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Abstract 
 

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function, 

leading to potential pathological consequences. The ability to discern between benign and 

pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the 

limitations in experimental examination of these variants, AlphaMissense has emerged as a 

promising predictor of the pathogenicity of single nucleotide polymorphism variants. In our study, 

we assessed the efficacy of AlphaMissense across several protein groups, such as mitochondrial, 

housekeeping, transmembrane proteins, and specific proteins like CFTR, using ClinVar data for 

validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding 

performance, with MCC scores predominantly between 0.6 and 0.74. We observed low 

performance on the CFTR and disordered, membrane-interacting MemMoRF datasets. However, 

an enhanced performance with CFTR was shown when benchmarked against the CFTR2 

database. Our results also emphasize that quality of AlphaFold's predictions can seriously 

influence AlphaMissense predictions. Most importantly, AlphaMissense's consistent capability in 

predicting pathogenicity across diverse protein groups, spanning both transmembrane and 

soluble domains was found. Moreover, the prediction of likely-pathogenic labels for IBS and CFTR 

coupling helix residues emphasizes AlphaMissense's potential as a tool for pinpointing 

functionally significant sites. Additionally, to make AlphaMissense predictions more accessible, 

we have introduced a user-friendly web resource (https://alphamissense.hegelab.org) to enhance 

the utility of this valuable tool. Our insights into AlphaMissense's capability, along with this online 

resource, underscore its potential to significantly aid both research and clinical applications. 
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Introduction 
 

In both the medical field and the broader realm of biology, understanding the pathogenicity of 

mutations holds high significance (1,2). Pathogenic mutations disrupt the normal function of 

genes, leading to multiple diseases and medical conditions. From the early onset of genetic 

disorders in infants to the development of complex diseases in adults, the transformative power 

of a single nucleotide change can be profound. Discerning between benign and pathogenic 

mutations can influence diagnostic accuracy, guide therapeutic interventions, and inform 

prognosis (3). Therefore, reliable tools and methodologies to predict and understand mutation 

impact are essential. 

Prior to the advent of more advanced genetic analytical tools, several algorithms emerged 

as standard bearers in predicting the potential impact of mutations, such as PROVEAN, 

PolyPhen-2, and SIFT. PROVEAN (Protein Variation Effect Analyzer) offers predictions based on 

the alignment of homologous protein sequences. Meanwhile, PolyPhen-2 (Polymorphism 

Phenotyping v2) employs a combination of sequence and structural information to classify 

variants as benign or probably damaging (4). SIFT (Sorting Intolerant From Tolerant) operates by 

considering the degree of conservation of amino acid residues in sequence alignments derived 

from closely related sequences to predict whether an amino acid substitution affects protein 

function (5). While these tools have undeniably advanced our understanding of mutation 

pathogenicity, they also underscore the complexity of the task and highlight the need for 

continuous refinement in the face of rapidly accumulating genomic data. Newer tools for 

evaluating the pathogenicity of missense mutations evolved. MVP (Missense Variant 

Pathogenicity prediction) has gained attention for its sophisticated integration of multiple features 

related to genetic variation (6). MetaSVM is an ensemble method that merges the outputs of 

various tools using support vector machines to consolidate pathogenicity prediction (7). M-CAP 

(Mendelian Clinically Applicable Pathogenicity) stands out for its high specificity in distinguishing 

disease-associated variants from neutral ones (8). VESPA, the Variant Effect Scoring Prediction 

Algorithm, is based on embeddings of a protein language model, which captures nuanced 

relationships between amino acid residues, allowing for a more refined and context-aware 

prediction of variant impacts (9). 

