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Real-time alerting system for COVID-19 and other
stress events using wearable data
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Early detection of infectious diseases is crucial for reducing transmission and facilitating early intervention. In this study, we
built a real-time smartwatch-based alerting system that detects aberrant physiological and activity signals (heart rates and
steps) associated with the onset of early infection and implemented this system in a prospective study. In a cohort of 3,318 par-
ticipants, of whom 84 were infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this system generated
alerts for pre-symptomatic and asymptomatic SARS-CoV-2 infection in 67 (80%) of the infected individuals. Pre-symptomatic
signals were observed at a median of 3 days before symptom onset. Examination of detailed survey responses provided by the
participants revealed that other respiratory infections as well as events not associated with infection, such as stress, alcohol
consumption and travel, could also trigger alerts, albeit at a much lower mean frequency (1.15 alert days per person compared
to 3.42 alert days per person for coronavirus disease 2019 cases). Thus, analysis of smartwatch signals by an online detection
algorithm provides advance warning of SARS-CoV-2 infection in a high percentage of cases. This study shows that a real-time
alerting system can be used for early detection of infection and other stressors and employed on an open-source platform that

is scalable to millions of users.

sion and enable early intervention. Traditionally, detection

has been limited to symptom onset when physiological dis-
turbances often warrant medical attention and disease transmis-
sion might already have occurred. For respiratory viral infections,
symptom onset is typically several days to over 1 week after infec-
tion, whereas asymptomatic infections are not likely to be detected
atall'”. When a symptom onset does occur, it is usually followed up
by either an oral or skin temperature measurement or more defini-
tively diagnosed using a biochemical test, such as antigen detection
or polymerase chain reaction (PCR)*".

Wearable devices such as smartwatches have the potential to
monitor individuals continuously in real time and thus provide
early detection of respiratory illnesses and other infections®''.
These devices can collect different types of physiological data, such
as heart rate, step counts, sleep and temperature. Recent studies
have shown that wearables can be used to identify early signs of
infectious diseases such as Lyme disease® or respiratory viral infec-
tions, including coronavirus disease 2019 (COVID-19)"", and
might even permit pre-symptomatic detection®’. These respira-
tory viral infection studies have focused primarily on detection at
symptom onset and, in the case of pre-symptomatic detection, were
performed retrospectively. So far, the ability to prospectively detect
respiratory viral infections and other stress events has not been
examined, nor has a system been developed for performing this at

| arly detection of infectious diseases helps prevent transmis-

scale. An early detection approach using a monitoring and alert-
ing system can enable early self-isolation, treatment and effective
allocation of healthcare resources and provide an invaluable tool for
potentially containing pandemics.

In this study, we created, to our knowledge, the first large-scale,
real-time monitoring and alerting system for detecting abnormal
physiological events, including COVID-19 infection onset, using
agnostic algorithms across different types of smartwatches. We
designed a novel algorithm capable of detecting outlier measure-
ments associated with physiological stresses in real time, including
COVID-19 and other respiratory illnesses, and generating alerts
for the device wearer. For pre-symptomatic cases, we show that the
system identifies approximately 80% of COVID-19 illnesses at or
before the onset of symptoms. It also identifies asymptomatic cases
and signals resulting from other stressors, such as vaccination.
Associations between symptoms and activities with alerting signals
were also investigated.

Results

Study overview. We constructed a highly secure, real-time alerting
system for detecting abnormal periods of stress, such as viral infec-
tions, using wearable devices (Fig. la) and conducted a test study
approved by the Stanford University institutional review board (IRB)
(protocol no. 57022) and Data Risk Assessment (DRA no. 665). The
system involves participant enrollment through a secure REDCap'*
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Fig. 1| Study overview. a, Participants with a Fitbit and/or Apple Watch were asked to share their wearable and survey data using the study mobile

app MyPHD. The app securely transfers the de-identified data (heart rates, steps and survey events) to the back-end for real-time analysis. On the
back-end, three online infection detection algorithms were deployed, and the results from one of the algorithms (online NightSignal) were returned to the
participants using the app: red alerts indicate abnormal changes in overnight RHR; green alerts indicate normal overnight RHR. b, A real-world example of
real-time pre-symptomatic detection of COVID-19 using the online NightSignal algorithm for a participant using an Apple Watch. Alerts were triggered 2 d
before the symptom onset date and continued until 3 d after the diagnosis date.

e-consent system using the study app, called MyPHD'*". After con-
necting the smartwatch through the app, wearable data (heart rate,
step count and sleep analysis) and health information (for example,
surveys of illness, symptom, medication and vaccination) were col-
lected and securely transferred in real time to the cloud for further
analysis. Three online infection detection algorithms (NightSignal,
RHRAD and CuSum) were hosted on the cloud, and the results of
one of them, NightSignal, were made available to the participants
in the form of real-time alerts (that is, red or green alert per day;
an example of a signal associated with the alerts in an individual
who was positive for COVID-19 is shown in Fig. 1b). Participants
were expected to annotate the alerts using several surveys (COVID-
19 test, activities and symptoms). Medical recommendations (for
example, self-isolation and getting tested) were not allowed under
our IRB protocol.

We enrolled a total of 3,318 participants between 27 November
2020 and 20 July 2021, of whom 2,155 had wearable data. Of these,
1,031, 970 and 98 wore Fitbit, Apple Watch or Garmin watches,
respectively, and the remaining wore other devices (Extended Data
Fig. 1). During the study, 2,117 participants received daily real-time
alerts for physiological changes, and 2,122 participants filled in
at least one survey. Of all participants, 278 individuals reported
COVID-19-positive test results (84 were confirmed by written
documentation (62 individuals) or verbal confirmation of their test
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result (22 individuals)). Of those participants reporting COVID-
19-positive tests, 84 had sufficient wearable data around the time of
COVID-19 infection for alert signaling (49 Fitbit cases and 35 Apple
Watch cases) (Extended Data Fig. 2). Fifty of these cases were retro-
spective, whereby individuals tested positive before enrollment; in
34 cases, the individuals tested positive after enrollment.

