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Abstract 

Spatial cellular organization patterns (COPs) in tumor microenvironment influence the tumor 

progression and therapeutic response, however, little is known about the cellular composition 

and functional potential of these multicellular structures during lung adenocarcinoma 

progression. Here, we integrate spatial transcriptomics with single cell RNA sequencing to 

characterize the local tumor and immunological landscape of samples from 8 patients with 

early-stage lung adenocarcinoma at different pathological stages. We identified ten COPs that 

show distinct associations with local immune states and clinical outcomes, including survival 

and therapy response. The local infiltration levels of regulatory and dysfunctional immune cells 

are increased with pathological progression. Cell-to-cell interactions between malignant cells 

and tumor microenvironment (TME) cells were involved in protumor immune state remodeling. 

Finally, we detected a group of malignant cells that were specifically located at the tumor 

boundary, representing a more aggressive state, were involved in the invasion of invasive 

adenocarcinoma (IAC). Altogether, these results can improve our understanding of the local 

microenvironment characteristics that underlie LUAD progression and may facilitate the 

identification of drug targets to prevent invasive progression and biomarkers for diagnosis. 
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Introduction 

Lung adenocarcinoma (LUAD) is the most prevalent subtype of lung cancer and accounts 

for most cancer-related fatalities in both males and females1. LUAD can be classified into two 

main types: minimally invasive adenocarcinoma (MIA) and invasive adenocarcinoma (IAC). 

Compared to MIA, IAC, in particular, is characterized by aggressive histopathological features, 

such as invasive growth patterns where cancer cells invade the surrounding lung tissue2. 

Previous studies have depicted the epigenetic, transcriptomic and metabolomic dynamics with 

LUAD pathological progression using bulk sequencing technologies and revealed critical 

molecular alterations underlying the initiation and progression of LUAD3-6. However, our 

understanding of the remodeling of the tumor microenvironment (TME) and the specific 

characteristics of different cell types within this context remains limited. 

In recent years, single cell RNA sequencing (scRNA-seq) has emerged as a valuable tool 

for investigating the molecular and cellular heterogeneity within the TME of LUAD. These 

studies demonstrated that the enrichment of regulatory T cells and decrease in cytotoxicity in 

CD8 T cells were related to progression from MIA to IAC7,8. Notably, tissue dissociation leads 

to loss of spatial information, which plays a crucial role in determining cellular functionality and 

higher order cellular organization in the TME. To overcome this challenge, spatial 

transcriptomics (STs) was developed as a technique that simultaneously captures the location 

and sequence of each transcript within an intact tissue9. However, integrating multiple STs data 

from different LUAD patients to discover recurrent cellular organization patterns and 

characterize functional states of these spatially organized cell types remains a significant 

hurdle10. 

To address these issues, scRNA-seq data and STs data from patients in different 

progression stages were generated and integrated to create a comprehensive spatial map of 

early-stage LUAD to investigate the landscape of spatial cellular organization patterns (COPs) 

during LUAD progression and its relationship to tumor immune microenvironment (TIME) 

remodeling. Thus, further reveal mechanistic insights into disease progression and unveil 

biomarkers of clinical prognosis and therapeutic responses. We identified ten COPs, including 

COP enriched with normal epithelial cells, COPs enriched with malignant cells, COP 
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colocalized with lymphoid aggregates (LAs) and tertiary lymphoid node structures (TLSs) and 

COP as a macrophage niche. These COPs exhibited distinct associations with immune states 

and clinical outcomes. In addition, we discovered a group of malignant cells with invasive and 

immune suppressive potential that were specifically located at the tumor boundary. Overall, our 

study unravels local protumor remodeling and immunosuppression that occur during the 

pathological progression of LUAD, as well as spatially organized cellular structures in the LUAD 

ecosystem that can predict patient clinical outcomes. The findings of this study will provide 

valuable theoretical evidences for improving clinical prognosis and furthering our understanding 

of the relationship between spatial cellular organization and its pathological progression. 

 

Results 

Obtaining STs data and scRNA-seq data from early-stage LUAD patients at different 

pathological stages 

In order to generate a comprehensive spatial map of malignant and immune cells in early-

stage LUAD during histopathological progression, we obtained tissue specimens from eight 

early-stage LUAD patients including four cases of MIA and four cases of IAC and performed 

ST sequencing using the 10X Genomics Visium Platform. However, this spatial method is 

unable to create a single-cell resolution spatial transcriptomic map, which underscores the need 

to integrate STs data with scRNA-seq data to maximize the resolution. Thus, we further 

performed scRNA-seq on 11 tissue specimens from the corresponding patients, composed of 

eight samples from tumor tissues and three samples from matched normal lung tissues. The 

bulk normal lung and tumor tissues of all patients were also used for RNA-seq and whole-

exome sequencing (WES) (Figure 1A and Supplementary Table 1). 

In STs data, after basic quality control, we obtained 31,666 spots for further analysis with 

a median of 13,089 unique molecular identifiers (UMIs) and 4,332 features per spot 

(Supplementary Figure 1; Details see Methods). To assess the concordance between the 

transcriptomic characteristics and the hand-labeled pathological annotations, we first employed 

a signature score-based strategy to evaluate the enrichment degree of tumor upregulated 
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genes and normal lung upregulated genes in each spot. The tumor upregulated genes and 

normal lung upregulated genes were identified through differentially expressed genes (DEGs) 

analysis in bulk RNA-seq data (Supplementary Figure 2). Next, we evaluated the performance 

of these two signature scores in distinguishing cancerous and noncancerous spots on each 

slide. The classification based on two signature scores yielded high area under the curve (AUC) 

values, with a median AUC of 0.84. In contrast, classification using randomly selected genes 

resulted in much lower AUC values, with a median AUC of 0.42. This consistent performance 

was observed across most of slides, except P12 (Supplementary Figure 3). According to the 

pathologists9 assessment, the distinction between tumor tissue and adjacent tumor tissue was 

not clear in the HE image of this particular patient. Hence, slide P12 was excluded from 

downstream analyses. 

 

Identifying distinct cell types in the LUAD TME 

To investigate the spatial architecture of LUAD and address the resolution limitation of this 

spatial method, we harvested 67,083 cells using 10X scRNA-seq11 from 11 biopsy specimens 

of normal lung tissues (n=3), MIA tumor tissues (n=4) and IAC tumor tissues (n=4). After filtering, 

a total number of 44,003 cells were retained for subsequent analyses with a median of 4,791 

unique molecular identifiers (UMIs) count and 1,665 features per cell (Supplementary Figure 4; 

Details see Methods). Finally, these cells were clustered into eight major cellular lineages or 

cell types, which were annotated based on key marker gene expression, comprising epithelial 

types (epithelial cells and ciliated epithelial cells), stromal types (endothelial cells and 

fibroblasts) and immune types (T/NK cells, B lineage cells, myeloid cells and mast cells) 

(Supplementary Figure 5A-B and Supplementary Table 2). Importantly, each cell type was 

found to be present in multiple samples and tissue types, indicating no strong batch effect in 

the scRNA-seq data. Notably, T/NK cells and myeloid cells represented a significant proportion 

of the cell population, suggesting an opportunity to further elucidate the immune composition 

of the LUAD TIME (Supplementary Figure 5C).  

Given previous studies suggesting that epithelial cells are the cell of origin of LUAD, we 

took the analysis further by dividing epithelial cells from all samples into 10 clusters to identify 
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malignant cells (Supplementary Figure 5D). By examining the expression of established normal 

epithelial markers, we successfully identified populations corresponding to alveolar type I (AT1, 

sc-epi-C7, AGER), alveolar type II (AT2, sc-epi-C8, SFTPC), and club cell (sc-epi-C9, PIGR). 

Meanwhile, other epithelial sub-populations (i.e., sc-epi-C[0-6]) may represent tumor epithelial 

cells, as most of them highly expressed tumor markers, such as CEACAM5 (Supplementary 

Figure 5E and Supplementary Table 3). To differentiate malignant cells from non-malignant 

ones, inferCNV12 was utilized to estimate copy number variations (CNVs) from scRNA-seq data 

in each epithelial cell. Subsequently, a CNV score was calculated to quantify the CNV level 

(Details see Methods). The cells in sc-epi-C[0-6] exhibited overall increased CNV scores, which 

further supported that these clusters predominantly consisted of malignant cells 

(Supplementary Figure 5F). We also observed a gradually increase in CNV scores across the 

stages of pathological progression (Supplementary Figure 5G). Altogether, these results 

represented transcriptomic and genetic evidences supporting sc-epi-C[0-6] as malignant cells 

in LUAD. Finally, utilizing the scRNA-seq data, we defined 11 major cell types in scRNA-seq 

data, which were then used to estimate the proportion of each cell type for a given capture spot 

(Figure 1B). 

 

Distinct cellular organization patterns of LUAD pathological progression related spatial 

heterogeneity  

The spatial organization of various cell types within LUAD is believed to play a crucial role 

in cancer progression13. Notably, high-order arrangements of cells, such as lymphocyte 

aggregates (LAs) and tertiary lymphoid structures (TLSs), may represent structural and 

functional components in tumor tissues14,15. To identify and analyze these spatial patterns, we 

employed SPOTlight16 to deconvolute the cellular composition of each spot in each slide (Figure 

1C), and created a two-dimensional embedding of spotwise cellular compositions using uniform 

manifold approximation and projection (UMAP). Spots with similar cell type compositions were 

clustered closely to each other in this UMAP space.  

Next, we used unsupervised clustering to identify cellular organization patterns (COPs), 

which were then mapped onto pathologist annotated regions, allowing for relating well-known 
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pathological and histological tissues to COPs defined by STs analysis (Figure 1D and 

Supplementary Figure 6; Details see Methods). We performed this analysis to integrate slides 

from different patients and the shared embedding space revealed a clear separation of cellular 

composition in both tumor (T) spots and tumor adjacent tissue (TAT) spots. Importantly, we 

observed distinct cellular compositions between spots from different pathological stages, 

indicating that a global cellular composition changes during pathological progression.  