AlphaMissense machine learning, developed recently by DeepMind, can predict the 

pathogenicity of missense variants and stands at the frontier of missense variant pathogenicity 

prediction (10). Importantly, it leverages the structural prediction capabilities of AlphaFold (11) to 

analyze these variants. To potentially enhance the precision of missense variant pathogenicity 
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insights, AlphaMissense evolved the field by merging sophisticated machine learning with 

structural biology.  Moreover, AlphaMissense aims to tackle the challenge of interpreting the vast 

number of missense variants in the human genome, many of which have unclear clinical 

significance. It holds the promise of revolutionizing the understanding and diagnosis of genetic 

diseases by classifying missense variants as likely benign or likely pathogenic (10). 

While the conception of AlphaMissense represents a commendable stride, defined by its 

intricate design and advanced methodologies, there remain gaps in our understanding of its 

performance on selected groups of proteins or individual proteins. In particular, a pivotal concern 

arises from the specificities of its missense mutation predictions and the limited accessibility to its 

dataset.  Whereas there are initiatives to make the data accessible through R and Python tools 

(12–16), these require a certain level of computational skills, thus significantly restricting the user 

base. Addressing these voids, we assessed AlphaMissense performance on different datasets 

using ClinVar data and developed a web resource that notably facilitates streamlined data 

extraction for research purposes and also offers a visual representation of these predictions within 

a structural context. 

 

 

Methods 
 

Datasets. The primary AlphaMissence dataset, AlphaMissense_hg38.tsv.gz, was sourced from 

Zenodo (https://zenodo.org/records/8208688). This data contains all predictions with all possible 

missense variations in the human proteome. Missense data was retrieved from ClinVar (17) as of 

26th September 2023 and made available at Zenodo (https://doi.org/10.5281/zenodo.10023060). 

The dataset representing the human proteome was obtained from UniProt Release 2023_04, 

specifically from the file UP000005640_9606.dat (reference proteomes from 

https://www.uniprot.org/help/downloads) (18). This dataset proved instrumental in mapping 

Ensemble IDs from ClinVar to UniProt accession numbers since the inherent online ID mapping 

tool at UniProt matched only a very low number of entries. Human protein Structures were 

downloaded from AlphaFoldDB (version 4; https://alphafold.ebi.ac.uk/download#proteomes-

section) (19). Mitochondrial Protein Data was procured from MitoCharta 

(https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-

proteins-and-pathways) (20). The boundaries of membrane regions in transmembrane proteins 

were sourced from the Human Transmembrane Proteome (HTP; https://htp.unitmp.org) and 

filtered to include only entries boasting a quality score greater than 85 to maintain the integrity 
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and accuracy of our analyses (21). Entries omitted from the TM analysis were not incorporated 

into the dataset encompassing soluble or membrane-associated proteins. However, this criterion 

resulted in a sparse representation of high-quality predictions for ABC proteins. Therefore, we 

supplemented the data with TM boundaries from our proprietary ABCM2 database 

(http://abcm2.hegelab.org) (22,23). 

 

Analysis. All data analyses were carried out using Python-based tools to ensure flexibility and 

scalability. The core dataset of AlphaMissense is housed within a Postgresql database 

(https://www.postgresql.org), a robust and efficient system suitable for handling extensive 

datasets. To facilitate a lightweight and seamless interaction with the stored data, we employed 

the SQLalchemy library (24) renowned for its capability to provide a high-level, Pythonic interface 

to relational databases. 

Matplotlib was used for generating plots that delineate various aspects of the data (25). 

Structural visualization of proteins was done using PyMOL (version 2.4, Schrödinger, LLC.), a 

molecular graphics system with an embedded Python interpreter. To bridge the predictions of 

AlphaMissense with these structures, MDAnalysis was employed (26). This Python toolkit allowed 

us to incorporate the AlphaMissense scores directly into the PDB files, specifically inserting them 

into both the occupancy and B-factor columns. 

