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Abstract

Single amino acid substitutions can profoundly affect protein folding, dynamics, and function,
leading to potential pathological consequences. The ability to discern between benign and
pathogenic substitutions is pivotal for therapeutic interventions and research directions. Given the
limitations in experimental examination of these variants, AlphaMissense has emerged as a
promising predictor of the pathogenicity of single nucleotide polymorphism variants. In our study,
we assessed the efficacy of AlphaMissense across several protein groups, such as mitochondrial,
housekeeping, transmembrane proteins, and specific proteins like CFTR, using ClinVar data for
validation. Our comprehensive evaluation showed that AlphaMissense delivers outstanding
performance, with MCC scores predominantly between 0.6 and 0.74. We observed low
performance on the CFTR and disordered, membrane-interacting MemMoRF datasets. However,
an enhanced performance with CFTR was shown when benchmarked against the CFTR2
database. Our results also emphasize that quality of AlphaFold's predictions can seriously
influence AlphaMissense predictions. Most importantly, AlphaMissense's consistent capability in
predicting pathogenicity across diverse protein groups, spanning both transmembrane and
soluble domains was found. Moreover, the prediction of likely-pathogenic labels for IBS and CFTR
coupling helix residues emphasizes AlphaMissense's potential as a tool for pinpointing
functionally significant sites. Additionally, to make AlphaMissense predictions more accessible,
we have introduced a user-friendly web resource (https://alphamissense.hegelab.org) to enhance
the utility of this valuable tool. Our insights into AlphaMissense's capability, along with this online
resource, underscore its potential to significantly aid both research and clinical applications.
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Introduction

In both the medical field and the broader realm of biology, understanding the pathogenicity of
mutations holds high significance (1,2). Pathogenic mutations disrupt the normal function of
genes, leading to multiple diseases and medical conditions. From the early onset of genetic
disorders in infants to the development of complex diseases in adults, the transformative power
of a single nucleotide change can be profound. Discerning between benign and pathogenic
mutations can influence diagnostic accuracy, guide therapeutic interventions, and inform
prognosis (3). Therefore, reliable tools and methodologies to predict and understand mutation
impact are essential.

Prior to the advent of more advanced genetic analytical tools, several algorithms emerged
as standard bearers in predicting the potential impact of mutations, such as PROVEAN,
PolyPhen-2, and SIFT. PROVEAN (Protein Variation Effect Analyzer) offers predictions based on
the alignment of homologous protein sequences. Meanwhile, PolyPhen-2 (Polymorphism
Phenotyping v2) employs a combination of sequence and structural information to classify
variants as benign or probably damaging (4). SIFT (Sorting Intolerant From Tolerant) operates by
considering the degree of conservation of amino acid residues in sequence alignments derived
from closely related sequences to predict whether an amino acid substitution affects protein
function (5). While these tools have undeniably advanced our understanding of mutation
pathogenicity, they also underscore the complexity of the task and highlight the need for
continuous refinement in the face of rapidly accumulating genomic data. Newer tools for
evaluating the pathogenicity of missense mutations evolved. MVP (Missense Variant
Pathogenicity prediction) has gained attention for its sophisticated integration of multiple features
related to genetic variation (6). MetaSVM is an ensemble method that merges the outputs of
various tools using support vector machines to consolidate pathogenicity prediction (7). M-CAP
(Mendelian Clinically Applicable Pathogenicity) stands out for its high specificity in distinguishing
disease-associated variants from neutral ones (8). VESPA, the Variant Effect Scoring Prediction
Algorithm, is based on embeddings of a protein language model, which captures nuanced
relationships between amino acid residues, allowing for a more refined and context-aware
prediction of variant impacts (9).

AlphaMissense machine learning, developed recently by DeepMind, can predict the
pathogenicity of missense variants and stands at the frontier of missense variant pathogenicity
prediction (10). Importantly, it leverages the structural prediction capabilities of AlphaFold (11) to
analyze these variants. To potentially enhance the precision of missense variant pathogenicity
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insights, AlphaMissense evolved the field by merging sophisticated machine learning with
structural biology. Moreover, AlphaMissense aims to tackle the challenge of interpreting the vast
number of missense variants in the human genome, many of which have unclear clinical
significance. It holds the promise of revolutionizing the understanding and diagnosis of genetic
diseases by classifying missense variants as likely benign or likely pathogenic (10).

