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E
arly detection of infectious diseases helps prevent transmis-
sion and enable early intervention. Traditionally, detection 
has been limited to symptom onset when physiological dis-

turbances often warrant medical attention and disease transmis-
sion might already have occurred. For respiratory viral infections, 
symptom onset is typically several days to over 1 week after infec-
tion, whereas asymptomatic infections are not likely to be detected 
at all1–3. When a symptom onset does occur, it is usually followed up 
by either an oral or skin temperature measurement or more defini-
tively diagnosed using a biochemical test, such as antigen detection 
or polymerase chain reaction (PCR)4,5.

Wearable devices such as smartwatches have the potential to 
monitor individuals continuously in real time and thus provide 
early detection of respiratory illnesses and other infections6–11. 
These devices can collect different types of physiological data, such 
as heart rate, step counts, sleep and temperature. Recent studies 
have shown that wearables can be used to identify early signs of 
infectious diseases such as Lyme disease6 or respiratory viral infec-
tions, including coronavirus disease 2019 (COVID-19)7–10, and 
might even permit pre-symptomatic detection6,7. These respira-
tory viral infection studies have focused primarily on detection at 
symptom onset and, in the case of pre-symptomatic detection, were 
performed retrospectively. So far, the ability to prospectively detect 
respiratory viral infections and other stress events has not been 
examined, nor has a system been developed for performing this at 

scale. An early detection approach using a monitoring and alert-
ing system can enable early self-isolation, treatment and effective 
allocation of healthcare resources and provide an invaluable tool for 
potentially containing pandemics.

In this study, we created, to our knowledge, the first large-scale, 
real-time monitoring and alerting system for detecting abnormal 
physiological events, including COVID-19 infection onset, using 
agnostic algorithms across different types of smartwatches. We 
designed a novel algorithm capable of detecting outlier measure-
ments associated with physiological stresses in real time, including 
COVID-19 and other respiratory illnesses, and generating alerts 
for the device wearer. For pre-symptomatic cases, we show that the 
system identifies approximately 80% of COVID-19 illnesses at or 
before the onset of symptoms. It also identifies asymptomatic cases 
and signals resulting from other stressors, such as vaccination. 
Associations between symptoms and activities with alerting signals 
were also investigated.

Results
Study overview. We constructed a highly secure, real-time alerting 
system for detecting abnormal periods of stress, such as viral infec-
tions, using wearable devices (Fig. 1a) and conducted a test study 
approved by the Stanford University institutional review board (IRB) 
(protocol no. 57022) and Data Risk Assessment (DRA no. 665). The 
system involves participant enrollment through a secure REDCap12 
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e-consent system using the study app, called MyPHD13,14. After con-
necting the smartwatch through the app, wearable data (heart rate, 
step count and sleep analysis) and health information (for example, 
surveys of illness, symptom, medication and vaccination) were col-
lected and securely transferred in real time to the cloud for further 
analysis. Three online infection detection algorithms (NightSignal, 
RHRAD and CuSum) were hosted on the cloud, and the results of 
one of them, NightSignal, were made available to the participants 
in the form of real-time alerts (that is, red or green alert per day; 
an example of a signal associated with the alerts in an individual 
who was positive for COVID-19 is shown in Fig. 1b). Participants 
were expected to annotate the alerts using several surveys (COVID-
19 test, activities and symptoms). Medical recommendations (for 
example, self-isolation and getting tested) were not allowed under 
our IRB protocol.

We enrolled a total of 3,318 participants between 27 November 
2020 and 20 July 2021, of whom 2,155 had wearable data. Of these, 
1,031, 970 and 98 wore Fitbit, Apple Watch or Garmin watches, 
respectively, and the remaining wore other devices (Extended Data 
Fig. 1). During the study, 2,117 participants received daily real-time 
alerts for physiological changes, and 2,122 participants filled in 
at least one survey. Of all participants, 278 individuals reported 
COVID-19-positive test results (84 were confirmed by written 
documentation (62 individuals) or verbal confirmation of their test 

result (22 individuals)). Of those participants reporting COVID-
19-positive tests, 84 had sufficient wearable data around the time of 
COVID-19 infection for alert signaling (49 Fitbit cases and 35 Apple 
Watch cases) (Extended Data Fig. 2). Fifty of these cases were retro-
spective, whereby individuals tested positive before enrollment; in 
34 cases, the individuals tested positive after enrollment.

We also analyzed wearable data for three other categories of par-
ticipants: (1) individuals who tested negative for COVID-19: 1,213 
participants who reported a COVID-19-negative test and never 
had a positive test (individuals who tested negative for COVID-
19 reported their diagnosis date via the COVID-19 survey in the 
study app); (2) untested individuals: 1,825 participants without 
any COVID-19 test report; and (3) vaccinated individuals: 189 
participants who received the COVID-19 vaccine (Moderna or 
Pfizer-BioNTech), of whom 182 were fully vaccinated (that is, both 
doses) (Supplementary Table 1). COVID-19-positive, COVID-
19-negative and untested groups are distinct datasets. Vaccinated 
individuals could be COVID-19-positive, COVID-19-negative or 
untested.

Participants who received an alert were expected to provide a 
description of their diagnosis, symptoms and activities during that 
period. The above diagnoses included COVID-19, adenovirus and 
influenza. The symptoms included cough, fever and headache as 
well as severity (1—mild to 5—very severe). The activities included 
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Fig. 1 | Study overview. a, Participants with a Fitbit and/or Apple Watch were asked to share their wearable and survey data using the study mobile 

app MyPHD. The app securely transfers the de-identified data (heart rates, steps and survey events) to the back-end for real-time analysis. On the 

back-end, three online infection detection algorithms were deployed, and the results from one of the algorithms (online NightSignal) were returned to the 

participants using the app: red alerts indicate abnormal changes in overnight RHR; green alerts indicate normal overnight RHR. b, A real-world example of 

real-time pre-symptomatic detection of COVID-19 using the online NightSignal algorithm for a participant using an Apple Watch. Alerts were triggered 2 d 

before the symptom onset date and continued until 3 d after the diagnosis date.
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intense exercise, alcohol consumption, travel, stress and other life-
style factors that could alter physiological signals.

COVID-19 triggers real-time alerts. We used three independent 
real-time alerting algorithms capable of detecting and tracking 
physiological changes due to infections such as COVID-19. Two 
algorithms, online RHRAD and CuSum, extended from our pre-
vious work7, detect abnormal deviations from the baseline in rest-
ing heart rates (RHRs) using distinct approaches (Methods). These 
two methods were applied on the dense Fitbit data and have the 
potential to report an alarm at hourly resolution. Although they can 
detect anomalies at high resolution, these algorithms are computa-
tionally intensive. To be less computationally intensive and poten-
tially scalable to millions of users with various smartwatches, as 
well as achieving higher sensitivity while keeping the false-positive 
(FP) rate minimal, we developed a novel ‘lightweight’ algorithm 
(NightSignal) that uses a deterministic finite state machine (FSM)15 
based on overnight RHR (Methods and Extended Data Fig. 3). For 
each individual, we use the streaming median of average overnight 
RHR as the baseline and raise real-time daily alerts as deviations 
from baseline as defined by the alerting state machine (Methods). 
Deviations in successive nights (31 h) trigger an alert. This algo-
rithm runs on both the Fitbit and Apple Watch, and its features are 
presented in Extended Data Fig. 3. The NightSignal method has 
high sensitivity (80%) compared to CuSum (72%) and RHRAD 
(69%) but produces the same rate of false non-COVID-19 signals 
(Supplementary Table 2).

