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Abstract

Large-scale whole-genome sequencing (WGS) studies have improved our
understanding of the contributions of coding and noncoding rare variants to complex
human traits. Leveraging association effect sizes across multiple traits in WGS rare
variant association analysis can improve statistical power over single-trait analysis, and
also detect pleiotropic genes and regions. Existing multi-trait methods have limited
ability to perform rare variant analysis of large-scale WGS data. We propose
MultiSTAAR, a statistical framework and computationally-scalable analytical pipeline for
functionally-informed multi-trait rare variant analysis in large-scale WGS studies.
MultiSTAAR accounts for relatedness, population structure and correlation among
phenotypes by jointly analyzing multiple traits, and further empowers rare variant
association analysis by incorporating multiple functional annotations. We applied
MultiSTAAR to jointly analyze three lipid traits (low-density lipoprotein cholesterol, high-
density lipoprotein cholesterol and triglycerides) in 61,861 multi-ethnic samples from the
Trans-Omics for Precision Medicine (TOPMed) Program. We discovered new
associations with lipid traits missed by single-trait analysis, including rare variants within

an enhancer of NIPSNAP3A and an intergenic region on chromosome 1.
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Advances in next generation sequencing technologies and the decreasing cost of
whole-exome/whole-genome sequencing (WES/WGS) have made it possible to study
the genetic underpinnings of rare variants (i.e. minor allele frequency (MAF) < 1%) in
complex human traits. Large nationwide consortia and biobanks, such as the National
Heart, Lung and Blood Institute (NHLBI)'s Trans-Omics for Precision Medicine
(TOPMed) Program®, the National Human Genome Research Institute’s Genome
Sequencing Program (GSP) , the National Institute of Health’s All of Us Research
Program?, and the UK’s Biobank WGS Program?, are expected to sequence more than
a million of individuals in total, at more than 1 billion genetic variants in both coding and
noncoding regions of the human genome, while also recording thousands of
phenotypes. To mitigate the lack of power of single-variant analyses to identify rare
variant associations®, variant set tests have been proposed to analyze the joint effects

of multiple rare variants >°, where most of the work has focused single trait analysis.

Pleiotropy occurs when genetic variants influence multiple traits'®. There is growing
empirical evidence from genome-wide association studies (GWASS) that many variants

have pleiotropic effects™*?

. Identifying these effects can provide valuable insights into
the genetic architecture of complex traits'®. As such, it is of increasing interest to identify
pleiotropic rare variants by jointly analyzing multiple traits in WGS rare variant

association studies (RVASS).

Several existing methods for multi-trait rare variant association analysis, such as

MSKAT™, Multi-SKAT® and MTAR™®, have shown that leveraging the cross-phenotype
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correlation structure can improve the power of multi-trait analyses compared to single-
trait analyses when analyzing pleiotropic genes**’. However, existing methods do not
scale well, and are not feasible when analyzing large-scale WGS studies with hundreds
of millions of rare variants in samples exhibiting relatedness and population structure.
Furthermore, none of the existing multi-trait rare variant analysis methods leverages
functional annotations that predict the biological functionality of variants, resulting in
limited interpretability and power loss. While the STAAR method*® dynamically
incorporates multiple variant functional annotations to maximize the power of rare
variant association tests, it is designed for single-trait analysis and cannot be directly

applied to multiple traits.

To overcome these limitations, we propose the Multi-trait variant-Set Test for
Association using Annotation infoRmation (MultiSTAAR), a statistical framework for
multi-trait rare variant analyses of large-scale WGS studies and biobanks. It has several
features. First, by fitting a null Multivariate Linear Mixed Model (MLMM)*® for multiple
quantitative traits simultaneously, adjusting for ancestry principal components (PCs)®
and using a sparse genetic relatedness matrix (GRM)?*%2, MultiSTAAR scales well but
also accounts for relatedness and population structure, as well as correlations among
the multiple traits. Second, MultiSTAAR enables the incorporation of multiple variant
functional annotations as weights to improve the power of RVASs. Furthermore, we
provide MultiSTAAR via a comprehensive pipeline for large-scale WGS studies, that

facilitates functionally-informed multi-trait analysis of both coding and noncoding rare
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variants. Third, MultiSTAAR enables conditional multi-trait analysis to assess rare

variant association signals beyond known common and low frequency variants.

In the current study, we conducted extensive simulation studies to demonstrate the
validity of MultiSTAAR and to assess the power gain of MultiSTAAR by incorporating
multiple relevant variant functional annotations, and its ability in preserving Type | error
rates. We then applied MultiSTAAR to perform WGS RVAS of 61,838 ancestrally
diverse participants from 20 studies from NHLBI's TOPMed consortium by jointly
analyzing three circulating lipid traits: low-density lipoprotein cholesterol (LDL-C), high-
density lipoprotein cholesterol (HDL-C) and triglycerides (TG). We show that
MultiSTAAR is computationally feasible for large-scale WGS multi-trait rare variant
analysis, and in conditional analysis of LDL-C, HDL-C and TG, MultiSTAAR identifies
signals that were missed either by the existing multi-trait rare variant analysis methods
that overlook variant functional annotations, or by single-trait functionally-informed

analysis that ignore correlations between phenotypes.

Results

Overview of the methods

MultiSTAAR is a statistical framework and an analytic pipeline for jointly analyzing
multiple traits in large-scale WGS rare variant association studies. There are two main
components in the MultiSTAAR framework: (i) fitting null MLMMs using ancestry PCs
and sparse GRMs to account for population structure, relatedness and the correlation

between phenotypes, and (ii) testing for associations between each aggregated variant
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92 set and multiple traits by dynamically incorporating multiple variant functional
93 annotations®® (Fig. 1a).
94
95 In WGS RVASSs, an important but often underemphasized challenge is selecting
96 biologically-meaningful and functionally-interpretable analysis units, especially for the
97 noncoding genome®*#. In gene-centric analyses of multiple traits, MultiSTAAR provides
98 five functional categories (masks) to aggregate coding rare variants of each protein-
99 coding gene, as well as an additional eight masks of regulatory regions to aggregate
100 noncoding rare variants. In non-gene-centric analyses of multiple traits, MultiSTAAR
101  performs agnostic genetic region analyses using sliding windows'®# (Fig. 1b).
102
103  For each rare variant set analyzed, MultiSTAAR first constructs the multi-trait burden,
104  SKAT and ACAT-V test statistics (Methods). For each type of rare variant test,
105 MultiSTAAR calculates multiple candidate P values using different variant functional
106  annotations as weights, following the STAAR framework®. MultiSTAAR then
107 aggregates the association strength by combining the P values from all annotations
108  using the ACAT method, that provides robustness to correlation between tests®, and
109 proposes an omnibus test, MultiSTAAR-O, that leverages the advantages of different
110 type of tests (Methods). Furthermore, MultiSTAAR can test multi-trait rare variants’
111 associations conditional on a set of known associations (Fig. 1b).
112

113 Simulation studies
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114  To evaluate the type | error rates and the power of MultiSTAAR, we performed

115 simulation studies under several configurations. Following the steps described in Data
116  Simulation (Methods), we generated three quantitative traits with a correlation matrix
117  similar to the empirical correlation in the three lipid traits?®?®. We then generated

118 genotypes by simulating 20,000 sequences for 100 different 1 megabase (Mb) regions,
119 each of them were generated to mimic the linkage disequilibrium structure of an African

120  American population by using the calibration coalescent model®

. Throughout the

121  simulation studies, we randomly and uniformly selected 5-kilobase (kb) regions from
122  these 1-Mb regions and considered sample sizes of 10,000 for each replicate. The

123  simulation studies focused on aggregating uncommon variants with an MAF < 5%.

124

125 Type | error rate evaluations

126  We performed 102 simulations to evaluate the type | error rates of the multi-trait burden,
127  SKAT, ACAT-V and MultiSTAAR-O tests at « = 107%,107°, and 10~¢ (Supplementary
128 Table 1). The results show that, for multi-trait rare variant analysis, all four MultiSTAAR
129 tests controlled the type | error rates at very close to the nominal « levels.

130

131 Empirical power simulations

132  We next assessed the power of MultiSTAAR-O for the analysis of multiple phenotypes
133 under different genetic architectures, while also comparing its power with existing

134 methods. Specifically, we considered four models, in which variants in the signal region

135 (variant-phenotype association regions) were associated with (1) one phenotype only,

136  (2) two positively correlated phenotypes, (3) two negatively correlated phenotypes and

10
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137 (4) all three phenotypes. In addition, we considered different proportions (5%, 15% and
138 35% on average) of causal variants in the signal region, where causality of variants

139 depended on different sets of annotations, and the effect size directions of causal

140 variants were allowed to vary (Methods). Power was evaluated as the proportions of P
141  values less than a = 1077 based on 10* simulations. Overall, MultiSTAAR-O

142  consistently delivered higher power to detect signal regions compared to multi-trait

143  burden, SKAT and ACAT-V tests, through its incorporation of multiple annotations

144  (Extended Data Figs. 2-5, Supplementary Figs. 1-4). This power advantage was also
145 robust to the existence of noninformative annotations.

