[N
ROWVONOUITES W N K1

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.563754; this version posted November 1, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Oncogenic RAS-Pathway Activation Drives Oncofetal Reprogramming and
Creates Therapeutic Vulnerabilities in Juvenile Myelomonocytic Leukemia

Mark Hartmann®*, Maximilian Schénung'*, Jovana Rajak?# Valentin Maurer'3# Ling Hai*5#
Katharina Bauer®, Mariam Hakobyan'’, Sina Staeble', Jens Langstein', Laura Jardine®, Roland RéIz°,
Sheila Bohler?, Eleonora Khabirova'®, Abdul-Habib Maag'', Dominik Vonficht'>7, Dirk Lebrecht? Katrin
M. Bernt'3, Kai Tan'#'5, Changya Chen'#'®, Fatemeh Alikarami'®, Tobias Boch'’, Viktoria Flore', Pavlo
Lutsik'®'®, Michael D. Milsom?°, Simon Raffel?!, Christian Buske'!, Simon Haas??2324 Muzlifah
Haniffa®'°, Jan-Philipp Mallm®, Sam Behjati'®?%%, Marc-Jan Bonder?”%2%  Stefan Frohling3%®!,
Charlotte M. Niemeyer?>%?, Joschka Hey'®%$  Christian Flotho?®2$, Christoph Plass'®$, Miriam
Erlacher?32§, Matthias Schlesner*3*$, Daniel B. Lipka'3$

' Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German
Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg,
Heidelberg, Germany

2 Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine,
Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany

3 European Molecular Biology Laboratory Hamburg, Germany; Centre for Structural Systems Biology
(CSSB), Hamburg, Germany

4 Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg,
Germany

5 present address: Clinical Cooperation Unit Neurooncology, German Cancer Research Center
(DKFZ) and National Center for Tumor Diseases Heidelberg, Heidelberg, Germany

6 scOPEN Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany
" Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
8 Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

® Department of Neurosurgery, University of Freiburg, Faculty of Medicine, Medical Center, Freiburg,
Germany

0 Wellcome Sanger Institute, Hinxton, United Kingdom
" Institute of Experimental Cancer Research, University Hospital of UIm, Ulm, Germany

12 Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH
Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental
Medicine (HI-STEM gGmbH), Heidelberg, Germany

'3 Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, USA

14 Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia,
Pennsylvania

'S Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania

16 Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of
Philadelphia, Philadelphia, USA

'7 Department of Hematology and Oncology, Heidelberg University, University Hospital Mannheim,
Mannheim, Germany

'8 Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany

19 Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven,
Belgium

20 Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg,
Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM
gGmbH), Heidelberg, Germany


https://doi.org/10.1101/2023.10.27.563754
http://creativecommons.org/licenses/by-nc-nd/4.0/

72
73
74

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.563754; this version posted November 1, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

21 Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital
Heidelberg, Germany

22 Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH),
Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ),
Heidelberg, Germany

23 Berlin Institute of Health (BIH), Charité - Universitatsmedizin Berlin, Berlin, Germany

24 Berlin Institute for Medical Systems Biology (BIMSB), Max Delbriick Center in the Helmholtz
Association, Berlin, Germany

25 Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
2 Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
27 Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

28 Division of Computational Genomics and Systems Genetics, German Cancer Research Center
(DKFZ), Heidelberg, Germany

29 European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, European Molecular
Biology Laboratory (EMBL), Hinxton, United Kingdom

30 National Center for Tumor Diseases (NCT), Heidelberg, Germany; Division of Translational Medical
Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

31 German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Germany

32 German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and
University Medical Center Freiburg, Germany

3 German-Israeli Helmholtz International Research School in Cancer Biology

34 Faculty of Applied Computer Sciences, Biomedical Informatics, Data Mining and Data Analytics,
University of Augsburg, Augsburg, Germany

35 Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany

* These authors contributed equally as first authors
# These authors contributed equally as second authors

§ Co-senior authors


https://doi.org/10.1101/2023.10.27.563754
http://creativecommons.org/licenses/by-nc-nd/4.0/

75

76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91
92
93
94
95

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.563754; this version posted November 1, 2023. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Correspondence to

Daniel B. Lipka

Section of Translational Cancer Epigenomics

Division of Translational Medical Oncology

German Cancer Research Center (DKFZ) & National Center for Tumor Diseases
(NCT) Heidelberg

Im Neuenheimer Feld 581

69120 Heidelberg

Germany

Phone: +49-6221-42-1613

Email: d.lipka@dkfz.de

Mark Hartmann

Section of Translational Cancer Epigenomics

Division of Translational Medical Oncology

German Cancer Research Center (DKFZ) & National Center for Tumor Diseases
(NCT) Heidelberg

Im Neuenheimer Feld 581

69120 Heidelberg

Germany

Phone: +49-6221-42-1603

Email: m.hartmann@dkfz.de



https://doi.org/10.1101/2023.10.27.563754
http://creativecommons.org/licenses/by-nc-nd/4.0/

96

97

98

99

100

101

102

103

104

105

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.563754; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Highlights

» Epigenomic and transcriptomic landscape of juvenile myelomonocytic leukemia
(JMML) in the context of hematopoietic development.

» The presence of fetal transcription signatures in childhood malignancies is not
indicative of a developmental maturation block.

= High-risk JMML is characterized by oncofetal reprogramming of postnatal
hematopoietic stem cells (HSCs).

» RAS-pathway mutations induce fetal-like gene expression signatures in murine
postnatal HSCs.

» The fetal maturation marker CD52 is a novel therapeutic target in high-risk JMML.
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106  Abstract (226 words, max 200)

107  Aberrant fetal gene expression facilitates tumor-specific cellular plasticity by hijacking
108  molecular programs of embryogenesis®. Persistent fetal gene signatures in childhood
109 malignancies are typically explained by their prenatal origins®®. In contrast,
110 reactivation of fetal gene expression is considered a consequence of oncofetal
111 reprogramming (OFR) in adult malignancies and is associated with aggressive
112 disease’'%. To date, OFR has not been described in the context of childhood
113  malignancies. Here, we performed a comprehensive multi-layered molecular
114  characterization of juvenile myelomonocytic leukemia (JMML) and identified OFR as
115 a hallmark of aggressive JMML. We observed that hematopoietic stem cells (HSCs)
116  aberrantly express mixed developmental programs in JMML. Expression of fetal gene
117  signatures combined with a postnatal epigenetic landscape suggested OFR, which
118 was validated in a JMML mouse model, demonstrating that postnatal activation of RAS
119  signaling is sufficient to induce fetal gene signatures. Integrative analysis identified the
120 fetal HSC maturation marker CD52 as a novel therapeutic target for aggressive JMML.
121 Anti-CD52 treatment depleted human JMML HSCs and disrupted disease propagation
122 invivo. In summary, this study implicates OFR, defined as postnatal acquisition of fetal
123  transcription signatures, in the pathobiology of a childhood malignancy. We provide
124  evidence for the direct involvement of oncogenic RAS signaling in OFR. Finally, we
125 demonstrate how OFR can be leveraged for the development of novel treatment

126  strategies.
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127 Introduction

128 Fetal signatures in cancer have been described for a number of entities including
129 pediatric and adult malignancies, although the cellular origins and molecular
130 mechanisms are mostly obscure®'. For childhood malignancies, the detection of
131  driver mutations at the time of birth revealed that premalignant clones can arise
132 prenatally leading to a maturation block with subsequent malignant transformation™*.
133  However, genetic evidence for a prenatal event cannot be obtained in all patients
134 affected by childhood malignancies, suggesting that alternative molecular
135 mechanisms may establish fetal signatures. In adult malignancies, the concept of
136  ‘oncofetal reprogramming’ (OFR) describes the reactivation of fetal programs in
137 cancer cells originating from postnatal cells-of-origin. OFR could explain the
138  occurrence of fetal expression programs in childhood malignancies for which evidence
139  of a prenatal origin is lacking. However, to date, OFR has not been described in the
140  context of childhood cancer™'".

141 Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative/myelodysplastic
142 neoplasm of early childhood and clinically a highly heterogeneous disease that is
143  defined by the presence of mutations affecting the RAS-signaling pathway'?.
144  Epigenetic disease subgroups, known as epitypes, have been identified as the only
145  solitary significant predictor of overall survival in JMML'3-'8, In addition to global DNA
146  hypermethylation, the upregulation of fetal hemoglobin and the fetal hematopoietic
147  stem cell (HSC) marker LIN28B have been associated with high-risk disease'’-'°.
148  Correspondingly, in a subset of JMML patients oncogenic driver mutations have been
149  found in neonatal blood spots, suggesting a prenatal origin of the disease?°. However,
150 JMML driver mutations can only be detected in a minority of high-risk patients at birth,

151 which may indicate a postnatal origin of the disease in these patients?'. Such
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152  indications of a postnatal disease origin in some cases together with the simple genetic
153 landscape and the profound epigenetic remodeling qualifies JMML as a suitable model
154  to study cancer ontogeny.

155 In this study, we used multi-omics profiling to identify disease-specific transcriptomic
156 and epigenomic aberrations associated with high-risk JMML. We observed an
157  unanticipated discrepancy between prenatal transcription and postnatal methylation
158  states, suggesting OFR as a possible explanation. Using a JMML mouse model driven
159 by HSC-specific activation of a Pfpn11576X mutation revealed that oncogenic RAS
160 pathway activation results in OFR. Furthermore, we demonstrate that OFR drives
161 disease-specific expression programs, resulting in aberrantly upregulated markers in
162 HSCs of high-risk JMML patients. Preclinical data testing one of these aberrantly
163  expressed markers in a xenotransplantation model suggested that CD52 may serve

164  as an efficient therapeutic target in high-risk JMML.

165 Results

166 JMML-related aberrations affect the entire hematopoietic system including
167 hematopoietic stem cells

168 The clinical heterogeneity found across JMML patients has mostly been resolved at
169 the molecular level using DNA methylation analysis which led to the identification of
170 so-called JMML epitypes'®'S. However, the molecular mechanisms driving the
171  establishment of JMML epitypes remain elusive. To systematically characterize the
172 degree of molecular heterogeneity in JMML, we adopted a multi-modal analysis
173  strategy to integrate epigenomic, transcriptomic, and surface marker expression data
174  obtained from patient samples representing all three JMML epitypes: namely low (LM);

175 intermediate (IM); and high methylation (HM) JMML (Fig. 1a, Extended Data Fig. 1,
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Supplementary Table 1)'. Using scRNA-seq of mononuclear cells (MNC) isolated
from JMML patients and healthy subjects of different age groups (Extended Data Fig.
2, Supplementary Table 2), we confirmed that all hematopoietic lineages and major
cell types were present in the hematopoietic systems of JMML patients, although cell
type frequencies were heterogenous across patients (Fig. 1b-d, Extended Data Figs.

3 and 4).
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Fig. 1: JMML-related aberrations affect the entire hematopoietic system including
hematopoietic stem cells. a, Conceptual and experimental overview. Cellular and molecular
aberrations in JMML are characterized in the context of healthy hematopoietic development using
a multi-omics approach to identify disease-specific aberrations that can be used for diagnostic and
therapeutic purposes. (FET: fetal; NEO: neonatal; JUV: juvenile; ADU: adult; MNC: mononuclear
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188 cells; HSC: hematopoietic stem cells; PDX: patient-derived xenograft). b-g, Single-cell RNA-
189  sequencing (scRNA-seq) of mononuclear cells (MNCs) isolated from JMML patient samples and
190 healthy postnatal references. Cell types were annotated using adult human cell atlas data as a
191 reference. b, UMAP of scRNA-seq data colored by disease status (grey: healthy references [REF];
192  red: JMML). ‘REF’ includes data from neonatal, juvenile and adult samples. ¢, UMAPs of scRNA-
193  seq data split by dataset and colored by cell type. Major cell types are indicated in the legend,
194  detailed cell type annotation is included in Extended Data Fig. 3). Erythrobl.: erythroblast; Foll. B
195  cell: follicular B cell; Plasma: plasma cell. d, Stacked bar plot summarizing the cell type frequencies
196 across the scRNA-seq datasets. P1 — P7: JMML samples. e, Dot plot summarizing gene
197  expression of characteristic lineage markers across major hematopoietic cell types in healthy
198 references (REF) and JMML samples. f, Density UMAPs depicting the expression of the
199 hematopoietic stem and progenitor cell markers AVP and CD34. g, Principal component analysis
200 (PCA) of the neutrophil differentiation trajectory. Correlation analysis identified PC 1 and PC 5 as
201 representative of neutrophil differentiation (grey to orange) and disease-specific features (red),
202  respectively. Cells from healthy references: grey; cells from JMML patients: red. Density plots
203  depict the cell density along the axes stratified by cell type (PC 1) or by disease status (PC 5).
204  Bottom panel describes JAK-STAT signaling pathway activity across neutrophil pseudotime for
205  JMML (red) and references (black).

