

1 Oncogenic RAS-Pathway Activation Drives Oncofetal Reprogramming and 2 Creates Therapeutic Vulnerabilities in Juvenile Myelomonocytic Leukemia

3
4 Mark Hartmann^{1,*}, Maximilian Schönung^{1,*}, Jovana Rajak^{2,#}, Valentin Maurer^{1,3,#}, Ling Hai^{4,5,#},
5 Katharina Bauer⁶, Mariam Hakobyan^{1,7}, Sina Staeble¹, Jens Langstein¹, Laura Jardine⁸, Roland Rölz⁹,
6 Sheila Bohler², Eleonora Khabirova¹⁰, Abdul-Habib Maag¹¹, Dominik Vonficht^{12,7}, Dirk Lebrecht² Katrin
7 M. Bernt¹³, Kai Tan^{14,15}, Changya Chen^{14,15}, Fatemeh Alikarami¹⁶, Tobias Boch¹⁷, Viktoria Flore¹, Pavlo
8 Lutsik^{18,19}, Michael D. Milsom²⁰, Simon Raffel²¹, Christian Buske¹¹, Simon Haas^{22,23,24}, Muzlifah
9 Haniffa^{8,10}, Jan-Philipp Mallm⁶, Sam Behjati^{10,25,26}, Marc-Jan Bonder^{27,28,29}, Stefan Fröhling^{30,31},
10 Charlotte M. Niemeyer^{2,32}, Joschka Hey^{18,33,§}, Christian Flotho^{2,32,§}, Christoph Plass^{18,§}, Miriam
11 Erlacher^{2,32,§}, Matthias Schlesner^{4,34,§}, Daniel B. Lipka^{1,35,§}

12
13 ¹ Section of Translational Cancer Epigenomics, Division of Translational Medical Oncology, German
14 Cancer Research Center (DKFZ) & National Center for Tumor Diseases (NCT) Heidelberg,
15 Heidelberg, Germany

16 ² Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine,
17 Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany

18 ³ European Molecular Biology Laboratory Hamburg, Germany; Centre for Structural Systems Biology
19 (CSSB), Hamburg, Germany

20 ⁴ Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg,
21 Germany

22 ⁵ present address: Clinical Cooperation Unit Neurooncology, German Cancer Research Center
23 (DKFZ) and National Center for Tumor Diseases Heidelberg, Heidelberg, Germany

24 ⁶ scOPEN Lab, German Cancer Research Center (DKFZ), Heidelberg, Germany

25 ⁷ Faculty of Biosciences, Heidelberg University, Heidelberg, Germany

26 ⁸ Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK

27 ⁹ Department of Neurosurgery, University of Freiburg, Faculty of Medicine, Medical Center, Freiburg,
28 Germany

29 ¹⁰ Wellcome Sanger Institute, Hinxton, United Kingdom

30 ¹¹ Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany

31 ¹² Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH
32 Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental
33 Medicine (HI-STEM gGmbH), Heidelberg, Germany

34 ¹³ Division of Pediatric Oncology, Children's Hospital of Philadelphia, Philadelphia, USA

35 ¹⁴ Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia,
36 Pennsylvania

37 ¹⁵ Department of Pediatrics, University of Pennsylvania, Philadelphia, Pennsylvania

38 ¹⁶ Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of
39 Philadelphia, Philadelphia, USA

40 ¹⁷ Department of Hematology and Oncology, Heidelberg University, University Hospital Mannheim,
41 Mannheim, Germany

42 ¹⁸ Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Heidelberg, Germany

43 ¹⁹ Computational Cancer Biology and Epigenomics, Department of Oncology, KU Leuven, Leuven,
44 Belgium

45 ²⁰ Division of Experimental Hematology, German Cancer Research Center (DKFZ), Heidelberg,
46 Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM
47 gGmbH), Heidelberg, Germany

48 ²¹ Department of Medicine, Hematology, Oncology and Rheumatology, University Hospital
49 Heidelberg, Germany

50 ²² Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH),
51 Heidelberg, Germany; Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ),
52 Heidelberg, Germany

53 ²³ Berlin Institute of Health (BIH), Charité - Universitätsmedizin Berlin, Berlin, Germany

54 ²⁴ Berlin Institute for Medical Systems Biology (BIMSB), Max Delbrück Center in the Helmholtz
55 Association, Berlin, Germany

56 ²⁵ Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom

57 ²⁶ Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom

58 ²⁷ Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany

59 ²⁸ Division of Computational Genomics and Systems Genetics, German Cancer Research Center
60 (DKFZ), Heidelberg, Germany

61 ²⁹ European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, European Molecular
62 Biology Laboratory (EMBL), Hinxton, United Kingdom

63 ³⁰ National Center for Tumor Diseases (NCT), Heidelberg, Germany; Division of Translational Medical
64 Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany

65 ³¹ German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Germany

66 ³² German Cancer Consortium (DKTK), partner site Freiburg, a partnership between DKFZ and
67 University Medical Center Freiburg, Germany

68 ³³ German-Israeli Helmholtz International Research School in Cancer Biology

69 ³⁴ Faculty of Applied Computer Sciences, Biomedical Informatics, Data Mining and Data Analytics,
70 University of Augsburg, Augsburg, Germany

71 ³⁵ Faculty of Medicine, Otto-von-Guericke-University, Magdeburg, Germany

72 * These authors contributed equally as first authors

73 # These authors contributed equally as second authors

74 § Co-senior authors

75 **Correspondence to**

76 **Daniel B. Lipka**

77 Section of Translational Cancer Epigenomics
78 Division of Translational Medical Oncology
79 German Cancer Research Center (DKFZ) & National Center for Tumor Diseases
80 (NCT) Heidelberg
81 Im Neuenheimer Feld 581
82 69120 Heidelberg
83 Germany
84 Phone: +49-6221-42-1613
85 Email: d.lipka@dkfz.de

86 **Mark Hartmann**

87 Section of Translational Cancer Epigenomics
88 Division of Translational Medical Oncology
89 German Cancer Research Center (DKFZ) & National Center for Tumor Diseases
90 (NCT) Heidelberg
91 Im Neuenheimer Feld 581
92 69120 Heidelberg
93 Germany
94 Phone: +49-6221-42-1603
95 Email: m.hartmann@dkfz.de

96 **Highlights**

97 ▪ Epigenomic and transcriptomic landscape of juvenile myelomonocytic leukemia
98 (JMML) in the context of hematopoietic development.

99 ▪ The presence of fetal transcription signatures in childhood malignancies is not
100 indicative of a developmental maturation block.

101 ▪ High-risk JMML is characterized by oncofetal reprogramming of postnatal
102 hematopoietic stem cells (HSCs).

103 ▪ RAS-pathway mutations induce fetal-like gene expression signatures in murine
104 postnatal HSCs.

105 ▪ The fetal maturation marker CD52 is a novel therapeutic target in high-risk JMML.

106 **Abstract** (226 words, max 200)

107 Aberrant fetal gene expression facilitates tumor-specific cellular plasticity by hijacking
108 molecular programs of embryogenesis¹. Persistent fetal gene signatures in childhood
109 malignancies are typically explained by their prenatal origins²⁻⁶. In contrast,
110 reactivation of fetal gene expression is considered a consequence of oncofetal
111 reprogramming (OFR) in adult malignancies and is associated with aggressive
112 disease⁷⁻¹⁰. To date, OFR has not been described in the context of childhood
113 malignancies. Here, we performed a comprehensive multi-layered molecular
114 characterization of juvenile myelomonocytic leukemia (JMML) and identified OFR as
115 a hallmark of aggressive JMML. We observed that hematopoietic stem cells (HSCs)
116 aberrantly express mixed developmental programs in JMML. Expression of fetal gene
117 signatures combined with a postnatal epigenetic landscape suggested OFR, which
118 was validated in a JMML mouse model, demonstrating that postnatal activation of RAS
119 signaling is sufficient to induce fetal gene signatures. Integrative analysis identified the
120 fetal HSC maturation marker CD52 as a novel therapeutic target for aggressive JMML.
121 Anti-CD52 treatment depleted human JMML HSCs and disrupted disease propagation
122 *in vivo*. In summary, this study implicates OFR, defined as postnatal acquisition of fetal
123 transcription signatures, in the pathobiology of a childhood malignancy. We provide
124 evidence for the direct involvement of oncogenic RAS signaling in OFR. Finally, we
125 demonstrate how OFR can be leveraged for the development of novel treatment
126 strategies.

127 **Introduction**

128 Fetal signatures in cancer have been described for a number of entities including
129 pediatric and adult malignancies, although the cellular origins and molecular
130 mechanisms are mostly obscure^{9,10}. For childhood malignancies, the detection of
131 driver mutations at the time of birth revealed that premalignant clones can arise
132 prenatally leading to a maturation block with subsequent malignant transformation¹¹.
133 However, genetic evidence for a prenatal event cannot be obtained in all patients
134 affected by childhood malignancies, suggesting that alternative molecular
135 mechanisms may establish fetal signatures. In adult malignancies, the concept of
136 'oncofetal reprogramming' (OFR) describes the reactivation of fetal programs in
137 cancer cells originating from postnatal cells-of-origin. OFR could explain the
138 occurrence of fetal expression programs in childhood malignancies for which evidence
139 of a prenatal origin is lacking. However, to date, OFR has not been described in the
140 context of childhood cancer^{1,11}.

141 Juvenile myelomonocytic leukemia (JMML) is a myeloproliferative/myelodysplastic
142 neoplasm of early childhood and clinically a highly heterogeneous disease that is
143 defined by the presence of mutations affecting the RAS-signaling pathway¹².
144 Epigenetic disease subgroups, known as epitypes, have been identified as the only
145 solitary significant predictor of overall survival in JMML¹³⁻¹⁶. In addition to global DNA
146 hypermethylation, the upregulation of fetal hemoglobin and the fetal hematopoietic
147 stem cell (HSC) marker *LIN28B* have been associated with high-risk disease¹⁷⁻¹⁹.
148 Correspondingly, in a subset of JMML patients oncogenic driver mutations have been
149 found in neonatal blood spots, suggesting a prenatal origin of the disease²⁰. However,
150 JMML driver mutations can only be detected in a minority of high-risk patients at birth,
151 which may indicate a postnatal origin of the disease in these patients²¹. Such

152 indications of a postnatal disease origin in some cases together with the simple genetic
153 landscape and the profound epigenetic remodeling qualifies JMML as a suitable model
154 to study cancer ontogeny.

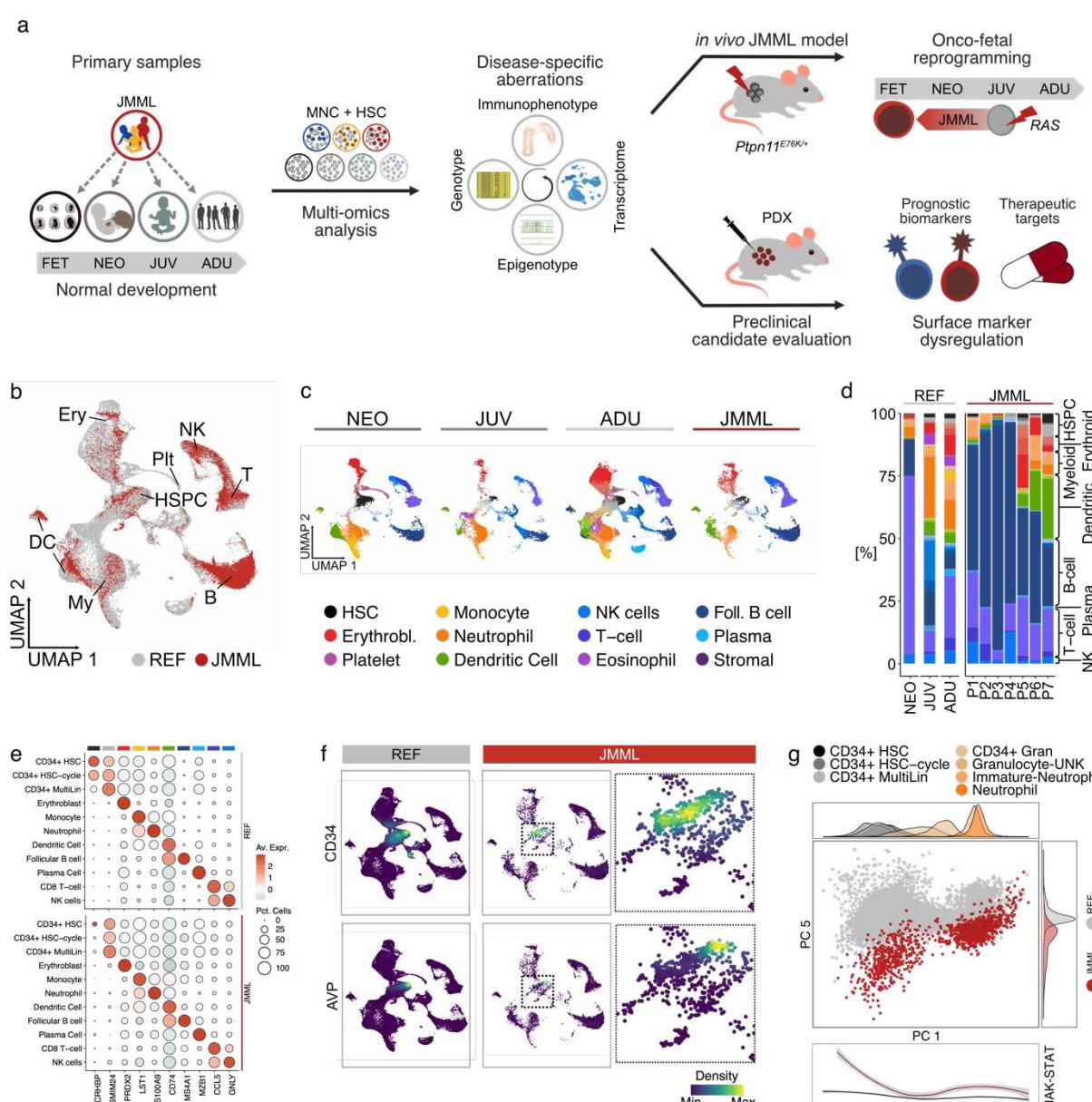
155 In this study, we used multi-omics profiling to identify disease-specific transcriptomic
156 and epigenomic aberrations associated with high-risk JMML. We observed an
157 unanticipated discrepancy between prenatal transcription and postnatal methylation
158 states, suggesting OFR as a possible explanation. Using a JMML mouse model driven
159 by HSC-specific activation of a *Ptpn11*^{E76K} mutation revealed that oncogenic RAS
160 pathway activation results in OFR. Furthermore, we demonstrate that OFR drives
161 disease-specific expression programs, resulting in aberrantly upregulated markers in
162 HSCs of high-risk JMML patients. Preclinical data testing one of these aberrantly
163 expressed markers in a xenotransplantation model suggested that CD52 may serve
164 as an efficient therapeutic target in high-risk JMML.

165 **Results**

166 **JMML-related aberrations affect the entire hematopoietic system including**
167 **hematopoietic stem cells**

168 The clinical heterogeneity found across JMML patients has mostly been resolved at
169 the molecular level using DNA methylation analysis which led to the identification of
170 so-called JMML epitypes¹³⁻¹⁵. However, the molecular mechanisms driving the
171 establishment of JMML epitypes remain elusive. To systematically characterize the
172 degree of molecular heterogeneity in JMML, we adopted a multi-modal analysis
173 strategy to integrate epigenomic, transcriptomic, and surface marker expression data
174 obtained from patient samples representing all three JMML epitypes: namely low (LM);
175 intermediate (IM); and high methylation (HM) JMML (Fig. 1a, Extended Data Fig. 1,

176 Supplementary Table 1)¹⁶. Using scRNA-seq of mononuclear cells (MNC) isolated
 177 from JMML patients and healthy subjects of different age groups (Extended Data Fig.
 178 2, Supplementary Table 2), we confirmed that all hematopoietic lineages and major
 179 cell types were present in the hematopoietic systems of JMML patients, although cell
 180 type frequencies were heterogenous across patients (Fig. 1b-d, Extended Data Figs.
 181 3 and 4).



182
 183 **Fig. 1: JMML-related aberrations affect the entire hematopoietic system including**
 184 **hematopoietic stem cells.** a, Conceptual and experimental overview. Cellular and molecular
 185 **aberrations in JMML are characterized in the context of healthy hematopoietic development using**
 186 **a multi-omics approach to identify disease-specific aberrations that can be used for diagnostic and**
 187 **therapeutic purposes. (FET: fetal; NEO: neonatal; JUV: juvenile; ADU: adult; MNC: mononuclear**

188 cells; HSC: hematopoietic stem cells; PDX: patient-derived xenograft). **b-g**, Single-cell RNA-
189 sequencing (scRNA-seq) of mononuclear cells (MNCs) isolated from JMML patient samples and
190 healthy postnatal references. Cell types were annotated using adult human cell atlas data as a
191 reference. **b**, UMAP of scRNA-seq data colored by disease status (grey: healthy references [REF];
192 red: JMML). ‘REF’ includes data from neonatal, juvenile and adult samples. **c**, UMAPs of scRNA-
193 seq data split by dataset and colored by cell type. Major cell types are indicated in the legend,
194 detailed cell type annotation is included in **Extended Data Fig. 3**). Erythrobl.: erythroblast; Foll. B
195 cell: follicular B cell; Plasma: plasma cell. **d**, Stacked bar plot summarizing the cell type frequencies
196 across the scRNA-seq datasets. P1 – P7: JMML samples. **e**, Dot plot summarizing gene
197 expression of characteristic lineage markers across major hematopoietic cell types in healthy
198 references (REF) and JMML samples. **f**, Density UMAPs depicting the expression of the
199 hematopoietic stem and progenitor cell markers AVP and CD34. **g**, Principal component analysis
200 (PCA) of the neutrophil differentiation trajectory. Correlation analysis identified PC 1 and PC 5 as
201 representative of neutrophil differentiation (grey to orange) and disease-specific features (red),
202 respectively. Cells from healthy references: grey; cells from JMML patients: red. Density plots
203 depict the cell density along the axes stratified by cell type (PC 1) or by disease status (PC 5).
204 Bottom panel describes JAK-STAT signaling pathway activity across neutrophil pseudotime for
205 JMML (red) and references (black).

206 However, pronounced differences were observed between JMML samples and
207 healthy controls regarding the frequency of cells expressing typical age-matched
208 hematopoietic stem and progenitor cell (HSPC) marker genes (Fig. 1e,f, Extended
209 Data Figs. 3 and 4). These aberrant expression profiles were also observed in a
210 systematic trajectory analysis and affected all major lineages, including hematopoietic
211 stem cells (HSC; Fig. 1g, Extended Data Fig. 5). All trajectories showed enrichment of
212 inflammatory signaling pathways with a peak in HSCs (Fig. 1g, Extended Data Fig.
213 5d). Together, this data suggested that the HSC compartment is massively altered in
214 JMML.

