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Abstract

Spatial cellular organization patterns (COPs) in tumor microenvironment influence the tumor
progression and therapeutic response, however, little is known about the cellular composition
and functional potential of these multicellular structures during lung adenocarcinoma
progression. Here, we integrate spatial transcriptomics with single cell RNA sequencing to
characterize the local tumor and immunological landscape of samples from 8 patients with
early-stage lung adenocarcinoma at different pathological stages. We identified ten COPs that
show distinct associations with local immune states and clinical outcomes, including survival
and therapy response. The local infiltration levels of regulatory and dysfunctional immune cells
are increased with pathological progression. Cell-to-cell interactions between malignant cells
and tumor microenvironment (TME) cells were involved in protumor immune state remodeling.
Finally, we detected a group of malignant cells that were specifically located at the tumor
boundary, representing a more aggressive state, were involved in the invasion of invasive
adenocarcinoma (IAC). Altogether, these results can improve our understanding of the local
microenvironment characteristics that underlie LUAD progression and may facilitate the

identification of drug targets to prevent invasive progression and biomarkers for diagnosis.
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Introduction

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and accounts
for most cancer-related fatalities in both males and females®. LUAD can be classified into two
main types: minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC).
Compared to MIA, IAC, in particular, is characterized by aggressive histopathological features,
such as invasive growth patterns where cancer cells invade the surrounding lung tissue?.
Previous studies have depicted the epigenetic, transcriptomic and metabolomic dynamics with
LUAD pathological progression using bulk sequencing technologies and revealed critical
molecular alterations underlying the initiation and progression of LUAD3®®. However, our
understanding of the remodeling of the tumor microenvironment (TME) and the specific
characteristics of different cell types within this context remains limited.

In recent years, single cell RNA sequencing (scRNA-seq) has emerged as a valuable tool
for investigating the molecular and cellular heterogeneity within the TME of LUAD. These
studies demonstrated that the enrichment of regulatory T cells and decrease in cytotoxicity in
CD8 T cells were related to progression from MIA to IAC72. Notably, tissue dissociation leads
to loss of spatial information, which plays a crucial role in determining cellular functionality and
higher order cellular organization in the TME. To overcome this challenge, spatial
transcriptomics (STs) was developed as a technique that simultaneously captures the location
and sequence of each transcript within an intact tissue®. However, integrating multiple STs data
from different LUAD patients to discover recurrent cellular organization patterns and
characterize functional states of these spatially organized cell types remains a significant
hurdle?®,

To address these issues, scRNA-seq data and STs data from patients in different
progression stages were generated and integrated to create a comprehensive spatial map of
early-stage LUAD to investigate the landscape of spatial cellular organization patterns (COPSs)
during LUAD progression and its relationship to tumor immune microenvironment (TIME)
remodeling. Thus, further reveal mechanistic insights into disease progression and unveil
biomarkers of clinical prognosis and therapeutic responses. We identified ten COPs, including

COP enriched with normal epithelial cells, COPs enriched with malignant cells, COP
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colocalized with lymphoid aggregates (LAs) and tertiary lymphoid node structures (TLSs) and
COP as a macrophage niche. These COPs exhibited distinct associations with immune states
and clinical outcomes. In addition, we discovered a group of malignant cells with invasive and
immune suppressive potential that were specifically located at the tumor boundary. Overall, our
study unravels local protumor remodeling and immunosuppression that occur during the
pathological progression of LUAD, as well as spatially organized cellular structures in the LUAD
ecosystem that can predict patient clinical outcomes. The findings of this study will provide
valuable theoretical evidences for improving clinical prognosis and furthering our understanding

of the relationship between spatial cellular organization and its pathological progression.

Results

Obtaining STs data and scRNA-seq data from early-stage LUAD patients at different

pathological stages

In order to generate a comprehensive spatial map of malignant and immune cells in early-
stage LUAD during histopathological progression, we obtained tissue specimens from eight
early-stage LUAD patients including four cases of MIA and four cases of IAC and performed
ST sequencing using the 10X Genomics Visium Platform. However, this spatial method is
unable to create a single-cell resolution spatial transcriptomic map, which underscores the need
to integrate STs data with scRNA-seq data to maximize the resolution. Thus, we further
performed scRNA-seq on 11 tissue specimens from the corresponding patients, composed of
eight samples from tumor tissues and three samples from matched normal lung tissues. The
bulk normal lung and tumor tissues of all patients were also used for RNA-seq and whole-
exome sequencing (WES) (Figure 1A and Supplementary Table 1).

In STs data, after basic quality control, we obtained 31,666 spots for further analysis with
a median of 13,089 unique molecular identifiers (UMIs) and 4,332 features per spot
(Supplementary Figure 1; Details see Methods). To assess the concordance between the
transcriptomic characteristics and the hand-labeled pathological annotations, we first employed

a signature score-based strategy to evaluate the enrichment degree of tumor upregulated
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genes and normal lung upregulated genes in each spot. The tumor upregulated genes and
normal lung upregulated genes were identified through differentially expressed genes (DEGSs)
analysis in bulk RNA-seq data (Supplementary Figure 2). Next, we evaluated the performance
of these two signature scores in distinguishing cancerous and noncancerous spots on each
slide. The classification based on two signature scores yielded high area under the curve (AUC)
values, with a median AUC of 0.84. In contrast, classification using randomly selected genes
resulted in much lower AUC values, with a median AUC of 0.42. This consistent performance
was observed across most of slides, except P12 (Supplementary Figure 3). According to the
pathologists’ assessment, the distinction between tumor tissue and adjacent tumor tissue was
not clear in the HE image of this particular patient. Hence, slide P12 was excluded from

downstream analyses.

Identifying distinct cell types in the LUAD TME

To investigate the spatial architecture of LUAD and address the resolution limitation of this
spatial method, we harvested 67,083 cells using 10X scRNA-seq!! from 11 biopsy specimens
of normal lung tissues (n=3), MIA tumor tissues (n=4) and IAC tumor tissues (n=4). After filtering,
a total number of 44,003 cells were retained for subsequent analyses with a median of 4,791
unique molecular identifiers (UMIs) count and 1,665 features per cell (Supplementary Figure 4;
Details see Methods). Finally, these cells were clustered into eight major cellular lineages or
cell types, which were annotated based on key marker gene expression, comprising epithelial
types (epithelial cells and ciliated epithelial cells), stromal types (endothelial cells and
fibroblasts) and immune types (T/NK cells, B lineage cells, myeloid cells and mast cells)
(Supplementary Figure 5A-B and Supplementary Table 2). Importantly, each cell type was
found to be present in multiple samples and tissue types, indicating no strong batch effect in
the scRNA-seq data. Notably, T/NK cells and myeloid cells represented a significant proportion
of the cell population, suggesting an opportunity to further elucidate the immune composition
of the LUAD TIME (Supplementary Figure 5C).

Given previous studies suggesting that epithelial cells are the cell of origin of LUAD, we

took the analysis further by dividing epithelial cells from all samples into 10 clusters to identify
5
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malignant cells (Supplementary Figure 5D). By examining the expression of established normal
epithelial markers, we successfully identified populations corresponding to alveolar type | (AT1,
sc-epi-C7, AGER), alveolar type Il (AT2, sc-epi-C8, SFTPC), and club cell (sc-epi-C9, PIGR).
Meanwhile, other epithelial sub-populations (i.e., sc-epi-C[0-6]) may represent tumor epithelial
cells, as most of them highly expressed tumor markers, such as CEACAMS5 (Supplementary
Figure 5E and Supplementary Table 3). To differentiate malignant cells from non-malignant
ones, inferCNV12 was utilized to estimate copy number variations (CNVs) from scRNA-seq data
in each epithelial cell. Subsequently, a CNV score was calculated to quantify the CNV level
(Details see Methods). The cells in sc-epi-C[0-6] exhibited overall increased CNV scores, which
further supported that these clusters predominantly consisted of malignant cells
(Supplementary Figure 5F). We also observed a gradually increase in CNV scores across the
stages of pathological progression (Supplementary Figure 5G). Altogether, these results
represented transcriptomic and genetic evidences supporting sc-epi-C[0-6] as malignant cells
in LUAD. Finally, utilizing the scRNA-seq data, we defined 11 major cell types in SCRNA-seq
data, which were then used to estimate the proportion of each cell type for a given capture spot

(Figure 1B).

Distinct cellular organization patterns of LUAD pathological progression related spatial

heterogeneity

The spatial organization of various cell types within LUAD is believed to play a crucial role
in cancer progression3. Notably, high-order arrangements of cells, such as lymphocyte
aggregates (LAs) and tertiary lymphoid structures (TLSs), may represent structural and
functional components in tumor tissues!#15, To identify and analyze these spatial patterns, we
employed SPOTIlight® to deconvolute the cellular composition of each spot in each slide (Figure
1C), and created a two-dimensional embedding of spotwise cellular compositions using uniform
manifold approximation and projection (UMAP). Spots with similar cell type compositions were
clustered closely to each other in this UMAP space.

Next, we used unsupervised clustering to identify cellular organization patterns (COPS),

which were then mapped onto pathologist annotated regions, allowing for relating well-known
6
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pathological and histological tissues to COPs defined by STs analysis (Figure 1D and
Supplementary Figure 6; Details see Methods). We performed this analysis to integrate slides
from different patients and the shared embedding space revealed a clear separation of cellular
composition in both tumor (T) spots and tumor adjacent tissue (TAT) spots. Importantly, we
observed distinct cellular compositions between spots from different pathological stages,
indicating that a global cellular composition changes during pathological progression.

