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ABSTRACT

The knowledge of protein dynamics or turnover in patients provides invaluable information related
to certain diseases, drug efficacy, or biological processes. A great corpus of experimental and
computational methods has been developed, including by us, in the case of human patients followed
in vivo. Moving one step further, we propose here a new modeling approach to capture the highly
relevant notion of population protein dynamics. Using two data sets, we show that models inspired
by population pharmacokinetics can accurately capture protein turnover within a cohort of
individuals, even in presence of substantial inter-individual variability. Such models pave the way for
comparative studies searching for altered dynamics or biomarkers in diseases.
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INTRODUCTION

Beyond the knowledge of protein abundance in various tissues (Meyer and Schilling, 2017), there is
great interest in learning about the dynamics of proteins (Doherty and Whitfield, 2011). Protein
dynamics, which is commonly referred to as protein turnover, is the net rate at which proteins are
produced or imported in a tissue, and simultaneously degraded or cleared. This complementary and
dynamic perspective to protein abundance is relevant in a number of applications of clinical
proteomics. For example, in different pathologies, abnormal turnover has been observed for specific
proteins such as amyloid-B (AB), Tau, or STREM2 in Alzheimer disease (AD) (Mawuenyega et al.,
2010; Sato et al., 2018; Suarez-Calvet et al., 2016), retinol-binding protein 4 (RBP4) in diabetes
(Jourdan et al., 2009), or tissue remodeling during early-stage human heart failure (Lam et al., 2014).
Besides clinical applications, protein turnover can be related to fundamental biological processes
such as heart morphogenesis (Konzer et al., 2013). Turnover data are typically acquired by mass
spectrometry (MS) after introducing isotopic tracers to label the newly synthesized proteins
(Bateman et al., 2006; Jaleel et al., 2006; Doherty et al., 2012; Claydon et al., 2012; Wilkinson, 2018).
The ratio of labeled versus unlabeled protein peptide abundances is called the relative isotope
abundance (RIA). The variation of RIA over time provides turnover information.

Different protocols can be followed regarding the introduction of a tracer, e.g., through the diet,
intravenous injections, or even the medium if we consider cells in culture or organoids. Our interest
lies in human — or animal — in vivo studies, where biofluids represent the most convenient and
ethically acceptable material for sequential measures on a same individual. Following an initial
publication of our labeling protocol (Lehmann et al., 2015) , we developed a flexible and accurate 2-
compartment mathematical model (Lehmann et al., 2019). In particular, we showed that this general
model was able to fit data obtained by stable isotope labeling kinetics (SILK) (Bateman et al., 2006).
SILK is a pulse-chase protocol, where **Cg-Leu is intravenously injected for nine hours, allowing to
observe new protein synthesis, but also clearance, by acquiring sequential samples over many hours,
24 hours for instance. The new work we present here is a follow-up bringing the modeling, and the
extraction of kinetic parameters, to the population level. Namely, given a cohort or population of
individuals that were submitted to SILK, we want to learn the typical values, variability, and
correlation of the protein dynamics parameters over the whole population. This type of
mathematical model is common in population pharmacokinetics (Bauer et al., 2007), where
compound availability and clearance in patients must be characterized population-wide to adjust
standard regimens. In the case of protein turnover, our perspective is to provide robust and
comprehensive models of healthy homeostatic states, in comparison to disease states. This
knowledge could obviously lead to progresses in biomarker discovery as well as diagnostic
applications beyond pure research and protein classification.