While the conception of AlphaMissense represents a commendable stride, defined by its
intricate design and advanced methodologies, there remain gaps in our understanding of its
performance on selected groups of proteins or individual proteins. In particular, a pivotal concern
arises from the specificities of its missense mutation predictions and the limited accessibility to its
dataset. Whereas there are initiatives to make the data accessible through R and Python tools
(12-16), these require a certain level of computational skills, thus significantly restricting the user
base. Addressing these voids, we assessed AlphaMissense performance on different datasets
using ClinVar data and developed a web resource that notably facilitates streamlined data
extraction for research purposes and also offers a visual representation of these predictions within

a structural context.

Methods

Datasets. The primary AlphaMissence dataset, AlphaMissense_hg38.tsv.gz, was sourced from
Zenodo (https://zenodo.org/records/8208688). This data contains all predictions with all possible
missense variations in the human proteome. Missense data was retrieved from ClinVar (17) as of
26" September 2023 and made available at Zenodo (https://doi.org/10.5281/zenodo.10023060).
The dataset representing the human proteome was obtained from UniProt Release 2023 04,
specifically from the file UPO000005640 9606.dat (reference proteomes from
https://www.uniprot.org/help/downloads) (18). This dataset proved instrumental in mapping
Ensemble IDs from ClinVar to UniProt accession numbers since the inherent online ID mapping
tool at UniProt matched only a very low number of entries. Human protein Structures were
downloaded from AlphaFoldDB (version 4; https://alphafold.ebi.ac.uk/download#proteomes-
section) (19). Mitochondrial Protein Data was procured from  MitoCharta
(https://www.broadinstitute.org/mitocarta/mitocarta30-inventory-mammalian-mitochondrial-

proteins-and-pathways) (20). The boundaries of membrane regions in transmembrane proteins
were sourced from the Human Transmembrane Proteome (HTP; https://htp.unitmp.org) and
filtered to include only entries boasting a quality score greater than 85 to maintain the integrity
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and accuracy of our analyses (21). Entries omitted from the TM analysis were not incorporated
into the dataset encompassing soluble or membrane-associated proteins. However, this criterion
resulted in a sparse representation of high-quality predictions for ABC proteins. Therefore, we
supplemented the data with TM boundaries from our proprietary ABCM2 database
(http://abcm?2.hegelab.org) (22,23).

Analysis. All data analyses were carried out using Python-based tools to ensure flexibility and
scalability. The core dataset of AlphaMissense is housed within a Postgresqgl database
(https://www.postgresql.org), a robust and efficient system suitable for handling extensive
datasets. To facilitate a lightweight and seamless interaction with the stored data, we employed
the SQLalchemy library (24) renowned for its capability to provide a high-level, Pythonic interface
to relational databases.

Matplotlib was used for generating plots that delineate various aspects of the data (25).
Structural visualization of proteins was done using PyMOL (version 2.4, Schrédinger, LLC.), a
molecular graphics system with an embedded Python interpreter. To bridge the predictions of
AlphaMissense with these structures, MDAnalysis was employed (26). This Python toolkit allowed
us to incorporate the AlphaMissense scores directly into the PDB files, specifically inserting them

into both the occupancy and B-factor columns.

Web application. We incorporated robust technologies tailored for optimal performance and

interactivity to deliver a seamless, responsive, and user-friendly experience for users accessing
our web resource. At the heart of our web application lies FastAPI (https://fastapi.tiangolo.com),
a high-performance web framework for building APIs with Python. For rendering dynamic content
on the front end, we employed Jinja2, offering the flexibility to inject real-time data into our HTML
templates, facilitating a dynamic user interface. The visual presentation and interactivity of the
web resource are bolstered by Bootstrap 5 to bring enhanced responsiveness, aesthetic
components, and functionality. In sync with our data analysis stack, the web resource continues
to leverage Postgresql for data storage. To render intricate molecular structures directly within the
browser, we integrated PDBe-molstar (27). This state-of-the-art WebGL component ensures high-
quality, interactive 3D visualizations, allowing users to engage deeply with the structural context

of the AlphaMissense predictions.
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Results and Discussion

