

A foundation model for bioactivity prediction using pairwise meta-learning

Bin Feng^{1,2}, Zequn Liu², Nanlan Huang¹, Zhiping Xiao³, Haomiao Zhang¹, Srbuhi Mirzoyan², Hanwen Xu⁵, Jiaran Hao¹, Yinghui Xu^{4,1*}, Ming Zhang^{2*}, Sheng Wang^{5*}

¹Inf technology, Shanghai, China

²School of Computer Science, Peking University, Beijing, China

³University of California, Los Angeles

⁴Artificial Intelligence Innovation and Incubation Institute, Fudan University, Shanghai, China

⁵Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA

#Corresponding authors. Emails: xuyinghui@fudan.edu.cn, mzhang_cs@pku.edu.cn, swang@cs.washington.edu

1 Abstract

2 Compound bioactivity plays an important role in different stages of drug development and
3 discovery. Existing machine learning approaches have poor generalization ability in compound
4 bioactivity prediction due to the small number of compounds in each assay and incompatible
5 measurements among assays. Here, we propose ActFound, a foundation model for bioactivity
6 prediction trained on 2.3 million experimentally-measured bioactivity compounds and 50,869 as-
7 says from ChEMBL and BindingDB. The key idea of ActFound is to employ pairwise learning to
8 learn the relative value differences between two compounds within the same assay to circumvent
9 the incompatibility among assays. ActFound further exploits meta-learning to jointly optimize
10 the model from all assays. On six real-world bioactivity datasets, ActFound demonstrates accu-
11 rate in-domain prediction and strong generalization across datasets, assay types, and molecular
12 scaffolds. We also demonstrated that ActFound can be used as an accurate alternative to the
13 leading computational chemistry software FEP+(OPLS4) by achieving comparable performance
14 when only using a few data points for fine-tuning. The promising results of ActFound indicate that
15 ActFound can be an effective foundation model for a wide range of tasks in compound bioactivity
16 prediction, paving the path for machine learning-based drug development and discovery.

17 1 Introduction

18 Compound bioactivity plays an important role in drug development and discovery due to its broad
19 applicability in different stages of drug discovery, including hit identification,¹⁻³ drug repurposing,⁴
20 and lead optimization.^{5,6} Bioactivity prediction aims to predict the activity of compounds in a specific
21 binding type, functional type, or pharmacokinetic type assay,⁷ allowing scientists to rapidly identify
22 desired compounds from a large number of samples.⁸ Traditional computational chemistry approaches
23 rely on 3D target-protein structure⁹ to predict bioactivity and suffer from the inherent trade-off be-
24 tween accuracy and computational cost.¹⁰ For example, state-of-the-art methods, such as free energy
25 perturbation (FEP),¹¹ can provide accurate predictions for several binding type assays,¹² but also
26 require extensive computational resources that are often not affordable for large-scale applications.⁹

27 In the past decade, deep learning methods have demonstrated great potential in bioactivity pre-
28 diction by using fewer computational resources compared to computational chemistry approaches.¹³
29 However, existing deep learning approaches have two limitations. First, only a few compounds (12.7
30 compounds in ChEMBL⁷ and 54.3 compounds in BindingDB¹⁴ on average) are measured in each as-
31 say due to the expensive experimental cost. As a result, there is not enough training data to train an
32 assay-specific model. Second, although advanced machine learning techniques, such as transfer learn-
33 ing,¹⁵⁻²⁰ multi-task learning²¹ and meta-learning,²²⁻²⁸ can be used to jointly learn from all assays,
34 these assays are often incompatible in terms of units (e.g., nMol, mg/kg/day, ug/ml), value ranges,
35 and measurements (e.g., IC50, DC50). This leads to incorrect transfer between assays and hurts the
36 prediction performance, especially for rare compounds and assay types.

37 Recently, foundation models have achieved promising results in computer vision and natural lan-
38 guage processing.²⁹⁻³¹ Foundation models aim to learn a pre-trained model from large-scale and
39 diverse datasets that serve as a foundation for a variety of downstream tasks. The key advantage of
40 foundation models is that they are capable of few-shot learning, which means that they only need a
41 few labeled data to be fine-tuned for downstream tasks.^{32,33} Because of this label-efficient advantage,
42 foundation models have also been applied to biomedicine, where labeled data are often expensive.³⁴
43 We hypothesize that a foundation model could also be effective for bioactivity prediction because it
44 presents large and diverse assays while each assay only contains a few compounds.

45 In this work, we propose ActFound, a foundation model for bioactivity prediction. Our foundation
46 model is developed based on two machine learning techniques: meta-learning and pairwise learning.
47 Meta-learning is employed to jointly train the model from a large number of diverse assays, making it
48 an initialization for new assays with limited data.²²⁻²⁴ Pairwise learning is used to address the inherent
49 incompatibility among assays. Our intuition is that although compounds from different assays may
50 have varying units, value ranges, or measurement metrics, those within the same assay are comparable.
51 Instead of directly predicting absolute bioactivity values, we propose to learn the relative bioactivity
52 difference between two compounds within the same assay using pairwise learning.^{35,36} Specifically, for
53 each assay, we utilize a Siamese Network architecture to acquire the relative difference in bioactivity
54 values between two compounds. This approach allows us to reconstruct the bioactivity values for
55 previously unseen compounds using the predicted relative bioactivities.

56 We evaluated ActFound on four downstream bioactivity prediction tasks: in-domain bioactivity
57 prediction, cross-domain bioactivity prediction, FEP prediction, and cancer drug response prediction.
58 On in-domain bioactivity prediction, ActFound outperformed all nine competing methods on ChEMBL,
59 BindingDB, FS-Mol, and pQSAR-ChEMBL. On cross-domain bioactivity prediction, where the model

is trained in one domain (e.g., ChEMBL) and tested on another domain (e.g., BindingDB), our model also achieved the best results, indicating that ActFound is agnostic to measurement units and can be applied to different types of assays, and we also provided practical guidance on when to use ActFound for researchers. Furthermore, we demonstrated that ActFound can be an alternative to FEP calculation, a resource-intensive Relative Binding Free Energy (RBFE) computation chemistry method. Specifically, we found that by using 40% of the compounds for fine-tuning (12 compounds on average for each assay), our model can surpass FEP+(OPLS4),³⁷ the leading commercial software for FEP calculation, by 9.5% in terms of RMSE on FEP benchmarks. Lastly, we showed that a cancer drug response regressor pre-trained using ActFound exhibited promising performance on zero-shot drug sensitivity prediction, underscoring the broad applicability of ActFound. Collectively, ActFound stands as a foundational model for bioactivity prediction developed through pairwise meta-learning, and can be broadly applied to a variety of applications in drug development and discovery.

2 Results

2.1 Overview of ActFound

ActFound is a foundation model for bioactivity prediction. To effectively utilize a large number of available assays and compounds, ActFound is developed to address two major challenges in bioactivity prediction, the limited availability of labeled data for each assay and the incompatibility among different assays. With only a few compounds and their corresponding experimental bioactivity on a new assay, ActFound can accurately predict the bioactivity of new compounds in the assay. ActFound provides a pre-trained bioactivity model using meta-learning and pairwise learning (**Fig. 1a**). At the pre-training stage, diverse assays are used as “meta-training” datasets. The parameters of ActFound are interactively updated on these assays using a bi-level optimization process, which consists of an inner loop for fine-tuning specific assays, and an outer loop for updating model parameters based on the performance of fine-tuned models. As a result, ActFound is more sensitive to the updates from various assays and can later quickly adapt to new assays. The backbone of ActFound is a Siamese Network calculating the relative difference in bioactivity values between two compounds, allowing us to circumvent the issue of incompatible bioactivity values across different assays and focus on the compatible relative activity. The final bioactivity values can be reconstructed based on the predicted relative bioactivity values (**Fig. 1b**). At the fine-tuning stage, ActFound is fine-tuned using a few compounds with experimental bioactivities in the new assay, and then predicts bioactivity predictions on unmeasured compounds (**Fig. 1c**). We demonstrated that ActFound can accurately perform in-domain bioactivity prediction and exhibit strong generalization ability across domains.

2.2 Accurate in-domain bioactivity prediction

We first sought to evaluate the performance of ActFound for bioactivity prediction in the in-domain setting (see **Methods**) on ChEMBL⁷ and BindingDB.¹⁴ Following previous work,²² we evaluated on the 16-shot setting, where 16 compounds in each assay were used to fine-tune the model, and the remaining ones were held out for evaluation. We found that ActFound outperformed all competing methods on both datasets in terms of r^2 (**Fig. 2a**, p -value $< 10^{-11}$) and RMSE (**Fig. 2b**, p -value $< 10^{-20}$). First, ActFound substantially outperformed conventional meta-learning approaches MAML³⁸

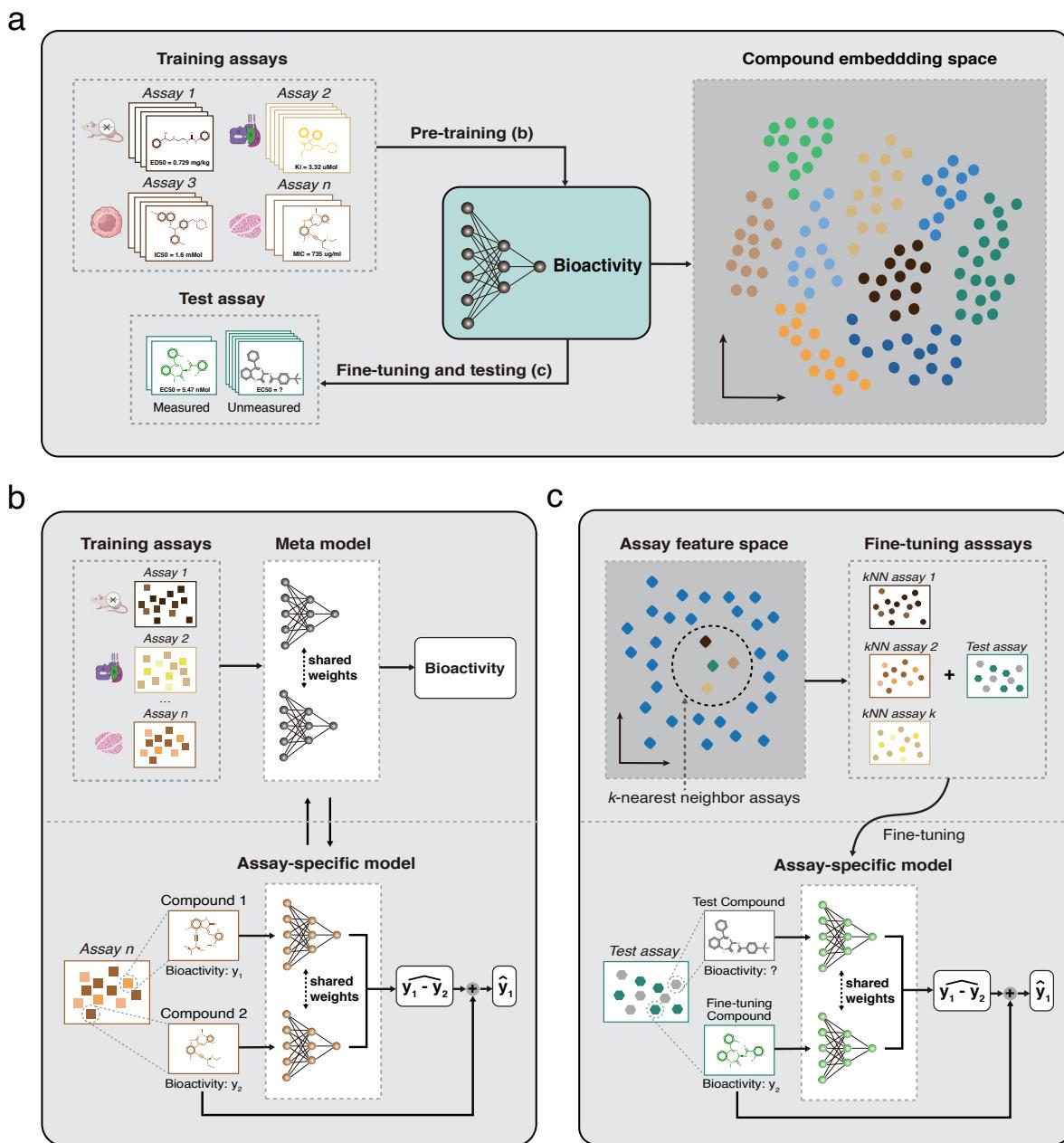


Figure 1. Overview of ActFound. **a**, ActFound is a foundation model for bioactivity prediction pre-trained on a large number of assays. After pre-training, ActFound can be fine-tuned on a test assay with just a few measured compounds, and then predict bioactivity values for other unmeasured compounds in this assay. The pre-training stage enables ActFound to project the compounds from diverse assays to a shared embedding space. **b**, ActFound exploits pairwise meta-learning for pre-training strategy. A Siamese Network is used to learn the relative bioactivity value differences between two compounds to address the incompatibility among assays. The final bioactivity value can be calculated using the predicted relative bioactivity value difference. **c**, ActFound employs a k -nearest neighbor-based fine-tuning strategy where the k -nearest assays are identified to jointly fine-tune the test assay. This makes the pre-trained model quickly adapt to the test assay, improving the generalizability of ActFound.

and ProtoNet,³⁹ indicating the effectiveness of using pairwise learning to learn the relative bioactivity values. Second, we found that ActFound is better than ActFound(transfer), a transfer learning based variant of our method, demonstrating the advantage of using meta-learning to train a foundation model from diverse assays. Although being worse than ActFound, MAML and ProtoNet are better than other non-meta-learning approaches, again indicating the effectiveness of using meta-learning for this task. We found that the improvement of meta-learning-based approaches is larger on ChEMBL than BindingDB. Since ChEMBL has 35,644 assays, more than twice the amount of assays compared to the 15,225 assays on BindingDB, it can better exploit the advantage of meta-learning to quickly adapt the model to new assays, reassuring the prominence of using meta-learning to build a foundation model for bioactivity prediction.