Using this approach, we totally identified ten COPs that delineated both known and new 

tissue architectures. Among these, COP2 was found to be specifically located in tumor adjacent 

tissues (TAT, Figure 1G, box a) and was also enriched for alveolar cells (AT1 and AT2) and 

endothelial cells (Figure 1H, box 1). In contrast, COP0, COP1, COP3, COP5, COP6 and COP8 

were mainly enriched in tumor tissues (Figure 1G, box b[1-4]), but COP5 contains more spots 

annotated by coal dust than other COPs (Figure 1G, box b4.2) and was highly enriched for 

myeloid cells (Figure 1H, box 2), COP8 was a special case, which is annotated as a papillary 

histological subtype in only P13 (Figure 1G, box b3 and Supplementary Figure 7). Furthermore, 

we observed that COP0 and COP1 were highly enriched in tumor tissues of patients with MIA 

(Figure 1G, box b1), while the proportions of COP3 and COP6 are significantly increased in 

patients with IAC (Figure 1G, box b2.3 and box b2.4) and were highly enriched for malignant 

cells (Figure 1H, box 3.1 and box 3.2). By contrast, COP0 and COP1 are enriched for AT1 and 

AT2 (Figure 1H, box 4). COP7 was enriched in LAs or TLSs, Figure 1G, box c) and was 

enriched for T/NK cells and B cells (Figure 1H, box5), in line with recent report that B and T cell 

populations make up the bulk of TLSs-associated immune cells14. COP4 was enriched in 

vascular niche (Figure 1G, box d), and highly enriched for endothelial cells and fibroblasts 

(Figure 1H, box 6). COP9 is mostly located in bronchioles (Figure 1G, box e) and is enriched 

for bronchiole epithelial cells17, including ciliated epithelial cells and club cells (Figure 1H, box 

7). Together, we summarized the COPs in LUAD and found that the proportions of tumor tissue 

enriched COPs (i.e., COP0, COP1, COP3 and COP6) are associated with pathological 

progression. We also identified COPs related to well-organized immune cell structures, such 

as LAs and TLSs. These results provide valuable insights into the spatial organization of 

different cell types in the LUAD tumor microenvironment. 
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Building a comprehensive immune cell reference in the LUAD TIME 

By utilizing multicellular resolution spatial transcriptomic profiling and previous defined 

COPs, we are able to quantify the immune cells surrounding malignant/normal epithelial cells 

at different progression stages. This allows us to evaluate the cellular states and functional 

potential of immune cells (i.e., functional or dysfunctional immune cells) that are either enriched 

or depleted in these areas, providing insight into the local immune state of these spots or COPs 

(Figure 2A). To this end, we proceeded to further divide the major immune cell types into 30 

distinct clusters. These clusters include 6 CD4+ T cell clusters, 6 CD8+ T cell clusters, 5 natural 

killer cell (NK cell) clusters, 5 dendritic cell (DC) clusters, 2 macrophage clusters, 1 B cell cluster, 

1 plasma cell (PC) cluster, 2 monocyte clusters, 1 neutrophil cluster, and 1 mast cell cluster 

(Figure 2B). The immune cell clusters were manually annotated by canonical markers and 

marker genes that highly expressed in each specific cluster (Figure 2B, Supplementary Figure 

8 and Supplementary Table 4; Details see Methods). For instance, in the case of CD4+ T cells, 

regulatory T cells (Tregs) exhibit high expression of FOXP3 and immune inhibitory receptors 

such as CTLA4 and TIGIT. On the other hand, naive CD4+ T cells, central memory CD4+ T 

cells, and effector memory CD4+ T cells express SELL, CD28, and BATF, respectively. CD8+ 

T cells in an exhausted state were identified by the expression of HAVCR2 (TIM3) and LAYN 

marker genes. Additionally, three clusters of CD8+ T cells (namely GIMAP7+ CD8+ effector T 

cells, HSP1B1+ CD8+ effector T cells, and GZMK+ CD8+ effector T cells) were found to exhibit 

high expression of cytotoxic-associated genes (GZMA/B) and INFG18, thus defining them as 

effector CD8+ T cells. Five distinct subpopulations of NK cells were identified and characterized 

based on their marker genes. One particular cluster of NK cells exhibited marker expression 

consistent with that of natural killer T cells (NKT)19, including NK cell markers such as KIR2DL3 

and KLRF1, as well as moderate expression of T cell markers including CD3D/E/G. As a result, 

this specific NK cell cluster was classified as an NKT cell subpopulation. Furthermore, five 

distinct dendritic cell subpopulations were identified and annotated by previously defined 

markers, including classical type 2 dendritic cells (CLEC10A), plasmacytoid dendritic cells (pDC, 

LILRA4), mature dendritic cells (CCR7), classical type 1 dendritic cells (CLEC9A) and 

Langerhans cells (S100B)20. Macrophages were separated into two subtypes, alveolar 
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macrophages (AMs) and monocyte-derived macrophages (MDMs) with MARCO and SPP1 as 

the respective marker genes21. Plasma cells exclusively expressed immunoglobulins such as 

IGHA1 and IGHG1, enabling them to be distinguished from B cells expressing MS4A1 (Figure 

2B). In summary, we built a comprehensive reference of immune cell types present in the TIME 

of LUAD, which can be used for deconvolution to quantify the immune neighborhood of 

malignant/normal epithelial cells and reveal the local immune states. 

 

Characterizing the immune neighborhood of malignant/normal epithelial cells and 

revealing local immunosuppressive remodeling during LUAD progression 

The spatial localization of immune cells within TME, including those in close proximity to 

malignant cells and well-organized immune structures within tumors, is a critical factor for tumor 

immunity and response to immune checkpoint inhibitors (ICIs)14,22. Understanding the spatial 

organization of immune cells within the tumor microenvironment can provide important insights 

into the mechanisms underlying tumor immune evasion and resistance to immunotherapy. To 

address this issue, we integrated the immune cell reference with STs data obtained from 

patients at different pathological stages of LUAD. Our aim is to delineate the spatial distribution 

of immune cells within tumor microenvironment and identify the immune states that are in close 

proximity to malignant cells during cancer progression.  

To achieve this, we employed SPOTlight16 to identify cell type specific topics from scRNA-

seq data. These topics were highly specific to each immune cell type, resulting in high specificity 

for localizing immune cell types in each spot (Supplementary Figure 9A). Then, we examined 

enrichment or depletion of these immune cells within COPs to understand the local immune 

states in these regions (Supplementary Figure 9B-C; Details see Methods). We found that the 

enrichment level of Tregs and CXCL13+ CD4+ T cells progressively increased across 

malignant cells enriched COPs in MIAs (COP0 and COP1), and IACs (COP3 and COP6) 

compared with normal epithelial cells enriched COPs (COP2) (Figure 2C, box1). These two 

immune cell types exhibited high expression levels of inhibitory immune checkpoint genes, 

including CTLA4, TIGIT, BTLA and VSIR and showed elevated levels of immune checkpoint 

gene signature scores (Figure 2D-E). These findings suggest that Tregs and CXCL13+ CD4+ 
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T cells may play an important role in establishing a local immunosuppressive microenvironment 

in LUAD during pathological progression.  

Additionally, GIMAP7+ CD8+ effector T cells and HSP1B1+ CD8+ effector T cells were 

mainly located in normal epithelial cells enriched COPs (COP2) (Figure 2C, box2). Interestingly, 

we observed an increase in cytotoxic activity in these CD8+ T cells, as evidenced by higher 

level of PFR1 and NKG7 expression, as well as cytotoxicity signature scores (Figure 2F-G). 

We further examined the spatial enrichment of NK cell subpopulations in COPs. We also found 

FCGR3A+ NK cells, GIMAP7+ NK cells and NKT cells (Figure 2C, box3.1) were primarily 

enriched in normal epithelial cells enriched COPs (COP2) and showed a higher level of perforin 

and granzyme expression and enhanced cytotoxicity activity (Figure 2H-I). In contrast, the 

enrichment level of LTB+ NK cells were markedly increased in malignant cells enriched COPs 

in IACs (COP3 and COP6) (Figure 2C, box3.2). We observed a reduction of cytotoxicity scores 

in this subpopulation, indicating a decreased ability to eliminate cancer cells, which could 

contribute the progression of LUAD (Figure 2I).  

Our findings also revealed a noticeable variation in the enrichment of different subsets of 

dendritic cells between normal epithelial cells enriched COPs (COP2) and malignant cells 

enriched COPs (COP0, COP2, COP3 and COP6) (Figure 2C, box4.[1-2]), suggesting these 

dendritic cells may have distinct functions in cancer progression. The classical type 2 dendritic 

cells and mature dendritic cells were found to be gradually depleted from normal epithelial cells 

enriched COPs (COP2) to malignant cells enriched COPs in MIAs (COP0 and COP1), and last 

malignant cells enriched COPs in IACs (COP3 and COP6) (Figure 2C, box4.1), while 

plasmacytoid dendritic cells, classical type 1 dendritic cells and Langerhans cells were 

observed to be gradually enriched with pathological progression (Figure 2C, box4.2). Increased 

expression of proinflammatory genes and increased level of inflammatory signature score were 

evidenced among classical type 2 dendritic cells and mature dendritic cells compared to the 

other three dendritic cell subsets (Figure 2J-K). These results indicate that as the pathological 

progression occurs, there is a loss of inflammatory phenotypes in dendritic cells that are in 

close proximity to malignant cells.  

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 1, 2023. ; https://doi.org/10.1101/2023.10.29.564580doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.29.564580
http://creativecommons.org/licenses/by-nc/4.0/


11 

 

Altogether, these data highlight the presence of local protumor remodeling and 

immunosuppression during pathological progression, characterized by an increase of immune 

inhibitory factors of CD4+ T cells and a decrease in cytotoxicity by CD8+ T cells and NK cells 

as well as a reduction in inflammatory activity by dendritic cells. 

We further evaluated the abundance of these immune cells in bulk tissues from different 

pathological stages using scRNA-seq data. Our observations showed a significant enrichment 

of CD4+ T cells (i.e., Tregs and CXCL13+ CD4+ T cells) expressing inhibitory immune-

checkpoints in bulk tumor tissues from both MIAs and IACs, while the proportions of highly 

cytotoxic CD8+ T cells (i.e., GIMAP7+ CD8+ effector T cells, HSP1B1+ CD8+ effector T cells) 

and NK cells (i.e., FCGR3A+ NK cells, GIMAP7+ NK cells and NKT cells) were decreased 

(Supplementary Figure 10A-C). Moreover, we noted increased abundance levels of low 

inflammatory dendritic cells (i.e., plasmacytoid dendritic cells, classical type 1 dendritic cells 

and Langerhans cells) in LUAD bulk tumor tissues (Supplementary Figure 10D). Importantly, 

our analysis showed a shift from functional immune cells to dysfunctional immune cells with 

pathological progression, indicating the presence of immunosuppression components in the 

LUAD TIME (Supplementary Figure 10E). 