146

147  Application to the TOPMed lipids WGS data

148 We applied MultiSTAAR to identify rare variant associations with three quantitative lipid
149 traits (LDL-C, HDL-C and TG) through a multi-trait analysis using TOPMed Freeze 8
150 WAGS data, comprising 61,838 individuals from 20 multi-ethnic studies (Supplementary
151  Note). LDL-C values were adjusted for the usage of lipid-lowering medication?®*

152 (Methods), and DNA samples were sequenced at >30x target coverage. Sample- and
153  variant-level quality control were performed for each participating study*2°=°.

154

155 Race/ethnicity was measured using a combination of self-reported race/ethnicity and
156  study recruitment information®* (Supplementary Note). Of the 61,838 samples, 15,636
157  (25.3%) were Black or African American, 27,439 (44.4%) were White, 4,461 (7.2%)

158 were Asian or Asian American, 13,138 (21.2%) were Hispanic/Latino American and

159 1,164 (1.9%) were Samoans. There were 414 million single-nucleotide variants (SNVSs)

11
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160 observed overall, with 6.5 million (1.6%) common variants (MAF > 5%), 5.2 million

161 (1.2%) low-frequency variants (1% < MAF < 5%) and 402 million (97.2%) rare variants
162 (MAF < 1%). The study-specific demographics and baseline characteristics are given in
163 Supplementary Table 2.

164

165 Gene-centric multi-trait analysis of coding and noncoding rare variants

166 We applied MultiSTAAR-O on gene-centric multi-trait analysis of coding and noncoding
167 rare variants of genes with lipid traits in TOPMed. For coding variants, rare variants
168 (MAF < 1%) from five coding functional categories (masks) were aggregated,

169 separately, and analyzed using a joint model for LDL-C, HDL-C and TG, including (1)
170 putative loss-of-function (stop gain, stop loss and splice) rare variants, (2) missense
171 rare variants, (3) disruptive missense rare variants, (4) putative loss-of-function and
172  disruptive missense rare variants and (5) synonymous rare variants of each protein-
173 coding gene. The putative loss-of-function, missense and synonymous RVs were

174  defined by GENCODE Variant Effect Predictor (VEP) categories®. The disruptive

175 variants were further defined by MetaSVM*, which measures the deleteriousness of
176  missense mutations. We incorporated 9 annotation principal components (aPCs)'#2%34,
177 CADD®, LINSIGHT®*®, FATHMM-XF*" and MetaSVM?*? (for missense rare variants only)
178  along with the two MAF-based weights” in MultiSTAAR-O (Supplementary Table 3).
179  The overall distribution of MultiSTAAR-O P values was well-calibrated for the multi-trait
180 analysis of coding rare variants (Extended Data Fig. 1b). At a Bonferroni-corrected
181 significance threshold of « = 0.05/(20,000 x 5) = 5.00 x 10~7, accounting for five

182  different coding masks across protein-coding genes, MultiSTAAR-O identified 51

12
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183 genome-wide significant associations using unconditional multi-trait analysis (Extended
184 Data Fig. 1a, Supplementary Table 4). After conditioning on previously reported

185 variants associated with LDL-C, HDL-C or TG located within a 1 Mb broader region of
186 each coding mask in the GWAS Catalog and Million Veteran Program (MVP)?®383° 34
187 out of the 51 associations remained significant at the Bonferroni-corrected threshold of
188 a =0.05/51=9.80 x 10~* (Table 1).

189

190 For non-coding variants, rare variants from eight noncoding masks were analyzed in a
191  similar fashion, including (1) promoter rare variants overlaid with CAGE sites®, (2)

192  promoter rare variants overlaid with DHS sites*, (3) enhancer rare variants overlaid
193  with CAGE sites***3, (4) enhancer rare variants overlaid with DHS sites***3, (5)

194  untranslated region (UTR) rare variants, (6) upstream region rare variants, (7)

195 downstream region rare variants of each protein-coding gene and (8) rare variants in
196  ncRNA genes®*. The promoter rare variants were defined as rare variants in the +3-
197  kilobase (kb) window of transcription start sites with the overlap of CAGE sites or DHS
198 sites. The enhancer rare variants were defined as RVs in GeneHancer-predicted

199 regions with the overlap of CAGE sites or DHS sites. The UTR, upstream, downstream
200 and ncRNA rare variants were defined by GENCODE VEP categories®. With a well-
201 calibrated overall distribution of MultiSTAAR-O P values (Extended Data Fig. 1d) and
202 at a Bonferroni-corrected significance threshold of @ = 0.05/(20,000 x 7) = 3.57 X
203 1077, accounting for seven different noncoding masks across protein-coding genes,
204  MultiSTAAR-O identified 76 genome-wide significant associations using unconditional

205 multi-trait analysis (Extended Data Fig. 1c, Supplementary Table 5). After

13
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206 conditioning on known lipids-associated variants®*3#°, 6 out of the 76 associations
207 remained significant at the Bonferroni-corrected threshold of @« = 0.05/76 = 6.58 X
208 10~* (Table 2). These included promoter CAGE and enhancer CAGE rare variants in
209 APOAL1, promoter DHS rare variants in CETP, enhancer CAGE rare variants in SPC24,
210 and enhancer DHS rare variants in NIPSNAP3A and LIPC.

211

212  MultiSTAAR-O further identified 6 genome-wide significant associations using

213  unconditional multi-trait analysis at « = 0.05/20,000 = 2.50 x 107° accounting for

214 ncRNA genes (Extended Data Fig. 1e, Supplementary Table 5), with 3 rare variant
215 associations in RP11-15F12.3, RP11-310H4.2 and MIR4497 remained significant at
216 a =0.05/6 = 8.33 x 1073 after conditioning on known lipids-associated variants?®33°
217 (Table 2).

218

219 Notably, among the 9 conditionally significant noncoding rare variants associations with
220 lipid traits, 4 of them were not detected by any of the three single-trait analysis (LDL-C,
221 HDL-C or TG) using unconditional analysis of STAAR-O, including the associations of
222 enhancer DHS rare variants in NIPSNAP3A and LIPC as well as ncRNA rare variants in
223 RP11-310H4.2 and MIR4497 (Supplementary Table 5). These results demonstrate
224 that MultiSTAAR-O can increase power over existing methods, and identify additional
225 trait-associated signals by leveraging cross-phenotype correlations between multiple
226  traits.

227

228 Genetic region multi-trait analysis of rare variants
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229 We next applied MultiSTAAR-O to perform genetic region multi-trait analysis to identify
230 rare variants associated with lipid traits in TOPMed. Rare variants residing in 2-kilobase
231  (kb) sliding windows with a 1-kb skip length were aggregated and analyzed using a joint
232 model for LDL-C, HDL-C and TG. We incorporated 12 quantitative annotations,

233 including 9 aPCs, CADD, LINSIGHT, FATHMM-XF along with the two MAF weights in
234  MultiSTAAR-O (Methods). The overall distribution of MultiSTAAR-O P values was well-
235 calibrated for the multi-trait analysis (Fig. 2b). At a Bonferroni-corrected significance
236 threshold of @ = 0.05/(2.65 x 10°) = 1.89 x 1078 accounting for 2.65 million 2-kb

237  sliding windows across the genome, MultiSTAAR-O identified 502 genome-wide

238 significant associations using unconditional multi-trait analysis (Fig. 2a, Supplementary
239 Table 6). By dynamically incorporating multiple functional annotations capturing

240 different aspects of variant function, MultiSTAAR-O detected more significant sliding
241  windows and showed consistently smaller P values for top sliding windows compared
242 with multi-trait analysis using only MAFs as the weight (Fig. 2c). After conditioning on
243 known lipids-associated variants®®®+°, 7 out of the 502 associations remained

244 significant at the Bonferroni-corrected threshold of @ = 0.05/502 = 9.96 x 1075 (Table
245  3), including two sliding windows in DOCK?7 (chromosome 1: 62,651,447 - 62,653,446
246  bp; chromosome 1: 62,652,447 - 62,654,446 bp) and an intergenic sliding window

247  (chromosome 1: 145,530,447 - 145,532,446 bp) that were not detected by any of the
248  three single-trait analysis (LDL-C, HDL-C or TG) using STAAR-O (Supplementary

249 Table 6). Notably, all known lipids-associated variants indexed in the previous literature
250 were at least 1-Mb away from the intergenic sliding window.