Similar to population pharmacokinetics studies, we developed hierarchical a Bayesian model whose
parameters were fit with Markov-chain Monte-Carlo (MCMC) sampling. The new model is illustrated
on an unpublished cohort of seven individuals whose blood plasma samples were analyzed with
targeted MS, i.e., multiple reaction monitoring (MRM). To contrast this first cohort that displayed
moderate inter-individual variability, we exploited a second cohort of four individual cerebrospinal
fluid (CSF) samples. The later were not completely comparable and thus provided much more
heterogeneous inter-individual data, which enabled us to challenge our population model
robustness.
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MATERIALS AND METHODS
Human samples

Samples were generated following the clinical protocol “In Vivo Alzheimer Proteomics (PROMARA)”
(ClinicalTrials Identifier: NCT02263235), which was authorized by the French ethical committee CPP
Sud-Méditerranée IV (#2011-003926-28) and by the ANSM agency (#121457A-11). Enrolled patients
(group a) were hospitalized in neurosurgery unit due to subarachnoid hemorrhage and received a
temporary ventricular derivation of the CSF. The experiment protein turnover started 8 to 19 days
after initial, medical ventricular drainage and normalization of CSF clinical chemistry analysis (normal
CSF protein content lies in the 0.2-0.4 g/L range (Roche et al., 2008)). Additional patients (group b)
were hospitalized in neurology in relation with cognitive impairment etiologic investigation. Patient
data are reported in Table S1. CSF and blood plasma were collected at multiple time points after
injection of the tracer for roughly 24 (CSF) or up to 36 (plasma) hours. We applied the ethically
approved (see above) original SILK **Cs-Leu infusion protocol (Bateman et al., 2006). Briefly, **C¢-Leu
prepared per the European Pharmacopeia [19] was intravenously administered. After a 10 min initial
bolus at 2 mg/kg, an 8h50 infusion at 2 mg kg/h was performed. Ventricular CSF or plasma EDTA
samples were collected starting at the beginning of the **C¢-leucine infusion, roughly every 3h (3 to 6
mL). Samples were transported to the laboratory at 4°C, and centrifuged at 2000g for 10 minutes.
CSF and plasma samples were aliquoted into 1.5-mL polypropylene tubes and stored at —80°C until
further analysis.

In this study, we analysed CSF samples from four patients of group a (Patla to Pat4a) and seven of
group b (Pat7b-Pat13b). Patients were selected based on availability of CSF and plasma MS samples
at multiple time points.

Sample analysis

Sample preparation was automated on AssayMap BRAVO (Agilent T., Santa Clara, US) to reduce
preanalytical variability. Briefly, 2uL of plasma or 30ulL of CSF were used. Protein samples were
reduced and alkylated, and digested with trypsin prior to LC-MS analysis.

The MRM protocol was reported in previous publications (Percy et al., 2013; Hirtz et al., 2018;
Lehmann et al., 2019); we hence only summarize the main steps here. Proteins were selected for
their relevance to neurodegenerative diseases and clear detection in previous, proteome-wide
experiments in plasma and CSF by our laboratory. The reporter peptides were selected for their high
signal intensity in these previous experiments. Tables S2 and S3 reports the selected proteins and
peptides for CSF and plasma samples. MRM was executed on the samples directly using a 1290 liquid
chromatography (LC) system (Agilent Technologies) equipped with a reverse-phase column (RRHD
Eclipse Plus C18) coupled with a QqQ MS instrument (6490, Agilent technologies). The MS instrument
worked in dynamic MRM with a retention time window of 4.5 minutes and a maximum cycle time
fixed at 700ms. All the analyses were performed in duplicates. A minimum of one peptide per protein
and 3 transitions by peptide were required. Skyline 4.1 was used to process raw MS data. Figure 1A
presents an overview of the LC and MS pipeline.

Although they were not the object of this work, we also used two samples (CSF and plasma from
PatAl) that were subjected to the proteome-wide (non MRM) protocol as describe in our previous
publication (Lehmann et al., 2019). The CSF sample was discussed in this latter publication, whereas
the blood sample remains unpublished. The data generated were subjected to the data analysis
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workflow described below. We obtained reliable turnover data for roughly 200 proteins in each
sample, whose parameters were only used to learn the typical range of parameter values for
mathematical modeling (see below) from diverse proteins.
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Figure 1. Simplified workflow. (A) Samples were collected at multiple time points and analyzed by MS.
Integration of all the spectra found for a given peptide at a given time point was performed with Skyline.
Filtering of peptides for which sufficient and interpretable signals were available was performed employing a
mathematical model of protein turnover. (B} Representative data for a given protein (A1BG), for which two
different peptides were followed in MRM and both measured with double charges. Corresponding acquisition
times and RIA (ratios) were available. (C} A1BG ratios (orange dots) along with the fitted mathematical model.
The vertical gray line indicates the end of tracer injection at 9 hours.