206 However, pronounced differences were observed between JMML samples and
207 healthy controls regarding the frequency of cells expressing typical age-matched
208 hematopoietic stem and progenitor cell (HSPC) marker genes (Fig. 1e,f, Extended
209 Data Figs. 3 and 4). These aberrant expression profiles were also observed in a
210 systematic trajectory analysis and affected all major lineages, including hematopoietic
211  stem cells (HSC; Fig. 1g, Extended Data Fig. 5). All trajectories showed enrichment of
212 inflammatory signaling pathways with a peak in HSCs (Fig. 1g, Extended Data Fig.
213  5d). Together, this data suggested that the HSC compartment is massively altered in

214 JMML.

215 Epitypes are conserved in hematopoietic stem cells of JMML patients

216 To systematically characterize early molecular evolution of JMML epitypes, we
217  investigated the molecular landscape of the HSPC compartment of JMML patients by
218 performing a multi-modal analysis comprising immunophenotypes, epigenotypes, and
219 transcriptomes (Fig. 2a, Extended Data Fig. 6). Lineage-negative (Lin") cells of JMML
220 patients revealed cell surface expression patterns for CD34 and CD38 that were

221  different in frequencies but comparable in global structure to those observed in healthy
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222 references (Fig. 2b, top panel). In contrast, Lin"CD34*CD38"° HSPCs exhibited highly
223 heterogeneous immunophenotypes with respect to CD45RA and CD90 expression
224  (Fig. 2b, bottom panel). This included the appearance of a recently described aberrant
225 Lin"CD34*CD38"°CD45RA*CD90* HSPC population®?*23, The abundance of these
226  immunophenotypically aberrant CD45RA*CD90* HSPCs was distinct across JMML
227  epitypes, with hypermethylated (HM) JMML showing the highest frequency of
228 CD45RA*CD90* HSPCs in an independent validation cohort (n=20 pts; Fig. 2c,
229  Supplementary Table 3). This observation suggested that epitype-related, disease-
230 specific aberrations of gene regulatory programs might already be present in the
231  HSPC compartment of JMML patients. To test this possibility, we generated ultra-low
232 input whole-genome bisulfite sequencing (WGBS) data from different HSPC
233 subpopulations, i.e. the CD45RA/CD90 quadrants of Lin"CD34*CD38"° cells (Fig. 2b,
234  bottom panel, Supplementary Table 4). DNA methylation-based cell type
235 classification®* determined all CD45RA/CD90 subpopulations isolated from JMML
236 patients as HSCs, independent of the epitype, the donor, or the immunophenotypic
237 CD45RA/CD90 quadrant, confirming aberrant molecular programs in the JMML HSC
238 compartment (Extended Data Fig. 7a). In line with this observation, unsupervised
239 analysis of JMML HSC methylomes precisely recapitulated the corresponding
240  epitypes that had been determined by methylation array analysis of bulk MNCs (Fig.
241  2d, Extended Data Figs. 1 and 7b-d). In conclusion, the conservation of epitypes
242 between HSCs and differentiated MNCs from JMML patients reveals DNA methylation
243  as a differentiation-independent and early disease-specific aberration, which confirms
244  JMML as a disease originating from HSCs.

245 Next, we aimed to identify DNA methylation changes in JMML HSCs that are

246  characteristic of the HM epitype, as this epitype is associated with an aggressive

10
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disease course'? 6. Differentially methylated regions (DMRs) detected between HSCs

from HM and non-HM (LM & IM) patients confirmed widespread CpG
hypermethylation, which particularly affected bivalent enhancers and polycomb-
repressed regions associated with developmental processes (Fig. 2e, Extended Data

Fig. 7b and e-l, Supplementary Table 5).
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Fig. 2: Epitypes are conserved in hematopoietic stem cells of JMML patients. a, Left: FACS
contour plots from healthy adult bone marrow (n=1; ADU). Right: schematic representing the
sorting strategy of HSPCs for single-cell RNA-sequencing (top; Lin"CD34*CD387°) and ultra-low
input whole-genome bisulfite sequencing (Lin"CD34*CD387°CD45RA/CD90 quadrants). scRNA:
single-cell RNA-sequencing; WGBS: ultra-low input whole-genome bisulfite sequencing. b, FACS
contour plots depicting expression of CD38 (y-axis) over CD34 (x-axis) in the Lin" (top) and
expression of CD90 (y-axis) over CD45RA (x-axis) in the Lin"CD34*CD38"° (bottom)
compartments of JMML patients (n=8; P1 — P8). Colors refer to the semi-quantitative genome-wide
methylation states in each patient (Extended Data Fig. 1). ¢, Quantification of aberrant Lin
CD34*CD38"°CD45RA*CD90* HSCs in a validation cohort (n=29 JMML patients) stratified by
JMML epitype. d-f, WWGBS of sorted JMML HSPCs. d, Principal component analysis (PCA) of the
20,000 most-variable CpGs identified across JMML HSPCs. e, Heatmap depicting methylation
status of 13,832 DMRs identified between HM and non-HM (i.e., “intermediate methylation” [IM]
and “low methylation” [LM]) patients. Hierarchical clustering using Manhattan distance and
complete linkage. f, Genome browser tracks of WGBS and bulk methylation array data. Tracks P1
— P8 depict WGBS data from JMML HSPCs. LM, IM, and HM refer to bulk methylation array data
aggregated from 147 JMML patients representing all epitypes (LM=62, IM=45, HM=40). Depicted
is the genomic region (hg19, chr11:128,553,548-128,564,856) containing a DMR overlapping an
alternative transcription start site of FL/1.
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272  For example, DMRs were annotated to loci of hematopoietic and developmental
273 regulators such as FLI/1, RUNX1, and several homeobox gene classes (Fig. 2f,
274  Extended Data Fig. 7m,n). Furthermore, DMRs were enriched for transcription factor
275 (TF) binding motifs such as PU.1, HOXC9, as well as various GATA and ETS family
276  members, suggesting an impact of epitypes on specific gene regulatory programs
277 involved in hematopoietic maturation and differentiation (Extended Data Fig. 70). In
278  conclusion, our DNA methylome data demonstrated that JMML epitypes are present
279 in HSCs from JMML patients, and that the observed epigenetic aberrations might
280 govern epitype-specific gene regulation, including the engagement of developmental

281  programs.

282 Hematopoietic stem cells exhibit epitype-specific gene expression programs in
283  JMML patients

284  To investigate whether the epitype-specific DNA methylation patterns translate into
285  distinct gene expression programs in HSCs of JMML patients, we performed scRNA-
286  seq on Lin"CD34*CD38"° HSPCs isolated from the same 8 JMML patients (P1 — P8;
287 Fig. 2a and Extended Data Fig. 8a, Supplementary Table 2). Focusing on
288 transcriptionally defined HSCs, we found significant transcriptional priming towards
289 the myeloid lineage (p = 0.0023, LMM and ANOVA) in patients with IM and HM
290 epitypes as compared to the LM epitype, and this increase in transcriptional myeloid
291 priming occurred at the expense of priming towards the megakaryocytic-erythroid
292 lineages (Extended Data Fig. 8b, Supplementary Table 6). These differences were
293 paralleled by an increase in expression of leukemia-associated signatures from LM-
294  to HM-HSCs, suggesting that aberrant DNA methylation might impact on HSC function
295 in JMML in an epitype-specific manner (Extended Data Fig. 8c, Supplementary Table

296  6). Differential gene expression analysis between HSCs from HM and non-HM patients
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297 revealed a number of highly dysregulated genes, which are critical for hematopoiesis,
298 including HSC markers such as AVP, CRHBP, CD164, and CD34, differentiation and
299  activation markers such as LGALS1, DNTT, IGLL1, CD96, CD69, and CD52, as well
300 as developmental factors such as HMGA2 and HBGZ2 (Extended Data Fig. 8d,
301 Supplementary Table 7). Functional enrichment analyses confirmed immune
302 activation and inflammation programs in JMML HSCs, which has been described as a
303 feature of prenatal development?® (Extended Data Fig. 8e,f, Supplementary Table 8-
304 11). Taken together, the upregulation of developmental genes in HM-JMML HSCs was
305 in line with the altered DNA methylation seen in regions that are epigenetically
306 regulated during development (Extended Data Fig. 7h-0). This indicated an epitype-
307 specific functional role for developmental factors in JMML pathogenesis and raised

308 the question whether developmental origins vary across JMML epitypes.

309 Transcriptional mosaicism of developmental programs in JMML HSCs

310 A recent report described the detection of JMML driver mutations at birth in 75% (12
311 out of 16) of individuals who later developed JMML (Extended Data Fig. 8g)?'.
312  Together with our observation that JMML epitypes are associated with developmental
313 features in HSCs, this suggested a prenatal origin of the disease in at least a subset
314  of patients. To systematically examine developmental phenotypes of JMML HSCs and
315 to compare these to healthy development, we compiled a scRNA-seq reference map
316  of hematopoietic maturation, including 116 different reference cell types from healthy
317 donors spanning four developmental stages: fetal (FET), neonatal (NEO), juvenile
318 (JUV), and adult (ADU; Fig. 3a, Supplementary Table 2). Next, we applied “cell type
319  similarity inference™ to independently predict the average similarity of JMML HSCs
320 per patient to each of the reference cell types (Extended Data Fig. 8h). While HSCs

321 from all JMML samples showed high similarity to healthy neonatal HSCs, LM-JMML
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322 HSCs also exhibited high similarity to healthy postnatal (i.e., juvenile and adult) HSCs.
323  In contrast, the IM- and HM-JMML stem cells showed high transcriptional similarity to
324  healthy fetal HSCs (Fig. 3b). Such subgroup-specific global expression patterns were
325 confirmed by the expression of known marker genes for HSCs from different
326 developmental stages. Postnatal HSC markers (CRHBP, AVP) were found to be
327 upregulated in LM-JMML and healthy postnatal HSCs (Fig. 3c, Extended Data Fig. 8i).
328 Conversely, fetal HSC markers, such as HMGA2 and MECOM, were upregulated in
329 HM-JMML and healthy fetal HSCs (Fig. 3d, Extended Data Fig. 8i), which implied
330 either preservation or reactivation of fetal gene expression programs in HM-JMML. In
331 this context, it is noteworthy that JMML HSCs revealed different levels of similarity
332 (>0.5) but virtually no dissimilarities (<0.5) to any of the reference HSC populations
333  across hematopoietic development (Fig. 3b, Extended Data Fig. 8h). This suggested
334  atranscriptional mosaicism of developmental signatures rather than an unambiguous
335 cell type-specific transcriptional profile for any of the stages. To consolidate this
336 observation, we generated a list of the top 50 stage-specific marker genes of normal
337 HSC development and analyzed the expression of these signature genes in JMML
338 HSCs (Fig. 3e, Supplementary Table 12-13). This revealed a high degree of subgroup-
339 and patient-specific heterogeneity, including aberrant regulation of a range of genes
340 relative to normal HSCs from all of the four developmental stages. This further
341 suggested that JMML is characterized by variegated expression of developmental
342 signatures, including components of fetal gene expression programs, most

343  prominently in HM-JMML.
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Fig. 3: JMML HSCs are characterized by transcriptional mosaicism of developmental
programs. a, Schematic displaying the systematic comparison of JMML HSCs to healthy HSCs
across different developmental stages including fetal liver (FET), cord blood (NEO), juvenile (JUV),
and adult (ADU) bone marrow. b-e, Transcriptional profiling using scRNA-seq of JMML HSCs in
the context of healthy HSCs representing different developmental stages. HSCs were defined
uniformly based using automated cell type annotation (see “Materials and Methods” section). b,
Cell type similarity inference using logistic regression analysis. JMML HSCs were compared at the
single-cell level to healthy HSCs isolated at different developmental stages. Depicted are averaged
and probability-converted predicted logits. Values >0.5 (pink) indicate similarity whereas values
<0.5 (grey) indicate dissimilarity to the references (rows). c-d, Violin plots showing the expression
profiles of the HSC marker genes CRHBP and HMGAZ2 in healthy and malignant HSCs. CRHBP
is a marker for adult HSCs and HMGAZ2 is a marker for fetal HSCs. e, Heatmap depicting
expression profiles of stage-specific signature genes for healthy HSC development. For each
developmental stage, the top 50 DEGs compared to all other stages were identified. Only genes,
that were found to be differentially expressed in a single reference were kept. Scaling of normalized
expression was done on a per gene basis across healthy HSC references to reflect the physiologic
expression range. All values above the maximum or below the minimum are flagged with dark red
or dark green, respectively, representing aberrantly up- or downregulated signature genes in
JMML.

