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Abstract

Understanding the diverse responses of individeltd to the same perturbation is central to many
biological and biomedical problems. Current methdasvever, fall short in precisely quantifying the
heterogenous perturbation responses and, moretamplgr unveiling new biological insights from such
heterogeneity. Here we introduce the “PerturbaBoare” (PS) method, based on constrained quadratic
optimization, to quantify diverse perturbation resges at a single-cell level. Applied to singld-cel
transcriptomes of large-scale genetic perturbatatasets (e.g., Perturb-seq), PS outperforms mgyisti
methods in quantifying partial gene perturbatispmses. In addition, PS presents two major adgance
over existing methods. First, PS enables largeesesaigle-cell resolution dosage analysis of
perturbation, without the need to titrate pertudoastrength. By analyzing the dosage-responserpatt

of over 2,000 essential genes in Perturb-seq, amiig two distinct patterns, depending on whether
moderate reduction in their expression inducesgtdownstream expression alterations. Second, PS
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identifies intrinsic and extrinsic biological det@nants for perturbation responses. We demondtrate
application of PS in various contexts like T célirailation, latent HIV-1 expression, and pancreastt
differentiation. Notably, PS unveiled a previoustyrecognized, cell-type specific role of CCDC6
(coiled-coil domain containing 6) in guiding livand pancreatic lineage decisions, where CCDC6
knockouts drives the endoderm cell differentiatiowards liver lineage, rather than pancreatic ly@ea
Collectively, our PS approach provides an innowatnethodology to perform dosage-to-function
analysis and foster new biological discoveries fongle-cell perturbation datasets.

I ntroduction

Perturbation is essential for understanding thetfans of mammalian genome that encodes protein-
coding genes and non-coding elements (e.g., entgn&ngle-cell profiling of cells undergoing
genetic, chemical, environmental or mechanicalypkeations is commonly used to profile perturbation
responses at a single-cell level. Recently, hightthhput approaches using single-cell RNA-seq
(scRNA-seq) as the readout of perturbation have degeloped, including multiplexing of
perturbations and single-cell CRISPR scleerfrurthermore, this concept has been extendedidy st
changes in single-cell chromatin accessibififgpatial transcriptomi¢Supon perturbations or
perturbation combinatiohs™ etc.

Understanding how perturbations lead to diversparses within cells is critical to understanding th
fundamental biology behind perturbation. The hejeneity of perturbation response is driven by
technical and (perhaps more interestingly) biolalfactors Fig. 1a). Technical factors, including
single-cell assays used to profile the responsdlendn-target/off-target effects of perturbatican®
known drivers that lead to differences of singlésmfiles in the datd *® In contrast, multiple
biological factors also control the responses afypeations. These factors may be either intrigeig.,
the activities of other coding-and non-coding geimoalements) or extrinsic (e.g., cell states oesyp
environment factors), all of which define the comtef perturbation response. For example, combined
expressions of transcription factors (TFs) araecaitfor many cellular state conversions. Thereftoe
properly decode the functions of these TFs viaupkation, one must consider the effect of cellestat
and the activities of other companion TFs. For te&son, defining the heterogeneity of perturbation
outcomes, and identifying factors that contribatéhiese outcomes, will be important to understawd h
cells respond to perturbation.

Unfortunately, computational frameworks are cuilselaicking to decode the diverse outcomes of
perturbations. For technical factors, mixscapéésdanly method that detect and mitigate confounding
variations (e.g., incomplete knockouts from CRISP&%9j°. However, its performance has not been
rigorously benchmarked, especially when partialegeimctions are perturbed using techniques like
CRISPR interference (CRISPRI). More importantly, methods have been developed to unveil new
biological insights from the heterogenous pertudmabutcomes, including discovering biological
determinants that govern differential perturbatiesponses.

Here we present a computational framework, nameaif@ation Score (PS), to detect heterogenous
perturbation outcomes in single-cell transcript@ratasets. The PS score, estimated from congtraine
guadratic optimization, quantitatively measuresdtnength of perturbation outcome at a single cell
level. We performed comprehensive benchmark stublasdiemonstrated the outstanding performance
of PS over existing methods, including simulatethgets, genome-scale Perturb-seq, and published
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Perturb-seq datasets that cover various CRISPRiltasknologies. More importantly, PS presents two
major conceptual advances in analyzing singlegmilurbation data: the dosage analysis of pertiorat
and the identification of novel biological deterams that govern the heterogeneity of perturbation
responses. First, we performed dosage-dependdgsianaf perturbing essential genes, and reveaids tw
different patterns of dosage-response, dependinvghather moderate perturbation leads to strong
expression changes of downstream genes. Secondemtédied intrinsic and extrinsic biological facso
governing critical gene functions in latent HIV-4peession and pancreatic/liver development. In
particular, we identified and confirmed a noveldtion of CCDC6 whose perturbation drives
duodenum cell differentiation towards liver comméimh, based on the findings enabled by the PS score
of CCDC6. Collectively, our PS framework providegaverful model to decode heterogenous
perturbation outcomes from single-cell assays.

Results

A Perturbation Score (PS) to detect heter ogenous per tur bation outcomes within and across

datasets.

Perturbing the same gene (or non-coding elemerdg)result in different phenotypic changes or
transcriptional outcome$ig. 1a), depending on different factors including teclahi@.g., perturbation
efficiency) and biological (e.g., cell type, cathte, activities of cofactors). Unfortunately, exig

methods are limited to detecting only technicatdest®, while biological factors remain unexplored. To
bridge this gap, we built a computational framewrklescribe the continuum of perturbation outcomes
in single-cell datasets using scRNA-seq as rea@rtesponding assays include single-cell CRISPR
screens (e.g., Perturb-seq), or simply multipléX&-seq profiling of various perturbations (e.gi-s
Plex;Fig. 1b, c). We define a score, named Perturbation Score$yrto quantitatively measure the
strength of perturbation, where PS=0 score indscateperturbation effect (e.g., effects correspogdi

to unperturbed, wild-type gene functions). In casty PS=1 indicates the maximum perturbation effect
observed within a dataset; for example, effectsabaespond to homozygous knockouts on both allele
of a gene. We utilize the expressions of multiplevdstream targets of a perturbed gene to infer the
(unknown) values of PS scoreig. 1b). For example, if one cell has dramatic expresslmanges on the
known downstream target genes, then the value shB&ld be close to 1. Otherwise, PS should be
close to 0.

We built a computational model, based on a comsthquadratic optimization, to automatically
identify the downstream targets of perturbed gemescalculate PS scordsd. 1c). This PS framework,
named “scMAGeCK-PS”, is based on our previouslylighled sScMAGeCK algorithfi and consists of
three steps. First, sScMAGeCK-PS identifies difféiaty expressed genes (DEGs) upon perturbation
(e.g., perturbing the function of geR¥ by comparing the transcriptome profiles betwgerturbed

cells and unperturbed cells. These DEGs are sewésignature” target genesXf Second,
SscMAGeCK-PS used a previously developed scMAGeCldehtn estimate the average effect of
perturbation on these target genes, which cantbeated from the first step. Third, SSMAGeCK-PS
uses a constraint optimization procedure to firedvilue of PS that minimizes the sum of mean square
errors between predicted and measured expressamgeb of all downstream targets (see Methods).
The constraints are established such that any &8 scnon-negative for cells withperturbed, and is
exactly zero in cells without perturbation. Suchstoaints can be established based on the prior
information of perturbations; for example, the egmion matrix of single-guide RNAs (sgRNAS).