Using this approach, we totally identified ten COPs that delineated both known and new
tissue architectures. Among these, COP2 was found to be specifically located in tumor adjacent
tissues (TAT, Figure 1G, box a) and was also enriched for alveolar cells (AT1 and AT2) and
endothelial cells (Figure 1H, box 1). In contrast, COP0, COP1, COP3, COP5, COP6 and COP8
were mainly enriched in tumor tissues (Figure 1G, box b[1-4]), but COP5 contains more spots
annotated by coal dust than other COPs (Figure 1G, box b4.2) and was highly enriched for
myeloid cells (Figure 1H, box 2), COP8 was a special case, which is annotated as a papillary
histological subtype in only P13 (Figure 1G, box b3 and Supplementary Figure 7). Furthermore,
we observed that COP0O and COP1 were highly enriched in tumor tissues of patients with MIA
(Figure 1G, box b1l), while the proportions of COP3 and COP6 are significantly increased in
patients with IAC (Figure 1G, box b2.3 and box b2.4) and were highly enriched for malignant
cells (Figure 1H, box 3.1 and box 3.2). By contrast, COPO and COP1 are enriched for AT1 and
AT2 (Figure 1H, box 4). COP7 was enriched in LAs or TLSs, Figure 1G, box c) and was
enriched for T/NK cells and B cells (Figure 1H, box5), in line with recent report that B and T cell
populations make up the bulk of TLSs-associated immune cells'*. COP4 was enriched in
vascular niche (Figure 1G, box d), and highly enriched for endothelial cells and fibroblasts
(Figure 1H, box 6). COP9 is mostly located in bronchioles (Figure 1G, box e) and is enriched
for bronchiole epithelial cells!?, including ciliated epithelial cells and club cells (Figure 1H, box
7). Together, we summarized the COPs in LUAD and found that the proportions of tumor tissue
enriched COPs (i.e., COP0O, COP1, COP3 and COP6) are associated with pathological
progression. We also identified COPs related to well-organized immune cell structures, such
as LAs and TLSs. These results provide valuable insights into the spatial organization of

different cell types in the LUAD tumor microenvironment.
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Building a comprehensive immune cell reference in the LUAD TIME

By utilizing multicellular resolution spatial transcriptomic profiling and previous defined
COPs, we are able to quantify the immune cells surrounding malignant/normal epithelial cells
at different progression stages. This allows us to evaluate the cellular states and functional
potential of immune cells (i.e., functional or dysfunctional immune cells) that are either enriched
or depleted in these areas, providing insight into the local immune state of these spots or COPs
(Figure 2A). To this end, we proceeded to further divide the major immune cell types into 30
distinct clusters. These clusters include 6 CD4+ T cell clusters, 6 CD8+ T cell clusters, 5 natural
killer cell (NK cell) clusters, 5 dendritic cell (DC) clusters, 2 macrophage clusters, 1 B cell cluster,
1 plasma cell (PC) cluster, 2 monocyte clusters, 1 neutrophil cluster, and 1 mast cell cluster
(Figure 2B). The immune cell clusters were manually annotated by canonical markers and
marker genes that highly expressed in each specific cluster (Figure 2B, Supplementary Figure
8 and Supplementary Table 4; Details see Methods). For instance, in the case of CD4+ T cells,
regulatory T cells (Tregs) exhibit high expression of FOXP3 and immune inhibitory receptors
such as CTLA4 and TIGIT. On the other hand, naive CD4+ T cells, central memory CD4+ T
cells, and effector memory CD4+ T cells express SELL, CD28, and BATF, respectively. CD8+
T cells in an exhausted state were identified by the expression of HAVCR2 (TIM3) and LAYN
marker genes. Additionally, three clusters of CD8+ T cells (hamely GIMAP7+ CD8+ effector T
cells, HSP1B1+ CD8+ effector T cells, and GZMK+ CD8+ effector T cells) were found to exhibit
high expression of cytotoxic-associated genes (GZMA/B) and INFG8, thus defining them as
effector CD8+ T cells. Five distinct subpopulations of NK cells were identified and characterized
based on their marker genes. One particular cluster of NK cells exhibited marker expression
consistent with that of natural killer T cells (NKT)*?, including NK cell markers such as KIR2DL3
and KLRF1, as well as moderate expression of T cell markers including CD3D/E/G. As a result,
this specific NK cell cluster was classified as an NKT cell subpopulation. Furthermore, five
distinct dendritic cell subpopulations were identified and annotated by previously defined
markers, including classical type 2 dendritic cells (CLEC10A), plasmacytoid dendritic cells (pDC,
LILRA4), mature dendritic cells (CCR7), classical type 1 dendritic cells (CLEC9A) and

Langerhans cells (S100B)%°. Macrophages were separated into two subtypes, alveolar
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macrophages (AMs) and monocyte-derived macrophages (MDMs) with MARCO and SPP1 as
the respective marker genes?!. Plasma cells exclusively expressed immunoglobulins such as
IGHAL and IGHG1, enabling them to be distinguished from B cells expressing MS4A1 (Figure
2B). In summary, we built a comprehensive reference of immune cell types present in the TIME
of LUAD, which can be used for deconvolution to quantify the immune neighborhood of

malignant/normal epithelial cells and reveal the local immune states.

Characterizing the immune neighborhood of malignant/normal epithelial cells and

revealing local immunosuppressive remodeling during LUAD progression

The spatial localization of immune cells within TME, including those in close proximity to
malignant cells and well-organized immune structures within tumors, is a critical factor for tumor
immunity and response to immune checkpoint inhibitors (ICIs)422, Understanding the spatial
organization of immune cells within the tumor microenvironment can provide important insights
into the mechanisms underlying tumor immune evasion and resistance to immunotherapy. To
address this issue, we integrated the immune cell reference with STs data obtained from
patients at different pathological stages of LUAD. Our aim is to delineate the spatial distribution
of immune cells within tumor microenvironment and identify the immune states that are in close
proximity to malignant cells during cancer progression.

To achieve this, we employed SPOTIight!¢ to identify cell type specific topics from scRNA-
seq data. These topics were highly specific to each immune cell type, resulting in high specificity
for localizing immune cell types in each spot (Supplementary Figure 9A). Then, we examined
enrichment or depletion of these immune cells within COPs to understand the local immune
states in these regions (Supplementary Figure 9B-C; Details see Methods). We found that the
enrichment level of Tregs and CXCL13+ CD4+ T cells progressively increased across
malignant cells enriched COPs in MIAs (COPO and COP1), and IACs (COP3 and COP®6)
compared with normal epithelial cells enriched COPs (COP2) (Figure 2C, box1). These two
immune cell types exhibited high expression levels of inhibitory immune checkpoint genes,
including CTLA4, TIGIT, BTLA and VSIR and showed elevated levels of immune checkpoint

gene signature scores (Figure 2D-E). These findings suggest that Tregs and CXCL13+ CD4+
9
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T cells may play an important role in establishing a local immunosuppressive microenvironment
in LUAD during pathological progression.

Additionally, GIMAP7+ CD8+ effector T cells and HSP1B1+ CD8+ effector T cells were
mainly located in normal epithelial cells enriched COPs (COP2) (Figure 2C, box2). Interestingly,
we observed an increase in cytotoxic activity in these CD8+ T cells, as evidenced by higher
level of PFR1 and NKG7 expression, as well as cytotoxicity signature scores (Figure 2F-G).
We further examined the spatial enrichment of NK cell subpopulations in COPs. We also found
FCGR3A+ NK cells, GIMAP7+ NK cells and NKT cells (Figure 2C, box3.1) were primarily
enriched in normal epithelial cells enriched COPs (COP2) and showed a higher level of perforin
and granzyme expression and enhanced cytotoxicity activity (Figure 2H-I). In contrast, the
enrichment level of LTB+ NK cells were markedly increased in malignant cells enriched COPs
in IACs (COP3 and COP6) (Figure 2C, box3.2). We observed a reduction of cytotoxicity scores
in this subpopulation, indicating a decreased ability to eliminate cancer cells, which could
contribute the progression of LUAD (Figure 2I).

Our findings also revealed a noticeable variation in the enrichment of different subsets of
dendritic cells between normal epithelial cells enriched COPs (COP2) and malignant cells
enriched COPs (COPO, COP2, COP3 and COP6) (Figure 2C, box4.[1-2]), suggesting these
dendritic cells may have distinct functions in cancer progression. The classical type 2 dendritic
cells and mature dendritic cells were found to be gradually depleted from normal epithelial cells
enriched COPs (COP2) to malignant cells enriched COPs in MIAs (COPO and COP1), and last
malignant cells enriched COPs in IACs (COP3 and COP®6) (Figure 2C, box4.1), while
plasmacytoid dendritic cells, classical type 1 dendritic cells and Langerhans cells were
observed to be gradually enriched with pathological progression (Figure 2C, box4.2). Increased
expression of proinflammatory genes and increased level of inflammatory signature score were
evidenced among classical type 2 dendritic cells and mature dendritic cells compared to the
other three dendritic cell subsets (Figure 2J-K). These results indicate that as the pathological
progression occurs, there is a loss of inflammatory phenotypes in dendritic cells that are in

close proximity to malignant cells.

10


https://doi.org/10.1101/2023.10.29.564580
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564580; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Altogether, these data highlight the presence of local protumor remodeling and
immunosuppression during pathological progression, characterized by an increase of immune
inhibitory factors of CD4+ T cells and a decrease in cytotoxicity by CD8+ T cells and NK cells
as well as a reduction in inflammatory activity by dendritic cells.

We further evaluated the abundance of these immune cells in bulk tissues from different
pathological stages using scRNA-seq data. Our observations showed a significant enrichment
of CD4+ T cells (i.e., Tregs and CXCL13+ CD4+ T cells) expressing inhibitory immune-
checkpoints in bulk tumor tissues from both MIAs and IACs, while the proportions of highly
cytotoxic CD8+ T cells (i.e., GIMAP7+ CD8+ effector T cells, HSP1B1+ CD8+ effector T cells)
and NK cells (i.e., FCGR3A+ NK cells, GIMAP7+ NK cells and NKT cells) were decreased
(Supplementary Figure 10A-C). Moreover, we noted increased abundance levels of low
inflammatory dendritic cells (i.e., plasmacytoid dendritic cells, classical type 1 dendritic cells
and Langerhans cells) in LUAD bulk tumor tissues (Supplementary Figure 10D). Importantly,
our analysis showed a shift from functional immune cells to dysfunctional immune cells with
pathological progression, indicating the presence of immunosuppression components in the

LUAD TIME (Supplementary Figure 10E).

TLSs&LAs signatures are associated with positive response to immune therapy and an

active B cell immune response in LUAD

TLSs is an ectopic lymphoid structure that provides an area for the activation and
differentiation of T and B cells, which are associated with antitumor immune reactions and
responses to immunotherapy#15. In our analysis, we noticed COP7, which was enriched in
TLSs and LAs, contained a mixture of both functional and dysfunctional immune cell types
(Figure 3A). For example, HSP1B1+ CD8+ effector T cells was enriched in COP7 (TLSs and
LAs) (Figure 2C, box5.1), which is consistent with a recent report that T cells with high
expression of HSPA1A and HSPA1B are mainly located in LAs across various cancer types,
particularly within tumor beds or surrounding tumor edges?i. However, in our study, these
immune cells exhibited high cytotoxicity. Additionally, CD4+ cytotoxic T lymphocytes were also

enriched in COP7 (TLSs and LAs) (Figure 2C, box5.2), and this cell type showed high
11
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expression of cytotoxicity genes compared to other CD4+ T cells (Supplementary Figure 11).
Those immune cell types related to immunosuppression, such as Tregs and exhausted CD8+
T cells, were also enriched in these areas (Figure 2C, box6.[1-2]). These results suggest TLSs
and LAs may be a key area for immune reactions in LUAD, where both antitumor responses
and immunosuppressive processes coexist. Therefore, further evaluation on their predictive
and prognostic value in LUAD progression and immunotherapy is needed.

