bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564766; this version posted November 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

CHILDHOOD STABILITY OF MPSs 1

Stability of DNA-Methylation Profiles of Biological Aging in Children and Adolescents
Abby J. deSteiguer?, Laurel Raffington®, Aditi Sabhlok?, Peter Tanksley®,
Elliot M. Tucker-Drob*¢, & K. Paige Harden®¢

Affiliations: “Department of Psychology, University of Texas at Austin, Austin, TX, USA;
®Max Planck Research Group Biosocial — Biology, Social Disparities, and Development, Max
Planck Institute for Human Development, Berlin, Germany; and “Population Research Center,
The University of Texas at Austin, Austin, TX, USA

Address correspondence to: Abby J. deSteiguer, Department of Psychology, University of
Texas at Austin, 1 University Station A8000, Austin, TX 78712, adesteiguer@utexas.edu.

Short title: Stability of Childhood Methylation Profile Scores

Conflict of Interest Disclosures (includes financial disclosures): The authors have indicated
they have no potential conflicts of interest to disclose.

Funding/Support: Supported by National Institutes of Health grants ROIHD083613 and
RO1HD092548 and the Jacobs Foundation. Drs Tucker-Drob and Harden are faculty research
associates of the Population Research Center at The University of Texas at Austin, which is
supported by a grant (5-R24-HD042849) from the Eunice Kennedy Shriver National Institute of
Child Health and Human Development. Drs Tucker-Drob and Harden are fellows of the Jacobs
Foundation.

Role of Funder/Sponsor: The funders or sponsors did not participate in the work. Funded by the
National Institutes of Health (NIH).

Abbreviations: MPS: Methylation profile score, DNAm: DNA-methylation, CpG: sites in which
cytosine nucleotides precede a guanine nucleotide, TTP: Texas Twin Project, EWAS:
epigenome-wide association studies, BMI: body mass index, FDR: false discovery rate, SES:
socioeconomic status

Article Summary
Methylation profiles of biological aging are less stable in childhood than has been previously
observed in adulthood.

What’s Known on This Subject

Methylation profile scores (MPSs) index biological aging in adults and are cross-sectionally

associated with social determinants of health in childhood. Aging-related MPSs in adulthood
show very high test-retest stability but data on longitudinal stability of MPSs in childhood is

sparse.

What This Study Adds
Children’s methylation profiles of biological aging are moderately stable across an
approximately four-year period. Methylation profiles are less stable in childhood than in
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adulthood, suggesting that aging-related biology in childhood might be more responsive to
environmental changes than in adulthood.
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Abstract

Background and Objectives. Methylation profile scores (MPSs) index biological aging
and aging-related disease in adults and are cross-sectionally associated with social determinants
of health in childhood. MPSs thus provide an opportunity to trace how aging-related biology
responds to environmental changes in early life. Information regarding the stability of MPSs in
early life is currently lacking.

Method. We use longitudinal data from children and adolescents ages 8-18 (N =428, M
age = 12.15 years) from the Texas Twin Project. Participants contributed two waves of salivary
DNA-methylation data (mean lag = 3.94 years), which were used to construct four MPSs
reflecting multi-system physiological decline and mortality risk (PhenoAgeAccel and
GrimAgeAccel), pace of biological aging (DunedinPACE), and cognitive function (Epigenetic-
g). Furthermore, we exploit variation among participants in whether they were exposed to the
COVID-19 pandemic during the course of study participation, in order to test how a historical
period characterized by environmental disruption might affect children’s aging-related MPSs.

Results. All MPSs showed moderate longitudinal stability (test-retest s = 0.42, 0.44,
0.46, 0.51 for PhenoAgeAccel, GrimAgeAccel, and Epigenetic-g, and DunedinPACE,
respectively). No differences in the stability of MPSs were apparent between those whose second
assessment took place after the onset of the COVID-19 pandemic vs. those for whom both
assessments took place prior to the pandemic.

Conclusions. Aging-related DNA-methylation patterns are less stable in childhood than
has been previously observed in adulthood. Further developmental research on the methylome is
necessary to understand which environmental perturbations in childhood impact trajectories of
biological aging and when children are most sensitive to those impacts.
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Introduction

Childhood social adversity is linked to lifespan risk for aging-related diseases like
cardiovascular disease, diabetes, cancer, dementia, and early mortality.!~ Recent advances in -
omics technologies have led to the identification of DNA-methylation (DNAm) profiles that
index processes of biological aging and aging-related diseases. These DNAm profile scores
(MPSs) provide an opportunity to trace how aging-related biology responds to environmental
changes in early life, years or even decades before the negative health sequelae of childhood
experiences are observable.®” However, basic information regarding the stability and plasticity
of MPSs in early life is currently lacking. Here, we use longitudinal data from a pediatric sample
to investigate the early stability of trajectories of aging-related biology as measured by MPSs.

Previous studies in adults have identified systematic patterns of DNAm differences that
track a variety of aging-related phenotypes, including (1) biological age as measured by multi-
system physiological decline and mortality risk (PhenoAge® and GrimAge®), (2) the pace of
biological aging across physiological systems assessed longitudinally across midlife
(DunedinPACE'?), and (3) cognitive functions accounting for chronological age (Epigenetic-
g!!).These MPSs are now amongst the strongest predictors of all-cause morbidity, mortality, and

physiological decline in adults,!>!?

offering researchers the opportunity to measure progressive
system decline occurring in cells, tissues, and organs. Moreover, MPSs of biological aging, when
measured in children, adolescents and young adults, are associated with known social
determinants of life course health. Specifically, child victimization, family and neighborhood-
level socioeconomic disadvantage in childhood, and belonging to a marginalized racial or ethnic

group are associated cross-sectionally with MPSs that index more advanced biological age, a

faster pace of aging, and lower cognitive performance in childhood.'*!” Together, this research
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suggests that MPSs might be useful for quantifying, in real time, how early life experiences
affect aging-related biology. However, there is currently very little information regarding when
aging-related DNAm patterns are most sensitive to environmental change, versus when they are
canalized into relatively stable trajectories.