Performance of AlphaMissense across diverse protein groups in relation to ClinVar data. The

performance of AlphaMissense may exhibit variability across different protein types, necessitating
careful scrutiny when analyzing target proteins. We evaluated AlphaMissense's efficiency across
a range of protein groups, choosing ClinVar as our benchmark. While ClinVar is a valuable
resource, it has its shortcomings. For instance, it may disproportionately represent genes under
intensive study while underrepresenting highly pathogenic mutations due to the fact that
individuals harboring them might not survive to birth. For our analysis, we juxtaposed all benign
and pathogenic missense mutations rated with at least one star in ClinVar against AlphaMissense
predictions for proteins in our datasets. Only genes with corresponding ClinVar entries were
considered. Subsequently, we derived precision, recall, F1 score, aucROC, and Matthew's
Correlation Coefficient (MCC) (Table 1). In general, the calculated statistical measures were high
for all of the groups studied. Most importantly, MCC exceeded 0.6 for all but two groups, with low
values possibly stemming from sparse input data for MemMoRFs and compromised ClinVar data
quality, especially for CFTR.

We also determined the frequency of likely benign and pathogenic mutations in ClinVar
relative to protein length (Table 1). Our initial analysis centered on mitochondrial proteins of
bacterial origin. Given the unique sequence attributes of these proteins, prediction biases were
anticipated. Intriguingly, the pathogenic variation frequency for these proteins was higher than
that of the entire human protein ensemble. The important cellular function of these proteins in
energy balance might hint their role as housekeeping genes. Drawing from a specific database
(https://housekeeping.unicamp.br) (28), we cross-referenced 1,011 housekeeping genes with 299
mitochondrial genes from our collection and only a modest overlap of 98 genes was observed.
Interestingly, the anticipated elevation in pathogenic mutation frequency was as evident in the
housekeeping gene dataset as expected.

We also investigated membrane-interacting residues. One dataset included interfacial
binding site (IBS) residues (29) while the other contained membrane molecular recognition
features (MemMoRFs; lipid-interacting disordered regions) (30). For IBS residues, pathogenic
mutations were approximately twice as frequent as benign ones (0.760 vs. 0.340), likely reflecting
the functional significance of these residues. Similar trends were evident for the MemMoRF set,
although it's crucial to recognize the limited sample size for this category that might explain the

diminished MCC when comparing ClinVar and AlphaMissense outcomes. Moreover, the intrinsic
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disorder and low sequence conservation of these regions might also influence AlphaMissense's
predictive power on these proteins (10).

Mutation frequencies and AlphaMissense efficiency on transmembrane (TM) proteins
were also assessed. We segregated residues into TM and non-TM subsets using the Human
Transmembrane Proteome database (21). Counterintuitively, AlphaMissense performed better on
TM regions, despite their hydrophobicity potentially reducing evolutionary insights from sequence
alignments. However, the spatial constraints of transmembrane domains lacking intrinsically
disordered regions might boost the AlphaFold-based AlphaMissense predictions (31).
Remarkably, pathogenic mutations were more prevalent in TM domains than benign ones (Table
1).

We also focused on specific membrane protein subsets. While a surge in pathogenic
mutations for GPCRs in ClinVar was anticipated, this was not observed. In contrast, ABC proteins
manifested elevated pathogenic mutation frequencies in the ClinVar database. Such disparities
might be the result of the disease linkage of specific protein classes or research biases.
Importantly, type and quality of data can profoundly impact these types of analyses. For instance,
when juxtaposing AlphaMissense's predictions against ClinVar data for the CFTR/ABCCY protein,
benign mutations were infrequent, whereas pathogenic mutations predominated. The MCC for
CFTR ClinVar/AlphaMissesnse comparison was low (0.478).

