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Article Summary 

Methylation profiles of biological aging are less stable in childhood than has been previously 

observed in adulthood.  

 

What9s Known on This Subject 

Methylation profile scores (MPSs) index biological aging in adults and are cross-sectionally 

associated with social determinants of health in childhood. Aging-related MPSs in adulthood 

show very high test-retest stability but data on longitudinal stability of MPSs in childhood is 

sparse.  

 

What This Study Adds 

Children9s methylation profiles of biological aging are moderately stable across an 

approximately four-year period. Methylation profiles are less stable in childhood than in 
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adulthood, suggesting that aging-related biology in childhood might be more responsive to 

environmental changes than in adulthood.  
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Abstract 

 

Background and Objectives. Methylation profile scores (MPSs) index biological aging 

and aging-related disease in adults and are cross-sectionally associated with social determinants 

of health in childhood. MPSs thus provide an opportunity to trace how aging-related biology 

responds to environmental changes in early life. Information regarding the stability of MPSs in 

early life is currently lacking.  

Method. We use longitudinal data from children and adolescents ages 8-18 (N = 428, M 

age = 12.15 years) from the Texas Twin Project. Participants contributed two waves of salivary 

DNA-methylation data (mean lag = 3.94 years), which were used to construct four MPSs 

reflecting multi-system physiological decline and mortality risk (PhenoAgeAccel and 

GrimAgeAccel), pace of biological aging (DunedinPACE), and cognitive function (Epigenetic-

g). Furthermore, we exploit variation among participants in whether they were exposed to the 

COVID-19 pandemic during the course of study participation, in order to test how a historical 

period characterized by environmental disruption might affect children9s aging-related MPSs.  

Results. All MPSs showed moderate longitudinal stability (test-retest rs = 0.42, 0.44, 

0.46, 0.51 for PhenoAgeAccel, GrimAgeAccel, and Epigenetic-g, and DunedinPACE, 

respectively). No differences in the stability of MPSs were apparent between those whose second 

assessment took place after the onset of the COVID-19 pandemic vs. those for whom both 

assessments took place prior to the pandemic. 

Conclusions. Aging-related DNA-methylation patterns are less stable in childhood than 

has been previously observed in adulthood. Further developmental research on the methylome is 

necessary to understand which environmental perturbations in childhood impact trajectories of 

biological aging and when children are most sensitive to those impacts.  
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Introduction 

Childhood social adversity is linked to lifespan risk for aging-related diseases like 

cardiovascular disease, diabetes, cancer, dementia, and early mortality.135 Recent advances in -

omics technologies have led to the identification of DNA-methylation (DNAm) profiles that 

index processes of biological aging and aging-related diseases. These DNAm profile scores 

(MPSs) provide an opportunity to trace how aging-related biology responds to environmental 

changes in early life, years or even decades before the negative health sequelae of childhood 

experiences are observable.6,7 However, basic information regarding the stability and plasticity 

of MPSs in early life is currently lacking. Here, we use longitudinal data from a pediatric sample 

to investigate the early stability of trajectories of aging-related biology as measured by MPSs.  

Previous studies in adults have identified systematic patterns of DNAm differences that 

track a variety of aging-related phenotypes, including (1) biological age as measured by multi-

system physiological decline and mortality risk (PhenoAge8 and GrimAge9), (2) the pace of 

biological aging across physiological systems assessed longitudinally across midlife 

(DunedinPACE10), and (3) cognitive functions accounting for chronological age (Epigenetic-

g11).These MPSs are now amongst the strongest predictors of all-cause morbidity, mortality, and 

physiological decline in adults,12,13 offering researchers the opportunity to measure progressive 

system decline occurring in cells, tissues, and organs. Moreover, MPSs of biological aging, when 

measured in children, adolescents and young adults, are associated with known social 

determinants of life course health. Specifically, child victimization, family and neighborhood-

level socioeconomic disadvantage in childhood, and belonging to a marginalized racial or ethnic 

group are associated cross-sectionally with MPSs that index more advanced biological age, a 

faster pace of aging, and lower cognitive performance in childhood.14317 Together, this research 
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suggests that MPSs might be useful for quantifying, in real time, how early life experiences 

affect aging-related biology. However, there is currently very little information regarding when 

aging-related DNAm patterns are most sensitive to environmental change, versus when they are 

canalized into relatively stable trajectories.  

Adults9 aging-related biology shows high homeorhesis,18 a term that comes from the 

Greek for <similar flow=: Adults show highly consistent trajectories of DNAm change despite 

perturbations to their environments. Specifically, aging-related MPSs in middle-adulthood 

calculated from whole blood are very stable over time, with 16-year test-retest correlations of 

0.73, 0.85, and 0.93 for DunedinPACE, PhenoAge, and GrimAge, respectively,19 Aging-related 

biology is often hypothesized to be more plastic and more responsive to environmental 

perturbations earlier in development,20322 but longitudinal investigations of DNAm in pediatric 

samples remain rare. Previous work on telomere length has found evidence for high rank-order 

stability already in childhood (measured at age 11 and 14-year follow-up).23 Similarly, some 

saliva-based MPSs have been found to be fairly stable in adolescence: a salivary MPS of BMI 

showed a test-retest correlation of 0.63 from age 9 to 15,24 while Horvath epigenetic age 

measured in saliva showed a 2-year test-retest stability of r = 0.73 in early adolescence (mean 

age at baseline = 12.5 years).25 Whether other salivary MPSs show more longitudinal instability 

in childhood and adolescence is unknown, and this information can provide valuable context for 

understanding when aging-related biology might be most sensitive to environmental 

intervention.  

Stability may be attenuated when there are major changes in the environment with 

heterogeneous impacts on individuals. In the current study, we examine the longitudinal stability 

of aging-related MPSs in a sample spanning the ages of 8 to 18. Furthermore, we exploit an 
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exogeneous environmental shock 3 the onset of the COVID-19 pandemic, which not only 

exposed millions of children to a novel virus, but also profoundly disrupted their school, family, 

and peer environments.26329 While pandemic-mitigation policies resulted in a historic decrease in 

child poverty levels in the United States,30 the pandemic may have widened already extant 

disparities related to other psychosocial factors including isolation, lack of socialization, mental 

health concerns, disruptions in formal schooling, and material deprivation.28,29,31333 The 

heterogeneous impact of the pandemic on individuals9 lives may have introduced heterogeneity 

in experiences relevant for DNAm. A secondary aim of the study, therefore, was to test whether 

the developmental stability of aging-related MPSs in childhood was affected by exposure to 

pandemic-related environmental disruptions.  