PS outperforms mixscape in quantifying partial perturbations.
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mixscapé® is currently the only method to detect and renteenical factors that affect perturbation
outcome, especially incomplete gene knockoutsatetgenerated from CRISPR/Cas9. However, the
performance of mixscape on partial gene perturbatimve not been fully evaluated. Here we compared
PS with mixscape using multiple benchmark data¥éesfirst used synthetic datasets to evaluate the
performances of different methods, because findingal SCRNA-seq dataset that contains ground truth
(i.e., accurate measurements of loss-of-function upoigiation) is challenging. For synthetic data
generation, we used scDesigh® simulate the single-cell transcriptomic respsnspon perturbing the
50% and 100% functions of Nelfb, based on a rdaNg&-seq dataset that deletes Nelfb in mouse T
cells'® (Supplementary Fig. Sla; see Methods). We specified different numbers of RfGes (from

10 to 500), and simulated their expression changea 50% or 100% perturbations of Nelfb functions.
In all the cases, PS correctly estimated partidupeation, where the median PS scores range from
0.32-0.34 for 50% perturbation, and greater th&8rfd. 100% perturbation, respectivefyig. 1d-€;
Supplementary Fig. Slb-e). In contrast, mixscape uniformly assigned theigrasr probability of
perturbation to 1 in all the cases, an indicatimat tnixscape is not suited to analyze the outcdme o
partial gene perturbationki€. 1d-e; Supplementary Fig. S1b-€), possibly due to the bimodal statistic
model it used that only considers 100% knockougosé®.

We next evaluate different methods using real shegll perturbation datasets. We chose CRISPR
interference (CRISPRI)-based Perturb-seq dataBeyjsif-i), because the CRISPRI system directly
modulates the expression levels of perturbed gemesthe perturbation efficiency can be accessed
using single-cell transcriptomic data. Two publi$i62 CROP-seq datasets are t3eshere only 1
gRNA is expressed within each celk(, low Multiplicity of Infection or MOI) in one datas, and
multiple gRNAs are expresseide(, high MOI) in another dataset. We examine cellsreltee
transcription starting sites (TSS) of highly expess protein-coding genes are targeted (23 and 342
genes, respectivel¥ig. 1g-i, Supplementary Fig. S1f-g). If the TSS of gen&X is perturbed, we first
remove the expression Kffrom expression matrix, and use the rest of gepeessions to measure the
perturbation efficiency oK. The scores of different methods are then comparidthe expression of,
which is a direct measurement of perturbation igfficy Fig. 1f). In over 40% of these genes (10 out of
23 for low MOI, 139 out of 342 for high MOI), PSae has a strong negative correlation with the
expression oK (Fig. 1g), defined as Pearson correlation coefficient & &nhd p value <0.01. In contrast,
mixscape scores correlate with X expression in rafriee genes (for low MOI datasétg. 1g), or in
less than 5% of all the genes (for high MOI dateSapplementary Fig. S1f-g). PS detects a much
greater number of cells that have a strong pertioribaffect (PS or mixscape score >(tg. 1h),

whose scores are strongly negatively correlateld géne expressioffrig. 1i). We also tested both
methods in another CRISPRI-based Perturb-seq datasere sgRNAs with mismatches reduce their
efficiencies, leading to partial perturbation et€t(Supplementary Fig. Sih-i). PS has a high
sensitivity and a good balance between sensitanty specificity, evidenced by the higher values of
Pearson correlation coefficierBupplementary Fig. S1h) and Areas Under the ROC Curve (AUC)
values Bupplementary Fig. Sli).

To further benchmark different methods in terma phenotype of interest, we designed and performed
a genome-scale CRISPRI Perturb-seq on both unstietuand stimulated Jurkat, a T lymphocyte cell
model Fig. 2a), and evaluated the performances of different oashn identifying known regulators of

T cell activation. We designed Perturb-seq libthgt contains sgRNAs targeting the TSS of 18,595
genes (4-6 guides per gene), and used a TAP-segthasultiplex primer panel to detect the
expressions of 374 genes with high sensitivity @ggplementary Table S1 and Methods). We
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obtained high-quality scRNA-seq data of over 586,8@gle cells after quality control, and the UMAP
clustering of Perturb-seq datasets clearly dematestrthe differences between stimulated and non-
stimulated cellsKig. 2b). Next, we ran PS or mixscape to calculate theescof all perturbations at a
single-cell level; and for each perturbed genecaleulated its overall perturbation score, by agdire
scores of all cells that express a correspondiRiN#gtargeting that gene. Because our system focuses
on T cell stimulation, perturbing a gene that resca highest (and lowest) cumulative score shcane h
the strongest (and no) effect on T cell stimulgti@spectively. For an independent evaluation, we
extracted 385 (and 1297) positive (and negatius)wihose perturbation impairs (or does not impair)
the stimulation of T cells from a published genossale CRISPR screg&nrespectively. Both Perturb-
seq and pooled CRISPR screen identified many krpmsitive regulators of T cell activation, such as
components of the T cell receptor complex (e.g.30Pand proximal signaling components (e.g., LCK;
Fig. 2c). The distribution of the perturbation scoresreated by PS or mixscape is skewed towards cells
corresponding to non-stimulating state, in concocgawith their negative selections in pooled CRISPR
screens using T cell stimulation as read&id.(2c; Supplementary Fig. S2). However, when

comparing the receiver-operating characteristicQir€core, PS reaches a higher Area Under the ROC
(AUC) score than mixscap€i@. 2d), indicating its better performance in accurasgparating positive
from negative hits.

Finally, we tested different methods on a publisB&CITE-seq, which simultaneously measures
single-cell transcriptomes, surface proteins, antbpbation¥’. PDL1 protein expression was used as an
independent metric of evaluatiohig. 2e), because PDL1 is a well-studied gene whose protei
expression is well understood. Among 25 perturbateg in ECCITE-seq perturbation library, 17 of
those are known factors to regulate PDL1 expreg&imn 2f). We compared PS with mixscape in terms
of predicting changes in PDL1 expressiéig( 2f; Supplementary Fig. S3). In addition, the expression
of the perturbed gene is also included in the coispa as a naive method. In 19 out of 25 genes );/6%
PS outperformed mixscape and perturbed gene expmaasgpredicting PDL1 expressioRif. 2e),
including 12 out of 17 (71%) known PDL1 regulatdi®tably, for genes whose perturbations led to
strong transcriptomic changesq, IFNGR1, IFNGR2, JAK2, STAT1), both PS and mixscajek

well, reaching over 0.8 AUC valu€&i@. 2f). For other genes whose perturbation only leaasdderate

or weak expression changes, as is revealed fromrifi@al study®, PS outperforms mixscape,
including those that are confirmed to be PLD1 ratpsk (.e., genes marked in red kg. 2f).

Analyzing dosage-dependent effects of perturbation.

