

1 **Title:** Crossroads of assembling a moss genome: navigating contaminants and horizontal gene
2 transfer in the moss *Physcomitrella africana*

3 Vidya S. Vuruputoor¹, Andrew Starovoitov¹, Yuqing Cai², Yang Liu², Nasim Rahmatpour¹,
4 Terry A. Hedderson³, Nicholas Wilding⁴, Jill L. Wegrzyn^{1,5*}, Bernard Goffinet^{1*}

5 ¹Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA,
6 06269

7 ²State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China; Key Laboratory of
8 Southern Subtropical Plant Diversity, Fairy Lake

9 ³Bolus Herbarium, Department of Biological Sciences, University of Cape Town, Private Bag, 7701,
10 Rondebosch, South Africa

11 ⁴Université de La Réunion, UMR PVBMT, BP 7151, chemin de l'IRAT, 97410 Saint-Pierre, La Réunion,
12 France; Missouri Botanical Garden, P.O. Box 299, St. Louis, MO, 63166-0299, U.S.A.

13 ⁵Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA, 06269

14 ORCID numbers:

15 VV: 0000-0002-5836-7054

16 YC: 0009-0009-3715-2482

17 YL: 0000-0002-5942-839X

18 TH: 0000-0002-3537-6599

19 NW: 0000-0003-4029-5387

20 JW: 0000-0001-5923-0888

21 BG: 0000-0002-2754-3895

22 * Corresponding authors: Department of Ecology and Evolutionary Biology, University of Connecticut,
23 Storrs, Connecticut, 06269. Email: jill.wegrzyn@uconn.edu and bernard.goffinet@uconn.edu

24 **Running head:** *Physcomitrella* genome

25 **Journal:** G3 (Genome Report)

26 **Abstract**

27 The first reference genome assembly of the moss *Physcomitrella africana*, a rare narrow
28 endemic terricolous species from southeastern coastal forests of South Africa, is presented here.

29 Phylogenetically, *Physcomitrella africana* bridges the major evo-devo moss models
30 *Physcomitrium patens* and *Funaria hygrometrica*, which diverged from their common ancestor
31 60-80 million years ago. The *Physcomitrella africana* genome was assembled with both long
32 Nanopore reads (73x) and short Illumina reads (163x). The 440 Mb assembly comprises 2,396
33 contigs and 23,493 protein-coding genes (BUSCO: C:96.0%[D:13.9%]), including two unique
34 genes of putative microbial origin absent in close relatives. While the informatic approaches to
35 genome assembly are becoming more standardized, best practices for contamination detection
36 are less defined. The long reads sequenced for the *Physcomitrella africana* genome
37 contained approximately 12% contamination originating from microbial sources. This study
38 describes the informatic processes employed to distinguish contaminants from candidate
39 horizontal gene transfer events. Following the assembly and annotation, examination of whole
40 genome duplication, and patterns of gene family expansion and contraction, were conducted. The
41 genome bears signatures of two whole genome duplications shared with *Physcomitrium patens*
42 and *F. hygrometrica*. Comparative analyses of gene family evolution revealed contractions
43 associated with the light harvesting regulatory network in *Physcomitrella africana* in
44 comparison to *Physcomitrium patens* and *F. hygrometrica*. This first high-quality African
45 bryophyte genome provides insights into genome evolution and HGT in an understudied moss
46 lineage.

47 **Keywords:** Funariaceae; reference genome; *Physcomitrella*; Bryophyta; HGT; contamination

48

49

50 **Article Summary**

51 The first draft genome of the rare moss, *Physcomitrella africana*, endemic to South Africa's
52 southeastern coastal forests, is presented here. The 440 Mb genome fills a critical phylogenetic
53 gap, enabling the first comparative analysis of the genomes of three moss species that diverge
54 over the last 60-80 million years. The analysis uncovered 23,493 genes and provides new
55 insights into genome evolution and gene family expansion/contraction in mosses. Rigorous
56 contaminant filtering also identified two genes uniquely acquired through horizontal gene
57 transfer.

58

59 **Introduction**

60 Horizontal gene transfer (HGT) is the lateral movement of genetic material between divergent
61 branches of the tree of life. This process is ubiquitous among bacteria, facilitating rapid
62 adaptation through exchange of ecologically important genes (Aminov, 2011). While HGT is
63 less common in eukaryotes compared to prokaryotes, it does play a role in shaping eukaryotic
64 evolution with about 0.04-6.49% of eukaryotic genomes originating from HGT from microbes
65 (Van Etten & Bhattacharya, 2020). During the evolution of land plants, increasing interactions
66 with rhizosphere microbes, particularly bacteria and mycorrhizal fungi, have enabled occasional
67 horizontal transfer of functional genes between these distantly related lineages (Martin et al.,
68 2017). For example, the gene for Killer Protein 4 (KP4) was likely acquired by mosses through
69 HGT from ascomycetes fungi (Guan et al., 2023). Similarly, the HET domain, common in fungal
70 heterokaryon incompatibility genes and involved in self/non-self recognition, was identified as a
71 truncated form in *Physcomitrium patens* (G. Sun et al., 2020). This gene is associated with moss-
72 fungus interactions, possibly as a defense mechanism. Van Etten & Bhattacharya (2020) suggest
73 that rather than merely anecdotal cases, HGT has been an important evolutionary force driving
74 land plant adaptation to new habitats and stressors throughout their evolution.

75 Accurately detecting the taxonomic origin of genes and confirming horizontal gene
76 transfer (HGT) events is challenging. Many reported cases of HGT in published genomes have
77 proven to be artifacts resulting from contamination that went undetected. For example, the initial
78 analysis of the genome of the tardigrade *Hypsibius dujardini* reported that 17% of its genes
79 originated from HGT (Boothby et al., 2015), a number subsequently revised to only 0.2% of
80 genes (Koutsovoulos et al., 2016). Similarly, claims of novel DNA modifications in mammals

81 also turned out to be erroneous due to bacterial contamination, highlighting the need for careful
82 analyses and experimental validation (Douvlataniotis et al., 2020). A systematic screening of 43
83 arthropod genomes by François et al. (2020) revealed extensive bacterial contaminants, often
84 outnumbering true horizontal gene transfer (HGT) events. For example, in the bumblebee
85 *Bombus impatiens*, most contaminating genes were concentrated on just 30 contaminant
86 scaffolds. Based on the size and number of contaminating sequences, it was concluded that the
87 genome of the symbiont *Candidatus Schmidhempelia bombyi* was co-assembled with its host.
88 Strategies to confidently identify HGT, including taxonomic assignment of candidates via
89 BLASTp/DIAMOND, phylogenetic analysis with candidate and donor proteins, synteny analysis
90 of flanking genes, and quantitative PCR validation, have been presented to address these issues
91 (François et al., 2020).

92 These strategies have been applied in recent land plants to identify HGT candidates. For
93 instance, the genomes of two fern species, *Azolla filiculoides* and *Salvinia cucullata*, were
94 sequenced and screened for HGT by Li et al. (F.-W. Li et al., 2018). A fern-specific insect
95 resistance gene identified in *A. filiculoides* appears to have originated from bacteria via HGT
96 based on phylogenetic analyses showing clustering of the fern gene with bacterial orthologs. The
97 authors confirmed candidates by analyzing flanking genes and performing RT-PCR. A similar
98 methodology was used in a large analysis of HGT across land plants, comparing candidates to
99 “donor” and “recipient” databases (Ma et al., 2022).

100 *Physcomitrella africana* inhabits transitional zones between grassland and forests in
101 coastal habitats in South Africa. It is currently the sole species of the genus, which likely should
102 also include several species of the paraphyletic genus *Entosthodon* (Wilding, 2015). This
103 resource complements those available for *Funaria hygrometrica* and *Physcomitrium patens*
104 (Kirbis et al., 2022; Rensing et al., 2008) and thereby constitutes a fundamental resource to
105 further the reconstruction of the evolution of the genome of *Physcomitrium patens*, which is
106 widely used in comparative genomics and land plant phylogenomics (Rensing et al., 2020). The
107 first genome of an African bryophyte, a 440 Mb reference for the moss, *Physcomitrella africana*,
108 is presented here. Through rigorous contamination screening and verification, two
109 unique candidate HGT events are described from this assembly. Characterizing validated HGT
110 events in *Physcomitrella africana* yields evolutionary insights while underscoring the need
111 for stringent standards to support HGT conclusions from genomics data.

112

113 **Materials and Methods**

114 **Sample collection and culturing**

115 A population of *Physcomitrella africana* was sampled in October 2010 from a coastal forest
116 in the Eastern Cape Province of South Africa (Dwesa National Park, along trail to chalets behind
117 campground, coordinates 32°18.222' S 28°49.666', at ± sea level). The voucher specimens
118 collected by Goffinet (collection numbers 10326 and 10329, with T Hedderon and N Wilding)
119 are deposited in the CONN herbarium under accession numbers CONN00235389 and
120 CONN00235388, respectively. Specimen 10326 (culture and long read library DNA #5074)
121 provided DNA for genome sequencing and assembly, while 10329 (RNA and Illumina DNA
122 #5075) provided RNA and DNA for Illumina sequencing. Sterile cultures were first established
123 on Knop medium using spores from a single operculate capsule. The gametophytes were
124 harvested, ground and spread on a rich sandy loam soil in PlantCon tissue culture containers (MP
125 Biomedicals, Solon, OH, USA), and maintained in a growth chamber under 16 h of daylight at
126 about 24°C.

127 **Genomic DNA and RNA extraction**

128 Gametophytic tissue, stems and leaves, of *Physcomitrella africana* was harvested from fresh
129 soil cultures under a dissecting microscope and ground in liquid nitrogen. DNA was extracted by
130 following a modified protocol by Young LA (2022). The quality of the DNA sample 5074 was
131 assessed by quantitative PCR prior to sequencing, yielding a DIN score of 7.0 and concentration
132 of 40.9 ng/µL. The DNA was then prepared for PromethION sequencing through a DNA repair
133 step, generating blunt ends, and ligating sequencing adapters followed by priming of the flow
134 cell, as described in the Oxford Nanopore Technologies Amplicons by Ligation (SQK-LSK109)
135 protocol.

136 DNA for short read sequencing was extracted using the NucleoSpin Plant midi DNA
137 extraction kit, following the manufacturer's protocol (Macherey-Nagel, Düren, Germany). DNA
138 quality was evaluated using a Qubit® 3.0 Fluorometer (Thermo Fisher Scientific, USA). Total
139 RNA was extracted from approximately 1 g of fresh gametophytic tissue using the RNeasy Plant
140 Mini Kit (Qiagen, Valencia, CA, USA).

141 **Genome and transcriptome library preparation and sequencing**

142 The HMW DNA library was sequenced on the Oxford Nanopore PromethION long-read
143 sequencing instrument. The short-read DNA libraries were sequenced (150 bp PE) on two lanes
144 of a BGISEQ-500 sequencing platform (BGI-Shenzhen, China), library preparation followed the
145 methods used by Yu et al (2020).

146 Approximately 1 µg of RNA was used to generate two paired-end libraries with an insert
147 fragment size of 200–300 bp of the corresponding cDNA. RNA purification, reverse
148 transcription, library construction and sequencing were performed at WuXi NextCode (Shanghai,
149 China). The captured coding regions of the transcriptome from total RNA were prepared using
150 the TruSeq® RNA Exome Library Preparation Kit. The two RNA libraries were sequenced on
151 one lane of an Illumina HiSeq 2000 instrument (100 bp PE) at the WuXi NextCode (Shanghai,
152 China).

153 **Quality control of genomic and transcriptomic reads**

154 The genomic short reads were first assessed with FASTQC v.0.11.7 (Andrews, 2010). In
155 preparation for assembly with Haslr and Wengan, Sickle v.1.33 with a minimum quality score
156 threshold of 30 (-q) and a minimum length of 50 bp (-l) was employed for reads trimming.
157 Nanoplot v.1.21.0 was used to quantify and assess the quality of the Oxford Nanopore
158 PromethION long-read sequences. To detect potential contamination, the long reads were
159 aligned against the provided bacterial, human and viral databases with Centrifuge v.1.0.4-beta
160 (p+h+v; min-hit length was increased to 50 bp) (Kim et al., 2016). Reads aligning to the target
161 loci in the databases were removed. The quality of the transcriptomic short reads was assessed
162 with FASTQC v.0.11.7 (Andrews, 2010). The reads were trimmed with Sickle v1.33 (Joshi NA,
163 2011) with a minimum quality score threshold of 30 (-q) and a minimum length of 40 bp (-l).

164 **Genome size estimation**

165 A single lane of Illumina short-read genomic data from accession 5075 was employed to
166 estimate the genome size. The k-mer distribution was calculated using Jellyfish v2.2.6 (Marçais
167 & Kingsford, 2011) and size estimates were processed with GenomeScope v2.0 (Ranallo-
168 Benavidez et al., 2020; Fig. S1).

169 **Transcriptome assembly**

170 The transcriptome was independently assembled to provide protein-level evidence for the
171 structural annotation of the genome, using Trinity v2.6.6 (Grabherr et al., 2011), with a minimum
172 contig length of 300bp. Contigs with minimal read support, post assembly, were removed
173 (FPKM > 0.5) with RSEM v1.3.0 (B. Li & Dewey, 2011). Transdecoder v3.0.1 (Haas et al.,
174 2016) was used to translate the remaining contigs into Open Reading Frames (ORFs) and remove
175 sequences without a viable frame. To aid Transdecoder in the identification of ORFs, searches
176 against the Pfam database were performed with HMMER v3.1b2 (Z. Zhang & Wood, 2003).
177 Transdecoder annotated the putative transcripts as complete, partial, and internal. Those without
178 a defined start and stop codon (defined as internals) were removed (split_frames.py). The final
179 set of peptide sequences were functionally annotated with EnTAP v0.8.0 (Hart et al., 2020)
180 against NCBI's nr protein database and the UniProt/Swiss-prot reference databases. EnTAP was
181 run with contaminant filters that included bacteria, archaea, fungi, and insecta. Transcripts with
182 high confidence alignments to these organisms were removed (contam_removal.py).

183 **Genome assembly**

184 Hybrid genome assembly, integrating both long and short-read data, was conducted with
185 MaSuRCA v.4.0.3 (Zimin et al., 2013), Wengan v.0.2 (Di Genova et al., 2021), and Haslr
186 v.0.8a1 (Haghshenas et al., 2020). Additionally, a separate assembly using only long-reads as
187 input was conducted with Flye v.2.5 (with three polishing iterations) (Kolmogorov et al., 2019).

188 The Flye, Wengan, and Haslr assemblies were polished following long-read alignment
189 with Medaka v1.3.2 (github.com/nanoporetech/medaka). Post assembly with Wengan, the
190 assembly was filtered to remove scaffolds less than 3 Kb. To further improve the accuracy of the
191 assemblies, the hybrid assembly generated by MaSuRCA was polished with the Illumina short
192 reads using Pilon v.1.24 (Walker et al., 2014). Subsequently, the selected MaSuRCA assembly
193 was processed with Purge Haplotigs v.1.0 (Roach et al., 2018).

194 The Purge Haplotigs pipeline categorized the assembled scaffolds into four coverage
195 levels based on the distribution of mapped reads. This categorization enabled the identification
196 and removal of redundant sequences exhibiting low coverage, presumed to represent erroneous
197 duplicates given the haploid genome. Specific cutoff values of 0, 7, and 65 for the coverage
198 levels were selected to delineate scaffolds to be retained or discarded, based on the k-mer
199 coverage distribution peaks (Fig. S2). The term "allele" is used to describe these redundant

200 sequences for convenience, although technically inaccurate for a haploid genome. The coverage
201 analysis and purging allowed isolation of the primary genome sequence from duplications and
202 artifacts generated during assembly.