 

TLSs&LAs signatures are associated with positive response to immune therapy and an 

active B cell immune response in LUAD 

TLSs is an ectopic lymphoid structure that provides an area for the activation and 

differentiation of T and B cells, which are associated with antitumor immune reactions and 

responses to immunotherapy14,15. In our analysis, we noticed COP7, which was enriched in 

TLSs and LAs, contained a mixture of both functional and dysfunctional immune cell types 

(Figure 3A). For example, HSP1B1+ CD8+ effector T cells was enriched in COP7 (TLSs and 

LAs) (Figure 2C, box5.1), which is consistent with a recent report that T cells with high 

expression of HSPA1A and HSPA1B are mainly located in LAs across various cancer types, 

particularly within tumor beds or surrounding tumor edges23. However, in our study, these 

immune cells exhibited high cytotoxicity. Additionally, CD4+ cytotoxic T lymphocytes were also 

enriched in COP7 (TLSs and LAs) (Figure 2C, box5.2), and this cell type showed high 
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expression of cytotoxicity genes compared to other CD4+ T cells (Supplementary Figure 11). 

Those immune cell types related to immunosuppression, such as Tregs and exhausted CD8+ 

T cells, were also enriched in these areas (Figure 2C, box6.[1-2]). These results suggest TLSs 

and LAs may be a key area for immune reactions in LUAD, where both antitumor responses 

and immunosuppressive processes coexist. Therefore, further evaluation on their predictive 

and prognostic value in LUAD progression and immunotherapy is needed. 

To determine the signature genes of TLSs and LAs, we performed differential gene 

expression analysis in TLSs&LAs+ samples by leave-one-out cross validation. In brief, we first 

selected four TLSs&LAs+ samples, and performed differential gene expression analysis 

between pathologist hand labeled TLSs/LAs spots and other spots in each slide. Only common 

marker genes were used for further validation analysis. Then we validated these marker genes 

in the remaining sample and choose those genes associated with an average AUC greater than 

0.70 in at least 4 TLSs&LAs+ samples (Supplementary Figure 12A), leading to 13 TLSs&LAs 

signature genes, including LTB, TRBC2, CXCR4, CORO1A, RPS27A, TRAC, CCL19, TRBC1, 

MS4A1, CD79A, ZFP36L2, CCR7 and BIRC3 (Figure 3B-C and Supplementary Table 6; Details 

see Methods). These signature genes were further validated on 5 TLSs&LAs+ samples 

resulting in AUCs ranging from 0.81 to 0.99 (Figure 3D). To further access the clinical 

significance of these signature genes, we assessed the association of TLSs&LAs signature 

with patient response to immunotherapy by analyzing public RNA-seq data sets from four 

previous clinical studies24-27. We found that NSCLC patients exhibited relatively higher 

TLSs&LAs signature in pretreatment tumors were associated with better response to anti-PD-

1 therapy, including significantly better progression-free survival (PFS), overall survival (OS) 

and durable clinical benefits (Figure 3E and Supplementary Figure 12B).  

Previous analysis results revealed that B cells were significantly more abundant in COP7 

(TLSs&LAs) (Figure 2C, box7.1). Furthermore, in TLSs&LAs+ samples, B cells were found to 

be preferentially located at spots annotated as TLSs or LAs, while plasma cells were more 

diffusely distributed throughout the tumor bed (Figure 3F and Figure 2C, box7.[1-2]). Moreover, 

when comparing TLSs&LAs+ samples to TLSs&LAs- samples, it was found that B cells in 

TLSs&LAs+ samples tended to aggregate in LAs and TLSs areas, suggesting an association 
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between TLSs&LAs and B cell immune response (Supplementary Figure 13). The dominance 

of B cell marker genes (e.g., MS4A1 and CD79A) in the TLSs&LAs signature, as well as 

enrichment of B cells in LAs and TLSs areas prompted us to focus on B cells immune response. 

During B cell immunity generation, B cells undergo mutations in their B cell receptor (BCR) 

sequence, and the most effective clones are selected and expanded28. We utilized MiXCR29 to 

identify BCR IGL and IGH clonotypes and their somatic hypermutations in RNA-seq data from 

36 LUAD tumors5, which were classified as either TLSs&LAs high or TLSs&LAs low based on 

the median expression activity of TLSs&LAs signature. Our analysis revealed that the repertoire 

of TLSs&LAs high samples exhibited a higher proportion of clonotypes counted more than 100 

times in both IGL and IGH (Figure 3G). Furthermore, the overall somatic hypermutation level 

was higher in TLSs&LAs high tumors compared to TLSs&LAs low tumors, both for IGL and IGH 

(Figure 3H). These results showed the presence of clonally expanded B cells and somatically 

mutated IG genes in TLSs&LAs high tumors, suggesting a more active B cell immune response 

in these tumors. This increased B cell immune activity may be linked to the better immune 

therapy responses observed in patients with high TLSs&LAs scores. 

 

Changes of macrophage state are associated with pathological progression and 

clinical outcomes 

Tumor associated macrophages (TAMs) have diverse functions in cancer progression30-32. 

The use of STs and scRNA-seq could advance our understanding of spatial distributions and 

molecular diversity of TAMs during the progression of LUAD. In our study, we observed that 

alveolar macrophages and monocyte-derived macrophages were highly enriched COP5 

(Figure 2C box8). This finding suggests that these macrophages exhibited a close aggregation, 

resembling a niche-like local tissue environment (Figure 3I). We conducted a further analysis 

to determine the density of these two macrophage populations in spots located within the T 

regions and TAT regions. Our findings revealed that AMs were more highly enriched in spots 

from TAT regions, particularly in patients with IAC. In contrast, MDMs exhibited a higher 

enrichment in T spots from both patients with MIA and IAC (Figure 3J). These results suggest 

that MDMs may serve as important TAMs that were primarily found in the tumor regions. 
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Consequently, we decided to focus our attention on MDMs to gain a deeper understanding of 

their role in the pathological progression of LUAD. To this end, we performed an analysis to 

identify DEGs between MDMs derived from IAC patients' tumor tissues (IAC-MDMs) and 

normal lung tissues (N-MDMs). As a result, we identified 503 upregulated genes in IAC-MDMs 

and 253 upregulated genes in N-MDMs (Supplementary Figure 14A and Supplementary Table 

7). Notably, the upregulated genes in IAC-MDMs were found to be highly enriched in 

mitochondrial energic metabolisms, indicating an energy metabolic reprograming in these 

macrophages during cancer progression, while the up-regulated genes in N-MDMs were 

primarily associated with MHC-II antigen processing and presentation (Figure 3K). In addition, 

the expression activity of MHC-II molecules of MDMs decreased with LUAD progression, 

suggesting a potential impairment in antigen presentation along with the progression 

(Supplementary Figure 14B). In contrast, the activity of oxidative phosphorylation was up-

regulated during pathological progression (Supplementary Figure 14C). MDMs in IAC tended 

to highly express genes associated with M2 polarization, which is typically associated with an 

immunosuppressive and protumoral phenotype (Supplementary Figure 14D). More importantly, 

the expression activity of TAM associated genes (e.g., TREM2, GPNMB and SPP1)33,34 and 

cathepsins (e.g., CTSD, CSTB, CTSB and CTSL)35,36 were gradually up-regulated along with 

pathological progression, which have been reported to play an important role in immune 

suppression in TME (Figure 3L). All these results suggest that MDMs undergo phenotypic and 

molecular transitions during pathological progression and ultimately transition into an 

immunosuppressive and protumoral phenotype.  

We further evaluate the association of transitional signature with prognosis and found that 

high expression of the IAC-MDMs signature scores were significantly correlated with worse 

clinical outcomes in both LUAD-TCGA dataset37 and FUSCC-LUAD dataset38 (Figure 3M). 

However, we did not observe a similar correlation with the signature scores of N-MDMs (Figure 

3N). Altogether, these results indicate that MDMs exhibit unique spatial characteristics and 

molecular diversity during LUAD progression. In addition, the energy metabolism of MDMs may 

be a potential immunotherapy target to reverse M2 polarization and immune suppression in 

TIME. 
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Cell-to-cell cross talk during LUAD pathological progression 

We further explored the potential mechanisms underlying the differential spatial distribution 

and functional properties of immune cell subpopulations in COPs. These regional immune cell 

distributions may relate to local immunoregulation. We first focus on the molecular alterations 

of epithelial cells during pathological progression, and signature genes of MIA and IAC 

malignant cells were identified. These signature genes were then used to estimate the 

expression activity in bulk RNA-seq samples obtained from a previous study38, which included 

samples from adenocarcinoma in situ (AIS), MIA and IAC. Consistently we observed higher 

MIA malignant cell signature scores in AIS/MIA samples compared to IAC samples. Conversely, 

IAC malignant cell signature genes were highly expressed in IAC samples in this independent 

data set (Figure 4A). Furthermore, we also evaluated the correlation between the signature 

scores and functional molecular markers of immune cell. Our analysis revealed a more 

significant positive correlation between IAC malignant cell signature scores and the expression 

of FOXP3 which is associated with immune suppression (Figure 4B). Conversely, we observed 

a stronger negative correlation between the IAC malignant cell signature scores and the 

expression of antitumor immune markers (PRF1 and GZMA), indicating a potential decrease in 

cytotoxicity (Figure 4C). These results suggest that the potential impact of these molecular 

characteristics of IAC malignant cells on the immune suppression within the TIME.  

The interactions between malignant cells and elements in TIME can lead to the 

development of an immunosuppressive phenotype that aids in tumor progression. Thus, we 

used CellPhoneDB39 to identify the expression of potential crosstalk signaling molecules in 

malignant/normal epithelial cells based on ligand-receptor interactions. Notably, our analysis 

revealed an increase in the interaction between malignant cells and other cell types with tumor 

progression (Supplementary Figure 15). Next, we focus on those interactions specific to IAC 

malignant cells. We identified altered interactions that exhibited differential modulation in 

malignant cells, particularly in IAC. Notably, we observed an enhanced interaction between 

CD74 on malignant cells and MIF, COP, and APP on other cell types. Additionally, we 
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discovered increased interactions between immune modulators LGALS9 and NRP1 on IAC 

malignant cells, and CD44 on Tregs, as well as VEGFA/B on Langerhans cells. (Figure 4D). 