Traditionally, dosage analysis requires a cardifle-consuming adjustment of perturbation strength,
including changing drug concentrations or desigrsigiBNA sequences to achieve various editing
efficiency’®?® Since the quantification of partial gene perttidvaby PS is highly accurat€ig. 1-2),

we start to investigate whether we can perform giesasponse analysis of perturbation, without the
need to titrating the strength of perturbation.e8amining ECCITE-seq data that directly measures
PDL1 expressionHig. 2€), we found a positive (and negative) correlatietween PDL1 expression
and the PS score of known PDL1 regulatéiig.(3a). The PS scores of positive PDL1 regulators (e.g.,
IFNGR1/2, STAT1Fig. 3b) are negatively correlated with PDL1 expressiohilevthe scores of
negative regulators (e.g., CUL3, BRD4) show a rexérend $upplementary Fig. S3; Fig. 3c). For
example, CUL3 which is known to destabilize andrddg PDL1 protein expressidnConsequently,
higher CUL3 PS scores, indicating higher CUL3 fuoral perturbation, correspond to higher PDL1
protein expressions-(g. 3a). Compared with mixscape, PS score better prethietguantitative
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changes of PDL1 expression, evidenced by stronggrsBn correlations between the two
(Supplementary Fig. S3).

We further investigated the relationships betweanupbation efficiency and the degree of expression
changes, measured by PS scéiig.(3d). In particular, we are interested in genes thatstwo

different patterns of PS scores upon perturbatimunfered” distribution, where genes have high PS
scores only when stronger perturbation efficierscgahieved; and in contrast, “sensitive” distribati
where the PS scores are high, even with moderateak perturbation efficiency. CRISPR interference
(CRISPRI)-based Perturb-seq datasets are usdik afficiencies of CRISPR inhibition can be dirgctl
evaluated by examining perturbed gene expresskigsde).

We calculated PS score for every gene in a pulalisissential-wide Perturb-£8gwhich uses CRISPRI
to inhibit the expressions of 2,285 common esskegéiaes. We classified genes into two different
categoriesKig. 3e), based on their PS score distributions that spoed to around 50% of perturbation
efficiency. Among over 2,000 essential genes, \aedified 613 genes as either buffered or sensitive.
The majority of these are “buffered” genes (529a@fi13), indicating the robustness of these gemes
response to perturbation, possibly due to theerdgs roles in cellular functions that require
compensations on expression reductions. Many “bedfegenes belong to essential protein complex,
including proteosomes (e.g., PSMAIJg. 3f), ribosomal subunit (e.g., RPL8upplementary Fig.

$4a). In contrast, a smaller fraction of “sensitivesngs (185 out of 613) shows strong transcriptome
responses even with moderate or weak efficieng@es perturbing gene expressi@upplementary

Fig. $4b-c). Notably, 50% reduction of HSPA5 and GATA1 exgiea achieved near-maximal
transcriptional response (and the associated grdefétct), which are confirmed by previous stutfies

We further examined possible mechanisms of theg#eled” genes, especially those that belong to the
same functional protein complex. Interestingly tpdying one member of the protein complex usually
leads to the expression up-regulation of other neembf the complex, indicating a possible mechanism
for compensation. For example, perturbing prote@seubunits lead to a strong expression reduction of
the perturbed gene.g., PSMAS; blue squares ifig. 3g), but at the same time up-regulates other
members of the proteosomesy(, PSMB7, PSMD2). Perturbing many other protein caxes,

including ribosomal subunit, mediator and RNA podnases, also leads to the similar up-regulation of
some members within the same functional Usufpplementary Fig. Sba-c), indicating that

compensation occurs by the up-regulation of othbrrsts of the same molecular machine. To confirm
our findings on a different cellular system, werakaed the effects from perturbing proteosomes m ou
genome-scale Perturb-seq databéaj.(2a). The TAP-seq approach used in this dataset pee\ad
sensitive and accurate measurement of gene exmmegsanges upon perturbatfarindeed, perturbing
members of the proteosome subunits leads to thregulation of other proteasomeéxipplementary

Fig. Sbd), consistent with the known transcriptional feedblop that is observed between proteosome
gene&’. Overall, the widespread existence of such congienseffect may explain the perturbation-
expression phenotype of buffered genes, whereagperturbation efficiency is needed to achieve
strong expression changes.

PSrevealsintrinsc and extrinsic biological factorsthat regulate gene functionsin latent HIV
expression.

We next applied our PS model in a Perturb-seq dathat is designed to investigate the functions of
key genes regulating latent HIV-1 expression. Wadus Jurkat HIV cell model that we previously
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established for pooled CRISPR screefiinghere cells stably expresses Cas9 and are atafetted
with HIV-GFP viral vector. We designed Perturb-$ibcary that targets 10 protein-coding genes
(Supplementary Table S2), which are either (1) known factors in HIV-1 \srexpression and T cell
activation (e.g., BIRC2), or (2) top hits from gem®scale CRISPR screens that we previously
performed (e.g., BRDA}. We performed Perturb-seq experiments on thrféereint conditions,
including stimulated Jurkat (by PMA/I) followed IBFP expression sorting (GFP+ or GFP-), or
unstimulated cellsHig. 4a). The single-cell transcriptomes are profiled thia 10X Genomics
Chromium platform, and expressed guide RNAs cacaipéured directly. After quality controls, we
received 7,063-8,811 single cells per sample, wtierenean reads per cell (and median genes
expressed per cell) in each sample is at leasB89d@hd 4,744), respectivelgupplementary Fig.

S6a). In terms of guide RNAs, they are detected irr @69 of the cells, and over 85% of these cells
can be uniquely assigned a guide R$8fplementary Table S3). The transcriptome profiles of cells
are primarily clustered by cell states (stimulatedunstimulated), indicating the primary sourckes o
expression variation is coming from cell stateig)(4b).

We next investigated gene functions using our B&éwork. Among all the perturbed genes, the PS
score of BRD4 (bromodomain containing 4) demonsgratstrong cell state-specific pattern, where a
subset of cells with BRD4 perturbation has strolRPB PS scores (named “BRD4-PS+ cells”) than
other BRD4-perturbed cells (or “BRD4-PS- celsy. 4c). BRD4-PS+ cells overexpress genes that are
involved TNF-alpha signaling, hypoxia and apoptdBig. 4c-d, Supplementary Fig. S6b-d). We
examined whether the differences in BRD4 PS sadlects the degree of BRD4 functional perturbation.
We first checked the expressions of BRD4 “signdtgemes from another published stéftiyCompared
with BRD4-PS- cells, BRD4-PS+ cells have a muchdioexpressions of these signature genes
(Supplementary Fig. S6e), indicating a stronger functional BRD4 perturbatiln addition, BRD4 is
known to inhibit HIV transcription and activatioromm many studies including our previous CRISPR
screen%?° consistent with the fact that HIV-GFP is onetaf top up-regulated genes in BRD4-PS+
cells Gupplementary Fig. S6f). Furthermore, BRD4-PS+ cells have a stronger &ffPessionKig. 4d)
than other cells, confirming a stronger BRD4 funieéil perturbation in these cells.

To build a quantitative perturbation-expressioatiehship, we recalculated BRD4 PS score without
using HIV-GFP expression, and examined how theescare associated with a phenotype of interest
(i.e., latent HIV-GFP expression) in different camahs (Fig. 4e). BRD4 PS score is correlated with
HIV-GFP expression in a cell-state dependent mammeatimulated T cells (PMA/I treatment), a lingar
positive correlation is observed regardless ofGR® expression. In contrast, a nonlinear relatipnsh
exists in unstimulated T cells (DMSO), where stemBRD4 PS score (>0.5) leads to a sharp increase
of HIV-GFP expressionHig. 4e).

