIBA, we directly employed the KIBA score as the bioactivity. For assays566

on the FEP set, the direct downloaded data are binding free energy with kcal/mol unit, and the lower567

binding free energy indicates better bioactivity. For consistency with other assays in this paper, we568

converted them to the negative log of the dissociation constant pK = −log10K using Gibbs free energy569

isotherm equation, where K means the dissociation constant. The conversion equation can be simply570

written as ∆G = −1.363pK under the temperature of 298.15k.571

Code and data availability572

The data and checkpoints of ActFound and other comparative methods (ActFound(transfer), Trans-573

ferQSAR, ProtoNet39 and MAML38 ) are available in the Google Drive https://figshare.com/574

articles/dataset/ActFound_data/24452680. The code is available in our GitHub project https:575

//github.com/BFeng14/ActFound.576
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Supplementary Information718

*

Supplementary Figure 1 Bar plot comparing the 16, 32, 64, 128-shot bioactivity prediction on FS-
MOL in terms of RMSE. The asterisks indicate that ActFound outperforms the next best-performing
model in the metric, with t-test signi昀椀cance levels of p-value < 5× 10−2 for *, p-value < 5× 10−3 for
**, and p-value < 5× 10−4 for ***.

***

**

Supplementary Figure 2 Bar plot comparing the 16, 32, 64, 128-shot bioactivity prediction on
FS-MOL in terms of R2os. We adopted the de昀椀nition of R2os from ADKF-IFT.23
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***

Supplementary Figure 3 Bar plot comparing bioactivity prediction using sca昀昀old data splitting on
pQSAR-ChEMBL in terms of r2. 75% of the experimental bioactivity is used for 昀椀ne-tuning. The
results of MetaMix and pQSAR are collected from the paper of MetaMix.61 MetaMix is a meta-
learning method. pQSAR is a multi-task learning method developed by Novartis.21

***

Supplementary Figure 4 Bar plot comparing ActFound and competing methods in 16-shot bioac-
tivity prediction on ChEMBL in terms of r2. Assays of molar concentration unit (e.g. nMol), density
unit (e.g. ug/mL), and dosing unit (e.g. mg/kg/day) in the test assays of ChEMBL are evaluated
separately.
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***

***
***

***

Supplementary Figure 5 Bar plots comparing the 16, 32, 64, 128-shot bioactivity prediction of
ChEMBL-to-KIBA in terms of r2.

***

***
***

***

Supplementary Figure 6 Bar plots comparing the 16, 32, 64, 128-shot bioactivity prediction of
BindingDB-to-KIBA in terms of r2.
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Supplementary Figure 7 Scatter plots comparing the loss for the 昀椀rst step and the test performance
in terms of r2 on the BindingDB-to-KIBA cross-domain experiment. The test performance (r2) of the
test assay is strongly correlated with the loss for the 昀椀rst step in terms of Pearson Correlation.

0.0 0.5 1.0 1.5
First step loss on Davis

0.0

0.2

0.4

0.6

0.8

1.0

r2

P =-0.88

In-domain Davis

Supplementary Figure 8 Scatter plots comparing the loss for the 昀椀rst step and the test performance
in terms of r2 on BindingDB-to-Davis cross-domain experiment. The test performance (r2) of the test
assay is strongly correlated with the loss for the 昀椀rst step in terms of Pearson Correlation.
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Supplementary Figure 9 Negative Pearson correlations (y-axis) between the loss after the k-th step
(x-axis) and the test performance (r2) after convergence.
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Supplementary Figure 10 Bar plot comparing the 6-shot and 10-shot bioactivity prediction on
FEP benchmarks in terms of ρP . The result of PBCNet is collected from its original paper.19 The red
dashed line represents the computational results of FEP+(OPLS4). The Thrombin assay is ignored in
the 10-shot test as it only contains 11 compounds.
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*

Supplementary Figure 11 Bar plot comparing the bioactivity prediction on FEP benchmarks in
terms of r2 when 20%, 40%, 60%, 80% of the experimental bioactivity is used for 昀椀ne-tuning. All models
are trained on BindingDB. The red dashed line represents the computational results of FEP+(OPLS4).
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Supplementary Figure 12 Bar plots comparing the bioactivity prediction on FEP benchmarks in
terms of RMSE when 20%, 40%, 60%, 80% of the experimental bioactivity is used for 昀椀ne-tuning.
All models are trained on BindingDB. The red dashed line represents the computational results of
FEP+(OPLS4).
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Supplementary Figure 13 Bar plots comparing the bioactivity prediction on FEP benchmarks in
terms of r2 when the FEP+(OPLS4) calculation results are used for 20%, 40%, 60%, 80% of the 昀椀ne-
tuning set. All models are trained on BindingDB. The red dashed line represents the computational
results of FEP+(OPLS4).

Supplementary Figure 14 Bar plots comparing the bioactivity prediction on FEP benchmarks in
terms of RMSE when the FEP+(OPLS4) calculation results are used for 20%, 40%, 60%, 80% of the
昀椀ne-tuning set. All models are trained on BindingDB. The red dashed line represents the computational
results of FEP+(OPLS4).
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