Next, we evaluated our method FS-Mol.²² FS-Mol is curated from ChEMBL by only retaining assays with molar concentration units (e.g., nMol), thus excluding many costly *in vivo* assays measured in dosing units (e.g., mg/kg/day). FS-Mol is substantially smaller and only contains 13.8% of assays and 30.8% of unique compounds compared to ChEMBL. We assessed the performance using different number of fine-tuning compounds from 16 to 128 (**Fig. 2c, Supplementary Figure 1,2**) and found that ActFound achieved the best performance in the low-resource setting (16-shot, 32-shot) and comparable performance on 128-shot (p -value > 0.95). We attributed the improvement of our method to meta-learning, which is known to perform better when only limited labeled data are available. We further examined a more challenging scaffold data splitting setting on pQSAR-ChEMBL,²¹ where the fine-tuning and the test compounds of an assay do not have any overlapping molecular scaffolds. Since the molecular scaffold is the core structure that different functional groups attach to, this setting can more rigorously evaluate the generalizability of our method. ActFound again performs the best in this setting (**Fig. 2d,e, Supplementary Figure 3**), demonstrating its generalizability to unseen molecular scaffolds.

To better understand the superior performance of learning the relative bioactivity difference, we contrasted compound embeddings obtained by ActFound and MAML in **Fig. 2f**. Since most assays are developed for lead optimization, compounds in the same assay should have similar structures and thus be clustered together. Compared to MAML, embeddings from ActFound presented more visible patterns, confirming the high-quality embeddings learned from ActFound. Among all assays, we found that the performance of ActFound is the least desirable on assays that have the percentage (%) unit, whereas the training assays are molar concentration unit, density unit (e.g., ug/mL) or dosing unit (**Supplementary Figure 4**). Nevertheless, ActFound still surpassed other transfer learning and meta-learning approaches (**Fig. 2g,h**), again suggesting that our approach possesses better generalization capability across units. Collectively, the prominent performance of ActFound in the in-domain setting demonstrates the effectiveness of using pairwise meta-learning to build a foundation model for bioactivity prediction, further motivating us to investigate its performance in the more challenging cross-domain setting.

2.3 Improved generalization across domains

A key advantage of foundation models is the ability to generalize the prediction to new domains and datasets. After observing ActFound's strong generalizable performance on unseen molecular scaffolds and units, we next systematically evaluated its generalization in the cross-domain setting, where the model is trained using all assays from one domain (e.g., ChEMBL) and fine-tuned on all assays from

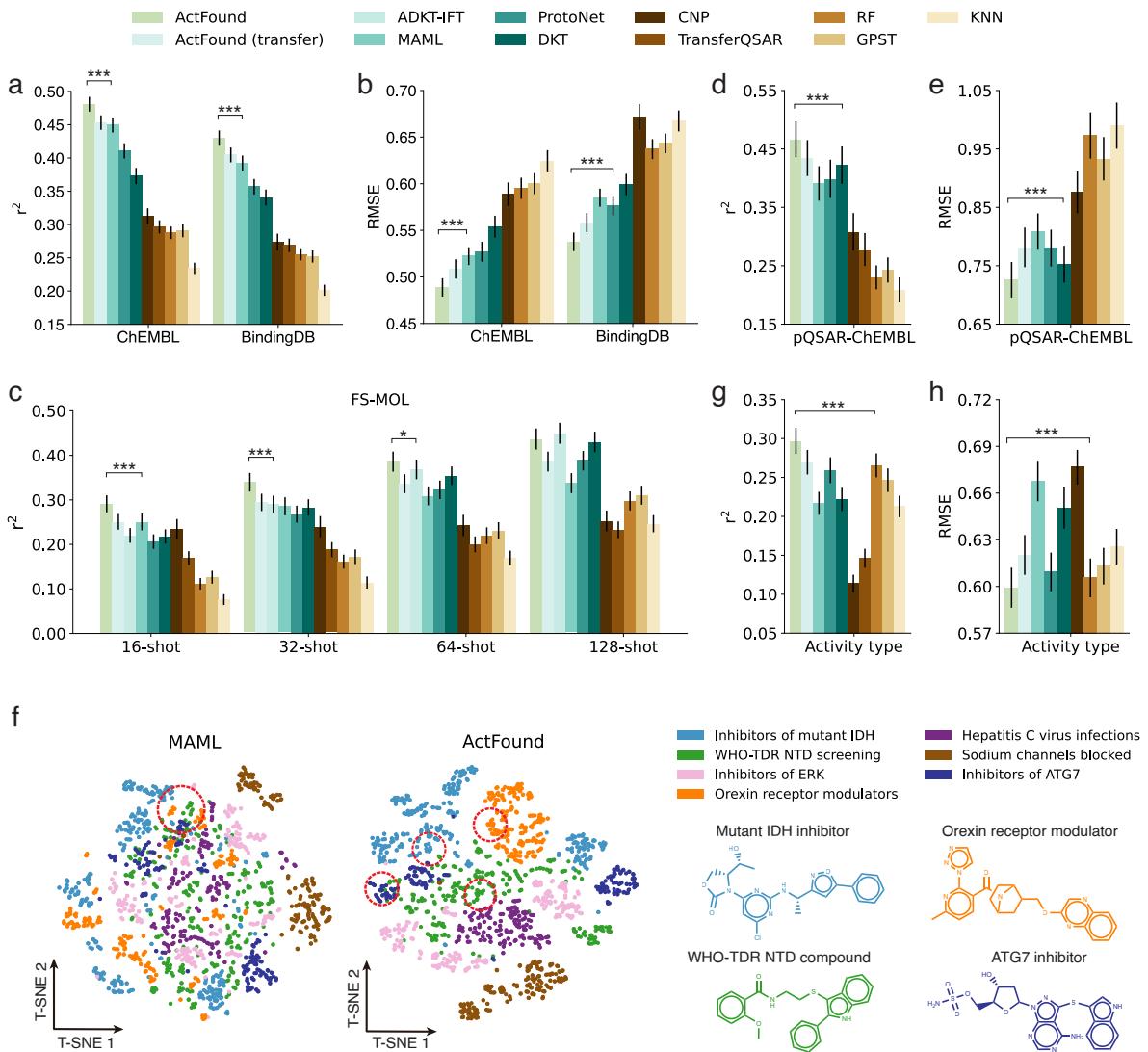


Figure 2. Evaluation of the in-domain bioactivity prediction. **a,b,** Bar plots comparing ActFound and competing methods in 16-shot bioactivity prediction on ChEMBL and BindingDB in terms of r^2 (**a**) and RMSE (**b**). The asterisks indicate that ActFound outperforms the next best-performing model in the metric, with t-test significance levels of p-value $< 5 \times 10^{-2}$ for *, p-value $< 5 \times 10^{-3}$ for **, and p-value $< 5 \times 10^{-4}$ for ***. **c,** Bar plot comparing the 16, 32, 64, 128-shot bioactivity prediction on FS-MOL using r^2 . **d,e,** Bar plots comparing bioactivity prediction using scaffold data splitting on pQSAR-ChEMBL in terms of r^2 (**d**) and RMSE (**e**), 75% of the experimental bioactivity is used for fine-tuning. **f,** T-SNE plots comparing compound embeddings obtained by ActFound (left) and MAML (middle). All compounds are from ChEMBL test set assays. Points are colored according to the assay, and assays with the largest number of compounds are selected. Four compounds which are denoted using red circles are illustrated (right). **g,h,** Bar plots comparing the bioactivity prediction on ChEMBL-Activity assays (unit=%) in terms of r^2 (**g**) and RMSE (**h**).

141 another domain (e.g., BindingDB). The results are summarized in **Fig. 3**. We first noticed that
 142 ActFound yielded a slight performance degradation in the cross-domain setting compared to the in-
 143 domain setting, demonstrating that this is a more challenging setting. Nevertheless, ActFound still

144 outperformed all comparison approaches under both metrics on both datasets. For example, ActFound
145 obtained $0.33 r^2$, which is 18% higher than the best-competing method MAML on the cross-domain
146 prediction between ChEMBL and BindingDB (**Fig. 3a,b**). We found that the performance of Act-
147 Found is better on ChEMBL-to-BindingDB than BindingDB-to-ChEMBL in terms of performance
148 drops compared to the in-domain setting. Similar to our observation in the in-domain setting, we
149 again attributed this to the larger number of assays in ChEMBL compared to BindingDB, which
150 provides more tasks for our pairwise meta-learning framework.

151 Since BindingDB and ChEMBL are both collected from diverse sources, there might exist over-
152 lapsing assays that cause data leakage. In addition to our efforts to exclude these related assays
153 (see **Methods**), we exploited two independent kinase inhibitor datasets KIBA⁴⁰ and Davis⁴¹ to eval-
154 uate the cross-domain prediction performance. We first noticed that the performance on these two
155 datasets is substantially worse than the performance on BindingDB and ChEMBL, suggesting them
156 to be more challenging tasks. Our method achieved the overall best performance on both datasets
157 (**Fig. 3c-f, Supplementary Figure 5,6**), reassuring the superiority of pairwise learning and meta-
158 learning. Moreover, the performance enhancement of ActFound relative to MAML is larger on KIBA
159 than Davis. In contrast to David, measurement units in KIBA do not exist in ChEMBL or BindingDB,
160 again demonstrating that ActFound is agnostic to measurement units and can be better generalized
161 to assays with never-before-seen measurement units.

162 Because the performance of our method and competing approaches all dropped in the cross-domain
163 setting compared to the in-domain setting, it is beneficial to let end users know which test assays our
164 method can perform well. We found that the test performance of the test assay is strongly correlated
165 with the loss value for the first optimization step ($\rho_P = -0.88$) compared to other steps (**Fig. 3g,h**,
166 **Supplementary Figure 7-9**). Intuitively, this strong correlation reflects how likely this test assay
167 can benefit from meta-learning since a smaller loss means the model needs less effort to fit this new
168 assay, allowing end users to identify the assays that can be better improved using ActFound.

169 2.4 A machine learning alternative to FEP calculation

170 To further illustrate the practical usage of ActFound in drug design, we applied it to two benchmarks
171 for Free Energy Perturbation (FEP) calculation.^{37,42} FEP calculation is an important computational
172 chemistry approach for real-world drug design by providing the Relative Binding Free Energy (RBFE)
173 between two similar compounds. RBFE reveals how small structure modification impacts the bioac-
174 tivity of a target protein, guiding the optimization of the drug structure to increase bioactivity.¹²
175 Nevertheless, FEP calculation is resource-intensive, requiring approximately 24 to 48 GPU hours for
176 computing a single RBFE between two compounds^{9,37} and is limited to assays with known 3D protein
177 target structure. We hypothesized that RBFE can be approximated by the bioactivity difference in
178 our framework using pairwise learning. To validate this, we collected two benchmarks for FEP from
179 Schrödinger³⁷ and Merck.⁴² These benchmarks contain 16 assays and each has 29 compounds on av-
180 erage. Since ChEMBL and BindingDB are collected from diverse sources including scientific articles,
181 there might be data leakage for evaluating FEP benchmarks. To address this, we excluded assays that
182 might lead to data leakage from the training set (see **Methods**), and 58.3% of the compounds on both
183 datasets are unseen in the ChEMBL training set after this processing. We compared the performance
184 of all methods using different proportions of data for fine-tuning ranging from 20% to 80% (**Fig. 4a,b**,
185 **Supplementary Figure 10-13**). We first observed that our method consistently outperforms com-