Real-time pre-symptomatic and asymptomatic detection. We 
first examined the capability of the real-time alerting system in the 
detection of COVID-19 at an early, pre-symptomatic stage as well 
as in asymptomatic cases. Figure 2a shows two examples of pro-
spective detection confirmed by COVID-19-positive tests: a Fitbit 
case (top) and an Apple Watch case (bottom) in which we detected 
elevated NightSignal alerts starting 3 d and 10 d before symptom 
onset, respectively. The screenshots of the MyPHD app at the top of 
Fig. 2a show the real-time alerts that the corresponding participant 
received every day. Alerts are visualized via a calendar, and partici-
pants annotate the alerts using different surveys in the app, includ-
ing activities, symptoms, diagnosis, medications and vaccination 
surveys. For the Fitbit example, all three algorithms raised alerts 
before symptom onset.

We also found 18 cases in which individuals reported testing 
positive but were asymptomatic. Alert signals were found to be 
associated with positive diagnostic tests in 14 of these cases. Two 
examples of asymptomatic participants who tested positive for 
COVID-19 are shown in Fig. 2b, for whom the alerts triggered 19 
d before and on the COVID-19 diagnosis date, respectively. For the 
Fitbit example, only the NightSignal algorithm raises consecutive 
COVID-19-related alerts because the other two algorithms required 
more baseline data.

A summary of alert signals for all pre-symptomatic and asymp-
tomatic cases is shown in Fig. 3. To increase detection power, we 
included the results from 50 retrospective cases where individuals 
tested positive before study enrollment, as well as 34 cases where 
individuals tested positive after enrollment (results were similar 
among the two groups (Extended Data Fig. 2). Of these, 49 were 

Fitbit users and 35 were Apple Watch users. Owing to the unknown 
virus exposure time, we cannot define the precise infectious period 
for participants who tested positive for COVID-19. Therefore, for 
the participants who tested positive for COVID-19, we defined 
true positives (TPs) as the number of cases that received red alerts 
from the algorithm before or at COVID-19 symptom onset (for 
pre-symptomatic cases) or diagnosis date (for asymptomatic cases) 
with respect to the infection detection window (that is, 21 d before 
the symptom onset for symptomatic cases or diagnosis date for 
asymptomatic cases). We defined false negatives (FNs) as the num-
ber of participants who did not receive any alert within the same 
infection detection window. For the participants who tested nega-
tive for COVID-19 as well as untested participants, we defined true 
negatives (TNs) as the number of green alerts that were correctly 
sent to these participants during non-COVID-19 periods (that is, 
21 d before a negative test result for individuals who tested negative 
for COVID-19, the entire time frame for untested participants and 
days before the infection detection window for COVID-19-positive 
cases). We also defined FPs as the number of red alerts that were 
incorrectly sent to these participants during the above-mentioned 
non-COVID-19 periods. Of the 84 participants who tested positive 
for COVID-19 (66 symptomatic and 18 asymptomatic), 67 received 
NightSignal alerts at or before symptom onset (for pre-symptomatic 
cases) or diagnosis date (for asymptomatic cases) for a sensitiv-
ity (TP rate) of 80% (Fig. 3a,b). The number was similar for Fitbit 
(77%) and Apple Watch (83%). For pre-symptomatic cases, an addi-
tional five cases received alerts within 21 d after symptom onset, 
and eight cases did not yield any NightSignal alerts during the infec-
tion period (−21 d to +21 d around the onset of symptoms). We 
note that the lack of sufficient wearable data might have been a rea-
son for some of these missed cases.

Unlike the NightSignal algorithm, which does not require 
high-resolution data and thus functions on different devices with 
different resolutions (for example, Fitbit and Apple Watch), the 
online RHRAD and CuSum algorithms function only on Fitbit data. 
For the case of Fitbit, which had hourly data, we were able to ana-
lyze the sensitivity of the online RHRAD and CuSum algorithms; 
these were found to be 29/42 (69%) and 29/40 (72%), respectively. 
To measure the performance of the algorithms on participants who 
tested negative for COVID-19 as well as untested participants, the 
specificity (TN rate) of the algorithms defined as TN/(TN + FP) 
is as follows: NightSignal 87,124/(87,124 + 12,186) = 87.7%; online 
RHRAD 57,108/(57,108 + 7,971) = 87.7%; and online CuSum 
35,451/(35,451 + 6,889) = 83.7%. In addition to these three algo-
rithms, we also retrospectively benchmarked the NightSignal algo-
rithm against the Isolation Forest anomaly detection algorithm, 
which is commonly used to detect anomalies in the data16. A detailed 
summary of performance comparison is shown in Supplementary 
Table 2. The Night Signal algorithm performed favorably compared 
to the Isolation Forest method.

To determine the FP (non-COVID-19) rate, in addition to the 
above population-alert-based FP and TN, we calculated the speci-
ficity in an individual-based analysis where we report the average 
of TN rates across participants. Similarly, we also report the FP rate 
for the COVID-19-positive population for the period before their 
COVID-19 detection window. As described below, these values are 
with respect to COVID-19 detection and other biologically relevant 

Fig. 2 | Examples of COVID-19 real-time pre-symptomatic and asymptomatic detection. a, Pe-symptomatic detection for participants who tested 

positive for SARS-CoV-2 using a Fitbit (top) and an Apple Watch (bottom). For the participant using a Fitbit, the panels show data derived using the online 

NightSignal, online RHRAD and online CuSum algorithms. Alerts generated by the NightSignal algorithm initiated 3 d before symptom onset and persisted 

for the next 15 d. For the participant using an Apple Watch, the panel shows data derived using the online NightSignal algorithm. Alerts appeared 10 d 

before symptom onset and continued until 10 d after that. b, Asymptomatic detection for participants who tested positive for SARS-CoV-2 using an Apple 

Watch (top) or a Fitbit (bottom). For the participant using an Apple Watch, the panel shows data derived using the online NightSignal algorithm. For the 

participant using a Fitbit, the panels show data derived using the online NightSignal, online RHRAD and online CuSum algorithms.
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1.09 for the remainder. Thus, COVID-19-positives have a higher 
mean alert rate.