203 To evaluate the quality of the assemblies, QUAST v5.2.0 (Gurevich et al., 2013) and
204 BUSCO v4.1.2 (viridiplantae_odb10) (Manni et al., 2021) were employed. Each assembly was
205 also evaluated with Merqury v1.3 (Rhie et al., 2020).

206

207 **Structural and functional genome annotation**

208 *Repeat library construction and masking*

209 The repeat library for the final MaSuRCA assembly was generated using RepeatModeler v.2.0.1
210 (Flynn et al., 2020) with the long terminal repeat (LTR) discovery pipeline enabled. The genome
211 was then soft-masked with RepeatMasker v.4.0.9-p2 using the consensus repeat library from
212 RepeatModeler (Smit, AFA, Hubley, R & Green, P., 2013-2015).

213 *Structural and functional genome annotation*

214 The Illumina RNA reads were aligned to the soft-masked MaSuRCA assembly with HISAT2
215 v.2.1.0 (Kim et al., 2019) to provide evidence for protein-coding gene prediction. Two gene
216 prediction analyses were run on the soft-masked assembly using BRAKER v.2.1.5 (Brůna et al.,
217 2021), one with RNA-Seq alignment evidence and one with protein evidence originating from *de*
218 *novo* assembled transcriptome. Gene predictions from both BRAKER runs were integrated with
219 TSEBRA v.1.0.3 (Gabriel et al., 2021). From this point, separate assessments were conducted on
220 the RNA-Seq evidence gene predictions (BRAKER) and the final TSEBRA gene predictions to
221 select the best approach. Putative genes were removed from both sets if they did not contain a
222 complete protein domain. This filter was applied with Interproscan v.5.35-74.0 (Jones et al.,
223 2014) using the Pfam database v32.0 (Finn et al., 2014). It is worth noting that mono-exonic
224 genes can be the result of fragmented annotations and the target metric of 0.2 (mono:multi-exon
225 gene ratio) is often achieved through protein domain filters (Vuruputoor et al., 2022). Metrics for
226 the gene predictions were generated with gFACs v1.1.3 (Caballero & Wegrzyn, 2019) and
227 BUSCO. After assessment, the filtered BRAKER gene predictions were selected for functional
228 annotation with EnTAP v.0.10.8 (Hart et al., 2020). Functional annotation reports from EnTAP

229 (both sequence similarity search and EggNog taxonomy scope classifications) allowed for the
230 identification of non-target species scaffolds in the assembly (Huerta-Cepas et al., 2019).

231 *Assembly level contaminant filtering*

232 Using the functional annotation results from EnTAP, contaminated scaffolds were removed.
233 Scaffolds with a length of 10 Kb or less, and with 40% or more of their total genes classified as
234 archaea, bacteria, or fungi, were removed. Additionally, scaffolds greater than or equal to 10 Kb
235 with 55% or more genes classified as archaea, bacteria, or fungi, were also excluded. The final
236 annotation was then assessed for the annotation rate using EnTAP, the mono:multi ratio using
237 gFACs, and BUSCO completeness.

238 *Horizontal gene transfer candidate identification*

239 To identify candidate HGTs in *Physcomitrella africana*, protein sequence similarity searches
240 were conducted with Diamond v2.1.8 (Buchfink et al., 2021). The protein sequences of
241 *Physcomitrella africana* were aligned against "donor" databases, which included sequences
242 from bacteria, fungi, archaea, and metazoa from NCBI's nr database. Additionally, the same
243 proteins were aligned to "recipient" databases containing sequences from Streptophyta,
244 Tracheophyta, Embryophyta, Viridiplantae, and Spermatophyta (Ma et al., 2022). Although these
245 categories are not fully exclusive, each database was utilized separately to systematically assess
246 presence across plants at different evolutionary divergence points.

247 To identify candidate genes representing putative horizontal gene transfer (HGT) events
248 unique to *Physcomitrella africana*, the following criteria were utilized: genes were required
249 to have between one and four significant sequence alignments (E-value <1e-5) to microbial
250 donor databases, while exhibiting no significant sequence similarity to plant recipient databases.
251 This range of one to four microbial alignments was selected to capture potential HGTs while
252 avoiding ubiquitous domains shared across many microbes. The lack of hits to plant databases
253 was intended to enrich for *Physcomitrella africana*-specific sequences, rather than those
254 conserved across plants through vertical inheritance. At this stage, any scaffolds containing only
255 bacterial or fungal genes, without any plant-related genes, were removed from the assembly.

256

257 To assess the validity of the two proposed HGT candidates, the genes were visualized on the

258 Integrated Genome Viewer (IGV). The alignments of the HGT candidates from the ‘nr’ database,
259 as well as the transcripts assembled with StringTie2 (Kovaka et al., 2019), were visualized.

260 *Analyzing HGT candidates from *Physcomitrium patens**

261 The 264 putative horizontally transferred genes (HGTs) previously identified in *Physcomitrium*
262 *patens* (J. Zhang et al., 2020) were independently searched against the *Physcomitrella*
263 *africana* and *F. hygrometrica* protein sets using DIAMOND v2.1.8 (Buchfink et al. 2021).
264 DIAMOND searches were conducted with an E-value cutoff of 1e-5 and max target sequences
265 set to 1. Hits against *Physcomitrella* *africana* and *F. hygrometrica* were collected and
266 merged to generate a summary table with *Physcomitrium patens* HGTs and the respective top
267 hits in each species.

268

269 **Comparative genome analyses**

270 A comparative analysis of the protein-coding gene space was conducted with OrthoFinder
271 v.2.5.1 (Emms & Kelly, 2019) with *F. hygrometrica* (Kirbis et al., 2022) and *Physcomitrium*
272 *patens* v3 (Lang et al., 2018). To provide a preliminary estimate of gene family size dynamics,
273 gene counts from each species in the assembled orthogroups were categorized as neutral,
274 expanded, or contracted. The first and third quartiles were calculated for the distinct gene counts
275 within a gene family for each species. If the number of genes from a species was lower than the
276 first quartile or higher than the third quartile, then the gene family was categorized as
277 “contracted” or “expanded”, respectively. If the number of genes did not fit with either of these
278 two criteria, then the gene family was considered “neutral”. The longest gene for each
279 orthogroup was used to assign functional attributes to all genes in the group from the original
280 EnTAP annotation. If the longest gene did not originate from *Physcomitrella* *africana*, then
281 the functional annotation was derived from either *Physcomitrium patens* or *F. hygrometrica*.

282 GOSeq (Young et al., 2010) enrichment analysis was performed in R v4.2.0. GO terms
283 were extracted for each gene from the EnTAP run. Enrichment analysis was investigated
284 separately for *Biological Process* and *Molecular Function* GO categories. Paralogs of LHC,
285 STN7, and STN8 were identified with Diamond v2.8.1 (E-value <1e-5).

286 *Whole genome duplication analysis*
287 Chromosome-scale genomes of *F. hygrometrica* and *Physcomitrium patens* were assessed with
288 the reference genome generated for *Physcomitrella africana*, with wgd (v.1.0.1) to
289 characterize whole genome duplication events (Zwaenepoel & Van de Peer, 2018). Each species
290 was compared against itself. Nucleotide sequences (CDS) were used as input to Blast & Markov
291 clustering (MCL) (Altschul et al., 1997; van Dongen, 2000). A Ks distribution was constructed
292 using the ‘ksd’ subcommand and ‘mcl’ output (Katoh & Toh, 2008; Price et al., 2010; Yang,
293 2007). Next, a collinearity analysis was performed with ‘syn’ using the structural genome
294 annotations (Proost et al., 2011). Gaussian mixture models, via ‘mix’, were used to generate Ks
295 distributions to aid in component interpretation. Model fit was evaluated with the Bayesian and
296 Akaike information criterion (BIC/AIC).

297

298 **Results and Discussion**

299 **Sequencing and quality control of genomic reads**

300 The single ONT PromethION run generated 16 million reads (N50: 7,518 bp; 127X coverage:
301 404 Mb; 116X coverage: 440 Mb; Table S1). Centrifuge filtering reduced this set to
302 approximately 14M reads (N50: 4,561 bp; 80X coverage: 404 Mb; 73X coverage: 440 Mb). The
303 primary contaminants included bacteria from *Xanthomonadaceae* (10.68%) followed by
304 *Bradyrhizobiaceae* (0.7%). The BGISEQ-500 short-read genomic libraries (100 bp PE)
305 generated 529 M reads. Following trimming with Sickle, 360 M reads remained (178X coverage:
306 404 Mb; 162X coverage: 440 Mb; Table S2). Coverage estimates are provided for both the
307 original estimate (404 Mb) and the final assembled genome size (440 Mb).

308 **Transcriptome assembly**

309 A total of 36.58M Illumina short reads were generated. Following quality filtering using
310 Trimmomatic, the dataset was reduced to 31.84M reads. The *de novo* assembly process with
311 Trinity yielded 143,150 contigs. After expression filtering via RSEM, the number of contigs was
312 reduced to 123,373. Identifying open reading frames (ORFs) in the contigs resulted in 110,852
313 successfully translated transcripts. The average sequence length of these translated ORFs was
314 803 bp, with an N50 value of 1,038 bp. To enhance the quality of the transcriptome assembly,

315 internal sequences and putative contaminants were removed, resulting in 74,997 total transcripts.
316 After removing internal sequences and contamination, the total unique sequences with an
317 alignment is 51,982 (69.3%; File S1). The final BUSCO score of the remaining transcripts was
318 C:82%[D:35.7%]. A total of 30,657 (36.6%) transcripts aligned to *Physcomitrium patens*
319 proteins. An assessment of contamination revealed 8,720 (10.41%) of sequences potentially
320 contaminated, with contributions from various sources such as amoeba (0.40%), bacteria (3.8%),
321 fungi (94.99%), and insecta (0.77%). A total of 15,500 (18.5%) sequences remained
322 unannotated.

323 **Genome assembly**

324 *Initial assembly*: Multiple genome assembly approaches were employed to generate
325 comprehensive draft assemblies of the *Physcomitrella africana* genome (Fig. 2). The long-
326 read approach, Flye, assembled 538.68 Mb in 8,388 scaffolds, with an N50 of 152.58 Kb. The
327 BUSCO completeness score was C:84.0%[D:12.2%] and the Merqury QV score was 21.1.
328 Among the hybrid approaches, Haslr produced a 295.98 Mb reference distributed across 12,738
329 scaffolds, with an N50 of 52.29 Kb. The BUSCO score was C:94.1%[D:13.2%], and the QV
330 score was 11.9. Wengan assembled a total of 466.64 Mb across 10,516 scaffolds, with an N50 of
331 119.42 Kb and a BUSCO score of C:96.4%[D:18.8%], and a QV score of 27.4. Finally,
332 MaSuRCA assembled 506.22 Mb across 3,571 scaffolds, with an N50 of 381.33 Kb, (BUSCO:
333 C:96.4%[15.5%], and a QV score of 31.0).

334 *Polishing and improving genome assembly*:

335 The Medaka polished Flye assembly had a genome size of 530.57 Mb in 8,386 scaffolds, and the
336 N50 was decreased to 145.17 Kb. The BUSCO dropped to C:90.3%[D:11.5%]. The QV score
337 decreased to 19.6. Polishing of the Haslr assembly resulted in a genome size of 295.73 Mb,
338 across 12,737 scaffolds. The N50 remained almost unchanged at 52.31 Kb, and the BUSCO
339 score reduced to C:90.6%[D:9.4%]. The QV score more than doubled to 25.2. Filtering for
340 scaffolds less than 3 Kb, followed by Medaka, resulted in a smaller genome size for the Wengan
341 assembly at 434.41 Mb across 7,639 scaffolds. The N50 increased to 132.40 Kb. The BUSCO
342 score was reduced to C:93.2%[D:11.8%], and the QV increased slightly to 27.5.

343 Polishing with Pilon had very minimal little influence on the completeness, as expected,
344 and substantial impact on the accuracy of the MaSuRCA assembly. The polished MaSuRCA

345 hybrid assembly size increased slightly to 507.10 Mb across 3,590 scaffolds, with a slightly
346 decreased N50 of 378.43 Kb. The BUSCO completeness remained the same at
347 C:96.4%[D:15.5%], and the QV score increased to 35.6.

348 *Refinement of genome assemblies with Purge-haplotigs:* The MaSuRCA assembly was selected
349 for further refinement. This decision was based on the overall quality assessed by Merqury,
350 BUSCO completeness, and overall contiguity. The MaSuRCA assembly was refined with Purge-
351 haplotigs which reduced the assembly length to 502.34 Mb across 3,237 scaffolds with an N50
352 value of 382.25 Kb. The BUSCO completeness score remained the same (e.g., 96.4%) and the
353 QV score was minimally reduced to 35.5. At 502.34 Mb, the assembled genome is ~100 Mb
354 longer than the k-mer based estimate (440 Mb, Fig S1).

355

356 **Genome annotation**

357 *Repeat identification:* RepeatModeler produced a library containing 580 unique repeats that were
358 used to softmask 50.22% of the final assembly (Table S3; File S2). Of the repeats, 36.53% was
359 composed of *Ty3/Gypsy* and 1.46% of *Ty1/Copia*. This is similar to the pattern in *Physcomitrium*
360 *patens*, wherein approximately 57% of the genome is composed of repeat elements, with long
361 terminal repeats (LTRs), particularly the *Gypsy* family, accounting for 48% of the masked
362 genome (Lang et al., 2018). These findings align with observations by Kirbis et al. (2022),
363 suggesting a common pattern across these species regarding the activation of *Gypsy* elements in
364 *Physcomitrella* and *Physcomitrium*. In contrast, *F. hygrometrica*, which
365 diverged from *Physcomitrium patens* 60 to 80 MYA (Bechteler, Peñaloza-Bojacá, Bell,
366 Burleigh, McDaniel, et al., 2023; Medina et al., 2018), exhibits a lower overall repeat estimate of
367 35%. Here, *Gypsy* elements contribute less to the LTR content, i.e., roughly 10%, whereas *Copia*
368 elements contribute 17%.

369 *Protein-coding gene identification:* The *Physcomitrella* RNA-Seq reads had an
370 overall alignment rate of 78.43%, likely due to contaminant content, but a substantial set of 37M
371 reads were retained, exceeding the minimum needed for prediction. The first BRAKER2
372 predictions, using RNA-Seq evidence alone, generated 60,917 protein-coding genes with a
373 BUSCO completeness score of C:95.8%[D:15.3]. The mono:multi exonic ratio was 0.52. With
374 only protein evidence, BRAKER2 generated 37,752 gene predictions with a BUSCO score of

375 C:46.1%[D:16.0]. Merging these predictions, as recommended by TSEBRA, resulted in a set of
376 45,737 genes with a BUSCO score of C:91.3%[D:15.1], and the mono:multi exonic ratio was
377 1.06. The gene prediction set generated with RNA-Seq alignment evidence exclusively was
378 selected for further refinement due to its higher BUSCO score and lower mono:multi ratio
379 compared to the merged TSEBRA transcripts. Through protein domain filtering (InterProScan
380 filter), the number of mono-exonic genes was further reduced from 20,081 to 12,696, producing
381 a total of 23,561 genes (BUSCO: C:93.8%[D:13.8%]; mono:multi ratio: 0.08).