To determine the signature genes of TLSs and LAs, we performed differential gene
expression analysis in TLSs&LAs+ samples by leave-one-out cross validation. In brief, we first
selected four TLSs&LAs+ samples, and performed differential gene expression analysis
between pathologist hand labeled TLSs/LAs spots and other spots in each slide. Only common
marker genes were used for further validation analysis. Then we validated these marker genes
in the remaining sample and choose those genes associated with an average AUC greater than
0.70 in at least 4 TLSs&LAs+ samples (Supplementary Figure 12A), leading to 13 TLSsS&LAs
signature genes, including LTB, TRBC2, CXCR4, CORO1A, RPS27A, TRAC, CCL19, TRBC1,
MS4A1, CD79A, ZFP36L2, CCR7 and BIRC3 (Figure 3B-C and Supplementary Table 6; Details
see Methods). These signature genes were further validated on 5 TLSs&LAs+ samples
resulting in AUCs ranging from 0.81 to 0.99 (Figure 3D). To further access the clinical
significance of these signature genes, we assessed the association of TLSs&LAs signhature
with patient response to immunotherapy by analyzing public RNA-seq data sets from four
previous clinical studies?*27. We found that NSCLC patients exhibited relatively higher
TLSs&LAs signature in pretreatment tumors were associated with better response to anti-PD-
1 therapy, including significantly better progression-free survival (PFS), overall survival (OS)
and durable clinical benefits (Figure 3E and Supplementary Figure 12B).

Previous analysis results revealed that B cells were significantly more abundant in COP7
(TLSs&LAS) (Figure 2C, box7.1). Furthermore, in TLSs&LAs+ samples, B cells were found to
be preferentially located at spots annotated as TLSs or LAs, while plasma cells were more
diffusely distributed throughout the tumor bed (Figure 3F and Figure 2C, box7.[1-2]). Moreover,
when comparing TLSs&LAs+ samples to TLSs&LAs- samples, it was found that B cells in

TLSs&LAs+ samples tended to aggregate in LAs and TLSs areas, suggesting an association
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between TLSs&LAs and B cell immune response (Supplementary Figure 13). The dominance
of B cell marker genes (e.g., MS4A1 and CD79A) in the TLSs&LAs signature, as well as
enrichment of B cells in LAs and TLSs areas prompted us to focus on B cells immune response.
During B cell immunity generation, B cells undergo mutations in their B cell receptor (BCR)
sequence, and the most effective clones are selected and expanded?8. We utilized MiXCR?° to
identify BCR IGL and IGH clonotypes and their somatic hypermutations in RNA-seq data from
36 LUAD tumors®, which were classified as either TLSs&LAs high or TLSs&LAs low based on
the median expression activity of TLSs&LAs signature. Our analysis revealed that the repertoire
of TLSs&LAs high samples exhibited a higher proportion of clonotypes counted more than 100
times in both IGL and IGH (Figure 3G). Furthermore, the overall somatic hypermutation level
was higher in TLSs&LAs high tumors compared to TLSs&LAs low tumors, both for IGL and IGH
(Figure 3H). These results showed the presence of clonally expanded B cells and somatically
mutated IG genes in TLSs&LAs high tumors, suggesting a more active B cell immune response
in these tumors. This increased B cell immune activity may be linked to the better immune

therapy responses observed in patients with high TLSS&LAs scores.

Changes of macrophage state are associated with pathological progression and

clinical outcomes

Tumor associated macrophages (TAMs) have diverse functions in cancer progression30-32,
The use of STs and scRNA-seq could advance our understanding of spatial distributions and
molecular diversity of TAMs during the progression of LUAD. In our study, we observed that
alveolar macrophages and monocyte-derived macrophages were highly enriched COP5
(Figure 2C box8). This finding suggests that these macrophages exhibited a close aggregation,
resembling a niche-like local tissue environment (Figure 3I). We conducted a further analysis
to determine the density of these two macrophage populations in spots located within the T
regions and TAT regions. Our findings revealed that AMs were more highly enriched in spots
from TAT regions, particularly in patients with IAC. In contrast, MDMs exhibited a higher
enrichment in T spots from both patients with MIA and IAC (Figure 3J). These results suggest

that MDMs may serve as important TAMs that were primarily found in the tumor regions.
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Consequently, we decided to focus our attention on MDMs to gain a deeper understanding of
their role in the pathological progression of LUAD. To this end, we performed an analysis to
identify DEGs between MDMs derived from IAC patients' tumor tissues (IAC-MDMs) and
normal lung tissues (N-MDMs). As a result, we identified 503 upregulated genes in IAC-MDMs
and 253 upregulated genes in N-MDMs (Supplementary Figure 14A and Supplementary Table
7). Notably, the upregulated genes in IAC-MDMs were found to be highly enriched in
mitochondrial energic metabolisms, indicating an energy metabolic reprograming in these
macrophages during cancer progression, while the up-regulated genes in N-MDMs were
primarily associated with MHC-II antigen processing and presentation (Figure 3K). In addition,
the expression activity of MHC-II molecules of MDMs decreased with LUAD progression,
suggesting a potential impairment in antigen presentation along with the progression
(Supplementary Figure 14B). In contrast, the activity of oxidative phosphorylation was up-
regulated during pathological progression (Supplementary Figure 14C). MDMs in IAC tended
to highly express genes associated with M2 polarization, which is typically associated with an
immunosuppressive and protumoral phenotype (Supplementary Figure 14D). More importantly,
the expression activity of TAM associated genes (e.g., TREM2, GPNMB and SPP1)3334 and
cathepsins (e.g., CTSD, CSTB, CTSB and CTSL)3536 were gradually up-regulated along with
pathological progression, which have been reported to play an important role in immune
suppression in TME (Figure 3L). All these results suggest that MDMs undergo phenotypic and
molecular transitions during pathological progression and ultimately transition into an
immunosuppressive and protumoral phenotype.

We further evaluate the association of transitional signature with prognosis and found that
high expression of the IAC-MDMs signature scores were significantly correlated with worse
clinical outcomes in both LUAD-TCGA dataset®” and FUSCC-LUAD dataset3® (Figure 3M).
However, we did not observe a similar correlation with the signature scores of N-MDMs (Figure
3N). Altogether, these results indicate that MDMs exhibit unique spatial characteristics and
molecular diversity during LUAD progression. In addition, the energy metabolism of MDMs may
be a potential immunotherapy target to reverse M2 polarization and immune suppression in

TIME.
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Cell-to-cell cross talk during LUAD pathological progression

We further explored the potential mechanisms underlying the differential spatial distribution
and functional properties of immune cell subpopulations in COPs. These regional immune cell
distributions may relate to local immunoregulation. We first focus on the molecular alterations
of epithelial cells during pathological progression, and signature genes of MIA and IAC
malignant cells were identified. These signature genes were then used to estimate the
expression activity in bulk RNA-seq samples obtained from a previous study38, which included
samples from adenocarcinoma in situ (AlS), MIA and IAC. Consistently we observed higher
MIA malignant cell signature scores in AIS/MIA samples compared to IAC samples. Conversely,
IAC malignant cell signature genes were highly expressed in IAC samples in this independent
data set (Figure 4A). Furthermore, we also evaluated the correlation between the signature
scores and functional molecular markers of immune cell. Our analysis revealed a more
significant positive correlation between IAC malignant cell signature scores and the expression
of FOXP3 which is associated with immune suppression (Figure 4B). Conversely, we observed
a stronger negative correlation between the IAC malignant cell signature scores and the
expression of antitumor immune markers (PRF1 and GZMA), indicating a potential decrease in
cytotoxicity (Figure 4C). These results suggest that the potential impact of these molecular
characteristics of IAC malignant cells on the immune suppression within the TIME.

The interactions between malignant cells and elements in TIME can lead to the
development of an immunosuppressive phenotype that aids in tumor progression. Thus, we
used CellPhoneDB?®° to identify the expression of potential crosstalk signaling molecules in
malignant/normal epithelial cells based on ligand-receptor interactions. Notably, our analysis
revealed an increase in the interaction between malignant cells and other cell types with tumor
progression (Supplementary Figure 15). Next, we focus on those interactions specific to 1AC
malignant cells. We identified altered interactions that exhibited differential modulation in
malignant cells, particularly in IAC. Notably, we observed an enhanced interaction between

CD74 on malignant cells and MIF, COP, and APP on other cell types. Additionally, we
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discovered increased interactions between immune modulators LGALS9 and NRP1 on IAC
malignant cells, and CD44 on Tregs, as well as VEGFA/B on Langerhans cells. (Figure 4D).
Furthermore, the expression activity of these immune receptors was progressively upregulated
in malignant cells across pathological stages (Figure 4E). These immune modulators have been
reported to play an important role in lung cancer immune suppression4%4t. We further validated
the expression levels of LGALS9 and NRP1 in malignant cells at different progression stages
using an independent dataset'® (Supplementary Figure 16). Results in this dataset consistently
demonstrate increased expression of immune modulators in malignant cells of IAC.
Furthermore, we observed a negative correlation between the expression of these immune
modulators and cytotoxic gene expression in T cells, while a positive correlation was observed
with the expression of immune inhibitory genes (Figure 4F). Altogether, these results suggest
that altered cell-to-cell interactions occurs during pathological progression, which may be an

important factor in local immune remodeling.

Phenotypic clusters from heterogeneous malignant cells are associated with

pathological progression and clinical outcomes

The presence of interpatient heterogeneity among malignant cells from different patients
hindered the ability to directly compare them. To overcome this, we employed an integration
method that takes into consideration the individual characteristics of each patient to identify
distinct phenotypic clusters within malignant cells*2. Through this approach, we successfully
identified eight phenotypic clusters (referred to as PCs, PC[0-8]) (Figure 5A). Notably, the
proportions of PC1, PC4, and PC6 were found to be higher in IAC (Figure 5B). We further
characterized PCs based on hallmark pathway activity. WNT beta catenin signaling, epithelial-
to-mesenchymal transition (EMT) and IL6-JAK-STAT3 signaling were highly activated in PC4
cells (Figure 5C), suggesting the potential invasive ability of PC4 cells*344. In order to examine
the relationships between phenotypic clusters and clinical outcomes, we first identified a set of
differentially expressed genes that served as signature genes for each phenotypic cluster.

Subsequently, we assessed the expression activity of these signature genes in individual
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samples obtained from two publicly available datasets®7:38, Our analysis revealed a consistent
and significant negative correlation between PC4 signature genes and both PFS and OS in
patients in two independent datasets (Figure 5D).