Another gene, cyclin T1 (CCNT1), also displays hegeneity in PS score distribution: cells with
CCNT1 perturbation have a high PS score distrilpudioly in stimulated cells=ig. 4f). This is different
from CCNT1 gene expression or guide distributiohjolhr do not show such pattern differences between
cell statesQupplementary Fig. S7a). Confirming our findings, the number of DEGs (selith

CCNT1 perturbation vs. cells expressing non-tangegjuides) is over one hundred in stimulated cells,
where this number is much smaller in non-stimulatelts (adjusted p value <0.008ypplementary

Fig. S7b). In particular, HIV-GFP is the top DEGs in ceNigh CCNT1 perturbation, in concordance
with the known role of CCNT1 in activating HIV trseription.
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CCNT1 is a key subunit of P-TEFb (positive transtton elongation factor b)/CDK9 complex that
drives RNA transcription, including the transcriptiof HIV. The transcription elongation controlRf
TEFb/CDKO9 is a complicated process that is regdlaigemultiple mechanisms including various T cell
signaling pathways (e.g., NF-kB signaling), tratistacontrol, and epigenetic modification (reviewad
3. The activities of these factors are differendlifierent states of T cells (e.g., NF-kB;
Supplementary Fig. S7c), which may explain the differences of CCNT1 P8&rss. Despite the strong
cell state dependency of CCNT1 PS score, the daawdi perturbation-expression relationship shows
weak correlation within one cell stateupplementary Fig. S7d), which is different from BRD4 PS
score Fig. 4e).

To further confirm our finding that different celu states affect the transcriptomic responses of
CCNT1 perturbation, we stimulated Jurkat cells gsirdifferent agonist (TNF-alpha). To measure the
downstream effect of CCNTL1 perturbation, we sodelts with the expression of HIV-GFP, which is
the top down-regulated gene upon CCNT1 knockSBupplementary Fig. S7b), and whose expression
is known to be regulated by CCN*#f2 Indeed, with the presence of TNF-alpha, CCNTIckoat

leads to a strong reduction of HIV-GFP expressael 50% reduction), while such reduction is much
smaller (<5% reduction) in cellular states withdiiF-alpha stimulationKig. 4g). Collectively, these
results demonstrated our PS score as a powerfypu@ational framework to investigate cofactors (cell
states, other genes) that drive transcriptomicaresgs upon gene perturbation.

PSidentifiesnovel cell-type dependent gene functionsin regulating pancreatic cell differentiation
from multiplex single-cdll transcriptomics.

Besides Perturb-seq, multiplexing cells with diéier perturbations are also used to measure siegle-c
responses of perturbatfofl. A mixture of cells from different perturbationarcbe sequenced at the
same time, and the identity of cells can be esthédl using various methods including cell hasfiing
the expressions of pre-defined barcdlesr a combination of random barcotfestc. We therefore
tested our PS framework on pooled single-cell taptomics of different perturbations to study the
functions of lineage regulators during human paateralifferentiation. By using an established itrwi
human embryonic stem cell (hESC) pancreatic difféaéion system, we could generate cells
corresponding to early - (definitive endoderm) amddle - (pancreatic progenitor) stages of pancreas
development. To test the performance of PS framlewaod uncover the functions of unknown
regulators, we picked ten clonal hESC lines withllomozygous knockout of four genes
(Supplementary Table $4), including two known pancreatic lineage regulatiHEX, FOXA1) and
two uncharacterized candidate regulators from prevgenetic screens (OTUD5, CCD®6). These
clones are then labelled with different LARRY (Limge and RNA recovery) DNA barcodégpooled
together and differentiated into definitive endademnd pancreatic progenitor stages using estallishe
protocol$®. Finally, the single-cell expressions of theséscale profiled via 10X genomics Chromium
platform (Fig. 5a). The clone information of each cell is identifiedm LARRY barcodes. Among
26,286 single cells that passed the quality comtesurements, over 97% (25,694/26,286) of the cell
have at least one barcode detected, and over 80%/&25,694) are identified as singlets and are
retained for downstream analysis. UMAP clusteriengrls different known cell types during pancreatic
differentiation, based on the expression markeiofvn cell typesKig. Sb; Supplementary Fig. S8)
including definitive endoderm (DE), pancreatic mogor (PP), liver/duodenum progenitor (LV/DUO),
endocrine precursor (EP) as well as cells durieginsition stages (e.g., DE in transition, PP in
transition).
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We next applied our PS framework to the pooledlsiegll RNA-seq datasets containing different
knockout clones. Among all knockout genes, HHEXsE&e is high in cells whose type is between two
different differentiated cell types (PP and LP/BRy. 5¢; Supplementary Fig. S8), in concordance

with the known function of HHEX as a key determinahcell fate decision, whose deletion drives DE
cell differentiation towards LP/DP, rather thar’®Pfhdeed HHEX knockout led to a much fewer
percentage of cells that are annotated aF=RP5d). The PS score of FOXAL, another key transcription
factor during PP differentiation, is strong in DiEdaPP cell types, in concordance with the specific
expression pattern of FOXAL in DE/PP cell typ8gpplementary Fig. S9a-c).

CCDCE6 (coiled-coil domain containing 6) is onelod top hits from our previous genome-wide
CRISPR screens whose perturbation hinders PP efiffietior?®>%. However, the exact function of
CCDCS6 during pancreatic differentiation is largehknown. We set out to use our PS framework to
investigate the functions of CCDC6 at different tgbes. Because CCDC6 may have different
functions at different cell types, evidenced byfiéne overlaps of DEG genes between different cell
types Bupplementary Fig. S9d-f), we calculated PS scores from the DEGs that enfermed from

four major cell types in the dataset (DE in traosit DE, PP/PP in transition, and LV/DUO). An
unbiased clustering on these CCDC6 PS scores dérateaistwo distinct cell type-specific distribution
patterns [Fig. 5e), where scores calculated from later-stage cp#sy(PP/PP in transition, LV/DUOQO) are
distributed differently from the scores from eastgge cell types (DE in transition, DEQg. 5f;
Supplementary Fig. S10a-b), implying different behaviors dECDC6 perturbation at different cell
types. Indeed, functional analysis on DEG genaditgy to both patterns have distinct enrichmembser
where in early-stage cell types, DEG genes arelesdiin the targets of stem cell transcriptiondesct
(e.g., SOX2, POU5F1, NANOG) and cell cycle regmwSuPplemmtary Fig. S10c-e), consistent
with the known function oECDCS as a cell cycle regulaf8*® In contrast, DEGs in later-stage cell
types are primarily the targets of HNF4A, a keyseription factor that drives LP/DP differentiation
(Fig. 5g; Supplementary Fig. S10f). The expressions of these transcription facte@X2, HNF4A) are
among the up-regulated genes in both programsgcésply Supplementary Fig. S9d-e). Furthermore,
compared with wild-type cell€&CDC6 knockout cells have a much fewer percentage t tieht are
labelled as PP, and a higher percentage of celtdofiong to LP/DP populatioki@. 5h). Collectively,
these results imply th&CDCS6 play different functions between early or lategstaell types.
Especially in late-stage cell typ&3CDC6 knockout drives cell differentiation towards LV/@cell
types rather than PP cell types.

To further validate the prediction results of CCD@& performed flow cytometry analysis to evaluate
the effects of£CDC6 knockout on the composition of late-stage celes/fPP/LV/DUQO). We examined
the percentage of HNF4A+ cells, a marker for LV glagon; and PDX1+ cells, a marker for PP
population. Indeed, both clones@EDC6 knockout greatly reduced PDX1+ population andeased
HNF4A+ population in three biological replicatésd. 5i; Supplementary Fig. S11), confirming our
finding on the enrichment of CCDC6 PS score in lPfwpulationsKig. 5f-g).