Adults’ aging-related biology shows high homeorhesis,'® a term that comes from the
Greek for “similar flow”: Adults show highly consistent trajectories of DNAm change despite
perturbations to their environments. Specifically, aging-related MPSs in middle-adulthood
calculated from whole blood are very stable over time, with 16-year test-retest correlations of
0.73, 0.85, and 0.93 for DunedinPACE, PhenoAge, and GrimAge, respectively,'® Aging-related
biology is often hypothesized to be more plastic and more responsive to environmental
perturbations earlier in development,?°~2? but longitudinal investigations of DNAm in pediatric
samples remain rare. Previous work on telomere length has found evidence for high rank-order
stability already in childhood (measured at age 11 and 14-year follow-up).?® Similarly, some
saliva-based MPSs have been found to be fairly stable in adolescence: a salivary MPS of BMI
showed a test-retest correlation of 0.63 from age 9 to 15,2* while Horvath epigenetic age
measured in saliva showed a 2-year test-retest stability of » = (.73 in early adolescence (mean
age at baseline = 12.5 years).?> Whether other salivary MPSs show more longitudinal instability
in childhood and adolescence is unknown, and this information can provide valuable context for
understanding when aging-related biology might be most sensitive to environmental
intervention.

Stability may be attenuated when there are major changes in the environment with
heterogeneous impacts on individuals. In the current study, we examine the longitudinal stability

of aging-related MPSs in a sample spanning the ages of § to 18. Furthermore, we exploit an
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exogeneous environmental shock — the onset of the COVID-19 pandemic, which not only
exposed millions of children to a novel virus, but also profoundly disrupted their school, family,
and peer environments.?%-?” While pandemic-mitigation policies resulted in a historic decrease in
child poverty levels in the United States,*° the pandemic may have widened already extant
disparities related to other psychosocial factors including isolation, lack of socialization, mental
health concerns, disruptions in formal schooling, and material deprivation.?32%31-33 The
heterogeneous impact of the pandemic on individuals’ lives may have introduced heterogeneity
in experiences relevant for DNAm. A secondary aim of the study, therefore, was to test whether
the developmental stability of aging-related MPSs in childhood was affected by exposure to

pandemic-related environmental disruptions.

Methods

Sample

The Texas Twin Project (TTP) is a population-based study of school-aged twins in
Austin and central Texas.>* Ethical approval is granted by the University of Texas at Austin
Institutional Review Board. Data were collected between 2014 and 2022, with a pause in
collection from March 2020 until June 2021. Of N = 428 participants, N = 245 contributed two
DNAm samples prior to the onset of the COVID-19 pandemic (Pre-COVID), and N = 183
contributed one sample prior to and one sample after the onset of the pandemic (Peri-COVID).
Sample demographics are in Table 1, and overlap between wave, batch, and COVID-19 group is
shown in Table S1. Data acquisition by date of assessment and by chronological age is

illustrated in Figure 1.
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Figure 1. Acquisition of Longitudinal DNAm Data by (A) Date of Assessment and by (B)
Participant Age. Pre-COVID group (Black) includes participants with two waves of DNAm
data prior to the onset of the COVID-19 pandemic. Peri-COVID group (Purple) includes
participants with one wave of data prior and one wave after the onset of the COVID-19
pandemic. The large increases in sample size over short periods of time are concentrated in
summer months when participant sessions took place five to seven days per week, in
comparison to during the school year when sessions primarily took place on weekends. No
sessions were conducted during the first year of the COVID-19 pandemic, creating a longer
average lag in assessment for those in the Peri-COVID group.
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Measures

DNAm preprocessing. Saliva samples (2 mL) were collected using Oragene kits (DNA
Genotek, Ottawa, ON, Canada). DNA extraction and methylation profiling was conducted by
Edinburgh Clinical Research Facility (UK). The Infinium MethylationEPIC BeadChip kit
(Illumina, Inc., San Diego, CA) was used to assess methylation levels at 850,000 methylation
sites. DNAm preprocessing was primarily conducted with the ‘minfi’ package in R.* Within-
array normalization was performed to address array background correction, red/green dye bias,
and probe type I/II correction.>® Noob preprocessing as implemented by minfi’s
“preprocessNoob™?’ is a background correction and dye-bias equalization method that has
similar within-array normalization effects on the data as probe type correction methods such as
BMIQ.?8

CpG probes with detection p > 0.01 and fewer than 3 beads in more than 1% of the
samples and probes in cross-reactive regions were excluded.** Samples were excluded if (1) they
showed low intensity probes as indicated by the log of average methylation <9 and their
detection p is > 0.01 in >10% of their probes, (2) their self-reported and methylation- estimated
sex mismatched, and (3) their self-reported and DNA-estimated sex mismatched. Cell
composition of immune and epithelial cell types (i.e., CD4+ T-cell, natural killer cells,
neutrophilseosinophils, B cells, monocytes, CD8+ T-cell, and granulocytes) was estimated using
a child saliva reference panel implemented in the R package “BeadSorted.Saliva.EPIC” within
“ewastools”.** Surrogate variable analysis was used to correct methylation values for batch
effects using the “combat” function in the SVA package,*! which is important for longitudinal
analyses. Longitudinal wave was not completely confounded with each batch and there were 20

technical repeats to assess reliability.
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MPSs. MPSs for PhenoAge, GrimAge, DunedinPACE and Epigenetic-g were computed
using algorithms from previous epigenome-wide association studies (EWAS) and elastic net
analyses (see Table 2; DunedinPACE and epigenetic-g were preregistered outcomes. PhenoAge
and GrimAge were added subsequently due to their relevance for health and mortality and their
strong associations with age). All MPSs were residualized for array, slide, batch, cell
composition and then standardized in the pooled sample (Mean =0, SD = 1) to ease
interpretation. Analysis of 20 technical replicates in our sample suggests that measurement
reliability of the MPSs analyzed here (residualized for technical artifacts and cell composition) is
good (intraclass correlation coefficients for PhenoAge = 0.79 , GrimAge = 0.85, DunedinPACE

= (.78, epigenetic-g = 0.73). See Table 2 for a description of covariate measures.