382 A total of 831 scaffolds, a total of 1250 genes associated with contaminants were
383 removed, based on the functional annotations of the gene space. This also reduced the assembly
384 length to 440 Mb in 2,406 scaffolds with an N50 of 363 Kb, and an assembly BUSCO score of
385 C:96%[D:13.9%]. This substantial reduction led to an assembly within ~40 Mb of the original k-
386 mer-based estimate (e.g., 404 Mb).

387 The annotated protein-coding gene space in the contaminant-filtered assembly included
388 1,708 mono-exonic and 21,853 multi-exonic genes. The annotated gene space has a BUSCO
389 score of C:93.8%[D:13.6%], with a mono:multi ratio of 0.08. Reciprocal BLAST conducted by
390 EnTAP produced an annotation rate of 78%, of which 93.6% aligned to *Physcomitrium patens*
391 (Table 1; File S3). This contrasts with the annotation rate of 50% in *F. hygrometrica* (Kirbis et
392 al., 2022), likely attributed to significant divergence time from the model *Physcomitrium patens*,
393 and the lack of closely related species in public genomic databases (Kribis et al., 2020;
394 Rahmatpour et al., 2021). The higher annotation rate in this study suggests that many genes
395 found in *Physcomitrium patens* but not *F. hygrometrica* may have been acquired in the ancestor
396 of the *Physcomitrellaopsis-Entosthodon-Physcomitrium* clade (Medina et al., 2019).

397

398 Comparative genome analysis

399 In comparison of the three genomes of *Physcomitrellaopsis africana*, *F. hygrometrica*, and
400 *Physcomitrium patens*, a total of 14.2K orthogroups are shared among the species, and 959, 936,
401 and 179 are, respectively, unique to each species. *F. hygrometrica* and *Physcomitrellaopsis*
402 *africana* exclusively share more (1092) orthogroups than *Physcomitrellaopsis africana* and
403 *Physcomitrium patens* (809) (Fig. 3A), despite the latter sharing a more recent unique common
404 ancestor (Fig. 1). Thus, whereas Funariaceae share a rather conserved architecture of their

405 vegetative body even after at least 60 MY of divergence, their gene space varies considerably,
406 reflecting significant innovation (Kirbis et al. 2022) perhaps driven by ecophysiological
407 adaptations (Glime, 1990). Of the putative gene families from the *Physcomitrella africana*
408 annotation, 809 and 1,694, respectively, were categorized as expanded and contracted (File S4).
409 Enrichment analysis examined through Gene Ontology's *Biological Process* category revealed
410 167 expanded terms and 6 contracted terms. In contrast, within the *Molecular Function* GO
411 category, 62 were contracted, and no terms were significantly expanded.

412 Although expanded *Biological Process* GO terms were excessively broad, orthogroup
413 analysis revealed a pattern of contraction in GO terms pertaining to oxidoreductase activity,
414 FMN binding, and serine protease activity (Fig. 3B). Whether this unique suite of downregulated
415 categories diagnoses photosynthetic properties of *Physcomitrella africana* only or of the
416 expanded genus sensu Wilding (2015) remains to be tested.

417 The complement of light-harvesting complex (LHC) genes are expanded in the moss
418 *Physcomitrium patens* compared to algae and vascular plants (Alboresi et al., 2008; Iwai et al.,
419 2018). LHC proteins bind chlorophylls and carotenoids to facilitate light absorption and energy
420 transfer to the reaction centers of Photosystems I and II. The LHC genes are classified into two
421 groups: Lhca encodes antenna proteins for PSI (LHCI) while Lhcb encodes antenna proteins for
422 PSII (LHCII). Although ancestral land plants contain several LHC homologs, further expansion
423 and redundancy occurred in *Physcomitrium patens* after whole genome duplication events
424 (Alboresi et al., 2008; Rensing et al., 2008; H. Sun et al., 2023; Zimmer et al., 2013). This led to
425 a larger repertoire of LHC genes compared to the alga *Chlamydomonas reinhardtii* and the
426 vascular plant *Arabidopsis thaliana*. Specific Lhca and Lhcb paralogs are represented in multiple
427 copies in *Physcomitrium patens* compared to one to two copies in the other species. The major
428 antenna proteins encoded by Lhcbm also show greater redundancy and diversity in
429 *Physcomitrium patens* (Iwai et al., 2018; H. Sun et al., 2023).

430 Comparing the genomes of *F. hygrometrica* and *Physcomitrella africana* to the
431 reference genome of *Physcomitrium patens* reveals both conservation and divergence of LHC
432 genes. For example, while *Physcomitrium patens* has 12 distinct Lhca compared to 8 distinct
433 Lhca in *Physcomitrella africana*, and 7 distinct Lhca in *F. hygrometrica*. Similarly, while
434 *Physcomitrium patens* has 12 distinct Lhcb, *Physcomitrella africana* has 8, and *F.*

435 *hygrometrica* has 9. Finally, *Physcomitrium patens* has 14 distinct Lhcbm, *Physcomitrella*
436 *africana* has 2, and *F. hygrometrica* has 8. Two rounds of whole genome duplication (WGD)
437 occurred in the most recent common ancestor of the Funariaceae, as evidenced by shared
438 duplication signatures across all three genomes (Fig. S3). However, echoing Kirbis et al. (2022),
439 more duplicates from these WGDs were retained in *Physcomitrium patens* than in *F.*
440 *hygrometrica* and *Physcomitrella**africana*. Whereas *Physcomitrium patens* retained multiple
441 LHC paralogs as a result of the ancestral WGDs, *F. hygrometrica* and *Physcomitrella**africana*
442 seem to have lost some of this redundancy. This pattern of differential retention is
443 further supported by assessing the number of paralogs and orthologs for each LHC gene family
444 across the three genomes (Table S4). Although some copies of LHC genes were lost in *F.*
445 *hygrometrica* and *Physcomitrella**africana*, key STN7 and STN8 kinases involved in
446 photosynthetic acclimation are conserved and retained in all three genomes, suggesting retention
447 of core light signaling components.

448 *Contaminant filtering and the identification of horizontal gene transfer events:*

449 Horizontal gene transfer (HGT) involves the exchange of genetic material between different
450 organisms, extending beyond prokaryotes, with instances observed within eukaryotes as well
451 (Guo et al., 2023; Kirsch et al., 2022; Xi et al., 2012). While lateral transfer can occur between
452 related plant lineages through hybridization, HGT in mosses involves exchange between
453 evolutionarily distant microbes and land plants. Mosses, which originated 500 million years ago
454 (Bechteler, Peñaloza-Bojacá, Bell, Burleigh, McDaniel, et al., 2023), have formed symbiotic
455 relationships with microbes, aiding in nutrient acquisition and stress resistance (Berg et al., 2016;
456 Hornschuh et al., 2006). In addition, genes of putative fungal origin regulate developmental
457 transitions in mosses (Wang et al., 2020).

458 Several reports of HGT in eukaryotes were later reclassified as contamination. The
459 assembly of *Physcomitrella**africana* employed filtering processes before and after genome
460 assembly, illustrating that comprehensive approaches at all stages significantly enhanced the
461 final genome assembly. Here, metagenomic tools optimized for long-reads identified
462 contaminants prior to assembly. Since this initial filter did not include the short reads or assess
463 fungal contributions in either sequence set, further filtering was conducted after assembly and
464 annotation. The protein-coding genes were functionally characterized through sequence

465 similarity. An estimated 22% of the genes were of fungal origin and 31% were of bacterial
466 origin. Scaffolds that contained a majority of genes likely originating from algae, bacteria, or
467 fungi (ABF) were removed. Separately, the annotated gene space was aligned to a set of "donor"
468 and "recipient" databases. This identified 31 potential horizontal gene transfer (HGT) events.
469 Following the set of best practices outlined by François et al. (2020), an additional set of 10
470 scaffolds were found to be contaminated as the flanking genes of the potential HGT candidates
471 were not of plant origin. This resulted in their removal (HGT filter). Two unique HGT
472 candidates survived these filters (Fig. 4).

473 The first HGT candidate, *Pa1_22336.1* (alignment to *Paracoccaceae bacterium*),
474 contains a methyltransferase domain. A recent phylogenetic analysis conducted among
475 bryophytes revealed that DNA methyltransferases identified in *Marchantia polymorpha*,
476 *Physcomitrium patens*, and *Anthoceros angustus* form clades with their bacterial homologs. This
477 suggests that these genes were likely acquired via horizontal gene transfer (HGT) from bacteria
478 (J. Zhang et al., 2020). The second HGT candidate, *Pa1_04828* (alignment to *Pedobacter sp.*
479 SYSU D00873), encodes a glycosyl hydrolase, functioning as an antibacterial defense. This gene
480 family is widely distributed across various taxonomic groups as a result of independent transfers
481 from bacteria to plants, fungi, animals, and archaea. In the hornwort *Anthoceros angustus*, the
482 HGT-derived glycosyl hydrolases are thought to enhance the metabolic adaptability in response
483 to changing environments, particularly in cell wall synthesis and modification (Haimlich et al.,
484 2022; J. Zhang et al., 2020).

485 These two candidates were manually assessed comparing alignments of *de novo*
486 assembled transcriptomes. *Pa1_22336.1* had transcriptomic support, tentatively increasing
487 confidence in it being a high-confidence HGT event. *Pa1_04828* lacked this transcriptomic
488 support. Both candidates are directly flanked by well annotated plant (moss) genes. Additionally,
489 aligning the full set of *Physcomitrium patens* and *Ceratodon purpureus* proteins to the
490 *Physcomitrella* *africana* scaffolds produced no alignments in proximity to the candidates,
491 further suggesting that the HGT candidates may be specific to *Physcomitrella* *africana* (Fig.
492 5).

493 *Analyzing HGT candidates from Physcomitrium patens*: The genomes of *Physcomitrella*
494 *africana* and *F. hygrometrica* were screened for the 264 putative horizontally transferred genes

495 (HGTs) previously identified in *Physcomitrium patens* (Ma et al., 2022). Ninety of these genes
496 (34%) were not found in either species, 16 (6%) were found in *Physcomitrella* *africana* and
497 *Physcomitrium patens*, and 7 (3%) were shared between *Physcomitrium patens* and *Funaria*
498 *hygrometrica*. The greater number of shared HGTs between *Physcomitrium patens* and
499 *Physcomitrella* *africana* likely reflect their more recent divergence (at least 20 MYA)
500 compared to that of *Physcomitrium patens* and *Funaria hygrometrica* (at least 60 MYA)
501 (Bechteler, Peñaloza-Bojacá, Bell, Burleigh, McDaniel, et al., 2023; Medina et al., 2018) (Fig.
502 S4).

503

504 **Data availability**

505 All scripts and data used are available through
506 <https://gitlab.com/PlantGenomicsLab/physcomitrella-africana-genome>. Illumina short and
507 Nanopore long genomic reads, RNA-Seq reads, de novo assembled transcripts, whole genome
508 shotgun assembly, and annotation files will be uploaded to NCBI BioProject: PRJNA1020579.

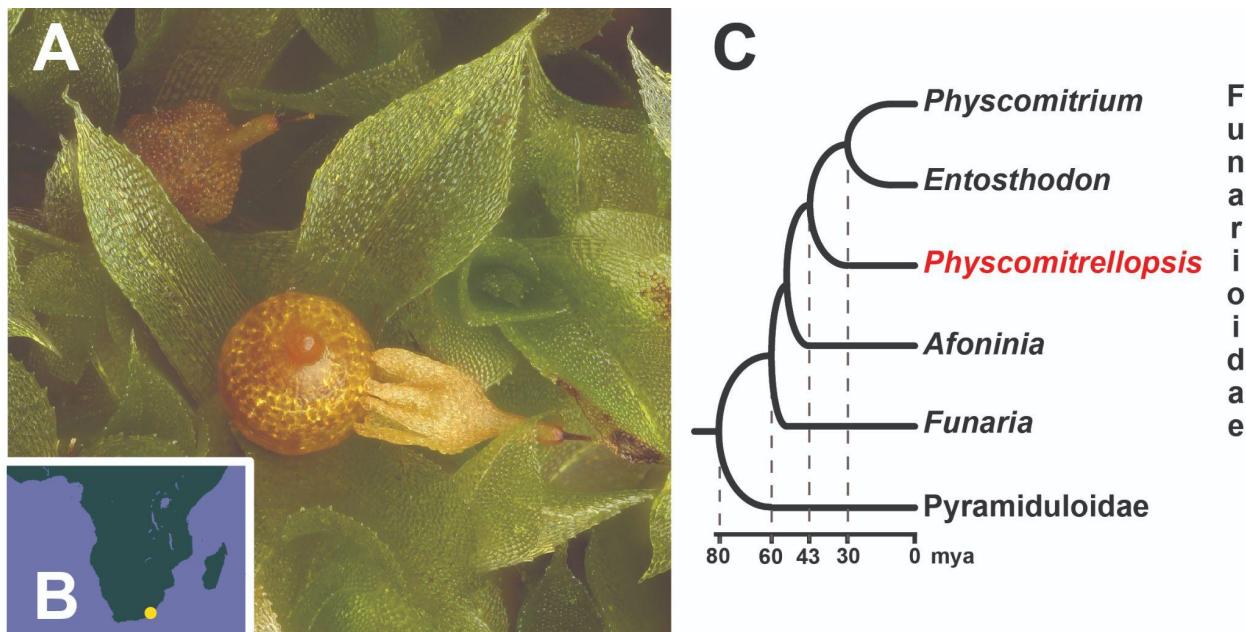
509 **Acknowledgements**

510 The authors would like to thank the Institute for Systems Genomics (ISG) and Computational
511 Biology Core at the University of Connecticut for high-performance computing services.

512 **Funding**

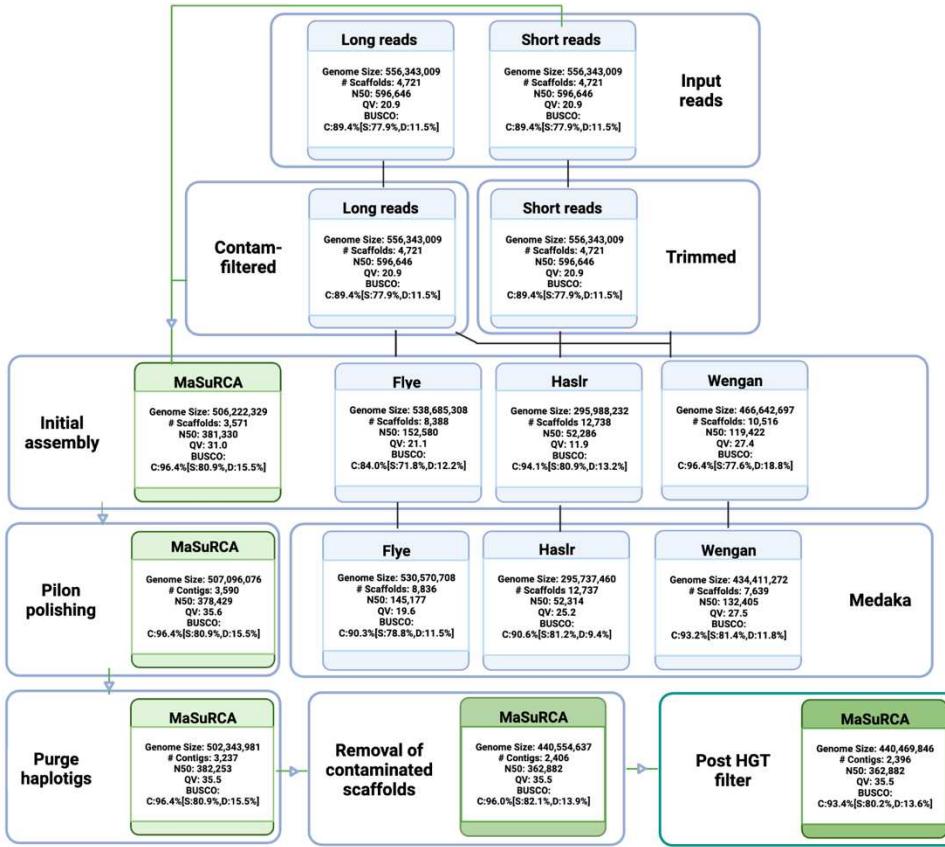
513 This study was made possible through the US National Foundation grants DEB-0919284
514 (fieldwork), DEB-1753811 to BG, and DBI-1943371 to JW.