In order to further investigate the key molecular event in the progression of malignant cells,
we performed pseudotime trajectory analysis on all malignant cell clusters using Monocle245
and revealed a gradually loss of AT2 marker expression and increase of CNV scores along the
pseudotime (Figure 5E). Cells from PC4 were gathered on the end of trajectory and associated
with highest CNV scores among all malignant cell phenotypic clusters (Figure 5F and
Supplementary Figure 17A). Specifically, the CNV scores of PC4 were further increased in IAC
(Supplementary Figure 17B). These results suggest that PC4 might be a subpopulation
progressively accumulates with LUAD progression and helps drive LUAD invasion.

Further spatial distribution analyses found that PC4 signature genes were highly enriched
in the border between tumor regions and adjacent normal regions. Besides, peripheral tumor
regions also expressed relatively high levels of this signature (Figure 5G-H). These results
suggest that PC4 may be a population aids malignant cell invasive at leading edge of tumor
tissues. To further evaluate the local immune state of PC4 enriched regions, we correlated the
signature score with immune cell abundance. Interestingly, alveolar macrophages, Langerhans
cells and Tregs were the top-ranked correlated immune cells, indicating a local immune
suppressive state (Figure 51). Alveolar macrophage was the most positively correlated immune
cell type, and the correlations were higher in IAC patients than those in MIA. These results were
in line with a recent report that alveolar macrophages accumulate close to tumor cells early
during tumor formation to promote epithelial-mesenchymal transition and invasiveness in
tumor cells, also induce a potent suppressive Treg response?l. We also found the expression
level of immune suppressive modulators MDK and LGALS9 were upregulated in PC4,
indicating an immune suppression phenotype (Figure 5J)#¢-48, Spatial analysis of immune cell
types and states of leading edge of tumor regions reveals a local suppressive immune
environment involved in promoting cancer cell invasion.

In order to identify which drugs might be useful to suppress PC4 malignant cells,

pRRophetic*® was applied to predict drug sensitivity from malignant cell gene expression levels.
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Our analysis showed that Epothilone B0, Bl 25365 and Bortezomib%2 had significantly lower
IC50 values in PC4 than that in other PCs (Figure 5K), suggesting that PC4 has the higher
sensitivity to these three drugs. These three drugs have been reported to prevent cancer cells
from proliferating by interfering with cell cycle. Consistently, the cell cycle activity was
significantly upregulated in PC4 cells (Figure 5I). Considering the presence of a localized
suppressive TIME remodeling and an accumulation of invasive malignant cell population in the
progression of LUAD, the combination of chemotherapy and immunotherapy holds promising
potential as an effective therapeutic approach for advanced or metastatic cases of LUAD (e.qg.,

IAC).

Discussion

The understanding of local immune remodeling in LUAD pathological progression is limited.
In this study, we presented a comprehensive spatial cellular organization map in MIA and IAC
by integrating STs data and scRNA-seq data of tumor tissues and normal lung tissues from
eight LUAD patients. In total, we identified ten COPs that recapitulated both known and new
tissue architectures, including well-organized immune cell structures, such as LAs and TLSs.
By comparing the immune states and functional potential of those immune cells enriched or
depleted in malignant cell enriched COPs, we observed the presence of local protumor
remodeling and immunosuppression during pathological progression that comprised the
increase of immune inhibitory factors of CD4+ T cells and the decrease in cytotoxicity by CD8+
T cells and NK cells as well as a reduction in inflammatory activity by dendritic cells (Figure 61).
Thus, investigating the local immunosuppressive remodeling during LUAD pathological
progression may facilitate the discovery of protumor immune components and targets for
immune therapy.

It has been reported that high-order arrangements of cells, such as lymphocyte aggregates
(LAs) and tertiary lymphoid structures (TLSs), represent structural and functional components
in tumor tissues and contribute to a positive immune therapeutic response and clinical
outcomes!4155354 |n this study, we identified COP7, which was highly colocalized with TLSs
and LAs, and was associated with both functional and dysfunctional immune cell types.

However, TLAs&LAs signature defined by STs were positively correlated with immune therapy
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outcomes in several independent ICI data sets. Notably, B cells were markedly enriched in
TLSs&LAs regions, especially in TLSs, while plasma cells were diffusely distributed throughout
the tumor bed, suggesting a potential activated B cell immune response in TLSs&LAs+ samples.
In the present work, we validated the a more active B cell immune state in TLAs&LAs-high
LUAD samples, including the presence of clonally expanded B cells and somatic hypermutated
BCRs (Figure 6ll). It is also accordance with several previous studies showing that infiltration
of B cells and plasma cells correlated with TLSs presence!4%3. Altogether, B cell immune
responses contribute to antitumor function in TLSs presence tumor samples and promotes
immune therapy efficiency in these samples.

Tumor-associated macrophages (TAMs) play diverse roles in cancer progression, with
their functions and states being influenced by their specific locations 2130, In this study, we
identified two distinct macrophage populations: alveolar macrophages (AMs), which are tissue
resident macrophages (TRMs) and monocyte-derived macrophages (MDMs). We found both
AMs and MDMs exhibited high enrichment of COP5, indicating their close aggregation and
resemblance to a niche-like local tissue environment, representing a potential therapeutic target.
MDMs were associated with energy metabolism (e.g., oxidative phosphorylation, OXPHOS)
changes as disease progressed, and there was a reduction in the expression of MHC Il
molecules as disease progressed, suggesting a potential impairment in the antigen presenting
process (APC) (Figure 6l11). Alterations in OXPHOS and APC might skew their function toward
a protumor phenotype. Consistently, higher expression activity of IAC-MDMs signhature
correlated with shorter OS and PFS in two independent datasets. The energy metabolism of
MDMs may be a potential immunotherapy target to reverse M2 polarization and immune
suppression in TIME.

Demonstrating cell-to-cell interactions (CCIs) can provide important insights into tumor-
immune coevolution and immune remodeling”:8. Our findings indicate a progressive increase in
the number of predicted interactions between malignant cells and other cells within TME with
pathological progression. Notably, the strength of interactions involving immune checkpoint
receptors, such as LGALS9 and NRP1, was found to be heightened in patients with invasive

adenocarcinoma (IAC) (Figure 61V). Furthermore, LGALS9 expression was significantly
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elevated in malignant cells of IAC patients. It is worth noting that LGALS9 has been reported to
be associated with immunomodulatory activity and cancer immune evasion°. These results
suggest potential therapeutic targets for immune-based treatments that could enhance the
development of an anti-tumoral TIME.

The presence of interpatient heterogeneity among malignant cells from different patients
posed a challenge in directly comparing them. To addressed this issue, we implemented an
integration method that takes into consideration the individual characteristics of each patient to
identify distinct phenotypic clusters within the malignant cells. Utilizing this strategy, we
discovered a subgroup of malignant cells (i.e., PC4) located at the boundary of tumor tissues,
which exhibited enhanced invasive potential (Figure 6V). Notably, the expression activity of the
signature genes associated with this phenotypic cluster showed a significant negative
correlation with OS and PFS in other independent datasets. Furthermore, these cells were
found to colocalize with AMs. This finding aligns with a recent study highlighting the
accumulation of tissue resident macrophages (TRMSs) in close proximity to tumor cells during
early tumor formation, promoting EMT and tumor cell invasiveness and inducing a Treg
response. Furthermore, we found that PC4 cells showed increased sensitivity to drugs that
target the cell cycle pathway. This suggests that combining chemotherapy and immunotherapy
may hold promising potential as an effective therapeutic approach for advanced or metastatic
cases of LUAD, particularly those with an IAC subtype.

In this study, although the 10X Visium technology used did not achieve single cell
resolution, spatial cellular organization is the crucial factor that determines tumoral immune
response and cancer invasive progression. To overcome this limitation, we employed a
deconvolution strategy to maximize the resolution and provide the spatial location and
composition of different cell types within tumor tissues. Moreover, due to the inherent variability
in sample collection, it was challenging to robustly demonstrate the progression trajectory using
a small number of patient samples. However, we were able to integrate omics data from
multiple tumor tissues at different pathological stages, which help us to dissect the recurrent
spatial cellular organization in LUAD and gain valuable insights into the progression of the

disease. At last, our findings could be further validated in animal models, which provide an
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opportunity to experimentally manipulate and investigate the spatial cellular organization in
LUAD, allowing for a more comprehensive understanding of the disease progression and
potential therapeutic interventions.

To identify potential therapeutic targets, it is essential to comprehend the dynamic spatial
cellular organization of cells within TME. In our study, we utilized a combination of STs data
and scRNA-seq data to gain insights into specialized cells within LUAD TME. This integration
allowed us to understand how these cells are organized in space, how their functional states
vary across LUAD progression and how these structures impact clinical outcomes. By
employing this approach, we have achieved a deeper understanding of the structural aspects
of immunity in LUAD, which in turn provides a valuable resource for the identification of potential

therapeutic targets.

Methods

Patient enroliment and sample collection

Eight patients who underwent surgery in the Department of Thoracic Surgery of Fudan
University Shanghai Cancer Center were enrolled in this study. The inclusion criteria were
as fallowing: (1) mixed ground-glass opacity (GGO) featured lung nodule; (2) treatment
naive; (3) maximum diameter of the tumor < 3.0 cm; (4) the frozen section was diagnosed
as minimally invasive adenocarcinoma (MIA) or invasive adenocarcinoma (IAC), and
verified with paraffin section by pathologists.

This study was reviewed and approved by the Institutional Review Board of FUSCC. Each
patient has signed the informed consent form before tissue collection for research studies.
Freshly tumor (n = 8) and adjacent normal lung samples (n = 8) were delivered within
MACS® Tissue Storage Solution (Miltenyi Biotec) on ice directly from the operating room

to the laboratory after frozen pathology (1-2h).
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Sample handling

Each obtained tumor sample was divided into three pieces and processed for spatial
transcriptomics (ST), single-cell RNA sequencing (scRNA-seq), and bulk sequencing,
respectively. The following steps are performed on ice. Briefly, tumor pieces for scRNA-
seq were rinsed with cold phosphate-buffered saline (PBS), minced into pieces
(approximately 1 mm3) and set aside in PBS for preparing single-cell suspensions. Tumor
pieces for ST were embedded in optimal cutting temperature compound (OCT) compound
(SAKURA) and then snap-frozen on dry ice immediately and stored at -80°C until
cryosectioning. The remaining tumors were frozen at -80°C for bulk sequencing (RNAseq
and WES).

Meanwhile, all paired adjacent normal lung samples were processed for bulk sequencing,
among which three samples (P02, P04 and P12) were processed for scRNA-seq as

mentioned above.