Statistical Analyses

Our analysis plan was pre-registered in Open Science Framework (OSF;
https://osf.io/mfybr/). We first assessed how each MPS was associated with chronological age. In
all subsequent analyses, MPSs were residualized for chronological age, thus MPS values reflect
the extent to which children were higher or lower than other children their age. For each age-
residualized MPS, we conducted a series of longitudinal models regressing Wave 2 MPS on
Wave MPS and on other predictors and covariates of interest. We fit regressions using linear
mixed models implemented with the /me4 R package.*> All models included a random intercept,
representing the family-level intercept of the dependent variable, to correct for non-independence
of twins within families. Standardized betas and 95% confidence intervals are reported for each
model. A p-value of less than 0.05 indicated a statistically significant effect of the predictor
variable(s) on the dependent variables. Within each set of models, we controlled for multiple

testing using the Benjamini—Hochberg false discovery rate (FDR) method (using a family of four
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tests, representing each of the four MPSs under study),** Nominal and FDR-adjusted p-values

are denoted in each table.

Results

Methylation Profile Scores Show Variable Patterns of Age-Related Mean Change

All MPSs were significantly correlated with age (PhenoAge: = 0.69, 95% CI [0.65,
0.72]; GrimAge: r = 0.68, 95% CI [0.65, 0.72]; DunedinPACE: » = 0.08, 95% CI [0.02, 0.15];
Epigenetic-g: r = 0.35, 95% CI [0.29, 0.41]. That is, all MPSs were higher in older than in
younger children, with the strongest age differences evident for MPSs that included age as a
training variable (PhenoAge, GrimAge), rather than trained on phenotypic differences between
age-matched participants (DunedinPACE, Epigenetic-g). To formally test within-person age-
related change in MPSs, we regressed each MPS on both between-person age differences (an
individual’s mean age across two waves) and within-person age changes (the deviation between
an individual’s age at each wave from their mean age across waves). Results show that there was
significant within-person age-related change in GrimAge, which increased by 0.19 per year (b =
0.19, 95% CI[0.17, 0.22], t(850) = 14.30, p <.001) and in PhenoAge (b = 0.22, 95% CI [0.19,
0.25], t(850) = 16.31, p <.001). There was also within-person age-related change in Epigenetic-g
(b=0.10,95% CI [0.07, 0.14], t(850) = 6.00, p < .001), but not in DunedinPACE (beta = 0.02,
95% CI [-0.02, 0.05], t(850) = 0.88, p = 0.381). Plotting the individual age-related trajectories
from Wave 1 to Wave 2 (Figure 2) suggests that there was considerable variability around the

mean age-related trends.
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Figure 2. Age-Related Changes in Methylation Profiles Scores (MPSs) in Childhood. Each
line represents one individual’s MPS trajectory from Wave I to Wave 2. PhenoAge and
GrimAge are measures of biological age and mortality risk, with greater scores indicating
greater biological age. DunedinPACE is a measure of pace of biological aging, with scores
indicating years of physiological decline per calendar year. Epigenetic-g is a measure of
cognitive function in adults accounting for chronological age, with higher scores reflective of
higher general cognitive function.
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MPSs Exhibit Moderate Rank-Order Stability in Children and Adolescents

All subsequent analyses residualized each MPS for the effects of chronological age, so
that estimates of rank-order stability are not biased by age-related differences within our age-
heterogeneous sample. The resulting “acceleration” variables represent how a child’s MPS
compared to other children the same age. For each MPS, the two waves of data were moderately
correlated (PhenoAgeAccel: Pearson’s » = 0.42, 95% CI 0.34 to 0.49; GrimAgeAccel: Pearson’s
r=0.44, 95% CI1 0.36 to 0.51; DunedinPACE: Pearson’s r = 0.51, 95% CI 0.43 to 0.57;
Epigenetic-g: Pearson’s » = 0.46, 95% CI 0.38 to 0.53). These results suggest that child MPSs
show considerably less stable trajectories of aging-related DNAm than do adult MPSs.!” Figure
3 compares these test-retest correlations to the developmental stability of other aspects of health
and development. Relative to other phenotypes in childhood,>>->® MPSs show about as much
longitudinal (in)stability as child personality, which is considerably less stable than

anthropometric or cognitive measurements.
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Figure 3. Rank-order stability (test-retest correlations) for child/adolescent methylation
profile scores of accelerated biological age, pace of aging, and cognitive performance (~ 4-
year lag) in comparison to other aspects of child health and development. Bayer et al.
2011%, Height (4- to 7-year lag; estimates averaged for males and females): Power et al.,
1997, BMI (4- to 7-year lag; estimates averaged for males and females): Power et al., 1997%;
Personality (5-year lag): Bleidorn et al., 20224, Cognition (6-year lag): Tucker-Drob &
Briley*’, 2014; Adult MPSs (16-year lag):Reed et al., 2022.7°

To formally test the rank-order stability of MPSs, we first regressed Wave 2 MPS on
Wave 1 MPS (Table 3, Model 1), and then statistically controlled for demographic covariates.
Results were generally unchanged upon addition of covariates, with s ranging from 0.37 to 0.42
(Table 3, Model 2). The previous analyses assess stability at the mean lag in assessment of 3.94
years (by including a term of lag centered at the mean lag). Upon inclusion of a Lag*Wave 1

interaction term, which allows for an exploration of the effect of stability at different lags in
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assessment, main effect estimates of stability are nearly identical to the model without an
interaction term (PhenoAgeAccel: f = 0.37, 95% CI 0.28, 0.46; GrimAgeAccel: § =0.39, 95%
CI10.29, 0.49; DunedinPACE:  =0.41, 95% CI 0.33, 0.50; Epigentic-g: = 0.42, 95% CI 0.33,
0.52). The interaction terms were non-significant (PhenoAgeAccel: B = 0.02, 95% CI -0.06,
0.11; GrimAgeAccel: § =0.02, 95% CI -0.07, 0.10; DunedinPACE:  =-0.05, 95% CI -0.13,
0.04; Epigentic-g: B = 0.04, 95% CI -0.06, 0.13), suggesting that stability did not increase or
decrease over different lags. Additionally, stability did not vary over different ages at first
assessment (Supplemental Table 2). Means and variances of MPSs at Wave 1 and Wave 2 are
reported in Table 1.