DNA methylome analysis reveals postnatal maturation of hematopoietic stem
cells across all JMML epitypes

The observed transcriptional mosaicism in JMML HSCs was inconclusive with respect
to the developmental origins of JMML. Since it has previously been demonstrated that
DNA methylomes retain elements of the tissues and cell types of origin?®, we sought

to investigate the DNA methylomes of JMML HSCs in the context of the developing
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370 hematopoietic system. We generated a DNA methylome reference map of normal
371  HSC maturation representing the same developmental stages as used for the scRNA-
372  seq analysis, i.e. fetal, neonatal, juvenile, and adult HSCs (Fig. 4a, Supplementary
373  Table 4). Unsupervised analysis of the 10,000 most variable CpGs across normal and
374  JMML HSCs revealed pronounced genome-wide differences between HM-JMML and
375 healthy references from all developmental stages, whereas LM-JMML HSCs clustered
376  with the postnatal references (Extended Data Fig. 9a). To more precisely determine
377 patterns associated with HSC maturation, we identified genomic regions with dynamic
378 DNA methylation in healthy references and found 1,179 regions (441 with methylation
379 gain, 738 with methylation loss) that revealed continuous gain or loss of DNA
380 methylation from fetal to adult HSCs (Fig. 4b, Supplementary Table 14). Using these
381 maturation dynamic regions for phylogenetic analysis recapitulated the trajectory from
382 fetal to adult HSCs during normal maturation (Extended Data Fig. 9b). Projecting the
383 JMML HSC methylomes onto this maturation phylogeny revealed postnatal epigenetic
384 patterns for all IMML HSCs analyzed here, regardless of their epitype, indicating that
385 at the time of diagnosis all JMML HSCs had acquired a postnatal DNA methylome
386 (Fig. 4c, Extended Data Fig. 9c). This finding was further corroborated when looking
387 at so called ‘epigenetic scars’, which are genomic regions that change their
388 methylation status significantly in one particular developmental window but remain
389 stable thereafter (Fig. 4d and Extended Data Fig. 9d, Supplementary Table 15-16).
390 These analyses showed that HSCs from all JMML patients clustered together with
391 postnatal HSCs when looking at the transitions from fetal to postnatal or from neonatal
392 to post-neonatal HSCs, respectively, further indicating that HSCs from all patients
393 examined had passed the neonatal stage regardless of their epitype (Fig. 4e and

394 Extended Data Fig. 9e). In conclusion, our epigenetic data show postnatal
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395 epigenomes in HSCs from all 8 JMML patients investigated, which is in contrast to the
396 fetal-like expression signatures observed in non-LM-JMML. These seemingly
397 contradictory findings could theoretically be explained by two different models: (1.)
398 Prenatal acquisition of a RAS-pathway mutation could lead to altered HSC maturation
399 resulting in partial preservation of fetal transcription signatures (fetal origin hypothesis;
400 Fig. 4f, left panel). (Il.) Alternatively, acquisition of a RAS-pathway mutation in a
401 postnatal HSC may lead to transformation and induction of aberrant transcription
402 programs which result in reprogramming and reactivation of fetal-like molecular

403  signatures (OFR hypothesis; Fig. 4f, right panel).
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405 Fig. 4: DNA methylome analysis reveals a postnatal maturation stage in JMML HSCs across
406  all epitypes. DNA methylome analysis of JMML HSCs in the context of healthy hematopoietic
407  development using ultra-low input WGBS. Fetal HSCs (FET,; fetal spleen HSCs [n=3], fetal liver
408 HSCs [n=3]), cord blood HSCs (NEO; n=4), juvenile HSCs (JUV; n=2), and adult HSCs (ADU;
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409 n=3). a, Schematic summarizing the normal maturation trajectory of healthy HSCs, which was used
410 to determine maturation-associated methylation changes. b, Heatmap showing the hierarchical
411  clustering of all methylation-dynamic regions (n=1,179) identified in HSCs across normal
412  development. Plotted are scaled average DNA methylation values. ¢, Phylogenetic tree analysis
413  based on all methylation-dynamic regions. Methylome data of JMML HSCs are projected onto this
414  phylogenetic tree based on Manhattan distances. Replicates are aggregated per patient or healthy
415  developmental stage. d-e, ‘Epigenetic scars’ analysis from the transition between neonatal and
416  postneonatal stages. d, Epigenetic scars are defined as DNA methylation changes that occur in a
417  given developmental window but do not change thereafter. e, Heatmap showing methylation beta
418  values of epigenetic scars from the transition of neonatal to post-neonatal HSCs. Hypo: loss of
419 DNA methylation; hyper: gain of DNA methylation. f, Schematic illustrating the two hypothetical
420  scenarios explaining the expression of fetal-like signatures in JMML HSCs: I. Transformation of a
421  prenatal cell-of-origin reprograms HSCs leading to a partial preservation of fetal HSC programs in
422  JMML patients (left panel). Il. Alternatively, transformation of a postnatal HSC partially reactivates
423  fetal gene expression patterns, resulting in oncofetal reprogramming (OFR) (right panel).

424  RAS-pathway activation in postnatal HSCs results in oncofetal reprogramming in a
425  JMML mouse model

426  To experimentally test whether postnatal acquisition of a JMML driver mutation is able
427  to instruct the reactivation of fetal-like expression signatures (OFR hypothesis), we
428 established an inducible JMML mouse model which is driven by the activation of a
429  Ptpn11E76K mutation in HSCs upon tamoxifen injection (Fig. 5a, Extended Data Fig.
430 10a). Postnatal induction of the Ptpn11576K mutation in adolescent mice (6-12 weeks
431 of age) resulted in rapid development of a JMML-like disease, characterized by
432  leukocytosis, thrombocytopenia, reduced hemoglobin levels, pronounced
433  splenomegaly, excess production of myeloid cells, particularly monocytes, and a
434  median survival of 24 weeks (Fig. 5b-f, Extended Data Fig. 10b-e). To analyze the
435 molecular mechanisms underlying the JMML-like disease observed in Ptpn11576K*
436  mice, we isolated LSK (Lin"Sca1*cKit"), LK (LincKit*), and total hematopoietic cells
437  from the bone marrow (BM) of Ptpn11576K* and Ptpn11** mice 6 weeks after tamoxifen
438 induction and performed scRNA-seq (Supplementary Table 17). Data were integrated
439 across genotypes and annotated based on the expression of established marker
440 genes (Fig. 5g, Extended Data Fig. 10f). We found a significant myelomonocytic

441  skewing and loss of immature HSPCs in Ptpn11576K* mice (Fig. 5h, Extended Data
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Fig. 5: RAS-pathway activation in postnatal HSCs results in oncofetal reprogramming in a
JMML mouse model. a, Establishment of a JMML mouse model by induction of a Ptpn11E76K
mutation in postnatal HSCs. Conditional Ptpn11E7%K* mice were crossed to SclCreER' mice to

19


https://doi.org/10.1101/2023.10.27.563754
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.10.27.563754; this version posted November 1, 2023. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

446  allow HSPC-specific activation of the mutation. Ptpn11875K* Scl-CreERT mice (E76K) and Ptpn11*/*
447  Scl-CreERT controls (Ctrl) were injected (i.p.) with tamoxifen (TAM) at the age of 6-12 weeks. b,
448  Leukocyte (WBC) and platelet (PLTs) counts are shown throughout 9 months post induction (p.i.).
449 Mean and SEM are depicted. Statistical significance was calculated using student’s t-test. c,
450 Differentiated hematopoietic cells were measured by flow cytometry in bone marrow (BM), spleen
451  (SP) and peripheral blood (PB) of mice 18 weeks p.i. The box plots show the abundance of each
452  cell type as percentage of total CD45" cells. Whiskers are defined as 1.5 times interquartile range
453  (IQR). Statistical significance was calculated using Student’s t-test. d, Kaplan-Meier plot depicting
454  leukemia-free survival. Numbers of animals at risk are denoted under the respective timepoints.
455  Median survival is indicated and significance of survival differences was calculated using log-rank
456  test. e-f, Spleens and livers were isolated 18 weeks p.i. and organ weights were documented.
457  Whiskers are defined as 1.5 times interquartile range (IQR). Statistical significance was calculated
458  using Student’s t-test. g, Single-cell RNA-seq of E76K (n=3) and Ctrl (n=3) mice 18 weeks after
459  TAM induction. The UMAP shows a 2D representation of 29 clusters identified and annotated to a
460 hematopoietic cell type based on marker gene expression. h, Circular bar plot depicting the relative
461 changes in cluster contribution of E76K compared to Ctrl cells. Significance was determined using
462 Fisher's exact test followed by Benjamini-Hochberg’s FDR correction. i, Density plot displaying
463  transcriptional priming of HSCs towards the monocytic lineage (“Monocyte Score”) compared to
464  expression of a “stemness” signature (“Stemness Score”). Significance was determined based on
465 LMM and subsequent ANOVA. j, Enrichment analysis of mouse fetal and adult HSC signatures 2’
466 in E76K and Ctrl HSCs. k, Enrichment analysis of human HSC signatures across different
467  developmental stages (signature genes identified in this study, Fig. 3e) HSCs. |, Violin plots
468  showing the expression of marker genes for different developmental stages of the hematopoietic
469  system in HSCs. Significance was determined using Wilcoxon rank sum test.

470  Fig. 10g,h), demonstrating that the postnatal induction of Ptpn11576%* in HSCs
471  precisely recapitulated human JMML. The upregulation of monocytic gene expression
472  programs was already observed at the level of HSCs in Ptpn11£76K* mice, indicating
473  increased transcriptional priming of Ptpn11E76%* HSCs towards the myeloid lineage
474  (Fig. 5i, Extended Data Fig. 10i-k, Supplementary Table 6). In addition, we found a
475  significant enrichment of fetal gene signatures in HSCs from Ptpn11576K* mice as
476  compared to wild-type HSCs (Fig. 5j,k, Supplementary Table 6). In line with this
477  observation, Ptpn11576K* HSCs showed a significant upregulation of fetal HSC
478 markers such as Lgals1 and Plac8 and concurrent downregulation of adult HSC
479  marker genes (H3f3b, Fos, and Procr; Fig. 5I).

480 In summary, our mouse model recapitulated phenotypic and molecular features of
481  human JMML including transcriptional rewiring and myeloid lineage priming of HSCs.
482 We demonstrated that expression of the Ptpn11576K mutation in adolescent mice was

483  sufficient to re-establish fetal-like gene expression programs in HSCs, hence providing
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484  proof-of-principle that postnatal acquisition of a RAS-pathway mutation can lead to

485  oncofetal reprogramming.