 

Web application. We incorporated robust technologies tailored for optimal performance and 

interactivity to deliver a seamless, responsive, and user-friendly experience for users accessing 

our web resource.  At the heart of our web application lies FastAPI (https://fastapi.tiangolo.com), 

a high-performance web framework for building APIs with Python. For rendering dynamic content 

on the front end, we employed Jinja2, offering the flexibility to inject real-time data into our HTML 

templates, facilitating a dynamic user interface. The visual presentation and interactivity of the 

web resource are bolstered by Bootstrap 5 to bring enhanced responsiveness, aesthetic 

components, and functionality. In sync with our data analysis stack, the web resource continues 

to leverage Postgresql for data storage. To render intricate molecular structures directly within the 

browser, we integrated PDBe-molstar (27). This state-of-the-art WebGL component ensures high-

quality, interactive 3D visualizations, allowing users to engage deeply with the structural context 

of the AlphaMissense predictions. 
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Results and Discussion 
 

Performance of AlphaMissense across diverse protein groups in relation to ClinVar data. The 

performance of AlphaMissense may exhibit variability across different protein types, necessitating 

careful scrutiny when analyzing target proteins. We evaluated AlphaMissense's efficiency across 

a range of protein groups, choosing ClinVar as our benchmark. While ClinVar is a valuable 

resource, it has its shortcomings. For instance, it may disproportionately represent genes under 

intensive study while underrepresenting highly pathogenic mutations due to the fact that 

individuals harboring them might not survive to birth. For our analysis, we juxtaposed all benign 

and pathogenic missense mutations rated with at least one star in ClinVar against AlphaMissense 

predictions for proteins in our datasets. Only genes with corresponding ClinVar entries were 

considered. Subsequently, we derived precision, recall, F1 score, aucROC, and Matthew's 

Correlation Coefficient (MCC) (Table 1). In general, the calculated statistical measures were high 

for all of the groups studied. Most importantly, MCC exceeded 0.6 for all but two groups, with low 

values possibly stemming from sparse input data for MemMoRFs and compromised ClinVar data 

quality, especially for CFTR.  

We also determined the frequency of likely benign and pathogenic mutations in ClinVar 

relative to protein length (Table 1). Our initial analysis centered on mitochondrial proteins of 

bacterial origin. Given the unique sequence attributes of these proteins, prediction biases were 

anticipated. Intriguingly, the pathogenic variation frequency for these proteins was higher than 

that of the entire human protein ensemble. The important cellular function of these proteins in 

energy balance might hint their role as housekeeping genes. Drawing from a specific database 

(https://housekeeping.unicamp.br) (28), we cross-referenced 1,011 housekeeping genes with 299 

mitochondrial genes from our collection and only a modest overlap of 98 genes was observed. 

Interestingly, the anticipated elevation in pathogenic mutation frequency was as evident in the 

housekeeping gene dataset as expected. 

We also investigated membrane-interacting residues. One dataset included interfacial 

binding site (IBS) residues (29) while the other contained membrane molecular recognition 

features (MemMoRFs; lipid-interacting disordered regions) (30). For IBS residues, pathogenic 

mutations were approximately twice as frequent as benign ones (0.760 vs. 0.340), likely reflecting 

the functional significance of these residues. Similar trends were evident for the MemMoRF set, 

although it's crucial to recognize the limited sample size for this category that might explain the 

diminished MCC when comparing ClinVar and AlphaMissense outcomes. Moreover, the intrinsic 
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disorder and low sequence conservation of these regions might also influence AlphaMissense's 

predictive power on these proteins (10). 

Mutation frequencies and AlphaMissense efficiency on transmembrane (TM) proteins 

were also assessed. We segregated residues into TM and non-TM subsets using the Human 

Transmembrane Proteome database (21). Counterintuitively, AlphaMissense performed better on 

TM regions, despite their hydrophobicity potentially reducing evolutionary insights from sequence 

alignments. However, the spatial constraints of transmembrane domains lacking intrinsically 

disordered regions might boost the AlphaFold-based AlphaMissense predictions (31). 

Remarkably, pathogenic mutations were more prevalent in TM domains than benign ones (Table 

1). 

We also focused on specific membrane protein subsets. While a surge in pathogenic 

mutations for GPCRs in ClinVar was anticipated, this was not observed. In contrast, ABC proteins 

manifested elevated pathogenic mutation frequencies in the ClinVar database. Such disparities 

might be the result of the disease linkage of specific protein classes or research biases. 