There were statistically significant sex differences in Wave 2 MPSs. Males exhibited
lower PhenoAgeAccel (B =-0.42, 95% CI -0.60 to -0.25 and age-residualized DunedinPACE (3
=-0.32, 95% CI -0.48 to -0.16); Table 3, Model 2). There were also significant race/ethnic
differences in PhenoAgeAccel and age-residualized DunedinPACE. Participants identifying as
Latinx exhibited faster pace of aging as indicated by age-residualized DunedinPACE compared
to those identifying as White (Latinx: § = 0.14, 95% CI 0.05 to 0.24). Participants who identified
as Black exhibited a faster pace of aging and more advanced biological age as indicated by age-
residualized DunedinPACE (f =0.11, 95% CI1 0.02 to 0.21), PhenoAgeAccel (f =0.16, 95% CI
0.06 to 0.26), and GrimAgeAccel (f = 0.12, 95% CI 0.02 to 0.22; Table 3, Model 2) compared
to those identifying as White. That these race/ethnic differences were apparent for Wave 2 MPSs
even after controlling for Wave 1 MPSs suggests that racial/ethnic disparities are widening over
development.

We then controlled for developmental covariates including BMI, pubertal development,

and change in pubertal development (pre-registered). We additionally adjusted for family SES
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due to the significant difference in this variable between groups (the Peri-COVID group had a
higher overall SES, consistent with the hypothesis that the effects of socioeconomic hardship on
study participation were heightened during the pandemic). Results were unchanged (Table 3,
Model 3).

To assess whether rank-order stability is socially stratified, we regressed Wave 2 MPS on
Wave 1 MPS, SES covariates (Family SES and COVID-19 related socioeconomic stress), and
the interactions between Wave | DNAm and each SES covariate. There were no statistically

significant main effects or interaction effects for any MPS (Table 5, Models 1, 2 & 3).

Rank-Order Stabilities of MPSs Do Not Differ as a Function of COVID-19

To assess differences in rank-order stability between the Pre-COVID and Peri-COVID
groups (illustrated in Figure 4), we regressed Wave 2 MPS on Wave 1 MPS, COVID-19 group,
and on their interaction (Table 4). Neither the main effect of COVID-19 group nor its interaction
effect with Wave 1 MPS were significantly different from zero for any MPS, indicating that
there were no significant differences by COVID-19 group in mean-level change (represented by
the main effect of COVID-19 group) or rank-order stability (represented by the interaction effect
of COVID-group and Wave 1 DNAm). This is illustrated in Figure 4 by the similarity of slopes
across groups (representing rank-order stability) and the similar position of regression line
midpoints relative to the y-axis across groups (representing mean-level change). Results were
unchanged upon the addition of demographic and developmental covariates (Table 4, Models 2

& 3).
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Figure 4. Rank-Order Stability of Age-Residualized Methylation Profiles Scores (MPSs).
PhenoAge and GrimAge Acceleration are measures of more advanced biological age, with
greater scores indicating older biological age compared to same-aged peers. DunedinPACE is
a measure of pace of biological aging, with scores indicating a faster pace of physiological
decline per calendar year. Epigenetic-g is a measure of cognitive function, with higher scores
reflective of higher general cognitive function. All MPSs were residualized for cell
composition and standardized, such that values reflect the extent to which children were
higher or lower than other children their age.
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Discussion

Studies in adults have identified patterns of DNAm that reflect biological aging and that
are highly stable and robust predictors of future morbidity and mortality. Children are often
hypothesized to be more sensitive to environmental perturbations than are adults, but this is not
always the case, and basic data regarding the longitudinal stability of MPSs is lacking. In this
study, we provided the first test of the longitudinal stability of aging-related MPSs in childhood
and examined whether these MPSs were affected by the environmental disruptions associated
with the onset of the COVID-19 pandemic.

We had two major findings. First, in contrast to adults, who show highly stable
trajectories of aging-related biology (16-year, whole blood MPS test-retest correlations ranging
from 0.73 to 0.93'%), we found moderate stability of child and adolescent salivary MPSs over
about four years (with test-retest correlations comparable to child personality*®). If lower levels
of stability of MPSs during development is driven by sensitivity to environmental variation over
time, our findings suggest that early life may be a more sensitive period for interventions that
impact DNAm. Alternatively, greater instability in MPSs in this age range might be due to
variation in pubertal development*#°; however, aging-related MPSs were largely unrelated to
either pubertal status or change in pubertal status in our sample. Which environmental changes
are capable of perturbing these trajectories, however, remain unknown. Environmental and
behavioral interventions including calorie restriction and smoking cessation can affect MPSs and
individual DNAm sites even in adulthood, when MPSs are highly stable.>%->2

Second, children who were exposed to the environmental disruptions and exposures of
the COVID-19 pandemic did not show significant differences in their developmental trajectories

of MPSs. Children who lived through the pandemic also did not show differences in mean-level
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change of MPSs. The COVID-19 pandemic parallels the 1918 influenza pandemic, which had
long-term negative consequences for education, disability, and socioeconomic outcomes decades
after the pandemic,’® The shock of the COVID-19 pandemic may similarly impact
developmental trajectories in ways that that do not operate via the MPSs examined here or are
not apparent within our study time frame.?¢

It is of note that SES did not exhibit main effects on MPSs at follow-up incremental of
baseline MPS levels, nor did SES moderate the stability of MPSs, since previous work has
documented associations between socioeconomic disadvantage and accelerated pace of
biological aging.!>34% That SES is not associated with later MPSs above and beyond their
baseline levels suggest that socioeconomic disparities in MPSs in later adolescence and
adulthood may be canalized via effects operating at earlier points in development. This is
supported by recent research finding that SES at birth is more strongly associated with a MPS of
BMI in childhood and adolescence than concurrent measures of SES.?* It is possible, however,
that over longer time lags, MPSs may more substantially reorder such that (main and
moderating) effects of SES on stability and change become apparent.
Limitations

There are several limitations to note. First, we use data from only two waves spanning
late childhood through adolescence, and results cannot be generalized to different time lags or
different developmental stages, notably infancy and early childhood.’® Second, the reliability of
DNAm measurement varies across probes®’, and measurement unreliability downwardly biases
estimates of longitudinal stability. However, analysis of 20 technical replicates in our sample

suggests that measurement reliability of the MPSs analyzed here is good. Third, our study
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sample differed from the discovery samples in which MPS algorithms were derived, including
differences in participant demographics and sampling strategies.>®>°