Methods 

Sample 

The Texas Twin Project (TTP) is a population-based study of school-aged twins in 

Austin and central Texas.34 Ethical approval is granted by the University of Texas at Austin 

Institutional Review Board. Data were collected between 2014 and 2022, with a pause in 

collection from March 2020 until June 2021. Of N = 428 participants, N = 245 contributed two 

DNAm samples prior to the onset of the COVID-19 pandemic (Pre-COVID), and N = 183 

contributed one sample prior to and one sample after the onset of the pandemic (Peri-COVID). 

Sample demographics are in Table 1, and overlap between wave, batch, and COVID-19 group is 

shown in Table S1. Data acquisition by date of assessment and by chronological age is 

illustrated in Figure 1.  
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Figure 1. Acquisition of Longitudinal DNAm Data by (A) Date of Assessment and by (B) 

Participant Age.  Pre-COVID group (Black) includes participants with two waves of DNAm 

data prior to the onset of the COVID-19 pandemic. Peri-COVID group (Purple) includes 

participants with one wave of data prior and one wave after the onset of the COVID-19 

pandemic. The large increases in sample size over short periods of time are concentrated in 

summer months when participant sessions took place five to seven days per week, in 

comparison to during the school year when sessions primarily took place on weekends. No 

sessions were conducted during the first year of the COVID-19 pandemic, creating a longer 

average lag in assessment for those in the Peri-COVID group.    
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Measures 

DNAm preprocessing. Saliva samples (2 mL) were collected using Oragene kits (DNA 

Genotek, Ottawa, ON, Canada). DNA extraction and methylation profiling was conducted by 

Edinburgh Clinical Research Facility (UK). The Infinium MethylationEPIC BeadChip kit 

(Illumina, Inc., San Diego, CA) was used to assess methylation levels at 850,000 methylation 

sites. DNAm preprocessing was primarily conducted with the 8minfi9 package in R.35 Within-

array normalization was performed to address array background correction, red/green dye bias, 

and probe type I/II correction.36 Noob preprocessing as implemented by minfi9s 

<preprocessNoob=37 is a background correction and dye-bias equalization method that has 

similar within-array normalization effects on the data as probe type correction methods such as 

BMIQ.38  

CpG probes with detection p > 0.01 and fewer than 3 beads in more than 1% of the 

samples and probes in cross-reactive regions were excluded.39 Samples were excluded if (1) they 

showed low intensity probes as indicated by the log of average methylation <9 and their 

detection p is > 0.01 in >10% of their probes, (2) their self-reported and methylation- estimated 

sex mismatched, and (3) their self-reported and DNA-estimated sex mismatched. Cell 

composition of immune and epithelial cell types (i.e., CD4+ T-cell, natural killer cells, 

neutrophilseosinophils, B cells, monocytes, CD8+ T-cell, and granulocytes) was estimated using 

a child saliva reference panel implemented in the R package <BeadSorted.Saliva.EPIC= within 

<ewastools=.40 Surrogate variable analysis was used to correct methylation values for batch 

effects using the <combat= function in the SVA package,41 which is important for longitudinal 

analyses. Longitudinal wave was not completely confounded with each batch and there were 20 

technical repeats to assess reliability.  
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MPSs. MPSs for PhenoAge, GrimAge, DunedinPACE and Epigenetic-g were computed 

using algorithms from previous epigenome-wide association studies (EWAS) and elastic net 

analyses (see Table 2; DunedinPACE and epigenetic-g were preregistered outcomes. PhenoAge 

and GrimAge were added subsequently due to their relevance for health and mortality and their 

strong associations with age). All MPSs were residualized for array, slide, batch, cell 

composition and then standardized in the pooled sample (Mean = 0, SD = 1) to ease 

interpretation. Analysis of 20 technical replicates in our sample suggests that measurement 

reliability of the MPSs analyzed here (residualized for technical artifacts and cell composition) is 

good (intraclass correlation coefficients for PhenoAge = 0.79 , GrimAge = 0.85, DunedinPACE 

= 0.78, epigenetic-g = 0.73). See Table 2 for a description of covariate measures.  

Statistical Analyses  

Our analysis plan was pre-registered in Open Science Framework (OSF; 

https://osf.io/mfybr/). We first assessed how each MPS was associated with chronological age. In 

all subsequent analyses, MPSs were residualized for chronological age, thus MPS values reflect 

the extent to which children were higher or lower than other children their age. For each age-

residualized MPS, we conducted a series of longitudinal models regressing Wave 2 MPS on 

Wave MPS and on other predictors and covariates of interest. We fit regressions using linear 

mixed models implemented with the lme4 R package.42 All models included a random intercept, 

representing the family-level intercept of the dependent variable, to correct for non-independence 

of twins within families. Standardized betas and 95% confidence intervals are reported for each 

model. A p-value of less than 0.05 indicated a statistically significant effect of the predictor 

variable(s) on the dependent variables. Within each set of models, we controlled for multiple 

testing using the Benjamini3Hochberg false discovery rate (FDR) method (using a family of four 
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tests, representing each of the four MPSs under study),43 Nominal and FDR-adjusted p-values 

are denoted in each table.  