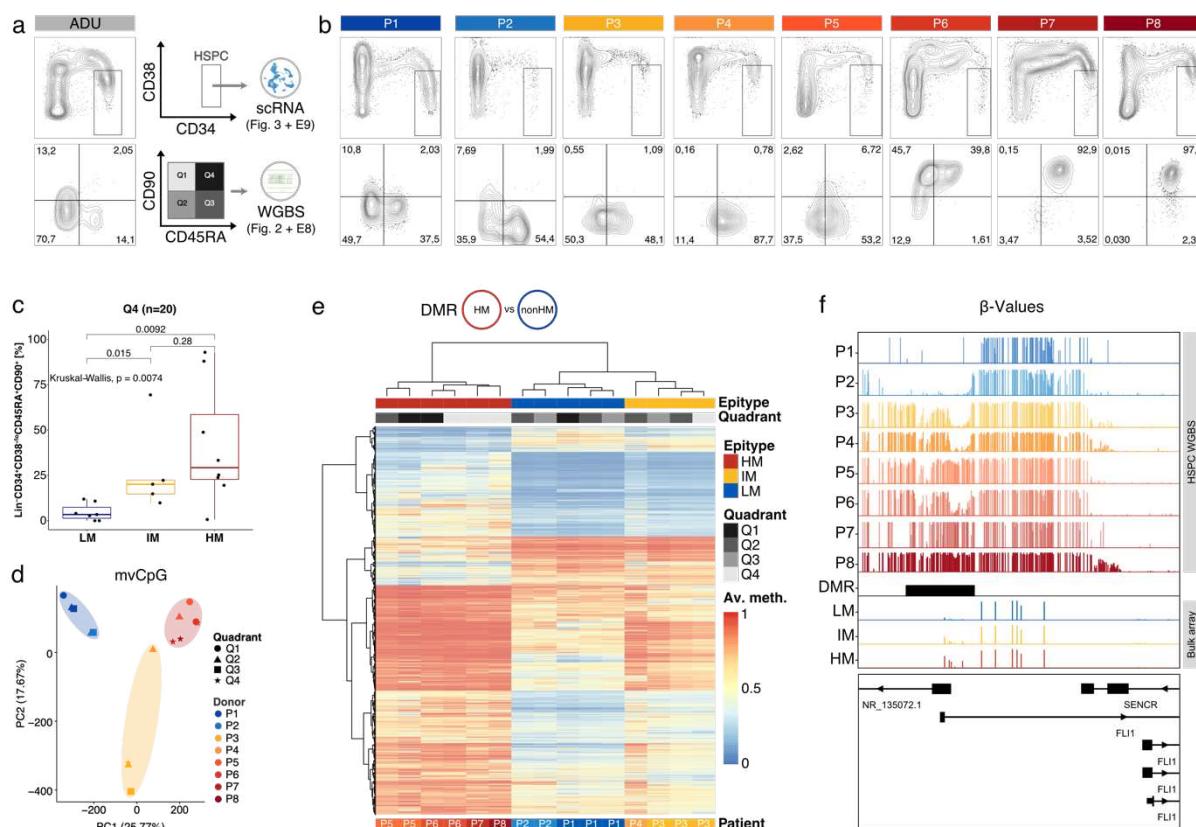
215 **Epitypes are conserved in hematopoietic stem cells of JMML patients**

216 To systematically characterize early molecular evolution of JMML epitypes, we
217 investigated the molecular landscape of the HSPC compartment of JMML patients by
218 performing a multi-modal analysis comprising immunophenotypes, epigenotypes, and
219 transcriptomes (Fig. 2a, Extended Data Fig. 6). Lineage-negative (Lin^-) cells of JMML
220 patients revealed cell surface expression patterns for CD34 and CD38 that were
221 different in frequencies but comparable in global structure to those observed in healthy

222 references (Fig. 2b, top panel). In contrast, Lin⁻CD34⁺CD38^{-/lo} HSPCs exhibited highly
223 heterogeneous immunophenotypes with respect to CD45RA and CD90 expression
224 (Fig. 2b, bottom panel). This included the appearance of a recently described aberrant
225 Lin⁻CD34⁺CD38^{-/lo}CD45RA⁺CD90⁺ HSPC population^{22,23}. The abundance of these
226 immunophenotypically aberrant CD45RA⁺CD90⁺ HSPCs was distinct across JMML
227 epitypes, with hypermethylated (HM) JMML showing the highest frequency of
228 CD45RA⁺CD90⁺ HSPCs in an independent validation cohort (n=20 pts; Fig. 2c,
229 Supplementary Table 3). This observation suggested that epitype-related, disease-
230 specific aberrations of gene regulatory programs might already be present in the
231 HSPC compartment of JMML patients. To test this possibility, we generated ultra-low
232 input whole-genome bisulfite sequencing (WGBS) data from different HSPC
233 subpopulations, i.e. the CD45RA/CD90 quadrants of Lin⁻CD34⁺CD38^{-/lo} cells (Fig. 2b,
234 bottom panel, Supplementary Table 4). DNA methylation-based cell type
235 classification²⁴ determined all CD45RA/CD90 subpopulations isolated from JMML
236 patients as HSCs, independent of the epitype, the donor, or the immunophenotypic
237 CD45RA/CD90 quadrant, confirming aberrant molecular programs in the JMML HSC
238 compartment (Extended Data Fig. 7a). In line with this observation, unsupervised
239 analysis of JMML HSC methylomes precisely recapitulated the corresponding
240 epitypes that had been determined by methylation array analysis of bulk MNCs (Fig.
241 2d, Extended Data Figs. 1 and 7b-d). In conclusion, the conservation of epitypes
242 between HSCs and differentiated MNCs from JMML patients reveals DNA methylation
243 as a differentiation-independent and early disease-specific aberration, which confirms
244 JMML as a disease originating from HSCs.

245 Next, we aimed to identify DNA methylation changes in JMML HSCs that are
246 characteristic of the HM epitype, as this epitype is associated with an aggressive

247 disease course^{13,16}. Differentially methylated regions (DMRs) detected between HSCs
 248 from HM and non-HM (LM & IM) patients confirmed widespread CpG
 249 hypermethylation, which particularly affected bivalent enhancers and polycomb-
 250 repressed regions associated with developmental processes (Fig. 2e, Extended Data
 251 Fig. 7b and e-l, Supplementary Table 5).



252
 253 **Fig. 2: Epitypes are conserved in hematopoietic stem cells of JMML patients.** a, Left: FACS
 254 contour plots from healthy adult bone marrow (n=1; ADU). Right: schematic representing the
 255 sorting strategy of HSPCs for single-cell RNA-sequencing (top; Lin⁻CD34⁺CD38^{-/lo}) and ultra-low
 256 input whole-genome bisulfite sequencing (Lin⁻CD34⁺CD38^{-/lo}CD45RA/CD90 quadrants). scRNA:
 257 single-cell RNA-sequencing; WGBS: ultra-low input whole-genome bisulfite sequencing. b, FACS
 258 contour plots depicting expression of CD38 (y-axis) over CD34 (x-axis) in the Lin⁻ (top) and
 259 expression of CD90 (y-axis) over CD45RA (x-axis) in the Lin⁻CD34⁺CD38^{-/lo} (bottom)
 260 compartments of JMML patients (n=8; P1 – P8). Colors refer to the semi-quantitative genome-wide
 261 methylation states in each patient (Extended Data Fig. 1). c, Quantification of aberrant Lin⁻
 262 CD34⁺CD38^{-/lo}CD45RA⁺CD90⁺ HSCs in a validation cohort (n=29 JMML patients) stratified by
 263 JMML epitype. d-f, μ WGBS of sorted JMML HSPCs. d, Principal component analysis (PCA) of the
 264 20,000 most-variable CpGs identified across JMML HSPCs. e, Heatmap depicting methylation
 265 status of 13,832 DMRs identified between HM and non-HM (i.e., “intermediate methylation” [IM]
 266 and “low methylation” [LM]) patients. Hierarchical clustering using Manhattan distance and
 267 complete linkage. f, Genome browser tracks of WGBS and bulk methylation array data. Tracks P1
 268 – P8 depict WGBS data from JMML HSPCs. LM, IM, and HM refer to bulk methylation array data
 269 aggregated from 147 JMML patients representing all epitypes (LM=62, IM=45, HM=40). Depicted
 270 is the genomic region (hg19, chr11:128,553,548-128,564,856) containing a DMR overlapping an
 271 alternative transcription start site of *FLI1*.

272 For example, DMRs were annotated to loci of hematopoietic and developmental
273 regulators such as *FLI1*, *RUNX1*, and several homeobox gene classes (Fig. 2f,
274 Extended Data Fig. 7m,n). Furthermore, DMRs were enriched for transcription factor
275 (TF) binding motifs such as PU.1, HOXC9, as well as various GATA and ETS family
276 members, suggesting an impact of epitypes on specific gene regulatory programs
277 involved in hematopoietic maturation and differentiation (Extended Data Fig. 7o). In
278 conclusion, our DNA methylome data demonstrated that JMML epitypes are present
279 in HSCs from JMML patients, and that the observed epigenetic aberrations might
280 govern epitype-specific gene regulation, including the engagement of developmental
281 programs.

282 **Hematopoietic stem cells exhibit epitype-specific gene expression programs in
283 JMML patients**

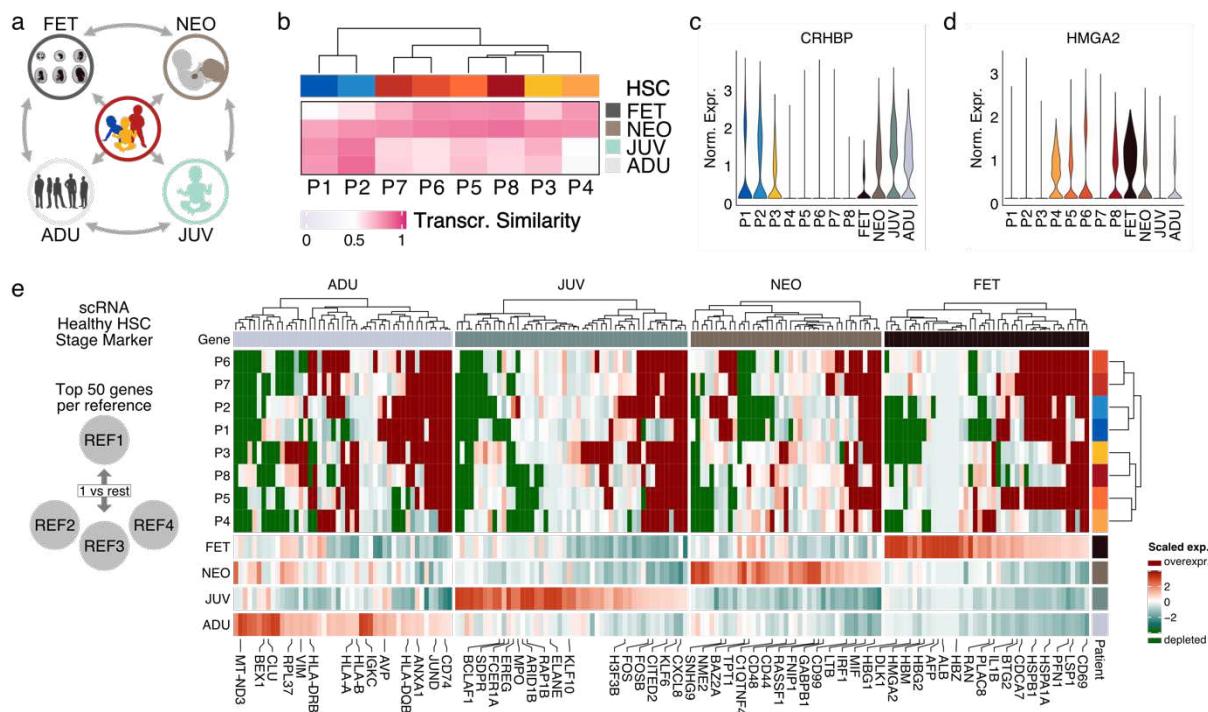
284 To investigate whether the epitype-specific DNA methylation patterns translate into
285 distinct gene expression programs in HSCs of JMML patients, we performed scRNA-
286 seq on Lin⁻CD34⁺CD38^{-lo} HSPCs isolated from the same 8 JMML patients (P1 – P8;
287 Fig. 2a and Extended Data Fig. 8a, Supplementary Table 2). Focusing on
288 transcriptionally defined HSCs, we found significant transcriptional priming towards
289 the myeloid lineage ($p = 0.0023$, LMM and ANOVA) in patients with IM and HM
290 epitypes as compared to the LM epitype, and this increase in transcriptional myeloid
291 priming occurred at the expense of priming towards the megakaryocytic-erythroid
292 lineages (Extended Data Fig. 8b, Supplementary Table 6). These differences were
293 paralleled by an increase in expression of leukemia-associated signatures from LM-
294 to HM-HSCs, suggesting that aberrant DNA methylation might impact on HSC function
295 in JMML in an epitype-specific manner (Extended Data Fig. 8c, Supplementary Table
296 6). Differential gene expression analysis between HSCs from HM and non-HM patients

297 revealed a number of highly dysregulated genes, which are critical for hematopoiesis,
298 including HSC markers such as *AVP*, *CRHBP*, *CD164*, and *CD34*, differentiation and
299 activation markers such as *LGALS1*, *DNTT*, *IGLL1*, *CD96*, *CD69*, and *CD52*, as well
300 as developmental factors such as *HMGA2* and *HBG2* (Extended Data Fig. 8d,
301 Supplementary Table 7). Functional enrichment analyses confirmed immune
302 activation and inflammation programs in JMML HSCs, which has been described as a
303 feature of prenatal development²⁵ (Extended Data Fig. 8e,f, Supplementary Table 8-
304 11). Taken together, the upregulation of developmental genes in HM-JMML HSCs was
305 in line with the altered DNA methylation seen in regions that are epigenetically
306 regulated during development (Extended Data Fig. 7h-o). This indicated an epitype-
307 specific functional role for developmental factors in JMML pathogenesis and raised
308 the question whether developmental origins vary across JMML epitypes.

309 **Transcriptional mosaicism of developmental programs in JMML HSCs**

310 A recent report described the detection of JMML driver mutations at birth in 75% (12
311 out of 16) of individuals who later developed JMML (Extended Data Fig. 8g)²¹.
312 Together with our observation that JMML epitypes are associated with developmental
313 features in HSCs, this suggested a prenatal origin of the disease in at least a subset
314 of patients. To systematically examine developmental phenotypes of JMML HSCs and
315 to compare these to healthy development, we compiled a scRNA-seq reference map
316 of hematopoietic maturation, including 116 different reference cell types from healthy
317 donors spanning four developmental stages: fetal (FET), neonatal (NEO), juvenile
318 (JUV), and adult (ADU; Fig. 3a, Supplementary Table 2). Next, we applied “cell type
319 similarity inference”⁵ to independently predict the average similarity of JMML HSCs
320 per patient to each of the reference cell types (Extended Data Fig. 8h). While HSCs
321 from all JMML samples showed high similarity to healthy neonatal HSCs, LM-JMML

322 HSCs also exhibited high similarity to healthy postnatal (i.e., juvenile and adult) HSCs.
323 In contrast, the IM- and HM-JMML stem cells showed high transcriptional similarity to
324 healthy fetal HSCs (Fig. 3b). Such subgroup-specific global expression patterns were
325 confirmed by the expression of known marker genes for HSCs from different
326 developmental stages. Postnatal HSC markers (*CRHBP*, *AVP*) were found to be
327 upregulated in LM-JMML and healthy postnatal HSCs (Fig. 3c, Extended Data Fig. 8i).
328 Conversely, fetal HSC markers, such as *HMGA2* and *MECOM*, were upregulated in
329 HM-JMML and healthy fetal HSCs (Fig. 3d, Extended Data Fig. 8i), which implied
330 either preservation or reactivation of fetal gene expression programs in HM-JMML. In
331 this context, it is noteworthy that JMML HSCs revealed different levels of similarity
332 (>0.5) but virtually no dissimilarities (<0.5) to any of the reference HSC populations
333 across hematopoietic development (Fig. 3b, Extended Data Fig. 8h). This suggested
334 a transcriptional mosaicism of developmental signatures rather than an unambiguous
335 cell type-specific transcriptional profile for any of the stages. To consolidate this
336 observation, we generated a list of the top 50 stage-specific marker genes of normal
337 HSC development and analyzed the expression of these signature genes in JMML
338 HSCs (Fig. 3e, Supplementary Table 12-13). This revealed a high degree of subgroup-
339 and patient-specific heterogeneity, including aberrant regulation of a range of genes
340 relative to normal HSCs from all of the four developmental stages. This further
341 suggested that JMML is characterized by variegated expression of developmental
342 signatures, including components of fetal gene expression programs, most
343 prominently in HM-JMML.