Most notably, our study was conducted with salivary DNAm samples (consisting of a
mixture of ~65% leukocytes and ~ 35% buccal cells), whereas the DNAm samples in adult
discovery and longitudinal samples were blood-based (100% leukocytes), raising the concern
that the lower longitudinal stability observed here might be driven by tissue differences rather
than developmental differences. While cross-tissue DNAm comparisons remain limited,
particularly in pediatric samples, results from recent investigations alleviate this concern. One
study of 11-year-old children found that only 3.5% of CpG sites were differently methylated
between saliva and blood;®® another study with participants spanning ages 13 to 73 found that
blood and saliva samples showed a very high genome-wide DNAm correlation (r = .97).5!
Furthermore, other salivary MPSs (for BMI and epigenetic age) have demonstrated strong
longitudinal stability in adolescence.?*?> Together these results suggest that the relative
instability of aging-related MPSs observed in the current study is not an artifact of salivary
DNAm measurement. Nevertheless, as saliva is more feasible to collect in large pediatric cohorts
than blood, future research on how aging-related biology changes in early life will benefit from
the development of MPSs specifically trained on salivary data.
Conclusions
The current study provides evidence for moderate rank-order stability during childhood and
adolescence in MPSs that have implications for long-term health and disease. A more
comprehensive understanding of canalization of the methylome is needed, given that early life

environments may lead to persisting molecular changes that influence morbidity and mortality
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much later in life. Further investigation of MPSs during early developmental years is needed to

understand what is necessary to elicit meaningful change in these indices of biological aging.
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Table 1. Descriptive Statistics of Study Measures
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Full Sample Pre-COVID Peri-COVID p-value
(n=428) (n=245) (n=183)

PhenoAge (M, SD)

Wave 1 0.00 (0.66) 0.02 (0.70) -0.02 (0.60) 0.49

Wave 2 -0.06 (0.68) -0.07 (0.72) -0.06 (0.61) 0.96
GrimAge (M, SD)

Wave 1 0.04 (0.70) 0.03 (0.70) 0.05 (0.70) 0.75

Wave 2 -0.09 (0.66) -0.08 (0.71) -0.11 (0.59) 0.72
DunedinPACE (M, SD)

Wave 1 0.04 (1.01) 0.12 (1.03) -0.08 (0.97) 0.04*

Wave 2 -0.01 (1.02) 0.04 (1.03) -0.09 (0.99) 0.19
Epigenetic-g (M, SD)

Wave 1 0.01 (0.83) 0.00 (0.83) 0.02 (0.83) 0.82

Wave 2 -0.11 (0.91) -0.12 (0.84) -0.09 (1.01) 0.67
Age in years (M, SD)

Wave 1 12.15 (2.48) 12.39 (2.63) 11.8 (2.23) 0.02*

Wave 2 14.54 (2.34) 14.33 (2.52) 14.82 (2.04) 0.03*
Confirmed prior COVID-19 infection and/or household
exposure (N, %) 182 (99.5) 0(0) 182 (99.5) —
Pubertal development (M, SD)

Wave 1 2.26 (0.87) 2.32 (0.90) 2.17 (0.81) 0.08

Wave 2 2.86 (0.84) 2.70 (0.88) 3.06 (0.73) <0.001*
Change in Pubertal Status (Wave 1 to Wave 2) 0.62 (0.72) 0.38 (0.65) 0.95 (0.69) <0.001*
BMI Wave 1 (M, SD) -0.03 (1.19) 0.09 (1.22) -0.19 (1.12) 0.01*
Family SES (M, SD) 0.02 (0.76) -0.30 (0.87) 0.23 (0.60) 0.02*
Assessment lag in years (M, SD) 3.94 (1.75) 3.14 (1.16) 5.02 (1.83) <0.001*
Days since onset of COVID-19 pandemic (M, SD) — — 495.6 (18.9) —
Biological sex (N, %)

Female 216 (0.51) 119 (48.6) 97 (53.0) 0.42

Male 212 (0.50) 126 (51.4) 86 (47.0) 0.42
Race and ethnicity (N, %)

Non-Latinx White 255 (59.6) 148 (60.4) 107 (58.5) 0.70

Latinx 43 (10.0) 30 (12.2) 13(7.1) 0.11

Black/African American 47 (11.0) 28 (11.4) 19 (10.4) 0.85

Asian & Other Race/Ethnicity 51(11.9) 25(10.2) 26 (14.2) 0.27

Latinx-White 32(7.5) 14 (5.7) 18 (9.8) 0.16
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Note. Pre-COVID group includes participants with two waves of methylation data prior to the onset of the COVID-19 pandemic. Peri-
COVID group includes participants with one wave of data prior and one wave after the onset of the COVID-19 pandemic. BMI and
Family SES were standardized across all observations. Pubertal development ranges from 1 = “Not yet begun” to 4 = “Has finished
changing.” Onset of COVID-19 pandemic estimated at March 1, 2020. PhenoAge, GrimAge, DunedinPACE, and Epigenetic-g were
residualized for cell composition and standardized, such that values reflect the extent to which children were higher or lower than the
sample average. P-values for group differences correspond to X? tests (categorical variables) and t-tests (continuous variables).
Significant differences between Pre-COVID and Peri-COVID groups are denoted with *. PhenoAge, GrimAge, DunedinPACE, and
Epigenetic-g were standardized across all observations in the epigenetic sample.
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Table 2. Description of Measures

Measure Description

PhenoAge? PhenoAge was calculated using the algorithm available at
https://github.com/MorganLevineLab/PC-Clocks. PhenoAge is an age estimate, with greater
scores indicating greater biological age. The PhenoAge algorithm was originally trained on nine
clinical biomarkers (e.g., albumin, creatinine, C-reactive protein, and white blood cell count) and
chronological age in adults ages 21 to 100.

GrimAge® GrimAge was calculated using the algorithm available at
https://github.com/MorganLevineLab/PC-Clocks. GrimAge is an age estimate, with greater
scores indicating greater biological age. GrimAge was trained on DNAm-based smoking pack-
years, age, sex, and seven DNAm-based surrogate markers of plasma proteins.