251
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252 Comparison of MultiSTAAR-O with existing multi-trait rare variant tests

253 Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of coding rare
254  variants identified 34 conditionally significant associations with lipid traits (Table 1),
255 including NPC1L1 and SCARB1 missense rare variants that were missed by multi-trait
256  burden, SKAT and ACAT-V tests (Supplementary Table 4). Among the 9 and 7

257  conditionally significant associations detected in gene-centric multi-trait analysis of

258 noncoding rare variants and genetic region multi-trait analysis, MultiSTAAR-O identified
259 1 and 2 associations, respectively, that were missed by multi-trait burden, SKAT and
260 ACAT-V tests (Supplementary Tables 5-6). These associations included enhancer
261 CAGE rare variants in SPC24 and two sliding windows in LDLR (chromosome 19:

262 11,104,367 - 11,106,366 bp; chromosome 19: 11,105,367 - 11,107,366 bp).

263

264 Computation cost

265 The computational cost for MultiSTAAR-O to perform WGS multi-trait rare variant

266 analysis of n = 61,838 related TOPMed lipids samples was 2 hours using 250 2.10-GHz
267 computing cores with 12-GB memory for gene-centric coding analysis; or 20 hours

268 using 250 2.10-GHz computing cores with 24-GB memory for gene-centric noncoding
269 analysis; 2 hours using 250 2.10-GHz computing cores with 12-GB memory of ncRNA
270 analysis; and 20 hours using 500 2.10-GHz computing cores with 24-GB memory for
271  sliding window analysis. Runtime for all analyses scales linearly with the sample size®*.
272

273 Discussion
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274 In this study, we have introduced MultiSTAAR as a general statistical framework and a
275 flexible analytical pipeline for performing functionally-informed multi-trait RVAS in large-
276  scale WGS studies. MultiSTAAR improves power by analyzing multiple traits

277  simultaneously and dynamically incorporating multiple functional annotations, while

278 accounting for relatedness and population structure among study samples.

279

280 By jointly analyzing multiple quantitative traits using a multivariate linear mixed model,
281 MultiSTAAR explicitly leverages the correlation among multiple phenotypes to enhance
282 power for detecting additional association signals, outperforming single-trait analyses of
283 the individual phenotypes. MultiSTAAR also enables conditional multi-trait analysis to
284 identify putatively novel rare variant associations independent of a set of known

285 variants. Using TOPMed Freeze 8 WGS data, our gene-centric multi-trait analysis of
286  noncoding rare variants identified 9 conditionally significant associations with lipid traits
287 (Table 2), including 4 noncoding associations that were missed by single-trait analysis
288 using STAAR (Supplementary Table 5). Our genetic region multi-trait analysis of rare
289 variants identified 7 conditionally significant 2-kb sliding windows associated with lipid
290 traits (Table 3), including 3 associations that were missed by single-trait analysis using
291 STAAR (Supplementary Table 6).

292

293 By dynamically incorporating multiple annotations capturing diverse aspects of variant
294  Dbiological function in the second step, MultiSTAAR further improves power over existing
295 multi-trait rare variant analysis methods. Our simulation studies demonstrated that

296 MultiSTAAR-O maintained accurate type | error rates while achieving considerable
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power gains over multi-trait burden, SKAT and ACAT-V tests that do not incorporate
functional annotation information (Extended Data Figs. 2-5, Supplementary Figs. 1-
4). Notably, the existing ACAT-V method® does not support multi-trait analysis. We
extended it to accommodate multi-trait settings and incorporated the multi-trait ACAT-V

test into the MultiSTAAR framework (Methods).

Implemented as a flexible analytical pipeline, MultiSTAAR allows for customized input
phenotype selection, variant set definition and user-specified annotation weights to
facilitate functionally-informed multi-trait analyses. In addition to rare variant association
analysis of coding and noncoding regions, MultiSTAAR also provides single-variant
multi-trait analysis for common and low-frequency variants under a given MAF or minor
allele count (MAC) cutoff (e.g. MAC > 20). Using 61,838 TOPMed lipids samples, it took
8 hours using 250 2.10-GHz computing cores with 12-GB memory for single-variant
multi-trait analysis, which is scalable for large WGS/WES datasets. On the other hand,
MultiSTAAR could be further extended to allow for dynamic windows with data-adaptive

sizes in genetic region analysis®***

, to properly leverage synthetic surrogates in the
presence of partially missing phenotypes*, and to incorporate summary statistics for

meta-analysis of multiple WGS/WES studies*.

In summary, MultiSTAAR provides a powerful statistical framework and a
computationally scalable analytical pipeline for large-scale WGS multi-trait analysis with
complex study samples. Compared to single-trait analysis, MultiSTAAR offers a notable

increase in statistical power when analyzing multiple moderately to highly correlated
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320 traits, all while maintaining control over type | error rates across various genetic

321 architectures. As the sample sizes and number of available phenotypes increase in
322 biobank-scale sequencing studies, our proposed method may contribute to a better
323 understanding of the genetic architecture of complex traits by elucidating the role of rare
324  variants with pleiotropic effects.

325
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687 TABLES

688 Table 1 | TOPMed Gene-centric coding multi-trait analysis results of both

689 unconditional analysis and analysis conditional on known lipids-associated

690 variants. A total of 61,838 samples from the TOPMed Program were considered in the
691 analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O
692 P <5.00 x 1077; conditional MultiSTAAR-O P < 9.80 x 10~*) are presented in the

693 table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome number; Category,

694 functional category; No. of SNVs, number of rare variants (MAF < 1%) of the particular
695 coding functional category in the gene; MultiSTAAR-O, MultiSTAAR-O P value; Variants

696 (adjusted), adjusted variants in the conditional analysis.

697
Chr. No. of MultiSTAAR-O MultiSTAAR-O . .
Gene no. Category SNVs (Unconditional) (Conditional) Variants (adjusted)
rs12117661, rs2495491, rs11591147,
Putative loss- rs67608943, rs72646508, rs693668,
PCSK9 1 of-function 14 L14E-115 2.66E-08 1$28362261, 1528362263, rs141502002,

rs505151, rs28362286

Putative loss- rs12478327, rs72654432, rs1042034,
APOB 2 29 8.04E-28 5.76E-27 rs676210, rs533617, rs17240441,

of-function rs34722314, 1s563290, rs10692845
Putative loss. rs2150867, rs33918808, rs112853430,
ABCAL 9 28 2.04E-21 5.41E-21 rs4149307, rs9282541, rs1883025,

of-function rs1800978

rs140753491, rs138294113,
rs17242353, rs17242843, rs10422256,
Putative loss- rs72658860, rs11669576, rs2738447,
LDLR 19 of-function 19 8.81E-21 7.168-21 rs72658867, rs2738464, rs6511728,
rs3760782, rs59168178, rs2278426,
rs112942459
rs12117661, rs2495491, rs11591147,
rs67608943, rs72646508, rs693668,
rs28362261, rs28362263, rs141502002,
rs505151, rs28362286
rs12478327, rs72654432, rs1042034,
APOB 2 Missense 1407 5.57E-08 4.31E-08 rs676210, rs533617, rs17240441,
rs34722314, rs563290, rs10692845

ABCG5 2 Missense 242 5.75E-08 9.81E-08 rs114780578, rs11887534, rs4245791

NPC1L1 7 Missense 477 3.10E-08 1.60E-07 rs217381

rs6996383, rs268, rs328, rs3289,
LPL 8 Missense 149 9.57E-19 7.14E-04 rs13702, rs15285, rs78810414,
rs28550053, rs12676079, rs55682243
rs2150867, rs33918808, rs112853430,
ABCA1 9 Missense 597 3.63E-46 1.75E-33 rs4149307, rs9282541, rs1883025,
rs1800978
rs6488913, rs4765127, rs1716407,
SCARB1 12 Missense 192 6.77E-15 3.55E-15 rs825456, rs1672875, rs10846744,
rs10773112, rs187471874, rs10773119
rs1973688, rs1601935,
rs2043082, rs10468017,
rs1532085, rs436965, rs35980001,
rs1800588, rs2070895, rs113298164
rs35571500, rs247617, rs17231506,
rs34498052, rs34119551, rs34065661,
rs1597000001*, rs7499892, rs5883,
rs289719, rs11860407, rs189866004,

PCSK9 1 Missense 271 8.94E-71 1.29E-10

LIPC 15 Missense 246 2.54E-20 6.66E-15

CETP 16 Missense 168 8.84E-14 2.09E-04
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107