Importantly, type and quality of data can profoundly impact these types of analyses. For instance, 

when juxtaposing AlphaMissense's predictions against ClinVar data for the CFTR/ABCC7 protein, 

benign mutations were infrequent, whereas pathogenic mutations predominated. The MCC for 

CFTR ClinVar/AlphaMissesnse comparison was low (0.478).  

Finally, the potential source of low MCC values were investigated. In the case of CFTR, 

we tested AlphaMissense predictions against a gold standard CFTR mutation database, CFTR2 

(The Clinical and Functional TRanslation of CFTR (CFTR2); available at http://cftr2.org). The 

CFTR2 database exhibited benign mutation frequencies comparable to other groups but a marked 

increase in pathogenic mutations. The calculated MCC with this benchmark set was one of the 

highest (0.725) compared to any of the other protein groups. We assumed that the very low MCC 

for MemMoRF groups may have caused by the high prevalence of disordered residues in these 

proteins. Because of the small size of this dataset we tested this possibility on soluble proteins, 

by excluding those residues from the calculations, which residues exhibit a pLDDT score lower 

than 50 in AlphaFold structures as a proxy for intrinsically disordered regions (32). A small 

increase was observed for PPV, TPR, and F1, but not for rocAUC and MCC values (Table 1). 

Therefore, we assumed that low results of proteins with MemMoRF may have arisen from the 

AlphaFold’s capabilities for predicting their structures, since they involve several single-pass, 

bitopic transmembrane proteins. We also indirectly investigated this possibility, and used a 

transmembrane protein set with failed AlphaFold predictions (33), which group of proteins (low-

AF, Table 1) resulted also very low MCC scores. Interestingly, excluding residues with a pLDDT 
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score lower than 50 increased the TPR, F1, and MCC scores. The latter score for this set became 

0.573. 

 

Table 1: AlphaMissense performance on proteins sets, benchmarked with ClinVar 

 
1 Number of proteins with associated ClinVar entries. 
2 Number of ClinVar mutations with at least one star, for the given set of proteins. 
3 MITO: mitochondrial, HK: housekeeping, SOL: soluble, IBS: interfacial binding site, HTP85: Proteins in the Human 
Transmembrane Proteome with at least a confidence score of 85, TM: transmembrane region only, lowAF: low quality 
AlphaFold structures, -pLDDT50: sets without residues with a pLDDT score lower than 50. 
4 PPV: positive predictive value, TPR: true positive rate, aucROC:  Area Under the Receiver Operating Characteristic 
Curve, MCC: Matthews's correlation coefficient. 
5 The number of benign and pathogenic mutations from ClinVar (CV) data and from AlphaMissense (AM) predictions 
was normalized to the number of amino acids (summed length of proteins) for each protein set. 
 

Variability in AlphaMissense predictions across different groups of proteins. The observed 

differences in True Positive Rate (TPR) and F1 scores implied that the distribution of benign and 

pathogenic mutations is not uniform across protein groups. To gain a deeper insight and 

understand AlphaMissense’s predictive properties, we investigated the frequency and distribution 
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of its predictions across various protein categories (Table 1). Typically, benign mutations were 

more frequent, with values hovering between 3 to 3.5, as opposed to pathogenic mutations, which 

ranged from approx. 1.5 to 1.8. However, certain intriguing trends emerged. For instance, 

housekeeping genes showcased slightly reduced benign and elevated pathogenic mutation 

frequencies. Mitochondrial proteins leaned towards a higher pathogenic frequency. A distinct 

trend was observed for the IBS dataset encompassing only functional sites containing IBS, their 

benign mutation frequency was highly decreased, while pathogenic mutation frequency was 

increased. A similar pattern was evident for transmembrane regions of transmembrane proteins. 