Finally, the potential source of low MCC values were investigated. In the case of CFTR,
we tested AlphaMissense predictions against a gold standard CFTR mutation database, CFTR2
(The Clinical and Functional TRanslation of CFTR (CFTR2); available at http://cftr2.org). The
CFTR2 database exhibited benign mutation frequencies comparable to other groups but a marked
increase in pathogenic mutations. The calculated MCC with this benchmark set was one of the
highest (0.725) compared to any of the other protein groups. We assumed that the very low MCC
for MemMoRF groups may have caused by the high prevalence of disordered residues in these
proteins. Because of the small size of this dataset we tested this possibility on soluble proteins,
by excluding those residues from the calculations, which residues exhibit a pLDDT score lower
than 50 in AlphaFold structures as a proxy for intrinsically disordered regions (32). A small
increase was observed for PPV, TPR, and F1, but not for rocAUC and MCC values (Table 1).
Therefore, we assumed that low results of proteins with MemMoRF may have arisen from the
AlphaFold’s capabilities for predicting their structures, since they involve several single-pass,
bitopic transmembrane proteins. We also indirectly investigated this possibility, and used a
transmembrane protein set with failed AlphaFold predictions (33), which group of proteins (low-
AF, Table 1) resulted also very low MCC scores. Interestingly, excluding residues with a pLDDT
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score lower than 50 increased the TPR, F1, and MCC scores. The latter score for this set became

0.573.

Table 1: AlphaMissense performance on proteins sets, benchmarked with ClinvVar
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4LL} | 11486 107,681 0829 0776 0802 0870 0.697 0009 0005 3425 1713
MITO | 299 2970 0804 0874 0837 0888 0702 0011 0010 3.085 2039

gk | 1,011 8,329 0.878 0.801 0.838 0.861 0.714 0.008 0.006 2.899 2285
soL | 7,938 73816 0.831 0.746 0.786 0.867  0.686 0.009 0.004 3484 1.755

Bs | 138 55 0.895 0944 0919 0890 0755 0340 0.760 1.800 3.880
MemMoRF | 35 21 0462 1000 0632 0846 0496 0381 0619 2286 2619
Low-AF | 12 327 0.828 0358 0500 0831 0481 0022 0002 2466 1952

HTP8s | 1,653 16,015 0.815 0855 0.834 0.872 0.704 0.009 0.007 3.352 1.762

HTP8S — T™m | 1,653 1,997 0.895 0.900 0.898 0.872 0.745 0453 0.683 2.127 3.045
HTP85 — nonTM | 1,653 14,018 0.799 0845 0822 0870 0.694 0.623 0471 3336 1.881
GPCR | 299 1,696 0.802 0.651 0.719 0.871 0.631 0.009 0.003 3.573 1.647

ABC | %2 1,557 0770 0948 0850 0.882 0.646 0009 0019 3370 1.787
CFTR | 1 207 0.884 1.000 0939 0975 0478 0005 0.134 3289 1.776
CFTR (CFTR2) | | 119 0961 0961 0961 0852 0725 0011 0069 3289 1.776
lowAF | 12 327 0828 0358 0500 0831 0481 0022 0002 2466 1952
lowAF-pLDDTS0 | 12 126 0828 0571 0676 0819 0573 0010 0003 1.843 2595

SOL-pLDDT50 | 7,938 44,045 0832 0.785 0.808 0.843  0.660 0.007 0.005 2.825 2333

" Number of proteins with associated ClinVar entries.

2 Number of ClinVar mutations with at least one star, for the given set of proteins.

3 MITO: mitochondrial, HK: housekeeping, SOL: soluble, IBS: interfacial binding site, HTP85: Proteins in the Human
Transmembrane Proteome with at least a confidence score of 85, TM: transmembrane region only, lowAF: low quality
AlphaFold structures, -pLDDT50: sets without residues with a pLDDT score lower than 50.

4 PPV: positive predictive value, TPR: true positive rate, aucROC: Area Under the Receiver Operating Characteristic
Curve, MCC: Matthews's correlation coefficient.

5 The number of benign and pathogenic mutations from ClinVar (CV) data and from AlphaMissense (AM) predictions
was normalized to the number of amino acids (summed length of proteins) for each protein set.