486 Integrative analysis identifies novel prognostic biomarkers and therapeutic
487  targets for high-risk JMML

488 The mouse model demonstrated that HSC-specific activation of Ptpn11576K7* induces
489 a JMML-like disease. This provided further evidence that HSCs are the likely cell-of-
490 origin of JMML and suggested that effective therapies should target aberrant
491 molecular features of JIMML HSCs. Following the experimental proof of OFR in JMML,
492 we asked the question whether disease-specific aberrations affect developmental
493 factors that could be exploited for the treatment of JMML. To identify and prioritize
494  such aberrations, we defined the following selection criteria: (a) DNA methylation-
495 associated gene expression in JMML HSCs; (b) aberrant upregulation of gene
496  expression in JMML HSCs relative to healthy reference HSCs across developmental
497  stages; (c) proposed role in HSC development; (d) availability of drugs, which can be
498  used for preclinical testing (Fig. 6a). To identify DNA methylation-associated genes in
499 HSCs across JMML epitypes, we determined genes for which differential expression
500 could be explained by differential DNA methylation. Comparing HM with non-HM
501 JMML, we identified 346 DMRs that are associated with 155 DEGs (out of 255 HM vs
502 non-HM DEGs overall) (Extended Data Fig. 11a, Supplementary Table 18-19), which
503 confirmed the central role of DNA methylation in disease-specific gene regulation. For
504 functional validation, we defined high-confidence candidate genes based on high
505 correlation (>0.9) of DNA methylation and gene expression (Extended Data Fig. 11a,
506 Fig. 6b). Out of 56 high-confidence candidates, 23% (13 genes) encoded for cell
507 surface proteins (Fig. 6b, Extended Data Fig. 11b), which is significantly more than the

508 expected proteome-wide frequency?®. Comparison of expression levels revealed that
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509 all 13 candidates were consistently upregulated in JMML HSCs relative to almost all
510 healthy reference HSCs. Moreover, these surface proteins showed epitype-specific
511 expression patterns, suggesting that they could act as both disease- and epitype-
512  specific biomarkers (Extended Data Fig. 11c).

513  Focusing on HM-JMML as the epitype with the most urgent need for novel therapeutic
514  approaches, we identified CD52, which encodes a cell surface protein that is an
515 established drug target in chronic lymphocytic leukemia and multiple sclerosis?®-3'.
516 CD52is associated with epigenetic aberrations in JMML HSCs (Fig. 6b,c), and shows
517 moderate expression levels in healthy HSCs across normal hematopoietic maturation,
518  with a slight but significant upregulation in fetal HSCs (Fig. 6d). However, it is strongly
519  upregulated in JMML HSCs with the highest expression levels found in HM-JMML (Fig.
520 6d). Epitype-specific CD52 expression was confirmed at the protein level in
521 CD34*CD38"° HSPCs from JMML patients, suggesting CD52 surface protein as an
522 accessible drug target on JMML HSCs (Fig. 6e). Finally, murine Cd52 was
523 transcriptionally upregulated in HSCs of Ptpn11576K* mice relative to control HSCs,
524  confirming the disease-specific upregulation in JMML HSCs (Extended Data Fig. 11d).
525 In conclusion, CD52 is aberrantly upregulated preferentially in HM-JMML and is a
526  promising target for further evaluation as a prognostic biomarker and as a therapeutic

527 targetin HM-JMML.
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529 Fig. 6: Integrative analysis identifies novel prognostic biomarkers and therapeutic targets
530 for HM-JMML. a, Strategy for the identification of disease-specific candidate genes in JMML
531 HSCs. b, Identification of methylation-associated gene expression changes across JMML
532  epitypes. The heatmaps display expression (right) and methylation (left) values of the DMR-DEG
533  associations for the 56 high-confidence candidate genes identified using a generalized linear
534  model (for details, see Material and Methods). Normalized gene expression was scaled to the
535  minimum and maximum for each gene. For each DMR the average beta values across all CpGs
536  perregion are depicted. ‘Correlation’ depicts the Pearson correlation coefficients as per DMR-DEG
537  association. ‘Cell surface’ indicates if a gene is predicted to be expressed on the cell surface. The
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538 13 genes encoding for cell surface proteins are indicated by name. Of note, a single gene can be
539  associated with multiple DMRs. ¢, Locus line plot showing the smoothened methylation beta values
540 of the CD52 locus in HSCs across JMML patients and healthy references. d, Violin plots showing
541  the normalized expression profiles of CD52 in JMML and healthy reference HSCs. Significance of
542  expression differences across samples was tested using Kruskal-Wallis test. Significance of the
543  expression differences of postnatal (i.e. NEO, JUV, ADU) to prenatal (FET) HSCs was tested using
544  Wilcoxon rank sum test. Boxplot center line corresponds to data median, box height to the inter-
545  quartile range and lines to lower / upper quartile +/- 1.5 times inter-quartile range. e, Histograms
546  showing the cell surface expression of CD52 in LinCD34*CD38"° JMML HSPCs using flow
547  cytometry analysis of patients across epitypes. Significance was calculated per patient with
548  Wilcoxon test against P1. f-k, Patient-derived xenograft (PDX) mouse experiments. For
549  experimental details refer to ‘Materials and Methods’ and Extended Data Fig. 12a. f,
550 Representative FACS contour plot and histogram showing CD52 expression on engrafted human
551 CD45* JMML cells in mice treated with alemtuzumab (green) or with vehicle control (dark grey).
552  Expression levels are depicted on a logarithmic scale. g, Quantification of engrafting human CD45*
553  cells after 4 weeks of treatment with alemtuzumab (green) or vehicle (dark grey). Depicted are the
554  human cells as a percentage of all hematopoietic cells detected in each organ tested. h, Effect of
555  alemtuzumab treatment (‘treatment effect’) depicted as the differences of the mean engraftment in
556 treated vs untreated mice per organ (treatment effect = meantreatea — Meanuntreated). i, Left:
557  representative FACS plot showing CD34 and CD38 expression on human CD45*Lin" JMML cells
558 engrafted in the bone marrow of mice treated with alemtuzumab (green) or with vehicle control
559 (dark grey). Right: Quantification of Lin"CD34*CD38 and Lin"'CD34*CD38" human HSPCs.
560 Depicted is the logarithm of the absolute number of living human cells per femur. j, Schematic
561  depicting the 2° transplantation experiments. Secondary recipient mice received bone marrow cells
562  from alemtuzumab-treated or vehicle-treated primary PDX mice. k, Frequency of human CD45*
563 cellsin 2° recipients of cells from alemtuzumab-treated (green) or vehicle-treated (dark grey) donor
564  mice. Engraftment was evaluated 6 weeks after transplantation.

565 Anti-CD52 treatment reduces leukemia burden, depletes leukemic stem cells, and
566 disrupts disease propagation in a JMML PDX model

567 To assess the therapeutic potential of anti-CD52 targeted treatment, we used an established
568 preclinical patient-derived xenograft (PDX) mouse model of JMML and treated PDX mice with
569 the therapeutic monoclonal antibody alemtuzumab for 4 weeks (Extended Data Fig. 12a,
570 Supplementary Table 20)*?33. FACS analysis of primary recipients revealed an efficient
571  depletion of human CD52" cells following alemtuzumab treatment, resulting in a significantly
572  reduced frequency of human leukemia cells in blood, bone marrow, spleen, liver, and lung
573  (Fig. 6f-h and Extended Data Fig. 12b,c). As proposed by our integrative multi-omics analysis,
574  alemtuzumab treatment targeted human HSPCs as evidenced by an efficient depletion of Lin-
575 CD34'CD38 cells (Fig. 6i). This resulted in the depletion of virtually all human hematopoietic
576  cells in our xenograft model, including CD52 cells (Extended Data Fig. 12c-h). Secondary
577 transplantation of total bone marrow from alemtuzumab- or vehicle-treated animals showed

578 that anti-CD52 treatment prevented leukemic engraftment in 2° recipients (Fig. 6j,k). In
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579  conclusion, therapeutic targeting of CD52 leads to efficient depletion of leukemia-propagating

580 stem cells in vivo.

581 Discussion

582 In the present study, we performed a multi-layered molecular analysis in which we
583  systematically compared JMML across disease-specific epitypes to healthy references of HSC
584  development. Single-cell transcriptome and DNA methylome analyses gave opposing results:
585  transcriptomes revealed pronounced fetal HSC signatures for the more aggressive JMML
586  epitypes whereas DNA methylomes indicated a postnatal epigenomic pattern in all patients
587 analyzed. This finding is particularly important as the current consensus assumes that early
588 childhood malignancies arise during fetal development and manifest as maturation blocks in
589 aberrantly developing tissues®''**. This view is supported by a number of studies which
590 provide mostly genetic evidence for fetal origins, which are based on the detection of driver
591 mutations in neonatal blood spots or on mathematical modeling of the originating
592  developmental stage based on cell cycle-related mutation rates®2'**°_ However, whether or
593 not the presence of fetal-like transcriptional programs present across a range of childhood
594  malignancies can unambiguously be considered as indicative of their prenatal origin remains

595 a matter of scientific debate**%43,

In the present study, an in-depth analysis of the
596 transcriptome layer revealed that malignant hematopoietic stem cells (HSC) hijack
597 transcription programs across different developmental stages and that HSCs from high-risk
598 patients reactivate fetal-like gene expression signatures in a patient-specific manner. To
599 complement the transcriptomic layer with epigenetic information, we performed DNA
600 methylome analysis, which presumably provides more robust information on developmental
601 and tissue origins of tumors than transcriptomes, as multiple lines of evidence suggest that
602 DNA methylomes represent the developmental and differentiation states in which the

603  malignant cells have been arrested?®*4“®_ In the context of JMML, DNA methylome analysis

604  unambiguously showed postnatal epigenomes in HSCs of all JMML samples investigated in
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605 this study by phylogeny and epigenetic scar analyses. This indicated that fetal-like
606 transcription programs observed in JMML are unlikely to be caused by a developmental

607 maturation block.

608 These apparently conflicting results might be explained by OFR, a phenomenon well-known
609 in the context of adult but not childhood malignancies. OFR describes the re-acquisition of
610 fetal gene expression programs in tumorigenesis, which has been described for adult
611 malignancies such as hepatocellular carcinoma’. In general, the process of oncogenesis
612  requires cellular reprogramming to sustain cells with physiologically contradicting features
613  such as stemness/pluripotency and differentiation bias*®. Thus, OFR might reflect a tumor-
614  specific strategy to gain cellular plasticity and to overcome physiological limitations of normal
615 development. In JMML, the OFR hypothesis is supported by the clinical observation that high-
616  risk JMML patients are typically older than 2 years at the time of diagnosis'®. In addition, a
617 recent publication tested JMML driver mutations in Guthrie cards from individuals later
618 diagnosed with JMML and found that 9/9 patients with low-risk (i.e. LM epitype) JMML had a
619 detectable RAS-pathway mutation at birth, while only 3/7 patients with higher risk (i.e. IM or
620 HM epitype) JMML were tested positive for a JMML driver mutation at birth?'. Of note, whereas
621  the current literature suggests that LM JMML arises prenatally, our data reveals postnatal
622  maturation signatures at both the transcriptomic and epigenomic levels. This underlines that
623 LM JMML, although most likely arising prenatally, does not show fetal signatures indicative of
624  a maturation block. Vice versa, all HM patients analyzed here revealed postnatal epigenomes
625 combined with pronounced enrichment of fetal-like transcription signatures, supporting the
626  OFR hypothesis. It remains to be studied how many patients ultimately acquire their disease-
627 initiating mutation postnatally and are affected by OFR. Furthermore, it is unclear whether

628 OFRis influenced by the type of driver mutation.

629  Since multi-layer molecular analyses from primary patient samples are descriptive and cannot
630 prove causality, we used a JMML mouse model to test whether the expression of a JMML

631 driver mutation in young adult HSCs is sufficient to establish a fetal-like HSC gene expression
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632  program. Indeed, we found that induction of a Ptpn1157% mutation in postnatal HSCs was
633  sufficient to establish an aberrant fetal-like transcription program, hence formally proving that
634 OFR can occur in JMML. In summary, our work highlights how a multi-layered molecular
635 analysis together with experimental validation enable the dissection of the characteristics of
636  distinct disease phenotypes within a uniformly diagnosed and genetically characterized
637 disease entity such as JMML. Our work, demonstrates that OFR is a phenomenon with
638 relevance to childhood malignancies and might motivate the re-evaluation of the assumed
639 pathogenetic mechanisms in relation to embryonic or fetal development across the entire
640  spectrum of childhood malignancies. Nevertheless, there are still open questions that remain
641 to be answered in the future: 1) How are the transcriptional and epigenetic aberrations
642  established? 2) What is the order of acquisition of aberrations, i.e. is the transcriptome or the
643  epigenome altered first? 3) How can the observed phenotypic heterogeneity be explained in
644  the absence of genetic heterogeneity (i.e. presence of the same disease-initiating mutation)?
645  Although answering these questions is beyond the scope of the current manuscript, it is
646 tempting to speculate that transcriptional re-programming might precede the epigenetic
647  alterations seen in the context of JMML. This hypothesis would be supported by the
648 observation that, despite the presence of fetal-like transcription programs, the DNA
649  methylomes lack pronounced signs of fetal reprogramming in the JMML mouse model (data
650 not shown). Along these lines, DNA hypermethylation has been associated with increased

651 proliferation activity and in some cases with methylation age®®3.