Single-cell suspensions for scRNA-seq

1 mm3 tumor pieces were enzymatically digested with 20ml digestion medium containing
250 U/ml collagenase I, 100 U/ml collagenase IV (Worthington) and 30 U/ml DNase |
(Worthington) for 45 min at 37°C in a shaking water bath with agitation. Then, the
suspension was filtered through a 70-um cell strainer, and centrifuged at 300g for 8 min.
After removing the supernatant, the cell pellet was suspended in red blood cell lysis buffer
(Miltenyi Biotec) for 5 min and centrifuged at 300g for 8 min. the pellet was washed twice
and re-suspended with PBS with 0.04% BSA. After re-filtered through a 35um cell strainer,
the dissociated single cells were stained with AO/PI for cell concentration and viability
assessment through Countstar Fluorescence Cell Analyzer (ALIT). The cell concentration

was adjusted to 1000 cells/pl approximately.

SscRNA-seq

Library construction was performed according to the protocol of 10X Genomics Chromium

Controller Instrument and Chromium Single Cell 3’ V3 Reagent Kits (10X Genomics). After
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quantified by the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific) and
Bioanalyzer 2200 (Agilent), the constructed libraries were sequenced on NovaSeq 6000

(HNlumina) platform.

Tissue section preparation, fixation, staining and imaging

Cryosections were cut in the cryostat (Leica) with a thickness of 10 ym. Firstly, RNA
integrity number was assessed with 10 slides through the RNeasy Mini Kit (QIAGEN), of
which the acceptable quality level is =7. Secondly, the permeabilization time was optimized
with Visium Spatial Tissue Optimization Reagent Kits (10X Genomics). Sections on Visium
Spatial Tissue Optimization Slides (10X Genomics) were fixed, stained, and then
permeabilized for different times. The degree of mRNA release is transferred to a
fluorescence signal and captured by the fluorescent microscope (ECLIPSE Ti, Nikon). The
permeabilization time that produces the highest fluorescence signal with minimum signal
diffusion was considered optimal. In this study, 6 min is optimal permeabilization time. Then,
tissue sections on Visium Spatial Gene Expression Slides (10X Genomics) were incubated
at 37°C 1 min, fixed in methanol at -20°C for 30 min. The slides were stained after being
incubated in isopropanol for 1 min, Hematoxylin for 7 min, Bluing Buffer for 2 min, and
Eosin for 1 min. After each staining step, slides were washed with DNase and RNase free
water. Stained tissue sections are imaged by the microscope (ECLIPSE Ti, Nikon) and
carefully reviewed by pathologist to annotate as tumor tissue, tumor adjacent tissue,

bronchiole, coal dust, vascular, lymphoid aggregates and tertiary lymphoid structures.

ST library construction and sequencing

Tissue permeabilization cDNA Synthesis, Library Construction were performed with Visium
Spatial Gene Expression Reagent Kits (10X Genomics) and Library Construction Kit (10x
Genomics) according to the Visium Spatial Gene Expression User Guide (CG000239, Rev
B, 10x Genomics). the constructed libraries were sequenced on NovaSeq 6000 (lllumina)

platform.
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Whole exome sequencing and data processing

DNA from tumors and paired adjacent normal lung samples was extracted using TIANamp
Genomic DNA Kit (TIANGEN) following the manufacturer’s instructions. Exon library was
constructed using NEBNext® Ultra™ |l DNA Library Prep Kit for lllumina (NEB). DNA
library hybridization was performed by using Agilent SureSelect Human All Exon V6
(Agilent). Paired-end sequencing (150 bp) was performed on the lllumina NovaSeq
platform. For WES analysis, sequencing reads were aligned to the hg38 reference genome
using bwa>® (v.0.7.17). Picard (v.2.27.4) was utilized for marking putative duplications.
Sites that potentially contained small insertions or deletions were realigned and
recalibrated using GATK® (v.4.3.0) modules. The recalibration process involved the
utilization of known variant sites from 1000G phase1 high confidence snps and Mills and

1000G gold standard indels. Somatic mutations were called using GATK Mutect2.

RNA-seq and data processing

Total RNA from tumors and paired adjacent normal lung samples was extracted using
TRIzol reagent (Invitrogen). The cDNA libraries were constructed by using the TruSeq
Stranded mRNA Library Prep Kit (lllumina) according to the manufacturer’s instructions.
The libraries were sequenced on HiSeq X platform (lllumina) and 150 bp paired-end reads
were generated. RNA-seq reads were aligned to the reference human genome (hg38) with
STARS (v.2.6.1a). Then featureCounts®® (v.1.6.4) was used for quantification and

DESeq2* was used for differential analysis.

Spatial transcriptomics data processing and basic analysis

Raw Visium Spatial RNA-seq output and bright field of images of hematoxylin and eosin (H&E)
stained biopsy were processed by spaceranger (V1.2.0) to detect tissue, align reads and
generate feature-spot matrix. Basic QC was applied on these data. In detail, spots with low
transcript content (UMIs count less than 1,000) were removed and HE stained images were
labeled by a pathologist to indicate which spots contained cancerous and noncancerous tissues.

Then we defined tumor signature genes and TAT signature genes by performing differential
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expression genes analysis between bulk RNA-seq profiles of bulk tumor and bulk normal lung
tissues (Supplementary Figure2). To verify whether the spatial transcriptomic features are
consistent with the histological information, we designed a model to distinguish cancerous spots
and non-cancerous spots using tumor signature genes score and normal lung signature genes
score. We used the Area Under the Curve (AUC) to measure the ability of this model to

distinguish between two classes. A randomly selected genes set was used as a negative control.

Raw single-cell sequencing data processing and basic analysis

Raw scRNA-seq data were preprocessed, demultiplexed, align to human reference genome
(hg38) by using cellranger (v.4.0.0) 11 Cellular debris and doublets were considered as outliers
and outliers were detected using the median absolute deviation (MAD) from the median. For a
given metric (e.g., library size or the number of detected genes), outlier was one that lies over
two number of MAD away from median. Low quality cells where greater than 10% of transcripts
were derived from the mitochondrial genome were excluded. Finally, 45,053 cells were retained
for downstream analysis.

Raw UMI counts were normalized and scaled and used for PCA using Seurat (v.3.2.3),
Unsupervised clustering analysis were performed. UMAP was used for visualization for clusters.
First, we identified DEGs for each cluster using FindAlIMarkers function in Seurat and inferred
the major cell types of each cluster based on the top-ranked DEGs. Totally, we defined 8 major
cell types, including T/NK cells (CD3D/CD3E), B lineage cells (MZB1/MS4A1), mast cells
(TPSB2/TPSAB1), myeloid cells (CD68/S100A8/S100A9), endothelial cells
(VWF/PECAM1/CD34), fibroblasts (DCN/COL1A2/COL3Al), ciliated epithelial cells

(TPPP3/FOXJ1) and epithelial cells (EPCAM/SFTPB).

Analysis of copy number variations (CNVSs) in epithelial cells

Copy number variations (CNVs) in epithelial cells were inferred using inferCNV (v.1.2.1)12 with
endothelial cell as a control. To quantify the level of CNVs, we first computed the mean of
squares of relative CNV values across each chromosome (chrX and chrY were excluded in this

analysis) in an epithelial cell and then aggregated all chromosomes into an average score.
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More specifically, if we let CNV; denotes the CNV value of gene g in epithelial cell i, the CNV
score of epithelial cell i is given in Equation (1):

(CNV, — 1)2
Zc dech

n

CNV score; =

€y

where m is the number of genes located at chromosome ¢ and n is the number of

autochromosomes.

Spatial transcriptomics spots deconvolution using SPOTIight

To estimate the cellular composition in each spot in STs data, SPOTIight!® was used to
deconvoluted transcriptome profile in each spot into a combination of cell type specific
transcriptome profiles. We first acquired the marker genes of each cell type in scRNA-seq data,
then further training the cell type topic profiles and deconvolute the spots into a cellular
composition using the function spotlight _deconvolution. The same analysis procedure was also

applied to estimate the local immune cell composition in each spot.

Cellular organization patterns identification

All deconvolution results were integrated and clustered into ten cellular organization patterns
(COPs) using standard scRNA-seq analysis pipeline in Seurat. Then we created a two-
dimensional embedding of spotwise cellular compositions wusing uniform manifold
approximation and projection (UMAP) for visualization. Spots with similar cell type composition

were located close to each other in this UMAP space (Supplementary Figure6).

Linking COPs to pathologically annotated areas

To link the COPs to pathologist-annotated areas, we assessed the degree of enrichment or
depletion of annotated areas in each COP by the following approach. Let N be all spots
present in STs data, let P be the set of spots associated with a pathologically annotated area
and let C be the set of spots in a COP. Then conduct a Fisher's exact test (two-sided) to
evaluate the significance of overlap between P and C. For each COP construct a 2X2

contingency table is illustrated in Table 1:
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Table 1 Contingency table used for evaluate the degree of enrichment or depletion of

annotated areas in each COP

Spots in COP Spots not in COP
Associated with P |C NnP| [(N=C)nP|
Not Associated with P |C n (N —P)| [(N=C)u (N —P)|

Odd ratios (OR) and p-values (p) obtained from above analyses were transformed into
enrichment/depletion scores as presented in Equation 2:

—o (D) ifor=1
(3) .

enrichment or depletion score = p
@1 (E),if OR <1

where —®~1 is the inverse cumulative distribution function of standard normal distribution.
Quantifying the immune cell infiltration level in each COP

To quantify the infiltrating level of cell types (immune cell types) in each COPs, for a specific
cell type, we first calculated the average proportion value as the observed average. Then we
permuted the labels of spots and randomly selected a set of spots that matched the number of
spots in the COP, computed the average proportion value as the permuted average, repeated
this procedure 1,000 times. The differences between observed average and permuted average
were computed and the mean value of the differences scaled by the its standard deviation was
taken as the relative infiltrating score for each COP. Specifically, for a certain cell type, let
Uobservea denotes the average proportion value of this cell type and let Hi}ermuted denotes the

average proportion value in i®® permutation. The relative infiltrating score is defined as follow:

8i = Uobservea — H;)ermuted 3)
20
relative infiltrating score = 1000 4)
5 _ 20\
1000
1000

Positive scores indicate relative enrichment but negative scores represent relative depletion

(Supplementary Figure 8B-C, Figure 1H and Figure 2C).
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Identifying TLSs signature genes

TLSs&LAs signature genes were identified from 5 TLSs&LAs+ STs data by differential
expression analysis and AUC validation. We first choose four TLSs&LAs + STs data and
applying DEGs analysis to identify TLSs&LAs marker genes FindAllMarkers function in Seurat.
Then only common DGEs are further validated in the remain one and genes with average AUC
greater than 0.7 in at least 4 samples were keep for further analysis (Supplementary Figure
11A). These analyses resulting in 13 TLSs&LAs sigature genes, including LTB, TRBC2,
CXCR4, CORO1A, RPS27A, TRAC, CCL19, TRBC1, MS4A1, CD79A, ZFP36L2, CCR7 and

BIRC3.