We also analyzed wearable data for three other categories of par-
ticipants: (1) individuals who tested negative for COVID-19: 1,213
participants who reported a COVID-19-negative test and never
had a positive test (individuals who tested negative for COVID-
19 reported their diagnosis date via the COVID-19 survey in the
study app); (2) untested individuals: 1,825 participants without
any COVID-19 test report; and (3) vaccinated individuals: 189
participants who received the COVID-19 vaccine (Moderna or
Pfizer-BioNTech), of whom 182 were fully vaccinated (that is, both
doses) (Supplementary Table 1). COVID-19-positive, COVID-
19-negative and untested groups are distinct datasets. Vaccinated
individuals could be COVID-19-positive, COVID-19-negative or
untested.

Participants who received an alert were expected to provide a
description of their diagnosis, symptoms and activities during that
period. The above diagnoses included COVID-19, adenovirus and
influenza. The symptoms included cough, fever and headache as
well as severity (1—mild to 5—very severe). The activities included
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intense exercise, alcohol consumption, travel, stress and other life-
style factors that could alter physiological signals.

COVID-19 triggers real-time alerts. We used three independent
real-time alerting algorithms capable of detecting and tracking
physiological changes due to infections such as COVID-19. Two
algorithms, online RHRAD and CuSum, extended from our pre-
vious work’, detect abnormal deviations from the baseline in rest-
ing heart rates (RHRs) using distinct approaches (Methods). These
two methods were applied on the dense Fitbit data and have the
potential to report an alarm at hourly resolution. Although they can
detect anomalies at high resolution, these algorithms are computa-
tionally intensive. To be less computationally intensive and poten-
tially scalable to millions of users with various smartwatches, as
well as achieving higher sensitivity while keeping the false-positive
(FP) rate minimal, we developed a novel ‘lightweight’ algorithm
(NightSignal) that uses a deterministic finite state machine (FSM)"
based on overnight RHR (Methods and Extended Data Fig. 3). For
each individual, we use the streaming median of average overnight
RHR as the baseline and raise real-time daily alerts as deviations
from baseline as defined by the alerting state machine (Methods).
Deviations in successive nights (31h) trigger an alert. This algo-
rithm runs on both the Fitbit and Apple Watch, and its features are
presented in Extended Data Fig. 3. The NightSignal method has
high sensitivity (80%) compared to CuSum (72%) and RHRAD
(69%) but produces the same rate of false non-COVID-19 signals
(Supplementary Table 2).

Real-time pre-symptomatic and asymptomatic detection. We
first examined the capability of the real-time alerting system in the
detection of COVID-19 at an early, pre-symptomatic stage as well
as in asymptomatic cases. Figure 2a shows two examples of pro-
spective detection confirmed by COVID-19-positive tests: a Fitbit
case (top) and an Apple Watch case (bottom) in which we detected
elevated NightSignal alerts starting 3 d and 10 d before symptom
onset, respectively. The screenshots of the MyPHD app at the top of
Fig. 2a show the real-time alerts that the corresponding participant
received every day. Alerts are visualized via a calendar, and partici-
pants annotate the alerts using different surveys in the app, includ-
ing activities, symptoms, diagnosis, medications and vaccination
surveys. For the Fitbit example, all three algorithms raised alerts
before symptom onset.

We also found 18 cases in which individuals reported testing
positive but were asymptomatic. Alert signals were found to be
associated with positive diagnostic tests in 14 of these cases. Two
examples of asymptomatic participants who tested positive for
COVID-19 are shown in Fig. 2b, for whom the alerts triggered 19
d before and on the COVID-19 diagnosis date, respectively. For the
Fitbit example, only the NightSignal algorithm raises consecutive
COVID-19-related alerts because the other two algorithms required
more baseline data.

A summary of alert signals for all pre-symptomatic and asymp-
tomatic cases is shown in Fig. 3. To increase detection power, we
included the results from 50 retrospective cases where individuals
tested positive before study enrollment, as well as 34 cases where
individuals tested positive after enrollment (results were similar
among the two groups (Extended Data Fig. 2). Of these, 49 were

Fitbit users and 35 were Apple Watch users. Owing to the unknown
virus exposure time, we cannot define the precise infectious period
for participants who tested positive for COVID-19. Therefore, for
the participants who tested positive for COVID-19, we defined
true positives (TPs) as the number of cases that received red alerts
from the algorithm before or at COVID-19 symptom onset (for
pre-symptomatic cases) or diagnosis date (for asymptomatic cases)
with respect to the infection detection window (that is, 21 d before
the symptom onset for symptomatic cases or diagnosis date for
asymptomatic cases). We defined false negatives (FNs) as the num-
ber of participants who did not receive any alert within the same
infection detection window. For the participants who tested nega-
tive for COVID-19 as well as untested participants, we defined true
negatives (TNs) as the number of green alerts that were correctly
sent to these participants during non-COVID-19 periods (that is,
21 d before a negative test result for individuals who tested negative
for COVID-109, the entire time frame for untested participants and
days before the infection detection window for COVID-19-positive
cases). We also defined FPs as the number of red alerts that were
incorrectly sent to these participants during the above-mentioned
non-COVID-19 periods. Of the 84 participants who tested positive
for COVID-19 (66 symptomatic and 18 asymptomatic), 67 received
NightSignal alerts at or before symptom onset (for pre-symptomatic
cases) or diagnosis date (for asymptomatic cases) for a sensitiv-
ity (TP rate) of 80% (Fig. 3a,b). The number was similar for Fitbit
(77%) and Apple Watch (83%). For pre-symptomatic cases, an addi-
tional five cases received alerts within 21 d after symptom onset,
and eight cases did not yield any NightSignal alerts during the infec-
tion period (—21 d to +21 d around the onset of symptoms). We
note that the lack of sufficient wearable data might have been a rea-
son for some of these missed cases.