To examine the alerting period relative to symptom onset, we 
calculated the scores of red alerts based on a cumulative scoring 
system (Methods) and plotted the distribution with respect to 
the period of time centered around symptom onset (Fig. 3c and 
Methods). Across the 66 symptomatic participants, we observed 
that the maximum number of clustered alerts occur in a window of 
−4 d to +11 d around symptom onset.

Symptoms and activities raise RHR signals. A wide variety of 
symptoms are associated with COVID-19 (refs. 17,18). To examine 
illness progression, we aggregated symptoms by both severity and 
number of individuals reporting across 21 d relative to symptom 
onset (Fig. 4a). Consistent with the literature19,20, most symptoms 
were evident in the first 7–8 d of illness (fatigue, headache and 
feeling ill), although fatigue often continued well after symptom 
onset. Notably, fatigue was the most commonly reported symptom, 
whereas loss of smell or taste seem to be the highest in terms of 
severity. An example of an individual with many symptoms, some 
which persisted for 3 or more weeks, is shown in Fig. 4b.

We examined the red alert clusters (two or more consecutive red 
alert days) annotated by participants who tested positive for COVID-
19 vis-a-vis those annotated by participants who tested negative for 
COVID-19. The distribution of symptoms and activities across the 

clusters was quite different depending on COVID-19 diagnosis (Fig. 
4c). Symptoms such as fatigue and poor sleep were generally present 
for both COVID-19-positive and COVID-negative cases, but aches 
and pains, headaches, cough and feeling ill were less frequent in the 
COVID-19-negative cases. Stress, intense exercise and alcohol con-
sumption were activities most commonly associated with red alerts 
in individuals with COVID-19-negative diagnoses. Furthermore, 
the mean duration of such annotated red alert clusters was much 
higher (6.2 d) for individuals who tested positive for COVID-19 
than individuals who tested negative for COVID-19 negatives (3.5 
d) and untested individuals (3.7 d).

Examples of the alerts and symptoms signals are shown lon-
gitudinally from a COVID-19-positive case (Fig. 5a), a COVID-
19-negative case (Fig. 5b), a diagnosed Mycoplasma pneumoniae 
infection (Fig. 5c), individuals annotating stress or work stress 
(Fig. 5d,e), repeated alcohol consumption (Fig. 5f) and extended 
altitude change (Fig. 5g). These results indicate that other events 
can be attributed to red alerts when surveys are regularly reported. 
In many of these cases (for example, alcohol, altitude or other 
stresses), these events are easy for the users to contextualize. It is 
also important to note that the RHR elevation during the red alert 
cluster is noticeably higher for the COVID-19-positive case than for 
the COVID-19-negative and Mycoplasma cases. More examples of 
different categories (COVID-19-positive, COVID-19-negative and 
untested) are shown in Extended Data Fig. 6. Finally, as reported 
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Fig. 3 | Association of red alerts with COVID-19 symptoms and diagnosis. a, Association of the initiation of red alerts in the NightSignal algorithm 
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to a window of time centered around symptom onset (21 d before to 21 d after symptom onset). The NightSignal algorithm achieved pre-symptomatic 
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previously, we note that many non-COVID-19 alerts are evident 
over the winter holidays—more than other times of the year (a 
1.4-fold increase in red alerts; Extended Data Fig. 8). In this study, 

this increase was evident during the pandemic, whereas this was 
noted before the pandemic in our previous study7, indicating that 
these events occur independent of the pandemic. It is possible that 
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these holiday-associated events are due to increased stress, alcohol 
consumption and/or travel.

COVID-19 vaccination often yields real-time alerts. There is con-
siderable interest in understanding how response to vaccination 
compares to actual infections; wearable data provide an opportu-
nity to investigate physiological responses to vaccination in the real 
world. On 11 December 2020 and 18 December 2020, the US Food 
and Drug Administration issued the first emergency use authori-
zation for the Pfizer-BioNTech and Moderna COVID-19 vaccines, 
respectively21,22. These randomized vaccine clinical trials showed 
94–95% efficacy in preventing COVID-19 illness. Overall, local-
ized side effects (for example, aches and rash) after vaccination have 
been shown to be mild; however, moderate-to-severe systemic side 
effects, such as fatigue and headache, were reported by some par-
ticipants22 and provide an opportunity to examine the ability of our 
algorithms to detect COVID-19 vaccination-related events.

In early January 2021, we added COVID-19 vaccination sur-
veys to the study app, MyPHD. As expected, alerts were trig-
gered one to several days after vaccination in many participants. 
Three examples of the possible effects of vaccination detected by 
the NightSignal algorithm and the related symptoms are shown 
in Fig. 6a. As shown in these longitudinal examples, vaccina-
tion can trigger the alerts after both doses or after only one dose; 
however, in some cases, RHR overnight might increase only for 
a short period (for example, one night), and, hence, no alert is 
raised. To determine the effect of vaccination on RHR overnight, 
we analyzed the average RHR overnight for 5 d before and after 
the vaccination date. Interestingly, we observed that, for the first 
dose, the maximum RHR overnight occurred the night of the vac-
cination in the case of the Pfizer-BioNTech vaccine (an increase 
was not evident for Moderna); for the second dose, it occurred 
the first or second night after vaccination for the Moderna and 
Pfizer-BioNTech vaccines, respectively (46% in Moderna and 54% in  
Pfizer-BioNTech; Fig. 6b).

The symptoms reported for 1 week after vaccination were 
recorded from the surveys. After the first dose, the most frequently 
occurring symptoms with either vaccine are fatigue, poor sleep, 
aches and pain. After the second dose, fatigue, headache, aches and 
pain top the list. There are also some striking differences between 
Pfizer-BioNTech and Moderna. In the case of Pfizer-BioNTech, 
fever is reported after either dose, whereas, for Moderna, fever was 
reported less frequently after the first dose, but almost 60% of the 
participants reported a fever after the second dose. The distribu-
tion of symptoms reported and alerts received for 1 week after the 
first and second dose of COVID-19 vaccines is shown in Fig. 6c. 
Symptoms and alerts show similar trends, with the maximum num-
ber of alerts occurring in the first or second night after the vac-
cination. Overall, these results show the presence of symptoms 
associated with vaccination, particularly the second dose, and that 
the effects of vaccination are readily detected using a smartwatch.

Discussion
Here we introduce the first prospective, real-time physiological 
stress detection and alerting system that can detect early-onset  
illness using a smartwatch. It detects COVID-19 at or before symp-

toms in approximately 80% of the symptomatic cases and even 
identifies asymptomatic cases; this is the first time, to our knowl-
edge, that asymptomatic detection has been shown for COVID-19, 
although it has been reported for other infections6. The actual num-
ber of asymptomatic cases is difficult to judge because most such 
cases are likely not tested with RT–PCR; nonetheless, we found that 
14 of 18 asymptomatic cases had alerts near the test date (within 21 
d before the diagnosis date). Detection results were similar for Fitbit 
and Apple Watch. In this study, medical recommendations were not 
provided to participants, although implementation in future studies 
might allow this. Alerts were generated sufficiently early—a median 
of 3 d before symptom onset for COVID-19 cases—to enable effec-
tive early self-isolation and testing.