515 **Conflict of interest**


516 The authors declare no conflict of interest.

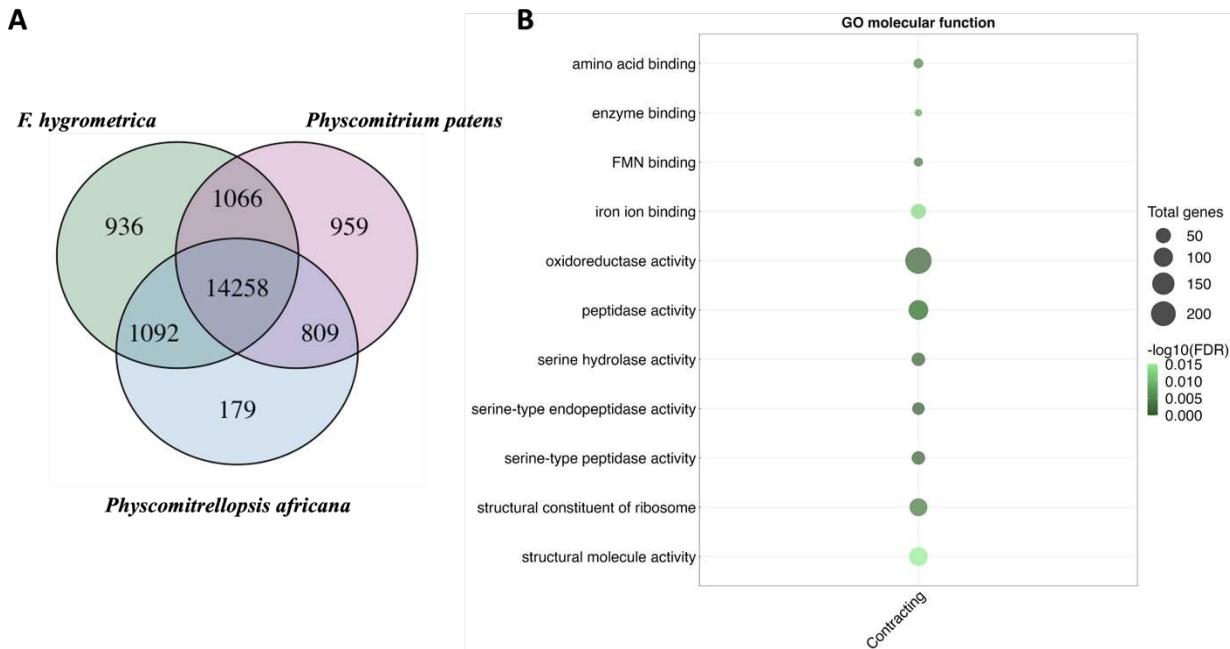
517 **Author contributions**

518 J.W. & B.G. designed the study. B.G., N.W. & T.H. conducted fieldwork to sample the wild
519 population. Y. C. & Y. L. generated genomic and transcriptomic data. A.S. & V.S.V. conducted
520 all analyses. V.S.V., J.W. & B.G. wrote the paper. All authors approved of the final version.


521

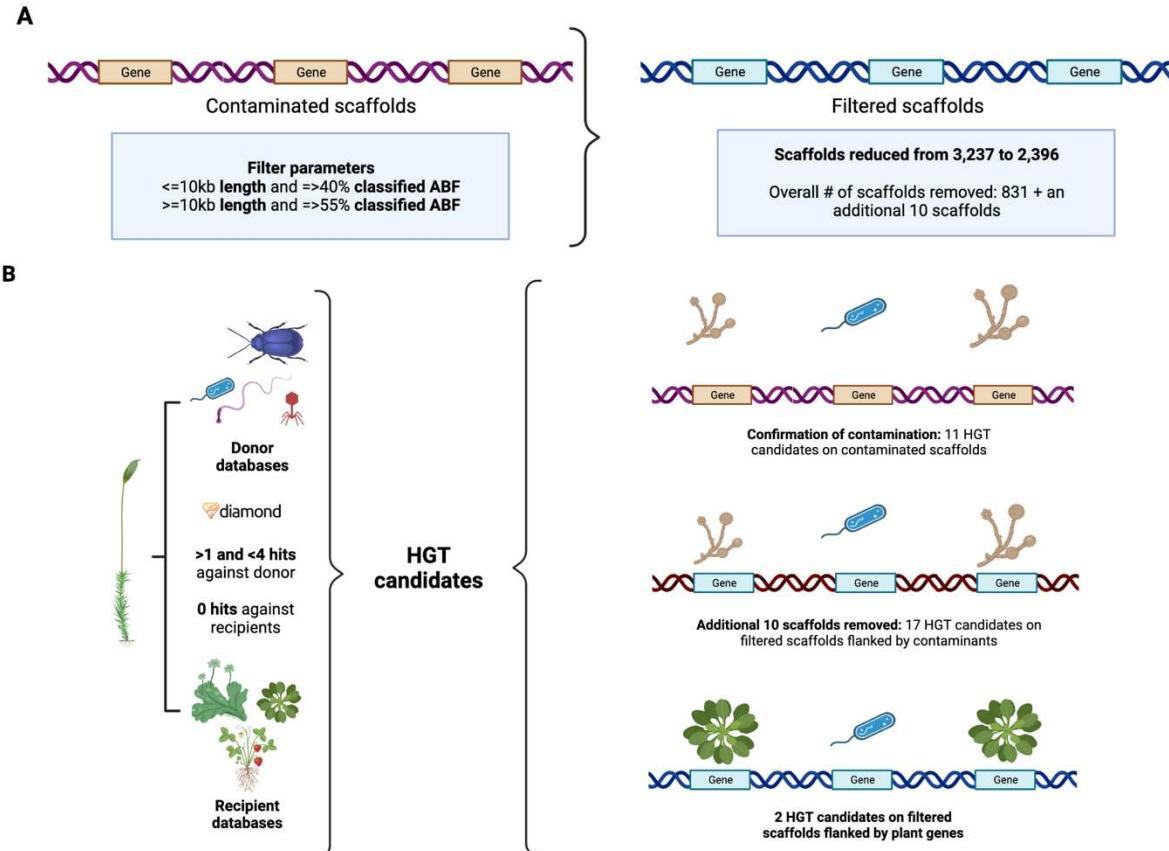
522

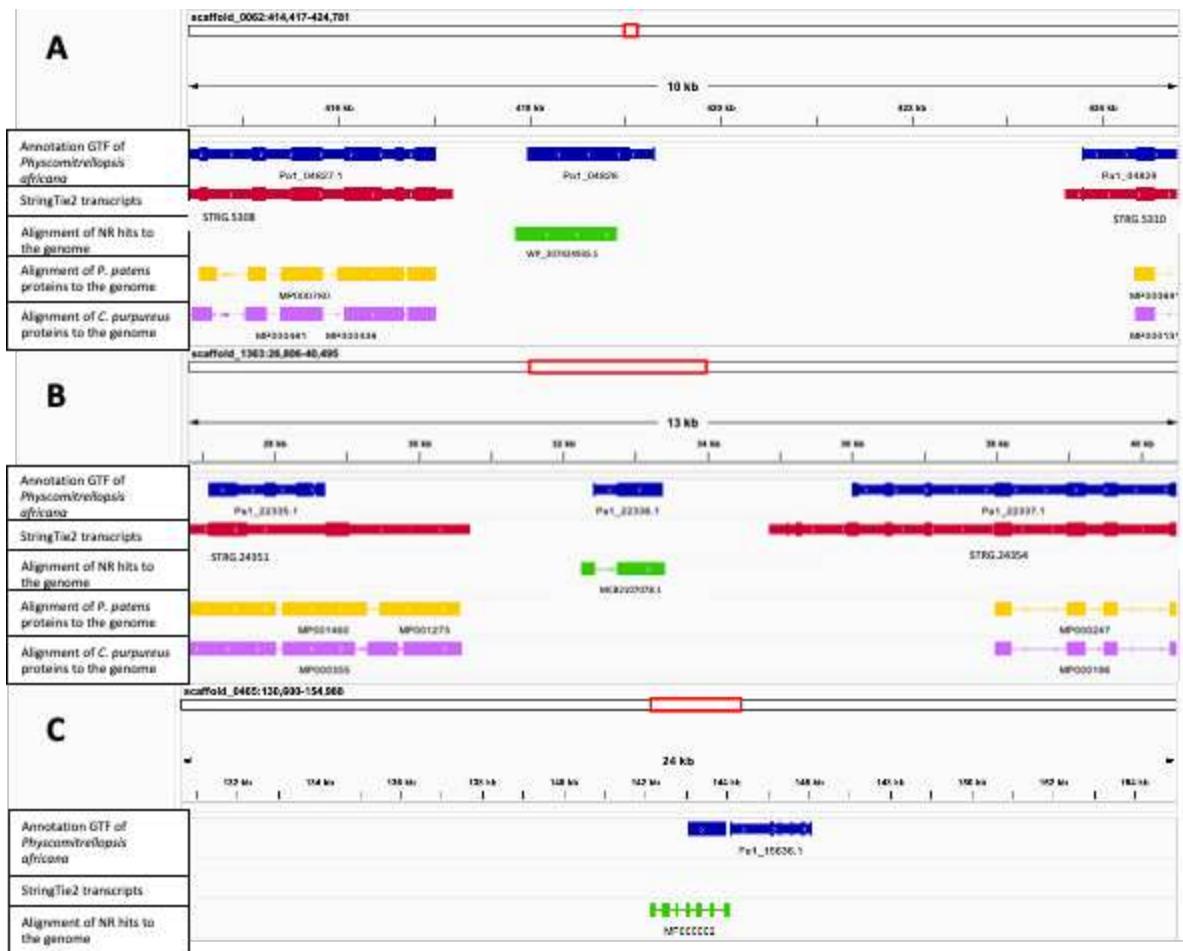
523 **Fig. 1.** A *Physcomitrella africana* exhibits a reduced architectural complexity of the sporophyte similar to that
524 observed in *Physcomitrium patens*, namely a sessile, aperistome and cleistocarpous sporangial capsule. B The
525 known geographic distribution of *Physcomitrella africana*, a rare narrow endemic to the Eastern Cape Region in
526 South Africa. C Phylogenetic relationships and chronology of the evolution of *Physcomitrella* based on Medina
527 et al. (2018).


528

529

530 **Fig. 2.** Workflow and statistics for read QC, genome assembly, polishing, and haplotype phasing. Short reads
 531 generated from BGI-seq were subject to trimming and the long reads (ONT) were filtered for contaminants with
 532 Centrifuge. Filtered and trimmed reads were utilized as input for four different genome assembly software tools:
 533 Flye (long-read only), Haslr, Wengan, and MaSuRCA. The green box indicates the selection of the MaSuRCA
 534 assembly for further analysis. The final assembly was polished using Pilon and phased with Purge haplotigs. A total
 535 of 831 scaffolds were removed as a result of contaminant filtering using EnTAP following structural genome
 536 annotation. Ten additional scaffolds were removed after HGT candidate assessment. Summary statistics derived
 537 from Quast, BUSCO, and Merquary are displayed for each process.


538


539 **Fig. 3. A** Number of shared and unique orthogroups among *F. hygrometrica*, *Physcomitrella africana*, and
540 *Physcomitrium patens*. **B** Enriched Molecular Function GO terms for gene families in a comparative analysis
541 between *Physcomitrella africana*, *Physcomitrium patens*, and *Funaria hygrometrica* showed contraction in the
542 GO terms related to oxidoreductase activity, as well as serine peptidase activity and FMN binding for
543 *Physcomitrella africana*. The size of each bubble represents the number of gene families within an orthogroup, and the
544 gradient of the color denotes the significance level of enrichment- the darker green denotes more significance.

545

546

547 **Fig. 4.** Contamination versus horizontal gene transfer (HGT) in the *Physcomitrella africana* genome. **A**
548 Parameters used for removing a set of contaminated scaffolds from the draft genome based on functional
549 characterization of the annotated gene space. Scaffolds with a length of 10 kb or less, and those with 40% or more of
550 their total genes classified as archaea, bacteria, or fungi were removed. Additionally, scaffolds with a length greater
551 than or equal to 10 Kb and having 55% or more genes classified as archaea, bacteria, or fungi were also excluded. In
552 total, 831 scaffolds were removed as a result of this filtering process. **B** Identification of HGT candidates via
553 sequence similarity comparisons of *Physcomitrella africana* proteins against both "donor" databases (archaea,
554 bacteria, fungal, and metazoan) and "recipient" databases (Streptophyta, Viridiplantae, Tracheophyta, and
555 Spermatophyta). Proteins with >1 and <4 hits against all of the donor databases, and no hit against recipient
556 databases were labeled as HGT candidates. This analysis was conducted on the contaminated scaffolds removed in
557 A, confirming their contamination status. On the post-filtered scaffolds, there were some putative HGTs that were
558 flanked by contaminants. These scaffolds were also removed from the assembly (additional 10), resulting in the
559 retention of two HGT candidates in the final analysis.
560

561
562 **Fig. 5.** Integrated Genome Viewer (IGV) screens depicting five tracks of the *Physcomitrella africana* genome.
563 Track 1 shows the protein-coding structural annotation in context to the genome. Track 2 displays genome-guided
564 transcript assemblies via StringTie2. Track 3 illustrates the alignment of the Horizontal Gene Transfer (HGT)
565 candidate (NR database) to the genome. Track 4 and 5 show the alignments of *Physcomitrium patens* and *Ceratodon*
566 *purpureus* proteins onto the scaffolds 62 and 1363. **A and B** show the HGT candidates *Pa1_04828* and
567 *Pa1_22336.1*, where the HGT candidate alignment validates the presence of a protein, while the StringTie2
568 transcript does not align with the HGT placement. None of the moss proteins align to the HGT candidates. **C**
569 highlights the example of *Pa1_15636.1*, where the StringTie2 transcript and the MiniProt alignment reveal that the
570 gene spans two gene models, indicating a false identification as an HGT candidate. Further transcriptomic evidence
571 is required to modify the annotation model and establish the validity of these gene models.

572 **Table 1.** Genome annotation statistics for *Physcomitrella africana*

Annotation Method	Total genes	BUSCO (viridiplantae)	Mono: multi ratio	Annotation rate
BRAKER (RNA)	60,917	C:95.8%[D:15.3]	0.52	65%
BRAKER (protein)	37,752	C:46.1%[D:16.0]	0.95	73%
TSEBRA (BRAKER RNA + BRAKER protein)	45,737	C:91.3%[D:15.1]	1.02	74%
BRAKER (RNA) + InterProScan filter + scaffold contam filter)	23,561	C:93.8%[D:13.6%]	0.08	78%
BRAKER (RNA) + InterProScan filter + scaffold contam filter + HGT filter)	23,535	C:93.8%[D:13.6%]	0.07	83%

573

574

575 **Table S1.** Pre-QC Read Stats.