342

120

71

75

303

357

15

60

130

88

221

57

46

276

329

9.18E-14

7.92E-58

7.06E-08

1.14E-107

9.96E-12

1.79E-09

7.85E-33

2.86E-126

3.49E-17

1.01E-19

2.38E-16

6.97E-72

7.03E-19

5.78E-09

3.34E-09

1.17E-22

2.38E-29

3.06E-17

2.12E-57

6.16E-07

8.22E-17

9.86E-12

8.29E-09

2.66E-33

3.01E-06

2.14E-17

1.49E-17

5.07E-17

1.57E-71

1.33E-12

4.48E-09

1.57E-08

1.59E-23

3.93E-04

rs5880

rs111315946, rs150660813, rs4986970,
rs35673026, rs1109166, rs548291389
rs140753491, rs138294113,
rs17242353, rs17242843, rs10422256,
rs72658860, rs11669576, rs2738447,
rs72658867, rs2738464, rs6511728,
rs3760782, rs59168178, rs2278426,
rs112942459
rs3761077, rs150641967, rs187429064,
rs2074304
rs12117661, rs2495491, rs11591147,
rs67608943, rs72646508, rs693668,
rs28362261, rs28362263, rs141502002,
rs505151, rs28362286

rs12478327, rs72654432, rs1042034,
rs676210, rs533617, rs17240441,
rs34722314, rs563290, rs10692845

rs217381

rs2150867, rs33918808, rs112853430,
rs4149307, rs9282541, rs1883025,
rs1800978

rs509728, rs61905072, rs66505542,

rs7102314, rs964184, rs75198898,
rs142958146, rs2075291, rs3135506,

1651821, rs45611741, rs662799,
rs10750097, rs9804646, rs978880643,
rs2070669, rs76353203, rs138326449,
rs147210663, rs140621530, rs525028,

rs141469619, rs188287950,
rs202207736

rs6488913, rs4765127, rs1716407,
rs825456, rs1672875, rs10846744,
rs10773112, rs187471874, rs10773119

rs1973688, rs1601935,

rs2043082, rs10468017,
rs1532085, rs436965, rs35980001,
rs1800588, rs2070895, rs113298164

rs111315946, rs150660813, rs4986970,
rs35673026, rs1109166, rs548291389

rs140753491, rs138294113,
rs17242353, rs17242843, rs10422256,
rs72658860, rs11669576, rs2738447,
rs72658867, rs2738464, rs6511728,
rs3760782, rs59168178, rs2278426,
rs112942459
rs12117661, rs2495491, rs11591147,
rs67608943, rs72646508, rs693668,
rs28362261, rs28362263, rs141502002,
rs505151, rs28362286
rs12478327, rs72654432, rs1042034,
rs676210, rs533617, rs17240441,
rs34722314, rs563290, rs10692845

rs217381

rs2150867, rs33918808, rs112853430,
rs4149307, rs9282541, rs1883025,
rs1800978
rs509728, rs61905072, rs66505542,
rs7102314, rs964184, rs75198898,
rs142958146, rs2075291, rs3135506,
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rs651821, rs45611741, rs662799,
rs10750097, rs9804646, rs978880643,
rs2070669, rs76353203, rs138326449,
rs147210663, rs140621530, rs525028,
rs141469619, rs188287950,

rs202207736
Disruptive rs6488913, rs4765127, rs1716407,
SCARB1 12 missgnse 51 4.44E-16 2.86E-16 rs825456, rs1672875, rs10846744,
rs10773112, rs187471874, rs10773119
rs1973688, rs1601935,
Disruptive rs2043082, rs10468017,
LIPC 15 missense 112 2.19E-18 2.65E-16 rs1532085, rs436965, rs35980001,
rs1800588, rs2070895, rs113298164
Disruptive rs111315946, rs150660813, rs4986970,
LCAT 16 missense 84 2.85E-14 6.44E-15 rs35673026, rs1109166, rs548291389
rs140753491, rs138294113,
rs17242353, rs17242843, rs10422256,
Disruptive rs72658860, rs11669576, rs2738447,
LDLR 19 missense 203 2.22E-59 5.13E-59 rs72658867, rs2738464, rs6511728,
rs3760782, rs59168178, rs2278426,
rs112942459
698 * Samoan-specific missense variant.
699
700
701
702
703
704
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705 Table 2 | TOPMed Gene-centric noncoding multi-trait analysis results of both
706 unconditional analysis and analysis conditional on known lipids-associated
707 variants. A total of 61,838 samples from the TOPMed Program were considered in the
708 analysis. Results for the conditionally significant genes (unconditional MultiSTAAR-O
709 P < 3.57 x 1077 and conditional MultiSTAAR-O P < 6.58 x 10~* for 7 different

710 noncoding masks across protein-coding genes; unconditional MultiSTAAR-O P <
711  2.50 x 107° and conditional MultiSTAAR-O P < 8.33 x 1073 for ncRNA genes) are
712  presented in the table. MultiSTAAR-O is a two-sided test. Chr. no., chromosome

713 number; Category, functional category; No. of SNVs, number of rare variants (MAF <
714  1%) of the particular noncoding functional category in the gene; MultiSTAAR-O,

715 MultiSTAAR-O P value; Variants (adjusted), adjusted variants in the conditional

716 analysis; n/a, no variant adjusted in the conditional analysis.

717

Chr. No. of MultiSTAAR-O MultiSTAAR-O

Gene category  g\ys  (Unconditional)  (Conditional)

Variants (adjusted)
no.

rs509728, rs61905072, rs66505542,
rs7102314, rs964184, rs75198898,
rs142958146, rs2075291, rs3135506,
Promoter rs651821, rs45611741, rs662799,
APOA1 11 (CAGE) 230 2.33E-07 9.45E-07 rs10750097, rs9804646, rs978880643,
rs2070669, rs76353203, rs138326449,
rs147210663, rs140621530, rs525028,
rs141469619, rs188287950,
rs202207736
rs35571500, rs247617, rs17231506,
Promoter rs34498052, rs34119551, rs34065661,
CETP 16 (DHS) 411 1.21E-12 5.75E-04 rs1597000001*, rs7499892, rs5883,
rs289719, rs11860407, rs189866004,
rs5880
rs509728, rs61905072, rs66505542,
rs7102314, rs964184, rs75198898,
rs142958146, rs2075291, rs3135506,
rs651821, rs45611741, rs662799,

APOAL 11 E{g}fg;‘;r 642 1.88E-24 6.23E-04 rs10750097, rs9804646, rs978880643,
rs2070669, rs76353203, rs138326449,
rs147210663, rs140621530, rs525028,

rs141469619, rs188287950,
1202207736
rs140753491, rs138294113,
rs17242353, rs17242843, rs10422256,
Enhancer rs72658860, rs11669576, rs2738447,
SPC24 19 (CAGE) 366 1.33£-08 4.88E-04 1s72658867, 152738464, rs6511728,
rs3760782, rs59168178, rs2278426,
rs112942459
NIPSNA Enhancer rs2150867, rs33918808, rs112853430,
P3A 9 (DHS) 767 2.63E-08 8.46E-06 rs4149307, rs9282541, rs1883025,
rs1800978
rs1973688, rs1601935,
Enhancer rs2043082, rs10468017,
LIPC 15 (DHS) 3ria 4.26E-08 1.25E-04 rs1532085, rs436965, rs35980001,
rs1800588, rs2070895, rs113298164
BTCIJD:I.ZL.-Z 7 ncRNA 154 1.69E-06 1.69E-06 n/a
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MIR4497 12 ncRNA 23 1.37E-06 1.42E-06 rs5800864

rs77960347, rs117623631, rs9958734,
18 ncRNA 64 7.53E-11 7.50E-03 rs7229562, rs8086351, rs10048323,
rs8084172

RP11-
15F12.3

718 * Samoan-specific missense variant.

719
720
721
722
723
124
725
726
727
728
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Table 3 | TOPMed Genetic region (2-kb sliding window) multi-trait analysis results
of both unconditional analysis and analysis conditional on known lipid-
associated variants. A total of 61,838 samples from the TOPMed Program were
considered in the analysis. Results for the conditionally significant sliding windows
(unconditional MultiSTAAR-O P < 1.89 x 1072 and conditional MultiSTAAR-O P <
9.96 x 107%) are presented in the table. MultiSTAAR-O is a two-sided test. Chr. no.,
chromosome number; Start location, start location of the 2-kb sliding window; End
location, end location of the 2-kb sliding window; No. of SNVs, number of rare variants
(MAF < 1%) in the 2-kb sliding window; MultiSTAAR-O, MultiSTAAR-O P value;
Variants (adjusted), adjusted variants in the conditional analysis; n/a, no variant
adjusted in the conditional analysis. Physical positions of each window are on build
hg38.