Many of the alert-generating events detected in this study were 
not associated with COVID-19. Most of the annotated alerts can be 
attributed to other events, such as poor sleep, stress, alcohol con-
sumption, intense exercise, travel or other activities. In many of 
these cases, the alerting events would be easy to self-contextualize 
(intense exercise, alcohol consumption and travel), and the par-
ticipants would be unlikely to take action. In other cases, such as 
COVID-19-negative diagnoses with symptomatic illness, follow-up 
testing would be expected to be valuable.

From a survey of all participants who received alerts, 73% found 
that the frequency of red alerts was acceptable, and they usually 
could link the alerts to abnormal events (Supplementary Table 4). 
They did not experience alarm fatigue for the relative short duration 
of this study (less than 1 year). In the future, we plan to allow users 
to set the sensitivity threshold. Thus, for example, healthcare work-
ers might choose a higher frequency for early detection, whereas 
others might choose a lower frequency.

The large number of unannotated alerts might be due to (1) fail-
ure to annotate an alert, (2) asymptomatic infections or (3) other 
stressors. Because stress can trigger increases in RHR, which is a 
major feature of our detection algorithms, this approach can poten-
tially be used to monitor mental health as well as physical health. In 
addition, due to the lightweight feature of the proposed algorithm, 
the analysis of data from the smartwatch can be performed directly 
on the user’s phone, thereby substantially reducing the cost of the 
back-end systems’ operation and maintenance.

It is unclear why COVID-19 is not detected in all cases. Some of 
these individuals have an unstable baseline (Methods), and, for oth-
ers, the abnormal signals deviating from the baseline are not large 
enough to generate a signal. The inclusion of higher-resolution 
data and/or other data types, such as heart rate variability, respira-
tion rate, skin temperature, SpO2 changes, galvanic stress response 
or other physiological features, are expected to improve detection 
performance for both the number of events and the earliest detec-
tion time. Such data will likely help distinguish the COVID-19 cases 
from other non-COVID-19 events, such as pathogenic infections, 
stressors, alcohol consumption or other activities. Failure to detect 
COVID-19 can also occur owing to missing data. Participants did 
not wear the watches all the time, especially during sleep, when 
watches are often charged (especially in the case of the Apple Watch, 
which requires a longer charging time). We expect that this work 
will provide useful insights into improvement of smartwatches for 
health tracking.

Fig. 5 | Association between RHR elevation with symptoms and activities. a, Example of a SARS-CoV-2-positive case. Alerts began before symptom onset 

and continued until the diagnosis date. Elevated RHR was associated with severe fatigue, fever and headache. b, Example of a SARS-CoV-2-negative case. 

Even though alerts were present throughout the symptom period, the magnitude of RHR elevation is noticeably lower compared to the SARS-CoV-2-positive 

case in a. c, Example of alerts associated with M. pneumonia infection. On the 4th day after symptom onset, the participant received a negative test for 

SARS-CoV-2. M. pneumonia was detected on the 8th day after symptom onset, and both symptoms and alerts were receded on the 14th day after symptom 

onset (5 d after antibiotic therapy). d, e, Examples illustrating associations of stress, poor sleep and mood change with the occurrence of alerts in the 

individuals who tested negative for SARS-CoV-2. f, Example illustrating the association between repeated alcohol consumption and alerts in an individual 

who tested negative for SARS-CoV-2. g, Example illustrating extended altitude change and alerts in an individual who tested negative for SARS-CoV-2.
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Notably, classical methods for illness detection have generally 
relied on resting oral or skin temperature and comparison of an 
individual to a population average instead of their individual base-

line. Many COVID-19 infections do not appear to cause a fever. 
Moreover, skin temperature is often measured using inaccurate 
devices, such as infrared devices, which are influenced by external 
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temperatures and, thus, might not be the optimal method for infec-
tion detection. RHR and other longitudinal physiological measures 
might be valuable in conjunction with temperature measurements 
for early and specific disease detection. We previously found that 
Lyme disease can be detected pre-symptomatically using a smart-
watch and pulse oximeter6, and here we show that Mycoplasma 
infection can be also identified (albeit not pre-symptomatically 
in this particular case). With continued development, wearable 
platforms, including those that use a variety of physiological 
parameters, can be used as a general method to monitor infec-
tious diseases, chronic inflammation-related flares and other 
health-related signals to improve healthcare at both the personal 
and population levels. Consequently, the measurements described 
and data generated can enable global monitoring for future pan-
demic outbreaks.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41591-021-01593-2.

Received: 11 June 2021; Accepted: 27 October 2021;  
Published online: 29 November 2021

References
 1. Lauer, StephenA. et al. Ve incubation period of coronavirus disease 2019 

(COVID-19) from publicly reported confrmed cases: estimation and 
application. Ann. Intern. Med. 172, 5773582 (2020).

P
7

7
3

5
4

2
 -

 F
it
b

it
 -

 P
fi
z
e

r
P

2
0

0
1

0
0

 -
 F

it
b

it
 -

 M
o

d
e

rn
a

P
6

7
4

5
5

7
 -

 F
it
b

it
 -

 P
fi
z
e

r

a
Headache

Fatigue and fever

Fever, headache, chills and body aches

RednessRedness

Vac. shotVac. shot

Vac. shot

Vac. shot Vac. shot

Body achesBody aches

b

c
R

e
s
ti
n

g
 h

e
a

rt
 r

a
te

o
v
e

rn
ig

h
t 

R
e

s
ti
n

g
 h

e
a

rt
 r

a
te

o
v
e

rn
ig

h
t 

R
e

s
ti
n

g
 h

e
a

rt
 r

a
te

o
v
e

rn
ig

h
t 

Vac. shot

N
u

m
b

e
r 

o
f 

p
a

rt
ic

ip
a

n
ts

 

Moderna

dose 1

Pfizer-BioNTech

dose 1

Moderna

dose 2

Pfizer-BioNTech

dose 2

Reporting symptoms

D
ay

 0

Days relative to vaccination day Days relative to vaccination day Days relative to vaccination day Days relative to vaccination day

N
ig

h
ts

 w
it
h

 m
a

x
 a

v
g

R
H

R
 o

v
e

rn
ig

h
t 

D
ay

 1

D
ay

 2

D
ay

 3

D
ay

 4

D
ay

 5

D
ay

 6

D
ay

 7

0

4

8

0

4

8

16

20

0

4

8

16

20

0

4

8

16

20

N
u

m
b

e
r 

o
f

p
a

rt
ic

ip
a

n
ts

  
N

u
m

b
e

r 
o

f 
p

a
rt

ic
ip

a
n

ts
 

N
u

m
b

e
r 

o
f 

p
a

rt
ic

ip
a

n
ts

 