Unlike the NightSignal algorithm, which does not require
high-resolution data and thus functions on different devices with
different resolutions (for example, Fitbit and Apple Watch), the
online RHRAD and CuSum algorithms function only on Fitbit data.
For the case of Fitbit, which had hourly data, we were able to ana-
lyze the sensitivity of the online RHRAD and CuSum algorithms;
these were found to be 29/42 (69%) and 29/40 (72%), respectively.
To measure the performance of the algorithms on participants who
tested negative for COVID-19 as well as untested participants, the
specificity (TN rate) of the algorithms defined as TN/(TN + FP)
is as follows: NightSignal 87,124/(87,124 4 12,186) = 87.7%; online
RHRAD 57,108/(57,108+7,971) = 87.7%; and online CuSum
35,451/(35,45146,889) = 83.7%. In addition to these three algo-
rithms, we also retrospectively benchmarked the NightSignal algo-
rithm against the Isolation Forest anomaly detection algorithm,
which is commonly used to detect anomalies in the data'®. A detailed
summary of performance comparison is shown in Supplementary
Table 2. The Night Signal algorithm performed favorably compared
to the Isolation Forest method.

To determine the FP (non-COVID-19) rate, in addition to the
above population-alert-based FP and TN, we calculated the speci-
ficity in an individual-based analysis where we report the average
of TN rates across participants. Similarly, we also report the FP rate
for the COVID-19-positive population for the period before their
COVID-19 detection window. As described below, these values are
with respect to COVID-19 detection and other biologically relevant

>
>

Fig. 2 | Examples of COVID-19 real-time pre-symptomatic and asymptomatic detection. a, Pe-symptomatic detection for participants who tested
positive for SARS-CoV-2 using a Fitbit (top) and an Apple Watch (bottom). For the participant using a Fitbit, the panels show data derived using the online
NightSignal, online RHRAD and online CuSum algorithms. Alerts generated by the NightSignal algorithm initiated 3 d before symptom onset and persisted
for the next 15 d. For the participant using an Apple Watch, the panel shows data derived using the online NightSignal algorithm. Alerts appeared 10 d
before symptom onset and continued until 10 d after that. b, Asymptomatic detection for participants who tested positive for SARS-CoV-2 using an Apple
Watch (top) or a Fitbit (bottom). For the participant using an Apple Watch, the panel shows data derived using the online NightSignal algorithm. For the
participant using a Fitbit, the panels show data derived using the online NightSignal, online RHRAD and online CuSum algorithms.
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Fig. 3 | Association of red alerts with COVID-19 symptoms and diagnosis. a, Association of the initiation of red alerts in the NightSignal algorithm

with COVID-19 symptom onset in 66 participants who tested positive for SARS-CoV-2 with symptoms using a Fitbit or an Apple Watch, with respect

to a window of time centered around symptom onset (21 d before to 21 d after symptom onset). The NightSignal algorithm achieved pre-symptomatic
detection in 53 participants and post-symptomatic detection in five participants; eight participants did not receive any red alert associated with their
COVID-19 symptoms during the detection window. b, Association of the initiation of red alerts in the NightSignal algorithm with a SARS-CoV-2-positive
test in asymptomatic participants using a Fitbit or an Apple Watch. The plot shows 21 d before and 21 d after the COVID-19 diagnosis date. The NightSignal
algorithm achieved asymptomatic detection in 14 participants; four participants did not receive any red alert associated with their COVID-19 diagnosis
during the detection window. ¢, The distribution of scores of red alerts with respect to a window of 21 d before and 21 d after the COVID-19 symptom onset
date in participants who tested positive for SARS-CoV-2. Red bars indicate the cumulative scores of red alerts, as described in the Methods.

1.09 for the remainder. Thus, COVID-19-positives have a higher
mean alert rate.

To examine the alerting period relative to symptom onset, we
calculated the scores of red alerts based on a cumulative scoring
system (Methods) and plotted the distribution with respect to
the period of time centered around symptom onset (Fig. 3c and
Methods). Across the 66 symptomatic participants, we observed
that the maximum number of clustered alerts occur in a window of
—4 d to +11 d around symptom onset.

Symptoms and activities raise RHR signals. A wide variety of
symptoms are associated with COVID-19 (refs. ''*). To examine
illness progression, we aggregated symptoms by both severity and
number of individuals reporting across 21 d relative to symptom
onset (Fig. 4a). Consistent with the literature'>”’, most symptoms
were evident in the first 7-8 d of illness (fatigue, headache and
feeling ill), although fatigue often continued well after symptom
onset. Notably, fatigue was the most commonly reported symptom,
whereas loss of smell or taste seem to be the highest in terms of
severity. An example of an individual with many symptoms, some
which persisted for 3 or more weeks, is shown in Fig. 4b.

We examined the red alert clusters (two or more consecutive red
alert days) annotated by participants who tested positive for COVID-
19 vis-a-vis those annotated by participants who tested negative for
COVID-19. The distribution of symptoms and activities across the
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clusters was quite different depending on COVID-19 diagnosis (Fig.
4c). Symptoms such as fatigue and poor sleep were generally present
for both COVID-19-positive and COVID-negative cases, but aches
and pains, headaches, cough and feeling ill were less frequent in the
COVID-19-negative cases. Stress, intense exercise and alcohol con-
sumption were activities most commonly associated with red alerts
in individuals with COVID-19-negative diagnoses. Furthermore,
the mean duration of such annotated red alert clusters was much
higher (6.2 d) for individuals who tested positive for COVID-19
than individuals who tested negative for COVID-19 negatives (3.5
d) and untested individuals (3.7 d).