MS data processing and existing individual mathematical model

Integrated MS spectra by Skyline were the input for fitting protein dynamics models. Typical input
data are illustrated in Figure 1B. The processing of these data has been described in details already
(Lehmann et al., 2019}, we hence provide a summary only. First, we briefly reintroduce our turnover
model. For a given peptide and a given time, the observed RIA (Figure 1B} is defined by the ratio of
the heavy Leu signal  (observed at a shifted mass of +6 Da per Leu) and the total signal ,
the signal at the nominal mass. We denote the curve of RIA over time by . Our 2-compartment
model relies on a notion of rate of tracer availability (first compartment) denoted to be involved
in protein synthesis (second compartment). To parallel pharmacokinetic 2-compartment models,

relates to the ratio of initial drug concentration divided by the volume of distribution. Note that
in the case of protein turnover, only ratios are modeled and hence and are dimensionless. They
are related by the following ordinary differential equations (ODEs):

: 1)

with . Figure 1C illustrates a typical dataset with the and curves. Itis important
to observe that , which relates to tracer availability for protein synthesis, essentially acts as a scale
parameter, whereas , the clearance/degradation rate primarily acts as a shape parameter that
conditions protein half-life. Due to the generally large ratio of intensities between and , we
have shown in that noise causes an almost uniform vertical shift of the observed RIA values
(Lehmann et al., 2019). Therefore, we proposed an algorithm that include the computation of an
optimal shift along with the parameters and  to adjust to the data. Summed squared errors
with respect to observed RIAs were weighted proportionally to o (RIAs with stronger  signals


https://doi.org/10.1101/2023.10.30.564713
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564713; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

were more accurate). Weighted summed squared errors were minimized by a quasi-Newton iteration
(function optim in R with method BFGS) to adjust the parameters. Eqg. (1) was numerically integrated
by a stiff Runge-Kutta method (Hairer and Wanner, 1996).

To achieve robust results in the presence of noisy RIAs, parameter fitting was iterative with a first
application of the above to call outlier RIAs. RIAs were considered outliers provided they lied at a
distance larger than half the difference between the minimum and maximum values of the first fitted
B (£) model. A second application of the quasi-Newton method without the outliers was then
performed. In addition, RIAs at time O were always considered outliers since no tracer incorporation
had occurred yet. Our original data processing pipeline finished with the application of a bootstrap to
estimate confidence intervals. Here, we used the R library boot to perform a nonparametric balanced
bootstrap (100 times), while the original publication used a parametric Gaussian bootstrap. In the
sequel, we refer to the parameter and CI95 estimates found by this procedure as QNB for quasi-
Newton-bootstrap.
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RESULTS AND DISCUSSION
Initial Bayesian models

We started the construction of a Bayesian population model by first establishing a Bayesian model
equivalent to our QNB original procedure presented above since it led to accurate models.
Minimization of the differences between observed RIAs and model-predicted values is achieved by
the computation, and maximization of a likelihood in the Bayesian paradigm. Assuming RIA; to be
the i*" observation and B; the corresponding model value, we naturally have

RIA; ~N(B; — s, O-Z/Wi)'

with i € {1;---;n} and n the number of RIAs, B; = S(t;), t; the time at which RIA; was observed
(due to replicates, several t; can be identical with different indices i), w; the weight proportional to
\/P—H for observation i, and s the vertical shift to acknowledge the noise in the ratios (Materials and
Methods). N(a, b?) denotes a normal distribution with mean a and variance b2.