Receiving alerts

Moderna dose 1

Pfizer-BioNTech dose 1

Pfizer-BioNTech dose 2

Moderna dose 2

–5 –4 –3 –2 –1 +1 +2 +3 +4 +50 –5 –4 –3 –2 –1 +1 +2 +3 +4 +50 –5 –4 –3 –2 –1 +1 +2 +3 +4 +50 –5 –4 –3 –2 –1 +1 +2 +3 +4 +50

55

50

55

50

2
0
2
8
-0

4
-1

4

2
0
2
8
-0

4
-1

5

2
0
2
8
-0

4
-1

6

2
0
2
8
-0

4
-1

7

2
0
2
8
-0

4
-1

8

2
0
2
8
-0

4
-1

9

2
0
2
8
-0

4
-2

0

2
0
2
8
-0

4
-2

1

2
0
2
8
-0

4
-2

2

2
0
2
8
-0

4
-2

3

2
0
2
8
-0

4
-2

4

2
0
2
8
-0

4
-2

5

2
0
2
8
-0

4
-2

6

2
0
2
8
-0

4
-2

7

2
0
2
8
-0

4
-2

8

2
0
2
8
-0

4
-2

9

2
0
2
8
-0

4
-3

0

2
0
2
8
-0

5
-0

1

2
0
2
8
-0

5
-0

2

2
0
2
8
-0

5
-0

3

2
0
2
8
-0

5
-0

4

2
0
2
8
-0

5
-0

5

2
0
2
8
-0

5
-0

6

2
0
2
8
-0

5
-0

7

2
0
2
8
-0

5
-0

8

2
0
2
8
-0

5
-0

9

2
0
2
8
-0

5
-1

0

2
0
2
8
-0

5
-1

1

2
0
2
8
-0

5
-1

2

2
0
2
8
-0

5
-1

3

2
0
2
8
-0

5
-1

4

2
0
2
8
-0

5
-1

5

2
0
2
8
-0

5
-1

6

2
0
2
8
-0

5
-1

7

65

60

2
0

2
7

-0
4

-0
8

2
0

2
7

-0
4

-0
9

2
0

2
7

-0
4

-1
0

2
0

2
7

-0
4

-1
1

2
0

2
7

-0
4

-1
2

2
0

2
7

-0
4

-1
3

2
0

2
7

-0
4

-1
4

2
0

2
7

-0
4

-1
5

2
0

2
7

-0
4

-1
6

2
0

2
7

-0
4

-1
7

2
0

2
7

-0
4

-1
8

2
0

2
7

-0
4

-1
9

2
0

2
7

-0
4

-2
0

2
0

2
7

-0
4

-2
1

2
0

2
7

-0
4

-2
2

2
0

2
7

-0
4

-2
3

2
0

2
7

-0
4

-2
4

2
0

2
7

-0
4

-2
5

2
0

2
7

-0
4

-2
6

2
0

2
7

-0
4

-2
7

2
0

2
7

-0
4

-2
8

2
0

2
7

-0
4

-2
9

2
0

2
7

-0
4

-3
0

2
0

2
7

-0
5

-0
1

2
0

2
7

-0
5

-0
2

2
0

2
7

-0
5

-0
3

2
0

2
7

-0
5

-0
4

2
0

2
7

-0
5

-0
5

2
0

2
7

-0
5

-0
6

2
0

2
7

-0
5

-0
7

2
0

2
7

-0
5

-0
8

2
0

2
7

-0
5

-0
9

2
0

2
7

-0
5

-1
0

2
0

2
7

-0
5

-1
1

2
0

2
7

-0
5

-1
2

2
0

2
7

-0
5

-1
3

2
0

2
7

-0
5

-1
4

2
0

2
7

-0
5

-1
5

2
0

2
7

-0
5

-1
6

2
0

2
7

-0
5

-1
7

2
0

2
7

-0
5

-1
8

2
0

2
7

-0
5

-1
9

2
0

2
7

-0
5

-2
0

Day

Day

Day

2
0

2
9

-0
3

-2
1

2
0

2
9

-0
3

-2
2

2
0

2
9

-0
3

-2
3

2
0

2
9

-0
3

-2
4

2
0

2
9

-0
3

-2
5

2
0

2
9

-0
3

-2
6

2
0

2
9

-0
3

-2
7

2
0

2
9

-0
3

-2
8

2
0

2
9

-0
3

-2
9

2
0

2
9

-0
3

-3
0

2
0

2
9

-0
3

-3
1

2
0

2
9

-0
4

-0
1

2
0

2
9

-0
4

-0
2

2
0

2
9

-0
4

-0
3

2
0

2
9

-0
4

-0
4

2
0

2
9

-0
4

-0
5

2
0

2
9

-0
4

-0
6

2
0

2
9

-0
4

-0
7

2
0

2
9

-0
4

-0
8

2
0

2
9

-0
4

-0
9

2
0

2
9

-0
4

-1
0

2
0

2
9

-0
4

-1
1

2
0

2
9

-0
4

-1
2

2
0

2
9

-0
4

-1
3

2
0

2
9

-0
4

-1
4

2
0

2
9

-0
4

-1
5

2
0

2
9

-0
4

-1
6

2
0

2
9

-0
4

-1
7

2
0

2
9

-0
4

-1
8

2
0

2
9

-0
4

-1
9

2
0

2
9

-0
4

-2
0

2
0

2
9

-0
4

-2
1

2
0

2
9

-0
4

-2
2

2
0

2
9

-0
4

-2
3

2
0

2
9

-0
4

-2
4

2
0

2
9

-0
4

-2
5

2
0

2
9

-0
4

-2
6

2
0

2
9

-0
4

-2
7

2
0

2
9

-0
4

-2
8

2
0

2
9

-0
4

-2
9

2
0

2
9

-0
4

-3
0

Fig. 6 | Association of red alerts with COVID-19 vaccination. a, Examples of the association of COVID-19 vaccination with alerts from the  

online NightSignal algorithm. b, Effects of COVID-19 vaccination on average RHR overnight in the cases of (from left to right) the first dose of  

the Moderna vaccine, the first dose of the Pfizer-BioNTech vaccine, the second dose of the Moderna vaccine and the second dose of the 

Pfizer-BioNTech vaccine. c, Distribution of symptoms reported and alerts received for 1 week after the first and second doses of the Pfizer-BioNTech 

and Moderna vaccines.
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Methods
Study participation. In total, 3,318 adult individuals 18380 years of age were 
recruited for this study under protocol number 57022, approved by the Stanford 
University IRB. Participants were invited by social media, news and outreach to 
participants in previous studies. Participants registered using the REDCap survey 
system and were then asked to install the study app, called MyPHD (available 
for iOS and Android devices). Ve app transfers their wearable data (Fitbit via 
Fitbit secure OAuth 2.0 API; Apple Watch and Garmin via HealthKit repository 
and other HealthKit and Google Fit-compatible devices) to a cloud platform for 
the Stanford research team to perform analysis. Next, the NightSignal algorithm 
generated alerts (green and red) in real time, which were sent to the participants. 
Upon receiving alerts on the app, participants were asked to annotate events with 
surveys covering symptoms, activities, diagnoses, medications and vaccination. 
Alerts are visualized via a calendar, and participants annotate the alert for each day 
using the surveys described (Fig. 2, top).