Instrument	Total Reads	N50 (bp)	Average Read Length (bp)	Coverage (404 Mb)	Coverage (440 Mb)
Nanopore PromethION	16,640,338	7,518	3,080	127	116
Illumina Genomic Reads	529,496,757	N/A	100 PE	262	240

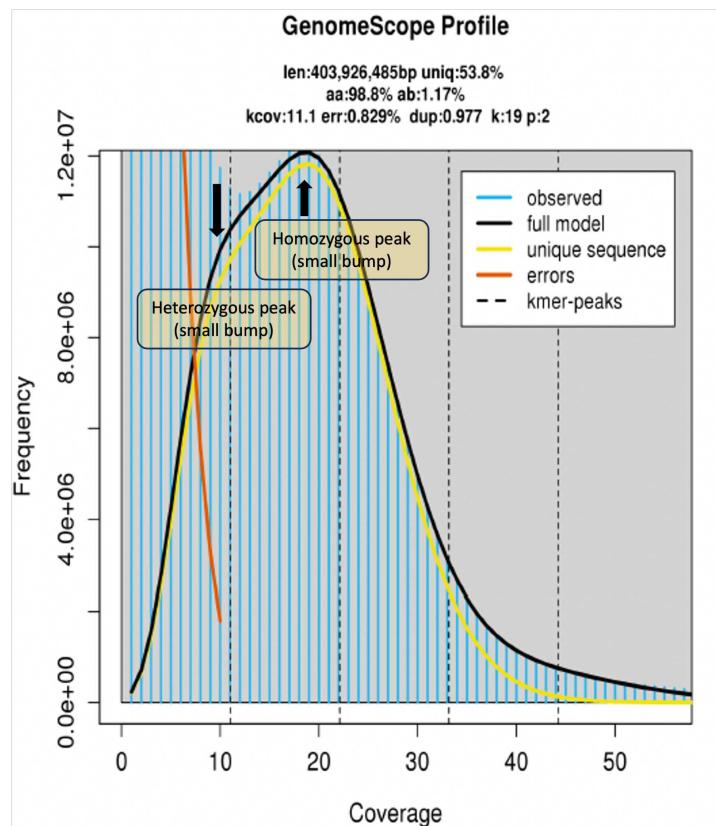
576

577 **Table S2:** Post-QC Read Stats

578

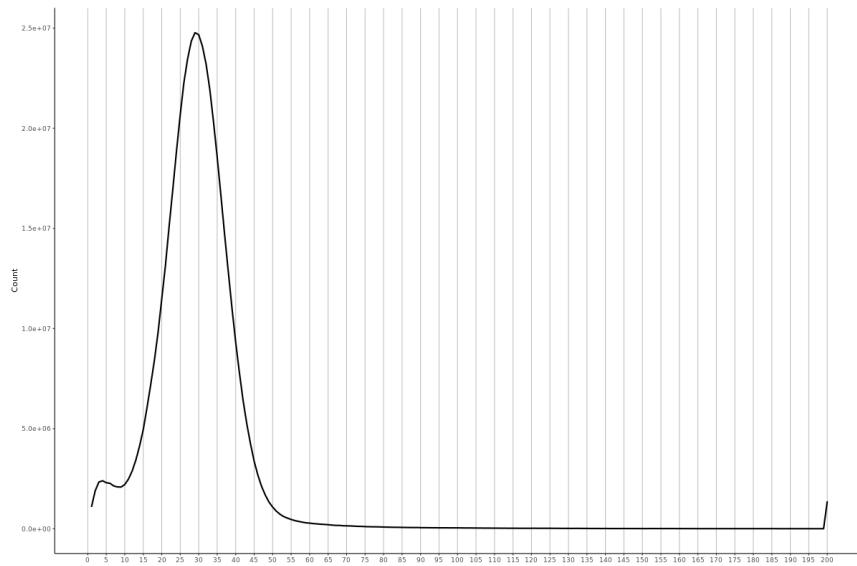
Read Type	Total Reads	N50 (bp)	Average Read Length (bp)	Coverage (404 Mb)	Coverage (440 Mb)
Nanopore PromethION	14,495,188	4,561	2,233	80	73
Illumina Genomic Reads	359,619,533	N/A	100 PE	178	163

579


580 **Table S3.** Repeat content of the MaSuRCA genome assembly.

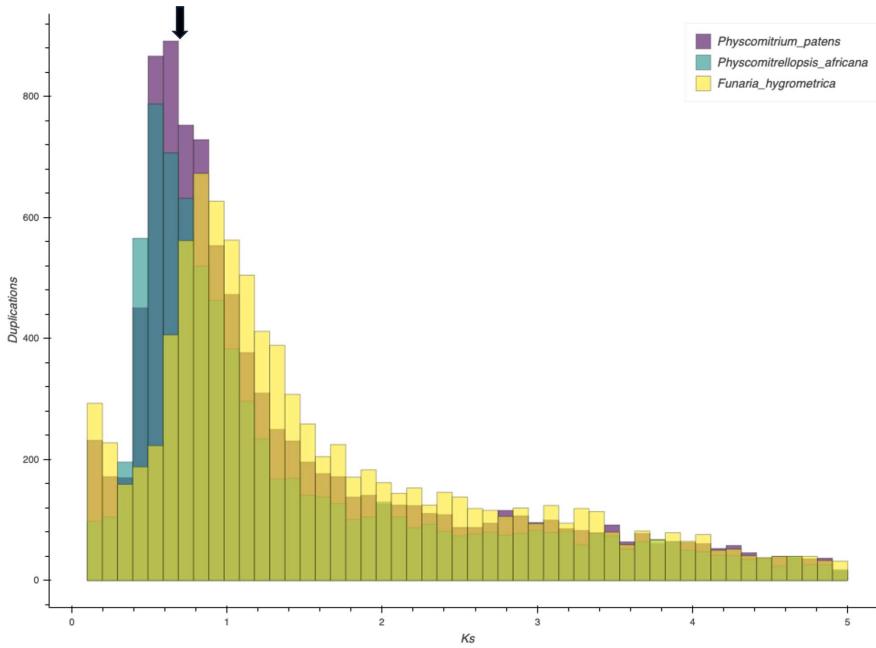
Sequences:	3237		
Total Length:	502343981 bp		
GC Level:	36.07%		
Bases Masked:	253596074 bp	50.48%	
	Number of elements	Length (bp)	Percentage of sequence
Retroelements	182967	203774766	40.56
SINEs	116	50840	0.01
Penelope	44	43124	0.01
LINEs	5635	3528322	0.7
CRE/SLACS	25	87739	0.02
L2/CR1/Rex	0	0	0
R1/LOA/Jockey	0	0	0
R2/R4/NeSL	0	0	0
RTE/Bov-B	0	0	0
L1/CIN4	1520	1352049	0.27
LTR elements	177216	200195604	39.85
BEL/Pao	0	0	0
Tv1/Copia	7771	7313798	1.46
Gypsy/DIRS1	146546	183504589	36.53
Retroviral	0	0	0
DNA transposons	3075	2020920	0.4
hobo-Activator	161	85415	0.02
Tc1-IS630-Pogo	828	502079	0.1
En-Spm	0	0	0
MuDR-IS905	0	0	0
PiggyBac	0	0	0
Tourist/Harbinger	576	270022	0.05
Other	0	0	0
Rolling-circles	7857	3140001	0.63
Unclassified	70182	35763560	7.12
Total interspersed repeats		241559246	48.09
Small RNA	454	382891	0.08
Satellites	0	0	0
Simple repeats	177543	7162961	1.43
Low complexity	26138	1350975	0.27

582 **Table S4.** Comparison of light-harvesting complex (LHC) gene complements in *Physcomitrella africana*, *Funaria*
 583 *hygrometrica*, *Physcomitrium patens*, *Chlamydomonas reinhardtii**, and *Arabidopsis thaliana** (Alboresi *et al.*, 2008). The
 584 number of paralogs is shown for key LHC genes including antenna proteins (Lhca, Lhcb) and major light-harvesting proteins
 585 (Lhcbm).


Gene	<i>Physcomitrella</i>	<i>Funaria</i>	<i>Physcomitrium</i>	<i>Chlamydomonas</i>	<i>Arabidopsis</i>
Lhca1	3	2	3	1	1
Lhca2	2	3	4	1	1
Lhca3	2	1	4	1	1
Lhca5	1	1	1	1	1
Lhcbm	2	8	14	9	0
Lhcb3	1	1	1	0	3
Lhcb4	2	2	2	1	4
Lhcb5	2	1	2	1	5
Lhcb6	1	2	2	0	2
Lhcb7	1	1	1	1	1
Lhcb9	1	2	2	9	2

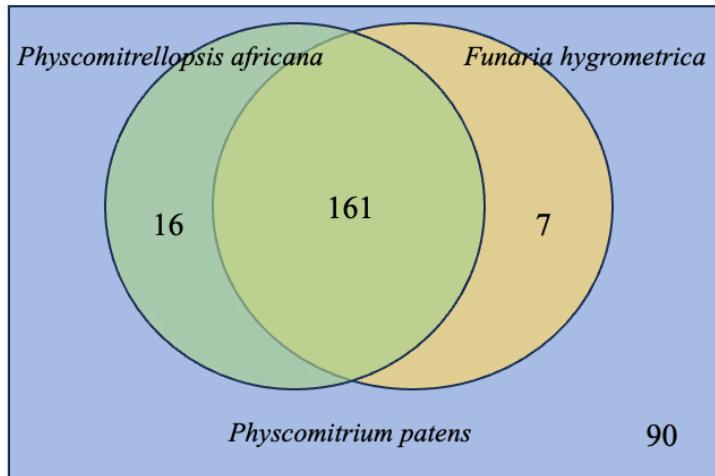
586

587


588 **Fig S1:** GenomeScope output for preliminary analysis of *Physcomitrella africana*. GenomeScope generates coverage plots
 589 to estimate genomic characteristics including len (inferred total genome length), uniq (percent of unique genome), het
 590 (heterozygosity rate), kcov (kmer coverage), err (read error rate), and dup (rate of read duplications). The het value of ~1.17%
 591 represents a low-end approximation of heterozygosity based on unfiltered short reads. The peak at 9X corresponds to the
 592 estimated heterozygous portion (ab) while the peak at 19X corresponds to the estimated homozygous portion (aa). Further data
 593 quality control and analyses were performed to reduce heterozygosity, as this is a haploid genome.

594

595 **Fig S2:** Histogram of k-mer coverage distribution for the *Physcomitrella africana* genome assembly. The distribution shows
596 two prominent peaks, with a smaller peak at ~7x coverage representing redundant haplotig sequences and a larger peak at ~65x
597 representing the primary haploid genome coverage. The Purge Haplots pipeline used the local minima at 0x and 7x coverage as
598 cutoffs to categorize and remove low coverage scaffolds presumed to be haplotigs or assembly artifacts. The 65x peak informed
599 the coverage threshold for retaining the primary genome.


600

601

602 **Fig S3:** Ks density plots for *Physcomitrium patens*, *Funaria hygrometrica*, and *Physcomitrella africana* genomes.
603 Signatures of the two ancestral whole genome duplication (WGD) events are evident as shared peaks across all three species, as
604 denoted by the black arrow. *Physcomitrium patens* exhibits a more prominent peak indicating greater retention of WGD
605 duplicates compared to *Funaria hygrometrica* and *Physcomitrella africana*.

606

607

608

609 **Fig. S4.** Horizontally transferred genes (HGTs) identified in *Physcomitrium patens* assessed in both *Physcomitrella africana* and *Funaria hygrometrica* genomes.

610

611

612 Literature Cited

613 Alboresi, A., Caffarri, S., Nogue, F., Bassi, R., & Morosinotto, T. (2008). In silico and
614 biochemical analysis of *Physcomitrella patens* photosynthetic antenna: identification of
615 subunits which evolved upon land adaptation. *PLoS One*, 3(4), e2033.

616 Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J.
617 (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search
618 programs. *Nucleic Acids Research*, 25(17), 3389–3402.

619 Aminov, R. I. (2011). Horizontal gene exchange in environmental microbiota. *Frontiers in*
620 *Microbiology*, 2, 158.

621 Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Available
622 online. *Retrieved May, 17, 2018*.

623 Bechteler, J., Peñaloza-Bojacá, G., Bell, D., Burleigh, J. G., McDaniel, S. F., Christine Davis, E.,
624 Sessa, E. B., Bippus, A., Christine Cargill, D., Chantanoarrapint, S., Draper, I., Endara, L.,
625 Forrest, L. L., Garilleti, R., Graham, S. W., Huttunen, S., Jauregui Lazo, J., Lara, F.,
626 Larraín, J., ... Villarreal A, J. C. (2023). Comprehensive phylogenomic time tree of
627 bryophytes reveals deep relationships and uncovers gene incongruences in the last 500
628 million years of diversification. *American Journal of Botany*.
629 <https://doi.org/10.1002/ajb2.16249>

630 Berg, G., Rybakova, D., Grube, M., & Köberl, M. (2016). The plant microbiome explored:

631 implications for experimental botany. *Journal of Experimental Botany*, 67(4), 995–1002.

632 Boothby, T. C., Tenlen, J. R., Smith, F. W., Wang, J. R., Patanella, K. A., Nishimura, E. O.,
633 Tintori, S. C., Li, Q., Jones, C. D., Yandell, M., Messina, D. N., Glasscock, J., & Goldstein,
634 B. (2015). Evidence for extensive horizontal gene transfer from the draft genome of a
635 tardigrade. *Proceedings of the National Academy of Sciences of the United States of
636 America*, 112(52), 15976–15981.

637 Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M., & Borodovsky, M. (2021). BRAKER2:
638 automatic eukaryotic genome annotation with GeneMark-EP+ and AUGUSTUS supported
639 by a protein database. *NAR Genomics and Bioinformatics*, 3(1), lqaa108.

640 Buchfink, B., Reuter, K., & Drost, H.-G. (2021). Sensitive protein alignments at tree-of-life scale
641 using DIAMOND. *Nature Methods*, 18(4), 366–368.

642 Caballero, M., & Wegrzyn, J. (2019). gFACs: Gene Filtering, Analysis, and Conversion to Unify
643 Genome Annotations Across Alignment and Gene Prediction Frameworks. *Genomics,
644 Proteomics & Bioinformatics*, 17(3), 305–310.

645 Di Genova, A., Buena-Atienza, E., Ossowski, S., & Sagot, M.-F. (2021). Efficient hybrid de
646 novo assembly of human genomes with WENGAN. *Nature Biotechnology*, 39(4), 422–430.

647 Douvlataniotis, K., Bensberg, M., Lentini, A., Gylemo, B., & Nestor, C. E. (2020). No evidence
648 for DNA N 6-methyladenine in mammals. *Science Advances*, 6(12), eaay3335.

649 Emms, D. M., & Kelly, S. (2019). OrthoFinder: phylogenetic orthology inference for
650 comparative genomics. *Genome Biology*, 20(1), 238.

651 Finn, R. D., Bateman, A., Clements, J., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Heger, A.,
652 Hetherington, K., Holm, L., Mistry, J., Sonnhammer, E. L. L., Tate, J., & Punta, M. (2014).
653 Pfam: the protein families database. *Nucleic Acids Research*, 42(Database issue), D222–
654 D230.

655 Flynn, J. M., Hubley, R., Goubert, C., Rosen, J., Clark, A. G., Feschotte, C., & Smit, A. F.
656 (2020). RepeatModeler2 for automated genomic discovery of transposable element families.
657 *Proceedings of the National Academy of Sciences of the United States of America*, 117(17),
658 9451–9457.

659 Francois, C. M., Durand, F., Figuet, E., & Galtier, N. (2020). Prevalence and Implications of
660 Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod
661 Assemblies. *G3*, 10(2), 721–730.