Discussion

Understanding cellular responses upon perturbatsoagentral task in modern biology, from studying
tumor heterogeneity to developing personalized oneeli These perturbations may be genetic (e.g.,
knocking out genes or non-coding elements), chdr(eog., drug treatments), mechanical (e.g., pregsu
or environmental (e.g., temperature changes). &iogll genomics profiles of perturbations is a
common technigue to investigate the mechanismsfipations. Many technologies, including
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Perturb-seq and sci-Plex, enable a high-contedbreaf systematically perturbing many genes or-non
coding elements. Despite the rapid advancemeriechbhology, a major bottleneck is that we lack a
computational model to fully unlock the potentibhagh-content perturbation, especially on
discovering novel biological insights from the daiigre we introduce a Perturbation Score (PS)
framework to model the heterogenous transcriptagsponses of perturbations and to enable novel
biological discovery from modeling perturbationdregeneity.

Partial gene perturbation is common in perturba¢iperiments. Partial perturbations may come from
dose-controlled drug treatment, the gene editingrtelogy that does not fully knockout gene function
(e.g., RNA- or CRISPR-interference, epigenome eslit@r from CRISPR/Cas9 that generate random
DNA editing outcomes. We demonstrated the outstapderformance of our PS method over existing
methods in quantifying partial gene perturbatiospécially, such partial perturbation identification
enables the analysis of dosage-dependent effeathwhdemonstrated in this study using various
datasets.

More importantly, PS enables novel biological knengke discovery including (1) dosage analysis of
perturbation without the need to titrate perturdrastrength, and (2) identification of biologicatfors,
both intrinsic or extrinsic, that regulate pertuiba responses. In this case, the PS score, ranging
between 0 and 1, no longer represents the quaritggrtial perturbation, but instead represents the
strength of the perturbation outcome. In the lattese, PS becomes a convenient tool to identify cel
context that determines perturbation outcome. Weaothstrated the application of PS in various
biological problems, including T cell activatiorssential gene function, latent HIV-1 virus expressi
and pancreatic cell differentiation. Importantlyr S model leads the discovery of novel CCDC6
functions that are cell type dependent, whoseasla regulator during pancreatic and liver cedt fat
decision is experimentally validated.

Partial perturbations of gene functions contriliotéhe complexity of many biological processes. For
example, “haploinsufficient” genes are able to eadisease phenotypes when 50% of their functions
are disrupted, while “haplosufficient” genes wéuire a nearly complete gene knockout. However, we
currently lack a method to investigate the phenegyqf partial gene perturbations, and to efficyentl
perform dosage analysis at a large scale. Curpgrbaches, e.g., by introducing mismatches to guide
RNAs to modulate the effects of CRISPR inhibitig6RISPRif° or Cas1%® require a complex design
of a specific CRISPR system. Here we demonstraigtichioth CRISPR knockout and CRISPRI
naturally introduce partial perturbation effectfieh can be used to study the dosage effect afpart
gene perturbations on affecting downstream geneesgns or a phenotype of interest. Our PS
framework is versatile, enabling the dosage amalysing various perturbation methods (e.g., CRISPRI
or CRISPR knockout) and assays (e.g., Perturb+segibiplex SCRNA-seq).

Results from genetic perturbations (e.g., via CRIERs9) are informative for drug development, and
confirmations from genetic perturbation experimertsusually required to demonstrate the feasibilit
of candidate drug targets. However, titrating phezeutical interventions are easy (e.g., by using
different doses of drugs), while it is much mor#iclilt to precisely control the degree of genetic
perturbations. Our PS framework provides a converakernative to dosage-dependent perturbations,
especially genetic perturbations, and their assooswith phenotypic changes, which will be
informative in designing drugs. For example, BRB4hie primary target of bromodomain inhibitors
(BETi), many of which have been proposed as cambeldaf latency reversing agents (LRAS) to
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reactivate latent HIV-1 expression. The distribatad BRD4 PS score$-(g. 3) reveals that stronger
perturbation effects are needed to induce theeatkpinenotype, in this case, the expression of HRRG
(Fig. 3). Since BRD4 is an essential gene, a strong BRBughation may lead to unexpected toxicity,
thereby limiting the efficacy of BETI. Indeed, qurevious stud’/ demonstrated that 10-1000x higher
doses of JQ1, a commonly used BETI, are neededitee latent HIV-1 expression at a similar level
with other potent LRAs. Our results further warrdre development of synergistic drug combinati@ns t
mitigate the narrow therapeutic window of BETI, ais currently tested in many studies.

Methods

The Perturbation Score (PS) framework

The estimation of PS consists of three steps,aslastrated in Figure 1c: target gene identificat
(Step 1), average perturbation effect estimationgua previously published scMAGeCK (Step 2), and
PS estimation using constrained optimization (Siep

Step 1. target geneidentification. We first performed differential expression analysesween cells

with certain perturbation (e.g., knocking out gef)end negative control cells. In most cases, negati
control cells are cells that express non-targeguige RNAs (in Perturb-seq), or wild-type cells (in
pooled scRNA-seq). In Perturb-seq that is performigd high MOI condition, these cells may come
from cells that do not have a particular pertudratiWe used Wilcoxon Rank Sum test (implemented in
Seurat) to identify and rank differentially expredgienes. Top genes are then selected as potential
target genes of the specific perturbation. The mara and minimum numbers of top genes can be
specified by the user. Alternatively, users cao gl®vide the list of target genes of that perttidoa
based on the prior knowledge, therefore skippiregdifferential expression analysis in this step.

Step 2: average perturbation effect estimation. We used the linear regression module in scMAGeCK
(scMAGeCK-LR) to estimate the average perturbagiffect. SSMAGeCK-LR takes the expressions of
all target genes (identified in Step 1) in all s&lk input, and outputs f’“score, a score that is
conceptually similar with log fold change. The adtemes of usin@ score, instead of simply using the
log fold changes in Step 1, are twofold. First, #¢B&CK-LR naturally supports datasets from high
MOI Perturb-seq, where one cell may express melgpiides targeting different genes. Second,
scMAGeCK-LR is able to estimate average perturbatibects of multiple perturbations (e.g., genome-
scale perturbations) in one step, while a naive RE&ysis can only calculate LFC for each
perturbation.

The mathematical model of sScMAGeCK-LR is describsdollows. LetY be the log-transformed/* N
expression matrix d¥1 single cells andN target genes. These genes are the union of gdittgenes for

all K perturbations, extracted from Step 1. Debe theM*K binary cell identity matrix oM single cells
andK perturbations, wheré;y = 1 if single cellj contains sgRNAs targeting geXe
G=12..,M;X=12,..,K), andd;y = 0 otherwiseD can be obtained from the detected guide RNA
expression matrix from Perturb-seq, or from thempsample information from pooled scRNA-seq. The
effect of target gene knockout on all expresseaggénindicated asfascore in a matri with size

K*N, wherefy, > 0 (< 0) indicates gen& is positively (or negatively) selected on génexpression,
respectively. In other words, geKe&knockout increases (or decreases) gergpression ifiy, > 0 (<

0), respectively.

11


https://doi.org/10.1101/2023.10.30.564796
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564796; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

The log-transformed expression matyixs modeled as follows:
Y=Yy+DxB+e¢ Eq (1)

WhereY, is the basal expression level of all genes inrgretturbed state, is a noise term following a
Gaussian distribution with zero meakbgcan be estimated from negative control cells (&vdd-type
cells or cells expressing non-targeting guidesheomodeled using the expressions of neighboring
negative control cells (e.g., the approach useahizgcape®). The value oB can be estimated using
ridge regression:

B= (DD +AD)~'DTY Eq (2)
wherel is the identity matrix, and is a small positive value (default 0.01).