To obtain a complete, hierarchical Bayesian model, we introduce prior distributions on the model
parameters as well as the mean and variance of the error normal distribution. The resulting model is

the following:
da
&= @ - ok,
a8 _ _
dt - ((X ﬂ)kc
In(2) ~ N (2, 95) Q)
In(k;) ~ N (i, Uzzkc)
s~ N(us, 03)
RIA; ~ N(B;—s,0%/wy)
6~ ~ ¥(0.001,0.001)

We denote by y(a, b) a Gamma distribution with shape a and rate b. The prior parameters for s,
In(k.), and In(4) were learned from a large number of models (roughly 200 distinct proteins) fitted
with the QNB algorithm using unbiased data, i.e., not MRM data (see Materials and Methods, and
Tables S2 & S3). In the case of s, we set yg; = 0, and 62 at 10 for the plasma samples and 1/500 for
the slightly more noisy CSF data. The Gamma prior for 62, i.e., the precision, is a commonly used
vague (non-informative) prior.

We implemented the MCMC sampling for the parameters o, s, In(k.), and In(4) in the above model
using two approaches, both implemented in R. First, we defined a function proportional to the log
probability density of (2) and used the R libraries mecmc and adaptMCMC. Alternatively, we used
BUGS to define the model and OpenBUGS (Lunn et al., 2000) through its R interface R20penBUGS.
Some particular §(t) shapes such as apolipoprotein Al (APOA1) in CSF illustrated in Fig2A were more
difficult to fit, and adaptMCMC and mcmc failed to find correct parameters (Figure S1). OpenBUGS
managed to address those more difficult data efficiently. In the majority cases, typically illustrated by
neuropilin-2 (NRP2) and complex component 1s (C1S) in Figure 2A, the three library produced almost
identical parameter estimations (Figure S1). The distribution-aware OpenBUGS Gibbs sampler was
thus more effective generally, and we decided to use OpenBUGS only. The BUGS code and the R
function for adaptMCMC and mcmc are provided in SI. We found that 100 000 iterations including

50 000 burn-in were sufficient for OpenBUGS safe convergence. We systematically used two Markov
chains, and a convergence diagnostic was achieved comparing within- and between-chain variability


https://doi.org/10.1101/2023.10.30.564713
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.30.564713; this version posted November 2, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

(Brooks and Gelman, 1998). Each chain was initialized with random 4, and k_ values drawn from their
respective prior distributions. The shift s was initialized at 0 and o2 at 0.1.

Outliers identified by the QNB algorithm were removed from the data given to OpenBUGS (same for
mcmc and adaptMCMOC) since the latter was sensitive to some extreme outliers (data not shown). In
theory, it is possible to replace the normal distribution for errors on RIA; in Eq. (2) by a heavy-tailed
distribution such as Student with degree of freedom 4 to address outliers. Nonetheless, here our goal
was not to replace the satisfying QNB algorithm, but to build a population model on the top of it. We
thus trusted QNB outlier calling and exploited it.

From Figure 2A, we see that the Bayesian solution is usually close to QNB, NRP2 and C1S being
representative of the majority of the cases. The inferred parameters for the two algorithms are
reported in Figure 2B with estimated 95% confidence intervals (QNB) and 95% credible intervals
(BUGS). Indeed, comparing the parameter values for all the plasma proteins in patients Pat7b to
Pat13b (37 different proteins, 236 individual proteins in total, Table S3), we found an excellent
correlation between the original QNB estimates and those from OpenBUGS (Figure 2C). We also
found high compatibility between the 95% confidence and credible intervals (Figure 2D). As a
commonly accepted rule of thumb, the number of iterations in a MCMC estimation should be such
that the MCMC standard error (MCSE) divided by the standard deviation of the sampled parameter
should be below 5%. As reported in Figure 2E, this was achieved for the three estimated parameters
using a conservative value for MCSE that was corrected for autocorrelation (OpenBUGS “Time-series
SE” estimates). This validated the choice of the number of iterations. Considering CSF data (Pat1 to
Pat4, 26 different proteins, 92 individual proteins in total, Table S4), we made similar observations
(Figure 2F), though with lower correlation. This is explained by the fact that in CSF data, S (t) shapes
similar to APOAL in Figure 2A represented roughly half the data. Credible intervals estimated by
OpenBUGS were reliable and almost always included QNB estimates, while the converse was rather
in the 70% range, but for the shift that was highly compatible with QNB estimations. MCSE/sd values
were similar to Figure 2E.