Chr. Start End Gene No. of MultiSTAAR-O MultiSTAAR-O

no. location location SNVs (Unconditional) (Conditional) Variants (adjusted)

rs12117661, rs2495491,
rs11591147, rs67608943,
172646508, rs693668,
rs28362261, rs28362263,
rs141502002, rs505151,
rs28362286
rs12117661, rs2495491,
rs11591147, rs67608943,
rs72646508, rs693668,
rs28362261, rs28362263,
rs141502002, rs505151,
rs28362286

1 62,651,447 62,653,446 DOCK7 277 5.08E-09 7.56E-10 rs67461605
1 62,652,447 62,654,446 DOCK7 257 4.87E-09 7.24E-10 rs67461605

1 145,530,447 145,532,446 intergenic 233 5.12E-09 5.12E-09 n/a

rs140753491,
rs138294113,
rs17242353, rs17242843,
rs10422256, rs72658860,
19 11,104,367 11,106,366 LDLR 336 1.15E-12 8.33E-13 rs11669576, rs2738447,
rs72658867, rs2738464,
rs6511728, rs3760782,
rs59168178, rs2278426,
rs112942459
rs140753491,
rs138294113,
rs17242353, rs17242843,
rs10422256, rs72658860,
19 11,105,367 11,107,366 LDLR 338 5.97E-14 5.55E-15 rs11669576, rs2738447,
rs72658867, rs2738464,
rs6511728, rs3760782,
rs59168178, rs2278426,
rs112942459

1 55,051,447 55,053,446 PCSK9 327 7.11E-11 6.60E-08

1 55,052,447 55,054,446 PCSK9 320 9.37E-09 9.07E-06

* Samoan-specific missense variant.
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744  FIGURES

745 Fig. 1| MultiSTAAR framework and pipeline. a, MultiSTAAR framework. (i) Fit null
746  Multivariate Linear Mixed Models (MLMMSs) using sparse GRM and ancestry PCs to

747  account for population structure, relatedness and the correlation between phenotypes.
748 (i) Test for associations between each variant set and multiple traits by dynamically

749  incorporating multiple variant functional annotations. b, MultiSTAAR pipeline. (i) Prepare
750 the input data of MultiSTAAR, including genotypes, multiple phenotypes and covariates.
751 (i) Calculate sparse GRM, ancestry PCs and annotate all variants in the genome. (iii)
752  Perform single variant analysis for common variants. (iv) Define the rare variant analysis
753  units, including gene-centric analysis of five coding functional categories and eight

754 noncoding functional categories and non-gene-centric analysis of sliding windows. (v)
755  Provide result summarization and perform analytical follow-up via conditional analysis.
756
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Fig. 2| TOPMed Genetic region (2-kb sliding window) unconditional multi-trait

analysis results of low-density lipoprotein cholesterol (LDL-C), high-density

lipoprotein cholesterol (HDL-C) and triglycerides (TG) using TOPMed data. a,

Manhattan plot showing the associations of 2.65 million 2-kb sliding windows versus

—log,o(P) of MultiSTAAR-O. The horizontal line indicates a genome-wide P value
threshold of 1.89 x 1078 (n = 61,838). b, Quantile-quantile plot of 2-kb sliding window
MultiSTAAR-O P values (n = 61,838). ¢, Scatterplot of P values for the 2-kb sliding
windows comparing MultiSTAAR-O with Burden-MT, SKAT-MT and ACAT-V-MT tests

(MT is short for Multi-Trait). Each dot represents a sliding window with x-axis label being

the —log,,(P) of the conventional multi-trait test and y-axis label being the —log,,(P) of
MultiSTAAR-O (n = 61,838). Burden-MT, SKAT-MT, ACAT-V-MT and MultiSTAAR-O

are two-sided tests. Int*, intergenic sliding window.
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775 EXTENDED DATA FIGURES

776  Extended Data Fig. 1 | Manhattan plots and Q-Q plots for unconditional

777 gene-centric coding, noncoding and ncRNA analysis of low-density lipoprotein
778 cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerids
779 (TG) using TOPMed data (n = 61,838). a, Manhattan plots for unconditional gene-

780 centric coding analysis of protein-coding gene. The horizontal line indicates a genome-
781  wide MultiSTAAR-O P value threshold of 5.00 x 10~7. The significant threshold is

782  defined by multiple comparisons using the Bonferroni correction (0.05/(20,000 x 5) =
783  5.00 x 1077). Different symbols represent the MultiSTAAR-O P value of the protein-

784  coding gene using different functional categories (putative loss-of-function, putative

785 loss-of-function and disruptive missense, missense, disruptive missense, synonymous).
786 b, Quantile-quantile plots for unconditional gene-centric coding analysis of protein-

787 coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using
788 different functional categories. ¢, Manhattan plots for unconditional gene-centric

789 noncoding analysis of protein-coding gene. The horizontal line indicates a genome-wide
790 MultiSTAAR-O P value threshold of 3.57 x 10~7. The significant threshold is defined by
791 multiple comparisons using the Bonferroni correction (0.05/(20,000 x 7) = 3.57 x 1077).
792  Different symbols represent the MultiSTAAR-O P value of the protein-coding gene using
793 different functional categories (upstream, downstream, UTR, promoter CAGE,

794  promoter_DHS, enhancer_CAGE, enhancer_DHS). Promoter CAGE and

795 promoter_DHS are the promoters with overlap of Cap Analysis of Gene Expression

796 (CAGE) sites and DNase hypersensitivity (DHS) sites for a given gene, respectively.
797 Enhancer_CAGE and enhancer_DHS are the enhancers in GeneHancer predicted

798 regions with the overlap of CAGE sites and DHS sites for a given gene, respectively. d,
799 Quantile-quantile plots for unconditional gene-centric noncoding analysis of protein-
800 coding gene. Different symbols represent the MultiSTAAR-O P-value of the gene using
801 different functional categories. e, Manhattan plots for unconditional gene-centric

802 noncoding analysis of ncRNA gene. The horizontal line indicates a genome-wide

803 MultiSTAAR-O P value threshold of 2.50 x 107°. The significant threshold is defined by
804 multiple comparisons using the Bonferroni correction (0.05/20,000 = 2.50 x 107°). f,

805 Quantile-quantile plots for unconditional gene-centric noncoding analysis of NCRNA
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806
807

gene. In panels, a, ¢ and e, the chromosome number are indicated by the colors of
dots. In all panels, MultiSTAAR-O is a two-sided test.
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811 Extended Data Fig. 2 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT
812 (MTis short for Multi-Trait) and MultiSTAAR methods when variants in the signal
813 region are associated with one phenotype. Multi-trait Burden, SKAT and ACAT-V
814 tests implemented in MultiSTAAR are denoted by Burden-MT, SKAT-MT and ACAT-V-
815 MT. MultiSTAAR methods incorporating ten functional annotations are denoted by

816 MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and MultiSTAAR-O. In each simulation
817 replicate, a 5-kb region was randomly selected as the signal region. Within each signal
818 region, variants were randomly generated to be causal based on the multivariate logistic
819 model and on average there were 5%, 15% or 35% causal variants in the signal region.
820 The effect sizes of causal variants were f; = ¢,|log,, MAF; |, where ¢, was set to be
821 0.13. The barplot of power in the top panel consider settings in which the effect sizes for
822 the causal variants are 100% positive (0% negative), 80% positive (20% negative), and
823 50% positive (50% negative). The scatterplot of P values in the bottom panel compare
824  MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the
825 signal region are causal variants with all positive effect sizes. Power was estimated as
826 the proportion of the P values less than o = 1077 based on 10* replicates. Burden-MT,
827 SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and

828 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.
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841 Extended Data Fig. 3 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT
842 (MTis short for Multi-Trait) and MultiSTAAR methods when variants in the signal
843 region are associated with two positively correlated phenotypes. In each

844  simulation replicate, a 5-kb region was randomly selected as the signal region. Within
845 each signal region, variants were randomly generated to be causal based on the

846  multivariate logistic model and on average there were 5%, 15% or 35% causal variants

847  in the signal region. The effect sizes of causal variants were f; = ¢y|log,o MAF; |, where

848 ¢, was set to be 0.1. The barplot of power in the top panel consider settings in which the
849 effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20%
850 negative), and 50% positive (50% negative). The scatterplot of P values in the bottom
851 panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of
852 variants in the signal region are causal variants with all positive effect sizes. Power was
853 estimated as the proportion of the P values less than « = 1077 based on 10* replicates.
854 Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and
855 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.