344

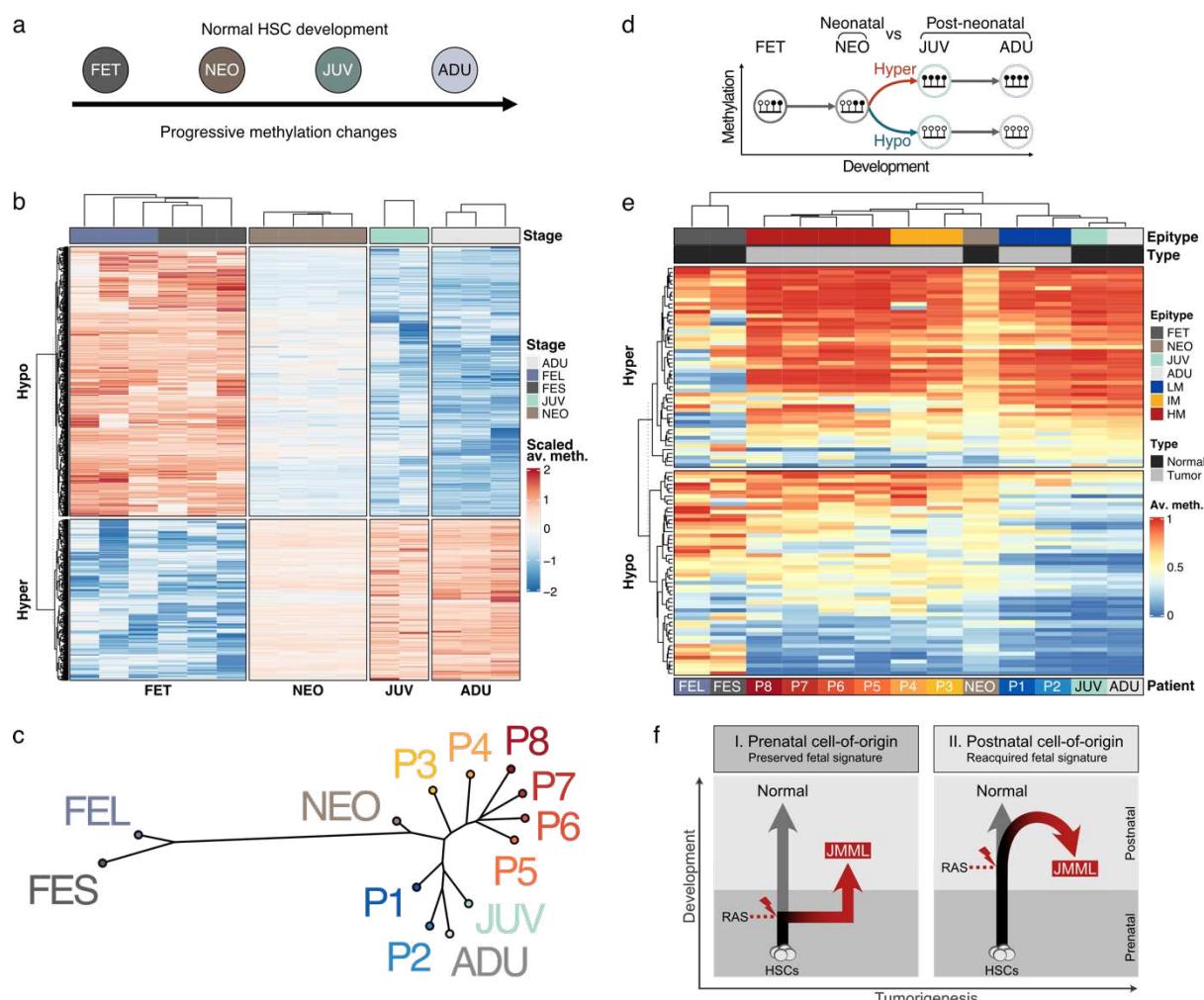
345 **Fig. 3: JMML HSCs are characterized by transcriptional mosaicism of developmental**
 346 **programs.** a, Schematic displaying the systematic comparison of JMML HSCs to healthy HSCs
 347 across different developmental stages including fetal liver (FET), cord blood (NEO), juvenile (JUV),
 348 and adult (ADU) bone marrow. b-e, Transcriptional profiling using scRNA-seq of JMML HSCs in
 349 the context of healthy HSCs representing different developmental stages. HSCs were defined
 350 uniformly based using automated cell type annotation (see “Materials and Methods” section). b,
 351 Cell type similarity inference using logistic regression analysis. JMML HSCs were compared at the
 352 single-cell level to healthy HSCs isolated at different developmental stages. Depicted are averaged
 353 and probability-converted predicted logits. Values >0.5 (pink) indicate similarity whereas values
 354 <0.5 (grey) indicate dissimilarity to the references (rows). c-d, Violin plots showing the expression
 355 profiles of the HSC marker genes CRHBP and HMGA2 in healthy and malignant HSCs. CRHBP
 356 is a marker for adult HSCs and HMGA2 is a marker for fetal HSCs. e, Heatmap depicting
 357 expression profiles of stage-specific signature genes for healthy HSC development. For each
 358 developmental stage, the top 50 DEGs compared to all other stages were identified. Only genes,
 359 that were found to be differentially expressed in a single reference were kept. Scaling of normalized
 360 expression was done on a per gene basis across healthy HSC references to reflect the physiologic
 361 expression range. All values above the maximum or below the minimum are flagged with dark red
 362 or dark green, respectively, representing aberrantly up- or downregulated signature genes in
 363 JMML.

364 **DNA methylome analysis reveals postnatal maturation of hematopoietic stem
 365 cells across all JMML epitypes**

366 The observed transcriptional mosaicism in JMML HSCs was inconclusive with respect
 367 to the developmental origins of JMML. Since it has previously been demonstrated that
 368 DNA methylomes retain elements of the tissues and cell types of origin²⁶, we sought
 369 to investigate the DNA methylomes of JMML HSCs in the context of the developing

370 hematopoietic system. We generated a DNA methylome reference map of normal
371 HSC maturation representing the same developmental stages as used for the scRNA-
372 seq analysis, i.e. fetal, neonatal, juvenile, and adult HSCs (Fig. 4a, Supplementary
373 Table 4). Unsupervised analysis of the 10,000 most variable CpGs across normal and
374 JMML HSCs revealed pronounced genome-wide differences between HM-JMML and
375 healthy references from all developmental stages, whereas LM-JMML HSCs clustered
376 with the postnatal references (Extended Data Fig. 9a). To more precisely determine
377 patterns associated with HSC maturation, we identified genomic regions with dynamic
378 DNA methylation in healthy references and found 1,179 regions (441 with methylation
379 gain, 738 with methylation loss) that revealed continuous gain or loss of DNA
380 methylation from fetal to adult HSCs (Fig. 4b, Supplementary Table 14). Using these
381 maturation dynamic regions for phylogenetic analysis recapitulated the trajectory from
382 fetal to adult HSCs during normal maturation (Extended Data Fig. 9b). Projecting the
383 JMML HSC methylomes onto this maturation phylogeny revealed postnatal epigenetic
384 patterns for all JMML HSCs analyzed here, regardless of their epitype, indicating that
385 at the time of diagnosis all JMML HSCs had acquired a postnatal DNA methylome
386 (Fig. 4c, Extended Data Fig. 9c). This finding was further corroborated when looking
387 at so called ‘epigenetic scars’, which are genomic regions that change their
388 methylation status significantly in one particular developmental window but remain
389 stable thereafter (Fig. 4d and Extended Data Fig. 9d, Supplementary Table 15-16).
390 These analyses showed that HSCs from all JMML patients clustered together with
391 postnatal HSCs when looking at the transitions from fetal to postnatal or from neonatal
392 to post-neonatal HSCs, respectively, further indicating that HSCs from all patients
393 examined had passed the neonatal stage regardless of their epitype (Fig. 4e and
394 Extended Data Fig. 9e). In conclusion, our epigenetic data show postnatal

395 epigenomes in HSCs from all 8 JMML patients investigated, which is in contrast to the
 396 fetal-like expression signatures observed in non-LM-JMML. These seemingly
 397 contradictory findings could theoretically be explained by two different models: (I.)
 398 Prenatal acquisition of a RAS-pathway mutation could lead to altered HSC maturation
 399 resulting in partial preservation of fetal transcription signatures (fetal origin hypothesis;
 400 Fig. 4f, left panel). (II.) Alternatively, acquisition of a RAS-pathway mutation in a
 401 postnatal HSC may lead to transformation and induction of aberrant transcription
 402 programs which result in reprogramming and reactivation of fetal-like molecular
 403 signatures (OFR hypothesis; Fig. 4f, right panel).

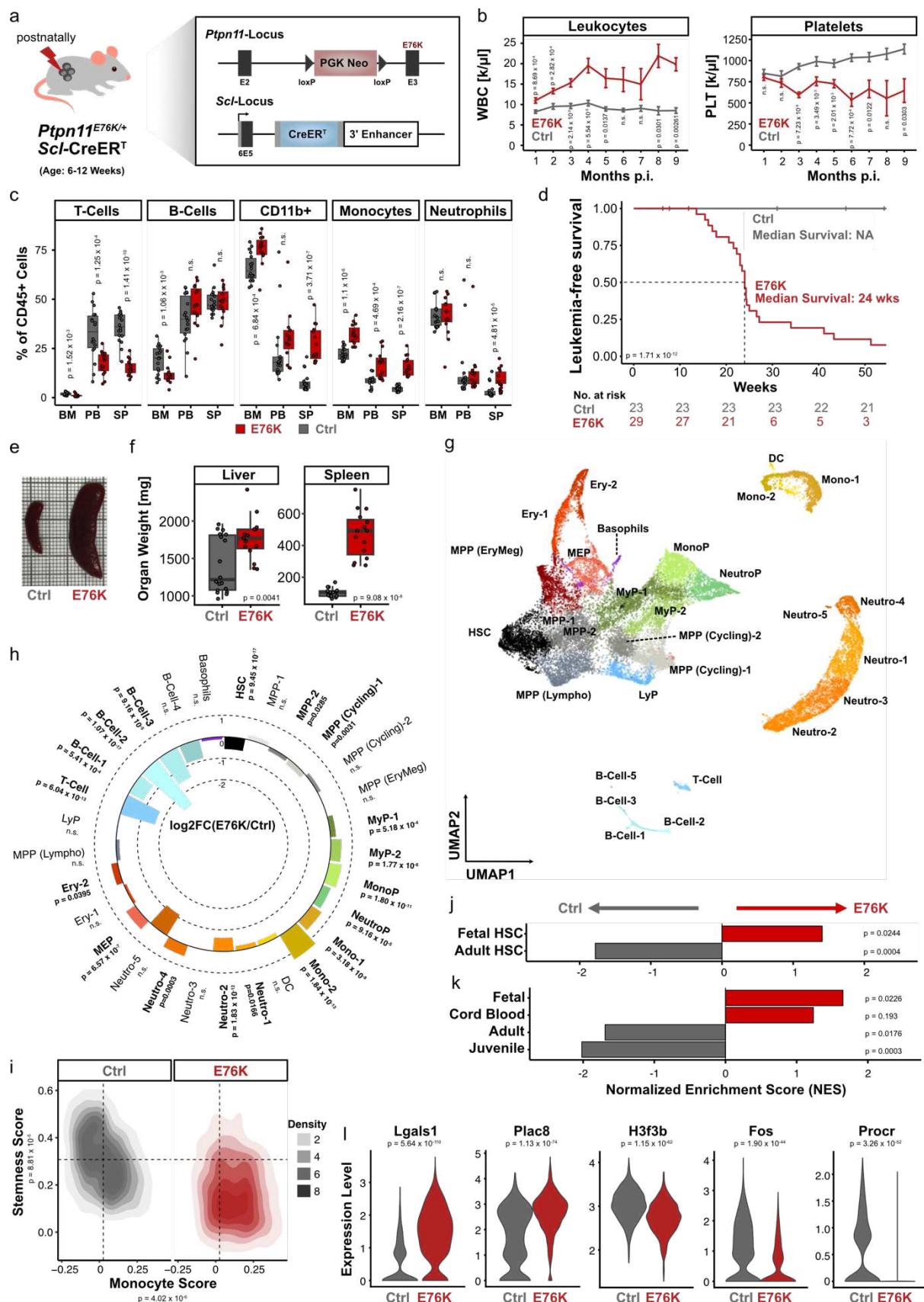


404
 405 **Fig. 4: DNA methylome analysis reveals a postnatal maturation stage in JMML HSCs across**
 406 **all epitypes.** DNA methylome analysis of JMML HSCs in the context of healthy hematopoietic
 407 development using ultra-low input WGBS. Fetal HSCs (FET; fetal spleen HSCs [n=3], fetal liver
 408 HSCs [n=3]), cord blood HSCs (NEO; n=4), juvenile HSCs (JUV; n=2), and adult HSCs (ADU;

409 n=3). **a**, Schematic summarizing the normal maturation trajectory of healthy HSCs, which was used
410 to determine maturation-associated methylation changes. **b**, Heatmap showing the hierarchical
411 clustering of all methylation-dynamic regions (n=1,179) identified in HSCs across normal
412 development. Plotted are scaled average DNA methylation values. **c**, Phylogenetic tree analysis
413 based on all methylation-dynamic regions. Methylome data of JMM HSCs are projected onto this
414 phylogenetic tree based on Manhattan distances. Replicates are aggregated per patient or healthy
415 developmental stage. **d-e**, 'Epigenetic scars' analysis from the transition between neonatal and
416 postneonatal stages. **d**, Epigenetic scars are defined as DNA methylation changes that occur in a
417 given developmental window but do not change thereafter. **e**, Heatmap showing methylation beta
418 values of epigenetic scars from the transition of neonatal to post-neonatal HSCs. Hypo: loss of
419 DNA methylation; hyper: gain of DNA methylation. **f**, Schematic illustrating the two hypothetical
420 scenarios explaining the expression of fetal-like signatures in JMM HSCs: I. Transformation of a
421 prenatal cell-of-origin reprograms HSCs leading to a partial preservation of fetal HSC programs in
422 JMM patients (left panel). II. Alternatively, transformation of a postnatal HSC partially reactivates
423 fetal gene expression patterns, resulting in oncofetal reprogramming (OFR) (right panel).

424 **RAS-pathway activation in postnatal HSCs results in oncofetal reprogramming in a
425 JMM mouse model**

426 To experimentally test whether postnatal acquisition of a JMM driver mutation is able
427 to instruct the reactivation of fetal-like expression signatures (OFR hypothesis), we
428 established an inducible JMM mouse model which is driven by the activation of a
429 *Ptpn11*^{E76K} mutation in HSCs upon tamoxifen injection (Fig. 5a, Extended Data Fig.
430 10a). Postnatal induction of the *Ptpn11*^{E76K} mutation in adolescent mice (6-12 weeks
431 of age) resulted in rapid development of a JMM-like disease, characterized by
432 leukocytosis, thrombocytopenia, reduced hemoglobin levels, pronounced
433 splenomegaly, excess production of myeloid cells, particularly monocytes, and a
434 median survival of 24 weeks (Fig. 5b-f, Extended Data Fig. 10b-e). To analyze the
435 molecular mechanisms underlying the JMM-like disease observed in *Ptpn11*^{E76K/+}
436 mice, we isolated LSK (Lin⁻Sca1⁺cKit⁺), LK (Lin⁻cKit⁺), and total hematopoietic cells
437 from the bone marrow (BM) of *Ptpn11*^{E76K/+} and *Ptpn11*^{+/+} mice 6 weeks after tamoxifen
438 induction and performed scRNA-seq (Supplementary Table 17). Data were integrated
439 across genotypes and annotated based on the expression of established marker
440 genes (Fig. 5g, Extended Data Fig. 10f). We found a significant myelomonocytic
441 skewing and loss of immature HSPCs in *Ptpn11*^{E76K/+} mice (Fig. 5h, Extended Data



442

443 **Fig. 5: RAS-pathway activation in postnatal HSCs results in oncofetal reprogramming in a**
 444 **JMML mouse model. a, Establishment of a JMML mouse model by induction of a *Ptpn11*^{E76K}**
 445 **mutation in postnatal HSCs. Conditional *Ptpn11*^{E76K/+} mice were crossed to *SclCreERT* mice to**

allow HSPC-specific activation of the mutation. *Ptpn11*^{E76K/+} Scl-CreER^T mice (E76K) and *Ptpn11*^{+/+} Scl-CreER^T controls (Ctrl) were injected (i.p.) with tamoxifen (TAM) at the age of 6-12 weeks. **b**, Leukocyte (WBC) and platelet (PLTs) counts are shown throughout 9 months post induction (p.i.). Mean and SEM are depicted. Statistical significance was calculated using student's t-test. **c**, Differentiated hematopoietic cells were measured by flow cytometry in bone marrow (BM), spleen (SP) and peripheral blood (PB) of mice 18 weeks p.i. The box plots show the abundance of each cell type as percentage of total CD45⁺ cells. Whiskers are defined as 1.5 times interquartile range (IQR). Statistical significance was calculated using Student's t-test. **d**, Kaplan-Meier plot depicting leukemia-free survival. Numbers of animals at risk are denoted under the respective timepoints. Median survival is indicated and significance of survival differences was calculated using log-rank test. **e-f**, Spleens and livers were isolated 18 weeks p.i. and organ weights were documented. Whiskers are defined as 1.5 times interquartile range (IQR). Statistical significance was calculated using Student's t-test. **g**, Single-cell RNA-seq of E76K (n=3) and Ctrl (n=3) mice 18 weeks after TAM induction. The UMAP shows a 2D representation of 29 clusters identified and annotated to a hematopoietic cell type based on marker gene expression. **h**, Circular bar plot depicting the relative changes in cluster contribution of E76K compared to Ctrl cells. Significance was determined using Fisher's exact test followed by Benjamini-Hochberg's FDR correction. **i**, Density plot displaying transcriptional priming of HSCs towards the monocytic lineage ("Monocyte Score") compared to expression of a "stemness" signature ("Stemness Score"). Significance was determined based on LMM and subsequent ANOVA. **j**, Enrichment analysis of mouse fetal and adult HSC signatures²⁷ in E76K and Ctrl HSCs. **k**, Enrichment analysis of human HSC signatures across different developmental stages (signature genes identified in this study, Fig. 3e) HSCs. **l**, Violin plots showing the expression of marker genes for different developmental stages of the hematopoietic system in HSCs. Significance was determined using Wilcoxon rank sum test.

Fig. 10g,h), demonstrating that the postnatal induction of *Ptpn11*^{E76K/+} in HSCs precisely recapitulated human JMML. The upregulation of monocytic gene expression programs was already observed at the level of HSCs in *Ptpn11*^{E76K/+} mice, indicating increased transcriptional priming of *Ptpn11*^{E76K/+} HSCs towards the myeloid lineage (Fig. 5i, Extended Data Fig. 10i-k, Supplementary Table 6). In addition, we found a significant enrichment of fetal gene signatures in HSCs from *Ptpn11*^{E76K/+} mice as compared to wild-type HSCs (Fig. 5j,k, Supplementary Table 6). In line with this observation, *Ptpn11*^{E76K/+} HSCs showed a significant upregulation of fetal HSC markers such as *Lgals1* and *Plac8* and concurrent downregulation of adult HSC marker genes (*H3f3b*, *Fos*, and *Procr*; Fig. 5l).

In summary, our mouse model recapitulated phenotypic and molecular features of human JMML including transcriptional rewiring and myeloid lineage priming of HSCs. We demonstrated that expression of the *Ptpn11*^{E76K} mutation in adolescent mice was sufficient to re-establish fetal-like gene expression programs in HSCs, hence providing

484 proof-of-principle that postnatal acquisition of a RAS-pathway mutation can lead to
485 oncofetal reprogramming.