Furthermore, the expression activity of these immune receptors was progressively upregulated 

in malignant cells across pathological stages (Figure 4E). These immune modulators have been 

reported to play an important role in lung cancer immune suppression40,41. We further validated 

the expression levels of LGALS9 and NRP1 in malignant cells at different progression stages 

using an independent dataset10 (Supplementary Figure 16). Results in this dataset consistently 

demonstrate increased expression of immune modulators in malignant cells of IAC. 

Furthermore, we observed a negative correlation between the expression of these immune 

modulators and cytotoxic gene expression in T cells, while a positive correlation was observed 

with the expression of immune inhibitory genes (Figure 4F). Altogether, these results suggest 

that altered cell-to-cell interactions occurs during pathological progression, which may be an 

important factor in local immune remodeling. 

 

Phenotypic clusters from heterogeneous malignant cells are associated with 

pathological progression and clinical outcomes 

The presence of interpatient heterogeneity among malignant cells from different patients 

hindered the ability to directly compare them. To overcome this, we employed an integration 

method that takes into consideration the individual characteristics of each patient to identify 

distinct phenotypic clusters within malignant cells42. Through this approach, we successfully 

identified eight phenotypic clusters (referred to as PCs, PC[0-8]) (Figure 5A). Notably, the 

proportions of PC1, PC4, and PC6 were found to be higher in IAC (Figure 5B). We further 

characterized PCs based on hallmark pathway activity. WNT beta catenin signaling, epithelial-

to-mesenchymal transition (EMT) and IL6-JAK-STAT3 signaling were highly activated in PC4 

cells (Figure 5C), suggesting the potential invasive ability of PC4 cells43,44. In order to examine 

the relationships between phenotypic clusters and clinical outcomes, we first identified a set of 

differentially expressed genes that served as signature genes for each phenotypic cluster. 

Subsequently, we assessed the expression activity of these signature genes in individual 
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samples obtained from two publicly available datasets37,38. Our analysis revealed a consistent 

and significant negative correlation between PC4 signature genes and both PFS and OS in 

patients in two independent datasets (Figure 5D).  

In order to further investigate the key molecular event in the progression of malignant cells, 

we performed pseudotime trajectory analysis on all malignant cell clusters using Monocle245 

and revealed a gradually loss of AT2 marker expression and increase of CNV scores along the 

pseudotime (Figure 5E). Cells from PC4 were gathered on the end of trajectory and associated 

with highest CNV scores among all malignant cell phenotypic clusters (Figure 5F and 

Supplementary Figure 17A). Specifically, the CNV scores of PC4 were further increased in IAC 

(Supplementary Figure 17B). These results suggest that PC4 might be a subpopulation 

progressively accumulates with LUAD progression and helps drive LUAD invasion. 

Further spatial distribution analyses found that PC4 signature genes were highly enriched 

in the border between tumor regions and adjacent normal regions. Besides, peripheral tumor 

regions also expressed relatively high levels of this signature (Figure 5G-H). These results 

suggest that PC4 may be a population aids malignant cell invasive at leading edge of tumor 

tissues. To further evaluate the local immune state of PC4 enriched regions, we correlated the 

signature score with immune cell abundance. Interestingly, alveolar macrophages, Langerhans 

cells and Tregs were the top-ranked correlated immune cells, indicating a local immune 

suppressive state (Figure 5I). Alveolar macrophage was the most positively correlated immune 

cell type, and the correlations were higher in IAC patients than those in MIA. These results were 

in line with a recent report that alveolar macrophages accumulate close to tumor cells early 

during tumor formation to promote epithelial–mesenchymal transition and invasiveness in 

tumor cells, also induce a potent suppressive Treg response21. We also found the expression 

level of immune suppressive modulators MDK and LGALS9 were upregulated in PC4, 

indicating an immune suppression phenotype (Figure 5J)46-48. Spatial analysis of immune cell 

types and states of leading edge of tumor regions reveals a local suppressive immune 

environment involved in promoting cancer cell invasion. 

In order to identify which drugs might be useful to suppress PC4 malignant cells, 

pRRophetic49 was applied to predict drug sensitivity from malignant cell gene expression levels. 
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Our analysis showed that Epothilone B50, BI 253651 and Bortezomib52 had significantly lower 

IC50 values in PC4 than that in other PCs (Figure 5K), suggesting that PC4 has the higher 

sensitivity to these three drugs. These three drugs have been reported to prevent cancer cells 

from proliferating by interfering with cell cycle. Consistently, the cell cycle activity was 

significantly upregulated in PC4 cells (Figure 5I). Considering the presence of a localized 

suppressive TIME remodeling and an accumulation of invasive malignant cell population in the 

progression of LUAD, the combination of chemotherapy and immunotherapy holds promising 

potential as an effective therapeutic approach for advanced or metastatic cases of LUAD (e.g., 

IAC). 

 

Discussion 

The understanding of local immune remodeling in LUAD pathological progression is limited. 

In this study, we presented a comprehensive spatial cellular organization map in MIA and IAC 

by integrating STs data and scRNA-seq data of tumor tissues and normal lung tissues from 

eight LUAD patients. In total, we identified ten COPs that recapitulated both known and new 

tissue architectures, including well-organized immune cell structures, such as LAs and TLSs. 

By comparing the immune states and functional potential of those immune cells enriched or 

depleted in malignant cell enriched COPs, we observed the presence of local protumor 

remodeling and immunosuppression during pathological progression that comprised the 

increase of immune inhibitory factors of CD4+ T cells and the decrease in cytotoxicity by CD8+ 

T cells and NK cells as well as a reduction in inflammatory activity by dendritic cells (Figure 6I). 

Thus, investigating the local immunosuppressive remodeling during LUAD pathological 

progression may facilitate the discovery of protumor immune components and targets for 

immune therapy. 

It has been reported that high-order arrangements of cells, such as lymphocyte aggregates 

(LAs) and tertiary lymphoid structures (TLSs), represent structural and functional components 

in tumor tissues and contribute to a positive immune therapeutic response and clinical 

outcomes14,15,53,54. In this study, we identified COP7, which was highly colocalized with TLSs 

and LAs, and was associated with both functional and dysfunctional immune cell types. 

However, TLAs&LAs signature defined by STs were positively correlated with immune therapy 
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outcomes in several independent ICI data sets. Notably, B cells were markedly enriched in 

TLSs&LAs regions, especially in TLSs, while plasma cells were diffusely distributed throughout 

the tumor bed, suggesting a potential activated B cell immune response in TLSs&LAs+ samples. 

In the present work, we validated the a more active B cell immune state in TLAs&LAs-high 

LUAD samples, including the presence of clonally expanded B cells and somatic hypermutated 

BCRs (Figure 6II). It is also accordance with several previous studies showing that infiltration 

of B cells and plasma cells correlated with TLSs presence14,53. Altogether, B cell immune 

responses contribute to antitumor function in TLSs presence tumor samples and promotes 

immune therapy efficiency in these samples. 

Tumor-associated macrophages (TAMs) play diverse roles in cancer progression, with 

their functions and states being influenced by their specific locations 21,30. In this study, we 

identified two distinct macrophage populations: alveolar macrophages (AMs), which are tissue 

resident macrophages (TRMs) and monocyte-derived macrophages (MDMs). We found both 

AMs and MDMs exhibited high enrichment of COP5, indicating their close aggregation and 

resemblance to a niche-like local tissue environment, representing a potential therapeutic target. 

MDMs were associated with energy metabolism (e.g., oxidative phosphorylation, OXPHOS) 

changes as disease progressed, and there was a reduction in the expression of MHC II 

molecules as disease progressed, suggesting a potential impairment in the antigen presenting 

process (APC) (Figure 6III). Alterations in OXPHOS and APC might skew their function toward 

a protumor phenotype. Consistently, higher expression activity of IAC-MDMs signature 

correlated with shorter OS and PFS in two independent datasets. The energy metabolism of 

MDMs may be a potential immunotherapy target to reverse M2 polarization and immune 

suppression in TIME. 

Demonstrating cell-to-cell interactions (CCIs) can provide important insights into tumor-

immune coevolution and immune remodeling7,8. Our findings indicate a progressive increase in 

the number of predicted interactions between malignant cells and other cells within TME with 

pathological progression. Notably, the strength of interactions involving immune checkpoint 

receptors, such as LGALS9 and NRP1, was found to be heightened in patients with invasive 

adenocarcinoma (IAC) (Figure 6IV). Furthermore, LGALS9 expression was significantly 
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elevated in malignant cells of IAC patients. It is worth noting that LGALS9 has been reported to 

be associated with immunomodulatory activity and cancer immune evasion40. These results 

suggest potential therapeutic targets for immune-based treatments that could enhance the 

development of an anti-tumoral TIME. 

The presence of interpatient heterogeneity among malignant cells from different patients 

posed a challenge in directly comparing them. To addressed this issue, we implemented an 

integration method that takes into consideration the individual characteristics of each patient to 

identify distinct phenotypic clusters within the malignant cells. Utilizing this strategy, we 

discovered a subgroup of malignant cells (i.e., PC4) located at the boundary of tumor tissues, 

which exhibited enhanced invasive potential (Figure 6V). Notably, the expression activity of the 

signature genes associated with this phenotypic cluster showed a significant negative 

correlation with OS and PFS in other independent datasets. Furthermore, these cells were 

found to colocalize with AMs. This finding aligns with a recent study highlighting the 

accumulation of tissue resident macrophages (TRMs) in close proximity to tumor cells during 

early tumor formation, promoting EMT and tumor cell invasiveness and inducing a Treg 

response. Furthermore, we found that PC4 cells showed increased sensitivity to drugs that 

target the cell cycle pathway. This suggests that combining chemotherapy and immunotherapy 

may hold promising potential as an effective therapeutic approach for advanced or metastatic 

cases of LUAD, particularly those with an IAC subtype. 