BCR repertoire profiling using bulk RNA-seq

To identify and quantify the IGH and IGL clonotype in bulk RNA-seq samples from Yuan et al.
cohort, MiXCR (v.3.0.13)?° was used to perform this analysis in “shotgun” mode with
parameters --species hsa --starting-material rna --only-productive --impute-germline-on-export
--assemble "-ObadQualityThreshold=0" --contig-assembly —align "-OsaveOriginalReads=true".
For each clonotype, V gene mutations were extracted from the “AllVAligments” column

provided by the MiXCR pipeline and summed as described in a previous study4.

Signature gene score analysis and pathway enrichment/activity analysis

The expression activity of gene sets generated in this study (e.g., TLSs&LAs signature genes)
or downloaded from other studies (e.g., cytotoxic genes) was quantified by GSVA (v.1.34.0)6!
and Seurat function AddModuleScore for bulk RNA-seq data and scRNA-seq data, respectively.
Immune cell related signature gene sets were collected from previous studies (Supplementary
Table 5). DEGs between macrophages from IAC tumor tissues and normal lung tissues were
subjected to pathway enrichment analysis using the Gene Ontology-Biological Processes
(GOBP) database and the enrichr function from gseapy (v.1.0.6)%2. Pathway activities of
epithelial cells were evaluated by GSVA with hallmark signature derived from the MSigDB

(v.7.1)88,
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Data availability

The generated STs and scRNA-seq data in this study have been deposited to Genome
Sequence Archive (GSA) in BIG Data Center, Beijing Institute of Genomics (BIG) under
accession number HRA005812. Processed STs and scRNA-seq data in this study have been

deposited in Zenodo (https://doi.org/10.5281/zen0do.8417887). This study additionally

included analyses of publicly available datasets. The accession numbers and links of these

public datasets are listed in Supplementary Table 10.

Code availability
The original code used to analyze the data of this study is available at

https://github.com/haojiechen94/LUAD COPs.
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Main Figures

Figure 1 Defining the landscape of cellular organization patterns in LUAD pathological
progression by integrating Spatial Transcriptomics with single cell RNA-seq

(A) Schematic depicting acquisition of whole exome sequencing (WES), bulk RNA-seq, spatial
transcriptomics (STs) and single-cell RNA-seq (scRNA-seq) data from eight LUAD patients with
MIA and IAC, integration of STs data with scRNA-seq data identifies cellular organization
patterns (COPs) in LUAD, reveals the local immune states during LUAD progression, explores
the role of spatial architectures of immune cells and dissects spatial characteristics of malignant
cells. (B) UMAP view of 11 cell types identified from scRNA-seq data. (C) Location and
proportion of 11 cell types in a representative slide (P01). (D) HE image showing the histological
annotation of a representative slide (P01). (E) UMAP showing STs spots colored by
histopathological annotation types. T, tumor tissues, TAT, tumor adjacent tissues. (F) UMAP of
ten COPs discovered in LUAD by integrating STs data with scRNA-seq data. (G) Heatmap
depicting enrichment/depletion level of each COP in each histological/pathological region and
the proportion in each patient. *’ indicates rank sum test derived p-value less than 0.05. (H)

Heatmap of relative cellular compositions in each COP.

Figure 2 Local protumor immune remodeling during LUAD pathological progression

(A) Schematic of neighboring immune cells quantification and cellular states and functional
potential evaluation. (B) UMAP of 34,545 immune cells from 8 tumor tissues and 3 normal
tissues colored by annotated cell types (left panel), expression of marker genes for each
immune cell type and colored by cell groups (right panel). (C) Heatmap of immune cell
enrichment/depletion levels in each COP, bar plot showing proportion of spots from MIA (blue)
and IAC (red) patients. (D) Bubble heatmap showing the percentage of cells expressing
immune inhibitory checkpoint genes (indicated by the size of circle) as well as their relative
expression levels (indicated by the color of circle) in each CD4 T cell subpopulation. (E) UMAP
plot visualization of CD4 T cells colored by annotated cell types and inhibitory immune
checkpoint gene scores. (F) Bubble heatmap showing the percentage of cells expressing

cytotoxic genes as well as their relative expression levels in each CD8 T cell subpopulation. (G)
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UMAP plot visualization of CD8 T cells colored by annotated cell types and cytotoxic gene
scores. (H) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as
well as their relative expression levels in each NK cell subpopulation. (I) UMAP plot visualization
of NK cells colored by annotated cell types and cytotoxic gene scores. (J) Bubble heatmap
showing the percentage of cells expressing inflammatory genes as well as their relative
expression levels in each dendritic cell subpopulation. (K) UMAP plot visualization of dendritic

cells colored by annotated cell types and inflammatory gene scores.

Figure 3 Spatial organization structures are associated with pathological progression
and distinct clinical outcomes in LUAD

(A) A schematic illustration of colocalization of functional and dysfunctional immune cells in
LAS&TLSs (COP7). (B) Mean AUC of TLSs&LAs signatures identified from leave-one-out cross
validation analyses on TLSs&LAs+ STs data. (C) Spatial heatmap of TLAs&LAs signature
score and HE image of pathologically identified TLSs&LAs areas in a representative slide (P04).
(D) ROC curves of TLSs&LAs detection based on the identified signature genes in each slide.
(E) Kaplan-Meier curves displaying differences in progression-free survival (PFS) or overall
survival (OS) between patients whose pretreatment tumors had high or low level of TLSs&LAs
signatures scores in the Prat et al cohort, the Jung et al cohort and the Cho et al cohort receiving
immune checkpoint inhibitory therapy. (F) HE images of pathologically identified TLSs&LAsS
areas and spatial distribution and proportion of B cells and plasma cells in two representative
slides. (G-H) Box plots of the proportion of IGH/L clone types counted time greater than 100
(indicate colon expansion) and the average IGH/L V genes mutation counts (indicate somatic
hypermutation) between TLSs&LAs high and low samples from Yuan et al cohort, p-values
were derived from rank sum test. (I) A schematic illustration of distinct spatial inches for aveolar
macrophages (AMs) and monocyte-derived macrophages (MDMs) in COPS5. Spatial distribution
and proportion of AMs and MDMs in two representative slides. (J) Box plots showing the
proportions of AMs and MDMs in COP5 spots across tumor (T) and tumor adjacent tissues
(TAT) from MIA and IAC patients. (K) Functional annotation of differentially expressed genes

between MDMs from normal lung tissues (N-MDMs) and IAC tumor tissues (IAC-MDMs). (L)
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Bubble heatmap showing the percentage of cells expressing TAM associated genes and
cathepsins as well as their relative expression levels in MDMs from different tissue types. (M-
N) Kaplan-Meier curves of PFS and OS for TCGA-LUAD cohort and FUSCC-LUAD cohort

based on low and high IAC-MDMs (M) or N-MDMs (N) signature scores.

Figure 4 The alterations in malignant cells molecular characteristic and changes in
crosstalk between malignant cells and TME cells during LUAD progression

(A) Boxplots showing signature scores of scRNA-seq data defined MIA/IAC malignant cell
marker genes in an independent cohort (FUSCC-LUAD). (B-C) Scatter plots of correlation of
expression using Pearson correlation coefficients between MIA/IAC malignant cell signature
and cytotoxic score (B), FOXP3 (C) in FUSCC-LUAD cohort. (D) Overview of the selected IAC
malignant cells upregulated ligand-receptor interactions, p-values are indicated by circle size,
relative interaction strengths indicated by color. (E) Expression levels of three immune
modulators in normal epithelial cells, MIA malignant cells and IAC malignant cells. (F) Bubble
heatmap showing the percentage of cells expressing immune modulators, cytotoxic genes and
immune inhibitory genes as well as their relative expression levels in malignant cells and T cells

across different progression stages in an independent dataset.

Figure 5 Integration method identified a unique leading edge malignant cell state during
LUAD pathological progression

(A) UMAP of malignant cells after removing patient specific signals by integration method. Cells
are colored by identified clusters (phenotypic clusters). (B) The proportion of eight malignant
cells phenotypic clusters in MIA and IAC patients. (C) Heatmap of hallmark pathway activity
among phenotypic clusters. (D) Hazard ratios of all phenotypic cluster signatures in two LUAD
cohorts. (E) Trajectory analysis of malignant cell phenotypic clusters, cells were colored by their
pseudotime, SFTPC gene expression level and CNV score. (F) Trajectory plot showing the
distribution of PC4 on the malignant cell progression trace. (G) Spatial heatmaps of PC4
signature scores in two representative slides. Red dots indicate the border of tumor region

(leading edge). (H) Dividing spots into eight groups based on their distances to the tumor
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boundary and the mean of PC4 signature scores in each group. (I) Correlations between PC4
signature scores and the proportions of other 30 immune cell type. (J) A boxplot showing the
predicted drug sensitivity score (IC50) for PC4 and other malignant cells based on their gene
expression profiles. (K) A boxplot showing the cell cycle pathway activity of PC4 and other
malignant cells based on their gene expression profiles, p-values were derived from rank sum

test in both (J) and (K).

Figure 6 Schematic overview of spatial cellular organization and functional states
transition involved in the cancer progression of LUAD

Local pro-tumor immune remodeling during pathological progression. I. Depletion of functional
immune cells (Cytotoxic NK cells and CD8 T cells) and enrichment of dysfunctional immune
cells (Inhibitory CD4 T cells and Low inflammatory DCs) surrounding malignant cells with LUAD
progression. Il. Association between TLSs and B cell clonal expansion. Ill. The changes of
macrophage state during LUAD progression, OXPHOS, oxidative phosphorylation. V.
Increased number of CCls and expression of immune modulators in malignant cells during
LUAD progression, CCls, cell-to-cell interactions. V. A specialized malignant cell phenotypic
cluster located at the boundary of tumor tissues, EMT, epithelial-mesenchymal transition, CNVs,

copy number variations.

Supplementary Figures
Supplementary Figure 1 Basic quality control Spatial Transcriptomics (STs)
(A-B) Spatial heatmaps of the number of UMIs and features (genes) in each slide and

boxplots showing the overall distributions of the number of UMIs and features.