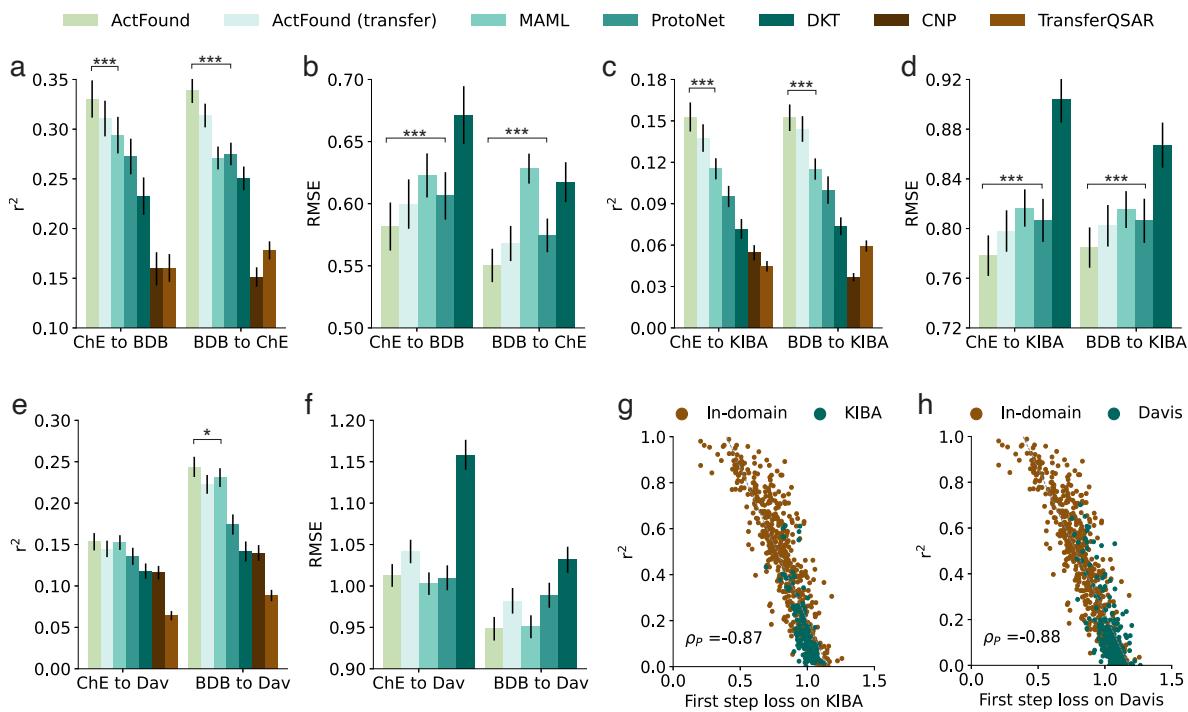


Figure 3. Evaluation of the cross-domain bioactivity prediction. **a,b,** Bar plots comparing the cross-domain bioactivity prediction between ChEMBL and BindingDB in terms of r^2 (a) and RMSE (b). ChE, BDB are abbreviations for ChEMBL and BindingDB respectively. **c-f,** Bar plots comparing the bioactivity prediction on KIBA and Davis in terms of r^2 and RMSE, and Dav is an abbreviation of Davis. **g,h,** Scatter plots comparing the loss for the first step and the test performance in terms of r^2 on KIBA (g) and Davis (h).

peting methods on both datasets using different proportions of fine-tuning data. The improvement over competing methods is larger when fewer data are used, suggesting that our method can more efficiently utilize labeled data in new assays. More importantly, we found that by using 40% of the data for fine-tuning (12 compounds on average for each assay), our model can surpass the performance of FEP calculation tool FEP+(OPLS4),³⁷ which is the latest release of the leading commercial software developed by Schrödinger using state-of-the-art OPLS4 force field.^{11,43} We also compared with the state-of-the-art structure-based methods PBCNet¹⁹ following their experimental settings, and we found that ActFound outperforms PBCNet even without using any given target protein information (**Supplementary Figure 14**). The promising performance on two FEP benchmarks indicates that our foundation model can serve as a machine-leaning-based alternative to FEP calculations by only requiring a few labeled data points for fine-tuning.

When experimentally measured data are not available, ActFound can alternatively use the data from FEP+(OPLS4) calculation to fine-tune the model. We evaluated this in **Fig. 4c,d**, where we used the results of FEP+(OPLS4) calculation for the fine-tuning compounds and did not incorporate any experimentally measured fine-tuning data. We first observed that the performance of all approaches dropped, indicating that this setting is more challenging than utilizing experimentally measured fine-tuning data. Nevertheless, ActFound still outperformed all comparison approaches. In contrast to FEP+(OPLS4), we observed that the r^2 of our method is nearly equivalent to that of FEP+(OPLS4) when the fine-tuning compounds contain 80% of the compounds in that assay, and the RMSE value even

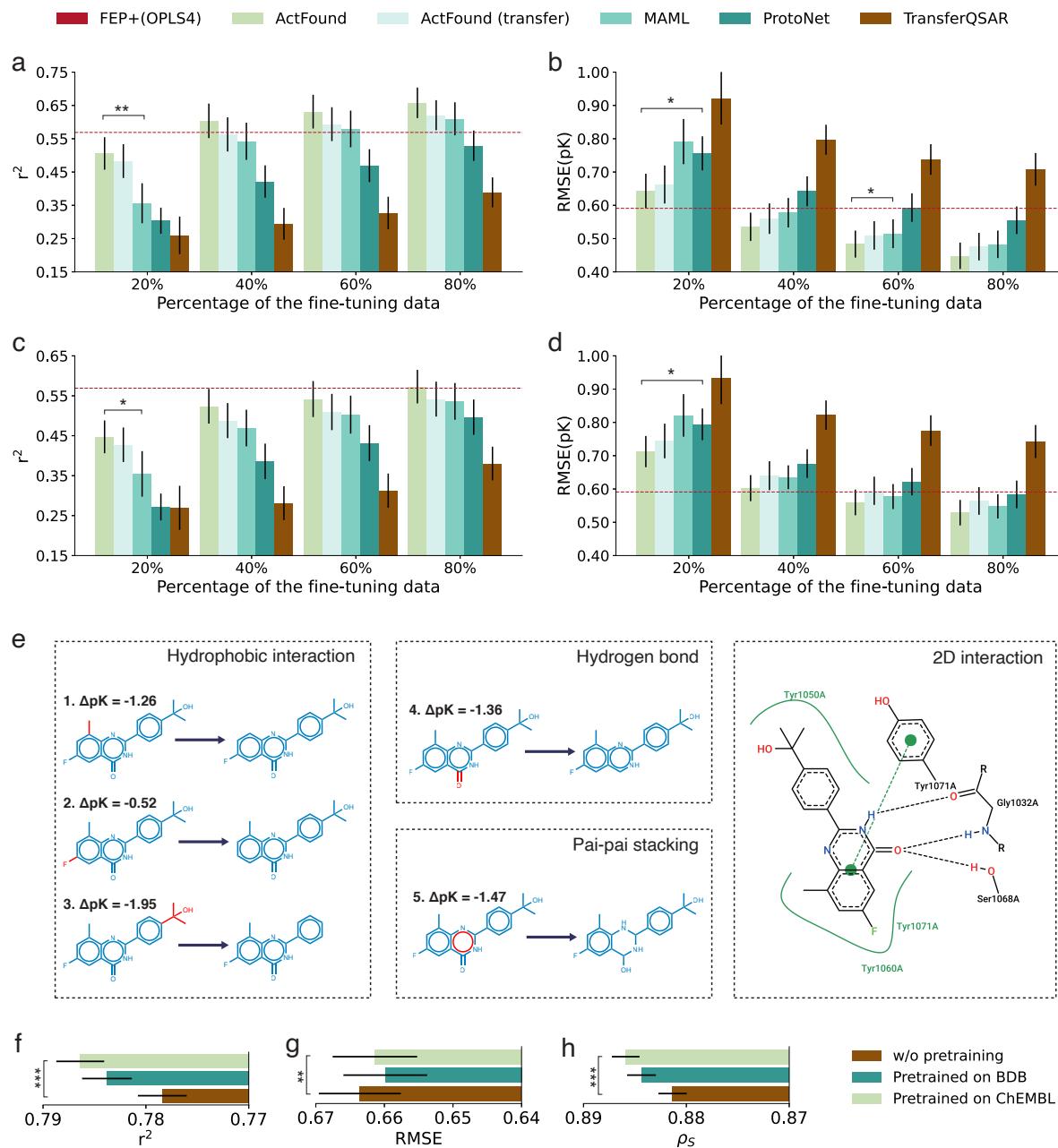


Figure 4. Evaluation of FEP benchmarks and cancer drug response prediction. **a,b,** Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of r^2 (a) and RMSE (b) when 20%, 40%, 60%, 80% of the experimental bioactivity is used for fine-tuning. All models are trained on ChEMBL. **c,d,** Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of r^2 (c) and RMSE (d) when the FEP+(OPLS4) calculation results are known for 20%, 40%, 60%, 80% of the fine-tuning compounds. All models are trained on ChEMBL. **e,** Case study on TNKS2, fragments (colored in red) forming non-bonded interactions with the target protein (TNKS2) are removed from the best bioactivity compound. The bioactivity change is predicted using ActFound. **f-h,** Bar plots comparing the performance in terms of r^2 (f), RMSE (g) and Spearman correlation (h) using model pre-trained on BindingDB, model pre-trained on ChEMBL, and randomly initialized model. ρ_s denotes Spearman correlation.

205 surpassed FEP+(OPLS4) by 10.4%. Collectively, ActFound can accurately predict bioactivity values
206 in FEP benchmarks when either using experimentally measured data or FEP+(OPLS4) calculated
207 data for fine-tuning, offering a less costly machine learning approach to binding free energy prediction.

208 Finally, to further understand the prominent performance of ActFound, we presented a case study
209 that illustrates the predicted bioactivity change of different modifications on a given compound. We
210 focused on the compound that has the best bioactivity when TNKS2 is the target protein. In particular,
211 we first identified several potential interactions using Proteins Plus,⁴⁴ then we modified the compound
212 by removing a fragment and predicted the bioactivity value change caused by that modification (**Fig.**
213 **4e**). A larger change indicates that the modification is more important. We found that the third
214 compound resulted in the largest bioactivity change (-1.95 pK). This matches the prior chemical
215 knowledge that large non-polar group tends to have strong hydrophobic interactions. We further
216 examined other key interactions by changing the chemical scaffold, which is unseen in the TNKS2
217 target assay. As the 2D interaction in **Fig. 4e** shows, the best compound forms hydrogen bonds with
218 Gly1032A and Ser1068A, and it also forms pai-pai stacking with Tyr1071A. In the fourth and fifth
219 compounds, the hydrogen bonds and pai-pai stacking are partially eliminated, resulting in a relatively
220 large bioactivity change of -1.36 pK and -1.47 pK respectively, consistent with our expectation.
221 Collectively, this case study reveals how ActFound utilizes pairwise learning to capture the structure
222 difference in functional groups and scaffold, and further enhances bioactivity value prediction.

223 **2.5 Cancer drug response prediction**

224 The promising results of ActFound on few-shot bioactivity prediction further motivate us to apply
225 this foundation model to other domains. To this end, we investigated whether ActFound can be used
226 to predict cancer drug response, where the goal is to predict drug sensitivity on new cell lines. Since
227 we can use gene expression values as features for cell lines, it is now possible to test our method in
228 a zero-shot setting where we have never seen any training cell lines for the test drug. We evaluated
229 ActFound on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset.⁴⁵ GDSC contains 969
230 cell lines, and each cell line has been tested on 207 drugs on average. We concatenated drug features
231 and cell line features to train a supervised model for predicting the sensitivity of the drug to the
232 given input cell line. We compared the performance of using ChEMBL or BindingDB to initialize the
233 drug features against a random initialization (**Fig. 4f-h**). We observed that the ActFound model
234 pre-trained with ChEMBL demonstrated better performance than random initialization on all metrics
235 (p -value $< 2 \times 10^{-5}$), reflecting how ActFound enables the model to learn better compound embeddings.
236 Collectively, the promising result demonstrates the broad applicability of ActFound to drug sensitivity
237 prediction on unseen cancer cell lines.

238 **3 Discussion**

239 We have proposed ActFound, a foundation model for compound bioactivity prediction on all assays.
240 ActFound combines meta-learning with pairwise learning to leverage the abundant information in
241 diverse assays and improve the performance on few-shot bioactivity predictions. In particular, we have
242 demonstrated the outstanding performance of ActFound on in-domain bioactivity prediction and cross-
243 domain bioactivity prediction. We also showed the practical usage of ActFound on FEP benchmarks
244 and drug sensitivity prediction for new cell lines. ActFound can serve as the foundation for bioactivity

245 prediction to further promote drug discovery.

246 ActFound has two limitations that we would like to address in the future. First, although the
247 compound bioactivity prediction approach we developed can be applied to different types of biology
248 assays, it currently cannot consider the meta-data for each assay, such as the sequence of the protein
249 target⁴⁶ or the text assay description⁴⁷ for that assay. We plan to exploit this information to enhance
250 the representation of each assay. Second, ActFound is currently developed using simple molecular
251 fingerprint features without leveraging any pre-trained model for molecular structures. Based on the
252 prominent results of ActFound on all settings we have evaluated, we hypothesize that it can be further
253 improved by incorporating other pre-trained methods. We plan to incorporate pre-trained methods,
254 such as KPGT,⁴⁸ GROVER⁴⁹ and MOLFORMER⁵⁰ to further improve ActFound.

255 There are a few existing target-free few-shot bioactivity prediction approaches.²⁰⁻²⁵ Compared
256 to these approaches, ActFound has at least two key differences. First, these approaches mainly study
257 bioactivity prediction on assays with molar concentration unit, while ActFound is agnostic to measure-
258 ment units and is trained on assays of different units. This allows ActFound to generalize to assays with
259 different units. Second, existing approaches predict the absolute value of bioactivity. In contrast, Act-
260 Found exploits pairwise learning to predict the relative bioactivity values, which effectively leverages
261 the correlation between bioactivity value rankings of different assays. Pairwise learning has been used
262 for uncertainty quantification on QSAR task,^{35,36} but has not been applied to few-shot bioactivity pre-
263 diction. Compared to existing structure-based few-shot binding free energy prediction methods,¹⁷⁻¹⁹ Act-
264 Found also has three key differences. First, these structure-based methods rely on accurate protein-
265 ligand 3D binding pose, which is hard to acquire because of the lack of accurate docking methods. In
266 contrast, ActFound only requires compound information. Second, ActFound exploits meta-learning
267 to enhance the performance on few-shot settings, while existing structure-based methods were mainly
268 based on transfer learning. We showed in our experiments that ActFound outperforms its transfer
269 learning variant. Third, existing structure-based methods were designed specifically for assays with a
270 specific protein target, while ActFound is a general foundation model for compound bioactivity on all
271 assays, which can utilize the large-scale public databases (e.g., ChEMBL, BindingDB) and be applied
272 to assays without any specific protein target, demonstrating the broad applicability of ActFound.