To understand better the CSF results, we first observed that in the typical example of APOAL (Figure
2A), the curve S(t) was properly fit to the experimental RIAs by both algorithms. Nevertheless, the
QNB and BUGS a(t) curves were different. This indicated a stronger correlation between the model
parameters A and k. that manifested by the ability to compensate variation in one by the value of
the other. Indeed, comparing the probability density estimated by MCMC sampling over the (4, k.)-
space, we found a large, almost linear area for CSF Pat4 APOA1 and a narrower, rounder area for
plasma Pat7b NRP2 (Figure 2H). The latter configuration is typical of easy and fast convergence,
whereas the former indicates a more difficult and slower convergence. This was also reflected in
BUGS credible intervals sizes in Figure 2B. The Bayesian approach did a better job at estimating
realistic 95% credible intervals, almost always including QNB estimates. This is not the case for the
95% confidence intervals estimated by QNB, which tended to be too narrow including no more than
~70% of the BUGS estimates. Lastly, it is important to remember that in our model in Eq. (1), the
most relevant, shape- or half-life-related parameter is k. for which a rather high R? = 0.85
(Spearman) was achieved.
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Figure 2. Initial Bayesian models of single proteins in single patients. (A) Three representative examples
comparing the BUGS fitted models with the original QNB solutions. (B) Comparison of the BUGS versus QNB
fitted parameters shift, and . Spearman squared correlation is denoted . (C) Global comparison of BUGS
versus QNB estimated parameters over all the plasma proteins and patients. (D) Rate of inclusion of the QNB
parameter estimates in the BUGS 95% credible intervals, and conversely. (E} Autocorrelation-corrected
MCSE/estimate standard deviation distributions. (F) BUGS versus QNB parameter estimate correlation over all
the CSF proteins and patients. (G) Inclusion rates of QNB estimates in BUGS 95% credible intervals and vice
versa. (H) MCMC sampled probability density over the -space. Marginal means are featured by the gray
crosses.
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Population hierarchical Bayesian model

To develop a population model, we start with plasma data, typical examples are featured in Figure 3A
(the 27 plasma proteins for which we had data for every patient are depicted in Figure S2).

A
99.5% ,__Jf' -3
. 0.6- 9g% [/
0.6- ~— 0.50((
5 0.4-
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Figure 3. Four example proteins in plasma data. (A} Variability of individual parameters for the seven patients.
Dots represent QNB estimates, the vertical color bars their respective CI95s, and a boxplot computed form the
individual estimates was added to the background to suggest population dispersion. (B} Areas covered in the

parameter space by the true Bayesian population models. Concentric boundaries indicate the space
occupied by 95% (inside the innermost boundary), 99% and 99.5% of the population as estimated from the
available cohort.

The principle of population Bayesian modeling consists in adding a population level to the model in
Eq. (2). This additional layer should capture parameter typical values as well as potential correlations
between them (Figure 2H). If we define the parameter vector

then this is achieved by a 2-dimensional normal distribution

’

with mean  andvariance . Hyper-priors are introduced for these two quantities

where the vector components are respectively set to the means of and .Those
means were obtained from a large set of previous observations as we did for the individual models
above (Tables S3-4). For , we employed a commonly used vague hyper-prior with

denotes a 2-dimensional Wishart distribution that generalizes the Gamma distribution to

multidimensional variates (compare above with in Eq. (2)). A largely used vague hyper-prior
is obtained with
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k= (0 %)7 0.?75)‘