Variability in AlphaMissense predictions across different groups of proteins. The observed
differences in True Positive Rate (TPR) and F1 scores implied that the distribution of benign and
pathogenic mutations is not uniform across protein groups. To gain a deeper insight and

understand AlphaMissense’s predictive properties, we investigated the frequency and distribution
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of its predictions across various protein categories (Table 1). Typically, benign mutations were
more frequent, with values hovering between 3 to 3.5, as opposed to pathogenic mutations, which
ranged from approx. 1.5 to 1.8. However, certain intriguing trends emerged. For instance,
housekeeping genes showcased slightly reduced benign and elevated pathogenic mutation
frequencies. Mitochondrial proteins leaned towards a higher pathogenic frequency. A distinct
trend was observed for the IBS dataset encompassing only functional sites containing IBS, their
benign mutation frequency was highly decreased, while pathogenic mutation frequency was
increased. A similar pattern was evident for transmembrane regions of transmembrane proteins.
Given that AlphaMissense predictions cover all possible missense mutations, not biased by
human issues, it is reasonable to deduce that only about 30-35% of the possible human missense
mutations are pathogenic. This general trend was also mirrored in the mutation frequencies
observed in the ClinVar data for certain protein categories (Table 1).

We next examined whether the reverse mutations demonstrated similar average
AlphaMissense scores. For each variation, we calculated the mean scores and paired them with
their reverse counterpart for visualization. We highlighted variation pairs that showed a difference
of atleast 0.2 in their average scores (Fig. 1a). The pathogenicity labels of three pairs are changed
from pathogenic to benign (highlighted by asterisks). The contrasting mean values of the Cys/Ser
mutation, categorized as likely-pathogenic, and the Ser/Cys, which is deemed likely-benign, can
be rationalized based on amino acid properties and structural implications. Cysteine plays a
pivotal structural role, particularly in forming disulfide bridges. In a simplified form, this makes the
replacement of Serine with Cysteine more feasible than the other way around, as Serine cannot
replicate Cysteine's capability in forming disulfide bridges. Accordingly, Cys/Ser pathogenic
mutation frequency (0.011) is 5.5 times higher than Ser/Cys pathogenic labels (0.002) in the
ClinVar dataset.

We also analyzed how the mean scores of all variations correlated with the symmetric
BLOSUMG62 matrix, a representation derived from amino acid substitution frequencies based on
sequence alignments. A noticeable correlation emerged: variations with lower BLOSUMG62 scores
tended to have higher AlphaMissense scores (correlation coefficient: -0.755, p=5.13%10-15, Fig.
2b). Most of the average scores for less favorable substitutions fell below the likely-pathogenic
threshold set by AlphaMissense. This trend may arise from the higher ratio of variations predicted
as likely-benign. Notably, the averages for both Cys/Ser and Ser/Cys variations, which have a
BLOSUMG2 substitution score of -1, lie slightly below 0.34, placing them in the likely-benign
category. This observation also applies to the Pro/Thr pair (Fig. 2b). In contrast, the Cys/Trp pair,
with a substitution score of -2, recorded the highest AlphaMissense score of 0.746. Substitutions
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with a score of -4 (Cys/Glu, Trp/Pro, Trp/Asn, Trp/Asp, and Phe/Pro) are not present, since they

cannot be rationalized with a single nucleotide change.
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Figure 1: (a) Mean AlphaMissense scores for variations, which display a minimum score
difference of 0.2 when compared to the reverse amino acid change. Asterisks mark those
changes which get the opposite label (benign/pathogenic) in the case of reverse change. (b)
Mean AlphaMissence scores for each variation grouped by their BLOSUMG62 score. Dashed and
dashed dotted lines indicate the cutoffs of the ambiguous AlphaMissense predictions. Orange line
was fitted (r=-0.755, p=5.13%x10""%).

Exploring the AlphaMissense prediction of the ABC transmembrane protein, CFTR. We assessed

the AlphaMissense predictions for the CFTR protein, which attracted substantial attention within
the scientific community, primarily because of its association with cystic fibrosis (34). For our
study, we relied on the CFTR2 database to annotate mutations. Impressively, out of the 102
pathogenic and 20 benign mutations listed in the CFTR2 database, AlphaMissense mispredicted
only four pathogenic (1601F, A613T, 11234V, and V1240G with scores 0.49, 0.39, 0.08, and
0.5637) and four benign (F508C, L997F, T1053l, and R1162L with scores 0.87, 0.74, 0.35, and
0.89) mutations to the opposite or ambiguous category. Performance metrics for AlphaMissence
on CFTR are listed in Table 1 and the particular scores of the 102 values are visualized in Fig.
2a.