856

857

47


https://doi.org/10.1101/2023.10.30.564764
http://creativecommons.org/licenses/by-nc-nd/4.0/

858

859
860

861

862

863

864

865

866

867

868

869

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564764; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

B +/-=100/0
1.0 q
B Burden-MT
0.9 1 B MuliSTAAR-B
@ SKAT-MT
0.8 - O MultiSTAAR-S
* O ACAT-V-MT
B MultiSTAAR-A
071 m MuliSTAAR-O
0.6 -
0.5 -
0.4
0.3
0.2
0.1
0.0 4 ‘j]
5% causal 15% causal 35% causal
Burden-MT vs. MultiSTAAR-O
8 E s w8
: ..
=4 1 ] - B 'n *
o i fgll
S | St
2ol ® g i
2 ® } ML Y
35 B oo2 .80
3 '.'j(u'in'
& o] g
ERN R/ .
9 o
I o |
-
LV
T o y y %
~10G10(P Burden-mr)

B +/-=80/20 B +/- = 50/50
1.0 1.0 4
0.9 0.9 1
0.8 4 0.8
0.7 0.7 -
0.6 1 0.6 -
0.5 1 0.5
0.4 0.4 -
0.3 0.3
0.2 0.2
0.1 0.1+
0.0 - -ij:- 0.0 - —dj:-
5% causal 15% causal 35% causal 5% causal 15% causal 35% causal
SKAT-MT vs. MultiSTAAR-O ACAT-V-MT vs. MultiSTAAR-O
S‘ E '-",#:.‘ 3, ...'
| R ’
e : o e
Chi : Ch
S| 4 s
' =<
AR £
3 i, & S
H g S
2o 7 % 2 o |
B 3 2o 4
o o
] 4 o
I o | . I o |
- I e oo oo - L
o | o E
' 10 20 30 o 50 ' 10 20 { o 50
—logo(pskar-ur) —logo(pacar-v-mr)

48


https://doi.org/10.1101/2023.10.30.564764
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564764; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

870 Extended Data Fig. 4 | Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT
871 (MT is short for Multi-Trait) and MultiSTAAR methods when variants in the signal
872 region are associated with two negatively correlated phenotypes. In each

873 simulation replicate, a 5-kb region was randomly selected as the signal region. Within
874  each signal region, variants were randomly generated to be causal based on the

875 multivariate logistic model and on average there were 5%, 15% or 35% causal variants

876 in the signal region. The effect sizes of causal variants were f; = ¢y|log,o MAF; |, where

877 ¢, was set to be 0.1. The barplot of power in the top panel consider settings in which the
878 effect sizes for the causal variants are 100% positive (0% negative), 80% positive (20%
879 negative), and 50% positive (50% negative). The scatterplot of P values in the bottom
880 panel compare MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of
881 variants in the signal region are causal variants with all positive effect sizes. Power was
882 estimated as the proportion of the P values less than « = 1077 based on 10* replicates.
883 Burden-MT, SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and
884 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.
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899 Extended Data Fig. 5| Power comparisons of Burden-MT, SKAT-MT, ACAT-V-MT
900 (MTis short for Multi-Trait) and MultiSTAAR methods when variants in the signal
901 region are associated with three phenotypes. In each simulation replicate, a 5-kb
902 region was randomly selected as the signal region. Within each signal region, variants
903 were randomly generated to be causal based on the multivariate logistic model and on
904 average there were 5%, 15% or 35% causal variants in the signal region. The effect
905 sizes of causal variants were ; = cy|log,q MAF; |, where c, was set to be 0.07. The
906 barplot of power in the top panel consider settings in which the effect sizes for the

907 causal variants are 100% positive (0% negative), 80% positive (20% negative), and
908 50% positive (50% negative). The scatterplot of P values in the bottom panel compare
909 MultiSTAAR-O to Burden-MT, SKAT-MT and ACAT-V-MT when 15% of variants in the
910 signal region are causal variants with all positive effect sizes. Power was estimated as
911 the proportion of the P values less than o = 1077 based on 10* replicates. Burden-MT,
912 SKAT-MT, ACAT-V-MT, MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and

913 MultiSTAAR-O are two-sided tests. Total sample size considered was 10,000.
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1058 Methods

1059 Ethics statement

1060 This study relied on analyses of genetic data from TOPMed cohorts. The study has
1061 been approved by the TOPMed Publications Committee, TOPMed Lipids Working
1062  Group and all the participating cohorts, including Old Order Amish (phs000956.v1.p1),
1063  Atherosclerosis Risk in Communities Study (phs001211), Mt Sinai BioMe Biobank
1064 (phs001644), Coronary Artery Risk Development in Young Adults (phs001612),

1065 Cleveland Family Study (phs000954), Cardiovascular Health Study (phs001368),
1066 Diabetes Heart Study (phs001412), Framingham Heart Study (phs000974), Genetic
1067  Study of Atherosclerosis Risk (phs001218), Genetic Epidemiology Network of

1068 Arteriopathy (phs001345), Genetic Epidemiology Network of Salt Sensitivity

1069 (phs001217), Genetics of Lipid Lowering Drugs and Diet Network (phs001359),

1070 Hispanic Community Health Study - Study of Latinos (phs001395), Hypertension
1071  Genetic Epidemiology Network and Genetic Epidemiology Network

1072  of Arteriopathy (phs001293), Jackson Heart Study (phs000964), Multi-Ethnic Study of
1073  Atherosclerosis (phs001416), San Antonio Family Heart Study (phs001215), Genome-
1074  wide Association Study of Adiposity in Samoans (phs000972), Taiwan Study of

1075 Hypertension using Rare Variants (phs001387), and Women'’s Health Initiative

1076  (phs001237), where the accession numbers are provided in parenthesis. The use of
1077 human genetics data from TOPMed cohorts was approved by the Harvard T.H. Chan
1078  School of Public Health IRB (IRB13-0353).

1079

1080 Notation and model
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1081 Suppose there are n subjects with a total of M variants sequenced across the whole

1082 genome. For the i-th subject, letY; = (y;1, ¥iz, ..., Vix)T denote a vector of K quantitative
1083 phenotypes; X; = (xil,xiz, ...,xiq)T denotes g covariates, such as age, gender and

1084  ancestral principal components; G; = (Gil, G2, ...,Gip)T denotes the genotype matrix of
1085 the p genetic variants in a variant set. Since these K phenotypes may be defined on
1086 different measurement scales, we assume that each phenotype has been rescaled to
1087  have zero mean and unit variance.

1088

1089 When the data consist of unrelated samples, we consider the following Multivariate
1090 Linear Model (MLM)

Yin ap, + Xi o, + G By €
Vo= |2 = | Toa tXia T Gib | |Fe ) )

Yik Qox T X?&K + G By CiK

1091  where ay is an intercept, &, = (@1, @z, ...,aq,k)T and B = (Bui B ...,ﬁp,k)Tare
1092  column vectors of regression coefficients for covariates X; and genotype G; in
1093 phenotype k, respectively. The error terms &; = (g4, &3, --., &) ! are independent and
1094 identically distributed and follow a multivariate normal distribution with mean a vector of
1095 zeros and variance-covariance matrix Xg,x, assumed identical for all subjects. For all n
1096 subjects, using matrix notation we can write model (1) as

Yosk = 1,00 + Xpsq@gsx + GrspBpxx + Enxicr #(2)
1097  where 1, is a column vector of 1's with length n, ey = (@1, g2, ...,aO,K)T is a column
1098 vector of regression intercepts, the k-th columns of a,., and B,k are a, and By,

1099 respectively, and &, = (&;, €;, ..., &,)" ~ MatrixNormal,, x (0,,xx, Lnxn, Zxxx) follows a
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1100 matrix normal distribution. We calculate the scaled residual for each subject on each
1101  phenotype, defined as &,xx = (Yoxx — Buxk)Exsx, Where fi,. . (a matrix of fitted

1102  values) and Iy, are estimated under the null MLM Y, = 1,,a} + Xnxqg®gxx + Enxk
1103  where no variant has any effect on any outcome.

1104

1105 When the data consist of related samples, we consider the following Multivariate Linear

1106  Mixed Model (MLMM)*®47-48

yil aO,l + szal + G’{ﬂl bil Eil
Yiz | _ | @ + X[ @ + GI B, + b}'Z + |52 ,  #(3)

Y, ="
Yik on,,{ + X{d,( + G{ﬁKJ byl L
1107  where the random effects b;;, account for relatedness and remaining population
1108  structure unaccounted by ancestral PCs®. We assume that b,,xx = (bi)nxx ~
1109  MatrixNormal, x(0,,xx, @ xn, Oxxx) With @ variance component matrix @, and a
1110  sparse genetic relatedness matrix ®,,..,,>-?%. For all n subjects, using matrix notation we
1111 can rewrite equation (3) as

Youxx = 1,00 + Xy q Qi + GrspBpxx + Prx + Enxi- #(4)
1112  We calculate the scaled residual for each subject on each phenotype, defined as
1113 8,5k = (Voxx — Baxe)Zxix, Where fi,«x and Zx. are estimated under the null MLMM
1114 Y,k =1,al + Xoxq@gxx T baxk + Enxg- Under both MLM and MLMM, our goal is to
1115 test for an association between a set of p genetic variants and K quantitative
1116 phenotypes, adjusting for covariates and relatedness. This corresponds to testing
1117 Hy: B, =B, =B =0.