Step 3: PS estimation using constrained optimization. We revise Eq (1) to incorporate PS score. Here,
the log-transformed expression matrix Y is mode#sdollows:
Y=Y, +¥YXB+e¢ Eq (3)

WhereV is the non-negative, raw PS score matrix withsidn@e size ab in Step 2 1*K). Each
elementy;, in ¥ indicates the raw PS score of gedf perturbing gen&. Here,B is thep score matrix

which is estimated in Step 2. We find the valueélbfo minimize the squared error of predicted and
observed expressions of all genes within all csli®ject to constraints and regularization terms:

miani(yji — Vi — Xk wjkﬁki)z + A%k Wl Eq (4)

subject to the following constraints:

Here,U is a positive value indicating the upper boundaei ¥ values, andl;;, is the value of the binary
cell identity matrix in Step 2L < j < M is the index of single cell§, < i < N is the index of target
genes, and < k < K is the index of perturbations.

Because we are imposing hon-negative constraintbs tbe absolute operator can be removed from the
objective function in Eq (4) and can be rewritten a

minZﬁ()’ji — Vi — Xk ll’jkﬁki)z + AY ik Yk Eq (4)

This becomes a constrained quadratic optimizatroblpm where the best solution can be easily
achieved using methods like Newton’s method. Thalfinormalized PS score is to scale valuag,; pf
to [0,1]:

PSi = Yy /U

We implemented this framework as part of sScMAGe@pefine'
(https://github.com/weililab/scMAGeOK
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Simulated datasets

Genome-scale Perturb-seq on Jurkat cells

Perturb-seq. We performed genome-scale Perturb-seq on JurkaelEbne expressing dCas9-KRAB
as our model to study. We transduced them witmame-wide CRISPRi CROP-seq library at a high
multiplicity of infection (MOI). After infection, v split the cells into two populations, including
untreated cells and activated cells (cells treaitiglnl anti-TCR and anti-CD28 antibodies for
approximately 24 hours to stimulate TCR signalif€glls were then labelled with cell hashing
antibodies. Multiple labels were used for the atd population to help with cell multiplet detecti
Cells were loaded on 16 channels of a 10x Chrom¥unstrument. We loaded 115000 cells per
channel, and the expected recovery rate is 60 & mer channel, including 24% multiplets. Samples
were pooled unequally before they were loaded erCitwromiumX: 10% untreated cells, 90% treated
cells. Sequencing library was prepared using 3'Gseynwith a targeted primer panel, i.e.

custom multiplex PCR step to enrich for specifanscripts. Libraries were sequenced on NovaSeq S4
PE100 in asymetric read mode (R1: 28 cycles; R2:cy/éles), with PhiX concentration of 1%. The
expected coverage is around 9 000 ~ 10 000 inpuisrper cell.

Hash oligos.

oligo condition

CGGCTCGTGCTGCGTCGTCTCAAGTCCAGAAACTCCGTGTATCCT urdited

CTCCCTGGTGTTCAATACCCGATGTGGTGGGAGAATGTGGCTGG | activated

TTACCCGCAGGAAGACGTATACCCCTCGTGCCAGGCGACCAATGC| activated

TGTCTACGTCGGACCGCAAGAAGTGAGTCAGAGGCTGCACGCTGT] actted

CCCCACCAGGTTGCTTTGTCGGACGAGCCCGCACAGCGAGGAT | activated

GTGATCCGCGCAGGCACACATACCGACTCAGATGGGTTGTCCAGG  actted

GCAGCCGGCGTCGTACGAGGCACAGCGGAGACTAGATGAGGCCCGactivated

sgRNA library design. Genome-wide CRISPRi sgRNA library was designetéiget the transcription
start site (TSS) coordinates, calculated from phphavailable FANTOM CAGE peaks data. In total 18
595 genes are targeted with 4 sgRNAs per geneo@aftthat, we designed another CRISPRI library
targeting 3220 genes with 4 sgRNAs per gene. Tiniarly was designed using Jurkat-specific TSS
which were calculated from public Jurkat CAGE-satpdets. Both libraries were combined into a final
library targeting 3220 genes with 8 sgRNA/gene B0@75 genes with 4 sgRNA/gene.

Targeted primer panel. The primer panel for targeted transcriptomic readonsists of 374 target
genes from several categories:

Source Number of targets (genes)
bulk RNA-seq DEG, 50 top up/downregulated 100

T-cell related genes 51

KEGG TCR signaling pathway 35

RNA-binding proteins 27

Replogle*: unfolded protein response 51

Replogle: proteasome 41

Replogle: NFkB 20

Replogle: cell cycle 29

H
1)
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Replogle: targets of nonsense-mediated decay 5
Controls (cell cycle, mitochondrial, Cas9) 15
Total number of targets 374

* “Replogle” prefix means that this category ofgets was derived from the published genome-scale
Perturb-seq dataget

Data preprocessing. For each of the 16 channels, all 3 kinds of sequgribraries (NRNA, sgRNA,

cell hashing) are indexed using the same lllumina irsdgpience. We obtained high-quality scRNA-seq
data of over 586,000 single cells after qualitytoainwith a median 13 guides detected per cell. We
obtained an average of 400 cells per gene pertarb&@TAR and STAR solo 2.7.10a was used to map
transcriptomic reads against a custom gtf annetatioich was based on gencode.v34.annotation.gtf
(hg38). Reads that did not map to the transcript@ference were then mapped & counted using STAR
solo against a custom fasta reference with guideesees and a fasta reference with hash label
sequences. STAR Solo output transcriptome matace§rst filtered using an approach similar to 10x
cellranger EmptyDrops filtering, which retainedisetith at least 10 % UMI count of the 9@ercentile
UMI counts of top expected cells number. ThenjahBeurat object was created from those filtered
transcriptome matrices using CreateSeuratObjectimwith following parameters: min.cells =5,
min.features = 10, all other parameters are lgft default values. Outlier cells were filtered doyt
mithochondrial and mRNA content (percent.mt , nGoRNA). In order to detect cell multiplets and
determine cell population (untreated or activated), labels (also known as hashes) are callledgusi
MULTI-seq approach (deMULTIplex::classifyCells in.ROnly cells with exactly 1 known label are
kept. Then, sgRNA calling was done using binoneat tith total sgRNA UMI counts used to derive
background frequencies. A threshold of 0.05 on &®imi Hochberg corrected p-values (per channel)
was use to generate the final calls. The sgRNAyass@ sparse matrices containing 1 where the
respective cell is considered as carrying the smesgRNA and 0 elsewhere. Following that, all
results from steps above from 16 channels are deagether, and merged counts are normalized using
NormalizeData and scaled using ScaleData celecs@bring is performed via CellCycleScoring, PCA
is calculated using RunPCA and UMAP is calculateditst 30 principal components using RunUMAP
in Seurat.