Lastly, writing RIA; the i*" observed RIA for patient k, the residuals likelihood is defined by

d

= (exp(6,) f(6) - @) exp(6y)

d

% = (@ — B,) exp(6)

0~ N3 (ue, )

‘ng ~ N2 (H—; Z) ’ (3)
ol o~ Wi, (R, 2)

Sk ~ N(,LLS, O-Sz)
RIAy; ~  N(Bui — Sk, 0%/wy)

o2~ (0.001,0.001)

with (similar to the individual model) B;; the value of B, (t) at the time where RIA;; was observed,
and the corresponding weight wy;. Then, 84 is In(4;) and 6, is In(k.), the logarithms of patient k
turnover parameters.

As we did for the individual models, we ran the BUGS model (reported in SI) for 100 000 iterations
including 50 000 burn-ins, using two chains. The Markov chains were initialized with random 8,
drawn from their prior, s, = 0, and 6® = 0.01. Convergence was reached for all the proteins but
alpha-1-microglobulin/bikunin precursor (AMBP), beta-2-microglobulin (B2M), C1S, and NRP2.
Running the BUGS models, same data and initial chains, with WinBUGS that offers real-time visual
tracking, we found that & components were diverging in opposite directions. One parameter became
indefinitely large, and the other one indefinitely small to compensate. We could easily solve these
four cases by either starting the two chains with the parameter values 8, set to the QNB estimates
or, alternatively, by using a prior N, (i, £) with ¢ and X learned from the seven QNB estimates
available for each protein specifically (1 was set to the average, and diagonal elements of £~ to
1/variances). Applying these two alternative procedures to the 24 proteins for which the initial
approach worked, we found no real differences in the learned population models (Figure S3).
Moreover, AMBP, B2M, C1S, and NRP2 shared the same fast turnover dynamics, which was
apparently difficult for the initial approach. Based on the comparison of the three approaches (Figure
S2), we concluded that data were strong enough to make the choice of a specific prior consequence
less. We hence obtained bona fide population parameters for all the considered 27 plasma proteins.
Figure 3B illustrates the population models for the example proteins in Figure 3A. In particular, Figure
3B shows the population probability density over the parameter space (4, k.). We note that the
additional parameter space area covered switching from 95% to 99 % or 99.5% of the population is
very small indicating a robust estimate of turnover diversity for each protein.

Another benefit of a population model is to provide us with the ability to estimate the range of
protein dynamics that can be expected by 95% of the population, or any percentage of interest. This
is simply achieved generating a large sample of turnover parameter values from the population
model N, (ug, ). In Figure 4, four examples of protein dynamic range are featured along with the
individual curves fit from the same population model (Eq. (3)), but using the 8,’s. Figure S4 features
AMBP, B2M, C1S, and NRP2 dynamics similarly to show again the absence of real impact of the prior
choice.
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Figure 4. Population dynamics in plasma samples. Areas in the (time, RIA}-space that are covered by 95% of the
population as estimated by our model based on the available cohort. The gray 95% area was obtained by
generating 500 pairs and computing the CI95 of all the 500 resulting curves at each time point. The
individual curves for the BUGS model were obtained from the population model (Eqg. (3)) using patient-specific

’s. They were as accurate as the solutions found by individual BUGS model using Eq. (2) and illustrated in
Figure 2A.

Population modeling of heterogeneous data

CSF protein data displayed a much higher heterogeneity between patients compared to the plasma
data set. This variability was due to that fact that the four CSF patients experienced subarachnoid
hemorrhage, which introduced blood in the CSF. Part of their treatment included a drainage of
ventricular CSF, which provided the opportunity to collect the samples. Although these samples were
collected at a late stage of the therapy, assessing that protein concentration in CSF returned to a
normal range (Table S1), we cannot consider the CSF patients as really comparable. In this
methodological work, where no biological conclusion is made, this offers us the opportunity to
confront our Bayesian approach with much more variable data.