273 4 Method

274 4.1 Problem Setting

275 We aim to build bioactivity prediction models for different assays in the few-shot setting. Given a lim-
276 ited number of example compounds with known experimental bioactivity for a given assay, ActFound
277 predicts the bioactivity of unseen compounds in that specific assay. We consider bioactivity prediction
278 as a regression task. In our setting, each separate assay serves as an individual task. For the rest of
279 the paper, $p(T)$ denotes the assay distribution, T_i denotes the i -th assay to be trained, T_i^{tune} and T_i^{test}
280 stands for the fine-tuning compounds and test compounds of assay T_i , respectively.

$$T_i = \left\{ \left(\mathbf{X}_k^{(i)}, y_k^{(i)} \right) \right\}_{k=1}^{N_i},$$

281 where $\mathbf{X}_k^{(i)}$ denotes the k -th compound in the assay T_i and $y_k^{(i)}$ denote its respective bioactivity, N_i
282 stands for the number of compounds in the assay T_i . In our experiments, we used 2048-dim Morgan-
283 Fingerprint⁵¹ extracted by RDKit to represent the compounds \mathbf{X} .

284 4.2 Review of meta-learning

285 Meta-learning is a machine learning framework targeting quick adaptation to new tasks. Meta-learning
286 comprises two primary processes: meta-training (also referred to as pre-training) and meta-testing.
287 The model learns a “meta-learner” shared across tasks in the meta-training stage and adapts it to
288 new tasks with a few samples in the meta-testing stage. It is particularly well-suited for bioactivity
289 prediction tasks since there’s a severe shortage of labeled data due to the high costs of laboratory
290 experiments. For instance, only 12.7 compounds are measured for each assay in ChEMBL⁷ on average.

291 We adopt MAML, a widely-used meta-learning framework, for the training of our bioactivity
292 prediction model ActFound. MAML aims to obtain optimal initial parameters θ^* shared across all
293 assays. It achieves this through an iterative bi-level optimization process during the meta-training
294 phase, consisting of an inner loop and an outer loop. In the inner loop, the model is rapidly adapted
295 to the fine-tuning compounds T_i^{tune} over a small number of iterations, to make the model’s parameters
296 suitable for the particular assay T_i . In the outer loop, the model’s parameters are updated based on
297 the performance of the adapted model in the test compounds of the assay T_i^{test} , which aims to make
298 the model’s initial parameters more suitable for fast adaptation across various assays.

299 Specifically, in the inner loop stage, MAML samples a set of assays $T_i \sim p(T)$ and adapts model
300 parameters θ to obtain assay-specific parameters θ'_i using the following equation:

$$\theta'_i = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\text{inner}}(\theta, T_i), \quad (1)$$

301 where α is the inner loop learning rate hyper-parameter, and $\mathcal{L}_{\text{inner}}(\theta, T_i)$ is the the inner loop loss.
302 In the outer loop stage, MAML obtains the outer loop loss $\mathcal{L}_{\text{outer}}(\theta'_i, T_i)$ in the test compounds T_i^{test}
303 for each training assay $T_i \sim p(T)$. It then updates the model parameters θ using the outer loop loss
304 based on the following equation:

$$\theta = \theta - \beta \nabla_{\theta} \sum_{T_i \sim p(T)} \mathcal{L}_{\text{outer}}(\theta'_i, T_i) \quad (2)$$

305 where β is the outer loop learning rate hyper-parameter.

306 After the meta-training stage, we get optimal initial parameters θ^* suitable for fast adaptation on
307 various assays. In the meta-testing stage, MAML only takes the inner loop stage for an unseen test
308 assay T_j following Equation 1. Subsequently, MAML provides predictions for the test assay T_j using
309 the model parameters θ_j^* , which is fine-tuned from θ^* on the test assay’s fine-tuning compounds T_j^{tune} .

310 4.3 Pairwise learning

311 Since there are many types of assays with varying units (e.g., nMol, mg/kg/day, ug/ml), value ranges,
312 and measurements, directly learning the absolute bioactivity among assays may encounter issues of
313 incompatibility among assays, which can subsequently result in poor transferability to unseen assay
314 types and harm overall performance. ActFound aims to predict the relative bioactivity difference
315 between compounds’ pairs and then construct the predicted bioactivity for the test compounds of an
316 assay, which makes the model agnostic to assay units and value ranges. It adopts the Siamese Network
317 architecture,¹⁸ where the input is a pair of compounds, and the prediction is the bioactivity difference
318 between them.

319 Specifically, for the k -th compounds $\mathbf{X}_k^{(i)}$ and the j -th compounds $\mathbf{X}_j^{(i)}$ ($k \neq j$) in the i -th assay
 320 $T_i \sim p(T)$, the predicted bioactivity difference $\Delta\hat{y}_{kj}^{(i)}$ between the two compounds is computed as:

$$\Delta\hat{y}_{kj} = (\mathbf{e}_k - \mathbf{e}_j)\mathbf{W} = (\text{Encoder}(\mathbf{X}_k, \theta_E) - \text{Encoder}(\mathbf{X}_j, \theta_E))\mathbf{W}$$

321 where $\mathbf{e}_k, \mathbf{e}_j$ are the embeddings of the two compounds. θ_E is the parameters for the compound encoder,
 322 which is implemented as a 2-layer MLP with the hidden size of 2,048. $\mathbf{W} \in \mathbb{R}^{2048 \times 1}$ is the weight
 323 matrix for the last linear layer, and the model parameters of ActFound can be defined as $\theta = (\theta_E, \mathbf{W})$.
 324 For reduced computation consideration, we followed ANIL⁵² to take the fast adaptation method, which
 325 only optimizes the last linear layer parameters \mathbf{W} in the inner loop. So the assay-specific parameter
 326 θ'_i adapted for assay T_i after inner loop should be equal to $(\theta_E, \mathbf{W}'_i)$.

327 As the Siamese Network model only outputs the relative bioactivity difference between two com-
 328 pounds, we further need to construct the absolute bioactivity of the test compounds T_i^{test} in the assay
 329 T_i . For each fine-tuning compound $\mathbf{X}_j^{(i)} \sim T_i^{\text{tune}}$, we can get a constructed bioactivity for $\mathbf{X}_k^{(i)}$ using
 330 the equation $\hat{y}_{kj}^{(i)} = y_j^{(i)} + \Delta\hat{y}_{kj}^{(i)}$, where $y_j^{(i)}$ is the experimental bioactivity of $\mathbf{X}_j^{(i)}$. So there is at most
 331 $|T_i^{\text{tune}}|$ constructed absolute bioactivity for $\mathbf{X}_k^{(i)}$. After this, we utilized the attention mechanism⁵³
 332 with the Tanimoto mask to fusion them together. Our intuition is that similar compounds usually
 333 have similar bioactivities (this is why KNN works for bioactivity prediction⁵⁴), thus lowering the ab-
 334 solute error of the constructed bioactivity. So similar compounds should contribute more to the final
 335 prediction $\hat{y}_k^{(i)}$. The equation for the final prediction $\hat{y}_k^{(i)}$ of $\mathbf{X}_k^{(i)}$ is given as follows:

$$\hat{y}_k^{(i)} = \sum_{j \in T_i^{\text{tune}}, j \neq k} a_{kj} \hat{y}_{kj}^{(i)}, \hat{y}_{kj}^{(i)} = y_j^{(i)} + \Delta\hat{y}_{kj}^{(i)}$$

where $a_{kj} = \frac{m_{kj} e^{\cos(\mathbf{e}_k, \mathbf{e}_j) / \tau}}{\sum m_{kj} e^{\cos(\mathbf{e}_k, *) / \tau}}$

where $m_{kj} = \begin{cases} 1 & \text{TanimotoSim}(\mathbf{X}_j, \mathbf{X}_k) \geq \delta \\ 0 & \text{TanimotoSim}(\mathbf{X}_j, \mathbf{X}_k) < \delta \end{cases}$

336 where $\cos(\mathbf{e}_k, \mathbf{e}_j)$ is the cosine similarity between embeddings of the compound $\mathbf{X}_j^{(i)}$ and $\mathbf{X}_k^{(i)}$, τ is
 337 the temperature hyper-parameter for attention, and δ is a threshold hyperparameter, which is imple-
 338 mented as the median of Tanimoto Similarity values between $\mathbf{X}_k^{(i)}$ and all other fine-tuning compounds
 339 T_i^{tune} . The Tanimoto mask m_{kj} effectively filters out the influence of dissimilar compound pairs, which
 340 typically exhibit large absolute errors. This filtering mechanism has been demonstrated to enhance
 341 the overall performance of ActFound.

342 The training objective for ActFound, both in the inner loop and the outer loop, encompasses two
 343 key components: pairwise loss and absolute loss. For the pairwise loss, it is characterized as the mean
 344 square loss, which is calculated between the predicted relative bioactivity $\Delta\hat{y}_{kj}^{(i)}$ and the experimental
 345 relative bioactivity $\Delta y_{kj}^{(i)} = y_k^{(i)} - y_j^{(i)}$. On the other hand, the absolute loss is simply the mean
 346 square loss between the constructed bioactivity $\hat{y}_k^{(i)}$ and the experimental bioactivity $y_k^{(i)}$. It's worth
 347 noting that the difference between the inner loop loss $\mathcal{L}_{\text{inner}}$ and the outer loop loss $\mathcal{L}_{\text{outer}}$ is minimal.
 348 For the inner loop loss, the pairwise loss is defined on the compound pairs within the fine-tuning
 349 compounds T_i^{tune} , and the absolute loss is similarly defined on T_i^{tune} . For the outer loop loss, the
 350 pairwise loss is defined on the compound pairs formed between the fine-tuning compounds T_i^{tune} and
 351 the test compounds T_i^{test} along with that formed within the test compounds, while the absolute loss

352 is solely defined on T_i^{test} .

$$\begin{aligned}\mathcal{L}_{\text{inner}} &= \mathcal{L}_{\text{inner}}^{\text{abs}} + \gamma_{\text{inner}} \mathcal{L}_{\text{inner}}^{\text{pair}} \\ &= \frac{\sum_{k \in T_i^{\text{tune}}} (\hat{y}_k^{(i)} - y_k^{(i)})^2}{|T_i^{\text{tune}}|} + \gamma_{\text{inner}} \frac{\sum_{k \in T_i^{\text{tune}}} \sum_{j \in T_i^{\text{tune}}, j \neq k} (\Delta \hat{y}_{kj}^{(i)} - \Delta y_{kj}^{(i)})^2}{|T_i^{\text{tune}}|(|T_i^{\text{tune}}| - 1)} \\ \mathcal{L}_{\text{outer}} &= \mathcal{L}_{\text{outer}}^{\text{abs}} + \gamma_{\text{outer}} \mathcal{L}_{\text{outer}}^{\text{pair}} \\ &= \frac{\sum_{k \in T_i^{\text{test}}} (\hat{y}_k^{(i)} - y_k^{(i)})^2}{|T_i^{\text{test}}|} + \gamma_{\text{outer}} \frac{\sum_{k \in T_i^{\text{test}}} \sum_{j \in T_i, j \neq k} (\Delta \hat{y}_{jk}^{(i)} - \Delta y_{jk}^{(i)})^2}{|T_i^{\text{test}}|(|T_i| - 1)}\end{aligned}$$

353 where $\gamma_{\text{inner}}, \gamma_{\text{outer}}$ are two hyper-parameters for the pairwise loss weight. Note that $\mathcal{L}_{\text{inner}}$ can be written
 354 in $\mathcal{L}_{\text{inner}}(\theta, T_i) = \mathcal{L}_{\text{inner}}(\theta_E, \mathbf{W}, T_i)$, and $\mathcal{L}_{\text{outer}}$ can be written in $\mathcal{L}_{\text{outer}}(\theta'_i, T_i) = \mathcal{L}_{\text{outer}}(\theta_E, \mathbf{W}'_i, T_i)$.

355 4.4 KNN-MAML and fusion method

356 Many bioactivity assays exhibit similarities, such as those assessing the binding affinity to both the
 357 wild type and mutant forms of a specific target protein. This observation inspired us to leverage the
 358 information from similar assays in the training set to improve testing on previously unseen assays.
 359 We proposed a novel algorithm called *k*-Nearest Neighbors MAML (KNN-MAML), which dynamically
 360 identifies similar assays during the meta-testing process and utilizes them to aid the adaptation of
 361 unseen assays.

362 In the inner loop of ActFound for each test assay, we searched for *k*-similar assays from the training
 363 set, and adapted the trained initial parameters θ^* to the assay-specific parameters θ_i^* , using the data
 364 from these *k* assays.

$$\begin{aligned}\theta_i^* &= \theta^* - \alpha \nabla_{\theta^*} [\mathcal{L}_{\text{inner}}(\theta^*, T_i) + \sum_{T_s \in \text{KNN}(T_i)} \gamma_s \mathcal{L}_{\text{inner}}(\theta^*, T_s)] \\ \text{where } \gamma_s &= \gamma_{\text{KNNmax}}(\text{AssaySim}(i, s) - \delta_{\text{KNN}}, 0) \\ \text{where } \text{AssaySim}(i, s) &= \cos(\mathbf{Z}_i, \mathbf{Z}_s) \\ \text{where } \mathbf{Z}_i &= -\alpha \nabla_{\mathbf{W}^*} \mathcal{L}_{\text{inner}}(\theta_E, \mathbf{W}^*, T_i)\end{aligned}\quad (3)$$

365 where γ_s is the weight of the assay T_s in *k*-similar assays $\text{KNN}(T_i)$, $\text{AssaySim}(i, s)$ is the assay similarity
 366 between T_i and T_s , \mathbf{Z}_i is the assay feature for T_i , and $\gamma_{\text{KNN}}, \delta_{\text{KNN}}$ are two hyper-parameters controlling
 367 the contribution of each *k*-similar assays. As stated above, we employed the fast adaptation method,⁵²
 368 which only optimizes the last linear layer parameters \mathbf{W}^* in the inner loop. As we assume that similar
 369 assays should have similar assay-specific model parameters, we can straightforwardly define the assay
 370 feature \mathbf{Z}_i as the gradient of the parameters \mathbf{W}^* with respect to the inner loop loss, which is also
 371 identical to $\mathbf{W}_i^* - \mathbf{W}^*$. With this definition in place, we measure the similarity between assays as the
 372 cosine similarity between two assay features $\cos(\mathbf{Z}_i, \mathbf{Z}_s)$.