652  The discovery of OFR highlighted that JMML HSCs express a complex mosaic of expression
653  programs across developmental stages. As a consequence, it is important to consider healthy
654 references across developmental stages to identify cancer-specific aberrations. This approach
655  provided the basis for the identification of prognostic biomarkers and novel therapeutic targets
656  for this subset of patients with particularly poor outcome. For example, we could demonstrate
657 that aberrant DNA methylation is accompanied by elevated mRNA expression levels of CD52

658 inleukemic HSCs, especially in HSCs of high-risk JMML patients. This elevated CD52 mRNA
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659  expression was not only recapitulated in HSCs of our JMML mouse model but it also translated
660 into elevated surface protein expression levels on patient HSCs. This raises the possibility of
661 performing clinical risk-stratification of JMML patients using a flow cytometry-based assay
662  without the need for specialized and time-consuming epigenetic analyses. Of note, CD52 has
663 recently been described to play a functional role in both pre- and postnatal HSC
664  development?’#%%*%5 Moreover, in line with our observation of an early differentiation bias in
665 JMML HSCs, CD52 has been implicated in early myeloid priming®®°’. A therapeutic
666  monoclonal antibody targeting CD52 (alemtuzumab) is approved by the FDA and EMA for the

667 treatment of multiple sclerosis?®°%%°

and has been used as part of conditioning regimens for
668  allogeneic hematopoietic stem cell transplantation (HSCT)®*¢". This made CD52 an interesting
669 candidate for pre-clinical target validation, as HSCT is the only potentially curative treatment
670 for high-risk JMML, although, more than 50% of patients relapse post-HSCT®2. Furthermore,
671  pre-clinical therapeutic activity of an approved drug could potentially be rapidly translated into
672  the clinical setting. Using a patient-derived xenotransplantation model of JMML, we observed
673 an efficient depletion of CD34*CD38- JMML hematopoietic stem and progenitor cells upon
674  alemtuzumab treatment, which was functionally evidenced by the depletion of virtually all
675 human hematopoietic cells independent of cell type-specific CD52 expression levels.
676  Furthermore, alemtuzumab treatment abrogated the engraftment of human JMML cells in
677  secondary recipient animals. Of note, this therapeutic effect was observed in PDX mice of the
678  high-risk patient P7, who clinically showed a relapse after allogeneic HSCT. Hence, CD52-
679 targeted therapy with alemtuzumab shows promising pre-clinical efficacy in high-risk JMML.
680 This provides a rationale to further assess anti-CD52 treatment in pre-clinical studies as an

681  option for JMML patients with high risk of relapse after allogeneic hematopoietic stem cell

682  transplantation, for example in the context of the conditioning regimen.

683 In conclusion, our work on JMML provides evidence for oncofetal reprogramming as a
684  mechanism for the expression of fetal-like transcriptional programs in a childhood malignancy.

685  Furthermore, we demonstrate how a molecular high-precision approach identifies aberrantly
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686 regulated developmental markers and guides the identification of disease biomarkers and

687  novel targeted therapies for a notoriously difficult-to-treat childhood leukemia.
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688 Methods

689  Authorization and ethical approval

690 The study was conducted according to the Declaration of Helsinki after written informed
691 consent was obtained from the healthy subjects, the patients or their legal guardians. All
692  experiments were approved by the local institutional review boards. All information is subject
693  to the provisions of the local data protection regulations. JMML samples were obtained from
694  the Hilda Biobank Freiburg, and fetal samples were obtained from the Wellcome Trust-funded
695 Human Developmental Biology Resource (HDBR; http://www.hdbr.org). HDBR is regulated by
696 the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the
697 relevant HTA Codes of Practice. Healthy BM donors at the Heidelberg University Hospital
698 received financial compensation. All mouse experiments were approved by German local
699 authorities (Regierungsprasidium Karlsruhe and Regierungsprasidium Freiburg). All data

700  were stored in accordance with the DKFZ framework for data protection.

701 Isolation of hematopoietic cells from spleen of JMML patients

702  Splenectomy specimens from patients diagnosed with JMML were used to prepare single cell
703  suspensions followed red blood cell lysis. To obtain mononuclear cell (MNC) fraction, single
704  cell suspensions prepared from spleen tissue were subjected to density gradient centrifugation

705  (Ficoll). Mononuclear cells were viably frozen and used for downstream analysis.

706  Primary human pediatric bone marrow

707  Healthy juvenile pediatric bone marrow samples for WGBS were obtained from children at the
708 age of 0 to 7 years in the course of neurosurgical interventions (e.g., correction of
709 craniosynostoses, craniotomies performed for epilepsy surgery) after written informed consent
710 was obtained from the patients’ legal guardians. For this purpose, the diploe of the
711  craniotomized bone was cannulated with 27G needles and manually flushed with Ringer's

712 solution. Downstream procedures for sample preservation were identical as for materials
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713  obtained from JMML patients. For scRNA-seq, left-over bone marrow mononuclear cells from

714  pediatric healthy normal sibling donors were isolated by ficoll gradient centrifugation.

715  Primary human fetal spleen and liver

716  Tissue from healthy prenatal references was obtained from the HDBR. Developmental age,
717  sex, and aneuploidy screens were performed as previously described®. Liver (n = 4; 12-16
718  post conception weeks (PCW)) and spleen (n = 3; 12-16 PCW) samples were diced and
719 digested with 1.6mg/mL collagenase type IV (Worthington) in RPMI (Sigma-Aldrich)
720  supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Gibco), 100 U/mL penicillin
721  (Sigma-Aldrich), 0.1 mg/mL streptomycin (Sigma-Aldrich), and 2 mM L-Glutamine (Sigma-
722 Aldrich) for 30 min at 37°C with intermittent shaking. Digested tissue was passed through a
723 100 um filter, and cells collected by centrifugation (500 g for 5 min at 4°C). Cells were treated
724  with 1X RBC lysis buffer (eBioscience) for 5 min at room temperature and washed once with
725  flow buffer (PBS containing 5% (v/v) FBS and 2 mM EDTA) prior to counting. Cells were
726  cryopreserved in 90% (v/v) FBS with 10% dimethylsulfoxide (DMSO) to permit analysis in

727 batches.

728  Primary human bone marrow from adults

729  As healthy adult references, human samples from healthy adult individuals at the age of 23 to
730 25 were collected from bone marrow aspirates of healthy donors via iliac crest. Mononuclear
731  cells were isolated by Ficoll (GE Healthcare) density gradient centrifugation and stored in liquid

732 nitrogen until further use.

733  Single-cell RNA-seq and WGBS of JMML patients

734  For scRNA-seq and ultra-low input whole-genome bisulfite sequencing (WGBS) of human
735 JMML spleen and pediatric BM samples, cells were thawed in a water bath at 37°C and
736  transferred dropwise into prewarmed IMDM (Gibco) supplemented with 10% FCS and 2 U/mi
737 DNase |. Cells were centrifuged for 5 min at 300 g and washed with PBS (Gibco)

738  supplemented with 4% FCS and DNase | (LIFE Technologies). Cells were resuspended in
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739  PBS containing 4% FCS (4 million per 100 pl) and fluorophore-conjugated antibodies for
740 lineage markers, CD34, CD38, CD45RA, and CD90 (Supplementary Table 21), followed by
741  incubation for 30 min at 4 °C in the dark. Cells were washed with PBS containing 4% FCS and
742  resuspended in an appropriate volume for flow cytometry. For live/dead staining,
743  4,6-diamidino-2-phenylindole (DAPI; 1:1,000) was supplemented to the cell suspension. After
744 3 min of incubation at room temperature, cells were filtered through a 40 pym cell strainer
745  (Greiner). Cell sorting was performed using BD FACSAria Fusion. For scRNA-seq of JMML
746  HSPCs, 1,700 to 10,000 Lin"CD34*CD38%™" cells were sorted into IMDM (Gibco) containing
747 4% FCS and directly subjected to droplet-based scRNA-seq (3’ v2 protocol from 10X
748  Genomics). All scRNA-seq libraries from primary JMML patient material were sequenced on
749  a HiSeq4000 (lllumina) paired-end 26+74 bp at the DKFZ Genomics & Proteomics Core
750  Facility (GPCF) (Heidelberg, Germany). For WGBS of JMML Lin"CD34*CD38%™- HSPCs, 33

751  to 250 cells were directly sorted into RLT plus lysis buffer and stored at -80°C for later use.

752  Single-cell RNA-seq and WGBS of healthy pediatric references

753  For WGBS of healthy juvenile reference bone marrow, cells were isolated from frozen samples
754  as described above for JMML and 500 Lin"CD34*CD38"°CD45RACD90* HSCs were directly
755  FACS-sorted into RLT plus lysis buffer.

756  For WGBS of prenatal HSCs from fetal liver and spleen, up to 1 million cells were stained with
757  antibody cocktail (Supplementary Table 22), incubated for 30 min on ice and washed with flow
758  buffer. Cells were resuspended at 10 million cells per ml and DAPI added immediately before
759  FACS (Sigma-Aldrich; final concentration of 3 uM). Live, single, Lin-, CD34*CD38"°CD45RA
760 CD90" cells were sorted into RLT plus lysis buffer. Cells were stored at -80°C for later use.
761  For scRNA-seq of healthy pediatric bone marrow, mononuclear cells were enriched for
762  immature compartments using CD34" progenitors and Lin"CD34*CD38 HSPCs using flow
763  cytometry. Viable live gate, progenitor- and stem cell-enriched populations were subjected to
764  chromium 10X processing using v3 chemistry (10X Genomics).

765
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766 WGBS of healthy adult references

767  For WGBS of adult stem and progenitor cells, cryopreserved adult bone marrow samples were
768 thawed and stained in FACS buffer (FB) (PBS supplemented with 5% FCS and 0.5 mM EDTA)
769  containing the respective antibodies (Supplementary Table 23) for 30 minutes followed by
770  washing with FB. Subsequently, cells were sorted using an BD Aria Fusion Il sorter. HSPC
771  populations were sorted as previously defined®: LinCD34*CD38"°CD45RA CD90* HSCs,
772  Lin-CD34+CD38-CD45RA-CD90- MPPs, Lin-CD34+CD38+CD10-CD45RA-CD135+ CMPs,
773  Lin-CD34+CD38+CD10-CD45RA+CD135+ GMPs, and Lin-CD34+CD38+CD10-CD45RA-
774 CD135- MEPs. WGBS libraries were generated using a published tagmentation-based

775  protocol®.

776  Flow cytometry analysis of JMML patients

777  For validation experiments of epitype-specific CD45RA/CD90 expression profiles, single cell
778  suspensions prepared from JMML spleen tissue were subjected to density gradient
779  centrifugation (Ficoll) to obtain mononuclear cell fractions (MNCs). An aliquot of the isolated
780 MNCs was stained for flow cytometry (Supplementary Table 24) and data acquired using BD
781 LSRFortessa.