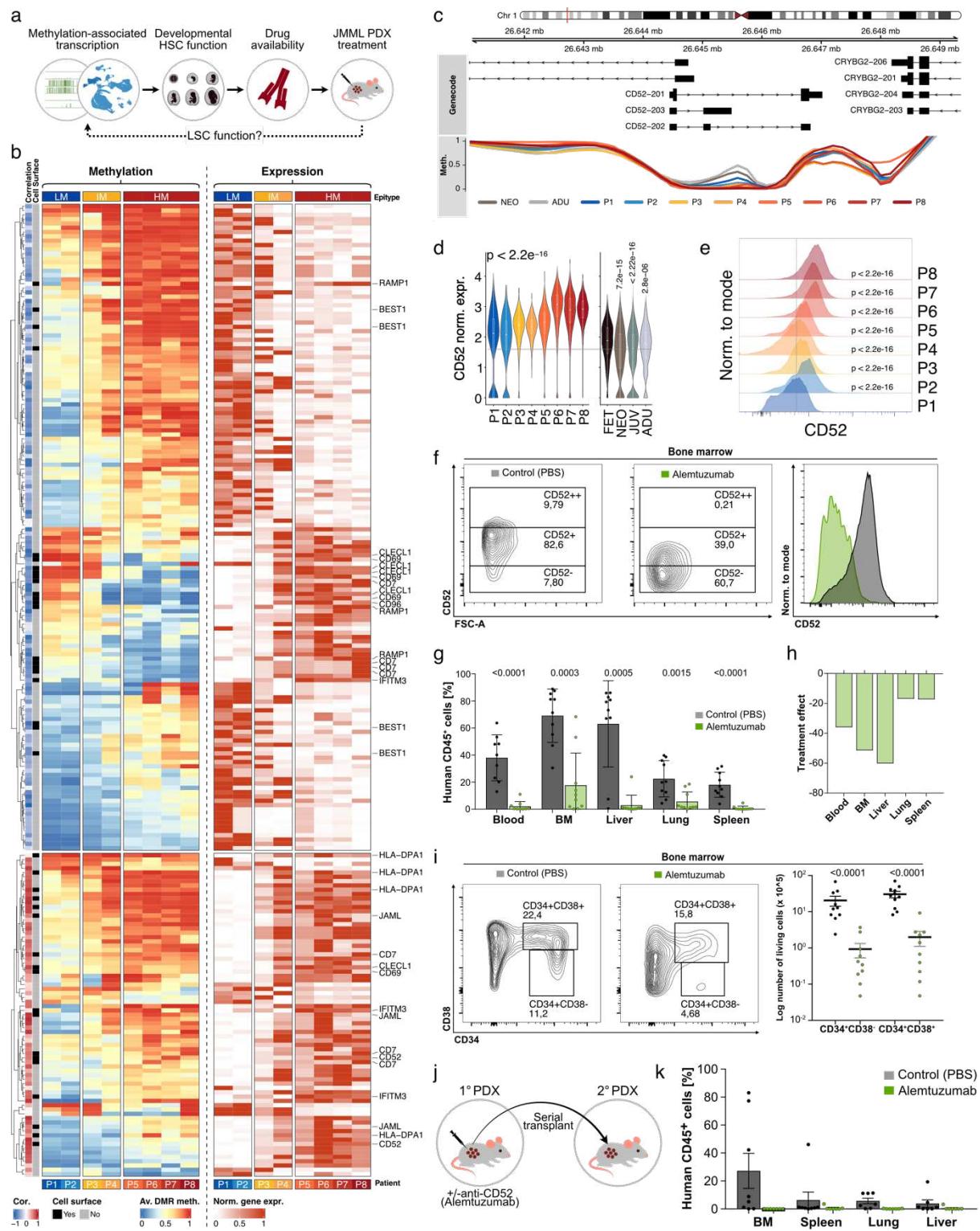
486 **Integrative analysis identifies novel prognostic biomarkers and therapeutic
487 targets for high-risk JMML**

488 The mouse model demonstrated that HSC-specific activation of *Ptpn11*^{E76K7/+} induces
489 a JMML-like disease. This provided further evidence that HSCs are the likely cell-of-
490 origin of JMML and suggested that effective therapies should target aberrant
491 molecular features of JMML HSCs. Following the experimental proof of OFR in JMML,
492 we asked the question whether disease-specific aberrations affect developmental
493 factors that could be exploited for the treatment of JMML. To identify and prioritize
494 such aberrations, we defined the following selection criteria: (a) DNA methylation-
495 associated gene expression in JMML HSCs; (b) aberrant upregulation of gene
496 expression in JMML HSCs relative to healthy reference HSCs across developmental
497 stages; (c) proposed role in HSC development; (d) availability of drugs, which can be
498 used for preclinical testing (Fig. 6a). To identify DNA methylation-associated genes in
499 HSCs across JMML eotypes, we determined genes for which differential expression
500 could be explained by differential DNA methylation. Comparing HM with non-HM
501 JMML, we identified 346 DMRs that are associated with 155 DEGs (out of 255 HM vs
502 non-HM DEGs overall) (Extended Data Fig. 11a, Supplementary Table 18-19), which
503 confirmed the central role of DNA methylation in disease-specific gene regulation. For
504 functional validation, we defined high-confidence candidate genes based on high
505 correlation (>0.9) of DNA methylation and gene expression (Extended Data Fig. 11a,
506 Fig. 6b). Out of 56 high-confidence candidates, 23% (13 genes) encoded for cell
507 surface proteins (Fig. 6b, Extended Data Fig. 11b), which is significantly more than the
508 expected proteome-wide frequency²⁸. Comparison of expression levels revealed that

509 all 13 candidates were consistently upregulated in JMML HSCs relative to almost all
510 healthy reference HSCs. Moreover, these surface proteins showed epitype-specific
511 expression patterns, suggesting that they could act as both disease- and epitype-
512 specific biomarkers (Extended Data Fig. 11c).

513 Focusing on HM-JMML as the epitype with the most urgent need for novel therapeutic
514 approaches, we identified *CD52*, which encodes a cell surface protein that is an
515 established drug target in chronic lymphocytic leukemia and multiple sclerosis²⁹⁻³¹.
516 *CD52* is associated with epigenetic aberrations in JMML HSCs (Fig. 6b,c), and shows
517 moderate expression levels in healthy HSCs across normal hematopoietic maturation,
518 with a slight but significant upregulation in fetal HSCs (Fig. 6d). However, it is strongly
519 upregulated in JMML HSCs with the highest expression levels found in HM-JMML (Fig.
520 6d). Epitype-specific *CD52* expression was confirmed at the protein level in
521 $CD34^+CD38^{-/lo}$ HSPCs from JMML patients, suggesting *CD52* surface protein as an
522 accessible drug target on JMML HSCs (Fig. 6e). Finally, murine *Cd52* was
523 transcriptionally upregulated in HSCs of *Ptpn11^{E76K/+}* mice relative to control HSCs,
524 confirming the disease-specific upregulation in JMML HSCs (Extended Data Fig. 11d).

525 In conclusion, *CD52* is aberrantly upregulated preferentially in HM-JMML and is a
526 promising target for further evaluation as a prognostic biomarker and as a therapeutic
527 target in HM-JMML.



528

529 **Fig. 6: Integrative analysis identifies novel prognostic biomarkers and therapeutic targets**
530 **for HM-JMML.** **a**, Strategy for the identification of disease-specific candidate genes in JMML

531 HSCs. **b**, Identification of methylation-associated gene expression changes across JMML

532 epitypes. The heatmaps display expression (right) and methylation (left) values of the DMR-DEG

533 associations for the 56 high-confidence candidate genes identified using a generalized linear

534 model (for details, see Material and Methods). Normalized gene expression was scaled to the

535 minimum and maximum for each gene. For each DMR the average beta values across all CpGs

536 per region are depicted. ‘Correlation’ depicts the Pearson correlation coefficients as per DMR-DEG

537 association. ‘Cell surface’ indicates if a gene is predicted to be expressed on the cell surface. The

538 13 genes encoding for cell surface proteins are indicated by name. Of note, a single gene can be
539 associated with multiple DMRs. **c**, Locus line plot showing the smoothed methylation beta values
540 of the *CD52* locus in HSCs across JMML patients and healthy references. **d**, Violin plots showing
541 the normalized expression profiles of *CD52* in JMML and healthy reference HSCs. Significance of
542 expression differences across samples was tested using Kruskal-Wallis test. Significance of the
543 expression differences of postnatal (i.e. NEO, JUV, ADU) to prenatal (FET) HSCs was tested using
544 Wilcoxon rank sum test. Boxplot center line corresponds to data median, box height to the inter-
545 quartile range and lines to lower / upper quartile +/- 1.5 times inter-quartile range. **e**, Histograms
546 showing the cell surface expression of *CD52* in Lin⁻CD34⁺CD38^{-lo} JMML HSPCs using flow
547 cytometry analysis of patients across epitypes. Significance was calculated per patient with
548 Wilcoxon test against P1. **f-k**, Patient-derived xenograft (PDX) mouse experiments. For
549 experimental details refer to 'Materials and Methods' and Extended Data Fig. 12a. **f**,
550 Representative FACS contour plot and histogram showing *CD52* expression on engrafted human
551 CD45⁺ JMML cells in mice treated with alemtuzumab (green) or with vehicle control (dark grey).
552 Expression levels are depicted on a logarithmic scale. **g**, Quantification of engrafting human CD45⁺
553 cells after 4 weeks of treatment with alemtuzumab (green) or vehicle (dark grey). Depicted are the
554 human cells as a percentage of all hematopoietic cells detected in each organ tested. **h**, Effect of
555 alemtuzumab treatment ('treatment effect') depicted as the differences of the mean engraftment in
556 treated vs untreated mice per organ (treatment effect = mean_{treated} – mean_{untreated}). **i**, Left:
557 representative FACS plot showing *CD34* and *CD38* expression on human CD45⁺Lin⁻ JMML cells
558 engrafted in the bone marrow of mice treated with alemtuzumab (green) or with vehicle control
559 (dark grey). Right: Quantification of Lin⁻CD34⁺CD38⁻ and Lin⁻CD34⁺CD38⁺ human HSPCs.
560 Depicted is the logarithm of the absolute number of living human cells per femur. **j**, Schematic
561 depicting the 2° transplantation experiments. Secondary recipient mice received bone marrow cells
562 from alemtuzumab-treated or vehicle-treated primary PDX mice. **k**, Frequency of human CD45⁺
563 cells in 2° recipients of cells from alemtuzumab-treated (green) or vehicle-treated (dark grey) donor
564 mice. Engraftment was evaluated 6 weeks after transplantation.

565 **Anti-CD52 treatment reduces leukemia burden, depletes leukemic stem cells, and**
566 **disrupts disease propagation in a JMML PDX model**

567 To assess the therapeutic potential of anti-CD52 targeted treatment, we used an established
568 preclinical patient-derived xenograft (PDX) mouse model of JMML and treated PDX mice with
569 the therapeutic monoclonal antibody alemtuzumab for 4 weeks (Extended Data Fig. 12a,
570 Supplementary Table 20)^{32,33}. FACS analysis of primary recipients revealed an efficient
571 depletion of human CD52⁺ cells following alemtuzumab treatment, resulting in a significantly
572 reduced frequency of human leukemia cells in blood, bone marrow, spleen, liver, and lung
573 (Fig. 6f-h and Extended Data Fig. 12b,c). As proposed by our integrative multi-omics analysis,
574 alemtuzumab treatment targeted human HSPCs as evidenced by an efficient depletion of Lin⁻
575 CD34⁺CD38⁻ cells (Fig. 6i). This resulted in the depletion of virtually all human hematopoietic
576 cells in our xenograft model, including CD52⁻ cells (Extended Data Fig. 12c-h). Secondary
577 transplantation of total bone marrow from alemtuzumab- or vehicle-treated animals showed
578 that anti-CD52 treatment prevented leukemic engraftment in 2° recipients (Fig. 6j,k). In

579 conclusion, therapeutic targeting of CD52 leads to efficient depletion of leukemia-propagating
580 stem cells *in vivo*.

581 **Discussion**

582 In the present study, we performed a multi-layered molecular analysis in which we
583 systematically compared JMML across disease-specific epitypes to healthy references of HSC
584 development. Single-cell transcriptome and DNA methylome analyses gave opposing results:
585 transcriptomes revealed pronounced fetal HSC signatures for the more aggressive JMML
586 epitypes whereas DNA methylomes indicated a postnatal epigenomic pattern in all patients
587 analyzed. This finding is particularly important as the current consensus assumes that early
588 childhood malignancies arise during fetal development and manifest as maturation blocks in
589 aberrantly developing tissues^{2,11,34}. This view is supported by a number of studies which
590 provide mostly genetic evidence for fetal origins, which are based on the detection of driver
591 mutations in neonatal blood spots or on mathematical modeling of the originating
592 developmental stage based on cell cycle-related mutation rates^{2,21,35-39}. However, whether or
593 not the presence of fetal-like transcriptional programs present across a range of childhood
594 malignancies can unambiguously be considered as indicative of their prenatal origin remains
595 a matter of scientific debate^{4,40-43}. In the present study, an in-depth analysis of the
596 transcriptome layer revealed that malignant hematopoietic stem cells (HSC) hijack
597 transcription programs across different developmental stages and that HSCs from high-risk
598 patients reactivate fetal-like gene expression signatures in a patient-specific manner. To
599 complement the transcriptomic layer with epigenetic information, we performed DNA
600 methylome analysis, which presumably provides more robust information on developmental
601 and tissue origins of tumors than transcriptomes, as multiple lines of evidence suggest that
602 DNA methylomes represent the developmental and differentiation states in which the
603 malignant cells have been arrested^{26,44-48}. In the context of JMML, DNA methylome analysis
604 unambiguously showed postnatal epigenomes in HSCs of all JMML samples investigated in

605 this study by phylogeny and epigenetic scar analyses. This indicated that fetal-like
606 transcription programs observed in JMML are unlikely to be caused by a developmental
607 maturation block.

608 These apparently conflicting results might be explained by OFR, a phenomenon well-known
609 in the context of adult but not childhood malignancies. OFR describes the re-acquisition of
610 fetal gene expression programs in tumorigenesis, which has been described for adult
611 malignancies such as hepatocellular carcinoma¹. In general, the process of oncogenesis
612 requires cellular reprogramming to sustain cells with physiologically contradicting features
613 such as stemness/pluripotency and differentiation bias⁴⁹. Thus, OFR might reflect a tumor-
614 specific strategy to gain cellular plasticity and to overcome physiological limitations of normal
615 development. In JMML, the OFR hypothesis is supported by the clinical observation that high-
616 risk JMML patients are typically older than 2 years at the time of diagnosis^{13,16}. In addition, a
617 recent publication tested JMML driver mutations in Guthrie cards from individuals later
618 diagnosed with JMML and found that 9/9 patients with low-risk (i.e. LM epitype) JMML had a
619 detectable RAS-pathway mutation at birth, while only 3/7 patients with higher risk (i.e. IM or
620 HM epitype) JMML were tested positive for a JMML driver mutation at birth²¹. Of note, whereas
621 the current literature suggests that LM JMML arises prenatally, our data reveals postnatal
622 maturation signatures at both the transcriptomic and epigenomic levels. This underlines that
623 LM JMML, although most likely arising prenatally, does not show fetal signatures indicative of
624 a maturation block. Vice versa, all HM patients analyzed here revealed postnatal epigenomes
625 combined with pronounced enrichment of fetal-like transcription signatures, supporting the
626 OFR hypothesis. It remains to be studied how many patients ultimately acquire their disease-
627 initiating mutation postnatally and are affected by OFR. Furthermore, it is unclear whether
628 OFR is influenced by the type of driver mutation.

629 Since multi-layer molecular analyses from primary patient samples are descriptive and cannot
630 prove causality, we used a JMML mouse model to test whether the expression of a JMML
631 driver mutation in young adult HSCs is sufficient to establish a fetal-like HSC gene expression

632 program. Indeed, we found that induction of a *Ptpn11*^{E76K} mutation in postnatal HSCs was
633 sufficient to establish an aberrant fetal-like transcription program, hence formally proving that
634 OFR can occur in JMML. In summary, our work highlights how a multi-layered molecular
635 analysis together with experimental validation enable the dissection of the characteristics of
636 distinct disease phenotypes within a uniformly diagnosed and genetically characterized
637 disease entity such as JMML. Our work, demonstrates that OFR is a phenomenon with
638 relevance to childhood malignancies and might motivate the re-evaluation of the assumed
639 pathogenetic mechanisms in relation to embryonic or fetal development across the entire
640 spectrum of childhood malignancies. Nevertheless, there are still open questions that remain
641 to be answered in the future: 1) How are the transcriptional and epigenetic aberrations
642 established? 2) What is the order of acquisition of aberrations, i.e. is the transcriptome or the
643 epigenome altered first? 3) How can the observed phenotypic heterogeneity be explained in
644 the absence of genetic heterogeneity (i.e. presence of the same disease-initiating mutation)?
645 Although answering these questions is beyond the scope of the current manuscript, it is
646 tempting to speculate that transcriptional re-programming might precede the epigenetic
647 alterations seen in the context of JMML. This hypothesis would be supported by the
648 observation that, despite the presence of fetal-like transcription programs, the DNA
649 methylomes lack pronounced signs of fetal reprogramming in the JMML mouse model (data
650 not shown). Along these lines, DNA hypermethylation has been associated with increased
651 proliferation activity and in some cases with methylation age⁵⁰⁻⁵³.

652 The discovery of OFR highlighted that JMML HSCs express a complex mosaic of expression
653 programs across developmental stages. As a consequence, it is important to consider healthy
654 references across developmental stages to identify cancer-specific aberrations. This approach
655 provided the basis for the identification of prognostic biomarkers and novel therapeutic targets
656 for this subset of patients with particularly poor outcome. For example, we could demonstrate
657 that aberrant DNA methylation is accompanied by elevated mRNA expression levels of CD52
658 in leukemic HSCs, especially in HSCs of high-risk JMML patients. This elevated CD52 mRNA

659 expression was not only recapitulated in HSCs of our JMML mouse model but it also translated
660 into elevated surface protein expression levels on patient HSCs. This raises the possibility of
661 performing clinical risk-stratification of JMML patients using a flow cytometry-based assay
662 without the need for specialized and time-consuming epigenetic analyses. Of note, *CD52* has
663 recently been described to play a functional role in both pre- and postnatal HSC
664 development^{27,49,54,55}. Moreover, in line with our observation of an early differentiation bias in
665 JMML HSCs, *CD52* has been implicated in early myeloid priming^{56,57}. A therapeutic
666 monoclonal antibody targeting *CD52* (alemtuzumab) is approved by the FDA and EMA for the
667 treatment of multiple sclerosis^{29,58,59} and has been used as part of conditioning regimens for
668 allogeneic hematopoietic stem cell transplantation (HSCT)^{60,61}. This made *CD52* an interesting
669 candidate for pre-clinical target validation, as HSCT is the only potentially curative treatment
670 for high-risk JMML, although, more than 50% of patients relapse post-HSCT⁶². Furthermore,
671 pre-clinical therapeutic activity of an approved drug could potentially be rapidly translated into
672 the clinical setting. Using a patient-derived xenotransplantation model of JMML, we observed
673 an efficient depletion of *CD34⁺CD38⁻* JMML hematopoietic stem and progenitor cells upon
674 alemtuzumab treatment, which was functionally evidenced by the depletion of virtually all
675 human hematopoietic cells independent of cell type-specific *CD52* expression levels.
676 Furthermore, alemtuzumab treatment abrogated the engraftment of human JMML cells in
677 secondary recipient animals. Of note, this therapeutic effect was observed in PDX mice of the
678 high-risk patient P7, who clinically showed a relapse after allogeneic HSCT. Hence, *CD52*-
679 targeted therapy with alemtuzumab shows promising pre-clinical efficacy in high-risk JMML.
680 This provides a rationale to further assess anti-*CD52* treatment in pre-clinical studies as an
681 option for JMML patients with high risk of relapse after allogeneic hematopoietic stem cell
682 transplantation, for example in the context of the conditioning regimen.