A spatial representation of these mutations on the CFTR structure reveals some intriguing
patterns (Fig. 2b). The ATP binding sites of CFTR, especially, warrant attention. The formation of
an ATP binding site is an intricate interplay between one Walker A motif from a Nucleotide Binding

Domain (NBD) and a signature motif from the opposite NBD. In comparison to the functional site-

10
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2, both the count of CFTR2-sourced mutations and the AlphaMissense scores were observed to
be lesser at the site1 (0.584 versus 0.493 and 15 versus 3, respectively; Fig. 2c,d), which is
degenerate, rendering it incapable of ATP hydrolysis (35). Moreover, the structural landscape
around the F508 residue provides more insight. The CL4 coupling helix, which interfaces with the
F508 residue, presents a greater number of both predicted and CFTR2-based mutations in
comparison to CL2 (as visualized in Fig. 2e,f), which is a structural counterpart of CL4. No CFTR2
mutations are present in other than CL4 coupling helix, CH4. CH1, 2, 3, and 4 mean
AlphaMissense scores are 0.336, 0.411, 0.136, and 0.648, respectively. Interestingly, CL1 was
found to be devoid of CFTR2 mutations, but in vitro experiments in this region revealed that the
R170G mutation, which has a likely-benign AlphaMissense label, impairs the domain-domain
assembly and would be pathogenic if harbored by an individual (36).

The F508 residue is not only an epicenter for deleterious mutations but has also been
extensively researched. While CFTR2 lists no additional pathogenic mutations for this residue, a
range of experimental works have delved into substituting the F with all the other 19 possible
amino acids to discern the impacts on the functional expression of CFTR (37). Some of these
substitutions, including F508I, F508L, F508V, F508C, F508S, and F508Y, are featured in the
AlphaMissense dataset. Uniformly, they were all predicted as likely pathogenic. Nevertheless,
apart from the F508C variant, experimental data suggests that the F508V mutation might also be
functionally permissive (37), deviating from AlphaMissense's likely-pathogenic prediction. Two
other variants, labeled as “unknown” or of “varying significance” in the CFTR2 database, show
discrepancies between in vitro experiments and AlphaMissense predictions. Specifically, the
F1052V mutation, predicted by AlphaMissense as likely-pathogenic, demonstrates a functional
expression, with 57% mature protein form and 60% functionality relative to the wild type (38).
Conversely, the S912L variant, predicted as benign, appears to be a potential false negative AM
prediction. This is based on its substantially reduced function, at 16% of the wild type, despite an

expression level nearly on par at 92% relative to the wild type (38).
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Figure 2: Distribution of AlphaMissense scores for CFTR. (a) Histograms of AlphaMissense
scores for benign (n=20) and pathogenic (n=102) mutations from the CFTR2 database. (b)
AlphaFold structure of CFTR colored by mean AlphaMissense scores. Blue: 0-0.340, gray: 0.340-
0.564, pink: 0.564-0.780, red: 0.78-1. Spheres represent pathogenic mutations from CFTR2. (c,
d) The degenerate, non-catalytic ATP-binding Site-1 and catalytic Site-2. Residues 461-472 and
1346-1362 were highlighted for Site-1 structural elements and residues 548-564 and 1247-1258
for Site-2. (e, f) Pathogenic mutations and mean scores at the NBD/TMD interfaces. TMD:
transmembrane domains, ICL: intracellular loops, NBD: nucleotide binding domains, CL:

cytoplasmic loops, sticks: F508 and R170. Coloring scheme of all structures is the same.
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A web resource to ease access and mutational hot spot detection. Our web resource was

developed to offer users a simple and intuitive interface to delve deep into the AlphaMissense
data. On the search page, the users access the flexibility of using a wide range of identifiers to
query proteins. Whether it is UniProt ACC, Entry name, Gene name, or Ensembl transcript ID,
the system can recognize and process them seamlessly. To augment the search precision, a set
of filters has been incorporated. Users can customize their search based on predicted
pathogenicity scores or narrow down the results using specific labels like 'likely benign', 'likely
pathogenic', or 'ambiguous'.