373 In addition to the KNN-MAML method, we also developed a straightforward ensemble approach
 374 for combining ActFound and its transfer learning variant ActFound(transfer). We observed a significant
 375 correlation between the inner loop loss for the first optimization step $\mathcal{L}_{\text{inner}}(\theta, T_i)$ (we performed 5 inner
 376 loop optimization steps) and the test performance of the test assay (**Fig. 3g,h, Supplementary**
 377 **Figure. 7-9**). Building on this insight, we propose to fusion ActFound and ActFound(transfer)
 378 based on the loss of the first inner loop step. Specifically, we calculated the first-step loss for both
 379 ActFound and ActFound(transfer) on the test assay. When the loss difference between ActFound and

380 ActFound(transfer) exceeds a threshold (typically -0.1), we combine the results of the two methods;
381 otherwise, we solely employ ActFound. This straightforward approach has demonstrated improved
382 performance across most tests, providing end users with a robust strategy for determining when to
383 utilize ActFound.

384 4.5 Implementation details

385 The training strategy of ActFound mainly follows MAML++,⁵⁵ and the details are listed as follows.
386 In the meta-training (pre-training) stage, ActFound are trained for 60 epochs on ChEMBL and Bind-
387 ingDB, and 80 epochs for FS-MOL and pQSAR-ChEMBL. For the inner loop, we utilized a simple
388 stochastic gradient descent (SGD) optimizer, we performed 5 steps with separate batch normalization
389 parameters for each step. The learning rates for each step of the inner loop are also learnable param-
390 eters, which means that the model will update the learning rate parameters during the meta-training
391 stage. For the outer loop, we used the Adam optimizer with a cosine annealing learning rate scheduler,
392 with the maximum learning rate to be 0.00015 and the minimum to be 0.0001. The remaining param-
393 eters for the Adam optimizer were configured with the default settings of PyTorch. We applied early
394 stopping for all methods and utilized the best validation epoch for testing. We set the meta-batch size
395 to 16 for all methods, which means each meta-batch contains 16 assays.

396 4.6 Comparative methods and evaluation metrics

397 In our experiment, we implemented several transfer learning and meta-learning comparative methods,
398 including ActFound(transfer) (transfer learning variant of ActFound), MAML,³⁸ DKT (Deep kernel
399 transfer),⁵⁶ CNP (Conditional neural processes),⁵⁷ ProtoNet³⁹ and TransferQSAR (transfer learning
400 variant of MAML), and the transfer learning variant means that we didn't take the inner loop during
401 training. When testing on new assays, we fine-tuned the last linear layer of transfer learning meth-
402 ods (ActFound(transfer) and TransferQSAR) on the test assay, which is implemented as a 5 steps
403 optimization using the SGD optimizer. The fine-tuning learning rate was 0.004, which is the opti-
404 mal setting determined in our grid search on the validation assays. For fairness consideration, We
405 applied an early stopping strategy for all methods on the validation assays, and they have the same
406 hyper-parameter settings. All methods share the backbone model (3-layer MLP) and the same in-
407 puts (2048-dim Morgan fingerprint) which is identical to ActFound. The hyper-parameters (including
408 learning rate and its scheduler, training epoch, meta-batch-size, and inner loop and outer loop opti-
409 mizer parameter) are also identical to ActFound. Except for the ADKF-IFT²³ model on the in-domain
410 experiment of FS-MOL, we directly used the released checkpoints for testing. The ADKF-IFT model is
411 a combination of fingerprint-based and GNN-based models, which takes the input of 2048-dim Morgan
412 fingerprint and 2D molecular graph. Three single-task methods, including RF (Random Forest),⁵⁸
413 KNN (k -Nearest Neighbors)⁵⁹ and GPST (single-task GP with Tanimoto kernel)⁶⁰ also take 2048-dim
414 Morgan fingerprint as an input.

415 We employed two metrics for evaluation, r^2 and RMSE. r^2 is defined as $\max(\rho_P, 0)^2$, where ρ_P
416 is the Pearson correlation between the predicted and experimental bioactivities. RMSE means the
417 root mean square error between the predicted and experimental bioactivities on the test compounds
418 of the test assay. Unless otherwise specified, all test experiments were repeated for 10 times, and the
419 fine-tuning compounds of the test assay were uniformly split at random.

420 4.7 Training data curation

421 Our data were curated from two publicly available datasets: ChEMBL⁷ and BindingDB.¹⁴ For ChEMBL
422 dataset curation, we downloaded the ChEMBL32 dataset from the official website. The original
423 ChEMBL32 dataset contains 2.4 million unique molecules and 1.6 million manually curated assays
424 which come from scientific literature, patents, and other sources. All assays in ChEMBL32 are metic-
425 ulously categorized, encompassing various aspects of the real-world drug design. After careful curation,
426 our processed ChEMBL dataset contains 35,644 assays, 1.4 million tested bioactivities, and 0.7 million
427 unique compounds, with each assay containing 39.3 compounds on average. All assays have either a
428 molar concentration unit (e.g. nMol), density unit (e.g. ug/mL), or dosing unit (e.g. mg/kg/day).
429 We hypothesize that this choice could maximize the assay diversity while ensuring the quality.

430 The curation pipeline for ChEMBL mainly contains three stages. First, all candidate assays with
431 the required number of tested bioactivities (≥ 20) and desirable BAO (Bio-Assay-Ontology) format
432 are collected from ChEMBL32, and we kept all bioactivities with molar, density, or dosing unit. As we
433 aim to predict bioactivity for drug-like small molecules, in the second step, we cleaned all compounds
434 in our curated data by removing all inorganic and large molecules with molecular weights larger than
435 1,000. Third, further cleaning of test bioactivity data for all assays was implemented. Specifically,
436 we removed duplicate tested bioactivity measurements of one compound by simply taking the results'
437 average. We removed all bioactivity with the standard relation not equal to “=”, which means that its
438 accurate value is unknown and might contain some noise. We also removed all “orphan compounds”
439 that are dissimilar to all other compounds in this assay, which means that all other compounds have
440 Tanimoto similarity smaller than 0.2 with it.

441 For BindingDB dataset curation, the original BindingDB version 2022m7 was downloaded from
442 <https://www.bindingdb.org>, which contains 1.2 million compounds and 9.2 thousand targets. Our
443 curated BindingDB dataset contains 15,225 assays, 0.9 million tested bioactivities, and 0.4 million
444 unique compounds, and each assay contains 60.9 compounds on average. The curation pipeline for
445 BindingDB is almost identical to ChEMBL's curation. However, since all assays in BindingDB had
446 IC50, Ki, Kd, or EC50 measurements which already met our requirement, we didn't implement the first
447 curation stage for BindingDB. The BindingDB dataset only contains assays with molar concentration
448 units, which means that the model trained on BindingDB might have a relatively poor transfer ability
449 to assays of other units.

450 4.8 In-domain experiment setting

451 For all in-domain experimental settings, we first trained models on the training assays for each dataset
452 and then tested them on the test assays of the corresponding dataset. All in-domain test experiments
453 were repeated for 10 times, and the fine-tuning compounds of each test assay were uniformly split at
454 random. However, the in-domain experimental on pQSAR-ChEMBL is only conducted once because
455 assays on pQSAR-ChEMBL follow a fixed scaffold split. We implemented in-domain experiments
456 for four datasets: our curated ChEMBL and BindingDB datasets (see Section 4.7 for more details),
457 together with two other public datasets: FS-Mol²² and pQSAR-ChEMBL,²¹ which is curated from the
458 earlier version of ChEMBL. The FS-Mol dataset contains 4,938 assays, 0.4 million tested bioactivities,
459 and 0.2 million unique compounds, each assay contains 86.3 compounds on average. The pQSAR-
460 ChEMBL dataset contains 4,276 assays and 0.5 million unique compounds, and the average number
461 of compounds in each assay is 320.0.

462 For the in-domain experiment on ChEMBL and BindingDB datasets, we split out a total of 1000
463 assays uniformly at random to prepare our validation and test assays (500 assays as validation and
464 500 assays as validation respectively). We performed few-shot (16-shot) testing on the test assays of
465 these two datasets, which means that the model is fine-tuned on the 16 fine-tuning compounds of the
466 test assay, and subsequently tested on the remaining test compounds.

467 For the in-domain experiment on FS-Mol, assay split is referenced from the setting of Chen et
468 al,²³ which has 40 assays for validation and 111 assays for test respectively. We performed 16, 32, 64,
469 128 shot testing for all 111 test assays on FS-Mol.

470 For the in-domain experiment on pQSAR-ChEMBL, we adopted the assay split configuration of
471 Yao et al.⁶¹ This setup consists of 76 assays for validation and 100 assays for testing. The assays on
472 pQSAR-ChEMBL follow the scaffold split setting,²¹ where the fine-tuning and the test compounds of
473 an assay don't have any overlapping chemical scaffold. For each assay in pQSAR-ChEMBL, roughly
474 75% of the compounds are used for fine-tuning, with the remaining compounds assigned to the test
475 compounds.

476 For Activity-ChEMBL testing, we manually curated 178 assays with the assay type equal to
477 "Activity" and percentage unit (%). Each assay has 32.6 compounds on average. The Activity-
478 ChEMBL set can also be viewed as an out-of-domain set, as all bioactivities have percentage units,
479 which is not included in our curated ChEMBL dataset. However, unlike other datasets, we don't
480 know whether a higher raw value corresponds to better or worse bioactivity for assays in the Activity-
481 ChEMBL dataset. To solve this problem, we ran ActFound and ActFound(transfer) two times during
482 testing, which means that the model is fine-tuned twice to predict the positive and the negative relative
483 bioactivity respectively. After that, we took a simple fusion approach to select one of those two
484 independent running results, and we employed the first step loss for selection, which again utilized our
485 observation of the high correlation between loss for the first fine-tuning step and the test performance
486 (Fig. 3g,h, Supplementary Figure. 7-9).

487 4.9 Cross-domain experiment setting

488 In cross-domain experiments, we initially trained models on the ChEMBL and BindingDB datasets
489 and subsequently applied them for testing on other datasets. The cross-domain test experiments were
490 repeated 10 times. Similar to in-domain experiments, the fine-tuning compounds of a test assay were
491 also uniformly split at random.

492 We first performed ChEMBL-to-BindingDB and BindingDB-to-ChEMBL experiments. However,
493 as ChEMBL and BindingDB are both collected from sharing sources (including public journals, patents,
494 and other databases), they may have lots of overlapping assays. Given that both the test assays of
495 ChEMBL and BindingDB are uniformly split at random, there is a risk that assays in the BindingDB
496 test set may have already appeared in the ChEMBL training set. To mitigate the risk of data leakage
497 caused by these overlapping assays in the ChEMBL-to-BindingDB and BindingDB-to-ChEMBL cross-
498 domain test, we adopted the approach outlined in pQSAR-ChEMBL²¹ to find identical assays and then
499 remove them from the test assays. Specifically, if the bioactivity Pearson correlation (ρ_P) between the
500 shared compounds of two assays exceeded 0.99, we considered those two assays as identical. For each
501 assay in the BindingDB test set, if we found an identical assay in ChEMBL, we removed the specific
502 test assay from the test set. Following this data leakage prevention procedure, we retained 203 assays
503 for the ChEMBL-to-BindingDB test and 351 assays for the BindingDB-to-ChEMBL test.

504 We also studied the transfer ability of the models on two kinase inhibitor datasets: KIBA⁴⁰ and
505 Davis,⁴¹ here we performed 16-shot testing for Davis, and 16, 32, 64, 128-shot testing for KIBA. Both
506 datasets are directly downloaded from <https://github.com/thinng/GraphDTA>.⁶² The Davis dataset
507 contains 30,056 Kd measured binding affinities (one kind of bioactivity) of 68 compounds and 442
508 kinases, and the KIBA dataset contains 118,254 KIBA scores of 2,111 compounds and 229 kinases
509 (each kinase can be roughly considered as an assay). The KIBA dataset was initially created by
510 merging diverse assays with IC50, Ki, and Kd measurements, ultimately consolidating them into a
511 unified KIBA score, and higher KIBA scores indicate better bioactivity. Notably, the KIBA score is
512 not present in the ChEMBL and BindingDB datasets, which is the main difference between KIBA and
513 Davis. Similar to the in-domain experiments, we only retained assays with more than 20 compounds
514 for testing in the KIBA and Davis datasets. After this data preprocessing, the final KIBA dataset
515 contains 165 kinases and 2,068 unique compounds, with an average of 617.3 compounds per target.
516 The Davis dataset contained 212 kinases, 68 unique compounds, and an average of 29.6 compounds
517 per target.