In general, we expect that alerts can lead to reporting bias because participants 
who do not get alerts might not annotate events. However, we hope that 
visualizing alerts using a calendar (instead of notification-based alerts) encourages 
participants to annotate any day regardless of the alert color (green/normal or 
red/abnormal alerts). Indeed, some participants annotated their alerts daily. All 
participants who had at least 7 d of wearable data (NightSignal) received alerts 
(2,117 in total). The number of individuals who received alerts (2,117) was less 
than the number who enrolled (3,318). This might be due to participants who did 
not install the study app or had difficulties using it (for example, perhaps due to 
issues of language barriers) or had fewer than 7 d of data.

To evaluate the performance of the following algorithms, for COVID-
19-positive cases, because we cannot precisely define the correct or incorrect 
alerts for each individual due to the unknown virus exposure time, we define an 
infection detection window as 21 d before the symptom onset for symptomatic 
cases or diagnosis date for asymptomatic cases and, hence, calculate the TPs and 
FNs at individual level based on the above infection detection window instead of 
an alert-based analysis.

NightSignal. A previous study that investigated whether personal sensor data 
can help with COVID-19 detection showed that the daily RHR on its own does 
not allow substantial discrimination between participants who tested positive for 
COVID-19 and participants who tested negative for COVID-19; however, it has 
been shown that sleep and activity data have a considerable difference between the 
two groups8. We observed substantial performance improvement when overnight 
RHR approach is used compared to daily RHR, because overnight RHR avoids 
short-range non-infection events such as stress or intense exercise during the day 
(Extended Data Fig. 7); thus, we focused on nighttime signals.

Data pre-processing. The pre-processing stage provides consistency between 
different sources (that is, Fitbit and Apple Watch) and handles missing data. The 
resolution of the retrieved distinct raw heart rates and steps data from Fitbit and 
Apple Watch differs (Extended Data Fig. 4). To calculate the RHR overnight 
for different devices, first we consider the heart rate records where steps are 
zero and then aggregate the RHR values by calculating the average RHR during 
nighttime (that is, 24:00 to 7:00). In Extended Data Fig. 5a, we show that, for most 
participants (over 80%), median of average RHR overnight is a stable and reliable 
baseline, because, only after seven nights, it hits a baseline close to the baseline over 
3 months. In the case of missing nights, we impute the values for only up to one 
night by calculating the average RHRs from the night before and immediately after 
the missed night.

Real-time alerting. The NightSignal algorithm triggers the alerts based on the 
FSM shown in Extended Data Fig. 3. An FSM is defined by a list of its states, its 
initial state and the inputs (symbols) that trigger each transition and can produce 
an output based on a given input and/or a state. The NightSignal state machine, 
as depicted in Extended Data Fig. 3, contains six states and three outputs/colors 
(S0, S1 and S2 labeled with green alert, S3 and S4 labeled with yellow alert and S5 
labeled with red alert) and three symbols as follows: (a) Ai < Mi + 3: for night i, the 
average RHR overnight is fewer than 3 beats per minute (b.p.m.) above the baseline 
(median of averages of RHR overnight for all nights up to night i). To keep the FP 
rate sufficiently low to avoid alarm fatigue, as well as achieving a high sensitivity 
(Extended Data Fig. 9), the threshold of 3 was chosen, because, for all participants, 
the median of fluctuation of medians of average RHR overnight over 3 months 
was only 3 b.p.m. (Extended Data Fig. 5b,c); (b) Ai = Mi + 3: for night i, the average 
RHR overnight is equal to 3 b.p.m. above the baseline; and (c) Ai > =Mi + 4: for 
night i, the average RHR overnight is greater than or equal to 4 b.p.m. above the 
baseline. Transition starts from initial state S0 (green alert), and the transition 
function takes one of the above six states and one of the above three symbols and 
returns a state with its corresponding label (alert).

RHRAD. The current version of the AnomalyDetect online model is built based on 
the previous offline model from our previous study7. It uses RHR data and splits it 
into training data by taking the first 744 h as a baseline (1 month) and test data by 
taking the next 1-h data and uses a 1-h sliding window to find anomalies in the test 

data in 8real time9 with a 0.02 threshold. If the anomalies occur frequently within 
24 h, it will automatically generate either warning (yellow) or serious (red) alerts 
every 24 h. Red alerts were set if the anomalies occurred continuously for more 
than 5 h within each 24-h period; yellow alerts were set if the anomalies occurred 
for 1 h or continuously for fewer than 5 h; and green alerts were set if there were no 
anomalies.

CuSum. We extended the CuSum online detection algorithm proposed in our 
previous work7 into the context of the real-time alerting system. Our previous work 
focused on the initial alarm for the purpose of early detection. For the setting of 
the alarm event, the trend of CuSum statistics was tracked using a 1-h resolution; 
the status of CuSum was evaluated every 12 h; and the alarm was reported each day.

As calculated in Mishra et al.7, the baseline was constructed from a 28-d 
sliding window in a personalized manner. If the data were missing for more than 
14 successive days, the CuSum alerting system was restarted. The alerting system 
proceeded through chunks of data (56 d), and then the results from these different 
chunks were combined. Under the threshold of 95% quantile of CuSum statistics 
during the baseline, the difference of the standardized RHR residuals from the 
threshold was accumulated in each hour, and the zero-truncated positive difference 
was added to the stream of the CuSum statistics. When the CuSum statistics 
became significant for the first time compared to the statistics during the baseline 
(which serve as the null distribution), the initial alarm was triggered. After the 
initial alarm, the average CuSum statistics from each 12-h window were calculated, 
and the CuSum changed to a yellow status. If the CuSum statistics kept increasing 
in two successive 12-h intervals, a red status was recorded in the last 12-h period. 
If the CuSum statistics continued decreasing in two successive 12-h intervals, 
the status was turned back to green. In the case of all missing values in the 12-h 
intervals, the status was recorded as NA. The alarms were sent at 21:00 each day 
based on the latest recorded status.