683 In conclusion, our work on JMML provides evidence for oncofetal reprogramming as a
684 mechanism for the expression of fetal-like transcriptional programs in a childhood malignancy.
685 Furthermore, we demonstrate how a molecular high-precision approach identifies aberrantly

686 regulated developmental markers and guides the identification of disease biomarkers and
687 novel targeted therapies for a notoriously difficult-to-treat childhood leukemia.

688 **Methods**

689 **Authorization and ethical approval**

690 The study was conducted according to the Declaration of Helsinki after written informed
691 consent was obtained from the healthy subjects, the patients or their legal guardians. All
692 experiments were approved by the local institutional review boards. All information is subject
693 to the provisions of the local data protection regulations. JMML samples were obtained from
694 the Hilda Biobank Freiburg, and fetal samples were obtained from the Wellcome Trust-funded
695 Human Developmental Biology Resource (HDBR; <http://www.hdbr.org>). HDBR is regulated by
696 the UK Human Tissue Authority (HTA; www.hta.gov.uk) and operates in accordance with the
697 relevant HTA Codes of Practice. Healthy BM donors at the Heidelberg University Hospital
698 received financial compensation. All mouse experiments were approved by German local
699 authorities (Regierungspräsidium Karlsruhe and Regierungspräsidium Freiburg). All data
700 were stored in accordance with the DKFZ framework for data protection.

701 **Isolation of hematopoietic cells from spleen of JMML patients**

702 Splenectomy specimens from patients diagnosed with JMML were used to prepare single cell
703 suspensions followed red blood cell lysis. To obtain mononuclear cell (MNC) fraction, single
704 cell suspensions prepared from spleen tissue were subjected to density gradient centrifugation
705 (Ficoll). Mononuclear cells were viably frozen and used for downstream analysis.

706 **Primary human pediatric bone marrow**

707 Healthy juvenile pediatric bone marrow samples for WGBS were obtained from children at the
708 age of 0 to 7 years in the course of neurosurgical interventions (e.g., correction of
709 craniosynostoses, craniotomies performed for epilepsy surgery) after written informed consent
710 was obtained from the patients' legal guardians. For this purpose, the diploe of the
711 craniotomized bone was cannulated with 27G needles and manually flushed with Ringer's
712 solution. Downstream procedures for sample preservation were identical as for materials

713 obtained from JMML patients. For scRNA-seq, left-over bone marrow mononuclear cells from
714 pediatric healthy normal sibling donors were isolated by ficoll gradient centrifugation.

715 **Primary human fetal spleen and liver**

716 Tissue from healthy prenatal references was obtained from the HDBR. Developmental age,
717 sex, and aneuploidy screens were performed as previously described⁶³. Liver (n = 4; 12-16
718 post conception weeks (PCW)) and spleen (n = 3; 12-16 PCW) samples were diced and
719 digested with 1.6mg/mL collagenase type IV (Worthington) in RPMI (Sigma-Aldrich)
720 supplemented with 10% (v/v) heat-inactivated fetal bovine serum (Gibco), 100 U/mL penicillin
721 (Sigma-Aldrich), 0.1 mg/mL streptomycin (Sigma-Aldrich), and 2 mM L-Glutamine (Sigma-
722 Aldrich) for 30 min at 37°C with intermittent shaking. Digested tissue was passed through a
723 100 µm filter, and cells collected by centrifugation (500 g for 5 min at 4°C). Cells were treated
724 with 1X RBC lysis buffer (eBioscience) for 5 min at room temperature and washed once with
725 flow buffer (PBS containing 5% (v/v) FBS and 2 mM EDTA) prior to counting. Cells were
726 cryopreserved in 90% (v/v) FBS with 10% dimethylsulfoxide (DMSO) to permit analysis in
727 batches.

728 **Primary human bone marrow from adults**

729 As healthy adult references, human samples from healthy adult individuals at the age of 23 to
730 25 were collected from bone marrow aspirates of healthy donors via iliac crest. Mononuclear
731 cells were isolated by Ficoll (GE Healthcare) density gradient centrifugation and stored in liquid
732 nitrogen until further use.

733 **Single-cell RNA-seq and WGBS of JMML patients**

734 For scRNA-seq and ultra-low input whole-genome bisulfite sequencing (WGBS) of human
735 JMML spleen and pediatric BM samples, cells were thawed in a water bath at 37°C and
736 transferred dropwise into prewarmed IMDM (Gibco) supplemented with 10% FCS and 2 U/ml
737 DNase I. Cells were centrifuged for 5 min at 300 g and washed with PBS (Gibco)
738 supplemented with 4% FCS and DNase I (LIFE Technologies). Cells were resuspended in

739 PBS containing 4% FCS (4 million per 100 μ l) and fluorophore-conjugated antibodies for
740 lineage markers, CD34, CD38, CD45RA, and CD90 (Supplementary Table 21), followed by
741 incubation for 30 min at 4 °C in the dark. Cells were washed with PBS containing 4% FCS and
742 resuspended in an appropriate volume for flow cytometry. For live/dead staining,
743 4,6-diamidino-2-phenylindole (DAPI; 1:1,000) was supplemented to the cell suspension. After
744 3 min of incubation at room temperature, cells were filtered through a 40 μ m cell strainer
745 (Greiner). Cell sorting was performed using BD FACSaria Fusion. For scRNA-seq of JMML
746 HSPCs, 1,700 to 10,000 Lin $^{-}$ CD34 $^{+}$ CD38 $^{\text{dim/-}}$ cells were sorted into IMDM (Gibco) containing
747 4% FCS and directly subjected to droplet-based scRNA-seq (3' v2 protocol from 10X
748 Genomics). All scRNA-seq libraries from primary JMML patient material were sequenced on
749 a HiSeq4000 (Illumina) paired-end 26+74 bp at the DKFZ Genomics & Proteomics Core
750 Facility (GPCF) (Heidelberg, Germany). For WGBS of JMML Lin $^{-}$ CD34 $^{+}$ CD38 $^{\text{dim/-}}$ HSPCs, 33
751 to 250 cells were directly sorted into RLT plus lysis buffer and stored at -80°C for later use.

752 **Single-cell RNA-seq and WGBS of healthy pediatric references**

753 For WGBS of healthy juvenile reference bone marrow, cells were isolated from frozen samples
754 as described above for JMML and 500 Lin $^{-}$ CD34 $^{+}$ CD38 $^{\text{lo}}$ CD45RA $^{-}$ CD90 $^{+}$ HSCs were directly
755 FACS-sorted into RLT plus lysis buffer.
756 For WGBS of prenatal HSCs from fetal liver and spleen, up to 1 million cells were stained with
757 antibody cocktail (Supplementary Table 22), incubated for 30 min on ice and washed with flow
758 buffer. Cells were resuspended at 10 million cells per ml and DAPI added immediately before
759 FACS (Sigma-Aldrich; final concentration of 3 μ M). Live, single, Lin $^{-}$, CD34 $^{+}$ CD38 $^{\text{lo}}$ CD45RA $^{-}$
760 CD90 $^{+}$ cells were sorted into RLT plus lysis buffer. Cells were stored at -80°C for later use.
761 For scRNA-seq of healthy pediatric bone marrow, mononuclear cells were enriched for
762 immature compartments using CD34 $^{+}$ progenitors and Lin $^{-}$ CD34 $^{+}$ CD38 $^{-}$ HSPCs using flow
763 cytometry. Viable live gate, progenitor- and stem cell-enriched populations were subjected to
764 chromium 10X processing using v3 chemistry (10X Genomics).

765

766 **WGBS of healthy adult references**

767 For WGBS of adult stem and progenitor cells, cryopreserved adult bone marrow samples were
768 thawed and stained in FACS buffer (FB) (PBS supplemented with 5% FCS and 0.5 mM EDTA)
769 containing the respective antibodies (Supplementary Table 23) for 30 minutes followed by
770 washing with FB. Subsequently, cells were sorted using an BD Aria Fusion II sorter. HSPC
771 populations were sorted as previously defined⁶⁴: Lin⁻CD34⁺CD38^{-lo}CD45RA⁻CD90⁺ HSCs,
772 Lin-CD34⁺CD38-CD45RA-CD90- MPPs, Lin-CD34⁺CD38⁺CD10-CD45RA-CD135⁺ CMPs,
773 Lin-CD34⁺CD38⁺CD10-CD45RA⁺CD135⁺ GMPs, and Lin-CD34⁺CD38⁺CD10-CD45RA-
774 CD135- MEPs. WGBS libraries were generated using a published fragmentation-based
775 protocol⁶⁵.

776 **Flow cytometry analysis of JMML patients**

777 For validation experiments of epitype-specific CD45RA/CD90 expression profiles, single cell
778 suspensions prepared from JMML spleen tissue were subjected to density gradient
779 centrifugation (Ficoll) to obtain mononuclear cell fractions (MNCs). An aliquot of the isolated
780 MNCs was stained for flow cytometry (Supplementary Table 24) and data acquired using BD
781 LSRFortessa.

782 For validation experiments of epitype-specific CD52 expression profiles, JMML samples were
783 thawed as described above (“Single-cell RNA-seq and WGBS of JMML patients”) and stained
784 with fluorescence-coupled antibodies for flow cytometry (Supplementary Table 25). Cells were
785 analyzed with BD FACSAria Fusion.

786 **Panel-seq for JMML genotyping**

787 DNA from bone marrow granulocytes was used for amplicon-based, next-generation deep
788 sequencing to determine the variant allele frequencies (VAFs) of leukemia-specific index
789 mutations. Targets of JMML associated Genes were enriched using a custom in-house panel
790 (AmpliSeq JMML panel v2, IAA11909_192; Thermo Fisher Scientific) and processed with the
791 NEBNext Ultra II DNA library preparation kit (New England Biolabs). Sequencing was

792 performed on MiSeq sequencers (Illumia). Sequence variants were evaluated according to
793 the ACMG classification system.

794 **Processing of scRNA-seq data**

795 scRNA-seq data from JMML patients and JUV references were generated in this study, data from
796 FET, NEO, and ADU references were obtained from the Human Cell Atlas project (Supplementary
797 Table 2). Sequencing data from JMML patient samples for scRNA-seq were aligned against the
798 hg38 human reference genome, and gene-cell matrices were generated using *CellRanger*
799 (v.2.1.1). Subsequent data processing included the sample-wise inclusion of cells that met specific
800 quality criteria:

- 801 1.) The number of genes exceeded 100.
- 802 2.) The number of genes was within three median absolute deviations (MADs) from the
803 median, determined using the “isOutlier” function in *scater* (v.1.10.1).
- 804 3.) The number of counts exceeded 200.
- 805 4.) The number of counts was within three MADs from the median, determined using the
806 “isOutlier” function in *scater* (v.1.10.1).
- 807 5.) Mitochondrial content was required to be below a 5% cutoff.

808 The ADU dataset was annotated to 35 cell types according to Hay et al., 2018⁶⁶. Subsequently,
809 the annotated ADU dataset was down-sampled to a maximum of 2500 cells per cell type and
810 served as a label transfer reference to annotate other datasets, including FET, NEU, JUV, and
811 JMML. Label transfer was performed using the “FindTransferAnchors” and “TransferData”
812 functions (dims = 1:30) in *Seurat* (v.3.1.5)⁶⁷. Each cell was assigned one transferring score for
813 each cell type, and the cell type assignment of cells was based on the highest cell type
814 transferring score.

815 In the FET dataset, cells with annotations of endothelial cells, fibroblasts, hepatocytes, Kupffer
816 cells, and VCAM1+ El macrophages, based on the original paper⁶⁸, retained their original
817 annotations.

818 For the healthy reference datasets, each cell type was down-sampled to a maximum of 2500
819 cells for further analysis.

820 **scRNA-seq data integration**

821 We employed the “anchor” integration method to integrate scRNA-seq datasets from JMML
822 patients and healthy references using *Seurat* (v.3.1.5). The following steps were taken with
823 default settings:

- 824 1.) Dataset-wise data normalization was performed using the “NormalizeData” function.
- 825 2.) Dataset-wise feature selection was conducted with the “FindVariableFeatures”
826 function.
- 827 3.) Pairwise “anchors” between the datasets were identified using the
828 “FindIntegrationAnchors” function (dims = 1:30).
- 829 4.) Data integration based on these “anchors” was achieved through the “IntegrateData”
830 function (dims = 1:30).
- 831 5.) The integrated data underwent regression of counts, scaling, and centering using the
832 “ScaleData” function, followed by PCA dimensionality reduction.

833

834 The scRNAseq data of CD34+-enriched HSPCs and MNCs from JMML patients were
835 integrated using the 'anchor' integration methods in the *Seurat* (v.3.1.5). Similar to the
836 integration of JMML with healthy references, patient-wise data normalization and feature
837 selection were performed. Pairwise 'anchors' between patients were identified and integrated.
838 The integrated data was scaled and PCA calculated.

839 **Pseudotemporal analysis of hematopoietic lineages**

840 PCA was used to estimate a linear latent pseudotime for each cell across distinct
841 hematopoietic lineages using RNA expression data.

842 RNA expression data was normalized by dividing the feature counts of a given cell by the total
843 counts for that cell, then multiplying the quotient by 10.000 and finally log1p transforming the
844 product (default settings for *Seurat* “NormalizeData”).

845 To facilitate PCA in capturing lineage-specific changes, we devised a gene selection
846 procedure consisting of three main steps:

847 1.) The dataset was restricted to non-tumor cells, and genes with no observed transcripts
848 across all cells were excluded.
849 2.) For each gene, a cumulative link model was constructed to establish a relationship
850 between the position of cells within the lineage and their normalized expression of the
851 respective gene.
852 3.) Genes satisfying both a Benjamini-Hochberg adjusted model coefficient p-value less
853 than 0.01 and an absolute coefficient value greater than 1.5 were selected.
854 In the case of the dendritic cell lineage, this procedure was executed using 10,949 non-tumor
855 cells, leading to the identification of 2,205 genes. Subsequently, the normalized expression
856 values of each gene were scaled by subtracting the per-cell expression values by the average
857 expression of the gene and dividing the difference by its standard deviation. This scaling
858 process adhered to the default settings for the *Seurat* “ScaleData” function. The scaled
859 expression values were then employed to perform PCA using *Seurat*.
860 Spearman correlation was calculated to evaluate the concurrence of differences in PCA cell
861 embeddings and various metadata features. For categorical metadata, one-hot encoding was
862 utilized to compute correlations. If necessary, for visualization purposes, the principal
863 component with the highest correlation with lineage was flipped so that the lineage
864 commenced on the left-hand side of the plot.

865 **UMAP integration of scRNA-seq data from CD34⁺-enriched JMML HSPCs and JMML
866 MNCs**

867 To project the scRNA-seq data of FACS enriched JMML CD34⁺CD38^{-lo} HSPCs onto the
868 existing MNC UMAP space we used the MNC scRNA-seq set as a reference and identified
869 anchors between both datasets by applying the *Seurat* “FindTransferAnchor” function with
870 PCA as a specified reference reduction. We mapped the HSPC query data onto the MNC
871 UMAP space using the “MapQuery” function and visualized the combined UMAP using
872 *ggplot2*⁶⁹.

873

874 **Transcriptional priming and leukemia-related transcription programs of human HSCs**

875 Gene expression signatures were extracted from previous publications^{57,70,71}. Transcriptional
876 priming was calculated using the *Seurat* “AddModuleScore” function for 1000 randomly
877 selected HSCs from each epitype. Statistical significance was determined based on two LMMs
878 as implemented in the *lme4* R package followed by ANOVA:

879 LMM1 = signature ~ Subgroup + (1|Donor)

880 LMM2 = signature ~ (1|Donor)

881 **Differential gene expression analysis**

882 Differentially expressed genes (DEGs) between JMML HM and JMML nonHM CD34+enriched
883 samples were identified using the “FindMarkers” function with default settings in *Seurat*
884 (v.3.1.5). A total of 255 DEGs with an adjusted p-value < 0.05 and an absolute log fold-change
885 < 0.25 were obtained.

886 Developmental stage-specific DEGs were identified in the cells annotated as HSCs in four
887 healthy reference datasets (FET, NEO, JUV, and ADU) using the “FindAllMarkers” function in
888 *Seurat* (v.3.1.5) for one-vs-rest comparisons. In each stage, the top 50 upregulated DEGs with
889 an adjusted p-value < 0.05 and an absolute log fold-change < 0.25 were obtained. Any
890 overlapping DEGs across stages were removed. We identified 44 DEGs for FET HSCs, 41
891 DEGs for NEO HSCs, 50 DEGs for JUV HSCs, and 47 DEGs for ADU HSCs.

892 **Enrichment of transcription signatures using Metascape**

893 For functional gene list analyses, *Metascape*⁷² was used applying default settings. As input,
894 up- or downregulated HM vs nonHM DEGs of JMML HSCs were used (Supplementary Table
895 7).

896 **Logistic regression analysis of scRNA-seq data**

897 The logistic regression method was used to measure the transcriptional similarity between
898 JMML HSCs and healthy reference cell types (FET, NEO, JUV, and ADU) across
899 developmental stages, as previously described⁵. In brief, we first trained a logistic regression

900 model on the scRNA-seq count matrix of healthy references, encompassing cells of all
901 hematopoietic cell types, using the trainModel function with default settings in
902 LogisticRegression.Core.R. This trained model was then applied to predict the likelihood of
903 similarity between cell types in healthy references and JMML patients using the
904 predictSimilarity function with minGeneMatch = 0.5. The resulting average similarity scores of
905 HSCs in JMML patients against all cell types were visualized in a heatmap using the
906 ComplexHeatmap⁷³ package.