In this study, although the 10X Visium technology used did not achieve single cell 

resolution, spatial cellular organization is the crucial factor that determines tumoral immune 

response and cancer invasive progression. To overcome this limitation, we employed a 

deconvolution strategy to maximize the resolution and provide the spatial location and 

composition of different cell types within tumor tissues. Moreover, due to the inherent variability 

in sample collection, it was challenging to robustly demonstrate the progression trajectory using 

a small number of patient samples. However, we were able to integrate omics data from 

multiple tumor tissues at different pathological stages, which help us to dissect the recurrent 

spatial cellular organization in LUAD and gain valuable insights into the progression of the 

disease. At last, our findings could be further validated in animal models, which provide an 
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opportunity to experimentally manipulate and investigate the spatial cellular organization in 

LUAD, allowing for a more comprehensive understanding of the disease progression and 

potential therapeutic interventions. 

To identify potential therapeutic targets, it is essential to comprehend the dynamic spatial 

cellular organization of cells within TME. In our study, we utilized a combination of STs data 

and scRNA-seq data to gain insights into specialized cells within LUAD TME. This integration 

allowed us to understand how these cells are organized in space, how their functional states 

vary across LUAD progression and how these structures impact clinical outcomes. By 

employing this approach, we have achieved a deeper understanding of the structural aspects 

of immunity in LUAD, which in turn provides a valuable resource for the identification of potential 

therapeutic targets. 

 

 

Methods 

Patient enrollment and sample collection 

Eight patients who underwent surgery in the Department of Thoracic Surgery of Fudan 

University Shanghai Cancer Center were enrolled in this study. The inclusion criteria were 

as fallowing: (1) mixed ground-glass opacity (GGO) featured lung nodule; (2) treatment 

naïve; (3) maximum diameter of the tumor f 3.0 cm; (4) the frozen section was diagnosed 

as minimally invasive adenocarcinoma (MIA) or invasive adenocarcinoma (IAC), and 

verified with paraffin section by pathologists.  

This study was reviewed and approved by the Institutional Review Board of FUSCC. Each 

patient has signed the informed consent form before tissue collection for research studies.  

Freshly tumor (n = 8) and adjacent normal lung samples (n = 8) were delivered within 

MACS® Tissue Storage Solution (Miltenyi Biotec) on ice directly from the operating room 

to the laboratory after frozen pathology (1-2h).  
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Sample handling 

Each obtained tumor sample was divided into three pieces and processed for spatial 

transcriptomics (ST), single-cell RNA sequencing (scRNA-seq), and bulk sequencing, 

respectively. The following steps are performed on ice. Briefly, tumor pieces for scRNA-

seq were rinsed with cold phosphate-buffered saline (PBS), minced into pieces 

(approximately 1 mm3) and set aside in PBS for preparing single-cell suspensions. Tumor 

pieces for ST were embedded in optimal cutting temperature compound (OCT) compound 

(SAKURA) and then snap-frozen on dry ice immediately and stored at -80℃  until 

cryosectioning. The remaining tumors were frozen at -80℃ for bulk sequencing (RNAseq 

and WES).  

Meanwhile, all paired adjacent normal lung samples were processed for bulk sequencing, 

among which three samples (P02, P04 and P12) were processed for scRNA-seq as 

mentioned above. 

Single-cell suspensions for scRNA-seq 

1 mm3 tumor pieces were enzymatically digested with 20ml digestion medium containing 

250 U/ml collagenase I, 100 U/ml collagenase IV (Worthington) and 30 U/ml DNase I 

(Worthington) for 45 min at 37°C in a shaking water bath with agitation. Then, the 

suspension was filtered through a 70-μm cell strainer, and centrifuged at 300g for 8 min. 

After removing the supernatant, the cell pellet was suspended in red blood cell lysis buffer 

(Miltenyi Biotec) for 5 min and centrifuged at 300g for 8 min. the pellet was washed twice 

and re-suspended with PBS with 0.04% BSA. After re-filtered through a 35μm cell strainer, 

the dissociated single cells were stained with AO/PI for cell concentration and viability 

assessment through Countstar Fluorescence Cell Analyzer (ALIT). The cell concentration 

was adjusted to 1000 cells/μl approximately. 

scRNA-seq 

Library construction was performed according to the protocol of 10X Genomics Chromium 

Controller Instrument and Chromium Single Cell 39 V3 Reagent Kits (10X Genomics). After 
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quantified by the Qubit High Sensitivity DNA assay (Thermo Fisher Scientific) and 

Bioanalyzer 2200 (Agilent), the constructed libraries were sequenced on NovaSeq 6000 

(Illumina) platform.  

Tissue section preparation, fixation, staining and imaging 

Cryosections were cut in the cryostat (Leica) with a thickness of 10 μm. Firstly, RNA 

integrity number was assessed with 10 slides through the RNeasy Mini Kit (QIAGEN), of 

which the acceptable quality level is g7. Secondly, the permeabilization time was optimized 

with Visium Spatial Tissue Optimization Reagent Kits (10X Genomics). Sections on Visium 

Spatial Tissue Optimization Slides (10X Genomics) were fixed, stained, and then 

permeabilized for different times. The degree of mRNA release is transferred to a 

fluorescence signal and captured by the fluorescent microscope (ECLIPSE Ti, Nikon). The 

permeabilization time that produces the highest fluorescence signal with minimum signal 

diffusion was considered optimal. In this study, 6 min is optimal permeabilization time. Then, 

tissue sections on Visium Spatial Gene Expression Slides (10X Genomics) were incubated 

at 37℃ 1 min, fixed in methanol at -20℃ for 30 min. The slides were stained after being 

incubated in isopropanol for 1 min, Hematoxylin for 7 min, Bluing Buffer for 2 min, and 

Eosin for 1 min. After each staining step, slides were washed with DNase and RNase free 

water. Stained tissue sections are imaged by the microscope (ECLIPSE Ti, Nikon) and 

carefully reviewed by pathologist to annotate as tumor tissue, tumor adjacent tissue, 

bronchiole, coal dust, vascular, lymphoid aggregates and tertiary lymphoid structures.  

ST library construction and sequencing 

Tissue permeabilization cDNA Synthesis, Library Construction were performed with Visium 

Spatial Gene Expression Reagent Kits (10X Genomics) and Library Construction Kit (10x 

Genomics) according to the Visium Spatial Gene Expression User Guide (CG000239, Rev 

B, 10x Genomics). the constructed libraries were sequenced on NovaSeq 6000 (Illumina) 

platform. 
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Whole exome sequencing and data processing 

DNA from tumors and paired adjacent normal lung samples was extracted using TIANamp 

Genomic DNA Kit (TIANGEN) following the manufacturer9s instructions. Exon library was 

constructed using NEBNext® Ultra™ II DNA Library Prep Kit for Illumina (NEB). DNA 

library hybridization was performed by using Agilent SureSelect Human All Exon V6 

(Agilent). Paired-end sequencing (150 bp) was performed on the Illumina NovaSeq 

platform. For WES analysis, sequencing reads were aligned to the hg38 reference genome 

using bwa55 (v.0.7.17). Picard (v.2.27.4) was utilized for marking putative duplications. 

Sites that potentially contained small insertions or deletions were realigned and 

recalibrated using GATK56 (v.4.3.0) modules. The recalibration process involved the 

utilization of known variant sites from 1000G phase1 high confidence snps and Mills and 

1000G gold standard indels. Somatic mutations were called using GATK Mutect2. 

RNA-seq and data processing 

Total RNA from tumors and paired adjacent normal lung samples was extracted using 

TRIzol reagent (Invitrogen). The cDNA libraries were constructed by using the TruSeq 

Stranded mRNA Library Prep Kit (Illumina) according to the manufacturer9s instructions. 

The libraries were sequenced on HiSeq X platform (Illumina) and 150 bp paired-end reads 

were generated. RNA-seq reads were aligned to the reference human genome (hg38) with 

STAR57 (v.2.6.1a). Then featureCounts58 (v.1.6.4) was used for quantification and 

DESeq259 was used for differential analysis. 

Spatial transcriptomics data processing and basic analysis 

Raw Visium Spatial RNA-seq output and bright field of images of hematoxylin and eosin (H&E) 

stained biopsy were processed by spaceranger (V1.2.0) to detect tissue, align reads and 

generate feature-spot matrix. Basic QC was applied on these data. In detail, spots with low 

transcript content (UMIs count less than 1,000) were removed and HE stained images were 

labeled by a pathologist to indicate which spots contained cancerous and noncancerous tissues. 

Then we defined tumor signature genes and TAT signature genes by performing differential 
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expression genes analysis between bulk RNA-seq profiles of bulk tumor and bulk normal lung 

tissues (Supplementary Figure2). To verify whether the spatial transcriptomic features are 

consistent with the histological information, we designed a model to distinguish cancerous spots 

and non-cancerous spots using tumor signature genes score and normal lung signature genes 

score. We used the Area Under the Curve (AUC) to measure the ability of this model to 

distinguish between two classes. A randomly selected genes set was used as a negative control. 

Raw single-cell sequencing data processing and basic analysis 

Raw scRNA-seq data were preprocessed, demultiplexed, align to human reference genome 

(hg38) by using cellranger (v.4.0.0）11. Cellular debris and doublets were considered as outliers 

and outliers were detected using the median absolute deviation (MAD) from the median. For a 

given metric (e.g., library size or the number of detected genes), outlier was one that lies over 

two number of MAD away from median. Low quality cells where greater than 10% of transcripts 

were derived from the mitochondrial genome were excluded. Finally, 45,053 cells were retained 

for downstream analysis. 

Raw UMI counts were normalized and scaled and used for PCA using Seurat (v.3.2.3)60. 

Unsupervised clustering analysis were performed. UMAP was used for visualization for clusters. 

First, we identified DEGs for each cluster using FindAllMarkers function in Seurat and inferred 

the major cell types of each cluster based on the top-ranked DEGs. Totally, we defined 8 major 

cell types, including T/NK cells (CD3D/CD3E), B lineage cells (MZB1/MS4A1), mast cells 

(TPSB2/TPSAB1), myeloid cells (CD68/S100A8/S100A9), endothelial cells 

(VWF/PECAM1/CD34), fibroblasts (DCN/COL1A2/COL3A1), ciliated epithelial cells 

(TPPP3/FOXJ1) and epithelial cells (EPCAM/SFTPB).  