Isolation Forest. Isolation Forest is an unsupervised anomaly-detection model 
based on decision trees. We used the ensemble.IsolationForest class from the 
scikit-learn package in Python23 to isolate the observations by processing the 
randomly sub-sampled data in a tree structure and return the anomaly score of 
each sample and find the extreme points as anomalies. Isolation Forest uses a key 
parameter as contamination that sets the percentage of points in the data to be 
anomalous. A higher contamination level is more likely to generate more anomalies 
(that is, potentially higher FPs). In Supplementary Table 2, we report the results for 
two contamination-level settings: 8auto9 and 80.0959. The value of 0.095 was chosen 
to have the same percentage of anomalies as in the NightSignal algorithm (that is, 
average of two alerts during a 21-d window for all COVID-19 positives, COVID-
19 negatives and untested groups). Pre-processing and other parameters, such as 
resampling and overnight window, are the same as in the NightSignal algorithm.

In Fig. 3c, the cumulative scores of alerts are calculated by the formula (1) 
below. Let D = {d1, d2, …, dn} be a set of days and R = {dk, dk+1, …, dK+m} be a set of 
days where consecutive k alerts have occurred, and then the associated alert score 
for each day in the set R is calibrated to the size of the set R (that is, m + 1). Note 
that the most clustered alerts appear around the symptom onset date.

Formula (1):
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Visualization. Algorithm results were visualized using the matplotlib package, 
version 3.1.0.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
De-identified raw heart rate and steps data used in this study can be downloaded 
at the following publicly available link: https://storage.googleapis.com/
gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.
zip. Source data are provided with this paper.

Code availability
Code for the algorithms used in this study are publicly available at:
NightSignal algorithm: https://github.com/StanfordBioinformatics/
wearable-infection
RHRAD algorithm: https://github.com/gireeshkbogu/AnomalyDetect/blob/
master/scripts/rhrad_online_24hr_alerts_v6.py
CuSum algorithm: https://github.com/mwgrassgreen/Alarm
Isolation Forest algorithm: https://github.com/StanfordBioinformatics/
wearable-infection/tree/main/isolationforest

References
 23. sklearn.ensemble.IsolationForest. https://scikit-learn.org/stable/modules/

generated/sklearn.ensemble.IsolationForest.html

NATURE MEDICINE | www.nature.com/naturemedicine

https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip
https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip
https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip
https://github.com/StanfordBioinformatics/wearable-infection
https://github.com/StanfordBioinformatics/wearable-infection
https://github.com/gireeshkbogu/AnomalyDetect/blob/master/scripts/rhrad_online_24hr_alerts_v6.py
https://github.com/gireeshkbogu/AnomalyDetect/blob/master/scripts/rhrad_online_24hr_alerts_v6.py
https://github.com/mwgrassgreen/Alarm
https://github.com/StanfordBioinformatics/wearable-infection/tree/main/isolationforest
https://github.com/StanfordBioinformatics/wearable-infection/tree/main/isolationforest
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
http://www.nature.com/naturemedicine


ARTICLES NATURE MEDICINE

 24. Quer, G., Gouda, P., Galarnyk, M., Topol, E. J. & Steinhubl, S. R. Inter- and 
intraindividual variability in daily resting heart rate and its associations with 
age, sex, sleep, BMI, and time of year: retrospective, longitudinal cohort study 
of 92,457 adults. PLoS ONE 15, e0227709 (2020).

Acknowledgements
This work was supported by NIH grants (1R01NR02010501 and 1S10OD023452-01) 

and gifts from the Flu Laboratory as well as departmental funding from the Stanford 

Genetics department. This study was supported by the Amazon Web Services Diagnostic 

Development Initiative. The Google Cloud Platform costs were covered by Google for 

Education academic research and COVID-19 grant awards. This research also received 

support through the generosity of Eric and Wendy Schmidt by recommendation of 

the Schmidt Futures program. We acknowledge the Stanford Genetics Bioinformatics 

Service Center for providing the gateway to the SCG cluster, Google Cloud Platform and 

Amazon Web Services for this research. The Stanford REDCap platform (http://redcap.

stanford.edu) was developed and operated by the Stanford Medicine Research IT team. 

The REDCap platform services at Stanford are subsidized by (1) the Stanford School of 

Medicine Research Office and (2) the National Center for Research Resources and the 

National Center for Advancing Translational Sciences, National Institutes of Health, 

through grant UL1 TR001085.

Author contributions
Study conception and design: M.P.S., A.B. and A.A. Project supervision: M.P.S. and A.B. 

IRB review and participant recruitment and coordination: A.C., E.H., O.D.-R., A.C., 

A.W.B., J.W.L., C.B., B.R., L.M. and M.P.S. e-consent system (REDCap) and participant 

guidance: A.W.B., P.K. and A.C. Wearable and survey data collection and processing: 

A.A., A.W.B., E.S.R. and A.B. Software engineering (MyPHD App): A.A., A.B., Q.W., 

K.C., R.B. and S.P. Algorithm development and data analysis: A.A., A.B., G.K.B., 

M.W. and E.S.R. Cloud-based real-time alerting system: A.A., A.B., A.A.A. and D.C. 

Manuscript preparation: A.A., G.K.B., M.W., E.S.R., A.W.B., V.K., X.L., A.B. and M.P.S. 

Manuscript review and editing: all co-authors. Funding: M.P.S., B.R., A.B. and A.A.

Competing interests
M.P.S is a co-founder and member of the scientific advisory board of Personalis, Qbio, 

January, SensOmics, Protos, Mirvie, NiMo, Onza and Oralome. He is also on the 

scientific advisory board of Danaher, Genapsys and Jupiter.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-021-01593-2.

Supplementary information The online version contains supplementary material 

available at https://doi.org/10.1038/s41591-021-01593-2.

Correspondence and requests for materials should be addressed to 

Amir Bahmani or Michael P. Snyder.

Peer review information Michael Basson was the primary editor on this article and 

managed its editorial process and peer review in collaboration with the rest of the editorial 

team. Nature Medicine thanks Cecilia Mascolo, Shuai Xu, Benjamin Glicksberg and the 

other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permissions information is available at www.nature.com/reprints.

NATURE MEDICINE | www.nature.com/naturemedicine

http://redcap.stanford.edu
http://redcap.stanford.edu
https://doi.org/10.1038/s41591-021-01593-2
https://doi.org/10.1038/s41591-021-01593-2
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


ARTICLESNATURE MEDICINE

Extended Data Fig. 1 | Wearable devices distribution. Of the 2,155 participants who had a smartwatch: 1,031 wore Fitbits, 970 wore Apple Watches, 98 

wore Garmin, and 56 had other devices. Note that we consider the device with the most amount of data as the main device in case of having more than 

one device.
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Extended Data Fig. 2 | Flow chart of participants. A flow chart over the participants in the study including the number of participants with sufficient 

wearable data in each category 4 in COVID-19 positive cases, if there are more than two days missing in a week before symptom onset (for the 

symptomatic cases) or more than a week missing data in 21 days before the diagnosis date (for the asymptomatic cases), we consider the case as 

insufficient data 4 and number of participants in each sub-category of COVID-19 positive cases: prospective/retrospective, Fitbit/Apple Watch, and 

symptomatic/asymptomatic. As shown in the figure, 66 participants were symptomatic and 18 were asymptomatic. 45 participants (5 asymptomatic) 

confirmed diagnosis of COVID-19 via written documentation or verbal confirmation of their test result.
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Extended Data Fig. 3 | Deterministic Finite State Machine in NightSignal algorithm. The state machine consists of six states, each labeled with an alert 

color and three symbols for transition between states based on the current average RHR overnight and the deviation level from the baseline (streaming 

median of averages of RHR overnight). For example, a red alert gets triggered if for two consecutive nights, the average RHR overnight is at least four bpm 

above the calculated baseline.
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Extended Data Fig. 4 | Comparing distribution of RHR overnight data in Fitbit vs. Apple Watch. To show the distribution of RHR data in Fitbit and Apple 