907 **DNA methylation array analysis**

908 For DNA methylation array profiling, gDNA of 200,000 MNCs per sample was extracted and
909 submitted to the DKFZ GPCF (Heidelberg, Germany) for Infinium MethylationEPIC BeadChip
910 (Illumina) analysis. Data processing and epitype prediction were performed as described
911 previously¹⁶.

912 **Library preparation for ultra-low input whole-genome bisulfite sequencing (WGBS)**

913 For ultra-low input WGBS library preparation, we used max. 500 cells and followed a
914 customized previously published single-cell Bisulfite Sequencing (scBS-seq) protocol^{74,75}. In
915 brief, we sorted cells using flow cytometry into RLT Plus buffer to a total volume of 10 µL,
916 which was applied to the following changes: single preamplification for 90 minutes at 37°C; 14
917 cycles of library amplification; two time 0.7x SPRI selection for library purification. Molarities
918 and fragment sizes were measured and libraries were submitted for Illumina sequencing on a
919 HiSeq X with paired-end 150 bp and 10% PhiX to the DKFZ GPCF.

920 **Processing of whole-genome bisulfite sequencing data**

921 The Omics IT and Data Management Core Facility (DKFZ, Heidelberg) processed WGBS data
922 as described earlier⁷⁶. In short, reads were aligned using an updated pipeline published by
923 Wang et al.⁶⁵, implemented as a Roddy Workflow (<https://github.com/DKFZ-ODCF/AlignmentAndQCWorkflows>) in the automated One Touch Pipeline⁷⁷. In short, adaptor
925 sequences of raw reads were trimmed using Trimmomatic⁷⁸. Next, sequencing reads were in

926 in silico bisulfite-converted⁷⁹ (C>T for the first read in the pair, G>A for the second). *BWA-MEM*⁷⁹
927 was used with default parameters to align the converted reads to the in silico bisulfite-
928 converted reference genome hg19, extended with the PhiX and lambda phage sequences.
929 Post alignment, reads were converted back to their original state. Reads with a mapping
930 quality ≥ 25 and nucleotides with a Phred-scaled quality score ≥ 25 were considered for PCR
931 duplicate removal per sequencing library using the software *Picar*⁸⁰. Methylation calling and
932 M-bias QC was performed using *MethylDackel*⁸¹ v0.4.0 and the parameters --OT 6,146,2,144
933 --OB 7,146,12,150, according to the M-bias quality control plots. Methylation calls were
934 imported into R⁸² v3.6 using the R package *methrix*⁸³ v 1.0.05, summarized based on
935 annotated reference indices, and collapsed based on strand information. Furthermore, single
936 nucleotide polymorphisms (SNP) with a minor allele frequency > 0.1 were filtered, using the
937 reference provided in the R package *BSgenome.Hsapiens.UCSC.hg19*⁸⁴ v 1.4.0, and initial
938 quality control was performed. For downstream analysis, DNA methylation data were imported
939 into the R package *bsseq*⁸⁵ v1.20.0 and technical replicates were collapsed. To define average
940 CpG island (CpGi) methylation, CpGi annotation was extracted using the R package
941 *RnBeads*⁸⁶ v 2.4.0. For principal component analysis (PCA), methylation levels of the 20,000
942 most variable methylated CpGs were applied to the R base function *prcomp*.

943 **Methylation-based cell type classifier**

944 For DNA methylation-based cell type classification, a previously published algorithm was
945 applied²⁴. As normal references, WGBS data of adult Lin $^{-}$ CD34 $^{+}$ CD38 $^{-/0}$ CD45RA $^{-}$ CD90 $^{+}$
946 HSCs, Lin $^{-}$ CD34 $^{+}$ CD38 $^{-/0}$ CD45RA $^{-}$ CD90 $^{-}$ MPPs, Lin $^{-}$ CD34 $^{+}$ CD38 $^{+}$ CD10 $^{-}$ CD45RA $^{-}$ CD135 $^{+}$
947 CMPs, Lin $^{-}$ CD34 $^{+}$ CD38 $^{+}$ CD10 $^{-}$ CD45RA $^{+}$ CD135 $^{+}$ GMPs, and Lin $^{-}$ CD34 $^{+}$ CD38 $^{+}$ CD10 $^{-}$ CD45RA $^{-}$
948 CD135 $^{-}$ MEPs was employed, which was generated in course of this study.
949 As input to the classifier, we used WGBS data that was prepared as outlined in the previous
950 section. Briefly, WGBS data was subsetted to regions outlined in Farlik *et al.*²⁴, using the hg38
951 to hg19 liftover function from the R package *rtracklayer*⁸⁷. The average methylation within each

952 region was computed and used to execute the “cellTypePredictor.R” script by Farlik *et al.*²⁴.

953 The classifier itself was trained on normal references and applied to JMML tumor samples.

954 **Differential methylation analysis**

955 To define differentially methylated loci, a linear model was applied, considering the
956 epigenotype (HM and non-HM) and sorting quadrant of the respective sample as a covariate.

957 Therefore, the function “DMLfit.multiFactorR” with the parameter, *smoothing* = *TRUE*, from

958 the R package *DSS*⁸⁸ v2.32.0 was applied. The epigenotype HM coefficient was extracted

959 using the function “DMLtest.multiFactor” and differentially methylated regions (DMRs) were

960 defined using the function “callDMR”, based on regions with >3 CpGs, a length of >50 bps,

961 and a Benjamin-Hochberg corrected *P* value <0.05 in at least 50% of all CpGs within that

962 region. Additionally, DMRs were subsetted for an average coverage of ≥ 5 in at least half of

963 the samples belonging to the HM and non-HM epigenotype respectively and a difference in

964 methylation >0.2. DMRs were annotated using the R package *ChIPseeker*⁸⁹ v1.31.3.900 and

965 *TxDb.Hsapiens.UCSC.hg19.knownGene*⁹⁰ v3.2.2. Hierarchical cluster analysis of DMRs was

966 performed using the R package *pheatmap*⁹¹ v1.0.12, applying “ward.D2” as the clustering

967 method to “Manhattan” distances.

968 **Transcription factor motif enrichment**

969 DNA transcription factor (TF) motif enrichment was performed using the command line tool

970 *Homer*⁹² (v4.9.1) and the parameter *-size given*. DMRs were stratified in hypo- and

971 hypermethylated regions, and a set of random regions with equal size, similar CpG frequency

972 (15% tolerance in the deviation of CpG composition were allowed), and a maximum of 20%

973 N's in the sequence composition, were used as a background. The top 10 most significantly

974 enriched TF motifs in hypo- and hypermethylated DMRs were visualized.

975 **Locus overlap and enrichment analysis of ChromHMM states**

976 The R package *LOLA*⁹³ (v1.16.0) was used to enrich DMRs with ChromHMM states acquired

977 from Encode⁹⁴. DMRs were stratified in hypo- and hypermethylated regions and enriched to a

978 background containing a set of random regions with equal size, similar CpG frequency (15%
979 tolerance in the deviation of CpG composition was allowed), and a maximum of 20% N's in
980 the sequence composition.

981 **Locus plots**

982 *IGV* (v2.12.2) was used to visualize locus-specific methylation at single CpG resolution of
983 WGBS and DNA methylation array data (450k). Alternatively, the R package *gviz*⁹⁵ v1.30.3
984 was used to generate locus plots. For the visualization of WGBS data, methylation calls were
985 smoothed with the R package *bsseq*⁸⁵ v1.20.0, applying the function “BSmooth” with default
986 parameters.

987 **Homeobox gene classes**

988 Homeobox genes were taken from Holland *et al.*⁹⁶. We annotated DMRs obtained from
989 comparing HM vs non-HM JMML patients using the “annotatePeak” function from the
990 *ChIPseeker* package⁸⁹, assuming a tssRegion of +/- 3,000 base pairs. Subsequently, we
991 counted how many DMR associated genes were present in either of the previously defined
992 Homeobox gene classes PRD, ANTP and Misc (LIM, POU, HNF, SINCE, TALE, CUT, PROS,
993 ZF, CERS). We divided the size each gene set by 30,000, and the number of DMR associated
994 genes occurring in each gene set by the number of total DMR associated genes. The log2 fold
995 change of those ratios was plotted.

996 **Delineating methylation profiles linked to healthy hematopoietic stem cell development
997 and maturation**

998 To analyze JMML within the context of HSC development, we compared the methylomes of
999 JMML HSCs to those of healthy fetal, neonatal, juvenile, and adult HSCs. For this purpose,
1000 the entire genome was segmented into contiguous 1kb regions, and the average methylation
1001 in regions covered in all samples was computed (n = 1,209,679). Average methylation within
1002 each region was subsequently correlated with the developmental order, progressing from fetal
1003 to neonatal, juvenile, and adult stages, using spearman correlation.

1004 Of all the regions analyzed, 1,608 exhibited an absolute Spearman correlation coefficient of
1005 at least 0.9, corresponding approximately to the 0.999 quantile of the absolute Spearman
1006 correlation distribution.

1007 As the methylomes of fetal and juvenile samples were measured using post-bisulfite adaptor
1008 tagging (PBAT) while those of neonatal and adult samples were assessed by TWGBS, there
1009 remained a residual risk of confounding by the sequencing method. To address this issue, we
1010 computed the Spearman correlation of average methylation and sequencing method,
1011 subsequently removing all regions with an absolute correlation coefficient greater than 0.4 to
1012 account for the sequencing method covariate. This threshold corresponded approximately to
1013 the 0.75 quantile of the absolute Spearman correlation distribution. The remaining 1,179
1014 regions were presumed to capture the epigenetic changes occurring throughout HSC
1015 development

1016 For the reconstruction of phylogenetic trees representing HSC development, we calculated
1017 the Manhattan distance between samples based on the average methylation of the selected
1018 1,179 regions. Tree reconstruction, assuming minimum evolution, was conducted using the
1019 “fastme.bal” function from the R package *ape*⁹⁷ (version 5.6.2).

1020 **Principal component analysis of JMML and healthy reference bulk methylomes**

1021 To focus on the HSC bulk methylomes, data were subset accordingly, with the exclusion of
1022 the FL2_HSC_PBAT_2 sample due to its poor quality. The methylation values of the 10,000
1023 most variable CpGs across all remaining samples were centered around 0 and scaled by their
1024 standard deviation. Subsequently, Principal Component Analysis (PCA) was applied to the
1025 scaled methylation values.

1026 PCA embeddings and variance explained per principal component were computed using the
1027 *prcomp* function in base R, thereby facilitating an unsupervised analysis of genome-wide
1028 methylation patterns across hematopoietic stem cells.

1029

1030 **Identifying epigenetic scars of development**

1031 Epigenetic scars, conceptually, are characterized by marked methylation changes between
1032 distinct developmental states, while remaining stable during subsequent development (related
1033 to Abdel-Hakeem et al.⁹⁸). To identify epigenetic scars, DMRs were called between a
1034 developmental state of interest and all succeeding states. “callIDMR” from the R package
1035 *DSS*⁹⁹ (2.42.0) was used to identify DMRs across two groups. The “callIDMR” function was
1036 invoked using the following arguments: delta=.1, p.threshold=.05, minlen=50, minCG=3,
1037 dis.merge=50, pct.sig=0.5. Identified DMRs were filtered to suffice an average coverage of
1038 five in at least 50% of samples in both groups.

1039 We identified 3,332 potential scars from comparing prenatal to postnatal states, and, 8,964
1040 from the comparison between neonatal and post-neonatal states. Given the lenient nature of
1041 the DMR calling procedure, only a small fraction of all DMRs represent genuine epigenetic
1042 scars.

1043 To select DMRs consistent with the concept of epigenetic scars, we applied the following
1044 filtering approach:

1045 1.) Conduct a Fisher’s exact test on a 2x2 contingency table comparing the total number
1046 of methylated and unmethylated CpGs within a given DMR and the two groups being
1047 compared. DMRs meeting a Benjamini-Hochberg adjusted p-value threshold of 0.01
1048 were considered for further selection.

1049 2.) Exclude regions exhibiting a within-group standard deviation of average DMR
1050 methylation greater than 0.1 in any of the compared groups. For the neonatal vs
1051 postneonatal comparison, this cutoff was reduced to 0.05 due to the high number of
1052 adult HSC replicates.

1053 DMRs passing this selection procedure were deemed genuine epigenetic scars. From the
1054 comparison between prenatal and postnatal we retained 100 epigenetic scars, from the
1055 comparison between neonatal and post-neonatal we retained 157.

1056

1057 **Linking transcriptional with epigenetic changes through generalized linear models**

1058 Generalized linear model with stepwise feature elimination using AIC was applied to identify
1059 DEGs associated with DMRs in a region of 200 Mb around each of the transcription start sites
1060 (TSS). The goal of this analysis was to identify genes whose alterations in expression could
1061 principally be attributed to changes in neighboring CpG methylation.

1062 Specifically, our interest lay in genes differentially expressed between HM and non-HM cells
1063 derived from 10X data. Differentially expressed genes (DEGs) were identified using *Seurat*
1064 “findMarkers”, selecting genes meeting an adjusted p-value cutoff of 0.01. RNA expression
1065 data was normalized as outline in section: Pseudotemporal Analysis of Hematopoietic
1066 Lineages.

1067 Likewise, DMRs were determined by comparing HM and non-HM patients utilizing bulk WGBS
1068 data. To minimize the influence of developmental regions, we excluded DMRs that overlapped
1069 with DMRs from all pairwise comparisons of non-tumor neonatal, juvenile, and adult patients.
1070 Overlap assessment was performed using the *IRanges* “findOverlaps” function (version
1071 2.32.0) with default arguments. Subsequently, we computed the average methylation per
1072 patient per DMR.

1073 After defining the sets of DEGs and DMRs, we calculated all DMRs that overlapped with a 100
1074 kb region surrounding the gene body of each DEG. Prior to this, *hgLiftOver*
1075 (<https://genome.ucsc.edu/cgi-bin/hgLiftOver>) was employed to convert gene coordinates from
1076 hg38 to hg19.

1077 Utilizing the “glm” function from the *stats* package in base R, we fitted a generalized linear
1078 model with a Gaussian link function to predict the expression of a given DEG through the
1079 methylation of associated DMRs. To reduce the number of model parameters (i.e., the number
1080 of DMRs predicting the expression of a given DEG), we employed the step function in base
1081 R, which optimizes the Akaike information criterion (AIC) in a stepwise manner. Briefly, this
1082 approach finds a balance between removing DMRs with minimal predictive power and
1083 maintaining acceptable model performance. Each DEG with at least one associated DMR after
1084 AIC optimization was considered linked to epigenetic changes.

1085 Model performance was evaluated using standard metrics, including root-mean-square error,
1086 mean absolute error, Pearson correlation between prediction and ground truth, and ranked
1087 mean absolute error, which, unlike mean absolute error, utilizes the difference of ranks. DEGs
1088 were categorized based on the cellular location of their gene product using data from the
1089 *CellPhoneDB* database (https://raw.githubusercontent.com/Teichlab/cellphonedb-data/master/data/sources/protein_curated.csv). DEGs exhibiting a Pearson correlation
1090 between prediction and ground truth greater than 0.9 were selected as candidates for further
1091 analysis.

1093 The heatmaps display expression and methylation values for all DMR-DEG associations for
1094 all candidate genes per patient and subgroup. Normalized gene expression was scaled to
1095 minimum and maximum across patients. Average methylation for each DMR is the average
1096 beta-values across all CpGs per region and JMML epitype. 'Correlation' depicts the Pearson
1097 correlation coefficients as per DMR-DEG association. The expression of 13 genes encoding
1098 for cell surface proteins was found to be significantly correlated with DNA methylation changes
1099 in up to 7 DMRs.

1100 ***Ptpn11*^{E76K/+} JMML mouse model**

1101 *Ptpn11*^{E76K/+} *Scl*-CreER^T mice were bred by crossing previously described *Scl*-CreER^T and
1102 *Ptpn11*^{E76K-neo/+} mice which were both on a B6.SJL-Ptprc^a Pepc^b/BoyJ (CD45.1) genetic
1103 background^{100,101}. All mice were kept at the DKFZ in individually ventilated cages under
1104 specific pathogen-free (SPF) conditions.

1105 For all experiments, *Ptpn11*^{E76K/+} *Scl*-CreER^T and *Ptpn11*^{+/+} *Scl*-CreER^T mice at the age of 6 to
1106 12 weeks were injected intraperitoneally (i.p.) on 5 consecutive days each day with 2 mg
1107 tamoxifen (dissolved in 200 µl sunflower oil with 10% ethanol). For differential blood count
1108 analysis, peripheral blood was collected from the vena facialis and measured using
1109 HemaVet950 (Drew Scientific) or scil Vet abc Plus+ (scil) veterinary hematology analyzers.
1110 Additionally, 30 µl of peripheral blood were used for flow cytometry as described below.

1111

1112 **Flow cytometric analysis of hematopoietic cells**

1113 Mice were sacrificed 18 weeks post injection by cervical dislocation according to European
1114 guidelines. Bone marrow of tibiae, femora, iliae and vertebrae were isolated by crushing the
1115 bones in IMDM (Gibco) three times. Additionally, one femur was flushed using 1 ml PBS
1116 supplemented with 2% FCS (PBS/FCS) to determine bone marrow cellularity and the cell
1117 suspension was afterwards added to the crushed bones. Spleen cells were isolated by passing
1118 the organs through a 40 μ m cell strainer (Falcon). Subsequently, bone marrow cells,
1119 splenocytes and peripheral blood were resuspended in ACK lysis buffer (Lonza) for red blood
1120 cell lysis. Cells were washed and stained in PBS/FCS using established cell surface marker
1121 combinations for the identification of hematopoietic cell types (Supplementary Table 26). Flow
1122 cytometry analysis was performed using BD LSR II, BD LSR Fortessa and BD FACS Celesta
1123 (BD Biosciences).

1124 **Bone marrow isolation and lineage depletion**

1125 Bone marrow cell isolation and lineage depletion have been performed as described before¹⁰².
1126 In short, bone marrow was isolated by crushing the bones three times in IMDM (Gibco)
1127 followed by red blood cell lysis using ACK lysis buffer (Lonza). Cells were washed in PBC/FCS
1128 and biotinylated antibodies added for lineage depletion (Supplementary Table 26). Mouse
1129 depletion Dynabeads (Invitrogen) were used for the depletion of lineage-labeled cells using a
1130 DynaMag-15 magnet (Invitrogen). Subsequently, lineage-negative cells were stained with
1131 antibodies for the isolation of HSPCs followed by FACS using BD FACS Aria II and III cell
1132 sorters (BD Biosciences).