DunedinPACE pace  DunedinPACE was calculated as a composite phenotype calculated using a published algorithm

of aging!® available at https://github.com/danbelsky/DunedinPACE. Scores indicate years of physiological

decline experience per calendar year. The expected value of DunedinPACE in midlife adults is 1.
Values >1 indicate accelerated aging, while values <1 indicate slowed aging. DunedinPACE
measures the rate at which aging occurs and was derived from analysis of longitudinal changes at
19 biomarkers (e.g., body mass index, glycated hemoglobin, total cholesterol, cardiorespiratory
fitness, and tooth decay) measured at 26, 32, 38, and 45 years of age in the Dunedin Study.

Epigenetic-g!!

Epigenetic-g was calculated using the algorithm available at
https://gitlab.com/danielmccartney/ewas_of cognitive funct. Prior to computation, methylation
values were scaled within each CpG site (mean = 0, SD = 1). Higher scores represent greater
cognitive function. A higher score indicates a profile that more closely resembles the profile of
adults from the Generation Scotland Study who performed higher on tests of general function,
including logical memory, digit symbol test score, verbal fluency, and vocabulary. Epigenetic-g
was computed using a blood-based algorithm from an epigenome-wide association study of
general cognitive functions in adults ages 18 to 93.

Assessment lag

Lag between first and second assessments was calculated in years and centered at the pooled
sample mean lag (3.94 years); see Figure 1 for visualization of assessment lag.

DNAm-Smoke

A poly-DNA-methylation measure of tobacco exposure was derived by summing the product of
the weight and the individual beta estimate for each individual at each CpG site significantly
associated with cigarette smoking in a discovery EWAS®2,

Family-level

A family-level SES index score was computed as a composite of standardized, log transformed

Socioeconomic parent-reported household income and average, standardized parental education level.

Status (SES)

COVID-19-related Parent-reported socioeconomic stressors unique to the pandemic were used to compute a

Socioeconomic dummy-coded variable based on loss of employment income and/or received or applied for

Stress unemployment insurance, with a score of 1 indicating experiencing one or both of these
stressors.

Body Mass Index BMI at Wave 1 was determined from measurements of height and weight and was transformed

(BMI) to gender and age-normed z-scores according to the US Centers for Disease Control and
Prevention method (https://www.cdc.gov/growthcharts/percentile data files.htm). Height and
weight were measured in-laboratory.

Pubertal Self-reported pubertal development was measured with the Pubertal Development Scale®, which

Development shows good reliability and validity, to assess pubertal development across five sex-specific

domains. Pubertal status score was measured computing the average response (1 = “Not yet
begun” to 4 = “Has finished changing”) across items, and was residualized for age, gender, and
age by gender.
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Table 3. Regression of MPSs at Wave 2 on Wave 1

Phe(‘;,‘;,‘:f:‘;‘)ccel GrimAgeAccel (Wave 2) Dunedin PACE (Wave 2) Epigenetic-g (Wave 2)
Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.38* 0.29, 0.47 0.41* 0.32,0.50 0.45% 0.37,0.53 0.42* 0.33,0.51
Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.37* 0.28, 0.46 0.39* 0.29, 0.49 0.41* 0.33,0.50 0.42* 0.33,0.51
Group (Peri-COVID) -0.07 -0.31,0.16 -0.19 -0.42, 0.04 -0.06 -0.27,0.16 -0.06 -0.29,0.18
Assessment Lag 0.08 -0.04, 0.20 0.14 0.02,0.25 -0.01 -0.12, 0.09 0.09 -0.03, 0.20
Sex (Male) -0.42% -0.60, -0.25 0.09 -0.10, 0.28 -0.32% -0.48, -0.16 -0.01 -0.19,0.17
Latinx 0.02 -0.08, 0.12 0.07 -0.03, 0.16 0.14* 0.05, 0.24 -0.02 -0.12, 0.08
BlackPlus 0.16* 0.06, 0.26 0.12* 0.02,0.22 0.11* 0.02,0.21 -0.06 -0.16, 0.04
AsianPlusOther 0.02 -0.08, 0.12 -0.01 -0.11, 0.09 0.04 -0.05, 0.13 -0.03 -0.13, 0.06
LatinxWhite 0.01 -0.09, 0.12 0.02 -0.07,0.12 0.09 0.00, 0.18 0.01 -0.09, 0.11
DNAm-Smoke -0.06 -0.15, 0.03 0.02 -0.08, 0.12 0.10 0.02,0.19 -0.09 -0.18, 0.00
Model 3 (N=251) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.36* 0.23,0.48 0.39* 0.25,0.52 0.44* 0.32,0.55 0.43* 0.31, 0.54
Group (Peri-COVID) -0.00 -0.34,0.33 -0.14 -0.45,0.18 -0.14 -0.45,0.17 -0.19 -0.51,0.13
Assessment Lag 0.11 -0.05, 0.27 0.14 -0.02, 0.29 0.07 -0.08, 0.21 0.09 -0.06, 0.25
Sex (Male) -0.38* -0.62, -0.13 0.20 -0.06, 0.47 -0.43* -0.65, -0.20 -0.06 -0.30, 0.18
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Latinx 0.00
BlackPlus 0.10
AsianPlusOther 0.02
LatinxWhite -0.04
DNAm-Smoke 0.01
Family SES (Wave 2) 0.02
BMI (Wave 1) 0.05
PDS (Wave 1) 0.02
APDS -0.04

-0.14,0.14
-0.03,0.24
-0.12,0.15
-0.17,0.10
-0.12,0.14
-0.13,0.17
-0.08, 0.17
-0.14,0.19

-0.20, 0.13

-0.05

0.07

-0.01

-0.04

0.07

-0.09

0.01

0.02

-0.06

-0.18, 0.09
-0.06, 0.20
-0.13,0.12
-0.16, 0.09
-0.06, 0.20
-0.23,0.05
-0.11, 0.13
-0.14,0.18

-0.22,0.10

0.12

0.12

0.02

0.09

0.08

-0.06

-0.00

0.01

0.12

-0.01, 0.25
-0.01, 0.25
-0.11,0.14
-0.03,0.21
-0.03, 0.20
-0.20, 0.08
-0.12,0.11
-0.14, 0.16

-0.04, 0.27

-0.02

-0.11

-0.05

-0.02

-0.01

0.09

-0.02

0.05

0.01

31

-0.16, 0.11
-0.25,0.02
-0.18, 0.08
-0.15,0.10
-0.13, 0.11
-0.05, 0.23
-0.14, 0.09
-0.11, 0.21