662 Gabriel, L., Hoff, K. J., Brůna, T., Borodovsky, M., & Stanke, M. (2021). TSEBRA: transcript
663 selector for BRAKER. *BMC Bioinformatics*, 22(1), 566.

664 Glime, J. M. (1990). The ecology column: Introduction. *The Bryological Times*, 55, 5–7.

665 Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X.,
666 Fan, L., Raychowdhury, R., Zeng, Q., Chen, Z., Mauceli, E., Hacohen, N., Gnirke, A.,
667 Rhind, N., di Palma, F., Birren, B. W., Nusbaum, C., Lindblad-Toh, K., ... Regev, A.
668 (2011). Full-length transcriptome assembly from RNA-Seq data without a reference
669 genome. *Nature Biotechnology*, 29(7), 644–652.

670 Guan, Y., Ma, L., Wang, Q., Zhao, J., Wang, S., Wu, J., Liu, Y., Sun, H., & Huang, J. (2023).
671 Horizontally acquired fungal killer protein genes affect cell development in mosses. *The
672 Plant Journal: For Cell and Molecular Biology*, 113(4), 665–676.

673 Guo, X., Hu, X., Li, J., Shao, B., Wang, Y., Wang, L., Li, K., Lin, D., Wang, H., Gao, Z., Jiao,
674 Y., Wen, Y., Ji, H., Ma, C., Ge, S., Jiang, W., & Jin, X. (2023). The Sapria himalayana
675 genome provides new insights into the lifestyle of endoparasitic plants. *BMC Biology*,
676 21(1), 134.

677 Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: quality assessment tool for
678 genome assemblies. *Bioinformatics*, 29(8), 1072–1075.

679 Haas B, Papanicolaou A (2012) TransDecoder (Find Coding Regions within Transcripts)
680 [WWW Document]. <https://transdecoder.github.io/>.

681 Haghshenas, E., Asghari, H., Stoye, J., Chauve, C., & Hach, F. (2020). HASLR: Fast Hybrid
682 Assembly of Long Reads. *iScience*, 23(8), 101389.

683 Haimlich, S., Fridman, Y., Khandal, H., Savaldi-Goldstein, S., & Levy, A. (2022). Widespread
684 horizontal gene transfer between plants and their microbiota. In *bioRxiv* (p.
685 2022.08.25.505314). <https://doi.org/10.1101/2022.08.25.505314>

686 Hart, A. J., Ginzburg, S., Xu, M. S., Fisher, C. R., Rahmatpour, N., Mitton, J. B., Paul, R., &
687 Wegrzyn, J. L. (2020). EnTAP: Bringing faster and smarter functional annotation to non-
688 model eukaryotic transcriptomes. *Molecular Ecology Resources*, 20(2), 591–604.

689 Hornschuh, M., Grotha, R., & Kutschera, U. (2006). Moss-associated methylobacteria as
690 phytosymbionts: an experimental study. *Naturwissenschaften*, 93(10), 480–486.

691 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forsslund, S. K., Cook, H.,
692 Mende, D. R., Letunic, I., Rattei, T., Jensen, L. J., von Mering, C., & Bork, P. (2019).

693 eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource
694 based on 5090 organisms and 2502 viruses. *Nucleic Acids Research*, 47(D1), D309–D314.

695 Iwai, M., Grob, P., Iavarone, A. T., Nogales, E., & Niyogi, K. K. (2018). A unique
696 supramolecular organization of photosystem I in the moss *Physcomitrella patens*. *Nature*
697 *Plants*, 4(11), 904–909.

698 Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J.,
699 Mitchell, A., Nuka, G., Pesseat, S., Quinn, A. F., Sangrador-Vegas, A., Scheremetjew, M.,
700 Yong, S.-Y., Lopez, R., & Hunter, S. (2014). InterProScan 5: genome-scale protein function
701 classification. *Bioinformatics*, 30(9), 1236–1240.

702 Joshi NA, F. J. N. (2011). *Sickle: A sliding-window, adaptive, quality-based trimming tool for*
703 *FastQ files* (Version Version 1.33). <https://github.com/najoshi/sickle>

704 Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment
705 program. *Briefings in Bioinformatics*, 9(4), 286–298.

706 Kim, D., Paggi, J. M., Park, C., Bennett, C., & Salzberg, S. L. (2019). Graph-based genome
707 alignment and genotyping with HISAT2 and HISAT-genotype. *Nature Biotechnology*,
708 37(8), 907–915.

709 Kim, D., Song, L., Breitwieser, F. P., & Salzberg, S. L. (2016). Centrifuge: rapid and sensitive
710 classification of metagenomic sequences. *Genome Research*, 26(12), 1721–1729.

711 Kirbis, A., Rahmatpour, N., Dong, S., Yu, J., van Gessel, N., Waller, M., Reski, R., Lang, D.,
712 Rensing, S. A., Temsch, E. M., Wegrzyn, J. L., Goffinet, B., Liu, Y., & Szövényi, P.
713 (2022). Genome dynamics in mosses: Extensive synteny coexists with a highly dynamic
714 gene space. In *bioRxiv* (p. 2022.05.17.492078). <https://doi.org/10.1101/2022.05.17.492078>

715 Kirbis, A., Waller, M., Ricca, M., Bont, Z., Neubauer, A., Goffinet, B., & Szövényi, P. (2020).
716 Transcriptional landscapes of divergent sporophyte development in two mosses,
717 *Physcomitrium* (*Physcomitrella*) *patens* and *Funaria hygrometrica*. *Frontiers in Plant*
718 *Science*, 11, 747.

719 Kirsch, R., Okamura, Y., Haeger, W., Vogel, H., Kunert, G., & Pauchet, Y. (2022). Metabolic
720 novelty originating from horizontal gene transfer is essential for leaf beetle survival.
721 *Proceedings of the National Academy of Sciences of the United States of America*, 119(40),
722 e2205857119.

723 Kolmogorov, M., Yuan, J., Lin, Y., & Pevzner, P. A. (2019). Assembly of long, error-prone

724 reads using repeat graphs. *Nature Biotechnology*, 37(5), 540–546.

725 Koutsovoulos, G., Kumar, S., Laetsch, D. R., Stevens, L., Daub, J., Conlon, C., Maroon, H.,
726 Thomas, F., Aboobaker, A. A., & Blaxter, M. (2016). No evidence for extensive horizontal
727 gene transfer in the genome of the tardigrade *Hypsibius dujardini* [Review of *No evidence*
728 *for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini*].
729 *Proceedings of the National Academy of Sciences of the United States of America*, 113(18),
730 5053–5058.

731 Kovaka, S., Zimin, A. V., Pertea, G. M., Razaghi, R., Salzberg, S. L., & Pertea, M. (2019).
732 Transcriptome assembly from long-read RNA-seq alignments with StringTie2. *Genome*
733 *Biology*, 20(1), 278.

734 Lang, D., Ullrich, K. K., Murat, F., Fuchs, J., Jenkins, J., Haas, F. B., Piednoel, M., Gundlach,
735 H., Van Bel, M., Meyberg, R., Vives, C., Morata, J., Symeonidi, A., Hiss, M., Muchero, W.,
736 Kamisugi, Y., Saleh, O., Blanc, G., Decker, E. L., ... Rensing, S. A. (2018). The
737 *Physcomitrella patens* chromosome-scale assembly reveals moss genome structure and
738 evolution. *The Plant Journal*, 93(3), 515–533.

739 Li, B., & Dewey, C. N. (2011). RSEM: accurate transcript quantification from RNA-Seq data
740 with or without a reference genome. *BMC Bioinformatics*, 12, 323.

741 Li, F.-W., Brouwer, P., Carretero-Paulet, L., Cheng, S., de Vries, J., Delaux, P.-M., Eily, A.,
742 Koppers, N., Kuo, L.-Y., Li, Z., Simenc, M., Small, I., Wafula, E., Angarita, S., Barker, M.
743 S., Bräutigam, A., dePamphilis, C., Gould, S., Hosmani, P. S., ... Pryer, K. M. (2018). Fern
744 genomes elucidate land plant evolution and cyanobacterial symbioses. *Nature Plants*, 4(7),
745 460–472.

746 Ma, J., Wang, S., Zhu, X., Sun, G., Chang, G., Li, L., Hu, X., Zhang, S., Zhou, Y., Song, C.-P.,
747 & Huang, J. (2022). Major episodes of horizontal gene transfer drove the evolution of land
748 plants. *Molecular Plant*, 15(5), 857–871.

749 Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing
750 Genomic Data Quality and Beyond. *Current Protocols*, 1(12), e323.

751 Marçais, G., & Kingsford, C. (2011). A fast, lock-free approach for efficient parallel counting of
752 occurrences of k-mers. *Bioinformatics*, 27(6), 764–770.

753 Martin, F. M., Uroz, S., & Barker, D. G. (2017). Ancestral alliances: Plant mutualistic symbioses
754 with fungi and bacteria. *Science*, 356(6340), ea.ad4501

755 <https://doi.org/10.1126/science.aad4501>

756 Medina, R., Johnson, M., Liu, Y., Wilding, N., Hedderson, T. A., Wickett, N., & Goffinet, B. (2018). Evolutionary dynamism in bryophytes: Phylogenomic inferences confirm rapid radiation in the moss family Funariaceae. *Molecular Phylogenetics and Evolution*, 120, 240–247.

760 Medina, R., M. G. Johnson, Y. Liu, N.J. Wickett, A.J. Shaw & B. Goffinet. 2019. Phylogenomic delineation of Physcomitrium (Bryophyta: Funariaceae) based on nuclear targeted exons and their flanking regions rejects the retention of Physcomitrella, Physcomitridium and Aphanorrhegma. *Journal of Systematics and Evolution*, 57, 404–417.

763 Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments. *PloS One*, 5(3), e9490.

766 Proost, S., Fostier, J., De Witte, D., Dhoedt, B., Demeester, P., Van de Peer, Y., & Vandepoele, K. (2011). i-ADHoRe 3.0—fast and sensitive detection of genomic homology in extremely large data sets. *Nucleic Acids Research*, 40(2), e11–e11.

769 Rahmatpour, N., Perera, N. V., Singh, V., Wegrzyn, J. L., & Goffinet, B. (2021). High gene space divergence contrasts with frozen vegetative architecture in the moss family Funariaceae. *Molecular Phylogenetics and Evolution*, 154, 106965.

772 Ranallo-Benavidez, T. R., Jaron, K. S., & Schatz, M. C. (2020). GenomeScope 2.0 and Smudgeplot for reference-free profiling of polyploid genomes. *Nature Communications*, 11(1), 1432.

775 Rensing, S. A., Goffinet, B., Meyberg, R., Wu, S.-Z., & Bezanilla, M. (2020). The moss Physcomitrium (Physcomitrella) patens: A model organism for non-seed plants. *The Plant Cell*, 32(5), 1361–1376.

778 Rensing, S. A., Lang, D., Zimmer, A. D., Terry, A., Salamov, A., Shapiro, H., Nishiyama, T., Perroud, P.-F., Lindquist, E. A., Kamisugi, Y., Tanahashi, T., Sakakibara, K., Fujita, T., Oishi, K., Shin-I, T., Kuroki, Y., Toyoda, A., Suzuki, Y., Hashimoto, S.-I., ... Boore, J. L. (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants. *Science*, 319(5859), 64–69.

783 Rhie, A., Walenz, B. P., Koren, S., & Phillippy, A. M. (2020). Merqury: reference-free quality, completeness, and phasing assessment for genome assemblies. *Genome Biology*, 21(1), 245.

785 Roach, M. J., Schmidt, S. A., & Borneman, A. R. (2018). Purge Haplotigs: allelic contig

786 reassignment for third-gen diploid genome assemblies. *BMC Bioinformatics*, 19(1), 460.

787 Smit, AFA, Hubley, R & Green, P. (2013-2015). *RepeatMasker Open-4.0*. RepeatMasker.
788 <http://www.repeatmasker.org>

789 Sun, G., Bai, S., Guan, Y., Wang, S., Wang, Q., Liu, Y., Liu, H., Goffinet, B., Zhou, Y., Paoletti,
790 M., Hu, X., Haas, F. B., Fernandez-Pozo, N., Czyrt, A., Sun, H., Rensing, S. A., & Huang,
791 J. (2020). Are fungi-derived genomic regions related to antagonism towards fungi in
792 mosses? *The New Phytologist*, 228(4), 1169–1175.

793 Sun, H., Shang, H., Pan, X., & Li, M. (2023). Structural insights into the assembly and energy
794 transfer of the Lhcb9-dependent photosystem I from moss *Physcomitrium patens*. *Nature
795 Plants*, 9(8), 1347–1358.

796 Van Dongen, S. M. (2000). Graph clustering by flow simulation. Doctoral dissertation. Utrecht
797 University, Netherlands.

798 Van Etten, J., & Bhattacharya, D. (2020). Horizontal gene transfer in Eukaryotes: Not if, but how
799 much? *Trends in Genetics*, 36(12), 915–925.

800 Vuruputoor, V. S., Monyak, D., Fetter, K. C., Webster, C., Bhattacharya, A., Shrestha, B., Zaman,
801 S., Bennett, J., McEvoy, S. L., Caballero, M., & Wegrzyn, J. L. (2022). Welcome to the big
802 leaves: best practices for improving genome annotation in non-model plant genomes. In
803 *bioRxiv* (p. 2022.10.03.510643). <https://doi.org/10.1101/2022.10.03.510643>

804 Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A.,
805 Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: an integrated tool for
806 comprehensive microbial variant detection and genome assembly improvement. *PLoS One*,
807 9(11), e112963.

808 Wang, S., Guan, Y., Wang, Q., Zhao, J., Sun, G., Hu, X., Running, M. P., Sun, H., & Huang, J.
809 (2020). A mycorrhizae-like gene regulates stem cell and gametophore development in
810 mosses. *Nature Communications*, 11(1), 2030.

811 Wilding, N. (2015). Systematics, biogeography and morphological evolution in *Entosthodon*
812 Schwägr. (Bryopsida, Funariaceae) with a revision of the genus in Africa. Doctoral
813 dissertation. University of Cape Town, South Africa.