Results 

Methylation Profile Scores Show Variable Patterns of Age-Related Mean Change 

All MPSs were significantly correlated with age (PhenoAge: r = 0.69, 95% CI [0.65, 

0.72]; GrimAge: r = 0.68, 95% CI [0.65, 0.72]; DunedinPACE: r = 0.08, 95% CI [0.02, 0.15]; 

Epigenetic-g: r = 0.35, 95% CI [0.29, 0.41]. That is, all MPSs were higher in older than in 

younger children, with the strongest age differences evident for MPSs that included age as a 

training variable (PhenoAge, GrimAge), rather than trained on phenotypic differences between 

age-matched participants (DunedinPACE, Epigenetic-g). To formally test within-person age-

related change in MPSs, we regressed each MPS on both between-person age differences (an 

individual9s mean age across two waves) and within-person age changes (the deviation between 

an individual9s age at each wave from their mean age across waves). Results show that there was 

significant within-person age-related change in GrimAge, which increased by 0.19 per year (b = 

0.19, 95% CI [0.17, 0.22], t(850) = 14.30, p < .001) and in PhenoAge (b = 0.22, 95% CI [0.19, 

0.25], t(850) = 16.31, p < .001). There was also within-person age-related change in Epigenetic-g 

(b = 0.10, 95% CI [0.07, 0.14], t(850) = 6.00, p < .001), but not in DunedinPACE (beta = 0.02, 

95% CI [-0.02, 0.05], t(850) = 0.88, p = 0.381). Plotting the individual age-related trajectories 

from Wave 1 to Wave 2 (Figure 2) suggests that there was considerable variability around the 

mean age-related trends.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.30.564766doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.30.564766
http://creativecommons.org/licenses/by-nc/4.0/


CHILDHOOD STABILITY OF MPSs 11 

 

 
 

Figure 2. Age-Related Changes in Methylation Profiles Scores (MPSs) in Childhood. Each 

line represents one individual9s MPS trajectory from Wave 1 to Wave 2. PhenoAge and 

GrimAge are measures of biological age and mortality risk, with greater scores indicating 

greater biological age. DunedinPACE is a measure of pace of biological aging, with scores 

indicating years of physiological decline per calendar year. Epigenetic-g is a measure of 

cognitive function in adults accounting for chronological age, with higher scores reflective of 

higher general cognitive function. 
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MPSs Exhibit Moderate Rank-Order Stability in Children and Adolescents 

All subsequent analyses residualized each MPS for the effects of chronological age, so 

that estimates of rank-order stability are not biased by age-related differences within our age-

heterogeneous sample. The resulting <acceleration= variables represent how a child9s MPS 

compared to other children the same age. For each MPS, the two waves of data were moderately 

correlated (PhenoAgeAccel: Pearson9s r = 0.42, 95% CI 0.34 to 0.49; GrimAgeAccel: Pearson9s 

r = 0.44, 95% CI 0.36 to 0.51; DunedinPACE: Pearson9s r = 0.51, 95% CI 0.43 to 0.57; 

Epigenetic-g: Pearson9s r = 0.46, 95% CI 0.38 to 0.53). These results suggest that child MPSs 

show considerably less stable trajectories of aging-related DNAm than do adult MPSs.19 Figure 

3 compares these test-retest correlations to the developmental stability of other aspects of health 

and development. Relative to other phenotypes in childhood,52358 MPSs show about as much 

longitudinal (in)stability as child personality, which is considerably less stable than 

anthropometric or cognitive measurements. 
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Figure 3. Rank-order stability (test-retest correlations) for child/adolescent methylation 

profile scores of accelerated biological age, pace of aging, and cognitive performance (~ 4-

year lag) in comparison to other aspects of child health and development. Bayer et al. 

201144; Height (4- to 7-year lag; estimates averaged for males and females): Power et al., 

1997 , BMI (4- to 7-year lag; estimates averaged for males and females): Power et al., 199745; 

Personality (5-year lag): Bleidorn et al., 202246; Cognition (6-year lag): Tucker-Drob & 

Briley47, 2014; Adult MPSs (16-year lag):Reed et al., 2022.19  

 

To formally test the rank-order stability of MPSs, we first regressed Wave 2 MPS on 

Wave 1 MPS (Table 3, Model 1), and then statistically controlled for demographic covariates. 

Results were generally unchanged upon addition of covariates, with bs ranging from 0.37 to 0.42 

(Table 3, Model 2). The previous analyses assess stability at the mean lag in assessment of 3.94 

years (by including a term of lag centered at the mean lag). Upon inclusion of a Lag*Wave 1 

interaction term, which allows for an exploration of the effect of stability at different lags in 
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assessment, main effect estimates of stability are nearly identical to the model without an 

interaction term (PhenoAgeAccel: b = 0.37, 95% CI 0.28, 0.46; GrimAgeAccel: b = 0.39, 95% 

CI 0.29, 0.49; DunedinPACE: b = 0.41, 95% CI 0.33, 0.50; Epigentic-g: b = 0.42, 95% CI 0.33, 

0.52). The interaction terms were non-significant (PhenoAgeAccel: b = 0.02, 95% CI -0.06, 

0.11; GrimAgeAccel: b = 0.02, 95% CI -0.07, 0.10; DunedinPACE: b = -0.05, 95% CI -0.13, 

0.04; Epigentic-g: b = 0.04, 95% CI -0.06, 0.13), suggesting that stability did not increase or 

decrease over different lags. Additionally, stability did not vary over different ages at first 

assessment (Supplemental Table 2). Means and variances of MPSs at Wave 1 and Wave 2 are 

reported in Table 1.  

There were statistically significant sex differences in Wave 2 MPSs. Males exhibited 

lower PhenoAgeAccel (b = -0.42, 95% CI -0.60 to -0.25 and age-residualized DunedinPACE (b 

= -0.32, 95% CI -0.48 to -0.16); Table 3, Model 2). There were also significant race/ethnic 

differences in PhenoAgeAccel and age-residualized DunedinPACE. Participants identifying as 

Latinx exhibited faster pace of aging as indicated by age-residualized DunedinPACE compared 

to those identifying as White (Latinx: b = 0.14, 95% CI 0.05 to 0.24). Participants who identified 

as Black exhibited a faster pace of aging and more advanced biological age as indicated by age-

residualized DunedinPACE (b = 0.11, 95% CI 0.02 to 0.21), PhenoAgeAccel (b = 0.16, 95% CI 

0.06 to 0.26), and GrimAgeAccel (b = 0.12, 95% CI 0.02 to 0.22; Table 3, Model 2) compared 

to those identifying as White. That these race/ethnic differences were apparent for Wave 2 MPSs 

even after controlling for Wave 1 MPSs suggests that racial/ethnic disparities are widening over 

development.  

We then controlled for developmental covariates including BMI, pubertal development, 

and change in pubertal development (pre-registered). We additionally adjusted for family SES 
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due to the significant difference in this variable between groups (the Peri-COVID group had a 

higher overall SES, consistent with the hypothesis that the effects of socioeconomic hardship on 

study participation were heightened during the pandemic). Results were unchanged (Table 3, 

Model 3).  