Given that AlphaMissense predictions cover all possible missense mutations, not biased by 

human issues, it is reasonable to deduce that only about 30-35% of the possible human missense 

mutations are pathogenic. This general trend was also mirrored in the mutation frequencies 

observed in the ClinVar data for certain protein categories (Table 1). 

We next examined whether the reverse mutations demonstrated similar average 

AlphaMissense scores. For each variation, we calculated the mean scores and paired them with 

their reverse counterpart for visualization. We highlighted variation pairs that showed a difference 

of at least 0.2 in their average scores (Fig. 1a). The pathogenicity labels of three pairs are changed 

from pathogenic to benign (highlighted by asterisks). The contrasting mean values of the Cys/Ser 

mutation, categorized as likely-pathogenic, and the Ser/Cys, which is deemed likely-benign, can 

be rationalized based on amino acid properties and structural implications. Cysteine plays a 

pivotal structural role, particularly in forming disulfide bridges. In a simplified form, this makes the 

replacement of Serine with Cysteine more feasible than the other way around, as Serine cannot 

replicate Cysteine's capability in forming disulfide bridges. Accordingly, Cys/Ser pathogenic 

mutation frequency (0.011) is 5.5 times higher than Ser/Cys pathogenic labels (0.002) in the 

ClinVar dataset. 

We also analyzed how the mean scores of all variations correlated with the symmetric 

BLOSUM62 matrix, a representation derived from amino acid substitution frequencies based on 

sequence alignments. A noticeable correlation emerged: variations with lower BLOSUM62 scores 

tended to have higher AlphaMissense scores (correlation coefficient: -0.755, p=5.13×10-15, Fig. 

2b). Most of the average scores for less favorable substitutions fell below the likely-pathogenic 

threshold set by AlphaMissense. This trend may arise from the higher ratio of variations predicted 

as likely-benign. Notably, the averages for both Cys/Ser and Ser/Cys variations, which have a 

BLOSUM62 substitution score of -1, lie slightly below 0.34, placing them in the likely-benign 

category. This observation also applies to the Pro/Thr pair (Fig. 2b). In contrast, the Cys/Trp pair, 

with a substitution score of -2, recorded the highest AlphaMissense score of 0.746. Substitutions 
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with a score of -4 (Cys/Glu, Trp/Pro, Trp/Asn, Trp/Asp, and Phe/Pro) are not present, since they 

cannot be rationalized with a single nucleotide change. 

 

 
Figure 1: (a) Mean AlphaMissense scores for variations, which display a minimum score 

difference of 0.2 when compared to the reverse amino acid change. Asterisks mark those 

changes which get the opposite label (benign/pathogenic) in the case of reverse change. (b) 

Mean AlphaMissence scores for each variation grouped by their BLOSUM62 score. Dashed and 

dashed dotted lines indicate the cutoffs of the ambiguous AlphaMissense predictions. Orange line 

was fitted (r=-0.755, p=5.13×10-15). 

 

Exploring the AlphaMissense prediction of the ABC transmembrane protein, CFTR. We assessed 

the AlphaMissense predictions for the CFTR protein, which attracted substantial attention within 

the scientific community, primarily because of its association with cystic fibrosis (34). For our 

study, we relied on the CFTR2 database to annotate mutations. Impressively, out of the 102 

pathogenic and 20 benign mutations listed in the CFTR2 database, AlphaMissense mispredicted 

only four pathogenic (I601F, A613T, I1234V, and V1240G with scores 0.49, 0.39, 0.08, and 

0.5637) and four benign (F508C, L997F, T1053I, and R1162L with scores 0.87, 0.74, 0.35, and 

0.89) mutations to the opposite or ambiguous category. Performance metrics for AlphaMissence 

on CFTR are listed in Table 1 and the particular scores of the 102 values are visualized in Fig. 

2a. 