Analysis of copy number variations (CNVs) in epithelial cells 

Copy number variations (CNVs) in epithelial cells were inferred using inferCNV (v.1.2.1)12 with 

endothelial cell as a control. To quantify the level of CNVs, we first computed the mean of 

squares of relative CNV values across each chromosome (chrX and chrY were excluded in this 

analysis) in an epithelial cell and then aggregated all chromosomes into an average score. 
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More specifically, if we let �ý�ý denotes the CNV value of gene ā in epithelial cell ÿ, the CNV 

score of epithelial cell ÿ is given in Equation (1): 

�ý� ĀýĀÿÿÿ = ∑ ∑ (�ý�ý − 1)2þý∈ĀĀ ÿ (1) 

where þ  is the number of genes located at chromosome ý  and ÿ  is the number of 

autochromosomes. 

Spatial transcriptomics spots deconvolution using SPOTlight 

To estimate the cellular composition in each spot in STs data, SPOTlight16 was used to 

deconvoluted transcriptome profile in each spot into a combination of cell type specific 

transcriptome profiles. We first acquired the marker genes of each cell type in scRNA-seq data, 

then further training the cell type topic profiles and deconvolute the spots into a cellular 

composition using the function spotlight_deconvolution. The same analysis procedure was also 

applied to estimate the local immune cell composition in each spot. 

Cellular organization patterns identification 

All deconvolution results were integrated and clustered into ten cellular organization patterns 

(COPs) using standard scRNA-seq analysis pipeline in Seurat. Then we created a two-

dimensional embedding of spotwise cellular compositions using uniform manifold 

approximation and projection (UMAP) for visualization. Spots with similar cell type composition 

were located close to each other in this UMAP space (Supplementary Figure6). 

Linking COPs to pathologically annotated areas 

To link the COPs to pathologist-annotated areas, we assessed the degree of enrichment or 

depletion of annotated areas in each COP by the following approach. Let ý  be all spots 

present in STs data, let ÿ be the set of spots associated with a pathologically annotated area 

and let � be the set of spots in a COP. Then conduct a Fisher9s exact test (two-sided) to 

evaluate the significance of overlap between ÿ  and � . For each COP construct a 2X2 

contingency table is illustrated in Table 1: 
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Table 1 Contingency table used for evaluate the degree of enrichment or depletion of 

annotated areas in each COP 

 Spots in COP Spots not in COP 

Associated with P |� + ÿ| |(ý − �) + ÿ| 
Not Associated with P |� + (ý − ÿ)| |(ý − �) , (ý − ÿ)| 

 

Odd ratios ( þ� ) and p-values ( ā ) obtained from above analyses were transformed into 

enrichment/depletion scores as presented in Equation 2: 

ÿÿÿÿý/þÿÿā Āÿ þÿāýÿāÿĀÿ ĀýĀÿÿ = {−Φ−1 (ā2) , ÿĀ þ� ≥ 1Φ−1 (ā2) , ÿĀ þ� < 1 (2) 

where −Φ−1 is the inverse cumulative distribution function of standard normal distribution. 

Quantifying the immune cell infiltration level in each COP 

To quantify the infiltrating level of cell types (immune cell types) in each COPs, for a specific 

cell type, we first calculated the average proportion value as the observed average. Then we 

permuted the labels of spots and randomly selected a set of spots that matched the number of 

spots in the COP, computed the average proportion value as the permuted average, repeated 

this procedure 1,000 times. The differences between observed average and permuted average 

were computed and the mean value of the differences scaled by the its standard deviation was 

taken as the relative infiltrating score for each COP. Specifically, for a certain cell type, let �ýÿĀĂÿăĂā  denotes the average proportion value of this cell type and let �þĂÿ�ĂāĂāÿ  denotes the 

average proportion value in ÿā/ permutation. The relative infiltrating score is defined as follow: �ÿ = �ýÿĀĂÿăĂā − �þĂÿ�ĂāĂāÿ (3) 

ÿÿý�āÿ�ÿ ÿÿĀÿýāÿ�āÿÿā ĀýĀÿÿ = ∑ �ÿÿ1000√(�ÿ − ∑ �ÿÿ1000)21000
(4)

 

Positive scores indicate relative enrichment but negative scores represent relative depletion 

(Supplementary Figure 8B-C, Figure 1H and Figure 2C). 
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Identifying TLSs signature genes 

TLSs&LAs signature genes were identified from 5 TLSs&LAs+ STs data by differential 

expression analysis and AUC validation. We first choose four TLSs&LAs + STs data and 

applying DEGs analysis to identify TLSs&LAs marker genes FindAllMarkers function in Seurat. 

Then only common DGEs are further validated in the remain one and genes with average AUC 

greater than 0.7 in at least 4 samples were keep for further analysis (Supplementary Figure 

11A). These analyses resulting in 13 TLSs&LAs sigature genes, including LTB, TRBC2, 

CXCR4, CORO1A, RPS27A, TRAC, CCL19, TRBC1, MS4A1, CD79A, ZFP36L2, CCR7 and 

BIRC3.  

BCR repertoire profiling using bulk RNA-seq 

To identify and quantify the IGH and IGL clonotype in bulk RNA-seq samples from Yuan et al. 

cohort, MiXCR (v.3.0.13)29 was used to perform this analysis in <shotgun= mode with 

parameters --species hsa --starting-material rna --only-productive --impute-germline-on-export 

--assemble "-ObadQualityThreshold=0" --contig-assembly –align "-OsaveOriginalReads=true". 

For each clonotype, V gene mutations were extracted from the 88AllVAligments99 column 

provided by the MiXCR pipeline and summed as described in a previous study14. 

Signature gene score analysis and pathway enrichment/activity analysis 

The expression activity of gene sets generated in this study (e.g., TLSs&LAs signature genes) 

or downloaded from other studies (e.g., cytotoxic genes) was quantified by GSVA (v.1.34.0)61 

and Seurat function AddModuleScore for bulk RNA-seq data and scRNA-seq data, respectively. 

Immune cell related signature gene sets were collected from previous studies (Supplementary 

Table 5). DEGs between macrophages from IAC tumor tissues and normal lung tissues were 

subjected to pathway enrichment analysis using the Gene Ontology-Biological Processes 

(GOBP) database and the enrichr function from gseapy (v.1.0.6)62. Pathway activities of 

epithelial cells were evaluated by GSVA with hallmark signature derived from the MSigDB 

(v.7.1)63. 
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Data availability 

 The generated STs and scRNA-seq data in this study have been deposited to Genome 

Sequence Archive (GSA) in BIG Data Center, Beijing Institute of Genomics (BIG) under 

accession number HRA005812. Processed STs and scRNA-seq data in this study have been 

deposited in Zenodo (https://doi.org/10.5281/zenodo.8417887). This study additionally 

included analyses of publicly available datasets. The accession numbers and links of these 

public datasets are listed in Supplementary Table 10. 

 

Code availability  

The original code used to analyze the data of this study is available at 

https://github.com/haojiechen94/LUAD_COPs. 
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Main Figures 

Figure 1 Defining the landscape of cellular organization patterns in LUAD pathological 

progression by integrating Spatial Transcriptomics with single cell RNA-seq 

(A) Schematic depicting acquisition of whole exome sequencing (WES), bulk RNA-seq, spatial 

transcriptomics (STs) and single-cell RNA-seq (scRNA-seq) data from eight LUAD patients with 

MIA and IAC, integration of STs data with scRNA-seq data identifies cellular organization 

patterns (COPs) in LUAD, reveals the local immune states during LUAD progression, explores 

the role of spatial architectures of immune cells and dissects spatial characteristics of malignant 

cells. (B) UMAP view of 11 cell types identified from scRNA-seq data. (C) Location and 

proportion of 11 cell types in a representative slide (P01). (D) HE image showing the histological 

annotation of a representative slide (P01). (E) UMAP showing STs spots colored by 

histopathological annotation types. T, tumor tissues, TAT, tumor adjacent tissues. (F) UMAP of 

ten COPs discovered in LUAD by integrating STs data with scRNA-seq data. (G) Heatmap 

depicting enrichment/depletion level of each COP in each histological/pathological region and 

the proportion in each patient. 8*9 indicates rank sum test derived p-value less than 0.05. (H) 

Heatmap of relative cellular compositions in each COP. 

 

Figure 2 Local protumor immune remodeling during LUAD pathological progression 

(A) Schematic of neighboring immune cells quantification and cellular states and functional 

potential evaluation. (B) UMAP of 34,545 immune cells from 8 tumor tissues and 3 normal 

tissues colored by annotated cell types (left panel), expression of marker genes for each 

immune cell type and colored by cell groups (right panel). (C) Heatmap of immune cell 

enrichment/depletion levels in each COP, bar plot showing proportion of spots from MIA (blue) 

and IAC (red) patients. (D) Bubble heatmap showing the percentage of cells expressing 

immune inhibitory checkpoint genes (indicated by the size of circle) as well as their relative 

expression levels (indicated by the color of circle) in each CD4 T cell subpopulation. (E) UMAP 

plot visualization of CD4 T cells colored by annotated cell types and inhibitory immune 

checkpoint gene scores. (F) Bubble heatmap showing the percentage of cells expressing 

cytotoxic genes as well as their relative expression levels in each CD8 T cell subpopulation. (G) 
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UMAP plot visualization of CD8 T cells colored by annotated cell types and cytotoxic gene 

scores. (H) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as 

well as their relative expression levels in each NK cell subpopulation. (I) UMAP plot visualization 

of NK cells colored by annotated cell types and cytotoxic gene scores. (J) Bubble heatmap 

showing the percentage of cells expressing inflammatory genes as well as their relative 

expression levels in each dendritic cell subpopulation. (K) UMAP plot visualization of dendritic 

cells colored by annotated cell types and inflammatory gene scores. 

 

Figure 3 Spatial organization structures are associated with pathological progression 

and distinct clinical outcomes in LUAD 

(A) A schematic illustration of colocalization of functional and dysfunctional immune cells in 

LAs&TLSs (COP7). (B) Mean AUC of TLSs&LAs signatures identified from leave-one-out cross 

validation analyses on TLSs&LAs+ STs data. (C) Spatial heatmap of TLAs&LAs signature 

score and HE image of pathologically identified TLSs&LAs areas in a representative slide (P04). 

(D) ROC curves of TLSs&LAs detection based on the identified signature genes in each slide. 