To assess whether rank-order stability is socially stratified, we regressed Wave 2 MPS on 

Wave 1 MPS, SES covariates (Family SES and COVID-19 related socioeconomic stress), and 

the interactions between Wave 1 DNAm and each SES covariate. There were no statistically 

significant main effects or interaction effects for any MPS (Table 5, Models 1, 2 & 3).  

Rank-Order Stabilities of MPSs Do Not Differ as a Function of COVID-19 

To assess differences in rank-order stability between the Pre-COVID and Peri-COVID 

groups (illustrated in Figure 4), we regressed Wave 2 MPS on Wave 1 MPS, COVID-19 group, 

and on their interaction (Table 4). Neither the main effect of COVID-19 group nor its interaction 

effect with Wave 1 MPS were significantly different from zero for any MPS, indicating that 

there were no significant differences by COVID-19 group in mean-level change (represented by 

the main effect of COVID-19 group) or rank-order stability (represented by the interaction effect 

of COVID-group and Wave 1 DNAm). This is illustrated in Figure 4 by the similarity of slopes 

across groups (representing rank-order stability) and the similar position of regression line 

midpoints relative to the y-axis across groups (representing mean-level change). Results were 

unchanged upon the addition of demographic and developmental covariates (Table 4, Models 2 

& 3).  
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Figure 4. Rank-Order Stability of Age-Residualized Methylation Profiles Scores (MPSs). 

PhenoAge and GrimAge Acceleration are measures of more advanced biological age, with 

greater scores indicating older biological age compared to same-aged peers. DunedinPACE is 

a measure of pace of biological aging, with scores indicating a faster pace of physiological 

decline per calendar year. Epigenetic-g is a measure of cognitive function, with higher scores 

reflective of higher general cognitive function. All MPSs were residualized for cell 

composition and standardized, such that values reflect the extent to which children were 

higher or lower than other children their age.  
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Discussion 

Studies in adults have identified patterns of DNAm that reflect biological aging and that 

are highly stable and robust predictors of future morbidity and mortality. Children are often 

hypothesized to be more sensitive to environmental perturbations than are adults, but this is not 

always the case, and basic data regarding the longitudinal stability of MPSs is lacking. In this 

study, we provided the first test of the longitudinal stability of aging-related MPSs in childhood 

and examined whether these MPSs were affected by the environmental disruptions associated 

with the onset of the COVID-19 pandemic.  

We had two major findings. First, in contrast to adults, who show highly stable 

trajectories of aging-related biology (16-year, whole blood MPS test-retest correlations ranging 

from 0.73 to 0.9319), we found moderate stability of child and adolescent salivary MPSs over 

about four years (with test-retest correlations comparable to child personality46). If lower levels 

of stability of MPSs during development is driven by sensitivity to environmental variation over 

time, our findings suggest that early life may be a more sensitive period for interventions that 

impact DNAm. Alternatively, greater instability in MPSs in this age range might be due to 

variation in pubertal development48,49; however, aging-related MPSs were largely unrelated to 

either pubertal status or change in pubertal status in our sample. Which environmental changes 

are capable of perturbing these trajectories, however, remain unknown. Environmental and 

behavioral interventions including calorie restriction and smoking cessation can affect MPSs and 

individual DNAm sites even in adulthood, when MPSs are highly stable.50352 

Second, children who were exposed to the environmental disruptions and exposures of 

the COVID-19 pandemic did not show significant differences in their developmental trajectories 

of MPSs. Children who lived through the pandemic also did not show differences in mean-level 
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change of MPSs. The COVID-19 pandemic parallels the 1918 influenza pandemic, which had 

long-term negative consequences for education, disability, and socioeconomic outcomes decades 

after the pandemic,53 The shock of the COVID-19 pandemic may similarly impact 

developmental trajectories in ways that that do not operate via the MPSs examined here or are 

not apparent within our study time frame.26 

It is of note that SES did not exhibit main effects on MPSs at follow-up incremental of 

baseline MPS levels, nor did SES moderate the stability of MPSs, since previous work has 

documented associations between socioeconomic disadvantage and accelerated pace of 

biological aging.15,54,55 That SES is not associated with later MPSs above and beyond their 

baseline levels suggest that socioeconomic disparities in MPSs in later adolescence and 

adulthood may be canalized via effects operating at earlier points in development. This is 

supported by recent research finding that SES at birth is more strongly associated with a MPS of 

BMI in childhood and adolescence than concurrent measures of SES.24 It is possible, however, 

that over longer time lags, MPSs may more substantially reorder such that (main and 

moderating) effects of SES on stability and change become apparent. 

Limitations 

There are several limitations to note. First, we use data from only two waves spanning 

late childhood through adolescence, and results cannot be generalized to different time lags or 

different developmental stages, notably infancy and early childhood.56 Second, the reliability of 

DNAm measurement varies across probes57, and measurement unreliability downwardly biases 

estimates of longitudinal stability. However, analysis of 20 technical replicates in our sample 

suggests that measurement reliability of the MPSs analyzed here is good. Third, our study 
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sample differed from the discovery samples in which MPS algorithms were derived, including 

differences in participant demographics and sampling strategies.58,59  

Most notably, our study was conducted with salivary DNAm samples (consisting of a 

mixture of ~65% leukocytes and ~ 35% buccal cells), whereas the DNAm samples in adult 

discovery and longitudinal samples were blood-based (100% leukocytes), raising the concern 

that the lower longitudinal stability observed here might be driven by tissue differences rather 

than developmental differences. While cross-tissue DNAm comparisons remain limited, 

particularly in pediatric samples, results from recent investigations alleviate this concern. One 

study of 11-year-old children found that only 3.5% of CpG sites were differently methylated 

between saliva and blood;60 another study with participants spanning ages 13 to 73 found that 

blood and saliva samples showed a very high genome-wide DNAm correlation (r = .97).61 

Furthermore, other salivary MPSs (for BMI and epigenetic age) have demonstrated strong 

longitudinal stability in adolescence.24,25 Together these results suggest that the relative 

instability of aging-related MPSs observed in the current study is not an artifact of salivary 

DNAm measurement. Nevertheless, as saliva is more feasible to collect in large pediatric cohorts 

than blood, future research on how aging-related biology changes in early life will benefit from 

the development of MPSs specifically trained on salivary data. 