Examples of the alerts and symptoms signals are shown lon-
gitudinally from a COVID-19-positive case (Fig. 5a), a COVID-
19-negative case (Fig. 5b), a diagnosed Mycoplasma pneumoniae
infection (Fig. 5¢), individuals annotating stress or work stress
(Fig. 5d,e), repeated alcohol consumption (Fig. 5f) and extended
altitude change (Fig. 5g). These results indicate that other events
can be attributed to red alerts when surveys are regularly reported.
In many of these cases (for example, alcohol, altitude or other
stresses), these events are easy for the users to contextualize. It is
also important to note that the RHR elevation during the red alert
cluster is noticeably higher for the COVID-19-positive case than for
the COVID-19-negative and Mycoplasma cases. More examples of
different categories (COVID-19-positive, COVID-19-negative and
untested) are shown in Extended Data Fig. 6. Finally, as reported
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Fig. 4 | Association of clustered red alerts with symptom progression. a, Bubble plot showing day-by-day frequency counts of individuals reporting
symptoms during the second half of the infection detection window (from symptom onset to 21d later). Bubble size and shading are indicative of the
relative magnitude of the frequency count and the median severity, respectively. The percentage in the brackets alongside each symptom indicates the
total number of individuals reporting that symptom over all 21d as a fraction of the total number of symptomatic participants who tested positive for
SARS-CoV-2. b, lllustrative example tracing the symptoms of a participant who tested positive for SARS-CoV-2 from symptom onset to 21d later and
continuing thereafter intermittently for an additional 2 months. For each day, an aggregate symptom score was computed as the sum of the relative
severity of the symptoms, each weighted by its specificity to individuals who tested positive for SARS-CoV-2. The scale for computing the symptom score
was based on individual symptom intensities, each ranging from mild (score =1) to very severe (score =5) as reported by the participant. The aggregated
score shown in this bar plot is a measure of the overall severity. ¢, The bar plots show the percentages of red alert periods (from NightSignal algorithm)
associated with each symptom (left) or activity (right) as annotated by participants who tested positive for COVID-19 as well as by participants who

tested negative for COVID-19.

previously, we note that many non-COVID-19 alerts are evident
over the winter holidays—more than other times of the year (a
1.4-fold increase in red alerts; Extended Data Fig. 8). In this study,

this increase was evident during the pandemic, whereas this was
noted before the pandemic in our previous study’, indicating that
these events occur independent of the pandemic. It is possible that
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these holiday-associated events are due to increased stress, alcohol
consumption and/or travel.

COVID-19 vaccination often yields real-time alerts. There is con-
siderable interest in understanding how response to vaccination
compares to actual infections; wearable data provide an opportu-
nity to investigate physiological responses to vaccination in the real
world. On 11 December 2020 and 18 December 2020, the US Food
and Drug Administration issued the first emergency use authori-
zation for the Pfizer-BioNTech and Moderna COVID-19 vaccines,
respectively”””. These randomized vaccine clinical trials showed
94-95% efficacy in preventing COVID-19 illness. Overall, local-
ized side effects (for example, aches and rash) after vaccination have
been shown to be mild; however, moderate-to-severe systemic side
effects, such as fatigue and headache, were reported by some par-
ticipants® and provide an opportunity to examine the ability of our
algorithms to detect COVID-19 vaccination-related events.

In early January 2021, we added COVID-19 vaccination sur-
veys to the study app, MyPHD. As expected, alerts were trig-
gered one to several days after vaccination in many participants.
Three examples of the possible effects of vaccination detected by
the NightSignal algorithm and the related symptoms are shown
in Fig. 6a. As shown in these longitudinal examples, vaccina-
tion can trigger the alerts after both doses or after only one dose;
however, in some cases, RHR overnight might increase only for
a short period (for example, one night), and, hence, no alert is
raised. To determine the effect of vaccination on RHR overnight,
we analyzed the average RHR overnight for 5 d before and after
the vaccination date. Interestingly, we observed that, for the first
dose, the maximum RHR overnight occurred the night of the vac-
cination in the case of the Pfizer-BioNTech vaccine (an increase
was not evident for Moderna); for the second dose, it occurred
the first or second night after vaccination for the Moderna and
Pfizer-BioNTech vaccines, respectively (46% in Moderna and 54% in
Pfizer-BioNTech; Fig. 6b).

The symptoms reported for 1 week after vaccination were
recorded from the surveys. After the first dose, the most frequently
occurring symptoms with either vaccine are fatigue, poor sleep,
aches and pain. After the second dose, fatigue, headache, aches and
pain top the list. There are also some striking differences between
Pfizer-BioNTech and Moderna. In the case of Pfizer-BioNTech,
fever is reported after either dose, whereas, for Moderna, fever was
reported less frequently after the first dose, but almost 60% of the
participants reported a fever after the second dose. The distribu-
tion of symptoms reported and alerts received for 1 week after the
first and second dose of COVID-19 vaccines is shown in Fig. 6c.
Symptoms and alerts show similar trends, with the maximum num-
ber of alerts occurring in the first or second night after the vac-
cination. Overall, these results show the presence of symptoms
associated with vaccination, particularly the second dose, and that
the effects of vaccination are readily detected using a smartwatch.

Discussion

Here we introduce the first prospective, real-time physiological
stress detection and alerting system that can detect early-onset
illness using a smartwatch. It detects COVID-19 at or before symp-

toms in approximately 80% of the symptomatic cases and even
identifies asymptomatic cases; this is the first time, to our knowl-
edge, that asymptomatic detection has been shown for COVID-19,
although it has been reported for other infections®. The actual num-
ber of asymptomatic cases is difficult to judge because most such
cases are likely not tested with RT-PCR; nonetheless, we found that
14 of 18 asymptomatic cases had alerts near the test date (within 21
d before the diagnosis date). Detection results were similar for Fitbit
and Apple Watch. In this study, medical recommendations were not
provided to participants, although implementation in future studies
might allow this. Alerts were generated sufficiently early—a median
of 3 d before symptom onset for COVID-19 cases—to enable effec-
tive early self-isolation and testing.

Many of the alert-generating events detected in this study were
not associated with COVID-19. Most of the annotated alerts can be
attributed to other events, such as poor sleep, stress, alcohol con-
sumption, intense exercise, travel or other activities. In many of
these cases, the alerting events would be easy to self-contextualize
(intense exercise, alcohol consumption and travel), and the par-
ticipants would be unlikely to take action. In other cases, such as
COVID-19-negative diagnoses with symptomatic illness, follow-up
testing would be expected to be valuable.

From a survey of all participants who received alerts, 73% found
that the frequency of red alerts was acceptable, and they usually
could link the alerts to abnormal events (Supplementary Table 4).
They did not experience alarm fatigue for the relative short duration
of this study (less than 1 year). In the future, we plan to allow users
to set the sensitivity threshold. Thus, for example, healthcare work-
ers might choose a higher frequency for early detection, whereas
others might choose a lower frequency.