Out of the 19 proteins for which we had data for all four patients (from group B), our initial approach
(random initial chains and  prior parameter trained on a set of roughly 200 diverse proteins, Table
S3) could fit 12/19 proteins. Compared to 4/27 difficult case in plasma, we note the expected
additional difficulty. Next, we tried the two alternative procedures applied to the difficult cases in
plasma, i.e., initial chains on the QNB estimates or more informative prior. Only the informative prior
approach resulted in an improvement, which we interpret as an indication that the problem was
really difficult. Even accurate starting points led to divergence. Only a restriction of the search space
through the prior helped. We could obtain 18/19 models, and AMBP (in CSF) remained impossible to
model. Figure 5A illustrates different CSF cases covering all configurations of heterogeneity on signal
intensity ( heterogeneity) and turnover (  heterogeneity), see Figure S5 for all the 18 models.
Figure 5B shows population coverage of the parameter space. Figure 5C explains why CSF AMBP was
so reluctant to population modeling, and Figure 5D illustrates population dynamics. We note that our
population model was successful in pretty heterogeneous cases such as A2M, and to a certain extent
TTR, in Figure 5D.
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Figure 5. Modeling heterogeneous dynamics. (A} Individual parameter variability in the four CSF patients from
group a. (B) Areas in the Areas covered in the parameter space by the true Bayesian population models.
Concentric boundaries indicate the space occupied by 95% (inside the innermost boundary), 99% and 99.5% of
the population as estimated from the available cohort. We could not build a population model for AMBP. (C)
Extreme heterogeneity for AMBP individual dynamics with a very strong outlier. (D) Population dynamics, the
gray area represents 95% of the population dynamics according to the model based on available data.
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CONCLUSION

In a previous publication, we introduced a mathematical model along with a data processing and
filtering pipeline to analyze protein turnover data (Lehmann et al., 2019). This methodology, which
we refer to as QNB in this paper, enabled us to obtain turnover parameters for individual proteins in
individual samples. Here, we have proposed an extension to integrate the population level, i.e., the
variability within a cohort of individuals for each protein. Population-level modeling relied on a
hierarchical Bayesian approach combined with MCMC sampling to infer model parameters. This is an
approach that is applied in population pharmacokinetics studies (Bauer et al., 2007; Duffull et al.,
2005). Population protein turnover modeling enabled us to both describe inter-individual variability
by means of the typical areas of the parameter space, and to derive accurate, individual-specific
models able to infer her turnover parameters accurately. We also showed that the choice of a
specific prior had no real impact on the posterior distribution due to sufficient experimental data.

Two MRM data sets were exploited. One human blood plasma data set featured limited inter-
individual variability resulting in relatively easy modeling. Another human ventricular CSF data set
featured high inter-individual variability, which challenged our methodology. We managed to obtain
accurate models for 18/19 proteins available for every patient, the last case being pathological with
one patient harboring massively different dynamics. On a larger cohort featuring high variability, one
could imagine identifying sub-groups of patients beforehand, or including the notion of sub-group in
the hierarchical Bayesian model, which is in principle well adapted for such tasks. This possibility will
have to be explored in a future larger cohort.

This study has established a new type of mathematical model for the protein turnover community,
which we believe should greatly facilitate the description and comparison of natural versus
pathological protein turnover at the most relevant scale that is the population.

SUPPLEMENTARY DATA

Tables S2-S5 are provided as supplementary data. Table S1 is in Supplementary Information (Sl). All
the individual protein data for all the patients are provided as supplementary data. Preprocessed
input data, control plots, and the scripts implementing the Bayesian models are available from
Zenodo (10.5281/zen0do0.8425322). MRM data are available from
https://panoramaweb.org/iGcF67.url. Blood plasma whole transcriptome data are available from
https://panoramaweb.org/Xpd6J5.url. CSF whole transcriptome data were made public already
(Lehmann et al., 2019).
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