1133 **Single-cell genotyping**

1134 *Ptpn11*^{E76K/+} *ScI-CreER*^T mice were sacrificed three days after the last tamoxifen injection and
1135 subsequently lineage-depleted bone marrow cells isolated from tibiae, femora, iliae and
1136 vertebrae as described above. Single HSCs (Lin- cKIT+ Sca1+ CD48- CD150+) were FACS-
1137 isolated and expanded for 12 days in StemSpan SFEM (Stemcell Technologies) containing
1138 1% Penicillin/Streptomycin (Gibco), 2 mM L-Glutamine (Gibco), 50 ng/ml IL-3 (PeproTech), 50

1139 ng/ml IL-6 (PeproTech), 50 ng/ml TPO (PeproTech), 50 ng/ml mSCF (PeproTech) and 50
1140 ng/ml Flt3L (PeproTech) at 37°C with 5% CO₂ in 96-well U-bottom plates. Wells with colony
1141 growth were analyzed for induction of the *Ptpn11*^{E76K} mutation by genotyping PCR¹⁰¹. In short,
1142 lysis buffer containing 0.01% Tween-20 (Sigma-Aldrich) and Proteinase K (Thermo Scientific)
1143 was added to the cells followed by incubation at 65°C for 60 min and 95°C for 15 min. Cell
1144 lysate was subjected to genotyping using a HotStar Taq polymerase (QIAGEN) and previously
1145 established primers¹⁰¹. PCR products were analyzed on a 2% agarose gel.

1146 **Analysis of moribund mice**

1147 Moribund mice were sacrificed by cervical dislocation according to European guidelines.
1148 Spleen and live weight were determined and bone marrow cells isolated from tibiae, femora
1149 and iliae by flushing these bones with PBS/FCS. Flow cytometry was performed as described
1150 above using established cell surface marker combinations (Supplementary Table 26).

1151 **Single-cell RNA-sequencing or material from *Ptpn11*^{E76K} mice**

1152 Mice were sacrificed 18 weeks post injection by cervical dislocation according to European
1153 guidelines. Femur cellularity was determined by flushing femora with PBS/FCS. Additionally,
1154 bone marrow cells from vertebrae, femora, tibiae, iliae, humeri and sterna were isolated by
1155 crushing these bones three times in IMDM (Gibco). The femur cells were added to the crushed
1156 bones followed by red blood cell lysis using ACK lysis buffer (Lonza). Afterwards, 5 x 10⁶ cells
1157 were used for the staining of differentiated cells and 2.5 x 10⁷ cells for flow cytometry
1158 measurements (see 'Flow cytometric analysis of hematopoietic cells'). The remaining cells
1159 were subjected to lineage depletion as described above. Lineage-negative and differentiated
1160 cells were stained with antibodies for the isolation of hematopoietic cell types and used for
1161 FACS (Supplementary Table 26). In total, 7,000 Lin- cKIT+ Sca1+ (LSK) and 7,000 Lin- cKIT+
1162 (LK) cells were isolated from each mouse from lineage-negative bone marrow and 7,000 live
1163 total hematopoietic cells from unfractioned bone marrow. These cells were subjected to
1164 scRNA-sequencing using the Single Cell 3' Reagent Kits v2 (10X Genomics) according to the

1165 manufacturer's instructions. Sequencing was performed on a NovaSeq 6000 (Illumina) in
1166 paired-end (PE 26/96 bp) mode at the DKFZ GPCF.

1167 Reads were aligned to GRCm38 and feature count matrices generated using Cell Ranger
1168 version 4.0.0 (10X Genomics). Feature counts were further processed using *Seurat* (version
1169 4.0)¹⁰³ whereby cells with more than 5% of mitochondrial reads or less than 500 and more
1170 than 5800 detected genes were removed from the analysis. Moreover, only genes that were
1171 expressed in a minimum of 10 cells were retained for further analysis. Doublets were identified
1172 and removed using *DoubletFinder*¹⁰⁴. Cell cycle states were annotated based on the
1173 expression of stage specific marker genes (<https://github.com/hbc/tinyatlas>). Filtered data was
1174 subsequently integrated across genotypes using the "SCTransform" method followed by PCA,
1175 UMAP calculation and clustering. Clusters were annotated to hematopoietic cell states based
1176 on the expression of previously identified state-specific marker genes^{105,106}. Differentiation
1177 pseudotime was calculated using *slingshot* for the monocytic differentiation lineage and cells
1178 were ordered along this pseudotime based on their rank¹⁰⁷.

1179 Cluster contributions were calculated based on 10,000 randomly selected cells from each
1180 genotype. P-values were determined using Fisher's exact test followed by Benjamini-
1181 Hochberg's false discovery rate (FDR) correction.

1182 Transcriptional priming was calculated based on previously published gene sets¹⁰⁸ using the
1183 *Seurat* "AddModuleScore" function. Statistical significance was determined based on two
1184 LMMs as implemented in the *lme4* R package followed by ANOVA:

1185 LMM1 = signature ~ genotype + (1|mouse_id)

1186 LMM2 = signature ~ (1|mouse_id)

1187

1188 Murine fetal and adult HSC signature genes were previously published²⁷ and used for GSEA.
1189 In short, the *Seurat* "FindMarkers" function (logfc.threshold = -Inf, min.pct = 0.05,
1190 max.cells.per.ident = 1000) was used to calculate differential gene expression and
1191 subsequently genes not mapping to sex chromosomes were ranked based on fold change

1192 followed by GSEA using the fgsea package
1193 (<https://www.biorxiv.org/content/10.1101/060012v3>).

1194 **Primary xenotransplantation**

1195 Newborn *Rag2^{-/-}gc^{-/-}* mice were used for xenotransplantation within the first four days of life.
1196 Mice were irradiated with 2,5 Gy. Six to eight hours after irradiation JMML (MNCs) were
1197 thawed, depleted from CD3⁺ T cells using CD3 MicroBeads (Miltenyi Biotec) and 1x10⁶ cells
1198 were injected intra-hepatically in 30 µl of PBS. Six to seven weeks after xenotransplantation,
1199 peripheral blood was obtained to inspect for human cell engraftment using flow cytometry with
1200 an antibody specifically detecting human pan-leukocyte antigen (hCD45). Successfully
1201 engrafted mice were then treated with alemtuzumab (100 µg/kg) or vehicle 1x/week for 4
1202 weeks.

1203 ***In vivo* anti-CD52 treatment**

1204 At eight weeks following xenotransplantation, mice were divided into two groups: the control
1205 group received 100 µl of PBS and the experimental group received 100 mg/kg anti-CD52
1206 antibody (alemtuzumab, Genzyme Corporation Cambridge) prepared in 100 µl of PBS.
1207 Injections were given via tail vein once per week for four weeks.
1208 One week after the end of the treatment, mice were sacrificed and blood, bone marrow,
1209 spleen, liver, and lungs were used for the analysis. Single cell suspensions were obtained for
1210 blood, bone marrow, and spleen, while liver and lungs were firstly digested with collagenase
1211 D (1 mg/ml) and DNase (25 mg/ml) for 30 minutes at 37°C followed by density gradient
1212 centrifugation. Cell suspensions were exposed to red blood cell lysis and stained with
1213 antibodies (Supplementary Table 27). All antibodies were used in 1:100 ratio. Cell acquisition
1214 and measurement was done using BD Fortessa. Different cell populations were characterized
1215 following gating strategy shown in Extended Data Figure 12i.

1216 The expression levels are quantified as total number of events of engrafted CD45+ cells or
1217 absolute number of living cells calculated out from two femurs. Statistical analyses were
1218 performed using the unpaired Mann-Whitney test in GraphPad Prism 10 software. P values

1219 less than 0.05 were considered statistically significant. Treatment effect of alemtuzumab was
1220 calculated as difference of the percentage of engrafted human CD45 cells in treated vs
1221 untreated mice (treatment effect=treated_{mean} - untreated_{mean}).

1222 **Serial transplantations**

1223 For serial transplantations, 5-weeks old mice were sublethally irradiated with 3 Gy and six to
1224 eight hours after irradiation 1x10⁷ total bone marrow cells control- or alemtuzumab-treated
1225 mice were injected. Six weeks after transplantation, human cell engraftment was assessed in
1226 murine peripheral blood by flow cytometry using an antibody specifically detecting human pan-
1227 leukocyte antigen (hCD45). Terminally sick mice were eliminated and organs were analyzed
1228 as described above.

1229 **Statistical analysis and data visualization**

1230 Statistical tests are specified in the corresponding figure legends and methods sections. If not
1231 differently specified, default statistical tests implemented in *Seurat* or *DSS* were used for
1232 scRNA-seq or WGBS analyses, respectively. For the analysis of JMML PDX mice, GraphPad
1233 Prism was used. Flow cytometry data was analyzed using FlowJo (v.10.6.2, v.10.8.1, BD
1234 Biosciences). Flow cytometers and sorters were operated using DIVA v.8 or v.9. Visualizations
1235 were generated using *ggplot2* and *pheatmap*, *Seurat* and *Nebulosa* in R version 4.0.3, 4.0.5,
1236 and 4.2.0⁸². For Kaplan-Meier analysis, the *survminer* R package was used to calculate
1237 leukemia-free survival (<https://github.com/kassambara/survminer>).

1238

1239 **Data availability**

Data	Source	Reference
JMML_scRNA-seq	EGAS00001007357	this study
FET_scRNA-seq	Human Cell Atlas	Popescu et al. (2019) ⁶⁸
NEO_scRNA-seq	Human Cell Atlas	https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
JUV_scRNA-seq	HTA4_31 & HTA4_32	this study
ADU_scRNA-seq	Human Cell Atlas	Hay et al. (2018) ⁶⁶
JMML_EPIC	EGAS00001007357	this study
JMML_WGBS	EGAS00001007357	this study
FET_WGBS	EGAS00001007357	this study
NEO_WGBS	EGAS00001007357	Maag, Toth et al. (in preparation)
JUV_WGBS	EGAS00001007357	this study
ADU_WGBS	EGAS00001007357	this study
Ptpn11-E76K_scRNA-seq	GEO: GSE240460	this study

1240

1241 **Code availability**

1242 WGBS and scRNA-seq data were processed and analyzed using publicly available software
1243 packages as specified in the corresponding methods sections. R code is available at
1244 https://github.com/maurerv/jmml_oncofetal_reprogramming.

1245

1246 **Acknowledgements**

1247 We thank the patients and their families and the EWOG-MDS study group for supporting our
1248 research. We also thank the NGS Core Facility, the Omics IT and Data Management Core
1249 Facility, the Flow Cytometry Core Facility and the Center for Preclinical Research, German
1250 Cancer Research Center (DKFZ), for providing excellent services. Emely Kleinert and Oliver
1251 Mücke provided excellent technical support. The Ptpn11 E76K neo/+ mouse was kindly
1252 shared by Dr. Cheng-Kui Qu, Department of Pediatrics, Aflac Cancer and Blood Disorders
1253 Center, Emory University, Atlanta, GA, USA. We thank all the members of the Division of
1254 Translational Medical Oncology, the Division of Applied Functional Genomics, Oliver Stegle,
1255 Stephen J. Clark and Wolf Reik for many fruitful discussions. This work was in part funded by
1256 Wellcome Trust (personal fellowship to S.B., institutional grant to the Wellcome Sanger
1257 Institute; references 220540/Z/20/A and 223135/Z/21/Z), by DFG (Emmy Noether RA 3166/1)
1258 to S.R., by the DKFZ International PhD Program and the German-Israeli Helmholtz
1259 International Research School “Cancer-TRAX” to M.Hakobyan, by NCT Molecular Precision
1260 Oncology Program to S.F., and by grants from the “Deutsche José Carreras Leukämie-
1261 Stiftung” (DJCLS 14R/2022) to M.M. and D.B.L. and from the “Wilhelm Sander-Stiftung” (#
1262 2022.010.1) to D.B.L. This submission is part of the 2023 HCA Publication Package (HCA-
1263 105).

1264 **Contributions**

1265 ▪ M.H., M.S. and D.B.L. conceived the study, designed experiments and coordinated
1266 the project.

1267 ▪ R.R., K.M.B., T.B., S.R., S.H., C.B., L.J., M.Haniffa., C.M.N., C.F. and M.E. collected
1268 patient and/or healthy reference samples.

1269 ▪ M.S. established the *Ptpn11*^{E76K} mouse model and performed mouse experiments
1270 under supervision of D.B.L.

1271 ▪ M.H., M.S., K.B., J.P.M., J.R., M.Hakobyan, S.S., J.L., K.M.B., F.A., L.J., S.B., D.V.,
1272 A.H.M., S.H., D.L. performed experiments.

1273 ▪ M.H., M.S., V.M., L.H., J.H., E.K., K.T., C.C., V.F. performed bioinformatic analyses.

1274 ▪ M.J.B., J.H., M.Schlesner and D.B.L. supervised bioinformatic analyses.

1275 ▪ J.R. and M.E. designed and J.R. performed the PDX experiments.

1276 ▪ M.H., M.S., J.R., V.M., L.H., J.H., P.L., M.D.M., S.H., S.Behjati, M.J.B., S.F., C.M.N.,
1277 C.F., C.P., M.E., M.Schlesner and D.B.L. interpreted the data.

1278 ▪ D.B.L. acquired funding and supervised the project.

1279 ▪ M.H., M.S., and D.B.L. wrote the manuscript.

1280 All authors read, edited and approved the manuscript.

1281 **Ethics declarations – competing interests**

1282 A patent application has been filed by M.H., M.E. and D.B.L. based on the data described in
1283 this study. D.B.L. works as a drug safety physician for Infectopharm. J.H. is working as a
1284 consultant for CytoReason.

1285 All other authors declare no competing interests.

References

1286

1287

1288 1 Sharma, A., Bleriot, C., Currenti, J. & Ginhoux, F. Oncofetal reprogramming in tumour development and
1289 progression. *Nat Rev Cancer* **22**, 593-602, doi:10.1038/s41568-022-00497-8 (2022).

1290 2 Gale, K. B. *et al.* Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in
1291 neonatal blood spots. *Proc Natl Acad Sci U S A* **94**, 13950-13954, doi:10.1073/pnas.94.25.13950
1292 (1997).

1293 3 Coorens, T. H. H. *et al.* Embryonal precursors of Wilms tumor. *Science* **366**, 1247-1251,
1294 doi:10.1126/science.aax1323 (2019).

1295 4 Khabirova, E. *et al.* Single-cell transcriptomics reveals a distinct developmental state of KMT2A-
1296 rearranged infant B-cell acute lymphoblastic leukemia. *Nat Med* **28**, 743-751, doi:10.1038/s41591-022-
1297 01720-7 (2022).

1298 5 Young, M. D. *et al.* Single-cell transcriptomes from human kidneys reveal the cellular identity of renal
1299 tumors. *Science* **361**, 594-599, doi:10.1126/science.aat1699 (2018).

1300 6 Jessa, S. *et al.* Stalled developmental programs at the root of pediatric brain tumors. *Nat Genet* **51**,
1301 1702-1713, doi:10.1038/s41588-019-0531-7 (2019).

1302 7 Bala, P. *et al.* Aberrant cell state plasticity mediated by developmental reprogramming precedes
1303 colorectal cancer initiation. *Sci Adv* **9**, eadfo927, doi:10.1126/sciadv.adf0927 (2023).

1304 8 Pomerantz, M. M. *et al.* Prostate cancer reactivates developmental epigenomic programs during
1305 metastatic progression. *Nat Genet* **52**, 790-799, doi:10.1038/s41588-020-0664-8 (2020).

1306 9 Sharma, A. *et al.* Onco-fetal Reprogramming of Endothelial Cells Drives Immunosuppressive
1307 Macrophages in Hepatocellular Carcinoma. *Cell* **183**, 377-394 e321, doi:10.1016/j.cell.2020.08.040
1308 (2020).

1309 10 Sole, L. *et al.* p53 wild-type colorectal cancer cells that express a fetal gene signature are associated
1310 with metastasis and poor prognosis. *Nat Commun* **13**, 2866, doi:10.1038/s41467-022-30382-9 (2022).

1311 11 Behjati, S., Gilbertson, R. J. & Pfister, S. M. Maturation Block in Childhood Cancer. *Cancer Discov* **11**,
1312 542-544, doi:10.1158/2159-8290.CD-20-0926 (2021).

1313 12 Rudelius, M., Weinberg, O. K., Niemeyer, C. M., Shimamura, A. & Calvo, K. R. The International
1314 Consensus Classification (ICC) of hematologic neoplasms with germline predisposition, pediatric
1315 myelodysplastic syndrome, and juvenile myelomonocytic leukemia. *Virchows Arch* **482**, 113-130,
1316 doi:10.1007/s00428-022-03447-9 (2023).

1317 13 Lipka, D. B. *et al.* RAS-pathway mutation patterns define epigenetic subclasses in juvenile
1318 myelomonocytic leukemia. *Nat Commun* **8**, 2126, doi:10.1038/s41467-017-02177-w (2017).

1319 14 Stieglitz, E. *et al.* Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic
1320 leukemia. *Nat Commun* **8**, 2127, doi:10.1038/s41467-017-02178-9 (2017).

1321 15 Murakami, N. *et al.* Integrated molecular profiling of juvenile myelomonocytic leukemia. *Blood* **131**,
1322 1576-1586, doi:10.1182/blood-2017-07-798157 (2018).

1323 16 Schönung, M. *et al.* International Consensus Definition of DNA Methylation Subgroups in Juvenile
1324 Myelomonocytic Leukemia. *Clin Cancer Res* **27**, 158-168, doi:10.1158/1078-0432.CCR-20-3184 (2021).

1325 17 Niemeyer, C. M. & Flotho, C. Juvenile myelomonocytic leukemia: who's the driver at the wheel? *Blood*
1326 **133**, 1060-1070, doi:10.1182/blood-2018-11-844688 (2019).

1327 18 Helsmoortel, H. H. *et al.* LIN28B overexpression defines a novel fetal-like subgroup of juvenile
1328 myelomonocytic leukemia. *Blood* **127**, 1163-1172, doi:10.1182/blood-2015-09-667808 (2016).

1329 19 Marion Strullu, C. A., Aurélie CAYE-EUDE, Loïc Maillard, Elodie Lainey, Florian Piques, Odile
1330 Fenneteau, Cassinat Bruno, Guimiot Fabien, Jean-Hugues Dalle, André Baruchel, Christine
1331 Chomienne, Dominique Bonnet, Michele Souyri, Hélène Cave. Two Distinct Fetal-Type Signatures

1332 1333 Caracterise Juvenile Myelomonocytic Leukemia. *Research Square*, doi:<https://doi.org/10.21203/rs.3.rs-1416605/v1> (2022).