782  For validation experiments of epitype-specific CD52 expression profiles, JMML samples were
783  thawed as described above (“Single-cell RNA-seq and WGBS of JMML patients”) and stained
784  with fluorescence-coupled antibodies for flow cytometry (Supplementary Table 25). Cells were

785  analyzed with BD FACSAria Fusion.

786  Panel-seq for JMML genotyping

787  DNA from bone marrow granulocytes was used for amplicon-based, next-generation deep
788 sequencing to determine the variant allele frequencies (VAFs) of leukemia-specific index
789  mutations. Targets of JMML associated Genes were enriched using a custom in-house panel
790  (AmpliSeq JMML panel v2, IAA11909_192; Thermo Fisher Scientific) and processed with the

791 NEBNext Ultra Il DNA library preparation kit (New England Biolabs). Sequencing was
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792  performed on MiSeq sequencers (lllumia). Sequence variants were evaluated according to

793  the ACMG classification system.

794  Processing of scRNA-seq data

795  scRNA-seq data from JMML patients and JUV references were generated in this study, data from
796  FET, NEO, and ADU references were obtained from the Human Cell Atlas project (Supplementary
797  Table 2). Sequencing data from JMML patient samples for scRNA-seq were aligned against the
798 hg38 human reference genome, and gene-cell matrices were generated using CellRanger
799  (v.2.1.1). Subsequent data processing included the sample-wise inclusion of cells that met specific

800  quality criteria:

801 1.) The number of genes exceeded 100.

802 2.) The number of genes was within three median absolute deviations (MADs) from the
803 median, determined using the “isOutlier” function in scater (v.1.10.1).

804 3.) The number of counts exceeded 200.

805 4.) The number of counts was within three MADs from the median, determined using the
806 “isOutlier” function in scater (v.1.10.1).

807 5.) Mitochondrial content was required to be below a 5% cutoff.

808 The ADU dataset was annotated to 35 cell types according to Hay et al., 20185, Subsequently,
809 the annotated ADU dataset was down-sampled to a maximum of 2500 cells per cell type and
810 served as a label transfer reference to annotate other datasets, including FET, NEU, JUV, and
811 JMML. Label transfer was performed using the “FindTransferAnchors” and “TransferData”
812  functions (dims = 1:30) in Seurat (v.3.1.5)%”. Each cell was assigned one transferring score for
813 each cell type, and the cell type assignment of cells was based on the highest cell type
814  transferring score.

815 Inthe FET dataset, cells with annotations of endothelial cells, fibroblasts, hepatocytes, Kupffer
816 cells, and VCAM1+ EI macrophages, based on the original paper®, retained their original
817  annotations.

818  For the healthy reference datasets, each cell type was down-sampled to a maximum of 2500

819 cells for further analysis.
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820 scRNA-seq data integration
821 We employed the “anchor” integration method to integrate scRNA-seq datasets from JMML
822  patients and healthy references using Seurat (v.3.1.5). The following steps were taken with

823  default settings:

824 1.) Dataset-wise data normalization was performed using the “NormalizeData” function.
825 2.) Dataset-wise feature selection was conducted with the “FindVariableFeatures”
826 function.

827 3.) Pairwise “anchors” between the datasets were identified using the
828 “FindIntegrationAnchors” function (dims = 1:30).

829 4.) Data integration based on these “anchors” was achieved through the “IntegrateData”
830 function (dims = 1:30).

831 5.) The integrated data underwent regression of counts, scaling, and centering using the
832 “ScaleData” function, followed by PCA dimensionality reduction.

833

834 The scRNAseq data of CD34+-enriched HSPCs and MNCs from JMML patients were
835 integrated using the 'anchor' integration methods in the Seurat (v.3.1.5). Similar to the
836 integration of JMML with healthy references, patient-wise data normalization and feature
837  selection were performed. Pairwise 'anchors' between patients were identified and integrated.

838 The integrated data was scaled and PCA calculated.

839 Pseudotemporal analysis of hematopoietic lineages

840 PCA was used to estimate a linear latent pseudotime for each cell across distinct
841 hematopoietic lineages using RNA expression data.

842  RNA expression data was normalized by dividing the feature counts of a given cell by the total
843  counts for that cell, then multiplying the quotient by 10.000 and finally log1p transforming the
844  product (default settings for Seurat “NormalizeData”).

845 To facilitate PCA in capturing lineage-specific changes, we devised a gene selection

846  procedure consisting of three main steps:
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1.) The dataset was restricted to non-tumor cells, and genes with no observed transcripts
across all cells were excluded.

2.) For each gene, a cumulative link model was constructed to establish a relationship
between the position of cells within the lineage and their normalized expression of the
respective gene.

3.) Genes satisfying both a Benjamini-Hochberg adjusted model coefficient p-value less
than 0.01 and an absolute coefficient value greater than 1.5 were selected.

In the case of the dendritic cell lineage, this procedure was executed using 10,949 non-tumor
cells, leading to the identification of 2,205 genes. Subsequently, the normalized expression
values of each gene were scaled by subtracting the per-cell expression values by the average
expression of the gene and dividing the difference by its standard deviation. This scaling
process adhered to the default settings for the Seurat “ScaleData” function. The scaled
expression values were then employed to perform PCA using Seurat.

Spearman correlation was calculated to evaluate the concurrence of differences in PCA cell
embeddings and various metadata features. For categorical metadata, one-hot encoding was
utilized to compute correlations. If necessary, for visualization purposes, the principal
component with the highest correlation with lineage was flipped so that the lineage

commenced on the left-hand side of the plot.

UMAP integration of scRNA-seq data from CD34*-enriched JMML HSPCs and JMML
MNCs

To project the scRNA-seq data of FACS enriched JMML CD34*CD38"° HSPCs onto the
existing MNC UMAP space we used the MNC scRNA-seq set as a reference and identified
anchors between both datasets by applying the Seurat “FindTransferAnchor” function with
PCA as a specified reference reduction. We mapped the HSPC query data onto the MNC
UMAP space using the “MapQuery” function and visualized the combined UMAP using

ggplot2%°.
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874  Transcriptional priming and leukemia-related transcription programs of human HSCs

875  Gene expression signatures were extracted from previous publications """ Transcriptional
876  priming was calculated using the Seurat “AddModuleScore” function for 1000 randomly
877  selected HSCs from each epitype. Statistical significance was determined based on two LMMs

878 as implemented in the Ime4 R package followed by ANOVA:

879 LMM1 = signature ~ Subgroup + (1|Donor)

880 LMM2 = signature ~ (1|Donor)

881 Differential gene expression analysis

882  Differentially expressed genes (DEGs) between JMML HM and JMML nonHM CD34+enriched
883 samples were identified using the “FindMarkers” function with default settings in Seurat
884  (v.3.1.5). Atotal of 255 DEGs with an adjusted p-value < 0.05 and an absolute log fold-change
885 < 0.25 were obtained.

886 Developmental stage-specific DEGs were identified in the cells annotated as HSCs in four
887  healthy reference datasets (FET, NEO, JUV, and ADU) using the “FindAllMarkers” function in
888  Seurat (v.3.1.5) for one-vs-rest comparisons. In each stage, the top 50 upregulated DEGs with
889 an adjusted p-value < 0.05 and an absolute log fold-change < 0.25 were obtained. Any
890 overlapping DEGs across stages were removed. We identified 44 DEGs for FET HSCs, 41

891 DEGs for NEO HSCs, 50 DEGs for JUV HSCs, and 47 DEGs for ADU HSCs.

892  Enrichment of transcription signatures using Metascape
893  For functional gene list analyses, Metascape’ was used applying default settings. As input,
894  up- or downregulated HM vs nonHM DEGs of JMML HSCs were used (Supplementary Table

895 7).

896 Logistic regression analysis of scRNA-seq data
897  The logistic regression method was used to measure the transcriptional similarity between
898 JMML HSCs and healthy reference cell types (FET, NEO, JUV, and ADU) across

899  developmental stages, as previously described °. In brief, we first trained a logistic regression
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900 model on the scRNA-seq count matrix of healthy references, encompassing cells of all
901 hematopoietic cell types, using the trainModel function with default settings in
902 LogisticRegression.Core.R. This trained model was then applied to predict the likelihood of
903 similarity between cell types in healthy references and JMML patients using the
904  predictSimilarity function with minGeneMatch = 0.5. The resulting average similarity scores of
905 HSCs in JMML patients against all cell types were visualized in a heatmap using the

906 ComplexHeatmap’® package.

907 DNA methylation array analysis

908 For DNA methylation array profiling, gDNA of 200,000 MNCs per sample was extracted and
909 submitted to the DKFZ GPCF (Heidelberg, Germany) for Infinium MethylationEPIC BeadChip
910 (lllumina) analysis. Data processing and epitype prediction were performed as described

911  previously'.

912 Library preparation for ultra-low input whole-genome bisulfite sequencing (WGBS)

913  For ultra-low input WGBS library preparation, we used max. 500 cells and followed a
914  customized previously published single-cell Bisulfite Sequencing (scBS-seq) protocol *7°. In
915  brief, we sorted cells using flow cytometry into RLT Plus buffer to a total volume of 10 pL,
916  which was applied to the following changes: single preamplification for 90 minutes at 37°C; 14
917 cycles of library amplification; two time 0.7x SPRI selection for library purification. Molarities

918 and fragment sizes were measured and libraries were submitted for lllumina sequencing on a

919 HiSeq X with paired-end 150 bp and 10% PhiX to the DKFZ GPCF.

920 Processing of whole-genome bisulfite sequencing data

921 The Omics IT and Data Management Core Facility (DKFZ, Heidelberg) processed WGBS data
922  as described earlier’®. In short, reads were aligned using an updated pipeline published by
923 Wang et al®® implemented as a Roddy Workflow (https:/github.com/DKFZ-
924  ODCF/AlignmentAndQCWorkflows) in the automated One Touch Pipeline’’. In short, adaptor

925  sequences of raw reads were trimmed using Trimmomatic’®. Next, sequencing reads were in
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926 silico bisulfite-converted’®(C>T for the first read in the pair, G>A for the second). BWA-MEM™®
927 was used with default parameters to align the converted reads to the in silico bisulfite-
928 converted reference genome hg19, extended with the PhiX and lambda phage sequences.
929 Post alignment, reads were converted back to their original state. Reads with a mapping
930 quality 225 and nucleotides with a Phred-scaled quality score 225 were considered for PCR
931 duplicate removal per sequencing library using the software Picar®®. Methylation calling and
932  M-bias QC was performed using MethylDackel ®' v0.4.0 and the parameters --OT 6,146,2,144
933 --OB 7,146,12,150, according to the M-bias quality control plots. Methylation calls were
934 imported into R¥ v3.6 using the R package methrix®® v 1.0.05, summarized based on
935 annotated reference indices, and collapsed based on strand information. Furthermore, single
936 nucleotide polymorphisms (SNP) with a minor allele frequency >0.1 were filtered, using the
937 reference provided in the R package BSgenome.Hsapiens.UCSC.hg19** v 1.4.0, and initial
938  quality control was performed. For downstream analysis, DNA methylation data were imported
939 into the R package bsseq®® v1.20.0 and technical replicates were collapsed. To define average
940 CpG island (CpGi) methylation, CpGi annotation was extracted using the R package
941  RnBeads® v 2.4.0. For principal component analysis (PCA), methylation levels of the 20,000

942  most variable methylated CpGs were applied to the R base function prcomp.

943  Methylation-based cell type classifier

944  For DNA methylation-based cell type classification, a previously published algorithm was
945  applied®. As normal references, WGBS data of adult Lin"CD34*CD38"°CD45RACD90"
946 HSCs, LinCD34'CD38"°CD45RA'CD90" MPPs, Lin"CD34*CD38"'CD10°CD45RACD135*
947 CMPs, Lin"CD34"CD38"CD10°CD45RA'CD135" GMPs, and Lin'CD34*CD38"CD10°CD45RA
948 CD135 MEPs was employed, which was generated in course of this study.