Conclusions 

The current study provides evidence for moderate rank-order stability during childhood and 

adolescence in MPSs that have implications for long-term health and disease. A more 

comprehensive understanding of canalization of the methylome is needed, given that early life 

environments may lead to persisting molecular changes that influence morbidity and mortality 
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much later in life. Further investigation of MPSs during early developmental years is needed to 

understand what is necessary to elicit meaningful change in these indices of biological aging.
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 Table 1. Descriptive Statistics of Study Measures  

  Full Sample 
(n=428) 

Pre-COVID 
(n=245) 

Peri-COVID 
(n=183) 

p-value 

PhenoAge (M, SD) 

   Wave 1 
   Wave 2 

GrimAge (M, SD) 

   Wave 1 

   Wave 2 

DunedinPACE (M, SD) 

   Wave 1 

   Wave 2 

Epigenetic-g (M, SD) 

   Wave 1 

   Wave 2 

 

0.00 (0.66) 
-0.06 (0.68) 

 

0.04 (0.70) 

-0.09 (0.66) 

 

0.04 (1.01) 

-0.01 (1.02) 

 

0.01 (0.83) 

-0.11 (0.91) 

 

0.02 (0.70) 
-0.07 (0.72) 

 

0.03 (0.70) 

-0.08 (0.71) 

 

0.12 (1.03) 

0.04 (1.03) 

 

0.00 (0.83) 

-0.12 (0.84) 

 

-0.02 (0.60) 
-0.06 (0.61) 

 

0.05 (0.70) 

-0.11 (0.59) 

 

-0.08 (0.97) 

-0.09 (0.99) 

 

0.02 (0.83) 

-0.09 (1.01) 

 

0.49 
0.96 

 

0.75 

0.72 

 

0.04* 

0.19 

 

0.82 

0.67 

 

Age in years (M, SD) 

   Wave 1  
   Wave 2  

 

12.15 (2.48) 
14.54 (2.34) 

 

12.39 (2.63) 
14.33 (2.52) 

 

11.8 (2.23) 
14.82 (2.04) 

 

0.02* 
0.03* 

Confirmed prior COVID-19 infection and/or household 
exposure (N, %) 

 
182 (99.5) 

 
0 (0) 

 
182 (99.5) 

 
4 

Pubertal development (M, SD) 

   Wave 1 

   Wave 2 

Change in Pubertal Status (Wave 1 to Wave 2) 

BMI Wave 1 (M, SD) 

Family SES (M, SD) 

Assessment lag in years (M, SD) 

Days since onset of COVID-19 pandemic (M, SD) 

Biological sex (N, %) 

Female 

Male 

 

2.26 (0.87) 

2.86 (0.84) 

0.62 (0.72) 

-0.03 (1.19) 

0.02 (0.76) 

3.94 (1.75) 

4 

 

216 (0.51) 

212 (0.50) 

 

2.32 (0.90) 

2.70 (0.88) 

0.38 (0.65) 

0.09 (1.22) 

-0.30 (0.87) 

3.14 (1.16) 

4 

 

119 (48.6) 

126 (51.4)  

 

2.17 (0.81) 

3.06 (0.73) 

0.95 (0.69) 

-0.19 (1.12) 

0.23 (0.60) 

5.02 (1.83) 

495.6 (18.9) 

 

97 (53.0) 

86 (47.0) 

 

0.08 

< 0.001* 

< 0.001* 

0.01* 

0.02* 

< 0.001* 

4 

 

0.42 

0.42 

Race and ethnicity (N, %) 

Non-Latinx White 
Latinx 

Black/African American 

Asian & Other Race/Ethnicity 

Latinx-White 

 

255 (59.6) 
43 (10.0) 

47 (11.0) 

51 (11.9) 

32 (7.5) 

 

148 (60.4) 
30 (12.2) 

28 (11.4) 

25 (10.2) 

14 (5.7)  

 

107 (58.5) 
13 (7.1) 

19 (10.4) 

26 (14.2) 

18 (9.8)  

 

0.70 
0.11 

0.85 

0.27 

0.16 
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 Note. Pre-COVID group includes participants with two waves of methylation data prior to the onset of the COVID-19 pandemic. Peri-

COVID group includes participants with one wave of data prior and one wave after the onset of the COVID-19 pandemic. BMI and 

Family SES were standardized across all observations. Pubertal development ranges from 1 = <Not yet begun= to 4 = <Has finished 

changing.= Onset of COVID-19 pandemic estimated at March 1, 2020. PhenoAge, GrimAge, DunedinPACE, and Epigenetic-g were 

residualized for cell composition and standardized, such that values reflect the extent to which children were higher or lower than the 

sample average. P-values for group differences correspond to X2 tests  (categorical variables) and t-tests (continuous variables). 

Significant differences between Pre-COVID and Peri-COVID groups are denoted with *. PhenoAge, GrimAge, DunedinPACE, and 

Epigenetic-g were standardized across all observations in the epigenetic sample. 
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Table 2. Description of Measures 
Measure Description 

PhenoAge8 PhenoAge was calculated using the algorithm available at 

https://github.com/MorganLevineLab/PC-Clocks. PhenoAge is an age estimate, with greater 

scores indicating greater biological age. The PhenoAge algorithm was originally trained on nine 

clinical biomarkers (e.g., albumin, creatinine, C-reactive protein, and white blood cell count) and 

chronological age in adults ages 21 to 100.  

GrimAge9 GrimAge was calculated using the algorithm available at 

https://github.com/MorganLevineLab/PC-Clocks. GrimAge is an age estimate, with greater 
scores indicating greater biological age. GrimAge was trained on DNAm-based smoking pack-

years, age, sex, and seven DNAm-based surrogate markers of plasma proteins. 

DunedinPACE pace 

of aging10 

DunedinPACE was calculated as a composite phenotype calculated using a published algorithm 

available at https://github.com/danbelsky/DunedinPACE. Scores indicate years of physiological 

decline experience per calendar year. The expected value of DunedinPACE in midlife adults is 1. 