Supplementary Figure 2 Differentially expressed genes between bulk RNA-seq data from
normal lung tissues (bN) and tumor tissues (bT)

Using DEseq? to identify significant differentially expressed genes between bN and bT. Those
genes with |log2 fold change|>1 and adjusted p-value<0.01 were defined as significantly

differentially expressed genes.
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Supplementary Figure 3 Evaluating the consistency between transcriptomic signature
and histologically annotated areas

(A) HE images and spatial heatmaps of expression of bN and bT signature genes. (B) ROC
curves for classifying non-cancerous spots (bTAT) in STs data using bN and bT signature
genes or randomly selected genes (negative control). P12 was a special case with low AUC

and excluded from the downstream analysis. (C) Boxplots showing the AUC values in (B).

Supplementary Figure 4 Quality control metrics across the scRNA-seq dataset
Statistical summary of cells passing quality control and showing the number of cells, the
percentage of UMIs from mitochondrial genes, the number of UMIs, the number of features in

each sample.

Supplementary Figure 5 Dissecting LUAD and normal lung ecosystems by scRNA-seq

(A) UMAP visualization of eight major cell types and cells are colored by their annotated cell
types. (B) Bubble heatmap showing the percentage of cells expressing major cell type markers
(indicated by the size of circle) as well as their relative expression level (indicated by the color
of the circle) across all cell types. (C) Stacked bar plots showing the fraction of each major cell
type derived from each patient (left) and each tissue type (middle). Bar plots showing the
absolute number of cells in each major cell type. (D) UMAP visualization of night epithelial
subclusters and cells are colored by their annotated cell types. (E) Bubble heatmap showing
the percentage of cells expressing well-known normal epithelial cells markers and malignant
cells markers as well as their relative expression level across all epithelial subclusters. (F)
UMAP visualization of all epithelial cells colored by their inferred CNV scores. Green circle
indicates normal epithelial cells and red circle indicates malignant cells. (G) The CNV scores of

cells from each tissue type.

Supplementary Figure 6 Workflow of cellular organization patterns identification
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Deconvolution is applied to quantify the cellular composition in each spot and then
unsupervised clustering is performed to integrate spots from different slides and identify cellular
organization patterns (COPs), COPs are visualized in two dimensional UMAP. Finally, COPs
are mapping into the pathologically annotated areas in HE images, by this mean to link the
COPs to spatial structures. TAT, tumor adjacent tissues, TLSs, tertiary lymphoid structures,

LAs, lymphoid aggregates.

Supplementary Figure 7 Spatial distribution of COP8 and pathologically annotated
papillary tissues in P13

COPS8 colocalized with papillary tissues in P13.

Supplementary Figure 8 Subclustering of T/NK cells

(A) UMAP visualization of T/NK cells subclusters and cells are colored by their annotated cell
types. (B) Bubble heatmap showing the percentage of cells expressing T/NK sub cell type/state
related markers as well as their relative expression level across all T/NK cells subclusters. (C)
Schematic depiction of workflow and specific marker genes used for cell type assignment in

T/NK cells subclusters.

Supplementary Figure 9 Evaluating relative infiltrating levels of different immune cell
types in each COP

(A) Cell type specific topic profiles, circle size indicates the specificity of a topic to this cell type.
(B) The distribution of differences of observed average proportion and permuted average
proportion for B cells in each COPs. (C) Scaling the mean of each COP distribution in (B) by
the standard deviation of the distribution. A larger positive value represents a higher infiltrating
level of B cells in this COP. A negative value indicates depletion of B cells in this COP compared

with other COPs.

Supplementary Figure 10 Protumor immune remodeling is also evidenced in scRNA-seq

data
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(A-D) Box plots showing the percentages of functional or dysfunctional immune cell type (group)
across different tissue types. (E) Line plots showing the changes in percentages among cell

type (group) in (A-D) across different tissue types.

Supplementary Figure 11 Cytotoxic activity of CD4+ T cell subclusters
(A) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as well as
their relative expression levels in each CD4+ T cell subpopulation. (B) UMAP plot visualization

of CD4+ T cells colored by annotated cell types (left) and cytotoxic genes scores (right).

Supplementary Figure 12 Schematic of TLSs&LAs signature genes identification and its
association with ICI response

(A) Workflow of TLSs&LAs signature genes identification, choosing four TLSs&LAs + STs data
and applying DEGs analysis to identify TLSs&LAs marker genes, only common DGEs are
further validated in the remain one. (B) Boxplots of TLSs&LAs signature scores in DB and NDB

samples in Hwang et al. cohort. DB, durable benefit, NDB, non-durable benefit.

Supplementary Figure 13 Location and proportion of B cells and plasma cells in STs
data from TLSs&LAs+ samples or TLSs&LAs- samples
HE images showing the locations of TLSs and LAs spots, spatial heatmap showing the location

and proportion of B cells and plasma cells.

Supplementary Figure 14 Molecular and function potential alterations of macrophages
from different tissue types

(A) Volcano plot showing the DEGs between monocyte-derived macrophages (MDMs) from
IAC tumor tissues and normal lung tissues. Antigen presenting related molecules (MHC genes)
are highlighted in green. M2 polarization related molecules are highlighted in red. (B-C) Violin
plots of signature scores of MHC Il molecules (B), oxidative phosphorylation pathway (C) and

M2 polarization associated genes (D), across MDMs from different tissue types.

40


https://doi.org/10.1101/2023.10.29.564580
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564580; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Supplementary Figure 15 Increased number of cell-to-cell interactions during
pathological progression
The number of CellphoneDB inferred cell-to-cell interactions between normal epithelial

cells/MIA malignant cells/IAC malignant cells and other cell types in ecosystem.

Supplementary Figure 16 Identification of malignant cells and T cells in a public LUAD
scRNA-seq dataset including tumor tissues from AIS, MIA and IAC

A total of 38 cell subpopulations were identified through clustering, and each subpopulation
was characterized based on the expression of specific marker genes. AT1 cells were identified
as subpopulations that exhibited high expression of both EPCAM and AGER. Ciliated epithelial
cells were defined as subpopulations with high expression of both EPCAM and FOXJ1. AT2
cells were determined as subpopulations showing high expression of both EPCAM and SFTPC.
Subpopulations that expressed only EPCAM without the usual marker genes associated with
AT1, ciliated epithelial cells, or AT2 cells were classified as malignant cells. Additionally, T cells

were identified as subpopulations with high expression of both CD3D and CD3E.

Supplementary Figure 17 Higher CNV scores in PC4 and PC4 malignant cells from IAC
(A-B) Box plots illustrating the CNV scores for each phenotypic clusters (A) and PC4 in MIA

and IAC (B).

Supplementary Tables

Supplementary Table 1 Clinical information of patients in this study

Supplementary Table 2 Marker genes used to define major cell types and related
references

Supplementary Table 3 Marker genes used to define normal epithelial cells and related
references

Supplementary Table 4 Marker genes used to defineimmune cells and related references

Supplementary Table 5 Immune cell related signature gene sets in this study
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Supplementary Table 6 TLSs/LAs signature defined by performing leave-one-out cross
validation on TLSs/LAs+ STs samples

Supplementary Table 7 Differentially expressed genes between IAC and normal lung
tissues infiltrated Monocyte-derived macrophages

Supplementary Table 8 Signature genes of phenotypic cluster 4 (PC4)

Supplementary Table 9 Predicted sensitive drugs of PC4

Supplementary Table 10 Accession numbers for public datasets used in this study
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Figure 1 Defining the landscape of cellular organization patterns in LUAD pathological
progression by integrating Spatial Transcriptomics with single cell RNA-seq

(A) Schematic depicting acquisition of whole exome sequencing (WES), bulk RNA-seq, spatial
transcriptomics (STs) and single-cell RNA-seq (scRNA-seq) data from eight LUAD patients with
MIA and IAC, integration of STs data with scRNA-seq data identifies cellular organization
patterns (COPs) in LUAD, reveals the local immune states during LUAD progression, explores
the role of spatial architectures of immune cells and dissects spatial characteristics of malignant
cells. (B) UMAP view of 11 cell types identified from scRNA-seq data. (C) Location and
proportion of 11 cell types in a representative slide (P01). (D) HE image showing the histological
annotation of a representative slide (P01l). (E) UMAP showing STs spots colored by
histopathological annotation types. T, tumor tissues, TAT, tumor adjacent tissues. (F) UMAP of
ten COPs discovered in LUAD by integrating STs data with scRNA-seq data. (G) Heatmap
depicting enrichment/depletion level of each COP in each histological/pathological region and
the proportion in each patient. *’ indicates rank sum test derived p-value less than 0.05. (H)

Heatmap of relative cellular compositions in each COP.
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Figure 2 Local protumor immune remodeling during LUAD pathological progression

(A) Schematic of neighboring immune cells quantification and cellular states and functional
potential evaluation. (B) UMAP of 34,545 immune cells from 8 tumor tissues and 3 normal
tissues colored by annotated cell types (left panel), expression of marker genes for each
immune cell type and colored by cell groups (right panel). (C) Heatmap of immune cell
enrichment/depletion levels in each COP, bar plot showing proportion of spots from MIA (blue)
and IAC (red) patients. (D) Bubble heatmap showing the percentage of cells expressing
immune inhibitory checkpoint genes (indicated by the size of circle) as well as their relative
expression levels (indicated by the color of circle) in each CD4 T cell subpopulation. (E) UMAP
plot visualization of CD4 T cells colored by annotated cell types and inhibitory immune
checkpoint gene scores. (F) Bubble heatmap showing the percentage of cells expressing
cytotoxic genes as well as their relative expression levels in each CD8 T cell subpopulation. (G)
UMAP plot visualization of CD8 T cells colored by annotated cell types and cytotoxic gene
scores. (H) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as
well as their relative expression levels in each NK cell subpopulation. (I) UMAP plot visualization
of NK cells colored by annotated cell types and cytotoxic gene scores. (J) Bubble heatmap
showing the percentage of cells expressing inflammatory genes as well as their relative
expression levels in each dendritic cell subpopulation. (K) UMAP plot visualization of dendritic

cells colored by annotated cell types and inflammatory gene scores.


https://doi.org/10.1101/2023.10.29.564580
http://creativecommons.org/licenses/by-nc/4.0/

Figure3
A

LAS&TLSs

@ Functional immune cells

o

@ Dysfunctional immune cells

o =
o)
<<
0.5
g
o
>
<
0.0 T T T T J
™m s N < o
£ 5323
14 I%)
O [a )]
@ & o =
N
E Prat et al. (n=35)
5 100+ — TissaLashigh § 1007
< —— TLSs&LAslow =
E g
2 754 S 751
z 5
@ n
® (]
2 501 £ 507
= c
3 o
7] [}
g 25 g 254
S (=2
éj eloa6g/10.1[L01/2023 O 9