518 As Davis may share common data sources with ChEMBL and BindingDB, there also might be
519 a data leakage problem in Davis. To address this potential data leakage issue in the Davis dataset,
520 we carefully removed any assays that could lead to data leakage from the ChEMBL and BindingDB
521 training sets. To achieve this, we detected all assays in ChEMBL and BindingDB which have at least
522 one identical assay in Davis, and then we removed them from the training set. We again followed
523 pQSAR-ChEMBL²¹ for detecting identical assays.

524 4.10 FEP benchmark experimental setting

525 We evaluated the performance of trained models on two well-known FEP calculation benchmarks
526 from Schrödinger³⁷ and Merck.⁴² The FEP benchmark contains 16 assays, with an average of 28.8
527 compounds for each assay. Given the relatively small number of assays in the FEP set, we conducted
528 test experiments for 40 times, and the fine-tuning compounds for test assays were randomly and
529 uniformly split.

530 Since the ChEMBL and BindingDB datasets both contain data sources from public journals,
531 there's a possibility that assays in the FEP set overlap with those in ChEMBL or BindingDB. To
532 address this data leakage issue, we systematically identified all assays in ChEMBL and BindingDB that
533 had at least one identical assay in the FEP set. Subsequently, we manually removed these overlapping
534 assays from the training sets. Similar to the approach used in cross-domain experiments, the method
535 for detecting identical assays was adopted from pQSAR-ChEMBL.²¹ After data leakage processing,
536 58.3% of the compounds in the FEP set are unseen in ChEMBL. Data for the FEP set assays and
537 the FEP+(OPLS4)³⁷ calculated results were downloaded from https://github.com/schrodinger/public_binding_free_energy_benchmark,⁴³ we directly read the compounds' smiles from the SDF
538 files, and manually deleted all formal charges.

539 For our case study on the TNKS2 target assay, we first fine-tuned ActFound on nearly all com-
540 pounds in the assay and then predicted the bioactivity of modified compounds. Note that we removed
541 all modified compounds from fine-tuning compounds, to avoid the potential data leakage problem
542 in this study. The protein structure for detecting the interaction graph is taken from Protein Data
543 Bank(PDB) using PDB id 4UI5, and the interaction graph is created using Proteins Plus.⁴⁴

545 4.11 Cancer drug response experimental setting

546 For experiments on the GDSC dataset, we downloaded the Genomics of Drug Sensitivity in Cancer
547 (GDSC)⁴⁵ dataset from the official website. The dataset contains 621 drugs, 969 cell lines, and 243,464
548 drug-cell-IC50 triplets. We obtained the SMILES of drugs using PubChemPy and Rdkit packages and
549 ignored all drugs that failed to get valid SMILES. Following these preprocessing steps, the refined
550 GDSC dataset included 969 cell lines, with an average of 206.5 drugs per cell line. We employed a
551 425-dimensional mutation feature as the representation for cell lines. The cell line branch model is a
552 simple 2-layer MLP with the hidden size set to 64 and the output dimension set to 2,048. The output
553 vector from the cell line branch is further processed through a sigmoid layer, followed by fusion with
554 the compound embedding e_k using a dot product operation. This fused representation is ultimately
555 passed through a linear layer to predict drug sensitivity. In the GDSC experiment, we split 100 cell
556 lines for training from the GDSC dataset, and the other 869 cell lines for testing. We simply trained
557 all models for 80 epochs and then reported the best test result among all epochs. During the testing
558 stage, we took the zero-shot setting, which means that we simply predicted the drug sensitivity of
559 compounds to the input cell line without any fine-tuning.

560 4.12 Bioactivity definition

561 The definition of bioactivity varies depending on the type of assay being used. For all assays with
562 molar concentration unit (e.g. nMol), density unit (e.g. ug/mL), dosing unit (e.g. mg/kg/day), and
563 percentage unit (%), the bioactivity is defined as the negative log of the raw value $pX = -\log_{10} X$,
564 where X is the raw value in the original dataset. The bioactivity in most of the dataset we used are
565 defined in this way (including ChEMBL, ChEMBL-Activity, BindingDB, FS-MOL, pQSAR-ChEMBL,
566 Davis, GDSC). For assays on KIBA, we directly employed the KIBA score as the bioactivity. For assays
567 on the FEP set, the direct downloaded data are binding free energy with kcal/mol unit, and the lower
568 binding free energy indicates better bioactivity. For consistency with other assays in this paper, we
569 converted them to the negative log of the dissociation constant $pK = -\log_{10} K$ using Gibbs free energy
570 isotherm equation, where K means the dissociation constant. The conversion equation can be simply
571 written as $\Delta G = -1.363pK$ under the temperature of 298.15k.

572 Code and data availability

573 The data and checkpoints of ActFound and other comparative methods (ActFound(transfer), Trans-
574 ferQSAR, ProtoNet³⁹ and MAML³⁸) are available in the Google Drive https://figshare.com/articles/dataset/ActFound_data/24452680. The code is available in our GitHub project <https://github.com/BFeng14/ActFound>.

577 Acknowledgments

578 We'd like to express our gratitude to Dr. Michael K. Gilson and Dr. Tiqing Liu from the University of
579 California, San Diego (UCSD) for their advice on data curation. Additionally, we'd like to express our
580 gratitude to Dr. Fenglei Cao from Inf Technology for his guidance on the FEP benchmark experiments.

581 References

582 [1] Turon, G. *et al.* First fully-automated ai/ml virtual screening cascade implemented at a drug
583 discovery centre in africa. *Nature Communications* **14**, 5736 (2023).

584 [2] Lin, X., Li, X. & Lin, X. A review on applications of computational methods in drug screening and
585 design. *Molecules* **25** (2020). URL <https://api.semanticscholar.org/CorpusID:214601719>.

586 [3] Tsou, L. K. *et al.* Comparative study between deep learning and qsar classifications for tnbc
587 inhibitors and novel gpcr agonist discovery. *Scientific reports* **10**, 16771 (2020).

588 [4] Pan, X. *et al.* Deep learning for drug repurposing: Methods, databases, and applications. *Wiley
589 interdisciplinary reviews: Computational molecular science* **12**, e1597 (2022).

590 [5] Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M. & Ahsan, M. J. Machine learning in drug
591 discovery: a review. *Artificial Intelligence Review* **55**, 1947–1999 (2022).

592 [6] Lewis, R. A. A general method for exploiting qsar models in lead optimization. *Journal of
593 medicinal chemistry* **48** 5, 1638–48 (2005). URL <https://api.semanticscholar.org/CorpusID:35773119>.

595 [7] Gaulton, A. *et al.* Chemb: a large-scale bioactivity database for drug discovery. *Nucleic acids
596 research* **40**, D1100–D1107 (2012).

597 [8] Vamathevan, J. *et al.* Applications of machine learning in drug discovery and development. *Nature
598 reviews Drug discovery* **18**, 463–477 (2019).

599 [9] Gilson, M. K. & Zhou, H.-X. Calculation of protein-ligand binding affinities. *Annu. Rev. Biophys.
600 Biomol. Struct.* **36**, 21–42 (2007).

601 [10] Mobley, D. L. & Gilson, M. K. Predicting binding free energies: frontiers and benchmarks. *Annual
602 review of biophysics* **46**, 531–558 (2017).

603 [11] Lu, C. *et al.* Opls4: Improving force field accuracy on challenging regimes of chemical space.
604 *Journal of chemical theory and computation* **17**, 4291–4300 (2021).

605 [12] Jorgensen, W. L. Efficient drug lead discovery and optimization. *Accounts of chemical research*
606 **42**, 724–733 (2009).

607 [13] Goh, G. B., Hodas, N. O. & Vishnu, A. Deep learning for computational chemistry. *Journal of
608 computational chemistry* **38**, 1291–1307 (2017).

609 [14] Liu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. Bindingdb: a web-accessible database
610 of experimentally determined protein–ligand binding affinities. *Nucleic acids research* **35**, D198–
611 D201 (2007).

612 [15] Kao, P.-Y., Kao, S.-M., Huang, N.-L. & Lin, Y.-C. Toward drug-target interaction prediction via
613 ensemble modeling and transfer learning. In *2021 IEEE International Conference on Bioinfor-
614 matics and Biomedicine (BIBM)*, 2384–2391 (2021).

615 [16] da Silva Simões, R., Maltarollo, V. G., Oliveira, P. R. & Honório, K. M. Transfer and multi-task
616 learning in qsar modeling: Advances and challenges. *Frontiers in Pharmacology* **9** (2018). URL
617 <https://api.semanticscholar.org/CorpusID:3565150>.

618 [17] Jiménez-Luna, J. *et al.* Deltadelta neural networks for lead optimization of small molecule potency.
619 *Chemical science* **10**, 10911–10918 (2019).

620 [18] McNutt, A. T. & Koes, D. R. Improving $\delta\delta g$ predictions with a multitask convolutional siamese
621 network. *Journal of chemical information and modeling* **62**, 1819–1829 (2022).

622 [19] Yu, J. *et al.* Pbcnet: Computing relative binding affinity of ligands to a receptor based on a
623 pairwise binding comparison network for lead optimization (2023).

624 [20] Eckmann, P., Anderson, J., Gilson, M. K. & Yu, R. Target-free compound activity prediction via
625 few-shot learning .

626 [21] Martin, E. J. *et al.* All-assay-max2 pqsar: activity predictions as accurate as four-concentration
627 ic50s for 8558 novartis assays. *Journal of chemical information and modeling* **59**, 4450–4459
628 (2019).

629 [22] Stanley, M. *et al.* Fs-mol: A few-shot learning dataset of molecules. In *Thirty-fifth Conference on*
630 *Neural Information Processing Systems Datasets and Benchmarks Track (Round 2)* (2021).

631 [23] Chen, W., Tripp, A. & Hernández-Lobato, J. M. Meta-learning adaptive deep kernel gaussian
632 processes for molecular property prediction. In *The Eleventh International Conference on Learning*
633 *Representations* (2022).

634 [24] Lee, E., Yoo, J., Lee, H. & Hong, S. Metadta: Meta-learning-based drug-target binding affinity
635 prediction. In *ICLR2022 Machine Learning for Drug Discovery* (2022).

636 [25] Olier, I. *et al.* Meta-qsar: a large-scale application of meta-learning to drug design and discovery.
637 *Machine Learning* **107**, 285–311 (2018).

638 [26] Nguyen, C. Q., Kreatsoulas, C. & Branson, K. M. Meta-learning gnn initializations for low-
639 resource molecular property prediction. *arXiv preprint arXiv:2003.05996* (2020).

640 [27] Buffelli, D. & Vandin, F. A meta-learning approach for graph representation learning in multi-task
641 settings. *arXiv preprint arXiv:2012.06755* (2020).

642 [28] Wang, Y., Abuduweili, A., Yao, Q. & Dou, D. Property-aware relation networks for few-shot
643 molecular property prediction. *Advances in Neural Information Processing Systems* **34**, 17441–
644 17454 (2021).

645 [29] Bubeck, S. *et al.* Sparks of artificial general intelligence: Early experiments with gpt-4. *arXiv*
646 *preprint arXiv:2303.12712* (2023).

647 [30] Ouyang, L. *et al.* Training language models to follow instructions with human feedback. *Advances*
648 *in Neural Information Processing Systems* **35**, 27730–27744 (2022).

649 [31] Lu, J., Batra, D., Parikh, D. & Lee, S. Vilbert: Pretraining task-agnostic visiolinguistic repre-
650 sentations for vision-and-language tasks. *Advances in neural information processing systems* **32**
651 (2019).

652 [32] Brown, T. *et al.* Language models are few-shot learners. *Advances in neural information processing*
653 *systems* **33**, 1877–1901 (2020).

654 [33] Radford, A. *et al.* Learning transferable visual models from natural language supervision. In
655 *International conference on machine learning*, 8748–8763 (PMLR, 2021).

656 [34] Altae-Tran, H., Ramsundar, B., Pappu, A. S. & Pande, V. Low data drug discovery with one-shot
657 learning. *ACS central science* **3**, 283–293 (2017).

658 [35] Zhang, Y. *et al.* Similarity-based pairing improves efficiency of siamese neural networks for re-
659 gression tasks and uncertainty quantification. *Journal of Cheminformatics* **15**, 75 (2023).

660 [36] Tynes, M. *et al.* Pairwise difference regression: A machine learning meta-algorithm for improved
661 prediction and uncertainty quantification in chemical search. *Journal of Chemical Information*
662 *and Modeling* **61**, 3846–3857 (2021).

663 [37] Wang, L. *et al.* Accurate and reliable prediction of relative ligand binding potency in prospective
664 drug discovery by way of a modern free-energy calculation protocol and force field. *Journal of the*
665 *American Chemical Society* **137**, 2695–2703 (2015).

666 [38] Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep
667 networks. In *International conference on machine learning*, 1126–1135 (PMLR, 2017).

668 [39] Snell, J., Swersky, K. & Zemel, R. Prototypical networks for few-shot learning. *Advances in neural*
669 *information processing systems* **30** (2017).

670 [40] Tang, J. *et al.* Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative
671 and integrative analysis. *Journal of Chemical Information and Modeling* **54**, 735–743 (2014).

672 [41] Davis, M. I. *et al.* Comprehensive analysis of kinase inhibitor selectivity. *Nature biotechnology*
673 **29**, 1046–1051 (2011).

674 [42] Schindler, C. E. *et al.* Large-scale assessment of binding free energy calculations in active drug
675 discovery projects. *Journal of Chemical Information and Modeling* **60**, 5457–5474 (2020).