(E) Kaplan-Meier curves displaying differences in progression-free survival (PFS) or overall 

survival (OS) between patients whose pretreatment tumors had high or low level of TLSs&LAs 

signatures scores in the Prat et al cohort, the Jung et al cohort and the Cho et al cohort receiving 

immune checkpoint inhibitory therapy. (F) HE images of pathologically identified TLSs&LAs 

areas and spatial distribution and proportion of B cells and plasma cells in two representative 

slides. (G-H) Box plots of the proportion of IGH/L clone types counted time greater than 100 

(indicate colon expansion) and the average IGH/L V genes mutation counts (indicate somatic 

hypermutation) between TLSs&LAs high and low samples from Yuan et al cohort, p-values 

were derived from rank sum test. (I) A schematic illustration of distinct spatial inches for aveolar 

macrophages (AMs) and monocyte-derived macrophages (MDMs) in COP5. Spatial distribution 

and proportion of AMs and MDMs in two representative slides. (J) Box plots showing the 

proportions of AMs and MDMs in COP5 spots across tumor (T) and tumor adjacent tissues 

(TAT) from MIA and IAC patients. (K) Functional annotation of differentially expressed genes 

between MDMs from normal lung tissues (N-MDMs) and IAC tumor tissues (IAC-MDMs). (L) 
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Bubble heatmap showing the percentage of cells expressing TAM associated genes and 

cathepsins as well as their relative expression levels in MDMs from different tissue types. (M-

N) Kaplan-Meier curves of PFS and OS for TCGA-LUAD cohort and FUSCC-LUAD cohort 

based on low and high IAC-MDMs (M) or N-MDMs (N) signature scores. 

 

Figure 4 The alterations in malignant cells molecular characteristic and changes in 

crosstalk between malignant cells and TME cells during LUAD progression 

(A) Boxplots showing signature scores of scRNA-seq data defined MIA/IAC malignant cell 

marker genes in an independent cohort (FUSCC-LUAD). (B-C) Scatter plots of correlation of 

expression using Pearson correlation coefficients between MIA/IAC malignant cell signature 

and cytotoxic score (B), FOXP3 (C) in FUSCC-LUAD cohort. (D) Overview of the selected IAC 

malignant cells upregulated ligand-receptor interactions, p-values are indicated by circle size, 

relative interaction strengths indicated by color. (E) Expression levels of three immune 

modulators in normal epithelial cells, MIA malignant cells and IAC malignant cells. (F) Bubble 

heatmap showing the percentage of cells expressing immune modulators, cytotoxic genes and 

immune inhibitory genes as well as their relative expression levels in malignant cells and T cells 

across different progression stages in an independent dataset. 

 

Figure 5 Integration method identified a unique leading edge malignant cell state during 

LUAD pathological progression 

(A) UMAP of malignant cells after removing patient specific signals by integration method. Cells 

are colored by identified clusters (phenotypic clusters). (B) The proportion of eight malignant 

cells phenotypic clusters in MIA and IAC patients. (C) Heatmap of hallmark pathway activity 

among phenotypic clusters. (D) Hazard ratios of all phenotypic cluster signatures in two LUAD 

cohorts. (E) Trajectory analysis of malignant cell phenotypic clusters, cells were colored by their 

pseudotime, SFTPC gene expression level and CNV score. (F) Trajectory plot showing the 

distribution of PC4 on the malignant cell progression trace. (G) Spatial heatmaps of PC4 

signature scores in two representative slides. Red dots indicate the border of tumor region 

(leading edge). (H) Dividing spots into eight groups based on their distances to the tumor 
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boundary and the mean of PC4 signature scores in each group. (I) Correlations between PC4 

signature scores and the proportions of other 30 immune cell type. (J) A boxplot showing the 

predicted drug sensitivity score (IC50) for PC4 and other malignant cells based on their gene 

expression profiles. (K) A boxplot showing the cell cycle pathway activity of PC4 and other 

malignant cells based on their gene expression profiles, p-values were derived from rank sum 

test in both (J) and (K). 

 

Figure 6 Schematic overview of spatial cellular organization and functional states 

transition involved in the cancer progression of LUAD 

Local pro-tumor immune remodeling during pathological progression. I. Depletion of functional 

immune cells (Cytotoxic NK cells and CD8 T cells) and enrichment of dysfunctional immune 

cells (Inhibitory CD4 T cells and Low inflammatory DCs) surrounding malignant cells with LUAD 

progression. II. Association between TLSs and B cell clonal expansion. III. The changes of 

macrophage state during LUAD progression, OXPHOS, oxidative phosphorylation. IV. 

Increased number of CCIs and expression of immune modulators in malignant cells during 

LUAD progression, CCIs, cell-to-cell interactions. V. A specialized malignant cell phenotypic 

cluster located at the boundary of tumor tissues, EMT, epithelial-mesenchymal transition, CNVs, 

copy number variations. 

 

Supplementary Figures 

Supplementary Figure 1 Basic quality control Spatial Transcriptomics (STs) 

(A-B) Spatial heatmaps of the number of UMIs and features (genes) in each slide and  

boxplots showing the overall distributions of the number of UMIs and features. 

 

Supplementary Figure 2 Differentially expressed genes between bulk RNA-seq data from 

normal lung tissues (bN) and tumor tissues (bT) 

Using DEseq2 to identify significant differentially expressed genes between bN and bT. Those 

genes with |log2 fold change|>1 and adjusted p-value<0.01 were defined as significantly 

differentially expressed genes. 
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Supplementary Figure 3 Evaluating the consistency between transcriptomic signature 

and histologically annotated areas 

(A) HE images and spatial heatmaps of expression of bN and bT signature genes. (B) ROC 

curves for classifying non-cancerous spots (bTAT) in STs data using bN and bT signature 

genes or randomly selected genes (negative control). P12 was a special case with low AUC 

and excluded from the downstream analysis. (C) Boxplots showing the AUC values in (B). 

 

Supplementary Figure 4 Quality control metrics across the scRNA-seq dataset 

Statistical summary of cells passing quality control and showing the number of cells, the 

percentage of UMIs from mitochondrial genes, the number of UMIs, the number of features in 

each sample.  

 

Supplementary Figure 5 Dissecting LUAD and normal lung ecosystems by scRNA-seq 

(A) UMAP visualization of eight major cell types and cells are colored by their annotated cell 

types. (B) Bubble heatmap showing the percentage of cells expressing major cell type markers 

(indicated by the size of circle) as well as their relative expression level (indicated by the color 

of the circle) across all cell types. (C) Stacked bar plots showing the fraction of each major cell 

type derived from each patient (left) and each tissue type (middle). Bar plots showing the 

absolute number of cells in each major cell type. (D) UMAP visualization of night epithelial 

subclusters and cells are colored by their annotated cell types. (E) Bubble heatmap showing 

the percentage of cells expressing well-known normal epithelial cells markers and malignant 

cells markers as well as their relative expression level across all epithelial subclusters. (F) 

UMAP visualization of all epithelial cells colored by their inferred CNV scores. Green circle 

indicates normal epithelial cells and red circle indicates malignant cells. (G) The CNV scores of 

cells from each tissue type. 

 

Supplementary Figure 6 Workflow of cellular organization patterns identification 
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Deconvolution is applied to quantify the cellular composition in each spot and then 

unsupervised clustering is performed to integrate spots from different slides and identify cellular 

organization patterns (COPs), COPs are visualized in two dimensional UMAP. Finally, COPs 

are mapping into the pathologically annotated areas in HE images, by this mean to link the 

COPs to spatial structures. TAT, tumor adjacent tissues, TLSs, tertiary lymphoid structures, 

LAs, lymphoid aggregates. 

 

Supplementary Figure 7 Spatial distribution of COP8 and pathologically annotated 

papillary tissues in P13 

COP8 colocalized with papillary tissues in P13. 

 

Supplementary Figure 8 Subclustering of T/NK cells 

(A) UMAP visualization of T/NK cells subclusters and cells are colored by their annotated cell 

types. (B) Bubble heatmap showing the percentage of cells expressing T/NK sub cell type/state 

related markers as well as their relative expression level across all T/NK cells subclusters. (C) 

Schematic depiction of workflow and specific marker genes used for cell type assignment in 

T/NK cells subclusters. 

 

Supplementary Figure 9 Evaluating relative infiltrating levels of different immune cell 

types in each COP 

(A) Cell type specific topic profiles, circle size indicates the specificity of a topic to this cell type. 

(B) The distribution of differences of observed average proportion and permuted average 

proportion for B cells in each COPs. (C) Scaling the mean of each COP distribution in (B) by 

the standard deviation of the distribution. A larger positive value represents a higher infiltrating 

level of B cells in this COP. A negative value indicates depletion of B cells in this COP compared 

with other COPs. 

 

Supplementary Figure 10 Protumor immune remodeling is also evidenced in scRNA-seq 

data 
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(A-D) Box plots showing the percentages of functional or dysfunctional immune cell type (group) 

across different tissue types. (E) Line plots showing the changes in percentages among cell 

type (group) in (A-D) across different tissue types. 

 

Supplementary Figure 11 Cytotoxic activity of CD4+ T cell subclusters  

(A) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as well as 

their relative expression levels in each CD4+ T cell subpopulation. (B) UMAP plot visualization 

of CD4+ T cells colored by annotated cell types (left) and cytotoxic genes scores (right). 

 

Supplementary Figure 12 Schematic of TLSs&LAs signature genes identification and its 

association with ICI response 

(A) Workflow of TLSs&LAs signature genes identification, choosing four TLSs&LAs + STs data 

and applying DEGs analysis to identify TLSs&LAs marker genes, only common DGEs are 

further validated in the remain one. (B) Boxplots of TLSs&LAs signature scores in DB and NDB 

samples in Hwang et al. cohort. DB, durable benefit, NDB, non-durable benefit. 

 

Supplementary Figure 13 Location and proportion of B cells and plasma cells in STs 

data from TLSs&LAs+ samples or TLSs&LAs- samples 

HE images showing the locations of TLSs and LAs spots, spatial heatmap showing the location 

and proportion of B cells and plasma cells. 

 

Supplementary Figure 14 Molecular and function potential alterations of macrophages 

from different tissue types 

(A) Volcano plot showing the DEGs between monocyte-derived macrophages (MDMs) from 

IAC tumor tissues and normal lung tissues. Antigen presenting related molecules (MHC genes) 

are highlighted in green. M2 polarization related molecules are highlighted in red. (B-C) Violin 

plots of signature scores of MHC II molecules (B), oxidative phosphorylation pathway (C) and 

M2 polarization associated genes (D), across MDMs from different tissue types. 
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Supplementary Figure 15 Increased number of cell-to-cell interactions during 

pathological progression 

The number of CellphoneDB inferred cell-to-cell interactions between normal epithelial 

cells/MIA malignant cells/IAC malignant cells and other cell types in ecosystem. 