The large number of unannotated alerts might be due to (1) fail-
ure to annotate an alert, (2) asymptomatic infections or (3) other
stressors. Because stress can trigger increases in RHR, which is a
major feature of our detection algorithms, this approach can poten-
tially be used to monitor mental health as well as physical health. In
addition, due to the lightweight feature of the proposed algorithm,
the analysis of data from the smartwatch can be performed directly
on the user’s phone, thereby substantially reducing the cost of the
back-end systems’ operation and maintenance.

It is unclear why COVID-19 is not detected in all cases. Some of
these individuals have an unstable baseline (Methods), and, for oth-
ers, the abnormal signals deviating from the baseline are not large
enough to generate a signal. The inclusion of higher-resolution
data and/or other data types, such as heart rate variability, respira-
tion rate, skin temperature, SpO, changes, galvanic stress response
or other physiological features, are expected to improve detection
performance for both the number of events and the earliest detec-
tion time. Such data will likely help distinguish the COVID-19 cases
from other non-COVID-19 events, such as pathogenic infections,
stressors, alcohol consumption or other activities. Failure to detect
COVID-19 can also occur owing to missing data. Participants did
not wear the watches all the time, especially during sleep, when
watches are often charged (especially in the case of the Apple Watch,
which requires a longer charging time). We expect that this work
will provide useful insights into improvement of smartwatches for
health tracking.

>
>

Fig. 5| Association between RHR elevation with symptoms and activities. a, Example of a SARS-CoV-2-positive case. Alerts began before symptom onset
and continued until the diagnosis date. Elevated RHR was associated with severe fatigue, fever and headache. b, Example of a SARS-CoV-2-negative case.
Even though alerts were present throughout the symptom period, the magnitude of RHR elevation is noticeably lower compared to the SARS-CoV-2-positive
case in a. ¢, Example of alerts associated with M. pneumonia infection. On the 4th day after symptom onset, the participant received a negative test for
SARS-CoV-2. M. pneumonia was detected on the 8th day after symptom onset, and both symptoms and alerts were receded on the 14th day after symptom
onset (5 d after antibiotic therapy). d, e, Examples illustrating associations of stress, poor sleep and mood change with the occurrence of alerts in the
individuals who tested negative for SARS-CoV-2. f, Example illustrating the association between repeated alcohol consumption and alerts in an individual
who tested negative for SARS-CoV-2. g, Example illustrating extended altitude change and alerts in an individual who tested negative for SARS-CoV-2.
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Notably, classical methods for illness detection have generally line. Many COVID-19 infections do not appear to cause a fever.
relied on resting oral or skin temperature and comparison of an  Moreover, skin temperature is often measured using inaccurate
individual to a population average instead of their individual base-  devices, such as infrared devices, which are influenced by external
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Methods

Study participation. In total, 3,318 adult individuals 18-80 years of age were
recruited for this study under protocol number 57022, approved by the Stanford
University IRB. Participants were invited by social media, news and outreach to
participants in previous studies. Participants registered using the REDCap survey
system and were then asked to install the study app, called MyPHD (available

for iOS and Android devices). The app transfers their wearable data (Fitbit via
Fitbit secure OAuth 2.0 API; Apple Watch and Garmin via HealthKit repository
and other HealthKit and Google Fit-compatible devices) to a cloud platform for
the Stanford research team to perform analysis. Next, the NightSignal algorithm
generated alerts (green and red) in real time, which were sent to the participants.
Upon receiving alerts on the app, participants were asked to annotate events with
surveys covering symptoms, activities, diagnoses, medications and vaccination.
Alerts are visualized via a calendar, and participants annotate the alert for each day
using the surveys described (Fig. 2, top).

In general, we expect that alerts can lead to reporting bias because participants
who do not get alerts might not annotate events. However, we hope that
visualizing alerts using a calendar (instead of notification-based alerts) encourages
participants to annotate any day regardless of the alert color (green/normal or
red/abnormal alerts). Indeed, some participants annotated their alerts daily. All
participants who had at least 7 d of wearable data (NightSignal) received alerts
(2,117 in total). The number of individuals who received alerts (2,117) was less
than the number who enrolled (3,318). This might be due to participants who did
not install the study app or had difficulties using it (for example, perhaps due to
issues of language barriers) or had fewer than 7 d of data.

To evaluate the performance of the following algorithms, for COVID-
19-positive cases, because we cannot precisely define the correct or incorrect
alerts for each individual due to the unknown virus exposure time, we define an
infection detection window as 21 d before the symptom onset for symptomatic
cases or diagnosis date for asymptomatic cases and, hence, calculate the TPs and
FNs at individual level based on the above infection detection window instead of
an alert-based analysis.

NightSignal. A previous study that investigated whether personal sensor data

can help with COVID-19 detection showed that the daily RHR on its own does
not allow substantial discrimination between participants who tested positive for
COVID-19 and participants who tested negative for COVID-19; however, it has
been shown that sleep and activity data have a considerable difference between the
two groups®. We observed substantial performance improvement when overnight
RHR approach is used compared to daily RHR, because overnight RHR avoids
short-range non-infection events such as stress or intense exercise during the day
(Extended Data Fig. 7); thus, we focused on nighttime signals.

Data pre-processing. The pre-processing stage provides consistency between
different sources (that is, Fitbit and Apple Watch) and handles missing data. The
resolution of the retrieved distinct raw heart rates and steps data from Fitbit and
Apple Watch differs (Extended Data Fig. 4). To calculate the RHR overnight

for different devices, first we consider the heart rate records where steps are

zero and then aggregate the RHR values by calculating the average RHR during
nighttime (that is, 24:00 to 7:00). In Extended Data Fig. 5a, we show that, for most
participants (over 80%), median of average RHR overnight is a stable and reliable
baseline, because, only after seven nights, it hits a baseline close to the baseline over
3 months. In the case of missing nights, we impute the values for only up to one
night by calculating the average RHRs from the night before and immediately after
the missed night.