1118
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1119  Multi-trait rare variant association tests using MultiSTAAR
1120  Single-trait score-based aggregation methods®® can be extended to allow for jointly

1121 testing the association between rare variants in a variant set and multiple quantitative
. . T .
1122 phenotypes. For a given variant set, let S, = (Sjk)pr = (Guxp) €nxx denote the

1123  matrix of score statistics where S;; is the score statistic for the j-th variant on the k-th

1124  phenotype. For multi-trait burden test using MultiSTAAR (Burden-MT), we consider test

1125 statistic

p p T
— 7-1
QBurden—MT - Z stj- |4 Z WjSJ" )
j=1 j=1

1126 where w; is the weight defined as a function of the MAF for the j-th variant**8, S;. =
1127 (Sj1,Sj2, -, Sjx) is the j-th row of § and V is the estimated variance-covariance matrix of

1128 5.’=1 w;S;. = WTS. Qpuraenmr asymptotically follows a standard chi-square distribution
1129 with K degrees of freedom under the null hypothesis, and its P value can be obtained
1130 analytically while accounting for LD between variants and correlation between

1131  phenotypes.

1132

1133  For multi-trait SKAT using MultiSTAAR (SKAT-MT), we consider the statistic

K P
_ 202
Qskar-mr = z Z WS-

1134  Qsxar—mr asymptotically follows a mixture of chi-square distributions under the null
1135 hypothesis, and its P value can be obtained analytically while accounting for LD

1136  between variants and correlation between phenotypes®**°.
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1137

1138  For multi-trait ACAT-V using MultiSTAAR (ACAT-V-MT), we propose test statistic

QACAT—V—MT = WZMAF(l - MAF) tan((o-s - po)ﬂ)

I

p
+ ) wPMAF;(1 - MAF,) tan ((05 - p)),

j=1
1139 where p' is the number of variants with a minor allele count (MAC) greater than 10 and
1140  p; is the multi-trait association P value of individual variant j for those variants with a
1141  MAC > 10, whose test statistic is given by the K degrees of freedom multivariate score
1142  test

Q; = Sj.Vgl}SjT_,

1143  where Vs,-. is the estimated variance-covariance matrix of §;.; p, is the multi-trait burden

1144  test P value of extremely rare variants with an MAC < 10 as described above and

1145 wZ2MAF(1 — MAF) is the average of the weights wMAF; (1 — MAF;) among the

1146  extremely rare variants with an MAC < 10. Q4car—v—umr 1S @pproximated well by a scaled
1147  Cauchy distribution under the null hypothesis, and its P value can be obtained

1148 analytically while accounting for LD between variants and correlation between

1149  phenotypes®*°. Note that when K = 1, the multi-trait burden, SKAT, and ACAT-V tests
1150 reduce to the original single-trait burden, SKAT and ACAT-V tests.

1151

1152  Suppose we have a collection of L annotations, let 4; denote the [-th annotation for the

1153 jth variant in the variant set. We define the functionally-informed multi-trait burden,

1154 SKAT and ACAT-V test statistics weighted by the [-th annotation as follows
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14 14 T

QBurden—MT,l,(al,az) = Z (al az)S Vl (ay,a3) Z ﬁ’-ﬂwjj(apaz)sj' 4

j=1 j=1

Qskar- —-MT,l(aq,a5) = zz W (alaz)

QACAT—V—MT,Z,(a1,az)

= AWy, 0y MAF(L — MAF) tan ( (0.5 = po, ))

+ Z 71 W(ay 0 MAF; (1 — MAF; ) tan (0.5 — p;)7),

rank(A jl)

1155 where fi;; = ' Wi (apay) = Beta(MAFj; al,az) with (a,,a,) € A = {(1,25),(1,1)},

1156 V(4 4, is the estimated variance-covariance matrix of 3. =1 TjiWj (a,,a,)S;. @nd

1157 #&,w¢, ., MAF(1 — MAF) is the average of the weights 7;w

2
J';(apaz)MAFj(l -
1158  MAF;) among the extremely rare variants with MAC < 10. Finally, we define the

1159 omnibus MultiSTAAR-O test statistic as

1
TMultiSTAAR—O = TMultiSTAAR—B aq,a + TMultiSTAAR—S aq,a
3|dq 1,02 1,42
(aq,az)€A

+ TMultiSTAAR —-A(aq,a5) ]

1 - [tan{(o-s - pBurden—MT,l,(al,az))T[}

3|Al L+1

(aq,a2)EA 1=0

tan{(O 5 — DskaT-MT,i(ay, az))”} tan{(O 5 — PacaT-v-mr,i(ay, az))”}]
+
L+1 L+1

1160 and the P value of Tyyiristaar—o Can be calculated by

_ 1 {arctan(Tyuiristasr—0)}
PMultisTAAR-0 = 2 - .
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1161

1162 Data simulation

1163  Type | error rate simulations

1164 We performed simulation studies to evaluate how accurately MultiSTAAR controls the
1165 type | error rate. We generated three quantitative traits from a multivariate linear model,

1166 conditional on two covariates

Yil 0-5Xi1 + O-5Xi2 t'(Ei]_
Yi = |:Y12“ = O-SXil + O-SXiZ + | &iz|,
Yi3 0'5Xi1 + O'5Xi2 €3

1167 where X;; ~ N(0,1),X;, ~ Bernoulli(0.5) and

€i1 0 1.0 -01 02
€i2 ~MVN< 0],1-0.1 1.0 —0.4]).
€i3 01102 -04 1.0

1168

1169  The correlation matrix of error terms &; = (g4, &2, €3)T was chosen to mimic the

1170 correlations between three lipid traits LDL-C, HDL-C and TG, estimated from the

1171 TOPMed data®®. We considered a sample size of 10,000 and generated genotypes by
1172  simulating 20,000 sequences for 100 different regions each spanning 1 Mb. The data
1173  generation used the calibration coalescent model (COSI)* with parameters set to mimic
1174  the LD structure of African Americans. In each simulation replicate, 10 annotations were
1175 generated as 44, ..., 4, all independently and identically distributed as N(0,1) for each
1176 variant, and we randomly selected 5-kb regions from these 1-Mb regions for type | error
1177  rate simulations. We applied MultiSTAAR-B, MultiSTAAR-S, MultiSTAAR-A and

1178 MultiSTAAR-O by incorporating MAFs and the 10 annotations together with Burden-MT,
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1179  SKAT-MT and ACAT-V-MT tests. We repeated the procedure with 102 replicates to
1180 examine the type | error rate at levels « = 10~%,107>. and 107°.

1181

1182  Empirical power simulations

1183  Next, we carried out simulation studies under a variety of configurations to assess the
1184  the power of MultiSTAAR-O, and how its incorporation of multiple functional annotations
1185 affects power compared to the multi-trait burden, SKAT, and ACAT-V tests implemented
1186 in MultiSTAAR. In each simulation replicate, we randomly selected 5-kb regions from a
1187  1-Mb region for power evaluations. For each selected 5-kb region, we generated three

1188 quantitative traits from a multivariate linear model

Y, 0.5X;; +0.5X, + GTB:1 e
Yi = lel = O.5Xl'1 + 0'5Xi2 + G?Bz + | €iz y
Y; 0.5X;; + 0.5X;, + GTB5] 163

1189 where X,;, X,;, €; were defined as in the type | error rate simulations,

1190 G; = (Gyy, Gy, ...,Gl-p)T and By = (Bui Boo ...,ﬂp,k)T were the genotypes and effect sizes
1191  of the p genetic variants in the signal region.
1192
1193  The genetic effect of variant j on phenotype k was defined as g; , = c;d,y; to allow for
1194  heterogeneous effect sizes among variants and phenotypes. Specifically, we generated
1195 the causal variant indicator ¢; according to a logistic model

logit P(¢; = 1) = 8y + 8, Aj, + 61,451, + 81,451, + 61,45, + 61, 4).
1196  where {l,,---,ls} < {1,---,10} were randomly sampled for each region. For different
1197 regions, causality of variants depended on different sets of annotations. We set

1198 §; =log(5) for all annotations and varied the proportions of causal variants in the signal
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1199 region by setting 6, = logit(0.0015), logit(0.015) and logit(0.18) which corresponds to
1200 averaging 5%, 15% and 35% causal variants in the signal region, respectively. We
1201  considered four scenarios of phenotypic indicator d;, that reflect different underlying
1202 genetic architectures across phenotypes: (d,,d,,ds;) = (1,0,0), (1,0,1), (1,1,0) and
1203 (1,1,1). These correspond to causal variants in the signal region being associated with
1204 (1) one phenotype only, (2) two positively correlated phenotypes, (3) two negatively
1205 correlated phenotypes and (4) all three phenotypes. We modeled the absolute effect
1206 sizes of causal variants using |yj| = ¢y| log,o MAF; |, such that it was a decreasing

1207  function of MAF. ¢, was set to be 0.13, 0.1, 0.1 and 0.07, respectively, to ensure a
1208 decent power of tests under each scenario. We additionally varied the proportions of
1209  causal variant effect size directions (signs of 7;) by randomly generating 100%, 80%,
1210 and 50% variants on average to have positive effects. We applied MultiSTAAR-B,

1211  MultiSTAAR-S, MultiSTAAR-A, and MultiSTAAR-O using MAFs and all 10 annotations
1212  together with Burden-MT, SKAT-MT and ACAT-V-MT tests. We repeated the procedure
1213  with 10* replicates to examine the power at level « = 10~7. The sample size was 10,000
1214  across all scenarios.