949  As input to the classifier, we used WGBS data that was prepared as outlined in the previous
950 section. Briefly, WGBS data was subsetted to regions outlined in Farlik et al.?*, using the hg38

951 to hg19 liftover function from the R package rtracklayer® . The average methylation within each
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952  region was computed and used to execute the “cellTypePredictor.R” script by Farlik et al.?*.

953  The classifier itself was trained on normal references and applied to JMML tumor samples.

954 Differential methylation analysis

955 To define differentially methylated loci, a linear model was applied, considering the
956  epigenotype (HM and non-HM) and sorting quadrant of the respective sample as a covariate.
957  Therefore, the function “DMLfit.multiFactorR” with the parameter, smoothing = TRUE, from
958 the R package DSS® v2.32.0 was applied. The epigenotype HM coefficient was extracted
959 using the function “DMLtest.multiFactor” and differentially methylated regions (DMRs) were
960 defined using the function “callDMR”, based on regions with >3 CpGs, a length of >50 bps,
961 and a Benjamin-Hochberg corrected P value <0.05 in at least 50% of all CpGs within that
962 region. Additionally, DMRs were subsetted for an average coverage of 25 in at least half of
963 the samples belonging to the HM and non-HM epigenotype respectively and a difference in
964  methylation >0.2. DMRs were annotated using the R package ChIPseeker®® v1.31.3.900 and
965  TxDb.Hsapiens.UCSC.hg19.knownGene® v3.2.2. Hierarchical cluster analysis of DMRs was
966 performed using the R package pheatmap® v1.0.12, applying “ward.D2” as the clustering

967 method to “Manhattan” distances.

968 Transcription factor motif enrichment

969 DNA transcription factor (TF) motif enrichment was performed using the command line tool
970 Homer® (v4.9.1) and the parameter -size given. DMRs were stratified in hypo- and
971  hypermethylated regions, and a set of random regions with equal size, similar CpG frequency
972  (15% tolerance in the deviation of CpG composition were allowed), and a maximum of 20%
973 N’s in the sequence composition, were used as a background. The top 10 most significantly

974  enriched TF motifs in hypo- and hypermethylated DMRs were visualized.

975 Locus overlap and enrichment analysis of ChromHMM states
976  The R package LOLA® (v1.16.0) was used to enrich DMRs with ChromHMM states acquired

977  from Encode®. DMRs were stratified in hypo- and hypermethylated regions and enriched to a
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978  background containing a set of random regions with equal size, similar CpG frequency (15%
979 tolerance in the deviation of CpG composition was allowed), and a maximum of 20% N’s in

980 the sequence composition.

981 Locus plots

982 IGV (v2.12.2) was used to visualize locus-specific methylation at single CpG resolution of
983 WGBS and DNA methylation array data (450k)._Alternatively, the R package gviz®® v1.30.3
984  was used to generate locus plots. For the visualization of WGBS data, methylation calls were
985  smoothed with the R package bsseq® v1.20.0, applying the function “BSmooth” with default

986  parameters.

987 Homeobox gene classes

988 Homeobox genes were taken from Holland et al. ®. We annotated DMRs obtained from
989 comparing HM vs non-HM JMML patients using the “annotatePeak” function from the
990 ChIPseeker package®®, assuming a tssRegion of +/- 3,000 base pairs. Subsequently, we
991 counted how many DMR associated genes were present in either of the previously defined
992 Homeobox gene classes PRD, ANTP and Misc (LIM, POU, HNF, SINCE, TALE, CUT, PROS,
993 ZF, CERS). We divided the size each gene set by 30,000, and the number of DMR associated
994  genes occurring in each gene set by the number of total DMR associated genes. The log2 fold

995 change of those ratios was plotted.

996 Delineating methylation profiles linked to healthy hematopoietic stem cell development

997 and maturation

998 To analyze JMML within the context of HSC development, we compared the methylomes of

999 JMML HSCs to those of healthy fetal, neonatal, juvenile, and adult HSCs. For this purpose,
1000 the entire genome was segmented into contiguous 1kb regions, and the average methylation
1001 in regions covered in all samples was computed (n = 1,209,679). Average methylation within
1002  each region was subsequently correlated with the developmental order, progressing from fetal

1003 to neonatal, juvenile, and adult stages, using spearman correlation.
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1004  Of all the regions analyzed, 1,608 exhibited an absolute Spearman correlation coefficient of
1005 at least 0.9, corresponding approximately to the 0.999 quantile of the absolute Spearman
1006  correlation distribution.

1007  As the methylomes of fetal and juvenile samples were measured using post-bisulfite adaptor
1008 tagging (PBAT) while those of neonatal and adult samples were assessed by TWGBS, there
1009 remained a residual risk of confounding by the sequencing method. To address this issue, we
1010 computed the Spearman correlation of average methylation and sequencing method,
1011  subsequently removing all regions with an absolute correlation coefficient greater than 0.4 to
1012  account for the sequencing method covariate. This threshold corresponded approximately to
1013  the 0.75 quantile of the absolute Spearman correlation distribution. The remaining 1,179
1014 regions were presumed to capture the epigenetic changes occurring throughout HSC
1015 development

1016  For the reconstruction of phylogenetic trees representing HSC development, we calculated
1017 the Manhattan distance between samples based on the average methylation of the selected
1018 1,179 regions. Tree reconstruction, assuming minimum evolution, was conducted using the

1019  “fastme.bal” function from the R package ape® (version 5.6.2).

1020 Principal component analysis of JMML and healthy reference bulk methylomes

1021 To focus on the HSC bulk methylomes, data were subset accordingly, with the exclusion of
1022  the FL2_HSC_PBAT_2 sample due to its poor quality. The methylation values of the 10,000
1023  most variable CpGs across all remaining samples were centered around 0 and scaled by their
1024  standard deviation. Subsequently, Principal Component Analysis (PCA) was applied to the
1025  scaled methylation values.

1026 PCA embeddings and variance explained per principal component were computed using the
1027  prcomp function in base R, thereby facilitating an unsupervised analysis of genome-wide
1028 methylation patterns across hematopoietic stem cells.

1029
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1030 Identifying epigenetic scars of development

1031  Epigenetic scars, conceptually, are characterized by marked methylation changes between
1032  distinct developmental states, while remaining stable during subsequent development (related
1033  to Abdel-Hakeem et al.®®). To identify epigenetic scars, DMRs were called between a
1034  developmental state of interest and all succeeding states. “callDMR” from the R package
1035 DSS% (2.42.0) was used to identify DMRs across two groups. The “callDMR” function was
1036 invoked using the following arguments: delta=.1, p.threshold=.05, minlen=50, minCG=3,
1037 dis.merge=50, pct.sig=0.5. Identified DMRs were filtered to suffice an average coverage of
1038 five in at least 50% of samples in both groups.

1039  We identified 3,332 potential scars from comparing prenatal to postnatal states, and, 8,964
1040 from the comparison between neonatal and post-neonatal states. Given the lenient nature of
1041 the DMR calling procedure, only a small fraction of all DMRs represent genuine epigenetic
1042  scars.

1043  To select DMRs consistent with the concept of epigenetic scars, we applied the following

1044  filtering approach:

1045 1.) Conduct a Fisher’s exact test on a 2x2 contingency table comparing the total number
1046 of methylated and unmethylated CpGs within a given DMR and the two groups being
1047 compared. DMRs meeting a Benjamini-Hochberg adjusted p-value threshold of 0.01
1048 were considered for further selection.

1049 2.) Exclude regions exhibiting a within-group standard deviation of average DMR
1050 methylation greater than 0.1 in any of the compared groups. For the neonatal vs
1051 postneonatal comparison, this cutoff was reduced to 0.05 due to the high number of
1052 adult HSC replicates.

1053 DMRs passing this selection procedure were deemed genuine epigenetic scars. From the
1054  comparison between prenatal and postnatal we retained 100 epigenetic scars, from the
1055 comparison between neonatal and post-neonatal we retained 157.

1056
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1057 Linking transcriptional with epigenetic changes through generalized linear models
1058 Generalized linear model with stepwise feature elimination using AIC was applied to identify
1059 DEGs associated with DMRs in a region of 200 Mb around each of the transcription start sites
1060 (TSS). The goal of this analysis was to identify genes whose alterations in expression could
1061 principally be attributed to changes in neighboring CpG methylation.

1062  Specifically, our interest lay in genes differentially expressed between HM and non-HM cells
1063  derived from 10X data. Differentially expressed genes (DEGs) were identified using Seurat
1064  “findMarkers”, selecting genes meeting an adjusted p-value cutoff of 0.01. RNA expression
1065 data was normalized as outline in section: Pseudotemporal Analysis of Hematopoietic
1066 Lineages.

1067 Likewise, DMRs were determined by comparing HM and non-HM patients utilizing bulk WGBS
1068 data. To minimize the influence of developmental regions, we excluded DMRs that overlapped
1069  with DMRs from all pairwise comparisons of non-tumor neonatal, juvenile, and adult patients.
1070  Overlap assessment was performed using the /Ranges “findOverlaps” function (version
1071  2.32.0) with default arguments. Subsequently, we computed the average methylation per
1072  patient per DMR.

1073  After defining the sets of DEGs and DMRs, we calculated all DMRs that overlapped with a 100
1074 kb region surrounding the gene body of each DEG. Prior to this, hgLiftOver
1075  (https://genome.ucsc.edu/cgi-bin/hgLiftOver) was employed to convert gene coordinates from
1076  hg38 to hg19.

1077  Utilizing the “glm” function from the stats package in base R, we fitted a generalized linear
1078 model with a Gaussian link function to predict the expression of a given DEG through the
1079  methylation of associated DMRs. To reduce the number of model parameters (i.e., the number
1080 of DMRs predicting the expression of a given DEG), we employed the step function in base
1081 R, which optimizes the Akaike information criterion (AIC) in a stepwise manner. Briefly, this
1082 approach finds a balance between removing DMRs with minimal predictive power and
1083  maintaining acceptable model performance. Each DEG with at least one associated DMR after

1084  AIC optimization was considered linked to epigenetic changes.
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1085 Model performance was evaluated using standard metrics, including root-mean-square error,
1086 mean absolute error, Pearson correlation between prediction and ground truth, and ranked
1087 mean absolute error, which, unlike mean absolute error, utilizes the difference of ranks. DEGs
1088 were categorized based on the cellular location of their gene product using data from the
1089  CellPhoneDB database (https://raw.githubusercontent.com/Teichlab/cellphonedb-
1090 data/master/data/sources/protein_curated.csv). DEGs exhibiting a Pearson correlation
1091 between prediction and ground truth greater than 0.9 were selected as candidates for further
1092  analysis.

1093 The heatmaps display expression and methylation values for all DMR-DEG associations for
1094  all candidate genes per patient and subgroup. Normalized gene expression was scaled to
1095 minimum and maximum across patients. Average methylation for each DMR is the average
1096 beta-values across all CpGs per region and JMML epitype. ‘Correlation’ depicts the Pearson
1097  correlation coefficients as per DMR-DEG association. The expression of 13 genes encoding
1098 for cell surface proteins was found to be significantly correlated with DNA methylation changes

1099 inupto 7 DMRs.

1100  Ptpn1157K* JMML mouse model

1101  Ptpn1157%%* Scl-CreER™ mice were bred by crossing previously described Scl-CreER' and
1102 Ptpn11E7%*°" mice which were both on a B6.SJL-Ptprc® Pepc®/BoyJ (CD45.1) genetic
1103  background'® ™' All mice were kept at the DKFZ in individually ventilated cages under
1104  specific pathogen-free (SPF) conditions.

1105  For all experiments, Ptpn1157%* Scl-CreER' and Ptpn11** Scl-CreER" mice at the age of 6 to
1106 12 weeks were injected intraperitoneally (i.p.) on 5 consecutive days each day with 2 mg
1107  tamoxifen (dissolved in 200 pl sunflower oil with 10% ethanol). For differential blood count
1108 analysis, peripheral blood was collected from the vena facialis and measured using
1109 HemaVet950 (Drew Scientific) or scil Vet abc Plus+ (scil) veterinary hematology analyzers.
1110  Additionally, 30 pl of peripheral blood were used for flow cytometry as described below.