Real-time alerting. The NightSignal algorithm triggers the alerts based on the

FSM shown in Extended Data Fig. 3. An FSM is defined by a list of its states, its
initial state and the inputs (symbols) that trigger each transition and can produce
an output based on a given input and/or a state. The NightSignal state machine,

as depicted in Extended Data Fig. 3, contains six states and three outputs/colors
(Sy» S, and S, labeled with green alert, S; and S, labeled with yellow alert and S
labeled with red alert) and three symbols as follows: (a) A, <M+ 3: for night i, the
average RHR overnight is fewer than 3 beats per minute (b.p.m.) above the baseline
(median of averages of RHR overnight for all nights up to night 7). To keep the FP
rate sufficiently low to avoid alarm fatigue, as well as achieving a high sensitivity
(Extended Data Fig. 9), the threshold of 3 was chosen, because, for all participants,
the median of fluctuation of medians of average RHR overnight over 3 months
was only 3 b.p.m. (Extended Data Fig. 5b,c); (b) A;=M,+ 3: for night i, the average
RHR overnight is equal to 3 b.p.m. above the baseline; and (c) A,> =M, +4: for
night 4, the average RHR overnight is greater than or equal to 4 b.p.m. above the
baseline. Transition starts from initial state S, (green alert), and the transition
function takes one of the above six states and one of the above three symbols and
returns a state with its corresponding label (alert).

RHRAD. The current version of the AnomalyDetect online model is built based on
the previous offline model from our previous study’. It uses RHR data and splits it
into training data by taking the first 744 h as a baseline (1 month) and test data by
taking the next 1-h data and uses a 1-h sliding window to find anomalies in the test
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data in ‘real time’ with a 0.02 threshold. If the anomalies occur frequently within
241, it will automatically generate either warning (yellow) or serious (red) alerts
every 24 h. Red alerts were set if the anomalies occurred continuously for more
than 5 h within each 24-h period; yellow alerts were set if the anomalies occurred
for 1 h or continuously for fewer than 5 h; and green alerts were set if there were no
anomalies.

CuSum. We extended the CuSum online detection algorithm proposed in our
previous work” into the context of the real-time alerting system. Our previous work
focused on the initial alarm for the purpose of early detection. For the setting of
the alarm event, the trend of CuSum statistics was tracked using a 1-h resolution;
the status of CuSum was evaluated every 12 h; and the alarm was reported each day.
As calculated in Mishra et al.’, the baseline was constructed from a 28-d
sliding window in a personalized manner. If the data were missing for more than
14 successive days, the CuSum alerting system was restarted. The alerting system
proceeded through chunks of data (56 d), and then the results from these different
chunks were combined. Under the threshold of 95% quantile of CuSum statistics
during the baseline, the difference of the standardized RHR residuals from the
threshold was accumulated in each hour, and the zero-truncated positive difference
was added to the stream of the CuSum statistics. When the CuSum statistics
became significant for the first time compared to the statistics during the baseline
(which serve as the null distribution), the initial alarm was triggered. After the
initial alarm, the average CuSum statistics from each 12-h window were calculated,
and the CuSum changed to a yellow status. If the CuSum statistics kept increasing
in two successive 12-h intervals, a red status was recorded in the last 12-h period.
If the CuSum statistics continued decreasing in two successive 12-h intervals,
the status was turned back to green. In the case of all missing values in the 12-h
intervals, the status was recorded as NA. The alarms were sent at 21:00 each day
based on the latest recorded status.

Isolation Forest. Isolation Forest is an unsupervised anomaly-detection model
based on decision trees. We used the ensemble.IsolationForest class from the
scikit-learn package in Python® to isolate the observations by processing the
randomly sub-sampled data in a tree structure and return the anomaly score of
each sample and find the extreme points as anomalies. Isolation Forest uses a key
parameter as contamination that sets the percentage of points in the data to be
anomalous. A higher contamination level is more likely to generate more anomalies
(that is, potentially higher FPs). In Supplementary Table 2, we report the results for
two contamination-level settings: ‘auto’ and ‘0.095 The value of 0.095 was chosen
to have the same percentage of anomalies as in the NightSignal algorithm (that is,
average of two alerts during a 21-d window for all COVID-19 positives, COVID-
19 negatives and untested groups). Pre-processing and other parameters, such as
resampling and overnight window, are the same as in the NightSignal algorithm.

In Fig. 3¢, the cumulative scores of alerts are calculated by the formula (1)
below. Let D={d,, d,, ..., d,} be a set of days and R = {d,, d,,,, ..., dx,,.} be a set of
days where consecutive k alerts have occurred, and then the associated alert score
for each day in the set R is calibrated to the size of the set R (that is, m + 1). Note
that the most clustered alerts appear around the symptom onset date.

Formula (1):

D (days) = {d,, da, ..., du}, R (consecutive alerts) = {dk, dir1s ...dK+m}
S (alerts scores) = {5 (di)y=m+1,s (dk+1) =m+1L..5(dk4m) =m+ 1}

Visualization. Algorithm results were visualized using the matplotlib package,
version 3.1.0.

Reporting Summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability

De-identified raw heart rate and steps data used in this study can be downloaded
at the following publicly available link: https://storage.googleapis.com/
gbsc-gcp-project-ipop_public/ COVID-19-Phase2/COVID-19-Phase2-Wearables.
zip. Source data are provided with this paper.