1215

1216 Lipid Traits

1217  Conventionally measured plasma lipids, including LDL-C, HDL-C, and triglycerides,
1218 were included for analysis. LDL-C was either calculated by the Friedewald equation
1219 when triglycerides were <400 mg/dl or directly measured. Given the average effect of

1220 statins, when statins were present, LDL-C was adjusted by dividing by 0.7. Triglycerides
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1221  were natural log transformed for analysis. Phenotypes were harmonized by each cohort
1222  and deposited into the dbGaP TOPMed Exchange Area.

1223

1224  Multi-trait analysis of lipid levels in the TOPMed WGS data

1225 The TOPMed WGS data consist of multi-ethnic related samples®. Race/ethnicity was
1226  defined using a combination of self-reported race/ethnicity from participant

1227  questionnaires and study recruitment information (Supplementary Note)*. In this
1228  study, we applied MultiSTAAR to perform multi-trait rare variant analysis of three

1229 quantitative lipid traits (LDL-C, HDL-C and TG) using 20 study cohorts from the

1230 TOPMed Freeze 8 WGS data. LDL-C was adjusted for the presence of medications as
1231  before®. For each study, we first fit a linear regression model adjusting for age, age?,
1232  sex for each race/ethnicity-specific group. In addition, for Old Order Amish (OOA), we
1233  also adjusted for APOB p.R3527Q in LDL-C and TC analyses and adjusted for APOC3
1234  p.R19Ter in TG and HDL-C analyses™.

1235

1236 We performed rank-based inverse normal transformation of the residuals of LDL-C,
1237 HDL-C and TG within each race/ethnicity-specific group. We then fit a multivariate linear
1238 mixed model for the rank normalized residuals, adjusting for 11 ancestral principal
1239 components, ethnicity group indicators, and a variance component for empirically

1240 derived sparse kinship matrix to account for population structure, relatedness and

1241 correlation between phenotypes.

1242

65


https://doi.org/10.1101/2023.10.30.564764
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564764; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1243  We next applied MultiSTAAR-O to perform multi-trait variant set analyses for rare

1244  variants (MAF < 1%) by scanning the genome, including gene-centric analysis of each
1245  protein-coding gene using five coding variant functional categories (putative loss-of-
1246  function rare variants, missense rare variants, disruptive missense rare variants,

1247  putative loss-of-function and disruptive missense rare variants and synonymous rare
1248 variants); seven noncoding variant functional categories (promoter rare variants overlaid
1249  with CAGE sites, promoter rare variants overlaid with DHS sites, enhancer rare variants
1250 overlaid with CAGE sites, enhancer rare variants overlaid with DHS sites, UTR rare
1251  variants, upstream region rare variants, downstream region rare variants) and rare

1252  variants in ncRNA genes; and genetic region analysis using 2-kb sliding windows

1253 across the genome with a 1-kb skip length. The WGS multi-trait rare variant analysis
1254  was performed using the R packages MultiSTAAR (version 0.9.7,

1255  https://github.com/xihaoli/MultiSTAAR) and STAARpipeline (version 0.9.7,

1256  https://github.com/xihaoli/STAARpipeline). The WGS rare variant single-trait analysis of

1257 LDL-C, HDL-C and TG was performed using the R package STAARpipeline (version

1258 0.9.7, https://github.com/xihaoli/STAARpipeline). Both multi-trait and single-trait

1259 analyses results were summarized and visualized using the R package
1260 STAARpipelineSummary (version 0.9.7,

1261 https://github.com/xihaoli/STAARpipelineSummary).

1262
1263 Genome build
1264  All genome coordinates are given in NCBI GRCh38/UCSC hg38.

1265
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Statistics and reproducibility
Sample size was not predetermined. The multi-trait analysis consists of 20 study
cohorts of TOPMed Freeze 8 and had 61,838 samples with lipid traits. We did not use

any study design that required randomization or blinding.

Data availability

This paper used the TOPMed Freeze 8 WGS data and lipids phenotype data. Genotype
and phenotype data are both available in database of Genotypes and Phenotypes. The
TOPMed WGS data were from the following twenty study cohorts (accession numbers
provided in parentheses): Old Order Amish (phs000956.v1.pl), Atherosclerosis Risk in
Communities Study (phs001211), Mt Sinai BioMe Biobank (phs001644), Coronary
Artery Risk Development in Young Adults (phs001612), Cleveland Family Study
(phs000954), Cardiovascular Health Study (phs001368), Diabetes Heart Study
(phs001412), Framingham Heart Study (phs000974), Genetic Study of Atherosclerosis
Risk (phs001218), Genetic Epidemiology Network of Arteriopathy (phs001345), Genetic
Epidemiology Network of Salt Sensitivity (phs001217), Genetics of Lipid Lowering
Drugs and Diet Network (phs001359), Hispanic Community Health Study - Study of
Latinos (phs001395), Hypertension Genetic Epidemiology Network and Genetic
Epidemiology Network of Arteriopathy (phs001293), Jackson Heart Study (phs000964),
Multi-Ethnic Study of Atherosclerosis (phs001416), San Antonio Family Heart Study
(phs001215), Genome-wide Association Study of Adiposity in Samoans (phs000972),

Taiwan Study of Hypertension using Rare Variants (phs001387), and Women’s Health
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1288 Initiative (phs001237). The sample sizes, ancestry and phenotype summary statistics of
1289 these cohorts are given in Supplementary Table 2.

1290

1291  The functional annotation data are publicly available and were downloaded from the

1292  following links: GRCh38 CADD v1.4 (https://cadd.gs.washington.edu/download);

1293 ANNOVAR dbNSFP v3.3a (https://annovar.openbioinformatics.org/en/latest/user-

1294  quide/download); LINSIGHT (https://github.com/CshiSiepelLab/LINSIGHT); FATHMM-

1295  XF (http://fathmm.biocompute.org.uk/fathmm-xf); FANTOM5 CAGE

1296 (https://fantom.gsc.riken.jp/5/data); GeneCards (https://www.genecards.org; v4.7 for

1297  hg38); and Umap/Bismap (https://bismap.hoffmanlab.org; ‘before March 2020’ version).

1298 In addition, recombination rate and nucleotide diversity were obtained from Gazal et
1299  al®. The whole-genome individual functional annotation data was assembled from a
1300 variety of sources and the computed annotation principal components are available at
1301 the Functional Annotation of Variant-Online Resource (FAVOR) site

1302 (https://favor.genohub.org)®! and the FAVOR database

1303  (https://doi.org/10.7910/DVN/IVGTJII)>?,

1304
1305 Code availability
1306 MultiSTAAR is implemented as an open source R package available at

1307 https://github.com/xihaoli/MultiSTAAR and

1308  https://content.sph.harvard.edu/xlin/software.html. Data analysis was performed in R

1309 (4.1.0). STAAR v0.9.7 and MultiSTAAR v0.9.7 were used in simulation and real data

1310 analysis and implemented as open-source R packages available at
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1311 https://github.com/xihaoli/STAAR and https://github.com/xihaoli/MultiSTAAR. The

1312 assembled functional annotation data were downloaded from FAVOR using Wget

1313  (https://www.gnu.org/software/wget/wget.html).

1314
1315 References

1316 50. Gazal, S. et al. Linkage disequilibrium—dependent architecture of human complex

1317 traits shows action of negative selection. Nature Genetics 49, 1421-1427 (2017).
1318 51. Zhou, H. et al. FAVOR: functional annotation of variants online resource and
1319 annotator for variation across the human genome. Nucleic Acids Research 51,
1320 D1300-D1311 (2023).

1321 52.  Zhou, H., Arapoglou, T., Li, X., Li, Z. & Lin, X. FAVOR Essential Database. V1
1322  Edition (Harvard Dataverse, 2022).

69


https://doi.org/10.1101/2023.10.30.564764
http://creativecommons.org/licenses/by-nc-nd/4.0/