 

Supplementary Figure 16 Identification of malignant cells and T cells in a public LUAD 

scRNA-seq dataset including tumor tissues from AIS, MIA and IAC 

A total of 38 cell subpopulations were identified through clustering, and each subpopulation 

was characterized based on the expression of specific marker genes. AT1 cells were identified 

as subpopulations that exhibited high expression of both EPCAM and AGER. Ciliated epithelial 

cells were defined as subpopulations with high expression of both EPCAM and FOXJ1. AT2 

cells were determined as subpopulations showing high expression of both EPCAM and SFTPC. 

Subpopulations that expressed only EPCAM without the usual marker genes associated with 

AT1, ciliated epithelial cells, or AT2 cells were classified as malignant cells. Additionally, T cells 

were identified as subpopulations with high expression of both CD3D and CD3E. 

 

Supplementary Figure 17 Higher CNV scores in PC4 and PC4 malignant cells from IAC 

(A-B) Box plots illustrating the CNV scores for each phenotypic clusters (A) and PC4 in MIA 

and IAC (B). 

 

Supplementary Tables 

Supplementary Table 1 Clinical information of patients in this study 

Supplementary Table 2 Marker genes used to define major cell types and related 

references 

Supplementary Table 3 Marker genes used to define normal epithelial cells and related 

references 

Supplementary Table 4 Marker genes used to define immune cells and related references 

Supplementary Table 5 Immune cell related signature gene sets in this study 
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Supplementary Table 6 TLSs/LAs signature defined by performing leave-one-out cross 

validation on TLSs/LAs+ STs samples 

Supplementary Table 7 Differentially expressed genes between IAC and normal lung 

tissues infiltrated Monocyte-derived macrophages  

Supplementary Table 8 Signature genes of phenotypic cluster 4 (PC4) 

Supplementary Table 9 Predicted sensitive drugs of PC4 

Supplementary Table 10 Accession numbers for public datasets used in this study 
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Figure 1 Defining the landscape of cellular organization patterns in LUAD pathological 

progression by integrating Spatial Transcriptomics with single cell RNA-seq 

(A) Schematic depicting acquisition of whole exome sequencing (WES), bulk RNA-seq, spatial 

transcriptomics (STs) and single-cell RNA-seq (scRNA-seq) data from eight LUAD patients with 

MIA and IAC, integration of STs data with scRNA-seq data identifies cellular organization 

patterns (COPs) in LUAD, reveals the local immune states during LUAD progression, explores 

the role of spatial architectures of immune cells and dissects spatial characteristics of malignant 

cells. (B) UMAP view of 11 cell types identified from scRNA-seq data. (C) Location and 

proportion of 11 cell types in a representative slide (P01). (D) HE image showing the histological 

annotation of a representative slide (P01). (E) UMAP showing STs spots colored by 

histopathological annotation types. T, tumor tissues, TAT, tumor adjacent tissues. (F) UMAP of 

ten COPs discovered in LUAD by integrating STs data with scRNA-seq data. (G) Heatmap 

depicting enrichment/depletion level of each COP in each histological/pathological region and 

the proportion in each patient. 8*9 indicates rank sum test derived p-value less than 0.05. (H) 

Heatmap of relative cellular compositions in each COP. 
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Figure 2 Local protumor immune remodeling during LUAD pathological progression 

(A) Schematic of neighboring immune cells quantification and cellular states and functional 

potential evaluation. (B) UMAP of 34,545 immune cells from 8 tumor tissues and 3 normal 

tissues colored by annotated cell types (left panel), expression of marker genes for each 

immune cell type and colored by cell groups (right panel). (C) Heatmap of immune cell 

enrichment/depletion levels in each COP, bar plot showing proportion of spots from MIA (blue) 

and IAC (red) patients. (D) Bubble heatmap showing the percentage of cells expressing 

immune inhibitory checkpoint genes (indicated by the size of circle) as well as their relative 

expression levels (indicated by the color of circle) in each CD4 T cell subpopulation. (E) UMAP 

plot visualization of CD4 T cells colored by annotated cell types and inhibitory immune 

checkpoint gene scores. (F) Bubble heatmap showing the percentage of cells expressing 

cytotoxic genes as well as their relative expression levels in each CD8 T cell subpopulation. (G) 

UMAP plot visualization of CD8 T cells colored by annotated cell types and cytotoxic gene 

scores. (H) Bubble heatmap showing the percentage of cells expressing cytotoxic genes as 

well as their relative expression levels in each NK cell subpopulation. (I) UMAP plot visualization 

of NK cells colored by annotated cell types and cytotoxic gene scores. (J) Bubble heatmap 

showing the percentage of cells expressing inflammatory genes as well as their relative 

expression levels in each dendritic cell subpopulation. (K) UMAP plot visualization of dendritic 

cells colored by annotated cell types and inflammatory gene scores. 
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Figure 3 Spatial organization structures are associated with pathological progression 

and distinct clinical outcomes in LUAD 

(A) A schematic illustration of colocalization of functional and dysfunctional immune cells in 

LAs&TLSs (COP7). (B) Mean AUC of TLSs&LAs signatures identified from leave-one-out cross 

validation analyses on TLSs&LAs+ STs data. (C) Spatial heatmap of TLAs&LAs signature 

score and HE image of pathologically identified TLSs&LAs areas in a representative slide (P04). 

(D) ROC curves of TLSs&LAs detection based on the identified signature genes in each slide. 

(E) Kaplan-Meier curves displaying differences in progression-free survival (PFS) or overall 

survival (OS) between patients whose pretreatment tumors had high or low level of TLSs&LAs 

signatures scores in the Prat et al cohort, the Jung et al cohort and the Cho et al cohort receiving 

immune checkpoint inhibitory therapy. (F) HE images of pathologically identified TLSs&LAs 

areas and spatial distribution and proportion of B cells and plasma cells in two representative 

slides. (G-H) Box plots of the proportion of IGH/L clone types counted time greater than 100 

(indicate colon expansion) and the average IGH/L V genes mutation counts (indicate somatic 

hypermutation) between TLSs&LAs high and low samples from Yuan et al cohort, p-values 

were derived from rank sum test. (I) A schematic illustration of distinct spatial inches for aveolar 

macrophages (AMs) and monocyte-derived macrophages (MDMs) in COP5. Spatial distribution 

and proportion of AMs and MDMs in two representative slides. (J) Box plots showing the 

proportions of AMs and MDMs in COP5 spots across tumor (T) and tumor adjacent tissues 

(TAT) from MIA and IAC patients. (K) Functional annotation of differentially expressed genes 

between MDMs from normal lung tissues (N-MDMs) and IAC tumor tissues (IAC-MDMs). (L) 

Bubble heatmap showing the percentage of cells expressing TAM associated genes and 

cathepsins as well as their relative expression levels in MDMs from different tissue types. (M-

N) Kaplan-Meier curves of PFS and OS for TCGA-LUAD cohort and FUSCC-LUAD cohort 

based on low and high IAC-MDMs (M) or N-MDMs (N) signature scores. 
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Figure 4 The alterations in malignant cells molecular characteristic and changes in 

crosstalk between malignant cells and TME cells during LUAD progression 

(A) Boxplots showing signature scores of scRNA-seq data defined MIA/IAC malignant cell 

marker genes in an independent cohort (FUSCC-LUAD). (B-C) Scatter plots of correlation of 

expression using Pearson correlation coefficients between MIA/IAC malignant cell signature 

and cytotoxic score (B), FOXP3 (C) in FUSCC-LUAD cohort. (D) Overview of the selected IAC 

malignant cells upregulated ligand-receptor interactions, p-values are indicated by circle size, 

relative interaction strengths indicated by color. (E) Expression levels of three immune 

modulators in normal epithelial cells, MIA malignant cells and IAC malignant cells. (F) Bubble 

heatmap showing the percentage of cells expressing immune modulators, cytotoxic genes and 

immune inhibitory genes as well as their relative expression levels in malignant cells and T cells 

across different progression stages in an independent dataset. 
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Figure 5 Integration method identified a unique leading edge malignant cell state during 

LUAD pathological progression 

(A) UMAP of malignant cells after removing patient specific signals by integration method. Cells 

are colored by identified clusters (phenotypic clusters). (B) The proportion of eight malignant 

cells phenotypic clusters in MIA and IAC patients. (C) Heatmap of hallmark pathway activity 

among phenotypic clusters. (D) Hazard ratios of all phenotypic cluster signatures in two LUAD 

cohorts. (E) Trajectory analysis of malignant cell phenotypic clusters, cells were colored by their 

pseudotime, SFTPC gene expression level and CNV score. (F) Trajectory plot showing the 

distribution of PC4 on the malignant cell progression trace. (G) Spatial heatmaps of PC4 

signature scores in two representative slides. Red dots indicate the border of tumor region 

(leading edge). (H) Dividing spots into eight groups based on their distances to the tumor 

boundary and the mean of PC4 signature scores in each group. (I) Correlations between PC4 

signature scores and the proportions of other 30 immune cell type. (J) A boxplot showing the 

predicted drug sensitivity score (IC50) for PC4 and other malignant cells based on their gene 

expression profiles. (K) A boxplot showing the cell cycle pathway activity of PC4 and other 

malignant cells based on their gene expression profiles, p-values were derived from rank sum 

test in both (J) and (K). 
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Local protumor immune remodeling during pathological progression
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Figure 6 Schematic overview of spatial cellular organization and functional states 

transition involved in the cancer progression of LUAD 

Local pro-tumor immune remodeling during pathological progression. I. Depletion of functional 

immune cells (Cytotoxic NK cells and CD8 T cells) and enrichment of dysfunctional immune 

cells (Inhibitory CD4 T cells and Low inflammatory DCs) surrounding malignant cells with LUAD 

progression. II. Association between TLSs and B cell clonal expansion. III. The changes of 

macrophage state during LUAD progression, OXPHOS, oxidative phosphorylation. IV. 

Increased number of CCIs and expression of immune modulators in malignant cells during 

LUAD progression, CCIs, cell-to-cell interactions. V. A specialized malignant cell phenotypic 

cluster located at the boundary of tumor tissues, EMT, epithelial-mesenchymal transition, CNVs, 

copy number variations. 
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