Code availability

Code for the algorithms used in this study are publicly available at:
NightSignal algorithm: https://github.com/StanfordBioinformatics/
wearable-infection

RHRAD algorithm: https://github.com/gireeshkbogu/AnomalyDetect/blob/
master/scripts/rhrad_online_24hr_alerts_v6.py

CuSum algorithm: https://github.com/mwgrassgreen/Alarm

Isolation Forest algorithm: https://github.com/StanfordBioinformatics/
wearable-infection/tree/main/isolationforest
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Extended Data Fig. 1| Wearable devices distribution. Of the 2,155 participants who had a smartwatch: 1,031 wore Fitbits, 970 wore Apple Watches, 98
wore Garmin, and 56 had other devices. Note that we consider the device with the most amount of data as the main device in case of having more than
one device.
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Extended Data Fig. 2 | Flow chart of participants. A flow chart over the participants in the study including the number of participants with sufficient
wearable data in each category — in COVID-19 positive cases, if there are more than two days missing in a week before symptom onset (for the
symptomatic cases) or more than a week missing data in 21 days before the diagnosis date (for the asymptomatic cases), we consider the case as
insufficient data — and number of participants in each sub-category of COVID-19 positive cases: prospective/retrospective, Fitbit/Apple Watch, and
symptomatic/asymptomatic. As shown in the figure, 66 participants were symptomatic and 18 were asymptomatic. 45 participants (5 asymptomatic)
confirmed diagnosis of COVID-19 via written documentation or verbal confirmation of their test result.
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A.: Average resting heart rate overnight for night i
M.: Median of averages of resting heart rate overnight for all nights
upto night i

Extended Data Fig. 3 | Deterministic Finite State Machine in NightSignal algorithm. The state machine consists of six states, each labeled with an alert
color and three symbols for transition between states based on the current average RHR overnight and the deviation level from the baseline (streaming
median of averages of RHR overnight). For example, a red alert gets triggered if for two consecutive nights, the average RHR overnight is at least four bpm
above the calculated baseline.
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Extended Data Fig. 4 | Comparing distribution of RHR overnight data in Fitbit vs. Apple Watch. To show the distribution of RHR data in Fitbit and Apple
Watch, RHR overnight data points have been divided into 16 ranges (1-10, 10-20, etc.) and each bar depicts the total number of nights that falls into each
group. Each participant is presented with a color. Note that for the majority of participants, for most of the nights, there are 300 to 500 RHR overnight
data points (that is, almost minute resolution) in the case of Fitbit. However, the range differs considerably in Apple Watch; the reason is that Apple Watch
takes heart rate and step counts readings with different resolutions based on the activities. Note that in the NightSignal algorithm, for each night, we use
the RHR overnight data regardless of the amount of data. The reasons for not setting a threshold for the minimum amount of data points required are as
follows: the first reason is that in most cases, even a very few data points are sufficient to get a proper average RHR overnight because we only consider
HR records where the corresponding time interval (for example, few minutes) for step count is zero. The second reason for that is if we do so (for example,
set the threshold to 40 data points), we will miss a significant number of nights (for example, first four bars). It is important to note that there were 15
participants who had data collected from both Fitbit and Apple Watch. With respect to the average RHR overnight that is used in NightSignal algorithm,
except for one participant who had significant different values between the Fitbit and Apple Watch (one possible reason can be that the watch has been
used by another person), for other 14 participants, the median delta between the Fitbit and Apple Watch data for joint nights (total of 1,006 nights) is

only two bpm. Hence, despite the difference between the distribution of RHR overnight data points, there is no significant difference in the average RHR
overnight point of view that is being used in the NightSignal algorithm between two devices. It is noteworthy to mention that unfortunately we did not

have many COVID-19 positive cases with Garmin data to properly evaluate the algorithm for Garmin watches, and thus we did not include Garmin in our
analysis.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Thresholds and parameters in the NightSignal algorithm. As we discussed previously, the NightSignal algorithm uses the
streaming median of average RHR overnight as the baseline. We believe that it is a proper individual healthy baseline as we show that the fluctuation is
insignificant and it usually deviates due to a long-term abnormal event (for example, infection, medication consumption, vaccination). (A) The minimum
number of nights required to hit a baseline close to the baseline over three months (within +two bpm from the baseline - the reason behind choosing the
threshold of two is that the baseline would still remain in the green zone) for the majority of participants. As depicted in the figure, for over 80% of the
participants, the proper baseline was observed after only seven nights. (B) The range (max-min) of the medians of average RHR overnight during three
months of data with the median value of only three bpm. Similarly, Quer et al. > studied the variability in individual resting heart rate and showed that
most participants had a median weekly fluctuation in RHR of only three bpm. Given the fact that we only consider RHR overnight, the median fluctuation
in RHR overnight is still three bpm even for a duration of three months. (C) The corresponding distribution of the medians of average RHR overnight over
three months indicates a standard deviation that is very low (0.8).
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Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Additional examples of alerts for COVID-19 positive, COVID-19 negative, and untested participants. (a) Signals for a COVID-19
positive case with mild and short-lasting symptoms. Note that this participant received zero red alerts during a healthy period of over seven months and
only received two red alerts starting the night of the symptom onset date (the only period where the RHR overnight is much higher than baseline for three
consecutive nights). This example shows missing only two days of data can lead to missing a whole cluster of COVID-19 related alerts. (b) A COVID-

19 positive case shows that triggering alerts based on deviations in two nights does not lead to delayed alert. (¢) and (d) Both cases show participants
who reported confirmed diagnosis of COVID-19 but with consecutive negative tests after the positive test, seven and two negative tests, respectively. In
both cases, the NightSignal algorithm correctly did not trigger any red alert. (e) An example of a sick participant with moderate symptoms followed by a
COVID-19 negative test. Note that RHR overnight period began to increase three nights before the symptoms developed. (f) An example of an untested
participant who reported no illness or symptoms of any kind during the study (only some poor sleep and alcohol consumption points for P174112). This
participant received no red alerts for over a three months healthy period, however alcohol consumption affects the RHR overnight but the impact is either
only for one night or not severe enough to trigger a red alert. (g) This example indicates the impact of lifestyle changes (here weekdays vs. weekends) on
RHR overnight in a COVID-19 positive participant. Clearly, repeated patterns occur before COVID-19 positive test and reoccurrence of the similar patterns
begin two weeks after that (likely due to recovery from the illness and starting the same lifestyle).
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Extended Data Fig. 7 | Impact of other non-infectious events on NightSignal alerts (all day vs. overnight). Examples of the impact of different events (for

example, home and work stress, travel, and intense exercise) on the alerts based on two configurations: all day vs. overnight. Comparing the plots for each

infectious events by analyzing RHR overnight.