HIV latency Perturb-seq

We used a previously established cell line modelidf latency’. In this model, Jurkat cells were
infected with an HIV vector with GFP tied to theRTpromoter, resulting in a positive GFP signal as a
measurement of viral transcription reactivation & latency reversal. These cells, which already
express Cas9, were transduced with a lenti-sgRblary. The lenti-sgRNA library (MilliporeSigma;
LV14, U6-gRNA-10x:EFla-Puro-2a-BFP) was designetatget 10 genes with 3 gRNAs per gene. In
addition to non-targeting controls, the library taoned five positive regulators (NFKB1, CCNT1,
PRKCA, TLR1, MAP3K14) and five negative regulat@&-KBIA, NELFE, HDAC2, BRD4, BIRC2)
of HIV transcription. Transduction was carried ont850,000 cells at an MOI of 0.3 using 8ug/ml
polybrene in 2 ml of RPMI containing 10% FBS and péicillin—streptomycin. The media was
replaced 24 hours later with fresh media withouylp@ne. Two days after transduction, the cellsewer
selected for using 1.5 ug/ml puromycin for 5 dadfer selection, the cells were split evenly intoge
groups. One third of the cells were kept in cultwith no drug added, while two thirds of the celisre
stimulated with PMA/I (50ng/ml PMA in combinationtiv 1 uM lonomycin). After 16 hours, the
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stimulated cells were sorted into GFP+ and GFPulations. All three groups were then analyzed
following the 10x Genomics single-cell sequencingtqcol.

Pancreatic differentiation clones and pooled shoglé RNA-seq

Culture of hESC. The generation of KO hESCs were described in phéd studies, including HHEX
KO H1 and HUESS cell liné§ FOXA1 KO HUESS cell liné8, OTUD5 KO HUESS cell lines and
CCDC6 KO H1 cell line¥. Cells were regularly confirmed to be mycoplasme-by the Memorial
Sloan Kettering Cancer Center (MSKCC) Antibody &HRisource Core Facility. KO and WT hESCs
were maintained in Essential 8 (E8) medium (TheFkisber Scientific, A1517001) on vitronectin
(Thermo Fisher Scientific, A14700) pre-coated @ate37 1°C with 5% CO2. The Rho-associated
protein kinase (ROCK) inhibitor Y-276325(%.M; Selleck Chemicals, S1049) was added to the E8
medium the first day after passaging or thawingE$Cs.

hESC-directed pancr eatic differ entiation. hRESCs were seeded at a density of %310° " cells/cnf
on vitronectin-coated plates in E8 medium withIpM Y-27632. After 24 hours, cells were washed
with PBS and differentiated to DE (stage 1), priveityut tube (stage 2), PP1 (stage 3) and PP2e(ddag
stages following previously described 4-stage mwifd In brief, stage 1 (3 d): S1/2 medium
supplemented with100 Ing mI* Activin A (Bon Opus Biosciencesjnd |5/ |uM CHIR99021 (04-
0004-10, Stemgent) for 1 d. S1/2 medium supplendentth 1100 ng mI*Activin A for the next 2 d.
Stage 2 (2 d): S1/2 mediunsupplemented with50Cng mI'* KGF (AF-100-19, PeproTech) and
0.25JmM vitaminZC (VitC) (Sigma-Aldrich, A4544). Stage 3 (2 d): 83hedium supplemented with
500 ng mI'* KGF, 0.25-mM VitC and 1 uM retinoic acid (R2625, MilliporeSigma). Stage 4dy
S3/4 medium supplemented witB0 Ing mI™* KGF, 0.1 1uM retinoic acid, 200nM LDN (Stemgent,
04-0019), 0.25]uM SANT-1 (Sigma, S4572), 0.25nM VitC and 200InM TPB (EMD Millipore,
565740).The base differentiation medium formulations usedach stage were as follows. S1/2
medium: 5000ml MCDB 131 (15-100-CV, Celigro) supplemented watiml 45% glucose (G7528,
MilliporeSigma), 0.75]g sodium bicarbonate (S5761, MilliporeSigma), 2y38BSA (68700, Proliant),
5 ml GlutaMAX (35050079, Invitrogen). S3/4 medium:050ml MCDB 131 supplemented with
0.52 1ml 45% glucose, 0.875g sodium bicarbonate, 1@ BSA, 2.5 ml ITS-X, 5 1ml GlutaMAX.

Cell infection with LARRY barcode virus. Individual LARRY barcode constructs were cloneahir
LARRY barcode library (Addgene:140024) and trantgddo 293T cells to generate lentivirus. Next,
each KO and WT hESC clone was infected with a umigRRY barcode at low MOI. One week after
lentiviral infection, the barcoded cells, which esgsed GFP, were sorted out and cultured in E8
medium as described in previous section.

Pooled single-cell RNA-seg. One day before differentiation, each of 10 hESfedded clones were
counted, mixed at the same cell number ratio aed seeded at a density of 2:8710°Jcells/cnf onto
12-well cell culture plate. At DE and PP2 stagemled differentiating cells were dissociated intoge

cell suspension by TrypLE Select forigin at 371°C. Cells were then stored in BAMBANKER™
freezing medium for future experiments. For scCRN;Srozen cells were thawed and sorted to collect
live GFP+ cells. Cellular suspensions were thedddaon a Chromium Controller following the
manufacturer’s instructions (10x Genomics Chromiingle Cell 3Reagent Kit v3.1 User Guide).

cDNA libraries and targeted LARRY barcode libranvesre generated separately using 10ul cDNA each.
cDNA libraries were made under manufacturer’s ingtons and targeted LARRY barcode libraries
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were amplified using specific primers (F: CTACACGBCTCTTCCGATCT,; R:
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTtaaccgttgctaggggecataT).

Flow cytometry. Cells were dissociated using TrypLE Select andsmsuaded in FACS buffer (5% FBS

in PBS). Live-Dead Fixable Violet Dead cell stalimvitrogen, L34955) was used to discriminate dead
cells from live cells. Permeabilization/fixati was performed at room temperature fohlAntibody
staining was performed in permeabilization buffertibodies for this study include: HNF4A, Novus
Biologicals, NBP2-67679, 1:200; PDX1, R&D SysterA§2419, 1:500, Donkey anti-Rabbit IgG (H+L)
Highly Cross-Adsorbed Secondary Antibody, Thermg&hEr Scientific, 1:500; Donkey anti-goat 1gG
(H+L) Highly Cross-Adsorbed Secondary Antibody, iithe Fisher Scientific, 1:500. Cells were then
analysed using BD LSRFortessa. Flow cytometry amnd figures were generated using FlowJo v.10.
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Figure L egends

Figure 1. The Perturbation Score (PS) framework and benchmark. a, Overview of different

technical and biological factors that contributdnéberogenous perturbation outcomes from single-cel
perturbation datasetls, Using downstream gene expressions to infer theevall PS scores,

Overview of the scMAGeCK-PS that estimates PS valtee Benchmark results of both PS and
mixscape using simulated datasets, where 5f)%r(d 100%¢d) gene perturbation effects are simulated
using scDesign3. Here, the expressions of 2fiérdntially expressed genes (DEGS) from bulk RNA-
seq (Nelf knockout vs. wild-type) are simulatedd gmound truth efficiency value is indicated in red
color.f, Benchmark pipeline using real CRISPR interfergi@®ISPRI)- based Perturb-seq datasets,
where the perturbation efficiency can be evaludiegttly via gene expressiog:h, Benchmark results
of mixscape and scMAGeCK-PS using a published Bedeq dataset, by counting the numbers of cells
or genes with strong perturbation effects. A geneonsidered to have strong perturbation effeet, if
strong negative correlation (Pearson correlatiaffmoent < -0.1) is observed between the pertudoat
score and the expression of that gene acrossralirped cells. A cell is considered to be strongly
perturbed, if its predicted efficiency score (biM#GeCK-PS or mixscape) within one cell is greater
than 0.5. The Perturb-seq experiment is performiéu low MOI condition, where most cells have only
1 expressed guide.An representative estimation results of sScMAGeCXKadrd their correlations of
ACTB expression.