1111
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1112  Flow cytometric analysis of hematopoietic cells

1113  Mice were sacrificed 18 weeks post injection by cervical dislocation according to European
1114  guidelines. Bone marrow of tibiae, femora, iliae and vertebrae were isolated by crushing the
1115  bones in IMDM (Gibco) three times. Additionally, one femur was flushed using 1 ml PBS
1116  supplemented with 2% FCS (PBS/FCS) to determine bone marrow cellularity and the cell
1117  suspension was afterwards added to the crushed bones. Spleen cells were isolated by passing
1118 the organs through a 40 um cell strainer (Falcon). Subsequently, bone marrow cells,
1119  splenocytes and peripheral blood were resuspended in ACK lysis buffer (Lonza) for red blood
1120  cell lysis. Cells were washed and stained in PBS/FCS using established cell surface marker
1121  combinations for the identification of hematopoietic cell types (Supplementary Table 26). Flow
1122  cytometry analysis was performed using BD LSR II, BD LSR Fortessa and BD FACS Celesta

1123  (BD Biosciences).

1124 Bone marrow isolation and lineage depletion

1125  Bone marrow cell isolation and lineage depletion have been performed as described before'*?.
1126  In short, bone marrow was isolated by crushing the bones three times in IMDM (Gibco)
1127  followed by red blood cell lysis using ACK lysis buffer (Lonza). Cells were washed in PBC/FCS
1128 and biotinylated antibodies added for lineage depletion (Supplementary Table 26). Mouse
1129  depletion Dynabeads (Invitrogen) were used for the depletion of lineage-labeled cells using a
1130 DynaMag-15 magnet (Invitrogen). Subsequently, lineage-negative cells were stained with
1131  antibodies for the isolation of HSPCs followed by FACS using BD FACS Aria Il and Il cell

1132  sorters (BD Biosciences).

1133  Single-cell genotyping

1134  Ptpn1157%%* Scl-CreER' mice were sacrificed three days after the last tamoxifen injection and
1135  subsequently lineage-depleted bone marrow cells isolated from tibiae, femora, iliae and
1136  vertebrae as described above. Single HSCs (Lin- cKIT+ Sca1+ CD48- CD150+) were FACS-
1137 isolated and expanded for 12 days in StemSpan SFEM (Stemcell Technologies) containing

1138 1% Penicillin/Streptomycin (Gibco), 2 mM L-Glutamine (Gibco), 50 ng/ml IL-3 (PeproTech), 50
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1139  ng/ml IL-6 (PeproTech), 50 ng/ml TPO (PeproTech), 50 ng/mlmSCF (PeproTech) and 50
1140 ng/ml FIt3L (PeproTech) at 37°C with 5% CO2in 96-well U-bottom plates. Wells with colony

157 mutation by genotyping PCR'™". In short,

1141  growth were analyzed for induction of the Ptpn1
1142  lysis buffer containing 0.01% Tween-20 (Sigma-Aldrich) and Proteinase K (Thermo Scientific)
1143  was added to the cells followed by incubation at 65°C for 60 min and 95°C for 15 min. Cell
1144  lysate was subjected to genotyping using a HotStar Taq polymerase (QIAGEN) and previously

1145  established primers''. PCR products were analyzed on a 2% agarose gel.

1146  Analysis of moribund mice

1147  Moribund mice were sacrificed by cervical dislocation according to European guidelines.
1148  Spleen and live weight were determined and bone marrow cells isolated from tibiae, femora
1149  and iliae by flushing these bones with PBS/FCS. Flow cytometry was performed as described

1150 above using established cell surface marker combinations (Supplementary Table 26).

1151  Single-cell RNA-sequencing or material from Ptpn1157% mice

1152  Mice were sacrificed 18 weeks post injection by cervical dislocation according to European
1153  guidelines. Femur cellularity was determined by flushing femora with PBS/FCS. Additionally,
1154  bone marrow cells from vertebrae, femora, tibiae, iliae, humeri and sterna were isolated by
1155  crushing these bones three times in IMDM (Gibco). The femur cells were added to the crushed
1156  bones followed by red blood cell lysis using ACK lysis buffer (Lonza). Afterwards, 5 x 10° cells
1157  were used for the staining of differentiated cells and 2.5 x 10" cells for flow cytometry
1158 measurements (see ‘Flow cytometric analysis of hematopoietic cells’). The remaining cells
1159  were subjected to lineage depletion as described above. Lineage-negative and differentiated
1160 cells were stained with antibodies for the isolation of hematopoietic cell types and used for
1161 FACS (Supplementary Table 26). In total, 7,000 Lin- cKIT+ Sca1+ (LSK) and 7,000 Lin- cKIT+
1162 (LK) cells were isolated from each mouse from lineage-negative bone marrow and 7,000 live
1163  total hematopoietic cells from unfractioned bone marrow. These cells were subjected to

1164  scRNA-sequencing using the Single Cell 3’ Reagent Kits v2 (10X Genomics) according to the
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1165 manufacturer’s instructions. Sequencing was performed on a NovaSeq 6000 (lllumina) in
1166  paired-end (PE 26/96 bp) mode at the DKFZ GPCF.

1167 Reads were aligned to GRCm38 and feature count matrices generated using Cell Ranger
1168  version 4.0.0 (10X Genomics). Feature counts were further processed using Seurat (version
1169  4.0)' whereby cells with more than 5% of mitochondrial reads or less than 500 and more
1170 than 5800 detected genes were removed from the analysis. Moreover, only genes that were
1171  expressed in a minimum of 10 cells were retained for further analysis. Doublets were identified
1172  and removed using DoubletFinder’®. Cell cycle states were annotated based on the

1173  expression of stage specific marker genes (https://github.com/hbc/tinyatlas). Filtered data was

1174  subsequently integrated across genotypes using the “SCTransform” method followed by PCA,
1175  UMARP calculation and clustering. Clusters were annotated to hematopoietic cell states based
1176  on the expression of previously identified state-specific marker genes %1% Differentiation
1177  pseudotime was calculated using slingshot for the monocytic differentiation lineage and cells
1178  were ordered along this pseudotime based on their rank %7,

1179  Cluster contributions were calculated based on 10,000 randomly selected cells from each
1180 genotype. P-values were determined using Fisher's exact test followed by Benjamini-
1181 Hochberg’s false discovery rate (FDR) correction.

1182  Transcriptional priming was calculated based on previously published gene sets "%

using the
1183  Seurat “AddModuleScore” function. Statistical significance was determined based on two

1184  LMMs as implemented in the Ime4 R package followed by ANOVA:

1185 LMMA1 = signature ~ genotype + (1|mouse_id)

1186 LMM2 = signature ~ (1|mouse_id)

1187

1188  Murine fetal and adult HSC signature genes were previously published ?” and used for GSEA.
1189 In short, the Seurat “FindMarkers” function (logfc.threshold = -Inf, min.pct = 0.05,
1190 max.cells.per.ident = 1000) was used to calculate differential gene expression and

1191 subsequently genes not mapping to sex chromosomes were ranked based on fold change
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1192  followed by GSEA using the fgsea package

1193 (https://www.biorxiv.org/content/10.1101/060012v3).

1194  Primary xenotransplantation

1195 Newborn Rag2”gc” mice were used for xenotransplantation within the first four days of life.
1196  Mice were irradiated with 2,5 Gy. Six to eight hours after irradiation JMML (MNCs) were
1197  thawed, depleted from CD3"* T cells using CD3 MicroBeads (Miltenyi Biotec) and 1x10° cells
1198  were injected intra-hepatically in 30 pl of PBS. Six to seven weeks after xenotransplantation,
1199 peripheral blood was obtained to inspect for human cell engraftment using flow cytometry with
1200 an antibody specifically detecting human pan-leukocyte antigen (hCD45). Successfully
1201 engrafted mice were then treated with alemtuzumab (100 pg/kg) or vehicle 1x/week for 4

1202  weeks.

1203  In vivo anti-CD52 treatment

1204 At eight weeks following xenotransplantation, mice were divided into two groups: the control
1205 group received 100 pl of PBS and the experimental group received 100 mg/kg anti-CD52
1206  antibody (alemtuzumab, Genzyme Corporation Cambridge) prepared in 100 pl of PBS.
1207 Injections were given via tail vein once per week for four weeks.

1208  One week after the end of the treatment, mice were sacrificed and blood, bone marrow,
1209 spleen, liver, and lungs were used for the analysis. Single cell suspensions were obtained for
1210  blood, bone marrow, and spleen, while liver and lungs were firstly digested with collagenase
1211 D (1 mg/ml) and DNase (25 mg/ml) for 30 minutes at 37°C followed by density gradient
1212  centrifugation. Cell suspensions were exposed to red blood cell lysis and stained with
1213  antibodies (Supplementary Table 27). All antibodies were used in 1:100 ratio. Cell acquisition
1214  and measurement was done using BD Fortessa. Different cell populations were characterized
1215 following gating strategy shown in Extended Data Figure 12i.

1216  The expression levels are quantified as total number of events of engrafted CD45+ cells or
1217  absolute number of living cells calculated out from two femurs. Statistical analyses were

1218  performed using the unpaired Mann-Whitney test in GraphPad Prism 10 software. P values
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1219 less than 0.05 were considered statistically significant. Treatment effect of alemtuzumab was
1220 calculated as difference of the percentage of engrafted human CD45 cells in treated vs

1221  untreated mice (treatment effect=treatedmean - untreatedmean).

1222  Serial transplantations

1223  For serial transplantations, 5-weeks old mice were sublethally irradiated with 3 Gy and six to
1224  eight hours after irradiation 1x10’ total bone marrow cells control- or alemtuzumab-treated
1225  mice were injected. Six weeks after transplantation, human cell engraftment was assessed in
1226  murine peripheral blood by flow cytometry using an antibody specifically detecting human pan-
1227  leukocyte antigen (hCDA45). Terminally sick mice were eliminated and organs were analyzed

1228 as described above.

1229  Statistical analysis and data visualization

1230  Statistical tests are specified in the corresponding figure legends and methods sections. If not
1231  differently specified, default statistical tests implemented in Seurat or DSS were used for
1232 scRNA-seq or WGBS analyses, respectively. For the analysis of JMML PDX mice, GraphPad
1233  Prism was used. Flow cytometry data was analyzed using FlowJo (v.10.6.2, v.10.8.1, BD
1234  Biosciences). Flow cytometers and sorters were operated using DIVA v.8 or v.9. Visualizations
1235  were generated using ggplot2 and pheatmap, Seurat and Nebulosa in R version 4.0.3, 4.0.5,
1236 and 4.2.0%. For Kaplan-Meier analysis, the survminer R package was used to calculate

1237 leukemia-free survival (https://github.com/kassambara/survminer).

1238
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Data availability

Data

Source

Reference

JMML_scRNA-seq
FET_scRNA-seq

NEO_scRNA-seq

JUV_scRNA-seq

ADU_scRNA-seq
JMML_EPIC
JMML_WGBS
FET_WGBS
NEO_WGBS
JUV_WGBS
ADU_WGBS

Ptpn11-E76K_scRNA-

seq

Code availability

EGAS00001007357
Human Cell Atlas

Human Cell Atlas

HTA4 31&
HTA4 32

Human Cell Atlas

EGAS00001007357
EGAS00001007357
EGAS00001007357
EGAS00001007357
EGAS00001007357
EGAS00001007357

GEO: GSE240460

this study
Popescu et al. (2019)%8

https://data.humancellatlas.org/explore/projects/cc
95ff89-2e68-4a08-a234-480eca21ce79

this study

Hay et al. (2018)%

this study

this study

this study

Maag, Toth et al. (in preparation)
this study

this study

this study

WGBS and scRNA-seq data were processed and analyzed using publicly available software

packages as specified in the corresponding methods sections. R code is available at

https://github.com/maurerv/imml_oncofetal reprogramming.
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