participant shows that the NightSignal algorithm reduces possible false positives due to non
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Extended Data Fig. 8 | Impact of winter holidays on NightSignal alerts. As shown previously, there is a noticeable increase in the number of alerts during
winter holidays — particularly late December and beginning of January — (‘holiday bump") due to the higher rate of travel, alcohol, entertainment, stress,
and illness compared to other times of the year.
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Extended Data Fig. 9 | Sensitivity and false positive rate changes in the NightSignal algorithm for different thresholds. Under different thresholds, we
report the sensitivity and false positive rate for the NightSignal algorithm. For the sake of clarity, it is important to mention that for anomaly detection
problems like the one addressed in this study, having a perfect ground truth is very hard (here, due to the facts that the exact time of virus exposure is
unknown in majority of the cases and also other non-infectious events can trigger the alerts - usually smaller clusters). Hence, defining the exact COVID-
19 illness period and consequently correct alert is difficult. In other words, all the alerts within the assumed detection window might not necessarily be
related to COVID-19, so a higher sensitivity does not by itself mean a greater accurate detection rate. Therefore, besides the aforementioned reasons in
Supplementary Fig. 5, to keep the false positive rate sufficiently low, as well as achieving a high sensitivity, we use the threshold of three for the warning
(yellow) level. Moreover, this threshold can be easily configured by each individual for a more personalized and precise analysis. This modification will
require IRB approval and is outside of the scope of the present study and is thus part of a future work.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
|X| A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
|X| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

< A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
“/~ AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
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D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  MyPHD Mobile development: Swift 4 and Java - Xcode (12.4) and Android Studio (4.1.2)
Cloud Computing services: GCP BigQuery (1.22.0), GCP Storage (1.22.0), GCP Cloud Functions, Terraform (0.12.29)
REDCap (11.2.4)

Data analysis All statistical analyses were performed in python 3.6 and R 3.3.0 and the Python sklearn version 0.23.1. and R xts packages version 0.12.1.
Results were visualized using the matplotlib package version 3.1.0.
NightSignal algorithm: https://github.com/StanfordBioinformatics/wearable-infection
RHRAD algorithm: https://github.com/gireeshkbogu/AnomalyDetect/blob/master/scripts/rhrad_online_24hr_alerts_v6.py
CuSum algorithm: https://github.com/mwgrassgreen/Alarm
Isolation Forest algorithm: https://github.com/StanfordBioinformatics/wearable-infection/tree/main/isolationforest

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Data availability:
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Source Data are available with this paper. De-identified raw heart rate and steps data used in this study can be downloaded from the following publicly available
link: https://storage.googleapis.com/gbsc-gcp-project-ipop_public/COVID-19-Phase2/COVID-19-Phase2-Wearables.zip
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The most crucial aspect of the study was to compare the participant's continuous time-series data to their own baseline to detect COVID-19
infection in real-time and return the results in the form of alerts to participants via the study app, MyPHD. Thus, in terms of sample size, the
crucial aspect was to ensure maximal sampling within an individual before and around the time of COVID-19 infection (i.e. symptom onset for
symptomatic cases and diagnosis date for asymptomatic cases). For analysis, we used 84 COVID-19 positives (45 confirmed via written
documentation or verbal confirmation) who had (1) COVID-19 diagnoses date, (2) were able to provide symptom onset and/or diagnosis
dates, and (3) had data recorded from wearables spanning and adjacent to the dates of the COVID-19 infection. We recruited as broadly as
possible, and tried to maximize the number of individuals who fit these criteria, but were limited by the infection rates during the recruitment
period of the study. Out of the 3,318 individuals enrolled, and 2,155 who were wearing fitness trackers, we identified 278 individuals with
COVID-19 infection. Of these, 84 individuals were wearing the devices around the infection time; hence, this subset of individuals was chosen
for analysis. We also added 1,213 participants who reported a COVID-19 negative test, 1,825 participants without any COVID-19 test report,
and 189 participants who received the COVID-19 vaccine (Moderna or Pfizer-BioNTech), among them, 182 participants were fully vaccinated
(i.e. both doses).

Data exclusions  All available data were used for analyses. There were no data excluded from the analyses, except in cases where data from the wearbles was
missing during or just prior to a self-reported COVID-19 infection.

Replication This was an observational study in which we did not perform experiments.

Randomization Participants were not randomized. There was no allocation to groups. We recruited individuals from 3 distinct groups, COVID-19 positive,
COVID-19 negatives, and untested individuals (Vaccinated individuals could be either COVID-19 positive, negative, or untested) but the only
group-based analysis was to compare alerts duration and intensity in each group. The main detection algorithms were run on each individual
participant's data separately. Each participant's longitudinal data as used to construct participant-specific heart-rate baselines, deviations

from the baseline, and corresponding alerts were analyzed in a participant-specific manner.

Blinding Blinding was not relevant to the study (that is, there was no allocation to groups or interventions).

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

n/a | Involved in the study n/a | Involved in the study
Antibodies |:| ChlIP-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |:| MRI-based neuroimaging

Animals and other organisms
Human research participants

Clinical data
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Dual use research of concern

Human research participants

Policy information about studies involving human research participants

Population characteristics The mean age of the 5,262 participants at time of enrollment was 44 (range, 19-79); 55.8% were women. However, out of
the 278 COVID-19 positive individuals , 160 (57.5%) were women. The self-reported ethnic distribution of the full cohort was
79.3% European/Caucasian/White, 4.5% Asian, 3.6% Hispanic, 2.9% African American, 10.6% Mixed/Other/Undeclared. The
most common self-reported health conditions at entry were allergy or immune system disease or conditions, high blood
pressure, high cholesterol, and respiratory or lung disease or conditions.
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Recruitment Participants were recruited by social media, news, and outreach to participants in previous studies. Since social media was
one of the recruitment methods used, there could be a bias towards people who use social media. The use of wearable
devices likely biases our study cohort towards individuals of higher socioeconomic-strata, who are more likely to be able to
afford the devices. It is also possible that individuals who own wearables devices are more interested in using wearable
devices to monitor both activity and health. However, we do not think that the results of our algorithm are affected by
interest in wearable devices especially as the NightSignal algorithm is not restricted to one type of wearable devices.

Ethics oversight Stanford IRB (#57022) and Data Risk Assessment (#665)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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