676 [43] Ross, G. A. *et al.* The maximal and current accuracy of rigorous protein-ligand binding free
677 energy calculations. *Communications Chemistry* **6**, 222 (2023).

678 [44] Schöning-Stierand, K. *et al.* Proteins plus: a comprehensive collection of web-based molecular
679 modeling tools. *Nucleic Acids Research* **50**, W611–W615 (2022).

680 [45] Yang, W. *et al.* Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker
681 discovery in cancer cells. *Nucleic acids research* **41**, D955–D961 (2012).

682 [46] Lee, I., Keum, J. & Nam, H. Deepconv-dti: Prediction of drug-target interactions via deep
683 learning with convolution on protein sequences. *PLoS computational biology* **15**, e1007129 (2019).

684 [47] Seidl, P., Vall, A., Hochreiter, S. & Klambauer, G. Enhancing activity prediction models in
685 drug discovery with the ability to understand human language. *arXiv preprint arXiv:2303.03363*
686 (2023).

687 [48] Li, H., Zhao, D. & Zeng, J. Kpgt: knowledge-guided pre-training of graph transformer for
688 molecular property prediction. In *Proceedings of the 28th ACM SIGKDD Conference on Knowledge*
689 *Discovery and Data Mining*, 857–867 (2022).

690 [49] Rong, Y. *et al.* Self-supervised graph transformer on large-scale molecular data. *Advances in*
691 *Neural Information Processing Systems* **33**, 12559–12571 (2020).

692 [50] Ross, J. *et al.* Large-scale chemical language representations capture molecular structure and
693 properties. *Nature Machine Intelligence* **4**, 1256–1264 (2022).

694 [51] Rogers, D. & Hahn, M. Extended-connectivity fingerprints. *Journal of chemical information and*
695 *modeling* **50**, 742–754 (2010).

696 [52] Raghu, A., Raghu, M., Bengio, S. & Vinyals, O. Rapid learning or feature reuse? towards
697 understanding the effectiveness of maml. *arXiv preprint arXiv:1909.09157* (2019).

698 [53] Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly learning to align and
699 translate. *arXiv preprint arXiv:1409.0473* (2014).

700 [54] Janela, T. & Bajorath, J. Simple nearest-neighbour analysis meets the accuracy of compound
701 potency predictions using complex machine learning models. *Nature Machine Intelligence* **4**,
702 1246–1255 (2022).

703 [55] Antoniou, A., Edwards, H. & Storkey, A. How to train your maml. *arXiv preprint*
704 *arXiv:1810.09502* (2018).

705 [56] Patacchiola, M., Turner, J., Crowley, E. J., O’Boyle, M. & Storkey, A. J. Bayesian meta-learning
706 for the few-shot setting via deep kernels. *Advances in Neural Information Processing Systems* **33**,
707 16108–16118 (2020).

708 [57] Garnelo, M. *et al.* Conditional neural processes. In *International conference on machine learning*,
709 1704–1713 (PMLR, 2018).

710 [58] Breiman, L. Random forests. *Machine learning* **45**, 5–32 (2001).

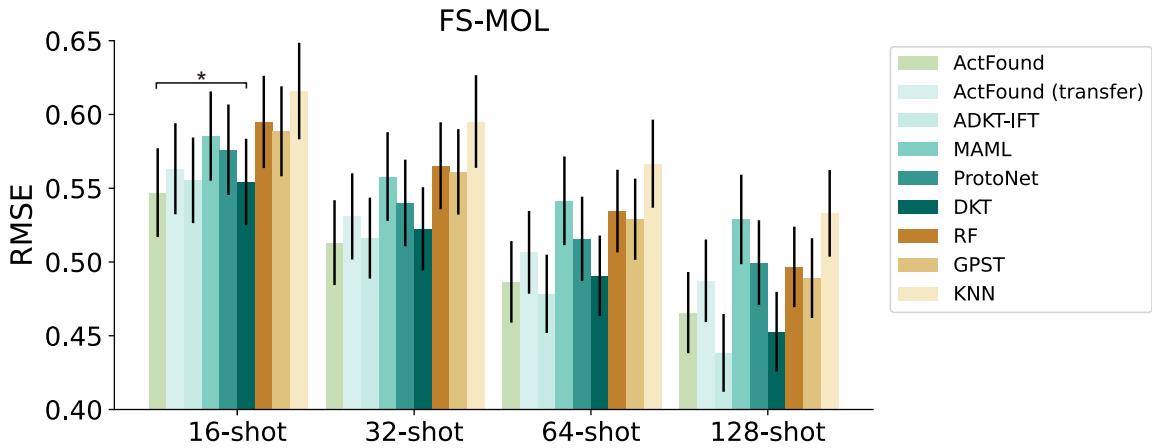
711 [59] Peterson, L. E. K-nearest neighbor. *Scholarpedia* **4**, 1883 (2009).

712 [60] Ralaivola, L., Swamidass, S. J., Saigo, H. & Baldi, P. Graph kernels for chemical informatics.
713 *Neural networks* **18**, 1093–1110 (2005).

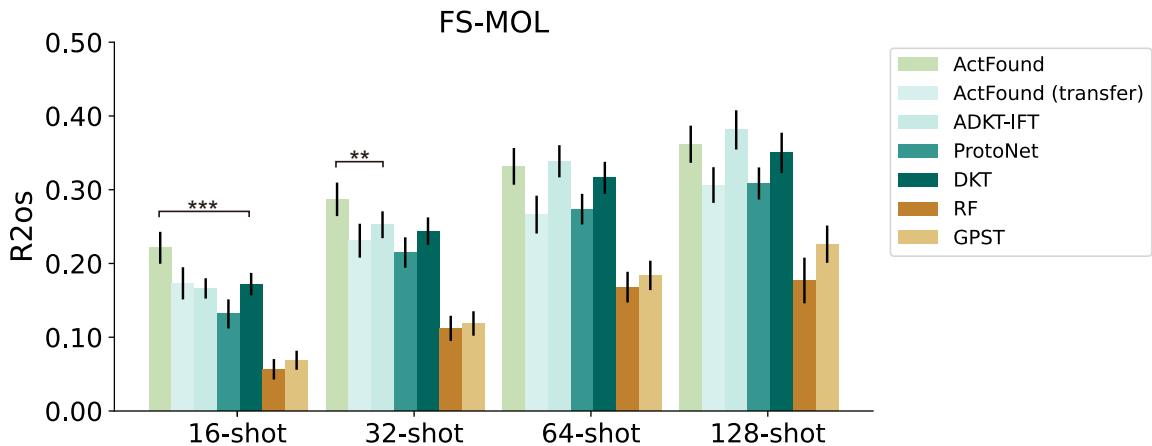
714 [61] Yao, H. *et al.* Improving generalization in meta-learning via task augmentation. In *International*
715 *conference on machine learning*, 11887–11897 (PMLR, 2021).

716 [62] Nguyen, T. *et al.* Graphdta: Predicting drug–target binding affinity with graph neural networks.
717 *Bioinformatics* **37**, 1140–1147 (2021).

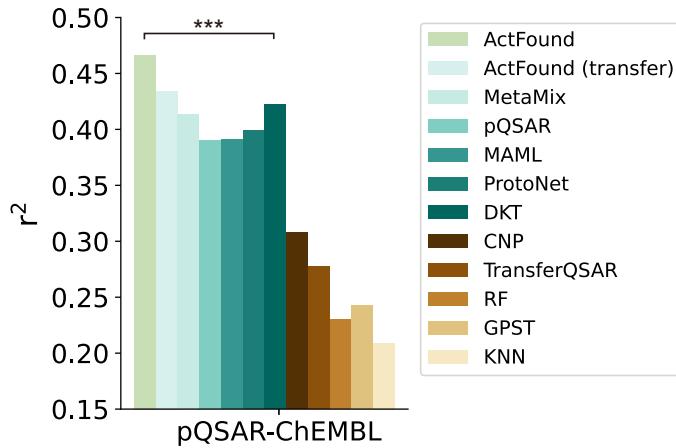
718 **Supplementary Information**



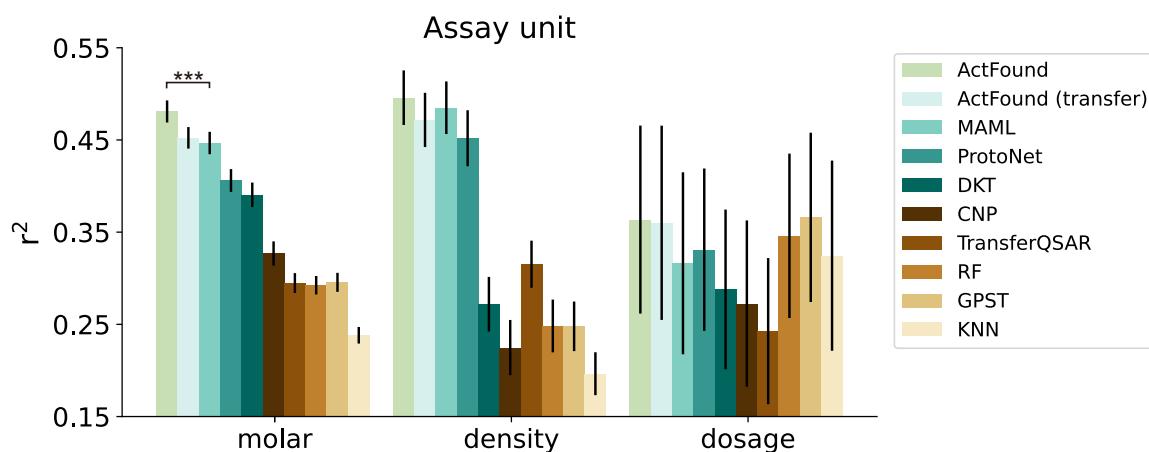
Supplementary Figure 1 Bar plot comparing the 16, 32, 64, 128-shot bioactivity prediction on FS-MOL in terms of RMSE. The asterisks indicate that ActFound outperforms the next best-performing model in the metric, with t-test significance levels of $p\text{-value} < 5 \times 10^{-2}$ for *, $p\text{-value} < 5 \times 10^{-3}$ for **, and $p\text{-value} < 5 \times 10^{-4}$ for ***.



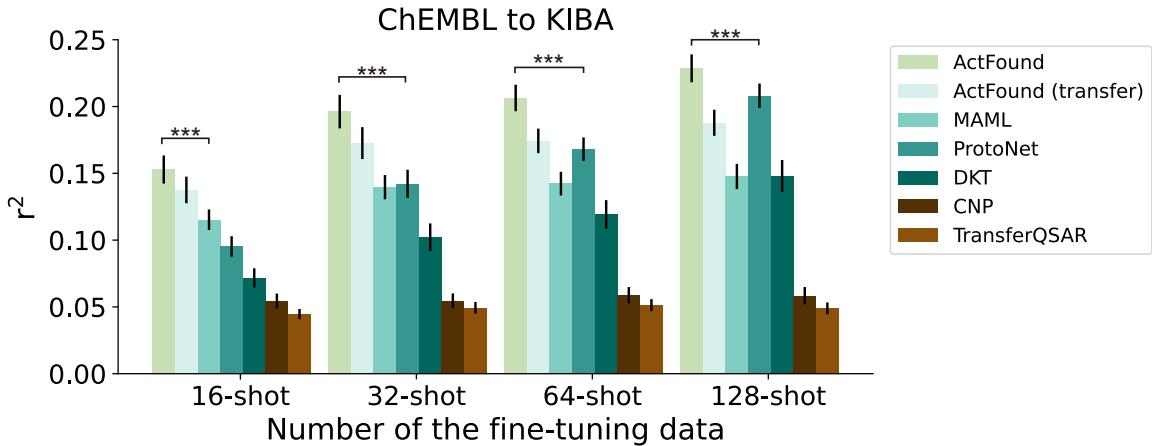
Supplementary Figure 2 Bar plot comparing the 16, 32, 64, 128-shot bioactivity prediction on FS-MOL in terms of R2os. We adopted the definition of R2os from ADKF-IFT.²³



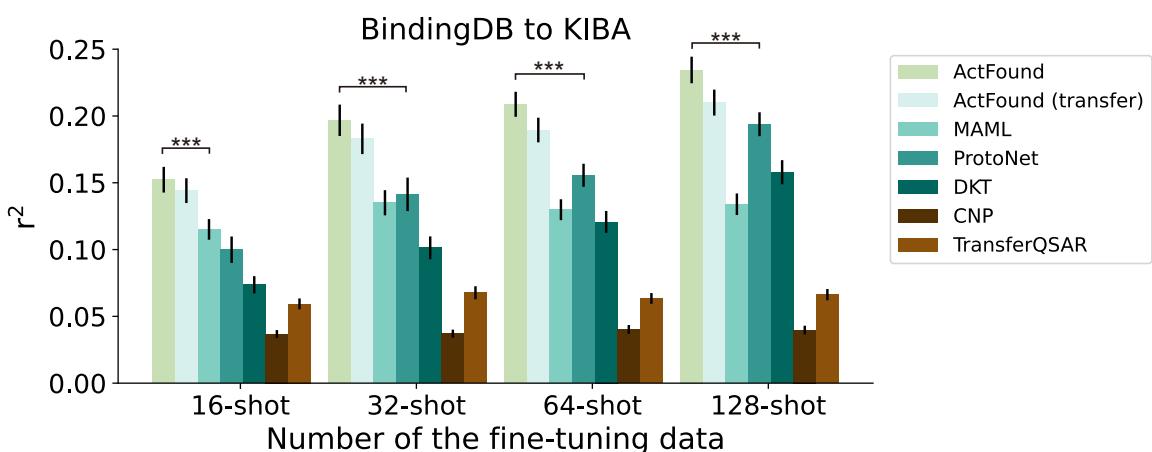
Supplementary Figure 3 Bar plot comparing bioactivity prediction using scaffold data splitting on pQSAR-ChEMBL in terms of r^2 . 75% of the experimental bioactivity is used for fine-tuning. The results of MetaMix and pQSAR are collected from the paper of MetaMix.⁶¹ MetaMix is a meta-learning method. pQSAR is a multi-task learning method developed by Novartis.²¹



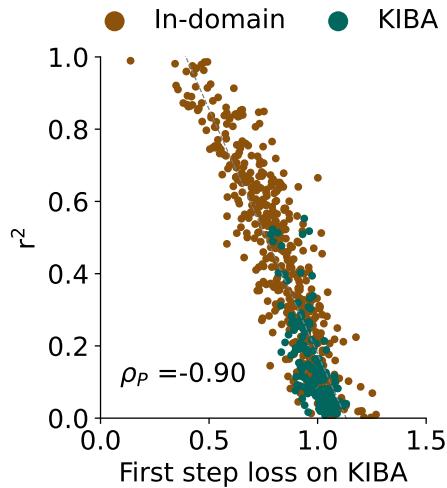
Supplementary Figure 4 Bar plot comparing ActFound and competing methods in 16-shot bioactivity prediction on ChEMBL in terms of r^2 . Assays of molar concentration unit (e.g. nMol), density unit (e.g. ug/mL), and dosing unit (e.g. mg/kg/day) in the test assays of ChEMBL are evaluated separately.