Values >1 indicate accelerated aging, while values <1 indicate slowed aging. DunedinPACE 

measures the rate at which aging occurs and was derived from analysis of longitudinal changes at 

19 biomarkers (e.g., body mass index, glycated hemoglobin, total cholesterol, cardiorespiratory 

fitness, and tooth decay) measured at 26, 32, 38, and 45 years of age in the Dunedin Study.  

Epigenetic-g11 Epigenetic-g was calculated using the algorithm available at 

https://gitlab.com/danielmccartney/ewas_of_cognitive_funct. Prior to computation, methylation 

values were scaled within each CpG site (mean = 0, SD = 1). Higher scores represent greater 

cognitive function. A higher score indicates a profile that more closely resembles the profile of 
adults from the Generation Scotland Study who performed higher on tests of general function, 

including logical memory, digit symbol test score, verbal fluency, and vocabulary. Epigenetic-g 

was computed using a blood-based algorithm from an epigenome-wide association study of 

general cognitive functions in adults ages 18 to 93. 

Assessment lag Lag between first and second assessments was calculated in years and centered at the pooled 

sample mean lag (3.94 years); see Figure 1 for visualization of assessment lag. 

DNAm-Smoke A poly-DNA-methylation measure of tobacco exposure was derived by summing the product of 

the weight and the individual beta estimate for each individual at each CpG site significantly 

associated with cigarette smoking in a discovery EWAS62. 

Family-level 

Socioeconomic 

Status (SES) 

A family-level SES index score was computed as a composite of standardized, log transformed 

parent-reported household income and average, standardized parental education level. 

COVID-19-related 

Socioeconomic 

Stress 

Parent-reported socioeconomic stressors unique to the pandemic were used to compute a 

dummy-coded variable based on loss of employment income and/or received or applied for 

unemployment insurance, with a score of 1 indicating experiencing one or both of these 

stressors. 

Body Mass Index 
(BMI) 

BMI at Wave 1 was determined from measurements of height and weight and was transformed 
to gender and age-normed z-scores according to the US Centers for Disease Control and 

Prevention method (https://www.cdc.gov/growthcharts/percentile_data_files.htm). Height and 

weight were measured in-laboratory. 

Pubertal 

Development 

Self-reported pubertal development was measured with the Pubertal Development Scale63, which 

shows good reliability and validity, to assess pubertal development across five sex-specific 

domains. Pubertal status score was measured computing the average response (1 = <Not yet 

begun= to 4 = <Has finished changing=) across items, and was residualized for age, gender, and 

age by gender. 
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Table 3. Regression of MPSs at Wave 2 on Wave 1 

  
PhenoAgeAccel 

(Wave 2) 
GrimAgeAccel (Wave 2)  Dunedin PACE (Wave 2) Epigenetic-g (Wave 2) 

Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.38* 0.29, 0.47 0.41* 0.32, 0.50 0.45* 0.37, 0.53 0.42* 0.33, 0.51  

Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.37* 0.28, 0.46 0.39* 0.29, 0.49 0.41* 0.33, 0.50 0.42* 0.33, 0.51 

Group (Peri-COVID) -0.07 -0.31, 0.16 -0.19 -0.42, 0.04 -0.06 -0.27, 0.16 -0.06 -0.29, 0.18 

Assessment Lag 0.08 -0.04, 0.20 0.14 0.02, 0.25 -0.01 -0.12, 0.09 0.09 -0.03, 0.20 

Sex (Male) -0.42* -0.60,  -0.25 0.09 -0.10, 0.28 -0.32* -0.48, -0.16 -0.01 -0.19, 0.17 

Latinx 0.02 -0.08, 0.12 0.07 -0.03, 0.16 0.14* 0.05, 0.24 -0.02 -0.12, 0.08 

BlackPlus 0.16* 0.06, 0.26 0.12* 0.02, 0.22 0.11* 0.02, 0.21 -0.06 -0.16, 0.04 

AsianPlusOther 0.02 -0.08, 0.12 -0.01 -0.11, 0.09 0.04 -0.05, 0.13 -0.03 -0.13, 0.06 

LatinxWhite 0.01 -0.09, 0.12 0.02 -0.07, 0.12 0.09 0.00, 0.18 0.01 -0.09, 0.11 

DNAm-Smoke  -0.06 -0.15, 0.03 0.02 -0.08, 0.12 0.10 0.02, 0.19 -0.09 -0.18, 0.00 

Model 3 (N=251) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.36* 0.23, 0.48 0.39* 0.25, 0.52 0.44* 0.32, 0.55 0.43* 0.31, 0.54 

Group (Peri-COVID) -0.00 -0.34, 0.33 -0.14 -0.45, 0.18 -0.14 -0.45, 0.17 -0.19 -0.51, 0.13 

Assessment Lag 0.11 -0.05, 0.27 0.14 -0.02, 0.29 0.07 -0.08, 0.21 0.09 -0.06, 0.25 

Sex (Male) -0.38* -0.62, -0.13 0.20 -0.06, 0.47 -0.43* -0.65, -0.20 -0.06 -0.30, 0.18 
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Latinx 0.00 -0.14, 0.14 -0.05 -0.18, 0.09 0.12 -0.01, 0.25 -0.02 -0.16, 0.11 

BlackPlus 0.10 -0.03, 0.24 0.07 -0.06, 0.20 0.12 -0.01, 0.25 -0.11 -0.25, 0.02 

AsianPlusOther 0.02 -0.12, 0.15 -0.01 -0.13, 0.12 0.02 -0.11, 0.14 -0.05 -0.18, 0.08 

LatinxWhite -0.04 -0.17, 0.10 -0.04 -0.16, 0.09 0.09 -0.03, 0.21 -0.02 -0.15, 0.10 

DNAm-Smoke 0.01 -0.12, 0.14 0.07 -0.06, 0.20 0.08 -0.03, 0.20 -0.01 -0.13, 0.11 

Family SES (Wave 2) 0.02 -0.13, 0.17 -0.09 -0.23, 0.05 -0.06 -0.20, 0.08 0.09 -0.05, 0.23 

BMI (Wave 1) 0.05 -0.08, 0.17 0.01 -0.11, 0.13 -0.00 -0.12, 0.11 -0.02 -0.14, 0.09 

PDS (Wave 1) 0.02 -0.14, 0.19 0.02 -0.14, 0.18 0.01 -0.14, 0.16 0.05 -0.11, 0.21 

DPDS -0.04 -0.20, 0.13 -0.06 -0.22, 0.10 0.12 -0.04, 0.27 0.01 -0.15, 0.17 

 