-0.15,0.17

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after FDR

correction are denoted with *. All MPSs were age-residualized.


https://doi.org/10.1101/2023.10.30.564766
http://creativecommons.org/licenses/by-nc/4.0/

CHILDHOOD STABILITY OF MPSs

32

Table 4. Regression of Wave 2 MPSs on the Interaction between Wave 1 MPSs and COVID-19 Group

PhenoAgeAccel

(Wave 2) GrimAgeAccel (Wave 2) Dunedin PACE (Wave 2) Epigenetic-g (Wave 2)

Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.38* 0.26, 0.49 0.37* 0.25,0.48 0.51* 0.40, 0.62 0.36* 0.25,0.48
Group (Peri-COVID) 0.02 -0.18,0.22 -0.06 -0.25,0.14 -0.04 -0.23,0.14 0.03 -0.16, 0.22
MPS Wave 1 * Group 0.01 -0.17,0.20 0.10 -0.08, 0.28 -0.15 -0.32,0.02 0.14 -0.04, 0.32
(Peri-COVID)

Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI

MPS Wave 1 0.36* 0.25,0.47 0.36* 0.23,0.49 0.46* 0.35,0.57 0.36* 0.24, 0.48
DNAm Wave 1*Group 0.02 -0.16, 0.21 0.07 -0.10,0.25 -0.11 -0.28, 0.05 0.15 -0.03, 0.32
(Peri-COVID)
Group (Peri-COVID) -0.07 -0.31,0.16 -0.19 -0.42, 0.04 -0.05 -0.27,0.16 -0.05 -0.28,0.18
Assessment Lag 0.08 -0.04, 0.20 0.14 0.02,0.25 -0.02 -0.13, 0.09 0.08 -0.03,0.20
Sex (Male) -0.42* -0.60, -0.25 0.08 -0.11, 0.27 -0.31* -0.47,-0.14 0.00 -0.18,0.17
Latinx 0.02 -0.08, 0.12 0.07 -0.03,0.16 0.14* 0.05,0.23 -0.03 -0.12, 0.07
BlackPlus 0.16* 0.06, 0.26 0.12* 0.02,0.21 0.11% 0.02, 0.20 -0.07 -0.17,0.03
AsianPlusOther 0.02 -0.08,0.12 -0.01 -0.11, 0.09 0.04 -0.05,0.13 -0.03 -0.13, 0.07
LatinxWhite 0.01 -0.09, 0.12 0.02 -0.08, 0.12 0.09 0.00, 0.18 0.02 -0.08, 0.11
DNAm-Smoke -0.06 -0.15, 0.03 0.02 -0.08, 0.12 0.10 0.02,0.19 -0.09 -0.18, 0.00
Model 3 (N=251) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
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MPS Wave 1
Group (Peri-COVID)

MPS Wave 1* Group
(Peri-COVID)

Assessment Lag
Sex (Male)
Latinx
BlackPlus
AsianPlusOther
LatinxWhite
DNAm-Smoke
Family SES
BMI (Wave 1)
PDS (Wave 1)

APDS

0.37*

0.00

-0.01

0.11

-0.38*

0.00

0.11

0.02

-0.04

0.01

0.02

0.05

0.02

-0.04

0.17,0.56
-0.34,0.34

-0.26, 0.24

-0.06, 0.27
-0.63,-0.13
-0.14, 0.15
-0.03, 0.24
-0.12, 0.15
-0.17,0.10
-0.12, 0.14
-0.13,0.17
-0.08,0.17
-0.14, 0.19

-0.20, 0.13

0.33*

-0.14

0.10

0.14

0.19

-0.05

0.06

-0.01

-0.04

0.07

-0.09

0.02

0.02

-0.06

0.13,0.52
-0.45,0.18

-0.14,0.34

-0.01,0.29
-0.07, 0.46
-0.19, 0.08
-0.07,0.19
-0.14, 0.12
-0.17, 0.09
-0.06,0.21
-0.23,0.05
-0.10, 0.14
-0.14, 0.18

-0.22,0.10

0.61*

-0.13

-0.28

0.04

-0.41*

0.13

0.12

0.01

0.10

0.07

-0.04

-0.02

0.03

0.14

0.44,0.79
-0.44,0.17

-0.50, -0.06

-0.11, 0.19
-0.63, -0.18
0.00, 0.26
-0.01, 0.24
-0.11, 0.13
-0.02, 0.22
-0.04, 0.19
-0.17,0.10
-0.14, 0.09
-0.12,0.18

-0.01, 0.29

0.36*

-0.18

0.10

0.09

-0.06

-0.03

-0.12

-0.05

-0.02

-0.01

0.09

-0.02

0.05

0.00

0.18, 0.55
-0.50, 0.14

-0.13,0.34

-0.07,0.24
-0.30,0.18
-0.16, 0.11
-0.25,0.02
-0.18, 0.08
-0.15,0.11
-0.13,0.11
-0.05,0.23
-0.14, 0.10
-0.11, 0.21

-0.16, 0.16

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after
FDR correction are denoted with *. All MPSs were age-residualized.
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Table 5. Regression of DNAm at Wave 2 on Interactions between DNAm at Wave 1 and SES Covariates
Phe('{f",‘:fee‘;)ccel GrimAgeAccel (Wave2)  Dunedin PACE (Wave2)  Epigenetic-g (Wave 2)

Model 1 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.43* 0.29, 0.58 0.52* 0.39, 0.65 0.31* 0.17, 0.45 0.45* 0.31, 0.59
Family SES 0.06 -0.10, 0.23 0.01 -0.13, 0.15 -0.17 -0.33, 0.00 0.06 -0.09, 0.22
COVID SES Stress -0.04 -0.20, 0.13 0.04 -0.09, 0.18 0.03 -0.14, 0.20 0.11 -0.05, 0.26
MPS Wave 1*Family SES 0.09 -0.08, 0.26 0.12 -0.04, 0.28 0.03 -0.15,0.21 0.02 -0.13,0.17
MPS Wave 1*COVID SES Stress 0.08 -0.08, 0.25 0.08 -0.06, 0.23 -0.07 -0.21, 0.06 0.02 -0.13,0.17