A spatial representation of these mutations on the CFTR structure reveals some intriguing 

patterns (Fig. 2b). The ATP binding sites of CFTR, especially, warrant attention. The formation of 

an ATP binding site is an intricate interplay between one Walker A motif from a Nucleotide Binding 

Domain (NBD) and a signature motif from the opposite NBD. In comparison to the functional site-
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2, both the count of CFTR2-sourced mutations and the AlphaMissense scores were observed to 

be lesser at the site1 (0.584 versus 0.493 and 15 versus 3, respectively; Fig. 2c,d), which is 

degenerate, rendering it incapable of ATP hydrolysis (35). Moreover, the structural landscape 

around the F508 residue provides more insight. The CL4 coupling helix, which interfaces with the 

F508 residue, presents a greater number of both predicted and CFTR2-based mutations in 

comparison to CL2 (as visualized in Fig. 2e,f), which is a structural counterpart of CL4. No CFTR2 

mutations are present in other than CL4 coupling helix, CH4. CH1, 2, 3, and 4 mean 

AlphaMissense scores are 0.336, 0.411, 0.136, and 0.648, respectively. Interestingly, CL1 was 

found to be devoid of CFTR2 mutations, but in vitro experiments in this region revealed that the 

R170G mutation, which has a likely-benign AlphaMissense label, impairs the domain-domain 

assembly and would be pathogenic if harbored by an individual (36). 

The F508 residue is not only an epicenter for deleterious mutations but has also been 

extensively researched. While CFTR2 lists no additional pathogenic mutations for this residue, a 

range of experimental works have delved into substituting the F with all the other 19 possible 

amino acids to discern the impacts on the functional expression of CFTR (37). Some of these 

substitutions, including F508I, F508L, F508V, F508C, F508S, and F508Y, are featured in the 

AlphaMissense dataset. Uniformly, they were all predicted as likely pathogenic. Nevertheless, 

apart from the F508C variant, experimental data suggests that the F508V mutation might also be 

functionally permissive (37), deviating from AlphaMissense's likely-pathogenic prediction. Two 

other variants, labeled as “unknown” or of “varying significance” in the CFTR2 database, show 
discrepancies between in vitro experiments and AlphaMissense predictions. Specifically, the 

F1052V mutation, predicted by AlphaMissense as likely-pathogenic, demonstrates a functional 

expression, with 57% mature protein form and 60% functionality relative to the wild type (38). 

Conversely, the S912L variant, predicted as benign, appears to be a potential false negative AM 

prediction. This is based on its substantially reduced function, at 16% of the wild type, despite an 

expression level nearly on par at 92% relative to the wild type (38). 
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Figure 2: Distribution of AlphaMissense scores for CFTR. (a) Histograms of AlphaMissense 

scores for benign (n=20) and pathogenic (n=102) mutations from the CFTR2 database. (b) 

AlphaFold structure of CFTR colored by mean AlphaMissense scores. Blue: 0-0.340, gray: 0.340-

0.564, pink: 0.564-0.780, red: 0.78-1. Spheres represent pathogenic mutations from CFTR2. (c, 
d) The degenerate, non-catalytic ATP-binding Site-1 and catalytic Site-2. Residues 461-472 and 

1346-1362 were highlighted for Site-1 structural elements and residues 548-564 and 1247-1258 
for Site-2. (e, f) Pathogenic mutations and mean scores at the NBD/TMD interfaces. TMD: 

transmembrane domains, ICL: intracellular loops, NBD: nucleotide binding domains, CL: 

cytoplasmic loops, sticks: F508 and R170. Coloring scheme of all structures is the same. 
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A web resource to ease access and mutational hot spot detection. Our web resource was 

developed to offer users a simple and intuitive interface to delve deep into the AlphaMissense 

data. On the search page, the users access the flexibility of using a wide range of identifiers to 

query proteins. Whether it is UniProt ACC, Entry name, Gene name, or Ensembl transcript ID, 

the system can recognize and process them seamlessly. To augment the search precision, a set 

of filters has been incorporated. Users can customize their search based on predicted 

pathogenicity scores or narrow down the results using specific labels like 'likely benign', 'likely 

pathogenic', or 'ambiguous'. 