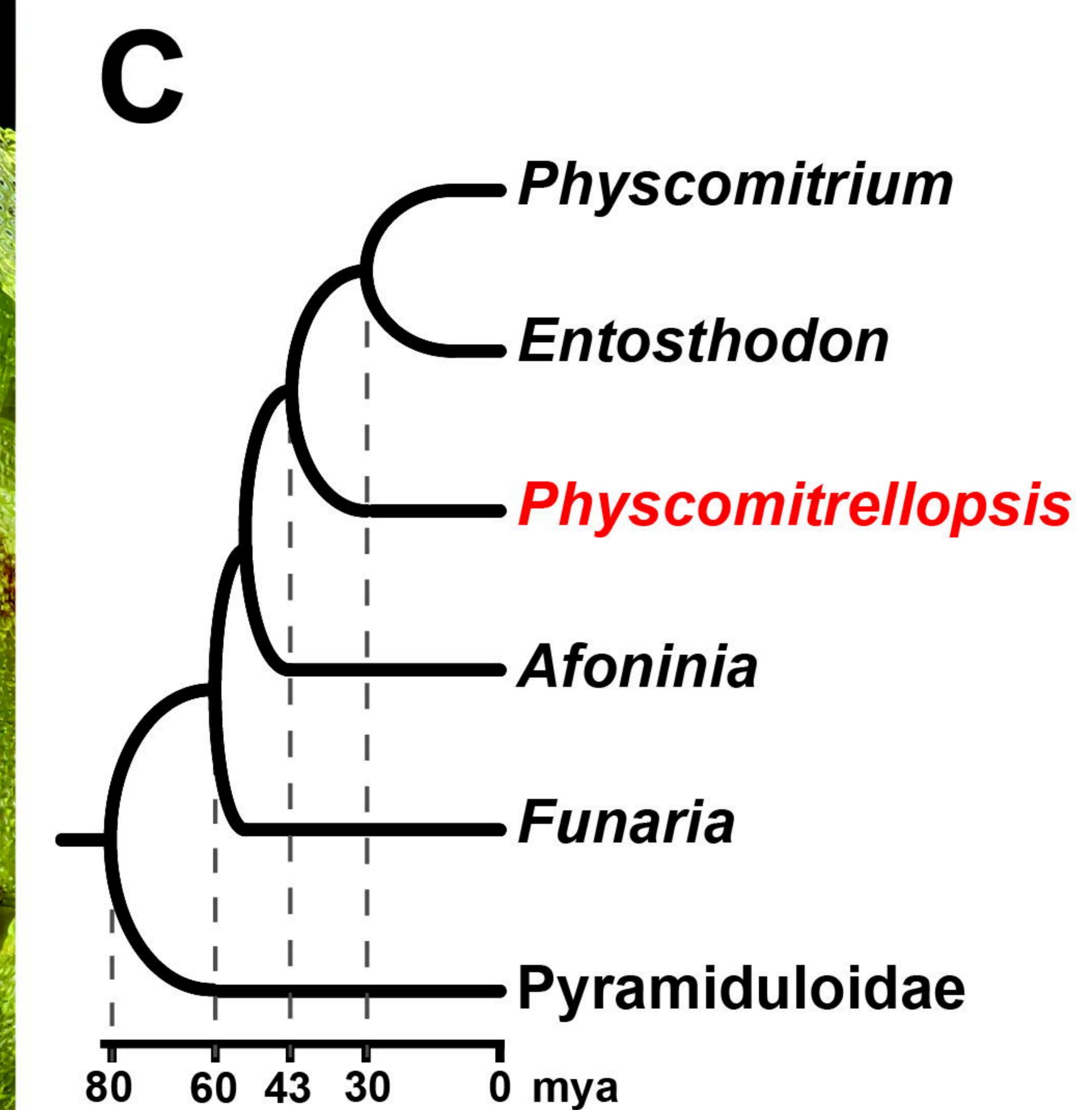
814 Xi, Z., Bradley, R. K., Wurdack, K. J., Wong, K., Sugumaran, M., Bomblies, K., Rest, J. S., &
815 Davis, C. C. (2012). Horizontal transfer of expressed genes in a parasitic flowering plant.
816 *BMC Genomics*, 13, 227.

817 Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. *Molecular Biology*
818 and Evolution, 24(8), 1586–1591.

819 Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis
820 for RNA-seq: accounting for selection bias. *Genome Biology*, 11(2), R14.

821 Young, LA, (2022). *Relationships Among AA-Genome Chenopodium Dipooids and a Whole*
822 *Genome Assembly of the North American Species, C. watsonii* (Doctoral dissertation,
823 Brigham Young University)

824 Yu, J., Li, L., Wang, S., Dong, S., Chen, Z., Patel, N., Goffinet, B., Chen, H., Liu, H., & Liu, Y.
825 (2020). Draft genome of the aquatic moss *Fontinalis antipyretica* (Fontinalaceae,
826 Bryophyta). *GigaByte*, 2020, gigabyte8.

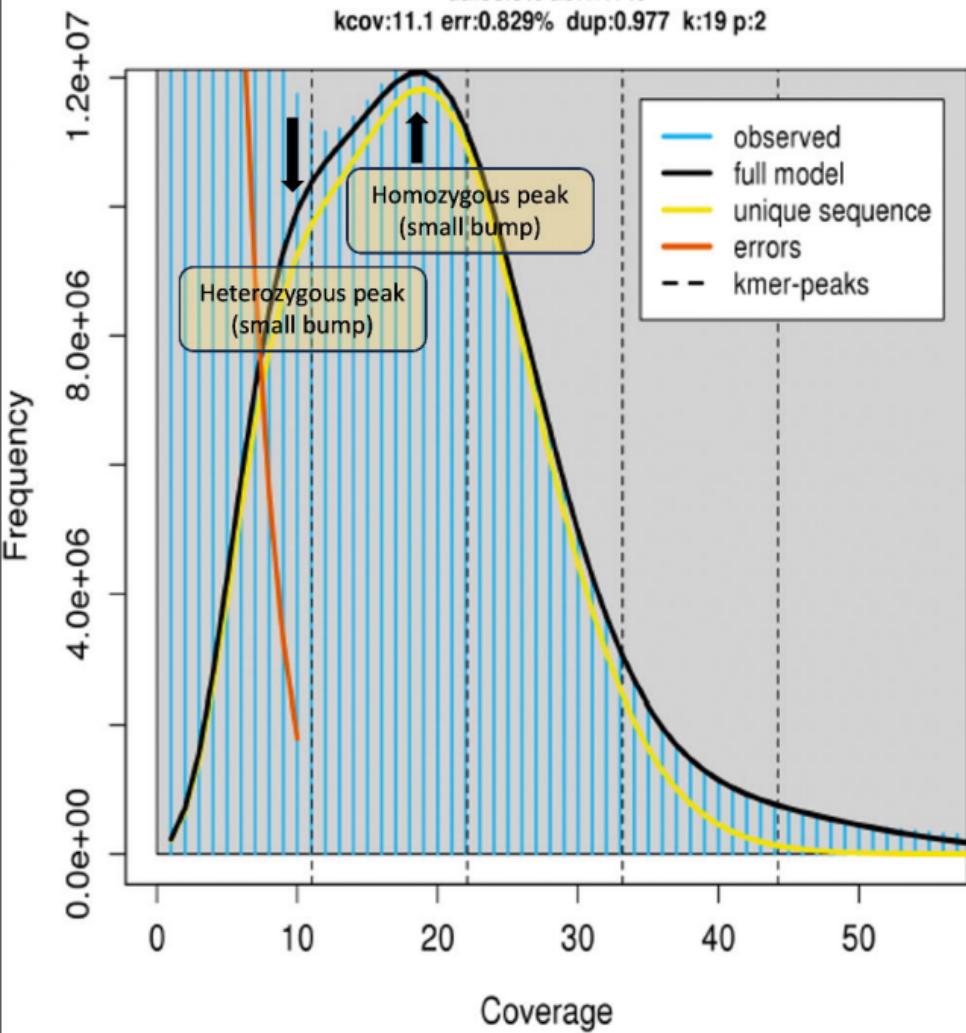

827 Zhang, J., Fu, X.-X., Li, R.-Q., Zhao, X., Liu, Y., Li, M.-H., Zwaenepoel, A., Ma, H., Goffinet,
828 B., Guan, Y.-L., Xue, J.-Y., Liao, Y.-Y., Wang, Q.-F., Wang, Q.-H., Wang, J.-Y., Zhang,
829 G.-Q., Wang, Z.-W., Jia, Y., Wang, M.-Z., ... Chen, Z.-D. (2020). The hornwort genome
830 and early land plant evolution. *Nature Plants*, 6(2), 107–118.

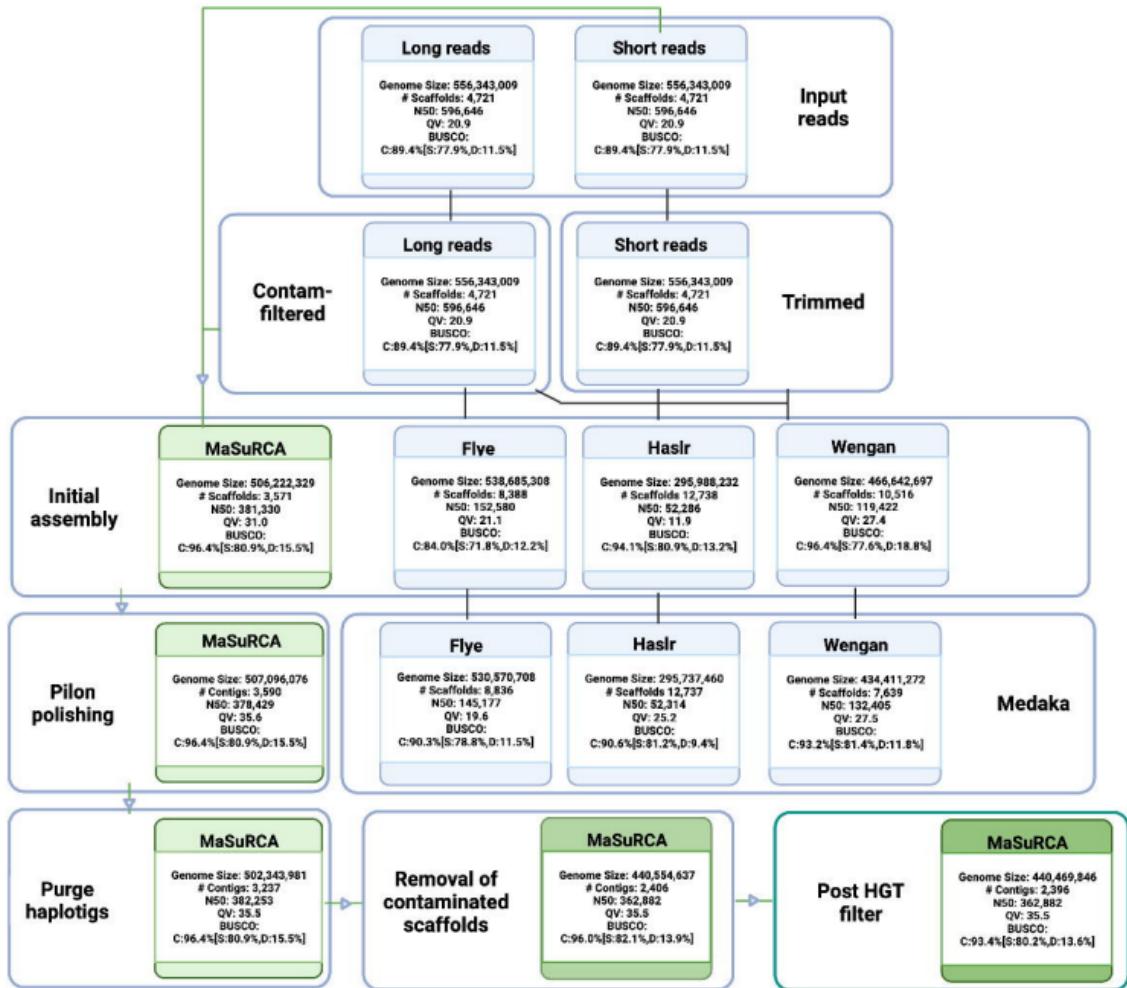
831 Zhang, Z., & Wood, W. I. (2003). A profile hidden Markov model for signal peptides generated
832 by HMMER. *Bioinformatics*, 19(2), 307–308.

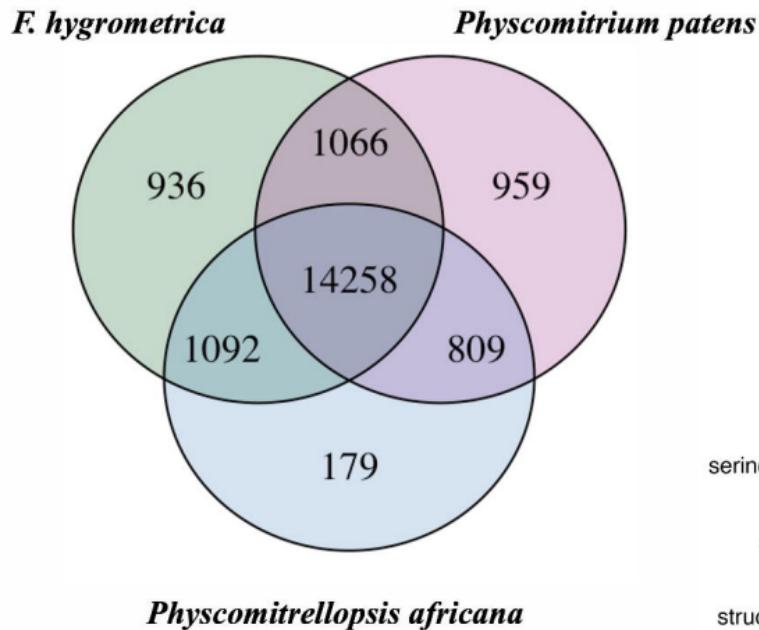
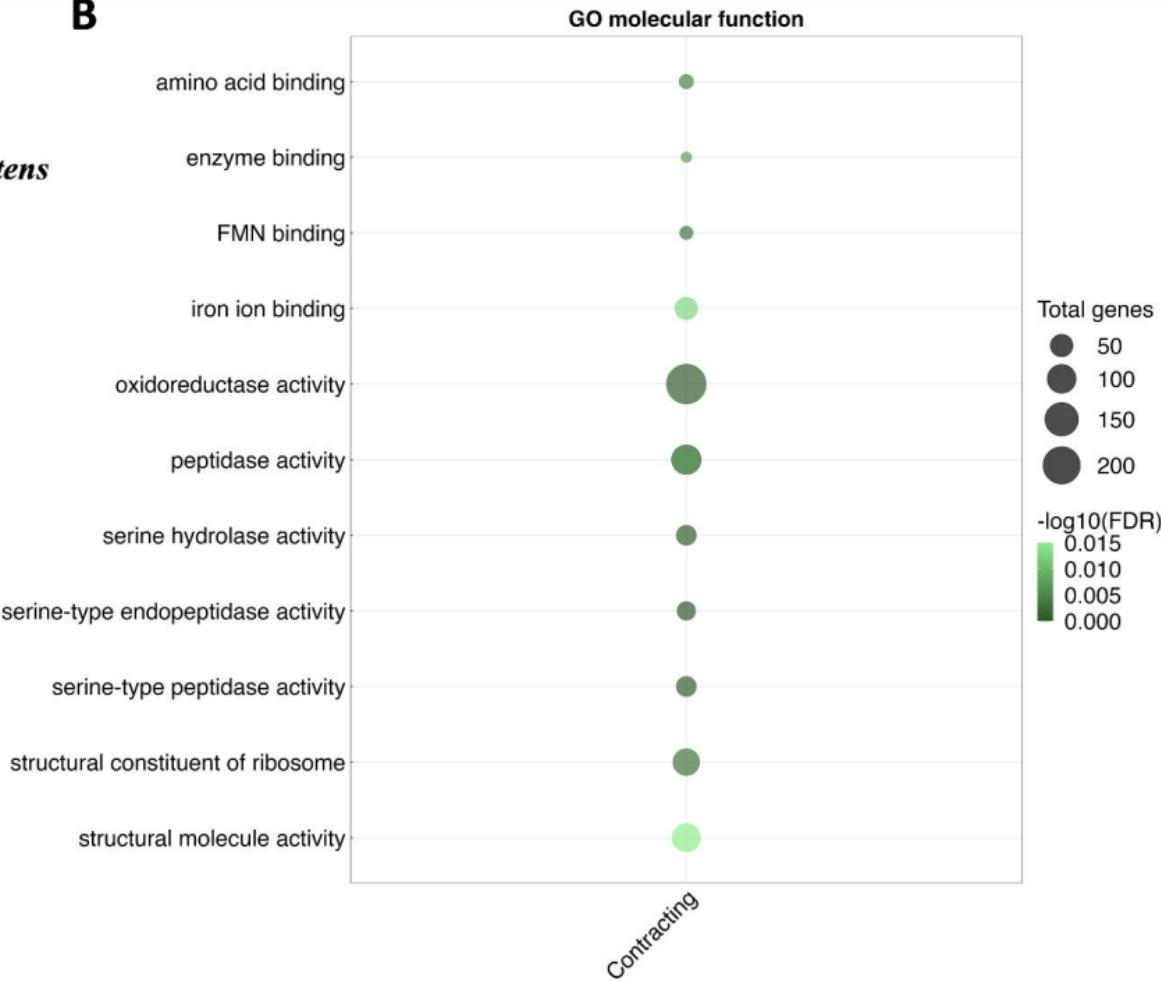
833 Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., & Yorke, J. A. (2013). The
834 MaSuRCA genome assembler. *Bioinformatics*, 29(21), 2669–2677.