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after FDR 

correction are denoted with *. All MPSs were age-residualized. 
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Table 4. Regression of Wave 2 MPSs on the Interaction between Wave 1 MPSs and COVID-19 Group 

  
PhenoAgeAccel 

(Wave 2) 
GrimAgeAccel (Wave 2)  Dunedin PACE (Wave 2) Epigenetic-g (Wave 2) 

Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.38* 0.26, 0.49 0.37* 0.25, 0.48 0.51* 0.40, 0.62 0.36* 0.25, 0.48 

Group (Peri-COVID) 0.02 -0.18, 0.22 -0.06 -0.25, 0.14 -0.04 -0.23, 0.14 0.03 -0.16, 0.22 

MPS Wave 1 * Group 

(Peri-COVID) 

0.01 -0.17, 0.20 0.10 -0.08, 0.28 -0.15 -0.32, 0.02 0.14 -0.04, 0.32 

Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.36* 0.25, 0.47 0.36* 0.23, 0.49 0.46* 0.35, 0.57 0.36* 0.24, 0.48 

DNAm Wave 1*Group 

(Peri-COVID) 

0.02 -0.16, 0.21 0.07 -0.10, 0.25 -0.11 -0.28, 0.05 0.15 -0.03, 0.32 

Group (Peri-COVID) -0.07 -0.31, 0.16 -0.19 -0.42, 0.04 -0.05 -0.27, 0.16 -0.05 -0.28, 0.18 

Assessment Lag 0.08 -0.04, 0.20 0.14 0.02, 0.25 -0.02 -0.13, 0.09 0.08 -0.03, 0.20 

Sex (Male) -0.42* -0.60, -0.25 0.08 -0.11, 0.27 -0.31* -0.47, -0.14 0.00 -0.18, 0.17 

Latinx 0.02 -0.08, 0.12 0.07 -0.03, 0.16 0.14* 0.05, 0.23 -0.03 -0.12, 0.07 

BlackPlus 0.16* 0.06, 0.26 0.12* 0.02, 0.21 0.11* 0.02, 0.20 -0.07 -0.17, 0.03 

AsianPlusOther 0.02 -0.08, 0.12 -0.01 -0.11, 0.09 0.04 -0.05, 0.13 -0.03 -0.13, 0.07 

LatinxWhite 0.01 -0.09, 0.12 0.02 -0.08, 0.12 0.09 0.00, 0.18 0.02 -0.08, 0.11 

DNAm-Smoke -0.06 -0.15, 0.03 0.02 -0.08, 0.12 0.10 0.02, 0.19 -0.09 -0.18, 0.00 

Model 3 (N=251) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 
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MPS Wave 1 0.37* 0.17, 0.56 0.33* 0.13, 0.52 0.61* 0.44, 0.79 0.36* 0.18, 0.55 

Group (Peri-COVID) 0.00 -0.34, 0.34 -0.14 -0.45, 0.18 -0.13 -0.44, 0.17 -0.18 -0.50, 0.14 

MPS Wave 1* Group 
(Peri-COVID) 

-0.01 -0.26, 0.24 0.10 -0.14, 0.34 -0.28 -0.50, -0.06 0.10 -0.13, 0.34 

Assessment Lag 0.11 -0.06, 0.27 0.14 -0.01, 0.29 0.04 -0.11, 0.19 0.09 -0.07, 0.24 

Sex (Male) -0.38* -0.63, -0.13 0.19 -0.07, 0.46 -0.41* -0.63, -0.18 -0.06 -0.30, 0.18 

Latinx 0.00 -0.14, 0.15 -0.05 -0.19, 0.08 0.13 0.00, 0.26 -0.03 -0.16, 0.11 

BlackPlus 0.11 -0.03, 0.24 0.06 -0.07, 0.19 0.12 -0.01, 0.24 -0.12 -0.25, 0.02 

AsianPlusOther 0.02 -0.12, 0.15 -0.01 -0.14, 0.12 0.01 -0.11, 0.13 -0.05 -0.18, 0.08 

LatinxWhite -0.04 -0.17, 0.10 -0.04 -0.17, 0.09 0.10 -0.02, 0.22 -0.02 -0.15, 0.11 

DNAm-Smoke 0.01 -0.12, 0.14 0.07 -0.06, 0.21 0.07 -0.04, 0.19 -0.01 -0.13, 0.11 

Family SES 0.02 -0.13, 0.17 -0.09 -0.23, 0.05 -0.04 -0.17, 0.10 0.09 -0.05, 0.23 

BMI (Wave 1) 0.05 -0.08, 0.17 0.02 -0.10, 0.14 -0.02 -0.14, 0.09 -0.02 -0.14, 0.10 

PDS (Wave 1) 0.02 -0.14, 0.19 0.02 -0.14, 0.18 0.03 -0.12, 0.18 0.05 -0.11, 0.21 

DPDS -0.04 -0.20, 0.13 -0.06 -0.22, 0.10 0.14 -0.01, 0.29 0.00 -0.16, 0.16 

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after 
FDR correction are denoted with *. All MPSs were age-residualized. 
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Table 5. Regression of DNAm at Wave 2 on Interactions between DNAm at Wave 1 and SES Covariates 

  
PhenoAgeAccel 

(Wave 2) 
GrimAgeAccel (Wave 2)  Dunedin PACE (Wave 2) Epigenetic-g (Wave 2) 

Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.43* 0.29, 0.58 0.52* 0.39, 0.65 0.31* 0.17, 0.45 0.45* 0.31, 0.59 

Family SES 0.06 -0.10, 0.23 0.01 -0.13, 0.15 -0.17 -0.33, 0.00 0.06 -0.09, 0.22 

COVID SES Stress -0.04 -0.20, 0.13 0.04 -0.09, 0.18 0.03 -0.14, 0.20 0.11 -0.05, 0.26 

MPS Wave 1*Family SES 0.09 -0.08, 0.26 0.12 -0.04, 0.28 0.03 -0.15, 0.21 0.02 -0.13, 0.17 

MPS Wave 1*COVID SES Stress 0.08 -0.08, 0.25 0.08 -0.06, 0.23 -0.07 -0.21, 0.06 0.02 -0.13, 0.17 

Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.43* 0.28, 0.58 0.43* 0.27, 0.59 0.29* 0.15, 0.44 0.41* 0.26, 0.56 

Family SES 0.06 -0.11, 0.22 0.00 -0.15, 0.14 -0.13 -0.29, 0.03 0.04 -0.12, 0.20 

COVID SES Stress -0.04 -0.23, 0.14 -0.01 -0.16, 0.14 0.02 -0.15, 0.20 0.13 -0.04, 0.29 

MPS Wave 1*Family SES 0.07 -0.10, 0.25 0.09 -0.08, 0.25 0.07 -0.11, 0.26 0.04 -0.11, 0.20 

MPS Wave 1*COVID SES Stress 0.09 -0.08, 0.26 0.08 -0.06, 0.23 -0.04 -0.17, 0.10 0.01 -0.14, 0.17 

Assessment Lag 0.14 -0.04, 0.32 0.15 -0.00, 0.30 -0.03 -0.21, 0.14 0.13 -0.04, 0.29 

Sex (Male) -0.27 -0.57, 0.03 0.34 0.03, 0.64 -0.36 -0.66, -0.07 -0.13 -0.42, 0.16 

Latinx 0.00 -0.17, 0.17 -0.00 -0.14, 0.14 0.20 0.03, 0.38 -0.06 -0.22, 0.09 

BlackPlus 0.15 -0.03, 0.32 0.11 -0.04, 0.26 0.09 -0.08, 0.27 -0.09 -0.26, 0.07 

AsianPlusOther 0.06 -0.11, 0.23 0.05 -0.09, 0.20 -0.06 -0.23, 0.11 -0.08 -0.24, 0.08 

LatinxWhite 0.02 -0.16, 0.19 0.01 -0.13, 0.16 0.14 -0.03, 0.31 -0.09 -0.26, 0.07 
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DNAm-Smoke  0.01 -0.15, 0.17 0.07 -0.09, 0.22 0.02 -0.13, 0.18 -0.00 -0.15, 0.15 

Model 3 (N=146) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.40* 0.23, 0.56 0.43* 0.26, 0.61 0.32* 0.16, 0.47 0.37* 0.21, 0.54 

Family SES 0.07 -0.11, 0.25 -0.03 -0.18, 0.13 -0.08 -0.26, 0.10 0.05 -0.12, 0.21 

COVID SES Stress -0.03 -0.23, 0.17 0.01 -0.16, 0.18 0.00 -0.19, 0.20 0.16 -0.02, 0.33 

MPS Wave 1*Family SES 0.10 -0.10, 0.30 0.09 -0.08, 0.27 0.10 -0.10, 0.30 0.10 -0.07, 0.27 

MPS Wave 1* COVID SES Stress 0.12 -0.06, 0.30 0.08 -0.08, 0.23 -0.07 -0.23, 0.08 0.03 -0.14, 0.19 

Assessment Lag 0.13 -0.08, 0.34 0.14 -0.04, 0.31 0.05 -0.15, 0.26 0.08 -0.10, 0.27 

Sex (Male) -0.27 -0.60, 0.06 0.35 0.01, 0.69 -0.40 -0.73, -0.07 -0.08 -0.39, 0.24 

Latinx -0.02 -0.21, 0.16 -0.03 -0.19, 0.12 0.23 0.04, 0.42 -0.04 -0.21, 0.12 

BlackPlus 0.11 -0.09, 0.30 0.11 -0.06, 0.28 0.15 -0.05, 0.34 -0.17 -0.35, 0.01 

AsianPlusOther 0.07 -0.12, 0.26 0.07 -0.09, 0.23 -0.01 -0.20, 0.18 -0.13 -0.30, 0.04 

LatinxWhite 0.03 -0.16, 0.21 0.01 -0.15, 0.17 0.12 -0.07, 0.31 -0.05 -0.22, 0.12 

DNAm-Smoke 0.10 -0.08, 0.29 0.13 -0.05, 0.31 0.09 -0.09, 0.27 0.02 -0.15, 0.19 

BMI (Wave 1) 0.08 -0.08, 0.24 0.03 -0.11, 0.18 0.02 -0.14, 0.17 0.00 -0.15, 0.15 

PDS (Wave 1) 0.21 -0.01, 0.44 0.18 -0.03, 0.38 -0.01 -0.24, 0.21 0.23 0.02, 0.45 

DPDS 0.11 -0.10, 0.32 0.06 -0.13, 0.26 0.14 -0.07, 0.35 0.08 -0.12, 0.29 

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after 
FDR correction are denoted with *. All MPSs were age-residualized. 
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Table S1. Batch, COVID-19 group, Wave Overlap of Samples 

  Batch 1 

(n=190) 

Batch 2 

(n=306) 

Batch 3 

(n=360) 

Wave 1, Pre-COVID 

Wave 1, Peri-COVID 

Wave 2, Pre-COVID 

Wave 2, Peri-COVID  

138 

44 

8 

0  

105 

72 

129 

0 

2 

67 

108 

183 

 

 

Table S2. Regression of DNAm at Wave 2 on Age at First Assessment, Assessment Lag, and Interaction between DNAm at Wave 

1 and Age at First Assessment (Longitudinal Stability of MPSs by Age at First Assessment) 

  
PhenoAgeAccel  

(Wave 2) 

GrimAgeAccel  

(Wave 2) 
Dunedin PACE (Wave 2) Epigenetic-g (Wave 2) 

Model (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI 

MPS Wave 1 0.39 0.30, 0.48 0.42* 0.33, 0.50 0.45* 0.36, 0.53 0.44* 0.35, 0.52 

Age at First 

Assessment (years) 

-0.00 -0.11, 0.10 0.05 -0.04, 0.15 -0.01 -0.10, 0.09 0.07 -0.03, 0.17 

MPS Wave 1 * Age 

at First Assessment 

(Years) 

-0.01 -0.10, 0.08 -0.05 -0.14, 0.04 -0.02 -0.10, 0.06 -0.05 -0.13, 0.03 

Assessment Lag 0.06 -0.04, 0.16 0.06 -0.04, 0.16 -0.04 -0.14, 0.06 0.08 -0.02, 0.17 

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after 

FDR correction are denoted with *. All MPSs were age-residualized. 
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