Transitioning to the results page, users are greeted with tables, one for each matched 

protein. These tables, apart from being informative, are interactive. Each table header is clickable, 

giving users the autonomy to show and hide the contents of individual tables on-the-fly. The data 

within them provides comprehensive details on variants, showcasing them in a HGVS format and 

supplementing them with the respective AlphaMissense score and classification. A 'Download' 

option is available for those inclined towards a deeper analysis or external processing of the 

retrieved data. Clicking on instantly prepares and presents a zipped file named 

"AlphaMissenseSearch.zip" to the user. Inside, a tab-separated values file contains a set of 

information columns ranging from UniProt ACC to pathogenicity class, ready to be ingested by 

software like Excel. 

The Hotspot page is where AlphaMissence meets structural biology (Fig. 3). By default, 

the structure and pathogenicity table for CFTR are displayed, but users have the freedom to input 

another human protein using one of the supported identifier types. Here, the PDBe-Mol* viewer 

(39), based on the Mol* framework (40), presents the AlphaFold-predicted structure of the protein 

in exquisite detail. The displayed structure is fully interactive; users can rotate, highlight, and click 

on various elements. Additionally, pathogenicity scores are embedded within the occupancy 

column of the PDB file, so it is easier to ascertain the pathogenic potential of specific residues 

(the displayed occupancy values by the viewer are AlphaMissence scores). This table and 

structure can also be downloaded for analysis and structural visualization on desktops. We 

provide a PyMOL plugin for coloring the downloaded structures based on the B-factor column. 
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Figure 3: The view of the Hotspot page. Left: PDBe-mol* structure viewer, right: table listing 

mutations and mean AlphaMissense scores for each residue. 

 

 

Conclusion 
 

We embarked on an in-depth analysis of AlphaMissense predictions, ranging from broad protein 

groups down to the individual CFTR protein. Our objective was to gain insights that would aid the 

interpretation of predictions for specific target proteins. For benchmarking purposes, we turned to 

ClinVar, given its substantial repository of curated and reviewed entries. Remarkably, 

AlphaMissense exhibited consistent performance across various protein categories, evidenced 

by an MCC value exceeding 0.6 (Table 1). Exceptions arose in scenarios where either the volume 

of benchmark data was sparse or when the quality of the data was lower. These cases included 

MemMoRFs and ClinVar's CFTR data. Our results indicate AlphaMissense performing well when 

comparing to the CFTR2 database that is in contrast with the study of McDonald et al. (41). The 

differences likely arise from our exclusion of CFTR2 entries with unknown consequences and 

ambiguous AlphaMissense predictions. We also emphasize that while AlphaFold's pLDDT scores 
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can provide insights into AlphaMissense performance for specific proteins or protein groups, 

assessing the rationality of their structures might further indicate the reliability of lower 

AlphaMissense predictions (lowAF in Table 1). 

Both within ClinVar and the AlphaMissense predictions, benign mutations typically 

outnumbered their pathogenic counterparts by a factor of approximately two, in several protein 

groups. Intriguing deviations from this trend were noted in groups such as mitochondrial proteins, 

housekeeping genes, transmembrane regions of membrane proteins, and IBS residues that 

pattern aligns with expectations. The IBS dataset, with its notably high pathogenic frequency, 

exclusively contains functional positions (Table 1). The pathogenicity of CFTR coupling helices 

were also predicted with remarkable congruency with CFTR2 data (Fig. 2e,f). These observations 

accentuate the potential of AlphaMissense predictions as a valuable tool for aiding the 

identification of functionally crucial sites. To facilitate hotspot detection and access to 

AlphaMissense data, we established a dedicated web resource available at 

https://alphamissense.hegelab.org, which also provides structure files with mapped 

AlphaMissense scores for visualization, e.g. in PyMOL with our coloring plugin coloram.py, for 

facilitating local analysis. These enhancements crucially aid in mutational hotspot detection, 

paving the way for more detailed and user-friendly analyses. 
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