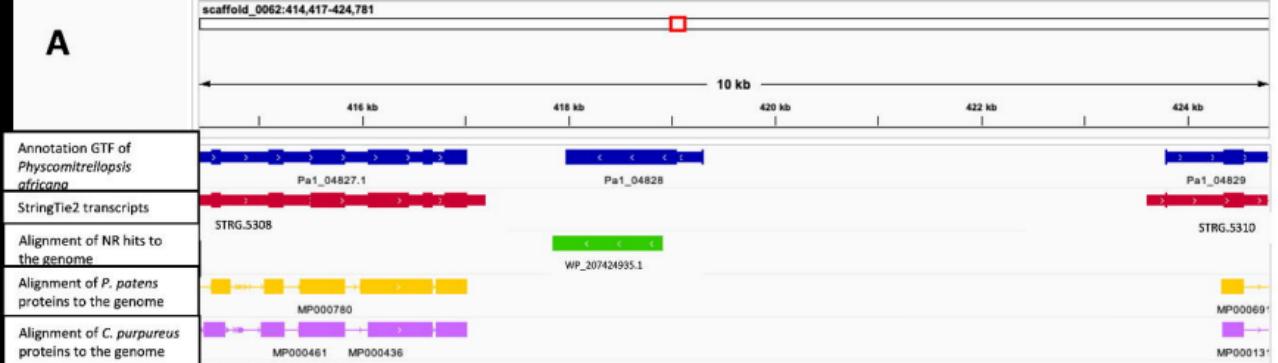
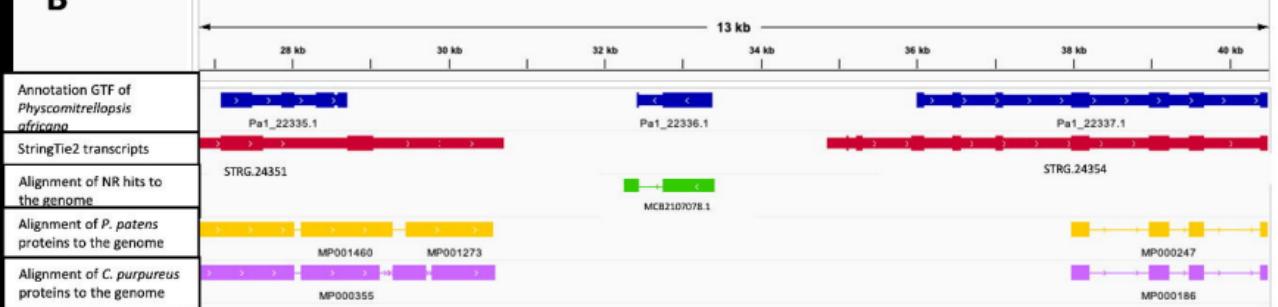
835 Zimmer, A. D., Lang, D., Buchta, K., Rombauts, S., Nishiyama, T., Hasebe, M., ... & Reski, R.
836 (2013). Reannotation and extended community resources for the genome of the non-seed
837 plant *Physcomitrella patens* provide insights into the evolution of plant gene structures and
838 functions. *BMC Genomics*, 14, 1–20.

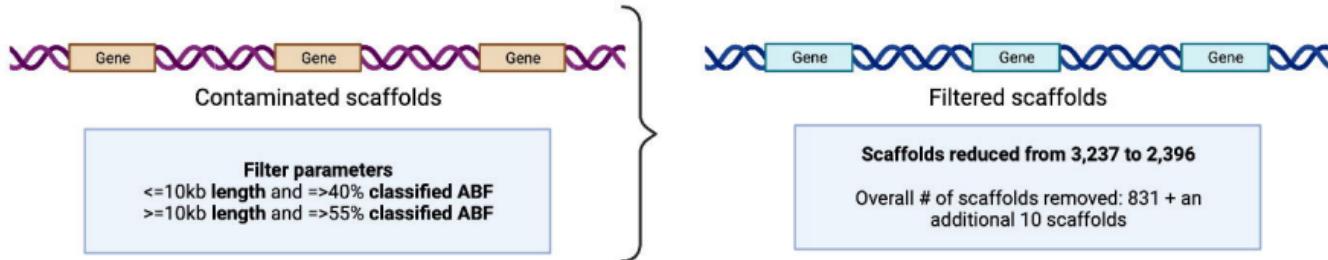
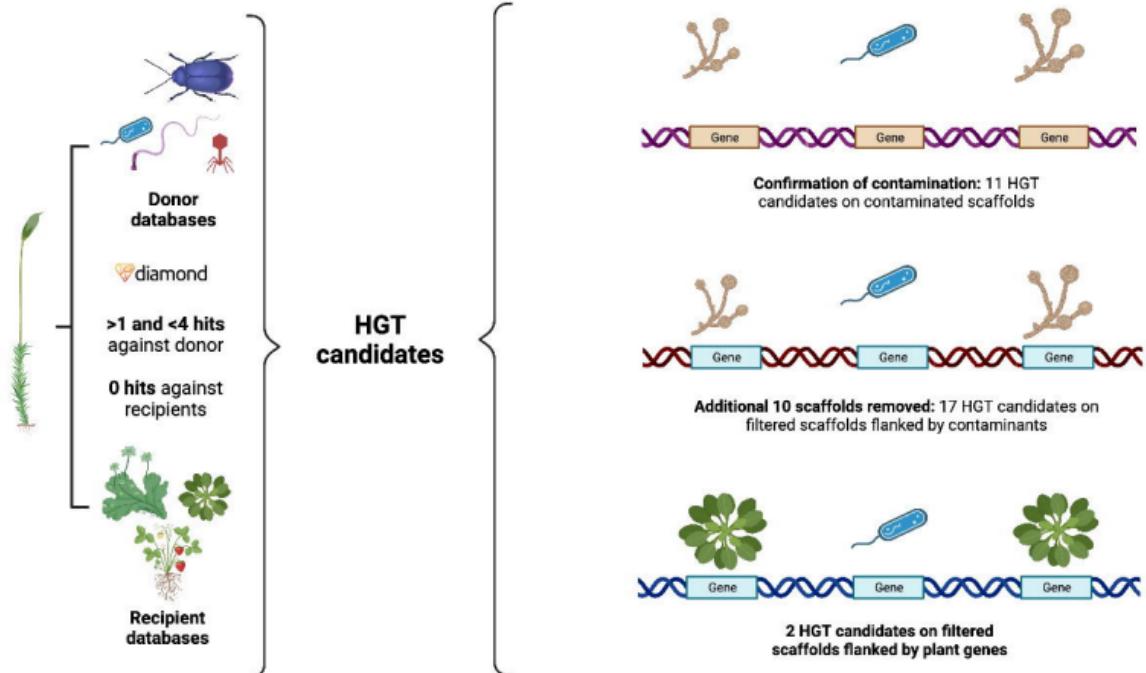
839 Zwaenepoel, A., & Van de Peer, Y. (2018). wgd—simple command line tools for the analysis of
840 ancient whole-genome duplications. *Bioinformatics*, 35(12), 2153–2155.

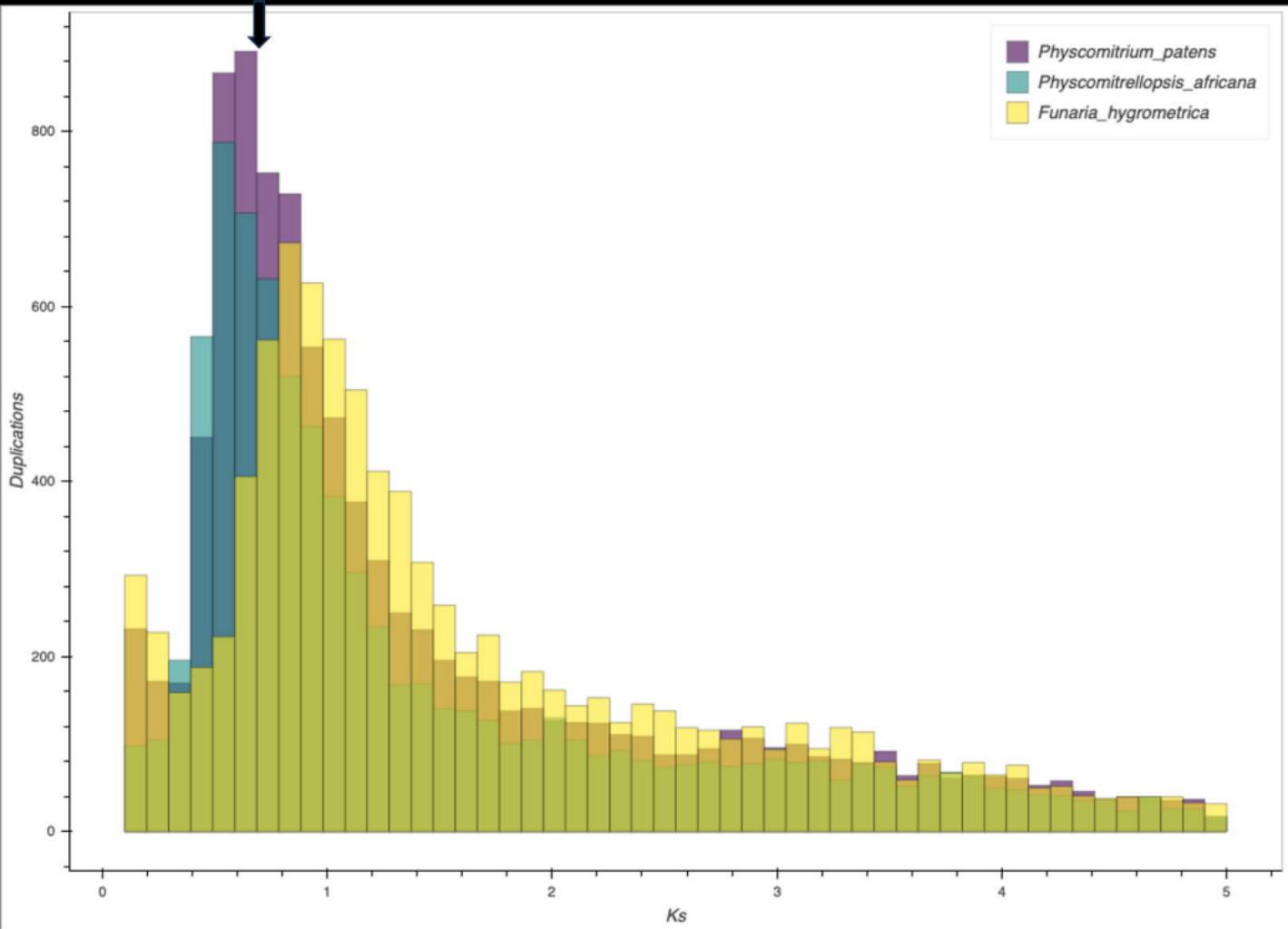

B

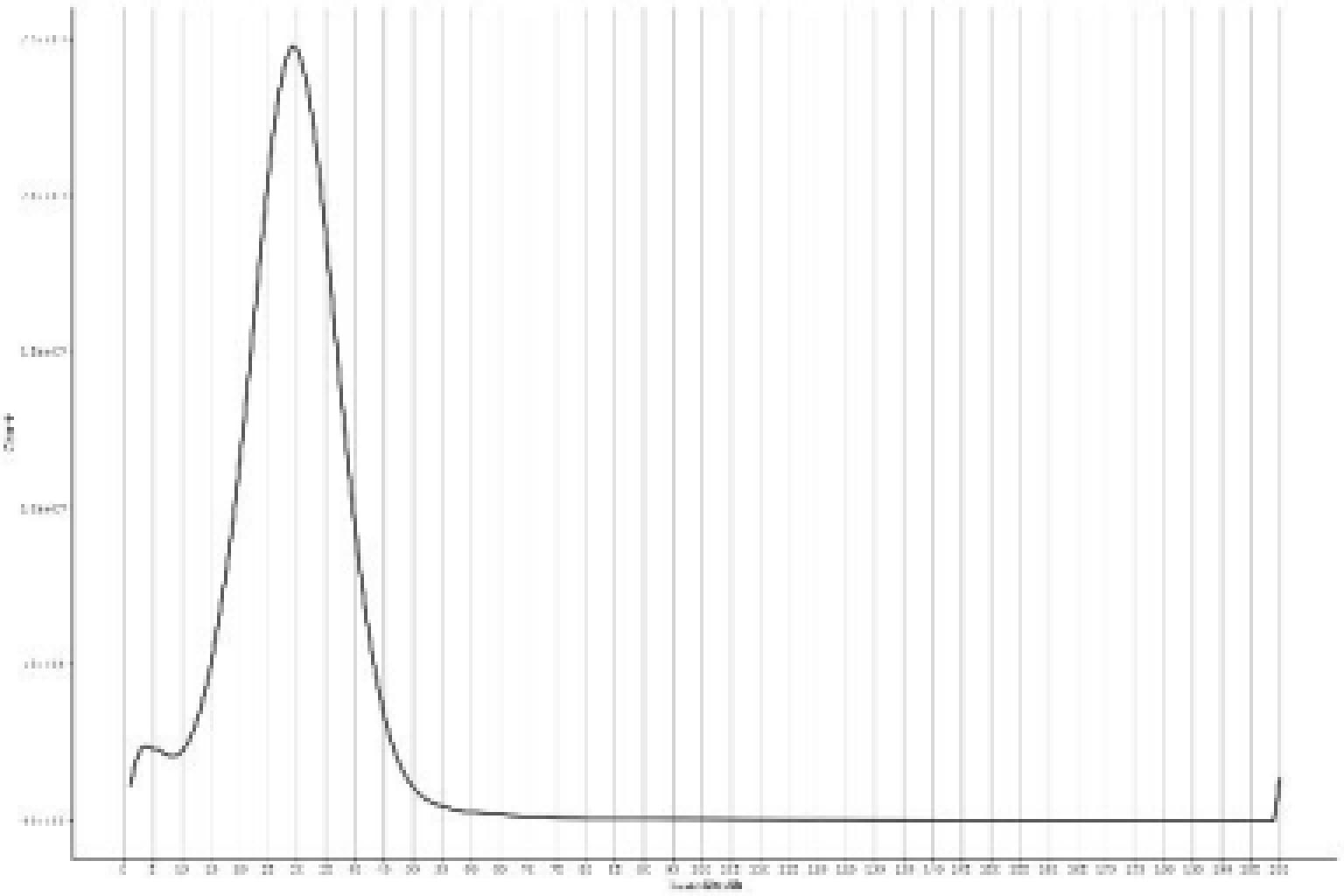

GenomeScope Profile



len:403,926,485bp uniq:53.8%



aa:98.8% ab:1.17%



kcov:11.1 err:0.829% dup:0.977 k:19 p:2





A**B**

A**B****C**

A**B**