Figure 2. Additional benchmark results using genome-scale Perturb-seq and ECCITE-seq. a,
Benchmark procedure using a genome-scale Pertgrargka published, pooled T cell CRISPR screen.
b, The distribution of unstimulated and stimulatedkaticells along the UMAP plot, The correlation

of predicted scores by scMAGeCK-PS and mixscedpthe Receiver-Operating Characteristic (ROC)
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curve of both methods in separating positive argatiee hitse-f, Benchmark using a published
ECCITE-seq where PDLL1 protein expression is usegblisstandardd], and the performance of
different methods in terms of predicting PLD1 pmotexpressionf].

Figur e 3. Dosage-dependent responses of perturbations. a, The correlation between a gene’s PS score
and a phenotype of interest indicates positivenggative) regulations-c, The correlation between

PDL1 protein expression and the PS score of Cl).aud STAT1 ¢). CUL3 is a known negative
regulator of PDL1, while STAT1 is a known positregulator.d, The classification of buffered or
sensitive genes, based on perturbed gene expressildAS score, The classification of buffered or
sensitive genes from published Perturb-seq datémmising essential genes in K562, The
perturbation-expression plot of PSMAS3, a bufferedeyg, The log fold changes of mark gene
expressions (columns) upon perturbing proteasomesy@ows) from the essential gene Perturb-seq
dataset.

Figure 4. Perturb-seq on HIV latency. a, The experimental design of Perturb-degrhe UMAP plot

of single-cell transcriptome profiles. Cells ardoced by three different conditions. The distribution

of BRD4 PS scordl, The expression of HIV-GFR, The correlations between HIV-GFP expression
and BRD4 PS score that does not use HIV-GFP asttgemef, The distribution of CCNT1 PS scomg.
The protein expression of HIV-GFP in response ttNCC knockout in different cell states (TNF-alpha
VS non-stimulated).

Figure 5. Pooled scRNA-seq on pancr eatic differentiation. a, Experimental design of multiplexing
scRNA-seq on the knockout clones of different gebhgghe UMAP plot of single-cell transcriptome
profiles, colored by different clusters (left) dores (right)c, The PS score distribution of HHEHX,

The percentage of cells in PP/LV/DUO cell typesifrdifferent clonese, The correlations of CCDC6
PS scores calculated from different HHEX cell typHse Pearson Correlation Coefficient (PCC) is
calculated from all cells with CCDC6 knockouts andhown as numbers on the heatnfigpwo
different distribution patterns of CCDC6 PS scoggd.he top enriched GO terms of DEG genes from
PP/PP in transition. Enrichr was used to perforncement analysidh, The percentage of cells in
PP/LV/DUO cell types from CCDC6 clonasThe percentage of cells with PDX1+ (a PP marker) o
HNF4A+ (a LV marker) by flow cytometry sorting. Thata is based on two CCDC6 knockouts (KO1,
KO2) and one wild-type (WT) control. Three indepentdreplicates are performed for each condition.
The multiple comparison-adjusted p value is cateddy one-way ANOVA test. *p<0.05, **p<0.01.

Supplementary Figure L egends

Supplementary Figure S1. Benchmark different methods using simulated and real datasets. a,

Steps to generate simulated datasets using scBdsam a real SCRNA-seq dataset that knocks out
Nelfb geneb-e, The score distribution of SSMAGeCK-PS and mixscasiag different DEG genes and
different values of true efficiencielsg, Similar with Figure 1f-g, but using a publishedniMOI
Perturb-seq dataset in the same sthely Benchmark results of different methods on angpidlished
CRISPRI-based Perturb-seq, where mismatches aoeluted into guides to attenuate perturbation
effects. The Pearson correlation coefficients (P@@sveen the predicted scores of each method and
the expressions of perturbed genes are reportex/éoy perturbed genb)( and between the predicted
scores and predicted sgRNA activitids ¢sing the prediction methods provided in theiogl study”.
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Supplementary Figure S2. A genome-scale Perturb-seq. a-b, The distribution of scMAGeCK-PS and
mixscape predicted scores of top hits including €D@) and LCK p) in the pooled screen, The
correlation between PS scores and perturbed ggmession.

Supplementary Figure S3. Predictions of PDL 1 protein expression from a published ECCITE-seq
dataset. The ROC curve, the correlations between scMAGeCKd38lts with PDL1 protein expression,
and the correlations between mixscape resultsithl protein expression are reported for each gene.
The correlations are separated by classificatibesch single cell: NP (non-perturbed), defined as
mixscape score <=0.5; and KO (knockout), definethxscape score >0.5. For a fair comparison, we
used mixscape classification results to plot P$escmid panel).

Supplementary Figure $4. Buffered genes and sensitive genes. a, RPL4, a buffered genb:c,
HSPAS and GATAL, two sensitive gendsA gene (BRD4) whose expression has no correlatitm
PS score.

Supplementary Figure S5. Thelog fold changes of gene expressions upon perturbing geneswithin
the same protein complex, including ribosomal subunita), RNA polymerasel) and mediator
complex €) in essential gene Perturb-séd) The log fold changes of proteosome gene expression
(columns) upon perturbing proteasome genes (raws) the genome-scale Perturb-seq.

Supplementary Figure S6. HIV Perturb-seq. a, The number of genes (nFeature_ RNA), UMI counts
(nCount_RNA) and the fraction of mitochondrial RNiAshree different condition®, Clustering
results.c, Enriched Gene Ontology (GO) terms of clusted,8[he distribution of BRD4-targeting
gRNAs.e, The expression distribution of BRD4 signature ganecluster 8 vs other clusters. Only cells
express BRD4-targeting gRNAs are includiedDifferential expression results between BRD4 P8lisc
vs BRD4 PS- cells.

Supplementary Figure S7. HIV Perturb-seq. a, The expressions of CCNT1 (left) and CCNT1-
targeting gRNAs (right)b, Differential expression results between CCNT1-¢#rgy cells and non-
targeting control cells in two different cell staite, The expressions of NFKB#l, The quantitative
perturbation-expression relationship between GFEPGONT1 PS score, similar with Figure 4e.

Supplementary Figure S8. Cell type assgnment based on known expression markers of different
cell typesin pancreatic differentiation sSSCRNA-seq.

Supplementary Figure S9. DEG analysis. ab, The distribution of FOXA1 PS scores across two
different clonesc, The expression pattern of FOXAd-e, The DEG analysis results of CCDC6
knockout clones vs. wild-type clones in differeatl types.f, The overlap of statistically significant
DEG genes in DE and LV/DUO cell types.

Supplementary Figure S10. Different CCDC6 functions. a-b, The two patterns of CCDC6 PS scores
in LV/DUO (a) and DE in transitionk) cell typesc-f, Additional enriched terms using Enrichr on DEG
genes of CCDC6 knockout.

Supplementary Figure S11. Flow cytometry analysis of PDX1 and HNF4A expression upon
CCDC6 knockout. One representative plots of three biological reqiés are shown.
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Supplementary Table S1. Genome-scale Perturb-seq library design.
Supplementary Table S2. HIV Perturb-seq library design.
Supplementary Table S3. Sequencing summary of HIV Perturb-seq.

Supplementary Table $4. Genotype summary of 10-clone sScRNA-seq pancreatic differentiation
dataset.
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