Transitioning to the results page, users are greeted with tables, one for each matched
protein. These tables, apart from being informative, are interactive. Each table header is clickable,
giving users the autonomy to show and hide the contents of individual tables on-the-fly. The data
within them provides comprehensive details on variants, showcasing them in a HGVS format and
supplementing them with the respective AlphaMissense score and classification. A 'Download'
option is available for those inclined towards a deeper analysis or external processing of the
retrieved data. Clicking on instantly prepares and presents a zipped file named
"AlphaMissenseSearch.zip" to the user. Inside, a tab-separated values file contains a set of
information columns ranging from UniProt ACC to pathogenicity class, ready to be ingested by
software like Excel.

The Hotspot page is where AlphaMissence meets structural biology (Fig. 3). By default,
the structure and pathogenicity table for CFTR are displayed, but users have the freedom to input
another human protein using one of the supported identifier types. Here, the PDBe-Mol* viewer
(39), based on the Mol* framework (40), presents the AlphaFold-predicted structure of the protein
in exquisite detail. The displayed structure is fully interactive; users can rotate, highlight, and click
on various elements. Additionally, pathogenicity scores are embedded within the occupancy
column of the PDB file, so it is easier to ascertain the pathogenic potential of specific residues
(the displayed occupancy values by the viewer are AlphaMissence scores). This table and
structure can also be downloaded for analysis and structural visualization on desktops. We
provide a PyMOL plugin for coloring the downloaded structures based on the B-factor column.
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Figure 3: The view of the Hotspot page. Left: PDBe-mol* structure viewer, right: table listing

mutations and mean AlphaMissense scores for each residue.

Conclusion

We embarked on an in-depth analysis of AlphaMissense predictions, ranging from broad protein
groups down to the individual CFTR protein. Our objective was to gain insights that would aid the
interpretation of predictions for specific target proteins. For benchmarking purposes, we turned to
ClinVar, given its substantial repository of curated and reviewed entries. Remarkably,
AlphaMissense exhibited consistent performance across various protein categories, evidenced
by an MCC value exceeding 0.6 (Table 1). Exceptions arose in scenarios where either the volume
of benchmark data was sparse or when the quality of the data was lower. These cases included
MemMoRFs and ClinVar's CFTR data. Our results indicate AlphaMissense performing well when
comparing to the CFTR2 database that is in contrast with the study of McDonald et al. (41). The
differences likely arise from our exclusion of CFTR2 entries with unknown consequences and

ambiguous AlphaMissense predictions. We also emphasize that while AlphaFold's pLDDT scores

14


https://doi.org/10.1101/2023.10.30.564807
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564807; this version posted November 2, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

can provide insights into AlphaMissense performance for specific proteins or protein groups,
assessing the rationality of their structures might further indicate the reliability of lower
AlphaMissense predictions (lowAF in Table 1).

Both within ClinvVar and the AlphaMissense predictions, benign mutations typically
outnumbered their pathogenic counterparts by a factor of approximately two, in several protein
groups. Intriguing deviations from this trend were noted in groups such as mitochondrial proteins,
housekeeping genes, transmembrane regions of membrane proteins, and IBS residues that
pattern aligns with expectations. The IBS dataset, with its notably high pathogenic frequency,
exclusively contains functional positions (Table 1). The pathogenicity of CFTR coupling helices
were also predicted with remarkable congruency with CFTR2 data (Fig. 2e,f). These observations
accentuate the potential of AlphaMissense predictions as a valuable tool for aiding the
identification of functionally crucial sites. To facilitate hotspot detection and access to
AlphaMissense data, we established a dedicated web resource available at
https://alphamissense.hegelab.org, which also provides structure files with mapped
AlphaMissense scores for visualization, e.g. in PyMOL with our coloring plugin coloram.py, for
facilitating local analysis. These enhancements crucially aid in mutational hotspot detection,

paving the way for more detailed and user-friendly analyses.
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