1334 20 Matsuda, K. *et al.* Quantitative assessment of PTPN11 or RAS mutations at the neonatal period and during the clinical course in patients with juvenile myelomonocytic leukaemia. *Br J Haematol* **148**, 593-599, doi:10.1111/j.1365-2141.2009.07968.x (2010).

1337 21 Behnert, A. *et al.* Exploring the genetic and epigenetic origins of juvenile myelomonocytic leukemia using newborn screening samples. *Leukemia* **36**, 279-282, doi:10.1038/s41375-021-01331-0 (2022).

1339 22 Louka, E. *et al.* Heterogeneous disease-propagating stem cells in juvenile myelomonocytic leukemia. *J Exp Med* **218**, doi:10.1084/jem.20180853 (2021).

1341 23 Caye, A. *et al.* Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. *Leukemia* **34**, 1658-1668, doi:10.1038/s41375-019-0662-y (2020).

1344 24 Farlik, M. *et al.* DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation. *Cell Stem Cell* **19**, 808-822, doi:10.1016/j.stem.2016.10.019 (2016).

1346 25 Espin-Palazon, R. *et al.* Proinflammatory signaling regulates hematopoietic stem cell emergence. *Cell* **159**, 1070-1085, doi:10.1016/j.cell.2014.10.031 (2014).

1348 26 Loyfer, N. *et al.* A DNA methylation atlas of normal human cell types. *Nature* **613**, 355-364, doi:10.1038/s41586-022-05580-6 (2023).

1350 27 Li, Y. *et al.* Single-Cell Analysis of Neonatal HSC Ontogeny Reveals Gradual and Uncoordinated Transcriptional Reprogramming that Begins before Birth. *Cell Stem Cell* **27**, 732-747 e737, doi:10.1016/j.stem.2020.08.001 (2020).

1353 28 Bausch-Fluck, D. *et al.* The in silico human surfaceome. *Proc Natl Acad Sci U S A* **115**, E10988-E10997, doi:10.1073/pnas.1808790115 (2018).

1355 29 Osterborg, A. *et al.* Humanized CD52 monoclonal antibody Campath-1H as first-line treatment in chronic lymphocytic leukaemia. *Br J Haematol* **93**, 151-153, doi:10.1046/j.1365-2141.1996.450989.x (1996).

1357 30 Moreau, T. *et al.* Preliminary evidence from magnetic resonance imaging for reduction in disease activity after lymphocyte depletion in multiple sclerosis. *Lancet* **344**, 298-301, doi:10.1016/s0140-6736(94)91339-0 (1994).

1360 31 Coles, A. J. *et al.* Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. *Lancet* **380**, 1829-1839, doi:10.1016/S0140-6736(12)61768-1 (2012).

1363 32 Krombholz, C. F. *et al.* Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2^{-/-}/gammac^{-/-} mice. *Haematologica* **101**, 597-606, doi:10.3324/haematol.2015.138545 (2016).

1366 33 Zhang, Z., Zhang, M., Goldman, C. K., Ravetch, J. V. & Waldmann, T. A. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H. *Cancer Res* **63**, 6453-6457 (2003).

1369 34 Ford, A. M. *et al.* In utero rearrangements in the trithorax-related oncogene in infant leukaemias. *Nature* **363**, 358-360, doi:10.1038/363358a0 (1993).

1371 35 Roberts, I. *et al.* GATA1-mutant clones are frequent and often unsuspected in babies with Down syndrome: identification of a population at risk of leukemia. *Blood* **122**, 3908-3917, doi:10.1182/blood-2013-07-515148 (2013).

1374 36 Mitchell, E. *et al.* Clonal dynamics of haematopoiesis across the human lifespan. *Nature* **606**, 343-350, doi:10.1038/s41586-022-04786-y (2022).

1376 37 Korber, V. *et al.* Neuroblastoma arises in early fetal development and its evolutionary duration predicts outcome. *Nat Genet* **55**, 619-630, doi:10.1038/s41588-023-01332-y (2023).

1378 38 Klusmann, J. H. *et al.* Developmental stage-specific interplay of GATA1 and IGF signaling in fetal
1379 megakaryopoiesis and leukemogenesis. *Genes Dev* **24**, 1659-1672, doi:10.1101/gad.1903410 (2010).

1380 39 Grimm, J., Heckl, D. & Klusmann, J. H. Molecular Mechanisms of the Genetic Predisposition to Acute
1381 Megakaryoblastic Leukemia in Infants With Down Syndrome. *Front Oncol* **11**, 636633,
1382 doi:10.3389/fonc.2021.636633 (2021).

1383 40 Jansky, S. *et al.* Single-cell transcriptomic analyses provide insights into the developmental origins of
1384 neuroblastoma. *Nat Genet* **53**, 683-693, doi:10.1038/s41588-021-00806-1 (2021).

1385 41 Kildisiute, G. *et al.* Tumor to normal single-cell mRNA comparisons reveal a pan-neuroblastoma cancer
1386 cell. *Sci Adv* **7**, doi:10.1126/sciadv.abd3311 (2021).

1387 42 Vladoiu, M. C. *et al.* Childhood cerebellar tumours mirror conserved fetal transcriptional programs.
1388 *Nature* **572**, 67-73, doi:10.1038/s41586-019-1158-7 (2019).

1389 43 Luo, Z. *et al.* Human fetal cerebellar cell atlas informs medulloblastoma origin and oncogenesis. *Nature*
1390 **612**, 787-794, doi:10.1038/s41586-022-05487-2 (2022).

1391 44 Capper, D. *et al.* DNA methylation-based classification of central nervous system tumours. *Nature* **555**,
1392 469-474, doi:10.1038/nature26000 (2018).

1393 45 Oakes, C. C. *et al.* DNA methylation dynamics during B cell maturation underlie a continuum of disease
1394 phenotypes in chronic lymphocytic leukemia. *Nat Genet* **48**, 253-264, doi:10.1038/ng.3488 (2016).

1395 46 Kulis, M. *et al.* Whole-genome fingerprint of the DNA methylome during human B cell differentiation. *Nat
1396 Genet* **47**, 746-756, doi:10.1038/ng.3291 (2015).

1397 47 Sill, M., Plass, C., Pfister, S. M. & Lipka, D. B. Molecular tumor classification using DNA methylome
1398 analysis. *Hum Mol Genet* **29**, R205-R213, doi:10.1093/hmg/ddaa147 (2020).

1399 48 Hoadley, K. A. *et al.* Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors
1400 from 33 Types of Cancer. *Cell* **173**, 291-304 e296, doi:10.1016/j.cell.2018.03.022 (2018).

1401 49 Orlando, L. *et al.* Chemical genomics reveals targetable programs of human cancers rooted in
1402 pluripotency. *Cell Chem Biol* **30**, 780-794 e788, doi:10.1016/j.chembiol.2023.06.004 (2023).

1403 50 Beerman, I. *et al.* Proliferation-dependent alterations of the DNA methylation landscape underlie
1404 hematopoietic stem cell aging. *Cell Stem Cell* **12**, 413-425, doi:10.1016/j.stem.2013.01.017 (2013).

1405 51 Yang, Z. *et al.* Correlation of an epigenetic mitotic clock with cancer risk. *Genome Biol* **17**, 205,
1406 doi:10.1186/s13059-016-1064-3 (2016).

1407 52 Roels, J. *et al.* Aging of preleukemic thymocytes drives CpG island hypermethylation in T-cell acute
1408 lymphoblastic leukemia. *Blood Cancer Discov* **1**, 274-289, doi:10.1158/2643-3230.BCD-20-0059 (2020).

1409 53 Yu, M., Hazelton, W. D., Luebeck, G. E. & Grady, W. M. Epigenetic Aging: More Than Just a Clock
1410 When It Comes to Cancer. *Cancer Res* **80**, 367-374, doi:10.1158/0008-5472.CAN-19-0924 (2020).

1411 54 Calvanese, V. *et al.* Mapping human haematopoietic stem cells from haemogenic endothelium to birth.
1412 *Nature* **604**, 534-540, doi:10.1038/s41586-022-04571-x (2022).

1413 55 Roy, A. *et al.* Transitions in lineage specification and gene regulatory networks in hematopoietic
1414 stem/progenitor cells over human development. *Cell Rep* **36**, 109698, doi:10.1016/j.celrep.2021.109698
1415 (2021).

1416 56 Zhang, Y. *et al.* Temporal molecular program of human hematopoietic stem and progenitor cells after
1417 birth. *Dev Cell* **57**, 2745-2760 e2746, doi:10.1016/j.devcel.2022.11.013 (2022).

1418 57 Pellin, D. *et al.* A comprehensive single cell transcriptional landscape of human hematopoietic
1419 progenitors. *Nat Commun* **10**, 2395, doi:10.1038/s41467-019-10291-0 (2019).

1420 58 Dyer, M. J., Hale, G., Hayhoe, F. G. & Waldmann, H. Effects of CAMPATH-1 antibodies in vivo in
1421 patients with lymphoid malignancies: influence of antibody isotype. *Blood* **73**, 1431-1439 (1989).

1422 59 Coles, A. J. *et al.* Monoclonal antibody treatment exposes three mechanisms underlying the clinical
1423 course of multiple sclerosis. *Ann Neurol* **46**, 296-304, doi:10.1002/1531-8249(199909)46:3<296::aid-
1424 ana4>3.0.co;2-# (1999).

1425 60 Kottaridis, P. D. *et al.* In vivo CAMPATH-1H prevents graft-versus-host disease following
1426 nonmyeloablative stem cell transplantation. *Blood* **96**, 2419-2425 (2000).

1427 61 Faulkner, R. D. *et al.* BEAM-alemtuzumab reduced-intensity allogeneic stem cell transplantation for
1428 lymphoproliferative diseases: GVHD, toxicity, and survival in 65 patients. *Blood* **103**, 428-434,
1429 doi:10.1182/blood-2003-05-1406 (2004).

1430 62 Locatelli, F. & Niemeyer, C. M. How I treat juvenile myelomonocytic leukemia. *Blood* **125**, 1083-1090,
1431 doi:10.1182/blood-2014-08-550483 (2015).

1432 63 Jardine, L. *et al.* Blood and immune development in human fetal bone marrow and Down syndrome.
1433 *Nature* **598**, 327-331, doi:10.1038/s41586-021-03929-x (2021).

1434 64 Velten, L. *et al.* Human haematopoietic stem cell lineage commitment is a continuous process. *Nat Cell
1435 Biol* **19**, 271-281, doi:10.1038/ncb3493 (2017).

1436 65 Wang, Q. *et al.* Tagmentation-based whole-genome bisulfite sequencing. *Nat Protoc* **8**, 2022-2032,
1437 doi:10.1038/nprot.2013.118 (2013).

1438 66 Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L. & Salomonis, N. The Human Cell Atlas bone marrow
1439 single-cell interactive web portal. *Exp Hematol* **68**, 51-61, doi:10.1016/j.exphem.2018.09.004 (2018).

1440 67 Stuart, T. *et al.* Comprehensive Integration of Single-Cell Data. *Cell* **177**, 1888-1902 e1821,
1441 doi:10.1016/j.cell.2019.05.031 (2019).

1442 68 Popescu, D. M. *et al.* Decoding human fetal liver haematopoiesis. *Nature* **574**, 365-371,
1443 doi:10.1038/s41586-019-1652-y (2019).

1444 69 Hadley, W. *ggplot2: Elegant Graphics for Data Analysis.* <https://ggplot2.tidyverse.org> (2016).

1445 70 Bresolin, S. *et al.* Gene expression-based classification as an independent predictor of clinical outcome
1446 in juvenile myelomonocytic leukemia. *J Clin Oncol* **28**, 1919-1927, doi:10.1200/JCO.2009.24.4426
1447 (2010).

1448 71 Ng, S. W. *et al.* A 17-gene stemness score for rapid determination of risk in acute leukaemia. *Nature*
1449 **540**, 433-437, doi:10.1038/nature20598 (2016).

1450 72 Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-level
1451 datasets. *Nat Commun* **10**, 1523, doi:10.1038/s41467-019-09234-6 (2019).

1452 73 Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional
1453 genomic data. *Bioinformatics* **32**, 2847-2849, doi:10.1093/bioinformatics/btw313 (2016).

1454 74 Clark, S. J. *et al.* Genome-wide base-resolution mapping of DNA methylation in single cells using single-
1455 cell bisulfite sequencing (scBS-seq). *Nat Protoc* **12**, 534-547, doi:10.1038/nprot.2016.187 (2017).

1456 75 Hey, J. *et al.* DNA methylation landscape of tumor-associated macrophages reveals pathways,
1457 transcription factors and prognostic value relevant to triple-negative breast cancer patients. *Int J Cancer*
1458 **152**, 1226-1242, doi:10.1002/ijc.34364 (2023).

1459 76 Delacher, M. *et al.* Genome-wide DNA-methylation landscape defines specialization of regulatory T cells
1460 in tissues. *Nat Immunol* **18**, 1160-1172, doi:10.1038/ni.3799 (2017).

1461 77 Reisinger, E. *et al.* OTP: An automatized system for managing and processing NGS data. *J Biotechnol*
1462 **261**, 53-62, doi:10.1016/j.jbiotec.2017.08.006 (2017).

1463 78 Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data.
1464 *Bioinformatics* **30**, 2114-2120, doi:10.1093/bioinformatics/btu170 (2014).

1465 79 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. (2013).

1466 80 Institute, B. Picard Tools. *Broad Institute, GitHub repository version 2.18.2* (2018).

1467 81 Ryan, D. MethylDackel. <https://github.com/dpryan79/MethylDackel>. (2014).

1468 82 R Core Team, R. F. f. S. C. h. w. R.-p. o. R: A Language and Environment for Statistical Computing. (2020).

1470 83 Mayakonda, A. *et al.* Methrix: an R/Bioconductor package for systematic aggregation and analysis of bisulfite sequencing data. *Bioinformatics* **36**, 5524-5525, doi:10.1093/bioinformatics/btaa1048 (2021).

1472 84 BSgenome.Hsapiens.UCSC.hg19: Full genome sequences for Homo sapiens (UCSC version hg19, based on GRCh37.p13). (2020).

1474 85 Hansen, K. D., Langmead, B. & Irizarry, R. A. BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. *Genome Biol* **13**, R83, doi:10.1186/gb-2012-13-10-r83 (2012).

1476 86 Muller, F. *et al.* RnBeads 2.0: comprehensive analysis of DNA methylation data. *Genome Biol* **20**, 55, doi:10.1186/s13059-019-1664-9 (2019).

1478 87 Lawrence, M., Gentleman, R. & Carey, V. rtracklayer: an R package for interfacing with genome browsers. *Bioinformatics* **25**, 1841-1842, doi:10.1093/bioinformatics/btp328 (2009).

1480 88 Park, Y. & Wu, H. Differential methylation analysis for BS-seq data under general experimental design. *Bioinformatics* **32**, 1446-1453, doi:10.1093/bioinformatics/btw026 (2016).

1482 89 Yu, G., Wang, L. G. & He, Q. Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. *Bioinformatics* **31**, 2382-2383, doi:10.1093/bioinformatics/btv145 (2015).

1484 90 Team, B. C. TxDb.Mmusculus.UCSC.mm10.knownGene: Annotation package for TxDb object(s). R package version 3.4.7. bioconductor. (2019).

1486 91 Kolde, R. Pheatmap. cran. (2019).

1487 92 Heinz, S. *et al.* Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. *Mol Cell* **38**, 576-589, doi:10.1016/j.molcel.2010.05.004 (2010).

1490 93 Sheffield, N. C. & Bock, C. LOLA: enrichment analysis for genomic region sets and regulatory elements in R and Bioconductor. *Bioinformatics* **32**, 587-589, doi:10.1093/bioinformatics/btv612 (2016).

1492 94 Roadmap Epigenomics, C. *et al.* Integrative analysis of 111 reference human epigenomes. *Nature* **518**, 317-330, doi:10.1038/nature14248 (2015).

1494 95 Hahne, F. & Ivanek, R. Visualizing Genomic Data Using Gviz and Bioconductor. *Methods Mol Biol* **1418**, 335-351, doi:10.1007/978-1-4939-3578-9_16 (2016).

1496 96 Holland, P. W., Booth, H. A. & Bruford, E. A. Classification and nomenclature of all human homeobox genes. *BMC Biol* **5**, 47, doi:10.1186/1741-7007-5-47 (2007).

1498 97 Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics* **35**, 526-528, doi:10.1093/bioinformatics/bty633 (2019).

1500 98 Abdel-Hakeem, M. S. *et al.* Epigenetic scarring of exhausted T cells hinders memory differentiation upon eliminating chronic antigenic stimulation. *Nat Immunol* **22**, 1008-1019, doi:10.1038/s41590-021-00975-5 (2021).

1503 99 Feng, H., Conneely, K. N. & Wu, H. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. *Nucleic Acids Res* **42**, e69, doi:10.1093/nar/gku154 (2014).

1506 100 Gothert, J. R. *et al.* In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. *Blood* **105**, 2724-2732, doi:10.1182/blood-2004-08-3037 (2005).

1509 101 Xu, D. *et al.* Non-lineage/stage-restricted effects of a gain-of-function mutation in tyrosine phosphatase
1510 Ptpn11 (Shp2) on malignant transformation of hematopoietic cells. *J Exp Med* **208**, 1977-1988,
1511 doi:10.1084/jem.20110450 (2011).

1512 102 Schönung, M. *et al.* Dynamic DNA methylation reveals novel cis-regulatory elements in mouse
1513 hematopoiesis. *Exp Hematol* **117**, 24-42 e27, doi:10.1016/j.exphem.2022.11.001 (2023).

1514 103 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-3587 e3529,
1515 doi:10.1016/j.cell.2021.04.048 (2021).

1516 104 McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: Doublet Detection in Single-Cell RNA
1517 Sequencing Data Using Artificial Nearest Neighbors. *Cell Syst* **8**, 329-337 e324,
1518 doi:10.1016/j.cels.2019.03.003 (2019).

1519 105 Giladi, A. *et al.* Single-cell characterization of haematopoietic progenitors and their trajectories in
1520 homeostasis and perturbed haematopoiesis. *Nat Cell Biol* **20**, 836-846, doi:10.1038/s41556-018-0121-4
1521 (2018).

1522 106 Paul, F. *et al.* Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors. *Cell* **163**,
1523 1663-1677, doi:10.1016/j.cell.2015.11.013 (2015).

1524 107 Street, K. *et al.* Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. *BMC
1525 Genomics* **19**, 477, doi:10.1186/s12864-018-4772-0 (2018).

1526 108 Izzo, F. *et al.* DNA methylation disruption reshapes the hematopoietic differentiation landscape. *Nat
1527 Genet* **52**, 378-387, doi:10.1038/s41588-020-0595-4 (2020).

1528