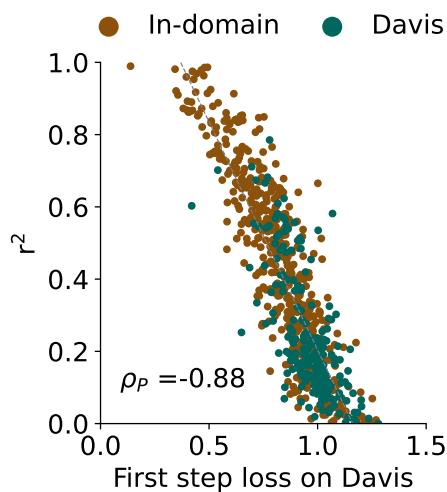
Supplementary Figure 5 Bar plots comparing the 16, 32, 64, 128-shot bioactivity prediction of ChEMBL-to-KIBA in terms of r^2 .



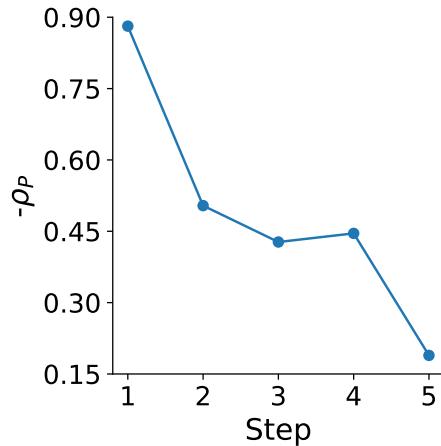
Supplementary Figure 6 Bar plots comparing the 16, 32, 64, 128-shot bioactivity prediction of BindingDB-to-KIBA in terms of r^2 .



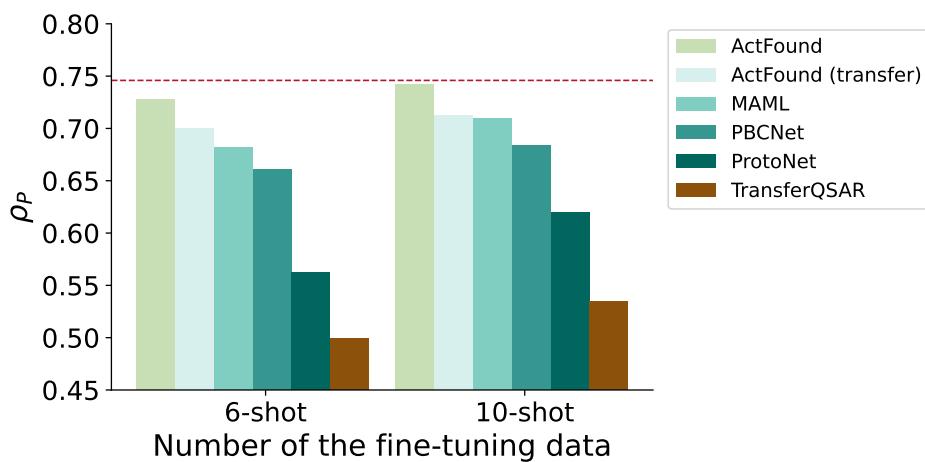
Supplementary Figure 7 Scatter plots comparing the loss for the first step and the test performance in terms of r^2 on the BindingDB-to-KIBA cross-domain experiment. The test performance (r^2) of the test assay is strongly correlated with the loss for the first step in terms of Pearson Correlation.



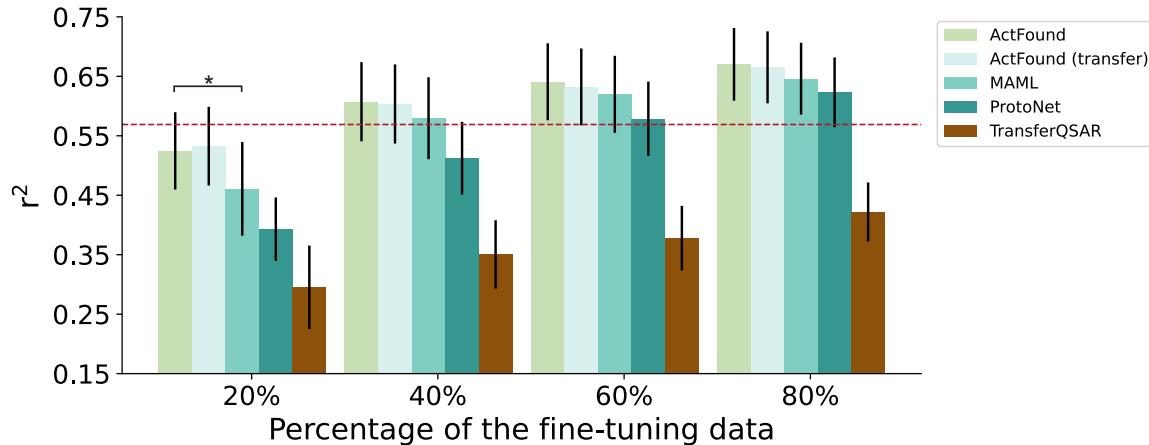
Supplementary Figure 8 Scatter plots comparing the loss for the first step and the test performance in terms of r^2 on BindingDB-to-Davis cross-domain experiment. The test performance (r^2) of the test assay is strongly correlated with the loss for the first step in terms of Pearson Correlation.



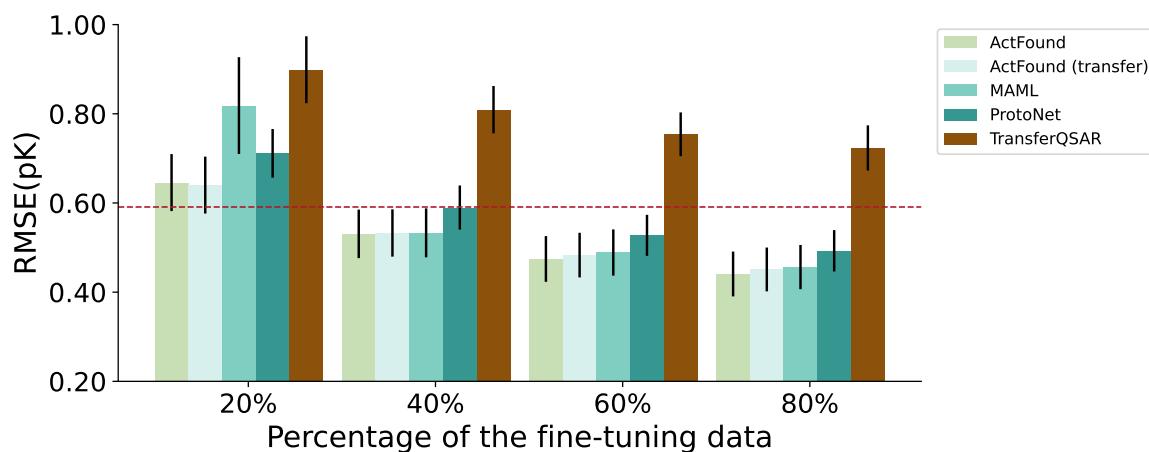
Supplementary Figure 9 Negative Pearson correlations (y -axis) between the loss after the k -th step (x -axis) and the test performance (r^2) after convergence.



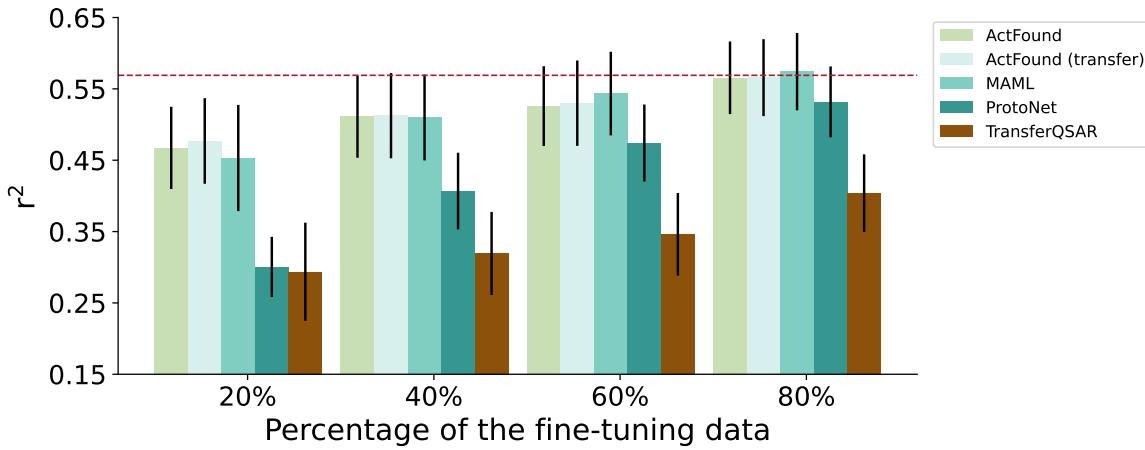
Supplementary Figure 10 Bar plot comparing the 6-shot and 10-shot bioactivity prediction on FEP benchmarks in terms of ρ_P . The result of PBCNet is collected from its original paper.¹⁹ The red dashed line represents the computational results of FEP+(OPLS4). The Thrombin assay is ignored in the 10-shot test as it only contains 11 compounds.



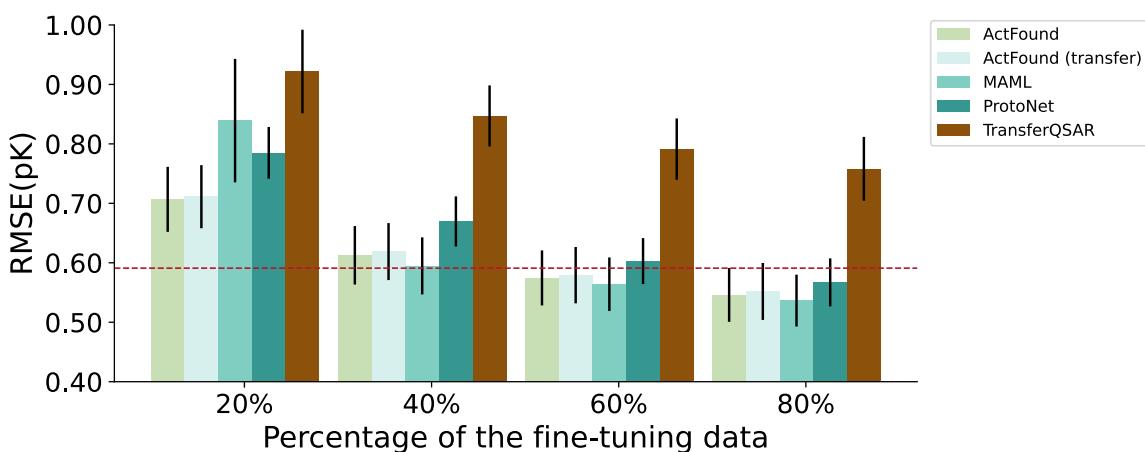
Supplementary Figure 11 Bar plot comparing the bioactivity prediction on FEP benchmarks in terms of r^2 when 20%, 40%, 60%, 80% of the experimental bioactivity is used for fine-tuning. All models are trained on BindingDB. The red dashed line represents the computational results of FEP+(OPLS4).



Supplementary Figure 12 Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of RMSE when 20%, 40%, 60%, 80% of the experimental bioactivity is used for fine-tuning. All models are trained on BindingDB. The red dashed line represents the computational results of FEP+(OPLS4).



Supplementary Figure 13 Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of r^2 when the FEP+(OPLS4) calculation results are used for 20%, 40%, 60%, 80% of the fine-tuning set. All models are trained on BindingDB. The red dashed line represents the computational results of FEP+(OPLS4).



Supplementary Figure 14 Bar plots comparing the bioactivity prediction on FEP benchmarks in terms of RMSE when the FEP+(OPLS4) calculation results are used for 20%, 40%, 60%, 80% of the fine-tuning set. All models are trained on BindingDB. The red dashed line represents the computational results of FEP+(OPLS4).