1.04
0.84
]
[
_g 0.64
0.4
g ~—— POL:AUC=0.81
= —— PO2:AUC=0.90
0.2 ~—— P03:AUC=0.99
N bioR A EFilin
00 02 04 06 08 10
False positive rate
H&E image
—
o
o
™
—
o

Proprotion

Overall survival (%)

Os #fade avallefble UAer 0T -BEANC 89
Time (day)

Oshttpﬁ;
0 Spe et:z{:; A
Time (month)

B cells

Low H

Jung et al. (n=27)

= TLSs&LAs high
= TLSs&LAs low

564580 this v&gsm&p@sted@l

1004

al ~
o (&)
1 1

gression free survival (%)
N
ol
1

rante

G

Plasma cells

igh

Signature score

Internaﬂonaﬁlicei‘&e. 15

e Border

Cho et al. (n=16)

—— TLSs&LAs high 1004
= TLSs&LAs low
<
< 751
©
=
<
S 504
2]
s
2 254
(@]

*nbe 1,020R80.34€| copyright holdg
t } y 5the pre|

20

Time (month)

Proportion of IGH clone type with
counted times > 100

Proportion of IGL clone type with
counted times > 100

Yuan et al. p=0.009

0.0154
0.0104
0.0054
0.0004
Wt o
[oed \,55\
g )
N Sa

0.008

0.006-

=]
=)
=]
=
f

0.002

Yuan et al. p=0.007

rL?grﬂ?hfso.Oﬁl

®TLSs eLAs

= TLSs&LAs high
= TLSs&LAs low

5 10

15
Time (month)

20

Yuan et al. p=0.040

t
©
y

©
N

~
h

o
1

Average IGH V gene mutation coun

a
1

Yuan et al. p=0.174
7.09

o
o
1

o
o
1

Average IGL V gene mutation count

25

0.000 2.0
N s
®TLSs eLAs _ o o e
Li High =3 > \& <\
ow 19 A\ "\ ) (3
. & o 2 \}\5
Proprotion NS Sa
|
|
|
|
|
|
1
© Alveolar marcophages (AMs)
© Monocyte-derived
A O Border Low _Figh
marcophages (MDMs) K L Proprotion
AMs M DMs -Loge(adjusted p-value) Energy Derivation By Oxidation Of Organic Compounds (G0:0015980) = )% %
o 107 Pyruvate Metabolic Process (GO:0006090) z =z =z
0.20 o 10° Proton Transmembrane Transport (GO:1902600 g g g
£ £ =2
-
. O 1 Proton Motive Force-Driven Mitochondrial ATP Synthesis (GO:0042776) Q @ @
ns High -% Proton Motive Force-Driven ATP Synthesis (GO:0015986) TREM2{®@ O ©
* . E s Oxidative Phosphorylation (GO:0006119) GPNMB{® O @
tow 8 Mitochondrial Electron Transport, NADH To Ubiguinone (GO:0006120) PPl . o @
g Mitochondrial Electron Transport, Cytochrome C To Oxygen (GO:0006123) [ ]
E 0.1041 Mitochondrial ATP Synthesis Coupled Electron Transport (GO:0042775 . CTSD . O O
g— Peptide Antigen Assembly With MHC Protein Complex (GO:0002501) [ ] CSTB{O® O .
T Peptide Antigen Assembly With MHC Class Il Protein Complex (GO:0002503) [ ] CTSB . o o
MHC Class Il Protein Complex Assembly (GO:0002399) [}
Integrated Stress Response Signaling (GO:0140467) [ ] CcTsli®@ O O
Immunoglobulin Production Involved In Immunoglobulin-Mediated Immune Response (GO:0002381) [ ) I:]
. . Percentage
Immunoglobulin Mediated Immune Response (GO:0016064) Low High o 20
0.001 T T T T Cellular Response To Cytokine Stimulus (GO:0071345) Relative gene o 40
&?’S ?;\ &Vls O§ Antigen Processing And Presentation Of Exogenous Peptide Antigen (GO:0002478) expression level o 80
. @\ < \?“ -| -
@V & N-MDMs IAC-MDMs
TCGA-LUAD (n=533) FUSCC -LUAD (n=82) TCGA-LUAD (n=533) FUSCC -LUAD (n=82)
100 —— IAC-MDMs high — 100 — IAC-MDMshigh 100 100 —— N-MDMs high —_ 100 —— N-MDMs high 100
—— IAC-MDMs low S — IACMDMslow & = —— N-MDMs low S —— N-MDMs low S
75 R ERE g 75 ] g7
2 2 Log rank P=0.044 < 2 2
2 a s 2 2 Log rank P=0.033
50 2 50 o 50 Z 50 2 50 2 50
@ 9 K @ @
@ @ 5] I @
25 g2 g2 3 25 g2 g 25
Log rank P=0.026 & & —— IAC-MDMs high 3 g & —— N-MDMs high
Log rank P=0.006 —— IAC-MDMs low Log rank P=0.011 Log rank P=0.009 —— N-MDMs low
0 T T T J 0-r T T T J 0+ T T — 0-r T T T J T T T T J T T T T J
0 2000 4000 6000 8000 0 20 40 60 80 0 20 40 60 80 0 2000 4000 6000 8000 0 20 40 60 80 0 20 40 60 80

Time (day)

Time (month)

Time (month)

Time (day)

Time (month)

Time (month)


https://doi.org/10.1101/2023.10.29.564580
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.29.564580; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Figure 3 Spatial organization structures are associated with pathological progression
and distinct clinical outcomes in LUAD

(A) A schematic illustration of colocalization of functional and dysfunctional immune cells in
LAS&TLSs (COP7). (B) Mean AUC of TLSs&LAs signatures identified from leave-one-out cross
validation analyses on TLSs&LAs+ STs data. (C) Spatial heatmap of TLAS&LAs signature
score and HE image of pathologically identified TLSs&LAs areas in a representative slide (P04).
(D) ROC curves of TLSs&LAs detection based on the identified signature genes in each slide.
(E) Kaplan-Meier curves displaying differences in progression-free survival (PFS) or overall
survival (OS) between patients whose pretreatment tumors had high or low level of TLSs&LAs
signatures scores in the Prat et al cohort, the Jung et al cohort and the Cho et al cohort receiving
immune checkpoint inhibitory therapy. (F) HE images of pathologically identified TLSs&LAS
areas and spatial distribution and proportion of B cells and plasma cells in two representative
slides. (G-H) Box plots of the proportion of IGH/L clone types counted time greater than 100
(indicate colon expansion) and the average IGH/L V genes mutation counts (indicate somatic
hypermutation) between TLSs&LAs high and low samples from Yuan et al cohort, p-values
were derived from rank sum test. (1) A schematic illustration of distinct spatial inches for aveolar
macrophages (AMs) and monocyte-derived macrophages (MDMs) in COPS5. Spatial distribution
and proportion of AMs and MDMs in two representative slides. (J) Box plots showing the
proportions of AMs and MDMs in COP5 spots across tumor (T) and tumor adjacent tissues
(TAT) from MIA and IAC patients. (K) Functional annotation of differentially expressed genes
between MDMs from normal lung tissues (N-MDMs) and IAC tumor tissues (IAC-MDMs). (L)
Bubble heatmap showing the percentage of cells expressing TAM associated genes and
cathepsins as well as their relative expression levels in MDMs from different tissue types. (M-
N) Kaplan-Meier curves of PFS and OS for TCGA-LUAD cohort and FUSCC-LUAD cohort

based on low and high IAC-MDMs (M) or N-MDMs (N) signature scores.
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Figure 4 The alterations in malignant cells molecular characteristic and changes in
crosstalk between malignant cells and TME cells during LUAD progression

(A) Boxplots showing signature scores of sScRNA-seq data defined MIA/IAC malignant cell
marker genes in an independent cohort (FUSCC-LUAD). (B-C) Scatter plots of correlation of
expression using Pearson correlation coefficients between MIA/IAC malignant cell signature
and cytotoxic score (B), FOXP3 (C) in FUSCC-LUAD cohort. (D) Overview of the selected IAC
malignant cells upregulated ligand-receptor interactions, p-values are indicated by circle size,
relative interaction strengths indicated by color. (E) Expression levels of three immune
modulators in normal epithelial cells, MIA malignant cells and IAC malignant cells. (F) Bubble
heatmap showing the percentage of cells expressing immune modulators, cytotoxic genes and
immune inhibitory genes as well as their relative expression levels in malignant cells and T cells

across different progression stages in an independent dataset.
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Figure 5 Integration method identified a unique leading edge malignant cell state during
LUAD pathological progression

(A) UMAP of malignant cells after removing patient specific signals by integration method. Cells
are colored by identified clusters (phenotypic clusters). (B) The proportion of eight malignant
cells phenotypic clusters in MIA and IAC patients. (C) Heatmap of hallmark pathway activity
among phenotypic clusters. (D) Hazard ratios of all phenotypic cluster signatures in two LUAD
cohorts. (E) Trajectory analysis of malignant cell phenotypic clusters, cells were colored by their
pseudotime, SFTPC gene expression level and CNV score. (F) Trajectory plot showing the
distribution of PC4 on the malignant cell progression trace. (G) Spatial heatmaps of PC4
signature scores in two representative slides. Red dots indicate the border of tumor region
(leading edge). (H) Dividing spots into eight groups based on their distances to the tumor
boundary and the mean of PC4 signature scores in each group. (I) Correlations between PC4
signature scores and the proportions of other 30 immune cell type. (J) A boxplot showing the
predicted drug sensitivity score (IC50) for PC4 and other malignant cells based on their gene
expression profiles. (K) A boxplot showing the cell cycle pathway activity of PC4 and other
malignant cells based on their gene expression profiles, p-values were derived from rank sum

test in both (J) and (K).
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Figure 6 Schematic overview of spatial cellular organization and functional states
transition involved in the cancer progression of LUAD

Local pro-tumor immune remodeling during pathological progression. I. Depletion of functional
immune cells (Cytotoxic NK cells and CD8 T cells) and enrichment of dysfunctional immune
cells (Inhibitory CD4 T cells and Low inflammatory DCs) surrounding malignant cells with LUAD
progression. Il. Association between TLSs and B cell clonal expansion. Ill. The changes of
macrophage state during LUAD progression, OXPHOS, oxidative phosphorylation. V.
Increased number of CCls and expression of immune modulators in malignant cells during
LUAD progression, CCls, cell-to-cell interactions. V. A specialized malignant cell phenotypic
cluster located at the boundary of tumor tissues, EMT, epithelial-mesenchymal transition, CNVs,

copy humber variations.
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