Watch, RHR overnight data points have been divided into 16 ranges (1-10, 10-20, etc.) and each bar depicts the total number of nights that falls into each 

group. Each participant is presented with a color. Note that for the majority of participants, for most of the nights, there are 300 to 500 RHR overnight 

data points (that is, almost minute resolution) in the case of Fitbit. However, the range differs considerably in Apple Watch; the reason is that Apple Watch 

takes heart rate and step counts readings with different resolutions based on the activities. Note that in the NightSignal algorithm, for each night, we use 

the RHR overnight data regardless of the amount of data. The reasons for not setting a threshold for the minimum amount of data points required are as 

follows: the first reason is that in most cases, even a very few data points are sufficient to get a proper average RHR overnight because we only consider 

HR records where the corresponding time interval (for example, few minutes) for step count is zero. The second reason for that is if we do so (for example, 

set the threshold to 40 data points), we will miss a significant number of nights (for example, first four bars). It is important to note that there were 15 

participants who had data collected from both Fitbit and Apple Watch. With respect to the average RHR overnight that is used in NightSignal algorithm, 

except for one participant who had significant different values between the Fitbit and Apple Watch (one possible reason can be that the watch has been 

used by another person), for other 14 participants, the median delta between the Fitbit and Apple Watch data for joint nights (total of 1,006 nights) is 

only two bpm. Hence, despite the difference between the distribution of RHR overnight data points, there is no significant difference in the average RHR 

overnight point of view that is being used in the NightSignal algorithm between two devices. It is noteworthy to mention that unfortunately we did not 

have many COVID-19 positive cases with Garmin data to properly evaluate the algorithm for Garmin watches, and thus we did not include Garmin in our 

analysis.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Thresholds and parameters in the NightSignal algorithm. As we discussed previously, the NightSignal algorithm uses the 

streaming median of average RHR overnight as the baseline. We believe that it is a proper individual healthy baseline as we show that the fluctuation is 

insignificant and it usually deviates due to a long-term abnormal event (for example, infection, medication consumption, vaccination). (A) The minimum 

number of nights required to hit a baseline close to the baseline over three months (within)±)two bpm from the baseline - the reason behind choosing the 

threshold of two is that the baseline would still remain in the green zone) for the majority of participants. As depicted in the figure, for over 80% of the 

participants, the proper baseline was observed after only seven nights. (B) The range (max-min) of the medians of average RHR overnight during three 

months of data with the median value of only three bpm. Similarly, Quer et al. 24 studied the variability in individual resting heart rate and showed that 

most participants had a median weekly fluctuation in RHR of only three bpm. Given the fact that we only consider RHR overnight, the median fluctuation 

in RHR overnight is still three bpm even for a duration of three months. (C) The corresponding distribution of the medians of average RHR overnight over 

three months indicates a standard deviation that is very low (0.8).

NATURE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ARTICLESNATURE MEDICINE

Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Additional examples of alerts for COVID-19 positive, COVID-19 negative, and untested participants. (a) Signals for a COVID-19 

positive case with mild and short-lasting symptoms. Note that this participant received zero red alerts during a healthy period of over seven months and 

only received two red alerts starting the night of the symptom onset date (the only period where the RHR overnight is much higher than baseline for three 

consecutive nights). This example shows missing only two days of data can lead to missing a whole cluster of COVID-19 related alerts. (b) A COVID-

19 positive case shows that triggering alerts based on deviations in two nights does not lead to delayed alert. (c) and (d) Both cases show participants 

who reported confirmed diagnosis of COVID-19 but with consecutive negative tests after the positive test, seven and two negative tests, respectively. In 

both cases, the NightSignal algorithm correctly did not trigger any red alert. (e) An example of a sick participant with moderate symptoms followed by a 

COVID-19 negative test. Note that RHR overnight period began to increase three nights before the symptoms developed. (f) An example of an untested 

participant who reported no illness or symptoms of any kind during the study (only some poor sleep and alcohol consumption points for P174112). This 

participant received no red alerts for over a three months healthy period, however alcohol consumption affects the RHR overnight but the impact is either 

only for one night or not severe enough to trigger a red alert. (g) This example indicates the impact of lifestyle changes (here weekdays vs. weekends) on 

RHR overnight in a COVID-19 positive participant. Clearly, repeated patterns occur before COVID-19 positive test and reoccurrence of the similar patterns 

begin two weeks after that (likely due to recovery from the illness and starting the same lifestyle).
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Extended Data Fig. 7 | Impact of other non-infectious events on NightSignal alerts (all day vs. overnight). Examples of the impact of different events (for 

example, home and work stress, travel, and intense exercise) on the alerts based on two configurations: all day vs. overnight. Comparing the plots for each 

participant shows that the NightSignal algorithm reduces possible false positives due to non-infectious events by analyzing RHR overnight.
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Extended Data Fig. 8 | Impact of winter holidays on NightSignal alerts. As shown previously, there is a noticeable increase in the number of alerts during 

winter holidays 4 particularly late December and beginning of January 4 (8holiday bump9) due to the higher rate of travel, alcohol, entertainment, stress, 

and illness compared to other times of the year.
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Extended Data Fig. 9 | Sensitivity and false positive rate changes in the NightSignal algorithm for different thresholds. Under different thresholds, we 

report the sensitivity and false positive rate for the NightSignal algorithm. For the sake of clarity, it is important to mention that for anomaly detection 

problems like the one addressed in this study, having a perfect ground truth is very hard (here, due to the facts that the exact time of virus exposure is 

unknown in majority of the cases and also other non-infectious events can trigger the alerts - usually smaller clusters). Hence, defining the exact COVID-

19 illness period and consequently correct alert is difficult. In other words, all the alerts within the assumed detection window might not necessarily be 

related to COVID-19, so a higher sensitivity does not by itself mean a greater accurate detection rate. Therefore, besides the aforementioned reasons in 

Supplementary Fig. 5, to keep the false positive rate sufficiently low, as well as achieving a high sensitivity, we use the threshold of three for the warning 

(yellow) level. Moreover, this threshold can be easily configured by each individual for a more personalized and precise analysis. This modification will 

require IRB approval and is outside of the scope of the present study and is thus part of a future work.
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