Model 2 (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.43* 0.28, 0.58 0.43* 0.27, 0.59 0.29* 0.15, 0.44 0.41* 0.26, 0.56
Family SES 0.06 -0.11,0.22 0.00 -0.15,0.14 -0.13 -0.29, 0.03 0.04 -0.12,0.20
COVID SES Stress -0.04 -0.23,0.14 -0.01 -0.16, 0.14 0.02 -0.15,0.20 0.13 -0.04, 0.29
MPS Wave 1*Family SES 0.07 -0.10, 0.25 0.09 -0.08, 0.25 0.07 -0.11, 0.26 0.04 -0.11, 0.20
MPS Wave 1*COVID SES Stress 0.09 -0.08, 0.26 0.08 -0.06, 0.23 -0.04 -0.17,0.10 0.01 -0.14,0.17
Assessment Lag 0.14 -0.04, 0.32 0.15 -0.00, 0.30 -0.03 -0.21,0.14 0.13 -0.04, 0.29
Sex (Male) -0.27 -0.57,0.03 0.34 0.03, 0.64 -0.36 -0.66, -0.07 -0.13 -0.42,0.16
Latinx 0.00 -0.17,0.17 -0.00 -0.14,0.14 0.20 0.03, 0.38 -0.06 -0.22, 0.09
BlackPlus 0.15 -0.03, 0.32 0.11 -0.04, 0.26 0.09 -0.08, 0.27 -0.09 -0.26, 0.07
AsianPlusOther 0.06 -0.11,0.23 0.05 -0.09, 0.20 -0.06 -0.23,0.11 -0.08 -0.24, 0.08
LatinxWhite 0.02 -0.16, 0.19 0.01 -0.13,0.16 0.14 -0.03, 0.31 -0.09 -0.26, 0.07
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DNAm-Smoke 0.01 -0.15,0.17 0.07 -0.09, 0.22 0.02 -0.13,0.18 -0.00 -0.15,0.15
Model 3 (N=146) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI
MPS Wave 1 0.40* 0.23, 0.56 0.43* 0.26, 0.61 0.32* 0.16, 0.47 0.37* 0.21, 0.54
Family SES 0.07 -0.11, 0.25 -0.03 -0.18,0.13 -0.08 -0.26, 0.10 0.05 -0.12,0.21
COVID SES Stress -0.03 -0.23,0.17 0.01 -0.16, 0.18 0.00 -0.19, 0.20 0.16 -0.02, 0.33
MPS Wave 1*Family SES 0.10 -0.10, 0.30 0.09 -0.08, 0.27 0.10 -0.10, 0.30 0.10 -0.07, 0.27
MPS Wave 1* COVID SES Stress 0.12 -0.06, 0.30 0.08 -0.08, 0.23 -0.07 -0.23, 0.08 0.03 -0.14, 0.19
Assessment Lag 0.13 -0.08, 0.34 0.14 -0.04, 0.31 0.05 -0.15, 0.26 0.08 -0.10, 0.27
Sex (Male) -0.27 -0.60, 0.06 0.35 0.01, 0.69 -0.40 -0.73, -0.07 -0.08 -0.39, 0.24
Latinx -0.02 -0.21, 0.16 -0.03 -0.19, 0.12 0.23 0.04, 0.42 -0.04 -0.21, 0.12
BlackPlus 0.11 -0.09, 0.30 0.11 -0.06, 0.28 0.15 -0.05, 0.34 -0.17 -0.35, 0.01
AsianPlusOther 0.07 -0.12, 0.26 0.07 -0.09, 0.23 -0.01 -0.20, 0.18 -0.13 -0.30, 0.04
LatinxWhite 0.03 -0.16, 0.21 0.01 -0.15,0.17 0.12 -0.07, 0.31 -0.05 -0.22,0.12
DNAm-Smoke 0.10 -0.08, 0.29 0.13 -0.05, 0.31 0.09 -0.09, 0.27 0.02 -0.15, 0.19
BMI (Wave 1) 0.08 -0.08, 0.24 0.03 -0.11, 0.18 0.02 -0.14, 0.17 0.00 -0.15,0.15
PDS (Wave 1) 0.21 -0.01, 0.44 0.18 -0.03, 0.38 -0.01 -0.24,0.21 0.23 0.02, 0.45
APDS 0.11 -0.10, 0.32 0.06 -0.13, 0.26 0.14 -0.07, 0.35 0.08 -0.12, 0.29

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after

FDR correction are denoted with *. All MPSs were age-residualized.


https://doi.org/10.1101/2023.10.30.564766
http://creativecommons.org/licenses/by-nc/4.0/

CHILDHOOD STABILITY OF MPSs

Supplement

Table S1. Batch, COVID-19 group, Wave Overlap of Samples

Batch 1 Batch 2 Batch 3

(n=190) (n=306) (n=360)
Wave 1, Pre-COVID 138 105 2
Wave 1, Peri-COVID 44 72 67
Wave 2, Pre-COVID 8 129 108
Wave 2, Peri-COVID 0 0 183
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Table S2. Regression of DNAm at Wave 2 on Age at First Assessment, Assessment Lag, and Interaction between DNAm at Wave
1 and Age at First Assessment (Longitudinal Stability of MPSs by Age at First Assessment)

PhenoAgeAccel GrimAgeAccel . . .
(Wave 2) (Wave 2) Dunedin PACE (Wave 2) Epigenetic-g (Wave 2)

Model (n=428) std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI std. Beta 95% CI

MPS Wave 1 0.39 0.30, 0.48 0.42* 0.33,0.50 0.45* 0.36, 0.53 0.44* 0.35,0.52

Age at First -0.00 -0.11, 0.10 0.05 -0.04, 0.15 -0.01 -0.10, 0.09 0.07 -0.03, 0.17

Assessment (years)

MPS Wave 1 * Age -0.01 -0.10, 0.08 -0.05 -0.14, 0.04 -0.02 -0.10, 0.06 -0.05 -0.13, 0.03

at First Assessment

(Years)

Assessment Lag 0.06 -0.04, 0.16 0.06 -0.04, 0.16 -0.04 -0.14, 0.06 0.08 -0.02, 0.17

Note. MPS = DNA-methylation profile score. CI = Confidence Interval. Nominally significant parameters at p < 0.05 are in bold; parameters significant after
FDR correction are denoted with *. All MPSs were age-residualized.
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